US20180216023A1 - Use of polyclycerin esters as friction modifiers in lubricant formulations - Google Patents

Use of polyclycerin esters as friction modifiers in lubricant formulations Download PDF

Info

Publication number
US20180216023A1
US20180216023A1 US15/746,533 US201615746533A US2018216023A1 US 20180216023 A1 US20180216023 A1 US 20180216023A1 US 201615746533 A US201615746533 A US 201615746533A US 2018216023 A1 US2018216023 A1 US 2018216023A1
Authority
US
United States
Prior art keywords
acid
lubricating oil
oil composition
acids
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/746,533
Inventor
Stefan Maier
Oliver Springer
Jennifer HOLTZINGER
Klaus Schimossek
Thomas DAMASKE
Marcus Stephan
Jan Marian von Hof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Oil Additives GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Oil Additives GmbH filed Critical Evonik Oil Additives GmbH
Assigned to EVONIK OIL ADDITIVES GMBH reassignment EVONIK OIL ADDITIVES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEPHAN, MARCUS, VON HOF, JAN MARIAN, HOLTZINGER, Jennifer, DAMASKE, Thomas, MAIER, STEFAN, SPRINGER, OLIVER, SCHIMOSSEK, KLAUS
Publication of US20180216023A1 publication Critical patent/US20180216023A1/en
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH MERGER (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK OIL ADDITIVES GMBH
Assigned to EVONIK OPERATIONS GMBH reassignment EVONIK OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK DEGUSSA GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/78Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2220/021
    • C10N2230/06
    • C10N2240/10

Definitions

  • the present invention relates to a lubricating oil composition
  • a lubricating oil composition comprising polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) and the use thereof to lubricate an engine and reduce friction.
  • Friction modifiers are used especially in gear and engine oil formulations where lower viscosity formulations are applied in order to save energy. While reducing the energy losses in the fluid, lubricants with low viscosities struggle to keep the sliding surfaces completely apart from each other and require a friction modifier to maintain a lubricant film on the surfaces.
  • Friction modifiers work by forming adsorption layers on the metal surface. They are of high importance under mixed lubrication conditions when the sliding surfaces are not always separated by a lubricant film of sufficient thickness. Such conditions can be simulated with a mini traction machine (MTM) that is able to measure the friction coefficient over a broad range of conditions.
  • MTM mini traction machine
  • Friction reducing additives that have been used to improve fuel economy fall into three main chemically-defined categories, which are organic, metal organic and oil insoluble.
  • the organic friction reducing additives themselves fall within four main categories which are (i) carboxylic acids or their derivatives, including partial esters, (ii) nitrogen-containing compounds such as amides, imides, amines and their derivatives, (iii) phosphoric or phosphonic acid derivatives and (iv) organic polymers.
  • friction reducing additives are glycerol monooleate and oleylamide, which are both derived from unsaturated fatty acids, or molybdenum dialkyldithiocarbamate. Also used are copolymers with blocks of polyethyleneglycol (WO 2011/107739 and WO 2015/065801) or other alkoxide polymers (WO 2014/139935). It is further known that polyglycerol solubilized by a long alkyl chain attached via an ether function (U.S. Pat. No. 7,803,745) or an ester function (WO 2015/044639) can be applied as a friction modifier.
  • polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) show superior performance as friction modifiers for lubricants. Superior means a larger reduction of the friction coefficient and/or more efficient friction reduction due to a lower treat rate and/or a better combination of oil compatibility and friction reducing performance.
  • the present invention is directed to a lubricating oil composition
  • a lubricating oil composition comprising a lubricating base oil and polyglycerol partial esters, characterized in that the polyglycerol partial esters are obtainable by esterification of a polyglycerol mixture with
  • Polyglycerol esters were found to work especially in apolar formulations containing mainly API Group II, Ill and/or IV as lubricating base oils.
  • API American Petroleum Institute
  • Groups I, II and III are mineral oils which are classified by the amount of saturates and sulphur they contain and by their viscosity indices.
  • the table below illustrates these API classifications for Groups I, II and III.
  • VI Viscosity Index
  • Group I base stocks are solvent refined mineral oils, which are the least expensive base stock to produce, and currently account for the majority of base stock sales. They provide satisfactory oxidation stability, volatility, low temperature performance and traction properties and have very good solvency for additives and contaminants.
  • Group II base stocks are mostly hydroprocessed mineral oils, which typically provide improved volatility and oxidation stability as compared to Group I base stocks.
  • Group III base stocks are severely hydroprocessed mineral oils or they can be produced via wax or paraffin isomerisation. They are known to have better oxidation stability and volatility than Group I and II base stocks but have a limited range of commercially available viscosities.
  • Group IV base stocks differ from Groups I, II and III in that they are synthetic base stocks comprising e.g. polyalphaolefins (PAOs).
  • PAOs have good oxidative stability, volatility and low pour points. Disadvantages include moderate solubility of polar additives, for example antiwear additives.
  • lubricating oil compositions according the present invention may contain up to 10% of an ester base oil according to API Group V as solubilizer.
  • Group V base stocks are all base stocks that are not included in the other Groups. Examples include alkyl naphthalenes, alkyl aromatics, vegetable oils, esters (including polyol esters, diesters and monoesters), polycarbonates, silicone oils and polyalkylene glycols.
  • the friction modifier performance of polyglycerol partial esters according to the present invention can be achieved in formulations with and without the additional ester base stock.
  • the lubricating oil compositions according to the present invention are characterized in that they comprise
  • Polyglycerol partial esters of poly(hydroxystearic acid) and polyfunctional carboxylic acids are known as W/O emulsifiers in cosmetic or pharmaceutical formulations and as auxiliaries for dispersing inorganic micropigments in oily dispersions (EP 1 500 427 B1 and EP 1 683 781 B1).
  • W/O emulsifiers for best performance as friction modifiers the parameters surface activity or polarity and oil solubility have to be balanced and adjusted to the polarity of the respective oil mixture used as base stock.
  • the balance of polar and apolar parts in the polymer is described by the HLB value that is calculated. This can be done by selection of a polyglycerol characterized by a certain degree of polymerization and selection of carboxylic acids and polycarboxylic acids.
  • the ratio of acid and alcohol functions is important as it determines the degree of esterification and thus the amount of unreacted OH-functions (described by the OH-number determined by titration). Free acid functions are unwanted and should be kept at a minimum level (described by the acid value, determined by titration).
  • the superior performance relative to other friction modifiers is attributed to the high polarity of the polyglycerol moieties, the free OH-functions due to the partial esterification and the polymeric nature of the substances which provides multiple interaction sites between the surface and the friction reducing component.
  • the polymeric nature of the described friction modifiers is especially important for the solubility of the component as very polar moieties in the molecule have to be kept in solution.
  • polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) are obtainable by esterification of a polyglycerol mixture with saturated or unsaturated, linear or branched fatty acids having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms, and polyfunctional carboxylic acids having 4 to 54 carbon atoms, preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms and even more preferably 6 to 12 carbon atoms, and a mean functionality of from 2 to 4, preferably 2 to 3 and more preferably 2 to 2.5, the degree of esterification of the polyglycerol mixture being between 30 and 75% of the OH groups.
  • N _ ⁇ i ⁇ ⁇ x i 100 ⁇ N i
  • N mean functionality of a mixture of polyfunctioal carboxylic acids
  • Particularly suitable linear or branched saturated fatty acid components are selected from the group consisting of caprylic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, margaric acid, stearic acid, isostearic acid, arachidic acid, behenic acid and mixtures thereof.
  • a suitable saturated fatty acid is also 12-hydroxy stearic acid.
  • Naturally occurring mixtures are, for example, the coconut fatty acids, which contain lauric acid as the main constituent and also contain saturated C14- to C18-fatty acids and possibly small amounts of saturated C8- to C18-fatty acids and unsaturated fatty acids, and tallow fatty acids, which are essentially a mixture of palmitic acid and stearic acid.
  • Suitable unsaturated fatty acid components are monoolefinically unsaturated acids, for example hexadecenoic acids, octadecenoic acids, such as oleic acid (cis-9-octadecenoic acid) or eladidic acid (trans-9-octadecenoic acid), eicosenoic acids and docosenoic acids, such as erucic acid (cis-13-docosenoic acid) or brassidic acid (trans-13-docosenoic acid), poly-unsaturated fatty acids, for example octadecadienoic acids and octadecatrienoic acids, such as linoleic acid and linolenic acid, ricinoleic acid and mixtures thereof.
  • monoolefinically unsaturated acids for example hexadecenoic acids, octadecenoic acids, such as oleic acid (cis-9-
  • liquid fatty acids which contain 18 to 22 carbon atoms, namely oleic, ricinoleic, erucic and isostearic acids, are particularly suitable. Because of branching solidification points are below 35 DEG C. It is also possible to use fatty acid mixtures, which can also contain wax-like components, such as hydrogenated ricinoleic acid.
  • the poly(hydroxystearic acids) co-used according to the invention are prepared, for example, by polycondensation of hydroxystearic acid, preferably 12-hydroxystearic acid, which is obtained by hardening of ricinoleic acid or technical-grade castor oil fatty acid, by known processes. They have a mean degree of polymerization of 1 to 10 units, preferably 2 to 8 units and in particular 2 to 5 units.
  • the polyfunctional carboxylic acids can be dicarboxylic acids, tricarboxylic acids or polycarboxylic acids.
  • the polyfunctional carboxylic acids may be unsubstituted or optionally substituted by one, two or three hydroxyl groups, preferably by one hydroxyl group.
  • the aliphatic dicarboxylic acids used for the esterification should have a chain length of 3 to 18 carbon atoms. They can be straight-chain or branched, such as, for example, malonic acid, succinic acid, fumaric acid, maleic acid, dimethylglutaric acid, adipic acid, trimethyladipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hecadecanedioic acid, octadecanedioic and their anhydrides.
  • the dicarboxylic acids used can also be dimeric fatty acids. As is known, these are mixtures of acyclic and cyclic dicarboxylic acids which are obtained by a catalyzed dimerization reaction of unsaturated fatty acids having 12 to 22 carbon atoms.
  • the dicarboxylic acids can also contain, to a lesser extent, tri-and polyfunctional carboxylic acids.
  • the functionality of the mixture should not exceed a value of 2 to 2.5 molar average.
  • polyfunctional carboxylic acids can be used phthalic acid, trimellitic acid and pyromellitic acid.
  • polyglycerol encompasses a polyglycerol comprising glycerol. Therefore, for the calculation of amounts, masses etc. the glycerol content has to be taken into account.
  • glycerol oligomers or polyglycerol(s) encompasses linear as well as cyclic structures.
  • Suitable polyglycerols are in particular those having a mean degree of condensation of >2, preferably from 3 to 6. These are technical-grade polyglycerol mixtures which are obtained, for example, by alkali-catalyzed condensation of glycerol at elevated temperatures and from which fractions with the desired degree of condensation can be obtained if desired by distillation methods. Also suitable are polyglycerols obtained by other methods, e.g. from epichlorohydrin or glycidol. Commercial polyglycerols can be obtained from companies like Solvay, Spiga Nord, Daicel or Lonza.
  • polyglycerol partial esters from 30 to 75%, preferably from 50 to 65%, of the hydroxyl groups of the polyglycerol are esterified. They are initially esterified to a degree of esterification of from 25 to 60%, preferably from 35 to 50%, using fatty acid and in a second step, using dicarboxylic acids to an overall degree of esterification of from 30 to 75%, preferably from 50 to 65%.
  • an HLB value of from 3 to 7 is aimed at in order to obtain favorable products.
  • the HLB value is a measure of the degree to which the molecule is hydrophilic or lipophilic, determined by calculating values for the different regions of the molecule.
  • the HLB value of the polyglycerol partial esters is calculated as follows:
  • mp is the mass of polyglycerol
  • ma is the mass of carboxylic acid mixture comprising mono-, di- and polycarboxylic acids as well as polyhydroxy fatty acids used in the synthesis of the polyglycerol ester.
  • the polyglycerol backbone of the polyglycerol partial ester comprises an average degree of polymerization of from 2 to 8, preferred from 2.5 to 6, particularly preferred from 3 to 4.5.
  • a suitable method for determining the oligomer distribution of the polyglycerol in a given polyglycerol partial ester comprises hydrolysis or alcoholysis of the partial ester, separation of the resulting polyglycerol from the formed carboxylic acid compounds, and analysis by gas chromatography after derivatization.
  • the polyglycerol partial esters according to the invention can be prepared in a manner known per se by heating the reaction components and removing the resultant water of reaction by distillation.
  • the reaction can be accelerated by means of acidic catalysts such as sulfonic acids, phosphoric acid or phosphorous acid or basic catalysts such as alkali metal or alkaline earth metal oxides or hydroxides, alcoholates or salts, or Lewis acids, such as tin salts,.
  • acidic catalysts such as sulfonic acids, phosphoric acid or phosphorous acid
  • basic catalysts such as alkali metal or alkaline earth metal oxides or hydroxides, alcoholates or salts, or Lewis acids, such as tin salts,.
  • Lewis acids such as tin salts
  • the polyfunctional carboxylic acid is then added and the esterification reaction is continued.
  • the progress of the reaction can be monitored, for example, via the water of reaction removed, by measuring the acid number or by infrared spectroscopy.
  • an acid number in the end product of ⁇ 20, preferably ⁇ 10, is desired. Products with an acid number of ⁇ 5 are particularly preferred.
  • the acid number is measured according to DIN EN ISO 2114.
  • the weight average molecular weight M w of the claimed polyglycerol partial esters determined via SEC versus polymethylmethacrylate (PMMA) standard is in the range of 2,000 to 15,000 g/mol, preferably in the range of 4,000 to 10,000 g/mol, with a polydispersity index of 1.5 to 5, preferably 2 to 4.
  • the OH-number of the polyglycerol partial esters according to the present invention is in the range of 50 to 180 mg KOH/g, preferably 80 to 170 mg KOH/g and most preferred in the range of 110 to 150 mg KOH/g.
  • the OH-number is measured according to DIN 53 240-2.
  • the organic polymeric friction reducing additive is present at levels of 0.2 to 5% by weight, preferably 0.3 to 3% by weight, and even more preferably 0.5 to 2% by weight in an automotive engine oil, based on the total weight of the lubricating oil composition.
  • a preferred embodiment of the present invention is directed to a lubricating oil composition, comprising
  • the lubricant oil compositions detailed herein may also comprise one or more further additive(s).
  • additives include viscosity index (VI) improvers, pour point depressants and dispersant inhibitor (DI) additives selected from the group consisting of dispersants, detergents, defoamers, corrosion inhibitors, antioxidants, antiwear and extreme pressure additives and further friction modifiers.
  • VI viscosity index
  • DI dispersant inhibitor
  • Suitable viscosity index improvers are, for example, polyalkyl(meth)acrylate polymers, ethylene-propylene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers, polyisobutylene, and dispersant type viscosity index improvers.
  • Suitable pour point depressants are, for example, polyalkyl(meth)acrylate polymers.
  • Suitable dispersants are, for example, alkenyl succinimides, alkenyl succinate esters, alkenyl succinimides modified with other organic compounds, alkenyl succinimides modified by post-treatment with ethylene carbonate or boric acid, pentaerythritols, phenatesalicylates and their post-treated analogs, alkali metal or mixed alkali metal, alkaline earth metal borates, dispersions of hydrated alkali metal borates, dispersions of alkaline-earth metal borates, polyamide ashless dispersants and the like or mixtures of such dispersants.
  • Suitable detergents are, for example, metal detergents which include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, as for example barium, sodium, potassium, lithium, calcium, and magnesium.
  • metal detergents which include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, as for example barium, sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
  • Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450, neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 and neutral and overbased magnesium or calcium salicylates having a TBN of from 20 to 450. Combinations of detergents, whether overbased or neutral or both, may be used as well.
  • Suitable defoamers are, for example, selected from the group consisting of alkyl (meth)acrylate polymers, silicone oil and dimethyl silicone polymers.
  • Suitable corrosion inhibitors are, in many cases, divided into antirust additives and metal passivators/deactivators.
  • the antirust additives used may, inter alia, be sulphonates, for example petroleumsulphonates or (in many cases overbased) synthetic alkylbenzenesulphonates, e.g.
  • dinonylnaphthenesulphonates include carboxylic acid derivatives, for example lanolin (wool fat), oxidized paraffins, zinc naphthenates, alkylated succinic acids, 4-nonylphenoxy-acetic acid, amides and imides (N-acylsarcosine, imidazoline derivatives); amine-neutralized mono- and dialkyl phosphates; morpholine, dicyclohexylamine or diethanolamine.
  • carboxylic acid derivatives for example lanolin (wool fat), oxidized paraffins, zinc naphthenates, alkylated succinic acids, 4-nonylphenoxy-acetic acid, amides and imides (N-acylsarcosine, imidazoline derivatives); amine-neutralized mono- and dialkyl phosphates; morpholine, dicyclohexylamine or diethanolamine.
  • the metal passivators/deactivators include benzotriazole, tolyltriazole, tolutriazole (such as Vanlube® 887 or 887E), 2-mercaptobenzothiazole, dialkyl-2,5-dimercapto-1,3,4-thiadiazole; N,N′-disalicylideneethylenediamine, N,N′-disalicylidenepropylenediamine; zinc dialkyldithiophosphates and dialkyl dithiocarbamates.
  • Suitable anti-oxidants are, for example, phenol type (phenolic) oxidation inhibitors, such as 4,4′-methylene-bis(2,6-di-tert-butylphenol), 4,4′-bis(2,6-di-tert-butylphenol), 4,4′-bis(2-methyl-6-tert-butylphenol), 2,2′-methylene-bis(4-methyl-6-tert-butyl-phenol), 4,4′butylidene-bis(3-methyl-6-tert-butylphenol), 4,4′-isopropylidene-bis(2,6-di-tertbutylphenol), 2,2′-methylene-bis(4-methyl-6-nonylphenol), 2,2′-isobutylidene-bis(4,6-dimethylphenol), 2,2′-methylene-bis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl
  • oxidation inhibitors include alkylated diphenylamines (e.g., Irganox L-57 from BASF), metal dithiocarbamate (e.g., zinc dithiocarbamate) and methylenebis(dibutyldithiocarbamate).
  • alkylated diphenylamines e.g., Irganox L-57 from BASF
  • metal dithiocarbamate e.g., zinc dithiocarbamate
  • methylenebis(dibutyldithiocarbamate) methylenebis(dibutyldithiocarbamate).
  • Suitable antiwear additives are, for example, phosphates, phosphites, carbamates, esters, sulfur containing compounds and molybdenum complexes.
  • Suitable extreme pressure additives are, for example, zinc dialkyldithiophosphate (primary alkyl, secondary alkyl, and aryl type), sulfurized oils, diphenyl sulfide, methyl trichlorostearate, chlorinated naphthalene, fluoroalkylpolysiloxane and lead naphthenate.
  • a second embodiment of the present invention is directed to an engine oil comprising the lubricating oil composition as described hereinbefore.
  • a third embodiment of the present invention is directed to a method of lubricating an engine using the lubricating oil composition as described hereinbefore.
  • a fourth embodiment of the present invention is directed to a method of reducing friction in an engine by applying/by the addition of the lubricating oil composition as described hereinbefore.
  • Polycarboxylic Acid Ester Prepared from polyglycerol, isostearic acid, sebacic acid and poly(hydroxystearic acid) according to synthesis example 2 of EP 1 500 427 B1
  • a mixture of isostearic acid (91.1 g, 0.320 mol) and poly(hydroxystearic acid) (141.7 g, 0.120 mol, acid number of 47 mg KOH/g) was esterified with polyglycerol (61.9 g, 0.121 mol, hydroxyl value of 950 mg KOH/g) at 240° C. while nitrogen flowing through. After 2 h at this temperature, the acid number of the reaction mixture was ⁇ 10. Then, the mixture was cooled to 130° C., sebacic acid (20.2 g, 0.100 mol) was added and the mixture was heated again to 240° C. After 3 h at this temperature, a viscous product having an acid number of ⁇ 5 was obtained.
  • This polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • Polycarboxylic Acid Ester Prepared from Polyglycerol, Isostearic Acid and Sebacic Acid
  • the OH-value of this polymer is much lower than the favorable range according to the present invention.
  • This polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • Polymeric friction modifier PerfadTM 3057 diluted form of PerfadTM 3050, which is commercially available by Croda Sucursal Colombia (see US 2013/0079536, WO 2011/107739 A1 for structure and Lube Magazine No. 120, April 2014, page 27 for physical properties).
  • This polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • the measurements of the coefficient of friction at 100° C. were performed on a Mini Traction Machine (MTM) from PCS Instruments.
  • MTM Mini Traction Machine
  • the test consist of evaluating the friction level occurring in a lubricated contact formed by a steel ball and a steel disc. The speeds of the ball and the disc are driven independently. The ball is loaded and rubbed in rolling sliding conditions against the steel disc, the contact being fully immersed in oil.
  • the Stribeck curves are plotted in FIG. 1 .
  • the curve NB3043-Ref refers to the formulation containing 100% of Group III oil named Nexbase 3043.
  • FIG. 1 Stribeck curve measurements after two hours of run in phase
  • Table 5 shows the integration data of the friction value curves within the sliding speed range from 0.005 to 0.090 m/s.

Abstract

The present invention relates to a lubricating oil composition comprising polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) and the use thereof to lubricate an engine and reduce friction.

Description

  • The present invention relates to a lubricating oil composition comprising polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) and the use thereof to lubricate an engine and reduce friction.
  • Energy losses due to friction in lubricated contacts can be reduced by adding friction modifiers to the lubricant formulation. Friction modifiers are used especially in gear and engine oil formulations where lower viscosity formulations are applied in order to save energy. While reducing the energy losses in the fluid, lubricants with low viscosities struggle to keep the sliding surfaces completely apart from each other and require a friction modifier to maintain a lubricant film on the surfaces.
  • Friction modifiers work by forming adsorption layers on the metal surface. They are of high importance under mixed lubrication conditions when the sliding surfaces are not always separated by a lubricant film of sufficient thickness. Such conditions can be simulated with a mini traction machine (MTM) that is able to measure the friction coefficient over a broad range of conditions.
  • Friction reducing additives that have been used to improve fuel economy fall into three main chemically-defined categories, which are organic, metal organic and oil insoluble. The organic friction reducing additives themselves fall within four main categories which are (i) carboxylic acids or their derivatives, including partial esters, (ii) nitrogen-containing compounds such as amides, imides, amines and their derivatives, (iii) phosphoric or phosphonic acid derivatives and (iv) organic polymers.
  • In current commercial practice examples of friction reducing additives are glycerol monooleate and oleylamide, which are both derived from unsaturated fatty acids, or molybdenum dialkyldithiocarbamate. Also used are copolymers with blocks of polyethyleneglycol (WO 2011/107739 and WO 2015/065801) or other alkoxide polymers (WO 2014/139935). It is further known that polyglycerol solubilized by a long alkyl chain attached via an ether function (U.S. Pat. No. 7,803,745) or an ester function (WO 2015/044639) can be applied as a friction modifier.
  • It was now surprisingly found that polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) show superior performance as friction modifiers for lubricants. Superior means a larger reduction of the friction coefficient and/or more efficient friction reduction due to a lower treat rate and/or a better combination of oil compatibility and friction reducing performance.
  • In a first embodiment, the present invention is directed to a lubricating oil composition comprising a lubricating base oil and polyglycerol partial esters, characterized in that the polyglycerol partial esters are obtainable by esterification of a polyglycerol mixture with
      • (i) polyfunctional carboxylic acids and
      • (ii) saturated or unsaturated, linear or branched fatty acids and/or
      • (ii) poly(hydroxystearic acid).
  • Polyglycerol esters were found to work especially in apolar formulations containing mainly API Group II, Ill and/or IV as lubricating base oils.
  • The American Petroleum Institute (API) currently defines five groups of lubricant base stocks (API Publication 1509). Groups I, II and III are mineral oils which are classified by the amount of saturates and sulphur they contain and by their viscosity indices. The table below illustrates these API classifications for Groups I, II and III.
  • Group Saturates Sulphur content Viscosity Index (VI)
    I <90% >0.03% 80-120
    II at least 90% not more than 0.03% 80-120
    III at least 90% not more than 0.03% at least 120
  • Group I base stocks are solvent refined mineral oils, which are the least expensive base stock to produce, and currently account for the majority of base stock sales. They provide satisfactory oxidation stability, volatility, low temperature performance and traction properties and have very good solvency for additives and contaminants.
  • Group II base stocks are mostly hydroprocessed mineral oils, which typically provide improved volatility and oxidation stability as compared to Group I base stocks.
  • Group III base stocks are severely hydroprocessed mineral oils or they can be produced via wax or paraffin isomerisation. They are known to have better oxidation stability and volatility than Group I and II base stocks but have a limited range of commercially available viscosities.
  • Group IV base stocks differ from Groups I, II and III in that they are synthetic base stocks comprising e.g. polyalphaolefins (PAOs). PAOs have good oxidative stability, volatility and low pour points. Disadvantages include moderate solubility of polar additives, for example antiwear additives.
  • Group II, II and IV oils are known for their exceptional stability towards oxidation and high temperatures, but they provide only limited solubility for polar additives such as friction modifiers. For this reason the lubricating oil compositions according the present invention may contain up to 10% of an ester base oil according to API Group V as solubilizer.
  • Group V base stocks are all base stocks that are not included in the other Groups. Examples include alkyl naphthalenes, alkyl aromatics, vegetable oils, esters (including polyol esters, diesters and monoesters), polycarbonates, silicone oils and polyalkylene glycols.
  • The friction modifier performance of polyglycerol partial esters according to the present invention can be achieved in formulations with and without the additional ester base stock.
  • In a preferred embodiment, the lubricating oil compositions according to the present invention are characterized in that they comprise
      • (a) 90-100% by weight of an apolar oil selected from the group consisting of API Group II, III and IV and/or mixtures thereof and
      • (b) 0-10% of a polar ester oil of Group V according to the definition of the American Petroleum Institute (API),
        based on the total weight of the lubricating oil composition.
  • Polyglycerol partial esters of poly(hydroxystearic acid) and polyfunctional carboxylic acids are known as W/O emulsifiers in cosmetic or pharmaceutical formulations and as auxiliaries for dispersing inorganic micropigments in oily dispersions (EP 1 500 427 B1 and EP 1 683 781 B1). For best performance as friction modifiers the parameters surface activity or polarity and oil solubility have to be balanced and adjusted to the polarity of the respective oil mixture used as base stock. The balance of polar and apolar parts in the polymer is described by the HLB value that is calculated. This can be done by selection of a polyglycerol characterized by a certain degree of polymerization and selection of carboxylic acids and polycarboxylic acids. Especially the amount of polycarboxylic acids has a major influence on the molecular weight (measured by SEC) of the resulting component. The ratio of acid and alcohol functions is important as it determines the degree of esterification and thus the amount of unreacted OH-functions (described by the OH-number determined by titration). Free acid functions are unwanted and should be kept at a minimum level (described by the acid value, determined by titration).
  • The superior performance relative to other friction modifiers is attributed to the high polarity of the polyglycerol moieties, the free OH-functions due to the partial esterification and the polymeric nature of the substances which provides multiple interaction sites between the surface and the friction reducing component. The polymeric nature of the described friction modifiers is especially important for the solubility of the component as very polar moieties in the molecule have to be kept in solution.
  • These polyglycerol partial esters of polyfunctional carboxylic acids and saturated or unsaturated, linear or branched fatty acids and/or poly(hydroxystearic acid) are obtainable by esterification of a polyglycerol mixture with saturated or unsaturated, linear or branched fatty acids having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms, and polyfunctional carboxylic acids having 4 to 54 carbon atoms, preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms and even more preferably 6 to 12 carbon atoms, and a mean functionality of from 2 to 4, preferably 2 to 3 and more preferably 2 to 2.5, the degree of esterification of the polyglycerol mixture being between 30 and 75% of the OH groups.
  • The mean functionality of a mixture of polyfunctional carboxylic acids can be determined using the following formula:
  • N _ = i x i 100 · N i
  • with N=mean functionality of a mixture of polyfunctioal carboxylic acids
      • xi=mass fraction [%] of individual polyfunctional carboxylic acid i
      • Ni=functionality of individual polyfunctional carboxylic acid i
  • Particularly suitable linear or branched saturated fatty acid components are selected from the group consisting of caprylic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, margaric acid, stearic acid, isostearic acid, arachidic acid, behenic acid and mixtures thereof. A suitable saturated fatty acid is also 12-hydroxy stearic acid. Naturally occurring mixtures are, for example, the coconut fatty acids, which contain lauric acid as the main constituent and also contain saturated C14- to C18-fatty acids and possibly small amounts of saturated C8- to C18-fatty acids and unsaturated fatty acids, and tallow fatty acids, which are essentially a mixture of palmitic acid and stearic acid.
  • Suitable unsaturated fatty acid components are monoolefinically unsaturated acids, for example hexadecenoic acids, octadecenoic acids, such as oleic acid (cis-9-octadecenoic acid) or eladidic acid (trans-9-octadecenoic acid), eicosenoic acids and docosenoic acids, such as erucic acid (cis-13-docosenoic acid) or brassidic acid (trans-13-docosenoic acid), poly-unsaturated fatty acids, for example octadecadienoic acids and octadecatrienoic acids, such as linoleic acid and linolenic acid, ricinoleic acid and mixtures thereof.
  • The liquid fatty acids which contain 18 to 22 carbon atoms, namely oleic, ricinoleic, erucic and isostearic acids, are particularly suitable. Because of branching solidification points are below 35 DEG C. It is also possible to use fatty acid mixtures, which can also contain wax-like components, such as hydrogenated ricinoleic acid.
  • The poly(hydroxystearic acids) co-used according to the invention are prepared, for example, by polycondensation of hydroxystearic acid, preferably 12-hydroxystearic acid, which is obtained by hardening of ricinoleic acid or technical-grade castor oil fatty acid, by known processes. They have a mean degree of polymerization of 1 to 10 units, preferably 2 to 8 units and in particular 2 to 5 units.
  • The polyfunctional carboxylic acids can be dicarboxylic acids, tricarboxylic acids or polycarboxylic acids. The polyfunctional carboxylic acids may be unsubstituted or optionally substituted by one, two or three hydroxyl groups, preferably by one hydroxyl group.
  • The aliphatic dicarboxylic acids used for the esterification should have a chain length of 3 to 18 carbon atoms. They can be straight-chain or branched, such as, for example, malonic acid, succinic acid, fumaric acid, maleic acid, dimethylglutaric acid, adipic acid, trimethyladipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hecadecanedioic acid, octadecanedioic and their anhydrides.
  • The dicarboxylic acids used can also be dimeric fatty acids. As is known, these are mixtures of acyclic and cyclic dicarboxylic acids which are obtained by a catalyzed dimerization reaction of unsaturated fatty acids having 12 to 22 carbon atoms.
  • For the preparation and use of dimer acids and their physical and chemical properties, reference is made to the publication “The Dimer Acids: The chemical and physical properties, reactions and applications”, Ed. E. C. Leonard; Humko Sheffield Chemical, 1975, Memphis, Tenn.
  • The dicarboxylic acids can also contain, to a lesser extent, tri-and polyfunctional carboxylic acids. The functionality of the mixture should not exceed a value of 2 to 2.5 molar average.
  • Furthermore, as polyfunctional carboxylic acids can be used phthalic acid, trimellitic acid and pyromellitic acid.
  • Under the term “polyglycerol” according to the present invention encompasses a polyglycerol comprising glycerol. Therefore, for the calculation of amounts, masses etc. the glycerol content has to be taken into account. The term glycerol oligomers or polyglycerol(s) encompasses linear as well as cyclic structures.
  • Suitable polyglycerols are in particular those having a mean degree of condensation of >2, preferably from 3 to 6. These are technical-grade polyglycerol mixtures which are obtained, for example, by alkali-catalyzed condensation of glycerol at elevated temperatures and from which fractions with the desired degree of condensation can be obtained if desired by distillation methods. Also suitable are polyglycerols obtained by other methods, e.g. from epichlorohydrin or glycidol. Commercial polyglycerols can be obtained from companies like Solvay, Spiga Nord, Daicel or Lonza.
  • In the polyglycerol partial esters according to the invention, from 30 to 75%, preferably from 50 to 65%, of the hydroxyl groups of the polyglycerol are esterified. They are initially esterified to a degree of esterification of from 25 to 60%, preferably from 35 to 50%, using fatty acid and in a second step, using dicarboxylic acids to an overall degree of esterification of from 30 to 75%, preferably from 50 to 65%. Through suitable selection of the hydrophilic and lipophilic molecular proportions, an HLB value of from 3 to 7 is aimed at in order to obtain favorable products.
  • The HLB value is a measure of the degree to which the molecule is hydrophilic or lipophilic, determined by calculating values for the different regions of the molecule. For the purpose of the present invention, the HLB value of the polyglycerol partial esters is calculated as follows:

  • HLB=(mp/(mp+ma))*20,
  • where mp is the mass of polyglycerol, and ma is the mass of carboxylic acid mixture comprising mono-, di- and polycarboxylic acids as well as polyhydroxy fatty acids used in the synthesis of the polyglycerol ester. For example, esterification of 100 g polyglycerol with 90 g mono-carboxylic acid and 10 g dicarboxylic acid would result in an HLB of (100 g 1(90 g+10 g+100 g))*20=10, independent of the degree of polymerization of the polyglycerol and the type of carboxylic acids used.
  • For the present invention it is essential that the polyglycerol backbone of the polyglycerol partial ester comprises an average degree of polymerization of from 2 to 8, preferred from 2.5 to 6, particularly preferred from 3 to 4.5. A suitable method for determining the oligomer distribution of the polyglycerol in a given polyglycerol partial ester comprises hydrolysis or alcoholysis of the partial ester, separation of the resulting polyglycerol from the formed carboxylic acid compounds, and analysis by gas chromatography after derivatization.
  • The polyglycerol partial esters according to the invention can be prepared in a manner known per se by heating the reaction components and removing the resultant water of reaction by distillation. The reaction can be accelerated by means of acidic catalysts such as sulfonic acids, phosphoric acid or phosphorous acid or basic catalysts such as alkali metal or alkaline earth metal oxides or hydroxides, alcoholates or salts, or Lewis acids, such as tin salts,. However, the addition of a catalyst is not absolutely necessary. The polyglycerol partial esters are preferably prepared in a two-step process, which again is carried out in a manner known per se. In a first step, the polyglycerol is esterified using the monofunctional fatty acid or some of the fatty acid. After most, or all, of the fatty acid has reacted, the polyfunctional carboxylic acid is then added and the esterification reaction is continued. The progress of the reaction can be monitored, for example, via the water of reaction removed, by measuring the acid number or by infrared spectroscopy. In general, an acid number in the end product of <20, preferably <10, is desired. Products with an acid number of <5 are particularly preferred. The acid number is measured according to DIN EN ISO 2114.
  • The weight average molecular weight Mw of the claimed polyglycerol partial esters determined via SEC versus polymethylmethacrylate (PMMA) standard is in the range of 2,000 to 15,000 g/mol, preferably in the range of 4,000 to 10,000 g/mol, with a polydispersity index of 1.5 to 5, preferably 2 to 4.
  • The OH-number of the polyglycerol partial esters according to the present invention is in the range of 50 to 180 mg KOH/g, preferably 80 to 170 mg KOH/g and most preferred in the range of 110 to 150 mg KOH/g. The OH-number is measured according to DIN 53 240-2.
  • For engine oils the organic polymeric friction reducing additive is present at levels of 0.2 to 5% by weight, preferably 0.3 to 3% by weight, and even more preferably 0.5 to 2% by weight in an automotive engine oil, based on the total weight of the lubricating oil composition.
  • Accordingly, a preferred embodiment of the present invention is directed to a lubricating oil composition, comprising
      • (a) 0.2 to 5% by weight, preferably 0.3 to 3% by weight, even more preferably 0.5 to 2% by weight, of a polyglycerol partial ester, based on the total weight of the lubricating oil composition,
      • (b) 85 to 99.8% by weight, preferably 87 to 99.7% by weight, even more preferably 88 to 99.5% by weight, of an apolar base stock selected from the group consisting of API Group II, III and IV and/or mixtures thereof, based on the total weight of the lubricating oil composition, and
      • (c) 0 to 10% by weight of a polar ester oil of Group V according to the definition of the American Petroleum Institute (API), based on the total weight of the lubricating oil composition.
  • In a preferred embodiment (a), (b) and (c) add up to 100% by weight.
  • In addition to the polyglycerol partial esters in accordance with the invention, the lubricant oil compositions detailed herein may also comprise one or more further additive(s). These additives include viscosity index (VI) improvers, pour point depressants and dispersant inhibitor (DI) additives selected from the group consisting of dispersants, detergents, defoamers, corrosion inhibitors, antioxidants, antiwear and extreme pressure additives and further friction modifiers.
  • Suitable viscosity index improvers are, for example, polyalkyl(meth)acrylate polymers, ethylene-propylene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers, polyisobutylene, and dispersant type viscosity index improvers.
  • Suitable pour point depressants are, for example, polyalkyl(meth)acrylate polymers.
  • Suitable dispersants are, for example, alkenyl succinimides, alkenyl succinate esters, alkenyl succinimides modified with other organic compounds, alkenyl succinimides modified by post-treatment with ethylene carbonate or boric acid, pentaerythritols, phenatesalicylates and their post-treated analogs, alkali metal or mixed alkali metal, alkaline earth metal borates, dispersions of hydrated alkali metal borates, dispersions of alkaline-earth metal borates, polyamide ashless dispersants and the like or mixtures of such dispersants.
  • Suitable detergents are, for example, metal detergents which include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, as for example barium, sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450, neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 and neutral and overbased magnesium or calcium salicylates having a TBN of from 20 to 450. Combinations of detergents, whether overbased or neutral or both, may be used as well.
  • Suitable defoamers are, for example, selected from the group consisting of alkyl (meth)acrylate polymers, silicone oil and dimethyl silicone polymers.
  • Suitable corrosion inhibitors are, in many cases, divided into antirust additives and metal passivators/deactivators. The antirust additives used may, inter alia, be sulphonates, for example petroleumsulphonates or (in many cases overbased) synthetic alkylbenzenesulphonates, e.g. dinonylnaphthenesulphonates; carboxylic acid derivatives, for example lanolin (wool fat), oxidized paraffins, zinc naphthenates, alkylated succinic acids, 4-nonylphenoxy-acetic acid, amides and imides (N-acylsarcosine, imidazoline derivatives); amine-neutralized mono- and dialkyl phosphates; morpholine, dicyclohexylamine or diethanolamine. The metal passivators/deactivators include benzotriazole, tolyltriazole, tolutriazole (such as Vanlube® 887 or 887E), 2-mercaptobenzothiazole, dialkyl-2,5-dimercapto-1,3,4-thiadiazole; N,N′-disalicylideneethylenediamine, N,N′-disalicylidenepropylenediamine; zinc dialkyldithiophosphates and dialkyl dithiocarbamates.
  • Suitable anti-oxidants are, for example, phenol type (phenolic) oxidation inhibitors, such as 4,4′-methylene-bis(2,6-di-tert-butylphenol), 4,4′-bis(2,6-di-tert-butylphenol), 4,4′-bis(2-methyl-6-tert-butylphenol), 2,2′-methylene-bis(4-methyl-6-tert-butyl-phenol), 4,4′butylidene-bis(3-methyl-6-tert-butylphenol), 4,4′-isopropylidene-bis(2,6-di-tertbutylphenol), 2,2′-methylene-bis(4-methyl-6-nonylphenol), 2,2′-isobutylidene-bis(4,6-dimethylphenol), 2,2′-methylene-bis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butylphenol, 2,4-dimethyl-6-tert-butyl-phenol, 2,6-di-tert-1-dimethylamino-p-cresol, 2,6-di-tert-4-(N,N′dimethylamino-methylphenol), 4,4′-thiobis(2-methyl-6-tert-butylphenol), 2,2′-thiobis(4-methyl-6-tert-butylphenol), bis(3-methyl-4-hydroxy-5-tert-butylbenzyl)-sulfide, and bis(3,5-di-tert-butyl-4-hydroxybenzyl). Other types of oxidation inhibitors include alkylated diphenylamines (e.g., Irganox L-57 from BASF), metal dithiocarbamate (e.g., zinc dithiocarbamate) and methylenebis(dibutyldithiocarbamate).
  • Suitable antiwear additives are, for example, phosphates, phosphites, carbamates, esters, sulfur containing compounds and molybdenum complexes.
  • Suitable extreme pressure additives are, for example, zinc dialkyldithiophosphate (primary alkyl, secondary alkyl, and aryl type), sulfurized oils, diphenyl sulfide, methyl trichlorostearate, chlorinated naphthalene, fluoroalkylpolysiloxane and lead naphthenate.
  • A second embodiment of the present invention is directed to an engine oil comprising the lubricating oil composition as described hereinbefore.
  • A third embodiment of the present invention is directed to a method of lubricating an engine using the lubricating oil composition as described hereinbefore.
  • A fourth embodiment of the present invention is directed to a method of reducing friction in an engine by applying/by the addition of the lubricating oil composition as described hereinbefore.
  • The invention has been illustrated by the following non-limiting examples.
  • EXPERIMENTAL PART
  • EXAMPLE 1 Polycarboxylic Acid Ester Prepared from polyglycerol, isostearic acid, sebacic acid and poly(hydroxystearic acid) according to synthesis example 2 of EP 1 500 427 B1
  • A mixture of isostearic acid (91.1 g, 0.320 mol) and poly(hydroxystearic acid) (141.7 g, 0.120 mol, acid number of 47 mg KOH/g) was esterified with polyglycerol (61.9 g, 0.121 mol, hydroxyl value of 950 mg KOH/g) at 240° C. while nitrogen flowing through. After 2 h at this temperature, the acid number of the reaction mixture was <10. Then, the mixture was cooled to 130° C., sebacic acid (20.2 g, 0.100 mol) was added and the mixture was heated again to 240° C. After 3 h at this temperature, a viscous product having an acid number of <5 was obtained.
  • COMPARATIVE EXAMPLE 1 Polycarboxylic Acid Ester Prepared from Ethoxylated Soybean Oil, Oleic Acid and Dimer Acid
  • A mixture of epoxidized soybean oil (300 g, 0.302 mol) with an oxirane-[O] content of 6.3%, oleic acid (331 g, 1.18 mol) and dimer acid (57.5 g; 0.101 mol, comprising about 2% monobasic acids, about 96% dimer acids and about 2% trimer acids and higher polyacids) was heated to 240° C. until the acid value was <10 mg KOH/g.
  • The structure of this polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • COMPARATIVE EXAMPLE 2 Polycarboxylic Acid Ester Prepared from Polyglycerol, Isostearic Acid and Sebacic Acid
  • A mixture of 72 g isostearic acid and 11 g sebacic acid was esterified with 17 g polyglycerol (average degree of polymerization=3) at 240° C. while nitrogen flowing through. Reaction was cooled down when an acid number of 12 was reached.
  • The OH-value of this polymer is much lower than the favorable range according to the present invention.
  • COMPARATIVE EXAMPLE 3
  • Polymeric friction modifier Perfad™ 3006, which is commercially available by Croda Inc. (see US 2013/0079536, WO 2011/107739 A1 for structure and Lube Magazine No. 120, April 2014, page 27 for physical properties).
  • The structure of this polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • COMPARATIVE EXAMPLE 4
  • Polymeric friction modifier Perfad™ 3057, diluted form of Perfad™ 3050, which is commercially available by Croda Sucursal Colombia (see US 2013/0079536, WO 2011/107739 A1 for structure and Lube Magazine No. 120, April 2014, page 27 for physical properties).
  • The structure of this polymer is different to polyglycerol partial ester according to the present invention and therefore not encompassed by the present invention.
  • TABLE 1
    physical data of examples and comparative examples
    HLB acid number OH-number Mn Mw
    value [mg KOH/g] [mg KOH/g] [g/mol] [g/mol]
    Ex 1 ~5 ≤5  125-145 2600 6100
    Comp. Ex 1  9 24 4600 16000
    Comp. Ex. 2 12 10-20 3200 10600
    Comp. Ex. 3   1.2
    Comp. Ex. 4   4*)
    Mn and Mw are measured via GPC using PMMA (polymethyl methacrylate) as standard
    *)value given for Perfad ™ 3050; Perfad ™ 3057 is a diluted form of Perfad ™ 3050
  • All polymers were diluted in Nexbase 3043 which is a Group III oil according to the American Petroleum Institute (API). The final blends have a similar kinematic viscosity at 100° C. (KV100) of about 4.45 cSt.
  • For Comparative Examples 3 and 4 treat rates of 0.5% are recommended by the manufacturer.
  • TABLE 1
    Viscosity values of the tested blends
    Comparative Example 1 [% wt] 1
    Comparative Example 2 [% wt] 1
    Comparative Example 3 [% wt] 0.5
    Comparative Example 4 [% wt] 0.5
    Example 1 [% wt] 1
    Reference Nexbase 3043 [% wt] 99 99 99.5 99.5 99
    KV100 mm2/s 4.49 4.45 4.48 4.43 4.48
    (KV100 = Kinematic Viscosity @ 100° C.)
  • Determination of Friction-Reducing Action:
  • The measurements of the coefficient of friction at 100° C. were performed on a Mini Traction Machine (MTM) from PCS Instruments. The test consist of evaluating the friction level occurring in a lubricated contact formed by a steel ball and a steel disc. The speeds of the ball and the disc are driven independently. The ball is loaded and rubbed in rolling sliding conditions against the steel disc, the contact being fully immersed in oil.
  • For each sample, the test was performed in two steps:
  • 1) Run In phase
  • For this phase, the conditions described in Table 2 below have been applied, SRR referring to Sliding Roll Ratio. This parameter was maintained constant during the 2 hours testing and is defined as:
  • U Ball - U Disc U
  • where U Ball−U Disc represents the sliding speed and U the entrainment speed, given by U=(U Ball+U Disc)/2
  • TABLE 2
    test parameters for run in phase
    Test Rig MTM 2 von PCS Instruments
    Disc Highly polished stainless Steel AISI 52100
    Disc diameter 46 mm
    Ball Highly polished stainless Steel AISI 52100
    Ball diameter 19.05 mm
    Mean Speed
    100 mm/s
    Temperature 100° C.
    Duration
    2 hours
    Load 30 N
    SRR 50%
  • 2) Stribeck Curve Evaluation
  • A Stribeck was then obtained by measuring the friction coefficient under the conditions shown in Table 3.
  • TABLE 3
    conditions for Stribeck curve evaluation
    Test Rig MTM 2 von PCS Instruments
    Disc Highly polished stainless Steel AISI 52100
    Disc diameter 46 mm
    Ball Highly polished stainless Steel AISI 52100
    Ball diameter 19.05 mm
    Mean Speed from 5 to 2500 mm/s
    Temperature 100° C.
    Load 30 N
    SRR 50%
  • The Stribeck curves are plotted in FIG. 1. The curve NB3043-Ref refers to the formulation containing 100% of Group III oil named Nexbase 3043.
  • FIG. 1: Stribeck curve measurements after two hours of run in phase
  • To express in % the friction reduction obtained by working Example 1, a quantifiable result can be expressed as a number is obtained as follows:
  • Integration of the friction value curves in the range of sliding speed 0.005-2.5 m/s using the trapezoidal rule. The area corresponds to the “total friction” over the entire speed range examined. The smaller the area, the greater the friction-reducing effect of the polymer examined.
  • The percentage friction reductions calculated therefrom in relation to the reference oil are compiled in Table 4 below.
  • TABLE 4
    Quantitative evaluation of the reduction in friction
    Comp. Comp. Comp. Comp.
    Reference Ex. 1 Ex. 1 Ex. 2 Ex. 3 Ex. 4
    Area in 99.239 51.079 62.675 71.354 65.109 86.581
    mm/s
    reduction in 0 48.53 36.84 28.10 34.39 12.75
    friction
    relative to
    reference
    [%]
  • The data in Table 4 and FIG. 1 show clearly that the inventive polymers have a much better effect with regard to the reduction in friction than the corresponding comparative polymers of the prior art using different chemistry. The effect is even more pronounced in the low speed regime as revealed in Table 5 below.
  • Since the low speeds are of particular economic interest for the use of the lubricant compositions in accordance with the, Table 5 shows the integration data of the friction value curves within the sliding speed range from 0.005 to 0.090 m/s.
  • The areas determined and the percentage reductions in friction calculated therefrom in relation to the reference oil are compiled in Table 5 in an analogous manner to Table 4.
  • TABLE 5
    Quantitative evaluation of the reduction in friction at low frequency
    (from 0.005 to 0.090 m/s)
    Comp. Comp. Comp. Comp.
    Reference Ex. 1 Ex. 1 Ex. 2 Ex. 3 Ex. 4
    Area 7.863 1.855 4.429 5.464 3.405 4.025
    [mm/s]
    reduction in 0 76.41 43.67 30.51 56.70 48.81
    friction
    relative to
    reference in
    low speed
    regime
    [%]
  • The data in Table 5 show clearly that the inventive polymers have a much better effect once again with regard to the reduction in friction than the corresponding comparative polymers of the prior art.
  • Compared to the results as shown in Table 4, it is found that the friction-increasing action of lubricant composition for use in accordance with the invention is very clearly marked specifically within the range of low sliding speeds.

Claims (14)

1. A lubricating oil composition comprising
(a) 0.2 to 5% by weight of one or more polyglycerol partial esters, based on a total weight of the lubricating oil composition, wherein the polyglycerol partial esters are obtained by esterification of a polyglycerol mixture with
(i) one or more polyfunctional carboxylic acids and
(ii) one or more saturated or unsaturated, linear or branched fatty acids and/or
(ii) poly(hydroxystearic acid),
wherein a degree of esterification of the poly-glycerol mixture is between 30 and 75% of the OH goups;
(b) 85 to 99.8% by weight of an apolar base stock selected from the group consisting of API Group II, III and IV and mixtures thereof, based on the total weight of the lubricating oil composition; and
(c) 0 to 10% by weight of a polar ester oil of API Group V, based on the total weight of the lubricating oil composition.
2. The lubricating oil composition according to claim 1, wherein the polyglycerol has a mean degree of condensation of from 3 to 6.
3. The lubricating oil composition according to claim 1, wherein the fatty acids are saturated or unsaturated, linear or branched having 8 to 22 carbon atoms.
4. The lubricating oil composition according to claim 1, wherein the saturated fatty acids are one or more selected from the group consisting of caprylic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, margaric acid, stearic acid, isostearic acid, arachidic acid, behenic acid, and 12-hydroxy stearic acid.
5. The lubricating oil composition according to claim 1, wherein the unsaturated fatty acids are one or more selected from the group consisting of hexadecenoic acids, octadecenoic acids, eicosenoic docosenoic acids, octadecadienoic acids, octadecatrienoic acids, and ricinoleic acid.
6. The lubricating oil composition according to claim 1, wherein the polyfunctional carboxylic: acids have 4 to 54 carbon atoms, and a mean functionality of from 2 to 2.5.
7. The lubricating oil composition according to claim 1, wherein the polyfunctional carboxylic acids are aliphatic dicarboxylic acids which are selected from the group consisting of malonic acid, succinic acid, furmaric acid, maleic acid, dimethylgiutaric acid, adipic acid, trimethyladipic acid, azelaic acid, sebacic acid, dodecanedioic acid and their anhydrides.
8. The lubricating oil composition according to claim 1, wherein the polyglycerol partial esters have HLB values of from 3 to 7.
9. The lubricating oil composition according to claim 1, wherein the polyglycerol partial esters have an OH-number in the range of 50 to 180 mg KOH/g.
10. The lubricating oil composition according to claim 1, further comprising an additive.
11. The lubricating oil composition according to claim 10, wherein the additive is at least one selected from the group consisting of viscosity index (VI) improvers, pour point depressants, dispersants, detergents, defoamers, corrosion inhibitors, antioxidants, antiwear and extreme pressure additives and fiction modifiers.
12. The lubricating oil composition according to claim 1, wherein the polyglycerol partial esters have a weight-average molecular weight of 2,000 to 15,000 g/mol.
13. A method of lubricating an engine, comprising adding the lubricating oil composition according to claim 1 to the engine.
14. A method of reducing friction in an engine, comprising applying the lubricating oil composition according to claim 1 to the engine.
US15/746,533 2015-07-24 2016-07-06 Use of polyclycerin esters as friction modifiers in lubricant formulations Abandoned US20180216023A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15178187 2015-07-24
EP15178187.9 2015-07-24
PCT/EP2016/065904 WO2017016825A1 (en) 2015-07-24 2016-07-06 Use of polyclycerin esters as friction modifiers in lubricant formulations

Publications (1)

Publication Number Publication Date
US20180216023A1 true US20180216023A1 (en) 2018-08-02

Family

ID=53761989

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/746,533 Abandoned US20180216023A1 (en) 2015-07-24 2016-07-06 Use of polyclycerin esters as friction modifiers in lubricant formulations

Country Status (10)

Country Link
US (1) US20180216023A1 (en)
EP (1) EP3325582A1 (en)
JP (1) JP6761851B2 (en)
KR (1) KR20180032622A (en)
CN (1) CN107849476A (en)
BR (1) BR112018001430A2 (en)
CA (1) CA2993333A1 (en)
MX (1) MX2018000786A (en)
RU (1) RU2726194C2 (en)
WO (1) WO2017016825A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210418A (en) * 2019-07-10 2021-01-12 百达精密化学股份有限公司 Liquid organic wear improvers
CN113512460A (en) * 2021-08-13 2021-10-19 福建科恩优路润滑油有限公司 Anti-wear clean type vehicle lubricating oil and preparation process thereof
CN113801310A (en) * 2021-09-24 2021-12-17 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) Three-component catalytic initiation system catalyst and application thereof
US20220112439A1 (en) * 2019-01-23 2022-04-14 Peter Greven GmbH & Co. KG Estolide esters and use thereof as a base oil in lubricants
US11807603B2 (en) 2016-08-18 2023-11-07 Evonik Operations Gmbh Cross-linked polyglycerol esters
US11851583B2 (en) 2016-07-19 2023-12-26 Evonik Operations Gmbh Process for producing porous polyurethane coatings using polyol ester additives

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017009541A1 (en) 2017-10-13 2019-04-18 Daimler Ag Valve drive for an internal combustion engine of a motor vehicle
JP2022158116A (en) * 2021-04-01 2022-10-17 Eneos株式会社 Lubricant composition
CN114106627B (en) * 2021-12-14 2022-05-17 广州市印道理印刷有限公司 Environment-friendly water-based ink and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242499B1 (en) * 1996-10-09 2001-06-05 Goldschmidt Ag Polyglycerol partial esters of fatty acids and polyfunctional carboxylic acids, their preparation and use
US20110237479A1 (en) * 2008-11-05 2011-09-29 The Lubrizol Corporation Method of Lubricating an Internal Combustion Engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102307A (en) * 1977-02-18 1978-09-06 Nippon Oil & Fats Co Ltd Lubricating oil composition
US4153464A (en) * 1977-09-12 1979-05-08 Emery Industries, Inc. Prevention of water staining of aluminum
JP2579502B2 (en) * 1987-11-26 1997-02-05 日清製油株式会社 Lubricant
CA2170503C (en) * 1994-07-05 2005-08-16 Noriyoshi Tanaka Engine oil composition
DE4444137A1 (en) * 1994-12-12 1996-06-13 Henkel Kgaa Synthetic esters from alcohols and fatty acid mixtures from oleic acid-rich, low stearic acid vegetable oils
US5698502A (en) * 1996-09-11 1997-12-16 Exxon Chemical Patents Inc Polyol ester compositions with unconverted hydroxyl groups for use as lubricant base stocks
DE59813902D1 (en) * 1997-09-18 2007-03-29 Ciba Sc Holding Ag Lubricant compositions with thiophosphoric acid esters and dithiophosphoric acid esters
DE10333443A1 (en) * 2003-07-23 2005-02-10 Goldschmidt Ag Emulsifier for low-viscosity W / O emulsions based on partially crosslinked polyglycerol esters of polyhydroxystearic acid
EP2036963A1 (en) * 2007-09-14 2009-03-18 Cognis Oleochemicals GmbH Lubricants for drilling fluids
EP2345710A1 (en) * 2010-01-18 2011-07-20 Cognis IP Management GmbH Lubricant with enhanced energy efficiency
MY161182A (en) * 2010-06-25 2017-04-14 Castrol Ltd Uses and compositions
GB201317278D0 (en) * 2013-09-30 2013-11-13 Croda Int Plc Gear oil composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242499B1 (en) * 1996-10-09 2001-06-05 Goldschmidt Ag Polyglycerol partial esters of fatty acids and polyfunctional carboxylic acids, their preparation and use
US20110237479A1 (en) * 2008-11-05 2011-09-29 The Lubrizol Corporation Method of Lubricating an Internal Combustion Engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851583B2 (en) 2016-07-19 2023-12-26 Evonik Operations Gmbh Process for producing porous polyurethane coatings using polyol ester additives
US11807603B2 (en) 2016-08-18 2023-11-07 Evonik Operations Gmbh Cross-linked polyglycerol esters
US20220112439A1 (en) * 2019-01-23 2022-04-14 Peter Greven GmbH & Co. KG Estolide esters and use thereof as a base oil in lubricants
US11591535B2 (en) * 2019-01-23 2023-02-28 Peter Greven GmbH & Co. KG Estolide esters and use thereof as a base oil in lubricants
CN112210418A (en) * 2019-07-10 2021-01-12 百达精密化学股份有限公司 Liquid organic wear improvers
EP3763804A1 (en) * 2019-07-10 2021-01-13 Patech Fine Chemicals Co., Ltd. Liquid anti-friction composition
CN113512460A (en) * 2021-08-13 2021-10-19 福建科恩优路润滑油有限公司 Anti-wear clean type vehicle lubricating oil and preparation process thereof
CN113801310A (en) * 2021-09-24 2021-12-17 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) Three-component catalytic initiation system catalyst and application thereof

Also Published As

Publication number Publication date
JP6761851B2 (en) 2020-09-30
RU2018106697A (en) 2019-08-26
CA2993333A1 (en) 2017-02-02
KR20180032622A (en) 2018-03-30
RU2018106697A3 (en) 2019-12-09
EP3325582A1 (en) 2018-05-30
CN107849476A (en) 2018-03-27
JP2018525480A (en) 2018-09-06
RU2726194C2 (en) 2020-07-09
WO2017016825A1 (en) 2017-02-02
BR112018001430A2 (en) 2018-09-11
MX2018000786A (en) 2018-08-29

Similar Documents

Publication Publication Date Title
US20180216023A1 (en) Use of polyclycerin esters as friction modifiers in lubricant formulations
EP3052598B1 (en) Gear oil composition
JP2021059739A (en) Low shear strength lubricating fluids
JP2015091982A (en) Antiwear hydraulic fluid composition with useful emulsifying and rust prevention properties
KR20200041901A (en) Lubricating composition for hybrid electric vehicle transmission
CN109196080B (en) Lubricant composition
JP2010006950A (en) Commercial lubricant composition
US11820952B2 (en) Process to produce low shear strength base oils
JP2008297447A (en) Lubricant and grease base oil
JP6040986B2 (en) Lubricating base oil for fluid bearings
JP2003034795A (en) Base oil for lubricating oil
KR20160074557A (en) Lubricating oil composition for protection of silver bearings in medium speed diesel engines
KR20230169990A (en) Base oil compositions, formulations and uses
JP2022158121A (en) Lubricant composition
JP2001234183A (en) Lubricating oil for rail or rail point

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVONIK OIL ADDITIVES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAIER, STEFAN;SPRINGER, OLIVER;HOLTZINGER, JENNIFER;AND OTHERS;SIGNING DATES FROM 20171214 TO 20180108;REEL/FRAME:045108/0777

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: MERGER;ASSIGNOR:EVONIK OIL ADDITIVES GMBH;REEL/FRAME:051505/0590

Effective date: 20190724

Owner name: EVONIK OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:051505/0797

Effective date: 20191002

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION