US20180215968A1 - Aqueous adhesive composition based on epoxy resin with improved adhesion and storage stability - Google Patents
Aqueous adhesive composition based on epoxy resin with improved adhesion and storage stability Download PDFInfo
- Publication number
- US20180215968A1 US20180215968A1 US15/746,174 US201615746174A US2018215968A1 US 20180215968 A1 US20180215968 A1 US 20180215968A1 US 201615746174 A US201615746174 A US 201615746174A US 2018215968 A1 US2018215968 A1 US 2018215968A1
- Authority
- US
- United States
- Prior art keywords
- adhesion promoter
- promoter composition
- component
- acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 210
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 40
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 40
- 239000000853 adhesive Substances 0.000 title claims description 67
- 230000001070 adhesive effect Effects 0.000 title claims description 67
- 238000003860 storage Methods 0.000 title abstract description 36
- 239000007787 solid Substances 0.000 claims abstract description 48
- 150000001412 amines Chemical class 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002253 acid Substances 0.000 claims abstract description 39
- 239000004848 polyfunctional curative Substances 0.000 claims abstract description 37
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002318 adhesion promoter Substances 0.000 claims description 125
- 239000006185 dispersion Substances 0.000 claims description 40
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 21
- 229910000077 silane Inorganic materials 0.000 claims description 20
- 150000007529 inorganic bases Chemical class 0.000 claims description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 14
- 239000000470 constituent Substances 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 12
- 239000006229 carbon black Substances 0.000 claims description 12
- 239000000049 pigment Substances 0.000 claims description 12
- 150000001735 carboxylic acids Chemical class 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 10
- 150000007513 acids Chemical class 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000000565 sealant Substances 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 6
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000000080 wetting agent Substances 0.000 claims description 4
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000011369 resultant mixture Substances 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical group CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 56
- 230000032683 aging Effects 0.000 abstract description 9
- 230000006735 deficit Effects 0.000 abstract 1
- 239000013256 coordination polymer Substances 0.000 description 36
- 101150087642 HMA3 gene Proteins 0.000 description 34
- -1 aliphatic glycidyl ethers Chemical class 0.000 description 17
- 239000000126 substance Substances 0.000 description 13
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 12
- 150000001282 organosilanes Chemical class 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229920000768 polyamine Polymers 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 229960000583 acetic acid Drugs 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 150000004756 silanes Chemical class 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 235000011054 acetic acid Nutrition 0.000 description 8
- 239000011324 bead Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 7
- 150000002118 epoxides Chemical class 0.000 description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 101100453542 Rattus norvegicus Kcnj10 gene Proteins 0.000 description 6
- 239000013500 performance material Substances 0.000 description 6
- 101100233999 Arabidopsis thaliana KAB1 gene Proteins 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 239000013466 adhesive and sealant Substances 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229920002521 macromolecule Polymers 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 5
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000013530 defoamer Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000005329 float glass Substances 0.000 description 4
- 239000002241 glass-ceramic Substances 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- NHBRUUFBSBSTHM-UHFFFAOYSA-N n'-[2-(3-trimethoxysilylpropylamino)ethyl]ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCNCCN NHBRUUFBSBSTHM-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004839 Moisture curing adhesive Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 150000004715 keto acids Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 150000003961 organosilicon compounds Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 0 *C(*)(C1=CC=C(OCC(O)COC2=CC=C(C(*)(*)C3=CC=C(OCC4CO4)C=C3)C=C2)C=C1)C1=CC=C(OCC2CO2)C=C1 Chemical compound *C(*)(C1=CC=C(OCC(O)COC2=CC=C(C(*)(*)C3=CC=C(OCC4CO4)C=C3)C=C2)C=C1)C1=CC=C(OCC2CO2)C=C1 0.000 description 1
- UNRGSSJGXFXPCY-UHFFFAOYSA-N 1-(dimethoxymethylsilyl)-N-methylmethanamine Chemical compound CNC[SiH2]C(OC)OC UNRGSSJGXFXPCY-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- KIJDMKUPUUYDLN-UHFFFAOYSA-N 2,2-dimethyl-4-trimethoxysilylbutan-1-amine Chemical compound CO[Si](OC)(OC)CCC(C)(C)CN KIJDMKUPUUYDLN-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CZVSRHMBQDVNLW-UHFFFAOYSA-N 2-[dimethoxy(methyl)silyl]ethanamine Chemical compound CO[Si](C)(OC)CCN CZVSRHMBQDVNLW-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- FWTMTMVDOPTMQB-UHFFFAOYSA-N 2-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CC(C)CN FWTMTMVDOPTMQB-UHFFFAOYSA-N 0.000 description 1
- KPGQWRKCVVVDGP-UHFFFAOYSA-N 2-methyl-4-trimethoxysilylbutan-1-amine Chemical compound CO[Si](OC)(OC)CCC(C)CN KPGQWRKCVVVDGP-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- QHQNYHZHLAAHRW-UHFFFAOYSA-N 2-trimethoxysilylethanamine Chemical compound CO[Si](OC)(OC)CCN QHQNYHZHLAAHRW-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- SEZCJAFXYUABPC-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)-n-ethylpropan-1-amine Chemical compound CCNCCC[SiH2]C(OC)OC SEZCJAFXYUABPC-UHFFFAOYSA-N 0.000 description 1
- LXWLHXNRALVRSL-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxy)propylsilane Chemical class [SiH3]CCCOCC1CO1 LXWLHXNRALVRSL-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RSCUJJZVNRPPQH-UHFFFAOYSA-N 4-(dimethoxymethylsilyl)-2,2-dimethylbutan-1-amine Chemical compound COC(OC)[SiH2]CCC(C)(C)CN RSCUJJZVNRPPQH-UHFFFAOYSA-N 0.000 description 1
- NHIDUYBCYBGHAX-UHFFFAOYSA-N 4-(dimethoxymethylsilyl)butan-1-amine Chemical compound COC(OC)[SiH2]CCCCN NHIDUYBCYBGHAX-UHFFFAOYSA-N 0.000 description 1
- RBVMDQYCJXEJCJ-UHFFFAOYSA-N 4-trimethoxysilylbutan-1-amine Chemical compound CO[Si](OC)(OC)CCCCN RBVMDQYCJXEJCJ-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N Acetoacetic acid Natural products CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- XWSNOMORVOQOKF-UHFFFAOYSA-N COC(OC)[SiH2]CN Chemical compound COC(OC)[SiH2]CN XWSNOMORVOQOKF-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 1
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- TXAUMPQRSDQWCL-UHFFFAOYSA-N N-(dimethoxymethylsilylmethyl)aniline Chemical compound COC(OC)[SiH2]CNC1=CC=CC=C1 TXAUMPQRSDQWCL-UHFFFAOYSA-N 0.000 description 1
- JXHFHNGJGVOHFQ-UHFFFAOYSA-N N-(dimethoxymethylsilylmethyl)butan-1-amine Chemical compound C(CCC)NC[SiH2]C(OC)OC JXHFHNGJGVOHFQ-UHFFFAOYSA-N 0.000 description 1
- RIYYDMRHUBUUIL-UHFFFAOYSA-N N-(dimethoxymethylsilylmethyl)propan-1-amine Chemical compound C(CC)NC[SiH2]C(OC)OC RIYYDMRHUBUUIL-UHFFFAOYSA-N 0.000 description 1
- YJMFOULJLCYWRX-UHFFFAOYSA-N N-[dimethoxymethyl(methyl)silyl]ethanamine Chemical compound C(C)N[SiH](C(OC)OC)C YJMFOULJLCYWRX-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 1
- 241001503177 Rio Segundo hantavirus Species 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- CBWLQRUXCZLHIA-UHFFFAOYSA-N [methoxy(dimethyl)silyl]methanamine Chemical compound CO[Si](C)(C)CN CBWLQRUXCZLHIA-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001427 calcium tartrate Substances 0.000 description 1
- 235000011035 calcium tartrate Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000007957 coemulsifier Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- WOWBFOBYOAGEEA-UHFFFAOYSA-N diafenthiuron Chemical compound CC(C)C1=C(NC(=S)NC(C)(C)C)C(C(C)C)=CC(OC=2C=CC=CC=2)=C1 WOWBFOBYOAGEEA-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-N disulfurous acid Chemical compound OS(=O)S(O)(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-N 0.000 description 1
- RMGVZKRVHHSUIM-UHFFFAOYSA-N dithionic acid Chemical compound OS(=O)(=O)S(O)(=O)=O RMGVZKRVHHSUIM-UHFFFAOYSA-N 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-N dithionous acid Chemical compound OS(=O)S(O)=O GRWZHXKQBITJKP-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940040102 levulinic acid Drugs 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- SMIDUPHNWFRONB-UHFFFAOYSA-N n,2-dimethyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCC(C)C[Si](OC)(OC)OC SMIDUPHNWFRONB-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- XCOASYLMDUQBHW-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)butan-1-amine Chemical compound CCCCNCCC[Si](OC)(OC)OC XCOASYLMDUQBHW-UHFFFAOYSA-N 0.000 description 1
- KGNDVXPHQJMHLX-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)cyclohexanamine Chemical compound CO[Si](OC)(OC)CCCNC1CCCCC1 KGNDVXPHQJMHLX-UHFFFAOYSA-N 0.000 description 1
- OPNZRGZMQBXPTH-UHFFFAOYSA-N n-(4-trimethoxysilylbutyl)aniline Chemical compound CO[Si](OC)(OC)CCCCNC1=CC=CC=C1 OPNZRGZMQBXPTH-UHFFFAOYSA-N 0.000 description 1
- COFBOACTGSWMJQ-UHFFFAOYSA-N n-[[dimethoxy(methyl)silyl]methyl]cyclohexanamine Chemical compound CO[Si](C)(OC)CNC1CCCCC1 COFBOACTGSWMJQ-UHFFFAOYSA-N 0.000 description 1
- FRDNYWXDODPUJV-UHFFFAOYSA-N n-ethyl-2-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CCNCC(C)C[Si](OC)(OC)OC FRDNYWXDODPUJV-UHFFFAOYSA-N 0.000 description 1
- FYZBRYMWONGDHC-UHFFFAOYSA-N n-ethyl-3-trimethoxysilylpropan-1-amine Chemical compound CCNCCC[Si](OC)(OC)OC FYZBRYMWONGDHC-UHFFFAOYSA-N 0.000 description 1
- DVYVMJLSUSGYMH-UHFFFAOYSA-N n-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCCC[Si](OC)(OC)OC DVYVMJLSUSGYMH-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001283 organosilanols Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical compound OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- KYKNRZGSIGMXFH-ZVGUSBNCSA-M potassium bitartrate Chemical compound [K+].OC(=O)[C@H](O)[C@@H](O)C([O-])=O KYKNRZGSIGMXFH-ZVGUSBNCSA-M 0.000 description 1
- 239000001472 potassium tartrate Substances 0.000 description 1
- 229940111695 potassium tartrate Drugs 0.000 description 1
- 235000011005 potassium tartrates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- QAMMXRHDATVZSO-UHFFFAOYSA-N sulfurothious S-acid Chemical compound OS(O)=S QAMMXRHDATVZSO-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ARKBFSWVHXKMSD-UHFFFAOYSA-N trimethoxysilylmethanamine Chemical compound CO[Si](CN)(OC)OC ARKBFSWVHXKMSD-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/10—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/504—Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/56—Amines together with other curing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/002—Priming paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/02—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2463/00—Presence of epoxy resin
- C09J2463/003—Presence of epoxy resin in the primer coating
Definitions
- the invention pertains to the field of adhesion promoter compositions and to use thereof as primers for adhesives and sealants.
- Adhesion promoter compositions have already been used for some considerable time to improve the adhesion of adhesives and sealants on various substrates.
- the use of such adhesion promoters is widespread in the automobile industry, for example, where requirements imposed on the quality of the adhesion are particularly high and where some of the substrates that need bonding are demanding.
- Adhesion promoter compositions of this kind often include reactive constituents such as organosilanes, which react with one another and with the bond substrates and form a suitable interlayer for the adhesive.
- the compositions are typically solutions or dispersions which are applied in liquid form before the solvent evaporates.
- Solvents employed are usually volatile organic compounds (VOC) which, however, pose a disadvantage for reasons of environmental, health and workplace safety. Attempts have therefore been made to replace solvent-containing adhesion promoter compositions by aqueous ones.
- aqueous adhesion promoter compositions tend to lose their adhesion in the bonded assembly again under hot and humid conditions, as for example when stored under conditions of heat and humidity.
- One aqueous adhesion promoter composition having comparatively good integrity under hot and humid conditions is described in WO 2008/037780, for example. It represents a two-component system consisting of an epoxy resin dispersion and an amine hardener. On relatively long storage under conditions of heat and humidity, however, even this adhesion promoter composition displays loss of adhesion.
- the present invention relates to an aqueous adhesion promoter composition
- an aqueous adhesion promoter composition comprising
- polyamine to comprise compounds which have two or more amino groups.
- polymer in the present document encompasses on the one hand a collective of chemically uniform macromolecules which nevertheless differ in terms of degree of polymerization, molar mass, and chain length, said macromolecules having been prepared by a polymerization reaction (chain growth addition polymerization, polyaddition, polycondensation).
- the term on the other hand also encompasses derivatives of such a collective of macromolecules from polymerization reactions, in other words compounds which have been obtained from specified macromolecules by reactions—such as additions or substitutions, for example—of functional groups, and which may be chemically uniform or chemically disparate.
- prepolymers in other words reactive oligomeric preadducts whose functional groups have participated in the construction of macromolecules.
- “Storage under conditions of heat and humidity” refers here to the storage of a sample at a temperature of 70° C. and a relative atmospheric humidity of 100%. “Molecular weight” is understood in the present document to be the molar mass (in grams per mole) of a molecule. “Average molecular weight” is the number-average molecular weight M n of an oligomeric or polymeric mixture of molecules, and is typically determined by GPC (gel permeation chromatography) against a polystyrene standard.
- Weight percent abbreviated to “wt %”, is used by the present document to refer to a mass fraction in percent by mass of a constituent in relation to an overall composition. “Weight” is understood as the physical mass, measurable for example in grams or kilograms.
- the composition is an at least two-component adhesion promoter composition comprising
- This embodiment has the advantages of particularly high storage stability, as a result of the components being kept separate, and of particularly high integrity of the bond under hot and humid conditions.
- a second particularly preferred embodiment of the adhesion promoter composition of the invention is a one-component adhesion promoter composition which consists of a single component KAB, where the acid HS comprises at least one water-soluble carboxylic acid CHS and preferably consists of at least one water-soluble carboxylic acid CHS.
- This embodiment has the advantages of particularly easy handling and user friendliness, and improved storage stability as a result of the use of a water-soluble carboxylic acid CHS, and also increased integrity of the bond under hot and humid conditions.
- the dispersed solid epoxy resin EP is more particularly an aqueous dispersion of a solid epoxy resin EP of formula (I).
- the substituents R independently of one another are either a hydrogen atom or a methyl group.
- the index r is a value of >1, more particularly of 1.5.
- r is a value from 2 to 12.
- a solid epoxy resin typically has a glass transition temperature which lies above the room temperature of around 23° C. Solid epoxy resins can therefore be comminuted at room temperature into pourable powders.
- Solid epoxy resins of this kind are available commercially as such or already in aqueously dispersed form, for example, from Dow Chemical Company, USA, from Huntsman International LLC, USA, or from Hexion Specialty Chemicals Inc., USA.
- solid epoxy resins which at least partly have N-glycidyl groups rather than glycidyl ether groups, and also epoxy resins based on aliphatic glycidyl ethers.
- solid epoxy resins from the group of the phenolic resins, especially phenol novolacs or cresol novolacs.
- the solid epoxy resin EP is dispersible in water. It is advantageous to use a solid epoxy resin EP already dispersed in water by suitable methods as raw material for the adhesion promoter composition.
- Aqueous dispersions of this kind are available commercially, but they may also be self-prepared by suitable methods. With that in mind, the method should be selected such that the resulting dispersion after each production batch is substantially identical or at least so similar, in terms of properties such as solids content or size of the dispersed particles, for example, that the properties of the adhesion promoter composition produced from the dispersion are unaffected.
- Such an aqueous dispersion of at least one solid epoxy resin EP optionally comprises further constituents, such as, for example, liquid epoxy resins, stabilizers, emulsifiers, coemulsifiers, defoamers, biocides, pigments, fillers, reactive diluents or catalysts.
- the aqueous dispersion is preferably stable over a period of several months up to a year or more without forming multiple phases or sediments which cannot be reconverted into a macroscopically homogeneous dispersion by shaking or stirring.
- An aqueous dispersion of at least one solid epoxy resin EP that is suitable for the present invention preferably has a solids content of solid epoxy resin EP of 30 to 80%, more particularly 45 to 65%, very preferably 50 to 60%. Accordingly, the aqueous dispersion of at least one solid epoxy resin contains in particular about 20 to 70% of water.
- the average size of the dispersed particles of solid epoxy resin EP in the dispersion is situated in particular in the range from 0.05 to 20 ⁇ m, more particularly 0.1 to 10 ⁇ m, very preferably 0.2 to 5 ⁇ m.
- Suitable aqueous dispersions of a solid epoxy resin EP are available commercially, for example, under the trade name Waterpoxy® 1422 from Cognis or under the trade name AncarezTM AR555 Waterborne Epoxy Resin from Air Products. These dispersions may be used without modification of the present invention.
- the fraction in the adhesion promoter composition of the invention of the aqueous dispersion having a solids content of 50 to 60% of at least one solid epoxy resin EP, used with particular preference, is preferably 35 to 50 wt %, more particularly 40 to 45 wt % of the aqueous dispersion, based on the overall adhesion promoter composition, or preferably 75 to 95 wt %, more particularly 80 to 90 wt %, based on component KA of an at least two-component adhesion promoter composition.
- the adhesion promoter composition of the invention further comprises at least one aminosilane AS.
- This at least one aminosilane AS is preferably included either in the component KA together with the acid HS, or in the component KAB together with the water-soluble carboxylic acid CHS.
- the composition of the invention comprises further organosilanes, examples being mercaptosilanes, which are able to further improve the adhesion to particular substrates.
- these further organosilanes if present, are used preferably together with the at least one aminosilane AS in the composition.
- silane and organosilane identify compounds which firstly have at least one, customarily two or three, hydrolyzable groups, preferably alkoxy groups or acyloxy groups bonded directly to the silicon atom, preferably via Si—O bonds, and secondly have at least one organic radical bonded directly to the silicon atom via an Si—C bond.
- Silanes of these kinds having alkoxy or acyloxy groups are also known by the person skilled in the art as organoalkoxysilanes and organoacyloxysilanes, respectively.
- a property of such silanes is that of undergoing at least partial hydrolysis on contact with moisture. This hydrolysis produces organosilanols, these being organosilicon compounds containing one or more silanol groups (Si—OH groups), and subsequent condensation reactions produce organosiloxanes, these being organosilicon compounds containing one or more siloxane groups (Si—O—Si groups).
- Aminosilanes and mercaptosilanes are terms used for organosilanes whose organic radical has an amino group or a mercapto group, respectively.
- Primary aminosilanes are aminosilanes which have a primary amino group, i.e., an NH 2 group bonded to an organic radical.
- Secondary amino silanes are aminosilanes which have a secondary amino group, i.e., an NH group bonded to two organic radicals.
- aminosilanes AS are aminosilanes selected from the group consisting of 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxy-methylsilane, 3-amino-2-methylpropyltrimethoxysilane, 4-aminobutyltrimethoxysilane, 4-aminobutyldimethoxymethylsilane, 4-amino-3-methylbutyltrimethoxy-silane, 4-amino-3,3-dimethylbutyltrimethoxysilane, 4-amino-3,3-dimethylbutyl-dimethoxymethylsilane, 2-aminoethyltrimethoxysilane, 2-aminoethyldimethoxy-methylsilane, aminomethyltrimethoxysilane, aminomethyldimethoxymethylsilane, aminomethylmethoxydimethylsilane, aminomethylmethoxydimethylsilane, aminomethylmethoxydimethylsi
- aminosilane AS it is possible and advantageous to use mixtures of such aminosilanes as aminosilane AS. Having proven particularly advantageous, for example, is the mixture of 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and bis(trimethoxysilylpropyl)amine.
- Aminosilane AS used preferably as a mixture of different aminosilanes, is included preferably in the adhesion promoter composition of the invention with a content of 0.1 to 10 wt %, preferably 0.25 to 5 wt %, more preferably 0.5 to 2 wt %, based on the overall adhesion promoter composition.
- Particularly preferred mercaptosilanes are 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane, most preferably 3-mercaptopropyltrimethoxysilane. They are present preferably with a content of 0.1 to 0.2 wt %, based on the overall adhesion promoter composition.
- composition of the invention further comprises at least one acid HS.
- the acid HS if used in an at least two-component composition comprising a component KA and a component KB, is employed together with the aminosilane AS in the component KA.
- the advantage of this combination is a substantially increased storage stability of component KA of the aqueous two- or multi-component composition comprising aminosilane AS.
- Acid HS Suitability as acid HS is possessed in principle by all acids which in an aqueous solution, emulsion or dispersion are able to protonate the primary and/or secondary amino groups of aminosilanes AS.
- Preferred acids HS are sulfuric acid, phosphoric acid, and water-soluble carboxylic acids CHS.
- the acids are used at sufficiently high dilution that they pose no risk to the occupational safety of the user and represent no danger to the environment. This is especially true of corrosive acids also.
- the acid HS and/or the water-soluble carboxylic acid CHS are/is preferably included in the adhesion promoter composition of the invention with a content of 0.1 to 5 wt %, preferably 0.25 to 2.5 wt %, based on the overall adhesion promoter composition, or with a content of 0.2 to 10 wt %, preferably 0.5 to 5 wt %, based on the component KA of a two-component adhesion promoter composition.
- the adhesion promoter composition of the invention further comprises at least one amine hardener AH.
- Amine hardeners in the sense of the present invention are liquid or solid polyamines which possess primary and/or secondary amino groups and which are able to react with the epoxy groups of the dispersed solid epoxy resin EP.
- amine hardeners AH are preferably such that by themselves or through use of suitable adjuvants such as wetting or dispersing agents, they can be dissolved, emulsified or dispersed in water and in that form are stable for sufficiently long.
- Suitable amine hardeners AH are described for example in European patent application EP09178262.3.
- the amine hardener AH is preferably a reaction product, more particularly a polyamidoamine or an epoxy resin/polyamine addition product, the addition product having an excess of amino groups in comparison to epoxy groups.
- the amine hardener AH is preferably a polyamidoamine. Examples thereof are condensation products of carboxylic acids with polyamines, such as of a fatty acid or a polycarboxylic acid with a polyalkylenamine, for example.
- Particularly suitable amine hardeners AH are addition products of epoxy resins and polyamines. Addition products of this kind may be obtained, for example, from a multiplicity of possible epoxy resins and polyamines known to the person skilled in the art, especially bisphenyl A diglycidyl ether.
- Polyamines preferred for this purpose are ethylenediamine, isophoronediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, 1,3-xylylenediamine, polyalkylenamines such as polyethylenamines or polyoxyalkylenediamines or -triamines, more particularly of the kind available under the trade name Jeffamine® from Huntsman.
- the reaction product is preferably that of a diglycidyl ether of bisphenol A and/or bisphenol F with a polyoxyalkylenediamine or polyoxyalkylenetriamine.
- One particularly suitable addition product is that described in EP 0567831 as bis(diamine)-diepoxide adduct.
- the amounts of EP and AH in the composition of the invention in such a way that the ratio of the epoxide equivalents in the dispersion of the solid epoxy resin EP to the equivalents of an active amine hydrogen in the amine hardener AH is between 1:1 and 20:1. This means that an excess of epoxide equivalents is advantageous. A ratio of epoxide equivalents to amine equivalents of between 1:1 and 4:1 is preferred.
- the fraction of the amine hardener AH is selected in particular such that in the adhesion promoter composition the ratio of amino groups of amine hardener AH to epoxide groups of the aqueous dispersion of the solid epoxy resin EP that comes about is in the range from 0.1:1 to 1:1.
- the fraction of the amine hardener AH is preferably 0.5 to 30 wt %, more particularly 1 to 20 wt %, very preferably 2.5 to 15 wt %, based on the overall adhesion promoter composition, or 1 to 60 wt %, more particularly 2 to 40 wt %, very preferably 3 to 20 wt %, based on the component KB of an at least two-component adhesion promoter composition.
- the adhesion promoter composition comprises the amine hardener AH in the form of a pre-prepared aqueous solution, aqueous emulsion or aqueous dispersion, with the aqueous solution, emulsion or dispersion having a solids content of amine hardener AH of 30 to 90%, preferably 50 to 90%, more preferably 75 to 85%, based on the overall aqueous solution, aqueous emulsion or aqueous dispersion of amine hardener AH.
- the solids content here is the effective amount of amine hardener in the aqueous emulsion, solution or dispersion, and in the pure state the amine hardener may also be liquid.
- Suitable amine hardeners AH which can be used in aqueous compositions of the present invention and which in part are already commercialized in the form of an aqueous preparation are, for example, Anquamine® 731, Anquamine® 735, and Anquawhite® 100, all from Air Products, or Beckopox® EH 623W from Allnex.
- the composition of the invention preferably comprises at least one inorganic base BA, which is used in component KB together with the amine hardener AH.
- the advantage of using at least one inorganic base BA is that the acid HS in component KA is at least partially neutralized when the two components KA and KB are combined, with the effects both of improving the adhesion effect of the mixed composition and of accelerating the reaction of the organosilanes with one another and/or with the substrates. Accordingly, a significantly improved stability of the adhesion under hot and humid conditions is achieved.
- Inorganic bases BA in the sense of the present invention are largely water-soluble compounds of metals and oxides and/or hydroxides which, when dissolved in pure water, increase the pH to above 7.
- Preferred inorganic bases BA are oxides or hydroxides of alkali metals or alkaline earth metals, the oxides undergoing reaction with water to form hydroxides.
- Particularly preferred are hydroxides of alkali metals or alkaline earth metals, more particularly magnesium hydroxide, calcium hydroxide and/or barium hydroxide.
- a most preferred base is calcium hydroxide.
- the acid HS and the inorganic base BA are selected such that a sparingly soluble salt is formed in the neutralization.
- a sparingly soluble salt for the purposes of the present invention represents a pair of ions which at 23° C. exhibits at least 25 wt %, preferably at least 50 wt %, spontaneous precipitation, based on the ions present overall, in the form of a salt from the solution.
- Preferred acid-base pairs are alkali metal or alkaline earth metal hydroxides or oxides paired with sulfuric acid, which then precipitate as alkali metal or alkaline earth metal sulfates, or the same bases paired with phosphoric acid, which then precipitate as alkali metal or alkaline earth metal phosphates.
- suitable is the combination of tartaric acid with calcium or potassium hydroxide, precipitating in the form of calcium or potassium tartrate.
- a particularly preferred combination is that of calcium hydroxide with phosphoric acid, which precipitates as calcium phosphate.
- composition of the invention further comprise at least one water-soluble carboxylic acid CHS.
- This acid may also be employed as acid HS in two- or multicomponent embodiments.
- Carboxylic acids are considered water-soluble for the purposes of the present invention if at 23° C. in deionized water they are soluble at not less than 50 g of carboxylic acid per liter of water, and form largely stable solutions.
- Preferred carboxylic acids here are those having a higher solubility.
- Particularly suitable water-soluble carboxylic acids CHS are the following: saturated aliphatic monocarboxylic acids, such as particularly formic acid, acetic acid, propionic acid, butyric acid, and isobutyric acid; monounsaturated aliphatic carboxylic acids such as acrylic acid; saturated or unsaturated dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid or oxalic acid; hydroxycarboxylic acids such as malic acid, citric acid, glycolic acid, isocitric acid, mandelic acid, lactic acid, tartronic acid, and tartaric acid; keto acids such as pyruvic acid, acetoacetic acid, levulinic acid or oxaloacetic acid.
- saturated aliphatic monocarboxylic acids such as particularly formic acid, acetic acid, propionic acid, butyric acid, and isobutyric acid
- a most preferred acid is acetic acid.
- Acetic acid possesses in particular the advantages that it develops an excellent stabilizing effect in the composition of the invention, presents no workplace safety problems when in aqueous dilution, is readily available on favorable terms everywhere, and poses no hazard to the environment.
- the one- or two-component composition may comprise further, optional constituents besides water.
- additional constituents are surfactants, acids, adhesion promoter additives, catalysts, cosolvents, biocides, antisettling agents, stabilizers, inhibitors, pigments, dyes, corrosion inhibitors, odorants, UV indicators, thixotropic agents, fillers, defoamers, further organosilanes, and titanates.
- Preferred embodiments of the adhesion promoter composition of the invention in component KA and/or in component KB if they are at least two-component, or in component KAB if they are one-component, additionally comprise at least one defoamer and/or at least one silane catalyst and/or at least one further organosilane, more particularly at least one mercaptosilane, and/or at least one pigment, more particularly carbon black.
- a silane catalyst is a compound capable of catalyzing the hydrolysis and/or condensation of organosilanes.
- Such compounds are very well known to the person skilled in the art and include, for example, metal complexes such as tin complexes, titanates, zirconates and the like, and also organic compounds with tertiary amines such as N-alkylated morpholines, guanidines or amidines.
- metal complexes such as tin complexes, titanates, zirconates and the like
- organic compounds with tertiary amines such as N-alkylated morpholines, guanidines or amidines.
- Preferred for the present invention are tin complexes such as dibutyltin dilaurate.
- surfactants which can be used are natural or synthetic compounds which, in solutions, lower the surface tension of the water or other liquids.
- surfactants also called wetting agents, it is possible to use anionic, cationic, nonionic or ampholytic surfactants or mixtures thereof.
- anionic surfactants are those containing carboxylate, sulfate, phosphate or sulfonate groups, such as, for example, amino acid derivatives, fatty alcohol ether sulfates, fatty alcohol sulfates, soaps, alkylphenol ethoxylates, fatty alcohol ethoxylates, and also alkanesulfonates, olefin-sulfonates or alkyl phosphates.
- the nonionic surfactants include, for example, ethoxylates, such as ethoxylated adducts of alcohols, such as, for example, polyoxyalkylene polyols, amines, fatty acids, fatty acid amides, alkylphenols, ethanolamides, fatty amines, polysiloxanes or fatty acid esters, for example, but also alkyl- or alkylphenyl polyglycol ethers, such as fatty alcohol polyglycol ethers, or fatty acid amides, alkylglycosides, sugar esters, sorbitan esters, polysorbates or trialkylamine oxides, and also esters and amides of poly(meth)acrylic acids with polyalkylene glycols or aminopolyalkylene glycols, which may be capped at no more than one end by alkyl groups.
- ethoxylates such as ethoxylated adducts of alcohols, such as,
- cationic surfactants are quaternary ammonium compounds or phosphonium compounds, such as, for example, tetraalkylammonium salts, N,N-dialkylimidazoline compounds, dimethyldistearylammonium compounds, or N-alkylpyridine compounds, especially ammonium chlorides.
- the ampholytic or amphoteric surfactants include amphoteric electrolytes, known as ampholytes, such as aminocarboxylic acids, for example, and betaines.
- Surfactants of these kinds are widely available commercially. Particularly suitable are alkoxylated alcohols, alkoxylated nonionic fluorosurfactants, especially Zonyl® FSO-100, which is available commercially from ABCR, Germany, alkoxylated alcohols or alkoxylated alkylphenols, especially Antarox FM 33, which is commercially available commercially from Rhodia. Also preferred are alkoxylated fatty alcohols, such as Hydropalat® 120 from Cognis. Employed with particular preference as surfactant is Hydropalat® 3031 from Cognis.
- the adhesion promoter composition of the invention preferably comprises further ingredients, of the kind customary in adhesion promoter compositions and described for example in WO 2008/037780, more particularly compounds of the kind described therein as epoxysilane ES or ESx.
- the adhesion promoter composition comprises silanes, optionally at least partly in the form of their siloxanes, and also pigments.
- silanes are epoxysilanes, more particularly 3-glycidyl-oxypropylsilanes, adducts of epoxysilanes and aminosilanes, and also oligomeric and/or partially or wholly hydrolyzed recation products of organosilanes.
- Preferred pigments are iron pigments and, in particular, carbon black.
- An example of the advantage of using pigments and/or carbon black is that in compositions having at least two components, one component is colored with pigments and/or carbon black and so it is easier for the user to distinguish between the components, allowing errors to be avoided.
- an adhesion promoter composition colored using carbon black and/or pigments also indicates the correct presence of the layer of adhesion promoter on the substrate after application.
- the present invention can be formulated either as a particularly storage-stable, at least two-component adhesion promoter composition, or as a particularly user-friendly, at least one-component adhesion promoter composition.
- “Storage-stable” or “storable” is an epithet applied to a substance or composition when it can be kept at room temperature in a suitable container for a relatively long time, typically at least 3 months up to 6 months or more, without suffering alteration—to any extent relevant to its use—in its application or service properties as a result of the storage.
- adhesion promoter compositions are considered to be storage-stable in the sense of the present invention if they exhibit no substantial detractions from the adhesion-promotion effect after the storage periods defined for example above or at the relevant locations.
- Preferred at least two-component inventive compositions comprise a component KA and a component KB. These two components are storage-stable for at least 9 months, each independently of one another, and in preferred embodiments for at least a year, and are mixed shortly before application.
- the mixture of the two components has a long open time of at least a week, in preferred embodiments at least 2 to 3 weeks, or longer. It is possible without restriction to combine an old component KA, prepared for example six months previously, with a fresh component KB, or vice versa, without significant detriment to the performance of the adhesion promoter composition.
- the optimum mixing ratio of the components KA to the components KB can be controlled via the amount of the constituents in the components.
- component KA there is to be sufficient acid HS present in order to stabilize the aminosilanes AS by protonation.
- component KB is to be metered such that when the two components KA and KB are combined, the acid HS is neutralized by the inorganic base BA, and the aminosilanes AS are able to develop improved adhesion to the bond substrate.
- the person skilled in the art is capable of calculating a sensible composition from the characteristic values of the raw materials, such as amine number, for example, and from the amounts employed, and of optimizing this composition by experiments, such as pH measurements and adhesion tests.
- KA and KB mixing ratios of the components KA and KB to one another
- a 1:1 mixing ratio of KA:KB it is possible to employ a 1:1 mixing ratio of KA:KB.
- KA:KB 2:1, 3:1, 4:1 or higher.
- Adding a small volume of KB to a large volume of KA results in advantages for the user.
- a pail for example, with component KA, which still includes sufficient free volume for the addition of a small volume of component KB—a bottle or a pouch, for example.
- the mixing system is in this way less susceptible to error than if it were necessary to observe a strict 1:1 ratio.
- component KB contains carbon black or pigments
- Adding a small volume of dark component KB to a large volume of light component KA results in a distinguishable mixed color in the completed mixture of KA and KB.
- the adhesion promoter composition of the invention comprises an individual component KAB which contains all of the constituents essential to the invention.
- These embodiments possess a storage stability of at least 3 months, and in preferred embodiments storage stabilities of at least 6 months.
- An advantage of these embodiments is the absence of the mixing of the components before use, and the adhesion promoter compositions can be applied directly. This reduces possible user errors and reduces the need for storage space, and necessary operating steps, thereby shortening cycle times.
- the required amount can be calculated by the person skilled in the art from the amine number of the amine hardener AH and the amount employed. It has proven advantageous to use an excess of, for example, 1 mole percent or more of carboxyl groups in the water-soluble carboxylic acid CHS, relative to the moles of amino groups in the amine hardener AH.
- One particularly preferred embodiment of an at least two-component adhesion promoter composition in accordance with the present invention comprises: a first component KA comprising
- a volume mixing ratio of KA:KB of between 1:1 and 4:1 in particular has proven to be particularly advantageous.
- the ratio of the epoxide equivalents of the solid epoxy resin EP in component KA to the amine hydrogen equivalents of the amine hardener AH in component KB to be selected such that there is a slight excess of epoxide equivalents. This means, for example, that there is preferably a 1 to 10% excess of epoxide equivalents.
- Suitable packaging material includes, in particular, plastics, such as polyethylene or polypropylene, acid-resistant metals, metal-coated plastics, or glass, for example, of which plastic containers are preferred.
- plastics such as polyethylene or polypropylene
- acid-resistant metals such as aluminum, aluminum, or zinc, or zinc, or zinc, or zinc, for example, of which plastic containers are preferred.
- the aqueous compositions of the invention or their components are of course not sensitive toward atmospheric moisture and need not be stored in particularly impervious—especially gastight—packaging. Nevertheless, it must be ensured that substantial quantities of water are unable to evaporate from the containers, or that unwanted extraneous substances are unable to penetrate the containers.
- the individual components are storage-stable separately from one another.
- the adhesion promoter composition of the invention is stored in particular at temperatures in the range from 5 to 30° C. This ensures the stability of the aqueous dispersion of the solid epoxy resin.
- the present invention further relates to the use of an adhesion promoter composition of the kind described above as a primer for adhesives, sealants or coatings.
- an adhesion promoter composition of this kind enhances the adhesion of the adhesive, sealant or coating under hot and humid conditions, especially after storage under conditions of heat and humidity.
- the adhesion promoter composition is used preferably as a primer for adhesives or sealants.
- the adhesion promoter composition of the invention is applied typically by means of cloth, felt, roller, spraying, sponge, brush, dip coating or the like, and may be applied either manually or by robot.
- adhesion promoter composition is a multicomponent adhesion promoter composition
- the components are mixed before or in the course of application.
- a preferred method for applying a two-component adhesion promoter composition of the invention consists typically of the following steps:
- a usual step, as described in section c), is the flashing-off of the adhesion promoter composition. Flashing off may take place under atmospheric conditions or at most at elevated temperature, under subatmospheric pressure and/or by application of a blown gas, through the use, for example, of a fan or blow dryer, which may result in a shortening of the flash-off time.
- the compositions of the invention typically require flash-off times of between 15 min and 2 h, the time being reduced by a dry and/or hot environment. By using a fan or blow dryer it is easily possible to shorten the flash-off time to no more than 5 min, preferably no more than one minute.
- One-component adhesion promoter compositions of the invention comprising a single component KAB are preferably also used in accordance with the method identified above, of course there being no need for a mixing operation in step a), since the mixture is already a completed mixture. Nevertheless, it may be advantageous to shake or stir component KAB prior to application, in order to ensure maximum homogeneity of mixing.
- the adhesion promoter composition of the invention is suitable for different kinds of substrates, such as metals and alloys, for example, more particularly steels, aluminum, and nonferrous metals, and also their alloys, concrete, mortar, brick, klinker, natural stone, glass, ceramic, glass-ceramic, wood, and plastics such as polystyrene.
- substrates such as metals and alloys, for example, more particularly steels, aluminum, and nonferrous metals, and also their alloys, concrete, mortar, brick, klinker, natural stone, glass, ceramic, glass-ceramic, wood, and plastics such as polystyrene.
- Preferred substrates are inorganic substrates, more particularly glass and glass-ceramic, metals, and also concrete and mortar.
- the substrates may where necessary be pretreated before the adhesion promoter composition of the invention is applied.
- Such pretreatments include, in particular, physical and/or chemical cleaning processes, examples being sanding, sandblasting, brushing or the like, or treatment with cleaners or solvents.
- the adhesive or sealant used may in principle be any customary adhesive or sealant. More particularly it is a moisture-curing adhesive or sealant.
- Suitable adhesives and sealants are, in particular, polyurethane adhesives and sealants, especially those which comprise polyurethane polymers containing isocyanate groups.
- the adhesion promoter composition of the invention is further suitable in particular for silane-crosslinking adhesives and sealants as well.
- the adhesion promoter composition of the invention is especially suitable for elastic, moisture-curing adhesives, of the kind sold commercially under the Sikaflex®, SikaTack® and SikaBond® product lines from Sika für AG.
- Preferred fields of application of the adhesion promoter composition of the invention are located in the construction and manufacturing industries and also in vehicle construction, particularly for joint sealing, wood-floor bonding, accessory-component bonding, seam sealing, cavity sealing, assembly, bodywork bonding, glass bonding, and the like.
- the present invention further relates to articles which have been bonded or coated using an adhesion promoter composition of the invention, or have been pretreated for the purpose of bonding or coating.
- Examples of articles which are produced by the bonding, sealing or coating of a substrate using an adhesion promoter composition of the invention include built structures, more particularly built structures in civil engineering or construction, means of transport, vehicles for example, more particularly automobiles, buses, trucks, rail vehicles, or boats, or accessory components thereof.
- the adhesion promoter composition of the invention is employed preferably for elastic bonds in vehicle construction, such as, for example, the bonded attachment of parts, such as plastic covers, trim strips, flanges, bumpers, driver's cabins or other accessory components, to the painted body of a means of transport, or the bonding of glass into the body.
- A-1110 3-Aminopropyltrimethoxysilane Silquest ® A-1110, Momentive Performance Materials, Germany A-1120 N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane Silquest ® A-1120, Momentive Performance Materials, Germany A-1130 Diethylenetriaminopropyltrimethoxysilane Silquest ® A-1130, Momentive Performance Materials, Germany A-1170 Bis(trimethoxysilylpropyl)amine Silquest ® A-1170, Momentive Performance Materials, Germany A-187 3-Glycidyloxypropyltrimethoxysilane Silquest ® A-187, Momentive Performance Materials, Germany A-189 3-Mercaptopropyltrimethoxysilane Silquest ® A-189, Momentive Performance Materials, Germany Hydropalat 3031 Surfactant, Hydropalat ® 3031, Cognis, Germany AR555 Aqueous dispersion of a solid epoxy resin with 55% solids fraction, Ancarez ® AR555
- KA1 to KA3 A series of inventive (KA1 to KA3) and also two noninventive (KA4 and KA5) components KA were produced.
- the amounts of the individual ingredients are listed in wt % in table 1.
- KA4 is not inventive since it contains no aminosilane AS;
- KA5 is not inventive since it contains no acid HS or CHS.
- Inventive and noninventive components KA produced for the corresponding example compositions. All quantities in wt % are based on the overall respective component KA.
- KA4 KA5 KA1 KA2 KA3 (Ref.) (Ref.) AR555 89 89 89 94 90 Water — — — 2 — Acetic acid 1 1 1 — — Silane mixture ES1 — — — 4 — Silane mixture AS1 10 — — — — Silane mixture AS2 — 10 — — — Silane mixture AS3 — — 10 — — Silane mixture AS4 — — — — 10 Total (wt %) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
- KA The production of components KA was identical in all cases.
- AR-555 was placed in a reactor and, with stirring, the acetic acid (glacial acetic acid; Sigma Aldrich Switzerland) or the additional water (in the case of KA4) was added. Thereafter, with vigorous stirring, the respective silane mixture was added slowly.
- the product in all cases was a milky fluid which was homogeneous but nontransparent.
- silane mixtures for use in component KA were produced according to the compositions in wt % indicated in table 2, based on the respective silane mixtures. These silane mixtures then either were added as inventive aminosilanes AS to the corresponding components KA, or they served as an additive for reference compositions.
- silane mixtures used in components KA All quantities in wt % are based on the overall respective silane mixture.
- the silane mixtures AS1 to AS4 were produced according to an identical scheme: First of all, the acid or base (where present), Hydropalat 3031, and water were premixed. The individual silanes were added slowly dropwise with stirring to this mixture at 23° C. under a nitrogen atmosphere. During the dropwise addition, care was taken to ensure that the silanes were added slowly and the solution remained clear. After all the silanes had been added, the solution was stirred for an hour. In all cases, a clear, colorless mixture was obtained. In the case of ES1, A-187 was added as the final raw material.
- KB1 to KB5 A series of inventive (KB1 to KB5) and also one noninventive (KB6) components KB were produced. The amounts of the individual ingredients are listed in wt % in table 3. KB6 is not inventive since it contains no organic base BA.
- the example components KB were always produced according to the following scheme: First, the amine hardener AH (Beckopox 623) was mixed with approximately half the water in a reactor, resulting in a decrease in viscosity and a greater ease in stirring. Thereafter the remainder of the water was added slowly with stirring, with the inorganic base BA dissolved therein, and also, where present, carbon black, dispersant, defoamer and catalyst dispersed therein. The mixture was subsequently stirred further for around 15 minutes until the resulting mixture was homogeneous and colorless or, if containing carbon black, was black.
- amine hardener AH Beckopox 623
- KAB1 and KAB2 were produced.
- the fractions in wt % of the individual components KAB1 and KAB2 are set out in table 4.
- KAB2 is not inventive since no water-soluble carboxylic acid CHS is included.
- KAB1 KAB2 AR555 61 61 A-1110 0.45 0.45 A-1120 0.45 0.45 A-1170 0.45 0.45 A-189 0.15 0.15 Beckopox 623 6 6 Water 29.5 31.5 Acetic acid 2 — Total (wt %) 100 100
- KAB1 was produced in a number of steps. First of all, approximately half of the water used was introduced with half of the acetic acid in a glass flask. The silanes were then added slowly and the mixture was shaken. Thereafter AR555 was charged to a reactor and the silane mixture was added. With stirring, all of the ingredients were mixed. In a second reactor, Beckopox 623 was likewise diluted with the remainder of the water and stirred for several minutes. Thereafter the remainder of the acetic acid was admixed, and stirring was continued. The contents of the second reactor were subsequently added with the amine hardener to the contents of the first reactor. The mixture was stirred for one hour more until a milky, homogeneous mixture was obtained.
- KAB2 was produced in an almost identical process, except that the acetic acid was replaced by water. Again a milky, homogeneous mixture was obtained. This mixture, however, underwent gelling within four weeks after production, and could only be used in fresh form.
- the respective components KA and KB were mixed in a suitable volume ratio. Unless otherwise indicated in the adhesion results, this ratio is always 1:1. Mixing was accomplished by conjoint pouring and subsequent shaking for 5 minutes. The single component KAB was shaken only for 5 minutes prior to use.
- the completed adhesion promoter compositions are labeled Z1 to Z14 and are specified in table 5 and in the tables relating to the adhesion results.
- adhesion promoter compositions Z1 to Z14 consisting of the respective components KA and KB or KAB.
- aqueous adhesion promoter compositions Z1 to Z14 of table 5 were tested, with regard to their promotion of adhesion to various substrates, as adhesion promoters in combination with various adhesives.
- individual components KA, KB or KAB were stored for different times (up to 13 months) at 23° C. In some cases, in order to simulate accelerated aging, storage was carried out at an elevated temperature.
- Adhesives used for the test bonds were SikaTack® MOVE IT (“Move”), Sikaflex®-205 HMA-3 (“HMA3”), Sikaflex®-250 HMV-2+(“HMV2”), and Sikaflex®-265 (“S256”), which are one-component moisture-curing polyurethane adhesives that comprise polyurethane prepolymers having isocyanate groups and are available commercially from Sika Sau AG.
- Substrates used were float glass (tin-side “F—Sn” or air-side “F-air”), Ferro Frit 14251 (“14251”), Ferro Frit 3402 (“3402”), and Ferro Frit 14279 (“14279”).
- the aforementioned glass substrates are sold by Rocholl AG, Germany. They are laboratory substrates corresponding to the usual commercial glass ceramics for VSG and ESG glasses. Ferro is the manufacturer of the glass ceramic paste; the numbers are the type designation of the ceramics used.
- aqueous compositions were applied to the respective substrate using a melamine sponge soaked with the compositions, and were flashed off for 60 minutes.
- a triangular bead of the adhesive was applied by extrusion cartridge and nozzle under standard conditions (23 ⁇ 1° C., 50 ⁇ 5% relative humidity).
- the bond was tested after a cure time of normally 7 days of conditioned storage under standard conditions at 23° C. (“RT”) and 50% relative humidity, and also after subsequent heat-and-humidity storage (“CP”) at 70° C. and 100% relative humidity for up to 21 days. The precise conditions of storage and the respective storage times are reported in the corresponding tables.
- the adhesion of the adhesive was tested by means of a ‘bead test’.
- the bead is incised at the end just above the bond area.
- the incised end of the bead is held with rounded-end tweezers and pulled from the substrate. This is done by cautiously rolling the bead up onto the tip of the tweezers, and by applying a cut at right angles to the direction of bead pulling, down to the bare substrate.
- the bead pulling rate should be selected such that a cut has to be made approximately every 3 seconds.
- the test distance must be at least 8 cm.
- Tables 6a and 6b show that the inventive adhesion promoter compositions Z4 and Z8 are significantly superior to the noninventive composition Z7, especially after heat-and-humidity storage.
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z1 F—Sn 100 99 100 100 100 100 100 100 100 14279 90 99 100 100 100 100 100 100 100 100 100 100 100 100 3402 99 100 100 100 90 95 100 100 Z10 F—Sn 0 0 30 10 0 0 0 100 (Ref.) 14279 100 20 100 100 0 0 0 50 14251 100 100 100 100 0 0 0 20 3402 100 100 100 100 100 0 0 0 0 0 0
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z1 F—Sn 95 100 100 99 70 60 90 95 14279 99 99 99 100 95 95 99 99 14251 95 100 100 100 50 99 100 100 3402 20 70 100 100 10 20 100 100 Z10 F—Sn 0 0 0 80 0 0 0 50 (Ref.) 14279 0 0 0 20 0 0 0 30 14251 0 0 0 0 0 0 0 0 0 3402 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- Tables 8a and 8b show that inventive compositions with a KA:KB mixing ratio of 1:1 (Z3) and those with a ratio of 4:1 (Z2) permit outstanding adhesion results.
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z5 F—Sn 99 100 100 100 0 0 80 100 F-air 100 100 100 100 0 0 95 100 Z6 F—Sn 100 100 100 100 20 70 30 100 F-air 99 100 100 100 100 100 100 100 100 100 Z7 F—Sn 10 10 50 100 0 0 0 0 (Ref.) F-air 10 10 30 100 0 0 0 0 0 0
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z5 F—Sn 0 0 70 100 0 0 70 100 F-air 0 0 70 100 0 0 50 100 Z6 F—Sn 70 30 20 100 30 10 80 100 F-air 100 100 100 100 100 100 100 100 100 Z7 F—Sn 0 0 0 0 0 0 0 0 (Ref.) F-air 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (Ref.) F-air 0 0 0 0 0 0 0 0 0 0 0 0 0
- Tables 9a and 9b show that inventive compositions with barium hydroxide (Z5) and magnesium hydroxide (Z6) as inorganic base BA also exhibit good adhesion results.
- the noninventive Z7 yields significantly poorer results.
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z8 F—Sn 100 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 99 100 100 14251 100 100 100 100 100 100 100 100 100 100 10 14279 100 100 100 100 100 100 90 100 100 Z11 F—Sn 100 100 100 100 0 10 70 10 (Ref.) 3402 100 100 100 100 100 0 0 0 90 14251 100 100 100 100 100 0 0 0 10 14279 100 100 100 100 0 0 0 50 Z12 F—Sn 100 100 100 0 0 50 10 (Ref.) 3402 100 100 100 100 100 0 0 0 0 14251 100 100 100 100 0 0 0 0 14279 100 100 100 100 0 0 0 0 0 0 0
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z8 F—Sn 100 99 100 0 100 90 100 0 3402 100 30 100 10 100 0 100 10 14251 100 80 100 0 99 90 95 0 14279 100 20 100 10 100 0 100 0 Z11 F—Sn 0 10 70 0 0 0 70 0 (Ref.) 3402 0 0 10 10 0 0 0 0 14251 0 0 0 0 0 0 0 0 0 14279 0 0 0 10 0 0 0 0 Z12 F—Sn 0 0 30 0 0 0 30 0 (Ref.) 3402 0 0 0 0 0 0 0 0 0 14251 0 0 0 0 0 0 0 0 14279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- Tables 11a and 11b show adhesion results after heat aging (simulated accelerated aging) of components KA and KB of an inventive (Z1) against a noninventive (Z9) composition.
- the inventive Z1 exhibits very good adhesion promotion in all combinations of fresh and aged components.
- Tables 12a and 12b show clearly that even storage over 13 months at room temperature, and even additional heat aging of component KA, have virtually no influence on the adhesion results of an inventive composition.
- Table 13 shows adhesion results after different flash-off times, using a fan. Flash-off times of no more than 1 minute, which are extremely short for aqueous compositions, can be readily employed without adversely affecting the adhesion results.
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z13 F—Sn 100 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 100 10 14279 100 100 100 100 100 95 100 100 Z14 F—Sn 100 100 100 100 0 10 70 10 (Ref.) 3402 100 100 100 100 0 0 0 50 14251 100 100 100 100 0 0 0 0 14279 100 100 100 100 0 0 0 10
- Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z13 F—Sn 100 99 100 10 100 99 100 10 3402 100 50 100 20 100 20 100 20 14251 100 80 100 10 99 90 95 10 14279 100 30 100 30 100 20 100 20 Z14 F—Sn 0 10 70 0 0 0 50 0 (Ref.) 3402 0 0 10 10 0 0 0 0 14251 0 0 0 0 0 0 0 0 0 14279 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 14279 0 0 0 10 0 0 0 0 0 0 0 0
- Tables 14a and 14b show that the inventive composition Z13, consisting of a single component KAB, also exhibits very good adhesion results, whereas the noninventive composition Z14 (without water-soluble carboxylic acid CHS) fails after heat-and-humidity storage.
- inventive compositions are far superior to the noninventive reference examples in all cases, especially after storage under conditions of heat and humidity.
- the inventive compositions are storage-stable over long periods and may also be composed of components having different ages, without detriment to the promotion of adhesion.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- The invention pertains to the field of adhesion promoter compositions and to use thereof as primers for adhesives and sealants.
- Adhesion promoter compositions have already been used for some considerable time to improve the adhesion of adhesives and sealants on various substrates. The use of such adhesion promoters is widespread in the automobile industry, for example, where requirements imposed on the quality of the adhesion are particularly high and where some of the substrates that need bonding are demanding.
- Adhesion promoter compositions of this kind often include reactive constituents such as organosilanes, which react with one another and with the bond substrates and form a suitable interlayer for the adhesive. The compositions are typically solutions or dispersions which are applied in liquid form before the solvent evaporates. Solvents employed are usually volatile organic compounds (VOC) which, however, pose a disadvantage for reasons of environmental, health and workplace safety. Attempts have therefore been made to replace solvent-containing adhesion promoter compositions by aqueous ones. A problem often observed with aqueous adhesion promoter compositions based on silane, particularly if they are formulated as one-component compositions, however, is either their relatively low storage stability for adequate reactivity, or their inadequate reactivity for sufficient storage stability. Moreover, aqueous adhesion promoter compositions tend to lose their adhesion in the bonded assembly again under hot and humid conditions, as for example when stored under conditions of heat and humidity. One aqueous adhesion promoter composition having comparatively good integrity under hot and humid conditions is described in WO 2008/037780, for example. It represents a two-component system consisting of an epoxy resin dispersion and an amine hardener. On relatively long storage under conditions of heat and humidity, however, even this adhesion promoter composition displays loss of adhesion.
- There consequently continues to be a need for an aqueous adhesion promoter composition which permits an adhesive bond which is stable over long periods, even under demanding, hot and humid conditions, and possesses excellent storage stability, both in two-component and in one-component formulations.
- It is an object of the present invention, therefore, to provide an adhesion promoter composition with insubstantial emission of volatile organic compounds, or no such emission, which can be formulated as a one-component or two-component composition, and which, in either case, possesses very good storage stability and at the same time, even after a relatively long time post application, does not lead to a loss of adhesion under hot and humid conditions.
- This object is achieved by an adhesion promoter composition of the invention as claimed in claim 1.
- Surprisingly it has been found that the use of acids as additives in the adhesion promoter composition substantially increases its storage stability and, especially in conjunction with inorganic bases in two-component formulations or as water-soluble carboxylic acids in one-component formulations, significantly enhances its integrity under hot and humid conditions.
- Further aspects of the invention are a subject of further independent claims. Particularly preferred embodiments of the invention are subject matter of the dependent claims.
- The present invention relates to an aqueous adhesion promoter composition comprising
-
- a) at least one dispersed solid epoxy resin EP;
- b) at least one aminosilane AS;
- c) at least one acid HS;
- d) at least one amine hardener AH; and
- e) water.
- Substance names beginning with “poly”, such as polyamine or polyisocyanate, refer in the present document to substances which formally contain two or more per molecule of the functional groups that occur in their names.
- Accordingly, the present document understands “polyamine” to comprise compounds which have two or more amino groups.
- The term “polymer” in the present document encompasses on the one hand a collective of chemically uniform macromolecules which nevertheless differ in terms of degree of polymerization, molar mass, and chain length, said macromolecules having been prepared by a polymerization reaction (chain growth addition polymerization, polyaddition, polycondensation). The term on the other hand also encompasses derivatives of such a collective of macromolecules from polymerization reactions, in other words compounds which have been obtained from specified macromolecules by reactions—such as additions or substitutions, for example—of functional groups, and which may be chemically uniform or chemically disparate. The term, furthermore, also encompasses what are called prepolymers, in other words reactive oligomeric preadducts whose functional groups have participated in the construction of macromolecules.
- “Storage under conditions of heat and humidity” refers here to the storage of a sample at a temperature of 70° C. and a relative atmospheric humidity of 100%. “Molecular weight” is understood in the present document to be the molar mass (in grams per mole) of a molecule. “Average molecular weight” is the number-average molecular weight Mn of an oligomeric or polymeric mixture of molecules, and is typically determined by GPC (gel permeation chromatography) against a polystyrene standard.
- “Weight percent”, abbreviated to “wt %”, is used by the present document to refer to a mass fraction in percent by mass of a constituent in relation to an overall composition. “Weight” is understood as the physical mass, measurable for example in grams or kilograms.
- In one particularly preferred embodiment of the adhesion promoter composition of the invention, the composition is an at least two-component adhesion promoter composition comprising
-
- a first component KA, comprising
- a) the at least one dispersed solid epoxy resin EP;
- b) the at least one aminosilane AS;
- c) the at least one acid HS; and
- d) water; and
- a second component KB comprising
- a) the at least one amine hardener AH;
- b) additionally at least one inorganic base BA; and
- c) water.
- This embodiment has the advantages of particularly high storage stability, as a result of the components being kept separate, and of particularly high integrity of the bond under hot and humid conditions.
- A second particularly preferred embodiment of the adhesion promoter composition of the invention is a one-component adhesion promoter composition which consists of a single component KAB, where the acid HS comprises at least one water-soluble carboxylic acid CHS and preferably consists of at least one water-soluble carboxylic acid CHS.
- This embodiment has the advantages of particularly easy handling and user friendliness, and improved storage stability as a result of the use of a water-soluble carboxylic acid CHS, and also increased integrity of the bond under hot and humid conditions.
- The dispersed solid epoxy resin EP is more particularly an aqueous dispersion of a solid epoxy resin EP of formula (I).
- In this formula, the substituents R independently of one another are either a hydrogen atom or a methyl group. Moreover, the index r is a value of >1, more particularly of 1.5. Preferably r is a value from 2 to 12.
- A solid epoxy resin typically has a glass transition temperature which lies above the room temperature of around 23° C. Solid epoxy resins can therefore be comminuted at room temperature into pourable powders.
- Solid epoxy resins of this kind are available commercially as such or already in aqueously dispersed form, for example, from Dow Chemical Company, USA, from Huntsman International LLC, USA, or from Hexion Specialty Chemicals Inc., USA.
- Additionally suitable for example are solid epoxy resins which at least partly have N-glycidyl groups rather than glycidyl ether groups, and also epoxy resins based on aliphatic glycidyl ethers.
- Likewise suitable are solid epoxy resins from the group of the phenolic resins, especially phenol novolacs or cresol novolacs.
- For the present invention it is essential that the solid epoxy resin EP is dispersible in water. It is advantageous to use a solid epoxy resin EP already dispersed in water by suitable methods as raw material for the adhesion promoter composition. Aqueous dispersions of this kind are available commercially, but they may also be self-prepared by suitable methods. With that in mind, the method should be selected such that the resulting dispersion after each production batch is substantially identical or at least so similar, in terms of properties such as solids content or size of the dispersed particles, for example, that the properties of the adhesion promoter composition produced from the dispersion are unaffected.
- Such an aqueous dispersion of at least one solid epoxy resin EP optionally comprises further constituents, such as, for example, liquid epoxy resins, stabilizers, emulsifiers, coemulsifiers, defoamers, biocides, pigments, fillers, reactive diluents or catalysts. The aqueous dispersion is preferably stable over a period of several months up to a year or more without forming multiple phases or sediments which cannot be reconverted into a macroscopically homogeneous dispersion by shaking or stirring.
- An aqueous dispersion of at least one solid epoxy resin EP that is suitable for the present invention preferably has a solids content of solid epoxy resin EP of 30 to 80%, more particularly 45 to 65%, very preferably 50 to 60%. Accordingly, the aqueous dispersion of at least one solid epoxy resin contains in particular about 20 to 70% of water.
- The average size of the dispersed particles of solid epoxy resin EP in the dispersion is situated in particular in the range from 0.05 to 20 μm, more particularly 0.1 to 10 μm, very preferably 0.2 to 5 μm.
- Suitable aqueous dispersions of a solid epoxy resin EP are available commercially, for example, under the trade name Waterpoxy® 1422 from Cognis or under the trade name Ancarez™ AR555 Waterborne Epoxy Resin from Air Products. These dispersions may be used without modification of the present invention.
- The fraction in the adhesion promoter composition of the invention of the aqueous dispersion having a solids content of 50 to 60% of at least one solid epoxy resin EP, used with particular preference, is preferably 35 to 50 wt %, more particularly 40 to 45 wt % of the aqueous dispersion, based on the overall adhesion promoter composition, or preferably 75 to 95 wt %, more particularly 80 to 90 wt %, based on component KA of an at least two-component adhesion promoter composition.
- The adhesion promoter composition of the invention further comprises at least one aminosilane AS.
- This at least one aminosilane AS is preferably included either in the component KA together with the acid HS, or in the component KAB together with the water-soluble carboxylic acid CHS.
- In preferred embodiments, the composition of the invention comprises further organosilanes, examples being mercaptosilanes, which are able to further improve the adhesion to particular substrates. These further organosilanes, if present, are used preferably together with the at least one aminosilane AS in the composition.
- In the present document, the terms “silane” and “organosilane” identify compounds which firstly have at least one, customarily two or three, hydrolyzable groups, preferably alkoxy groups or acyloxy groups bonded directly to the silicon atom, preferably via Si—O bonds, and secondly have at least one organic radical bonded directly to the silicon atom via an Si—C bond. Silanes of these kinds having alkoxy or acyloxy groups are also known by the person skilled in the art as organoalkoxysilanes and organoacyloxysilanes, respectively.
- A property of such silanes is that of undergoing at least partial hydrolysis on contact with moisture. This hydrolysis produces organosilanols, these being organosilicon compounds containing one or more silanol groups (Si—OH groups), and subsequent condensation reactions produce organosiloxanes, these being organosilicon compounds containing one or more siloxane groups (Si—O—Si groups).
- “Aminosilanes” and “mercaptosilanes” are terms used for organosilanes whose organic radical has an amino group or a mercapto group, respectively. “Primary aminosilanes” are aminosilanes which have a primary amino group, i.e., an NH2 group bonded to an organic radical. “Secondary amino silanes” are aminosilanes which have a secondary amino group, i.e., an NH group bonded to two organic radicals.
- The expression “independently of one another” here always means independently of one another in the same molecule if there are various possibilities.
- Especially suitable aminosilanes AS are aminosilanes selected from the group consisting of 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxy-methylsilane, 3-amino-2-methylpropyltrimethoxysilane, 4-aminobutyltrimethoxysilane, 4-aminobutyldimethoxymethylsilane, 4-amino-3-methylbutyltrimethoxy-silane, 4-amino-3,3-dimethylbutyltrimethoxysilane, 4-amino-3,3-dimethylbutyl-dimethoxymethylsilane, 2-aminoethyltrimethoxysilane, 2-aminoethyldimethoxy-methylsilane, aminomethyltrimethoxysilane, aminomethyldimethoxymethylsilane, aminomethylmethoxydimethylsilane, N-methyl-3-aminopropyltrimethoxysilane, N-ethyl-3-aminopropyltrimethoxysilane, N-butyl-3-aminopropyltrimethoxysilane, N-cyclohexyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methyl-3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-aminopropyl-dimethoxymethylsilane, N-phenyl-4-aminobutyltrimethoxysilane, N-phenyl-aminomethyldimethoxymethylsilane, N-cyclohexylaminomethyldimethoxy-methylsilane, N-methylaminomethyldimethoxymethylsilane, N-ethylamino-methyldimethoxymethylsilane, N-propylaminomethyldimethoxymethylsilane, N-butylaminomethyldimethoxymethylsilane; N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane, bis(trimethoxysilylpropyl)amine, and also analogs thereof having three ethoxy or three isopropoxy groups instead of the three methoxy groups on the silicon. It is possible and advantageous to use mixtures of such aminosilanes as aminosilane AS. Having proven particularly advantageous, for example, is the mixture of 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and bis(trimethoxysilylpropyl)amine.
- Aminosilane AS, used preferably as a mixture of different aminosilanes, is included preferably in the adhesion promoter composition of the invention with a content of 0.1 to 10 wt %, preferably 0.25 to 5 wt %, more preferably 0.5 to 2 wt %, based on the overall adhesion promoter composition.
- Particularly preferred mercaptosilanes, present possibly, are 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane, most preferably 3-mercaptopropyltrimethoxysilane. They are present preferably with a content of 0.1 to 0.2 wt %, based on the overall adhesion promoter composition.
- The composition of the invention further comprises at least one acid HS.
- The acid HS, if used in an at least two-component composition comprising a component KA and a component KB, is employed together with the aminosilane AS in the component KA. The advantage of this combination is a substantially increased storage stability of component KA of the aqueous two- or multi-component composition comprising aminosilane AS.
- Suitability as acid HS is possessed in principle by all acids which in an aqueous solution, emulsion or dispersion are able to protonate the primary and/or secondary amino groups of aminosilanes AS. Examples of suitable acids HS are inorganic acids such as nitric acid, phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, sulfuric acid, sulfurous acid, persulfuric acid, disulfuric acid (=pyrosulfuric acid), disulfurous acid, dithionic acid, dithionous acid, thiosulfuric acid or thiosulfurous acid, or organic acids such as water-soluble carboxylic acids CHS, which are described later on below.
- Preferred acids HS are sulfuric acid, phosphoric acid, and water-soluble carboxylic acids CHS. With particular preference the acids are used at sufficiently high dilution that they pose no risk to the occupational safety of the user and represent no danger to the environment. This is especially true of corrosive acids also.
- The acid HS and/or the water-soluble carboxylic acid CHS are/is preferably included in the adhesion promoter composition of the invention with a content of 0.1 to 5 wt %, preferably 0.25 to 2.5 wt %, based on the overall adhesion promoter composition, or with a content of 0.2 to 10 wt %, preferably 0.5 to 5 wt %, based on the component KA of a two-component adhesion promoter composition.
- The adhesion promoter composition of the invention further comprises at least one amine hardener AH.
- Amine hardeners in the sense of the present invention are liquid or solid polyamines which possess primary and/or secondary amino groups and which are able to react with the epoxy groups of the dispersed solid epoxy resin EP.
- The chemical and physical natures of amine hardeners AH are preferably such that by themselves or through use of suitable adjuvants such as wetting or dispersing agents, they can be dissolved, emulsified or dispersed in water and in that form are stable for sufficiently long.
- Suitable amine hardeners AH are described for example in European patent application EP09178262.3.
- The amine hardener AH is preferably a reaction product, more particularly a polyamidoamine or an epoxy resin/polyamine addition product, the addition product having an excess of amino groups in comparison to epoxy groups. The amine hardener AH is preferably a polyamidoamine. Examples thereof are condensation products of carboxylic acids with polyamines, such as of a fatty acid or a polycarboxylic acid with a polyalkylenamine, for example. Particularly suitable amine hardeners AH are addition products of epoxy resins and polyamines. Addition products of this kind may be obtained, for example, from a multiplicity of possible epoxy resins and polyamines known to the person skilled in the art, especially bisphenyl A diglycidyl ether. Polyamines preferred for this purpose are ethylenediamine, isophoronediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, 1,3-xylylenediamine, polyalkylenamines such as polyethylenamines or polyoxyalkylenediamines or -triamines, more particularly of the kind available under the trade name Jeffamine® from Huntsman. The reaction product is preferably that of a diglycidyl ether of bisphenol A and/or bisphenol F with a polyoxyalkylenediamine or polyoxyalkylenetriamine. One particularly suitable addition product is that described in EP 0567831 as bis(diamine)-diepoxide adduct.
- It is entirely possible, and may even be advantageous, to use a mixture of different amine hardeners AH in the adhesion promoter composition of the invention. Mixtures of polyamines with compounds containing mercapto groups may optionally also be used.
- It is advantageous to set the amounts of EP and AH in the composition of the invention in such a way that the ratio of the epoxide equivalents in the dispersion of the solid epoxy resin EP to the equivalents of an active amine hydrogen in the amine hardener AH is between 1:1 and 20:1. This means that an excess of epoxide equivalents is advantageous. A ratio of epoxide equivalents to amine equivalents of between 1:1 and 4:1 is preferred.
- The fraction of the amine hardener AH is selected in particular such that in the adhesion promoter composition the ratio of amino groups of amine hardener AH to epoxide groups of the aqueous dispersion of the solid epoxy resin EP that comes about is in the range from 0.1:1 to 1:1.
- The fraction of the amine hardener AH is preferably 0.5 to 30 wt %, more particularly 1 to 20 wt %, very preferably 2.5 to 15 wt %, based on the overall adhesion promoter composition, or 1 to 60 wt %, more particularly 2 to 40 wt %, very preferably 3 to 20 wt %, based on the component KB of an at least two-component adhesion promoter composition.
- In preferred embodiments, the adhesion promoter composition comprises the amine hardener AH in the form of a pre-prepared aqueous solution, aqueous emulsion or aqueous dispersion, with the aqueous solution, emulsion or dispersion having a solids content of amine hardener AH of 30 to 90%, preferably 50 to 90%, more preferably 75 to 85%, based on the overall aqueous solution, aqueous emulsion or aqueous dispersion of amine hardener AH.
- The solids content here is the effective amount of amine hardener in the aqueous emulsion, solution or dispersion, and in the pure state the amine hardener may also be liquid.
- Suitable amine hardeners AH which can be used in aqueous compositions of the present invention and which in part are already commercialized in the form of an aqueous preparation are, for example, Anquamine® 731, Anquamine® 735, and Anquawhite® 100, all from Air Products, or Beckopox® EH 623W from Allnex.
- In the case of a two- or multicomponent composition, the composition of the invention preferably comprises at least one inorganic base BA, which is used in component KB together with the amine hardener AH. The advantage of using at least one inorganic base BA is that the acid HS in component KA is at least partially neutralized when the two components KA and KB are combined, with the effects both of improving the adhesion effect of the mixed composition and of accelerating the reaction of the organosilanes with one another and/or with the substrates. Accordingly, a significantly improved stability of the adhesion under hot and humid conditions is achieved.
- Inorganic bases BA in the sense of the present invention are largely water-soluble compounds of metals and oxides and/or hydroxides which, when dissolved in pure water, increase the pH to above 7. Preferred inorganic bases BA are oxides or hydroxides of alkali metals or alkaline earth metals, the oxides undergoing reaction with water to form hydroxides. Particularly preferred are hydroxides of alkali metals or alkaline earth metals, more particularly magnesium hydroxide, calcium hydroxide and/or barium hydroxide. A most preferred base is calcium hydroxide.
- In particularly preferred embodiments of the two- or multi-component composition of the invention, the acid HS and the inorganic base BA are selected such that a sparingly soluble salt is formed in the neutralization. A sparingly soluble salt for the purposes of the present invention represents a pair of ions which at 23° C. exhibits at least 25 wt %, preferably at least 50 wt %, spontaneous precipitation, based on the ions present overall, in the form of a salt from the solution. Preferred acid-base pairs are alkali metal or alkaline earth metal hydroxides or oxides paired with sulfuric acid, which then precipitate as alkali metal or alkaline earth metal sulfates, or the same bases paired with phosphoric acid, which then precipitate as alkali metal or alkaline earth metal phosphates. Likewise suitable is the combination of tartaric acid with calcium or potassium hydroxide, precipitating in the form of calcium or potassium tartrate. A particularly preferred combination is that of calcium hydroxide with phosphoric acid, which precipitates as calcium phosphate. The advantage of these precipitation reactions is an improved adhesion effect on the part of the adhesion promoter composition, and an improved build-up of the layer of adhesion promoter on the substrate.
- Preferred embodiments of the composition of the invention further comprise at least one water-soluble carboxylic acid CHS. This acid may also be employed as acid HS in two- or multicomponent embodiments.
- Carboxylic acids are considered water-soluble for the purposes of the present invention if at 23° C. in deionized water they are soluble at not less than 50 g of carboxylic acid per liter of water, and form largely stable solutions. Preferred carboxylic acids here are those having a higher solubility.
- Particularly suitable water-soluble carboxylic acids CHS are the following: saturated aliphatic monocarboxylic acids, such as particularly formic acid, acetic acid, propionic acid, butyric acid, and isobutyric acid; monounsaturated aliphatic carboxylic acids such as acrylic acid; saturated or unsaturated dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid or oxalic acid; hydroxycarboxylic acids such as malic acid, citric acid, glycolic acid, isocitric acid, mandelic acid, lactic acid, tartronic acid, and tartaric acid; keto acids such as pyruvic acid, acetoacetic acid, levulinic acid or oxaloacetic acid. Preferred in particular are monocarboxylic acids having 4 or fewer carbon atoms, or polycarboxylic acids having 8 or fewer carbon atoms, and also hydroxycarboxylic acids and keto acids, and also mixed forms of these. A most preferred acid is acetic acid. Acetic acid possesses in particular the advantages that it develops an excellent stabilizing effect in the composition of the invention, presents no workplace safety problems when in aqueous dilution, is readily available on favorable terms everywhere, and poses no hazard to the environment.
- The one- or two-component composition may comprise further, optional constituents besides water. Examples of such additional constituents are surfactants, acids, adhesion promoter additives, catalysts, cosolvents, biocides, antisettling agents, stabilizers, inhibitors, pigments, dyes, corrosion inhibitors, odorants, UV indicators, thixotropic agents, fillers, defoamers, further organosilanes, and titanates.
- Preferred embodiments of the adhesion promoter composition of the invention, in component KA and/or in component KB if they are at least two-component, or in component KAB if they are one-component, additionally comprise at least one defoamer and/or at least one silane catalyst and/or at least one further organosilane, more particularly at least one mercaptosilane, and/or at least one pigment, more particularly carbon black.
- A silane catalyst is a compound capable of catalyzing the hydrolysis and/or condensation of organosilanes. Such compounds are very well known to the person skilled in the art and include, for example, metal complexes such as tin complexes, titanates, zirconates and the like, and also organic compounds with tertiary amines such as N-alkylated morpholines, guanidines or amidines. Preferred for the present invention are tin complexes such as dibutyltin dilaurate.
- Further preferred additional constituents of the one-, two- or multicomponent aqueous adhesion promoter composition are surfactants. Surfactants which can be used are natural or synthetic compounds which, in solutions, lower the surface tension of the water or other liquids. As surfactants, also called wetting agents, it is possible to use anionic, cationic, nonionic or ampholytic surfactants or mixtures thereof.
- Examples of anionic surfactants are those containing carboxylate, sulfate, phosphate or sulfonate groups, such as, for example, amino acid derivatives, fatty alcohol ether sulfates, fatty alcohol sulfates, soaps, alkylphenol ethoxylates, fatty alcohol ethoxylates, and also alkanesulfonates, olefin-sulfonates or alkyl phosphates.
- The nonionic surfactants include, for example, ethoxylates, such as ethoxylated adducts of alcohols, such as, for example, polyoxyalkylene polyols, amines, fatty acids, fatty acid amides, alkylphenols, ethanolamides, fatty amines, polysiloxanes or fatty acid esters, for example, but also alkyl- or alkylphenyl polyglycol ethers, such as fatty alcohol polyglycol ethers, or fatty acid amides, alkylglycosides, sugar esters, sorbitan esters, polysorbates or trialkylamine oxides, and also esters and amides of poly(meth)acrylic acids with polyalkylene glycols or aminopolyalkylene glycols, which may be capped at no more than one end by alkyl groups.
- Examples of cationic surfactants are quaternary ammonium compounds or phosphonium compounds, such as, for example, tetraalkylammonium salts, N,N-dialkylimidazoline compounds, dimethyldistearylammonium compounds, or N-alkylpyridine compounds, especially ammonium chlorides. The ampholytic or amphoteric surfactants include amphoteric electrolytes, known as ampholytes, such as aminocarboxylic acids, for example, and betaines.
- Surfactants of these kinds are widely available commercially. Particularly suitable are alkoxylated alcohols, alkoxylated nonionic fluorosurfactants, especially Zonyl® FSO-100, which is available commercially from ABCR, Germany, alkoxylated alcohols or alkoxylated alkylphenols, especially Antarox FM 33, which is commercially available commercially from Rhodia. Also preferred are alkoxylated fatty alcohols, such as Hydropalat® 120 from Cognis. Employed with particular preference as surfactant is Hydropalat® 3031 from Cognis.
- The adhesion promoter composition of the invention preferably comprises further ingredients, of the kind customary in adhesion promoter compositions and described for example in WO 2008/037780, more particularly compounds of the kind described therein as epoxysilane ES or ESx.
- With particular preference the adhesion promoter composition comprises silanes, optionally at least partly in the form of their siloxanes, and also pigments. Preferred silanes are epoxysilanes, more particularly 3-glycidyl-oxypropylsilanes, adducts of epoxysilanes and aminosilanes, and also oligomeric and/or partially or wholly hydrolyzed recation products of organosilanes.
- Preferred pigments are iron pigments and, in particular, carbon black. An example of the advantage of using pigments and/or carbon black is that in compositions having at least two components, one component is colored with pigments and/or carbon black and so it is easier for the user to distinguish between the components, allowing errors to be avoided. In addition, an adhesion promoter composition colored using carbon black and/or pigments also indicates the correct presence of the layer of adhesion promoter on the substrate after application.
- The present invention can be formulated either as a particularly storage-stable, at least two-component adhesion promoter composition, or as a particularly user-friendly, at least one-component adhesion promoter composition.
- “Storage-stable” or “storable” is an epithet applied to a substance or composition when it can be kept at room temperature in a suitable container for a relatively long time, typically at least 3 months up to 6 months or more, without suffering alteration—to any extent relevant to its use—in its application or service properties as a result of the storage. In particular, adhesion promoter compositions are considered to be storage-stable in the sense of the present invention if they exhibit no substantial detractions from the adhesion-promotion effect after the storage periods defined for example above or at the relevant locations.
- Preferred at least two-component inventive compositions comprise a component KA and a component KB. These two components are storage-stable for at least 9 months, each independently of one another, and in preferred embodiments for at least a year, and are mixed shortly before application. The mixture of the two components has a long open time of at least a week, in preferred embodiments at least 2 to 3 weeks, or longer. It is possible without restriction to combine an old component KA, prepared for example six months previously, with a fresh component KB, or vice versa, without significant detriment to the performance of the adhesion promoter composition.
- The optimum mixing ratio of the components KA to the components KB can be controlled via the amount of the constituents in the components. Here it should be ensured that in component KA there is to be sufficient acid HS present in order to stabilize the aminosilanes AS by protonation. At the same time, component KB is to be metered such that when the two components KA and KB are combined, the acid HS is neutralized by the inorganic base BA, and the aminosilanes AS are able to develop improved adhesion to the bond substrate. The person skilled in the art is capable of calculating a sensible composition from the characteristic values of the raw materials, such as amine number, for example, and from the amounts employed, and of optimizing this composition by experiments, such as pH measurements and adhesion tests.
- Regarding the mixing ratio of the components KA and KB to one another, it is possible to employ a 1:1 mixing ratio of KA:KB. In many embodiments, however, it has proven advantageous to use a mixing ratio of KA:KB of 2:1, 3:1, 4:1 or higher. Adding a small volume of KB to a large volume of KA results in advantages for the user. Thus it is possible for example to provide a large vessel, a pail for example, with component KA, which still includes sufficient free volume for the addition of a small volume of component KB—a bottle or a pouch, for example. As a further advantage, the mixing system is in this way less susceptible to error than if it were necessary to observe a strict 1:1 ratio. An additional advantage to the user, if component KB contains carbon black or pigments, is that it is immediately apparent whether the components have already been mixed or not. Adding a small volume of dark component KB to a large volume of light component KA results in a distinguishable mixed color in the completed mixture of KA and KB.
- In other preferred embodiments, the adhesion promoter composition of the invention comprises an individual component KAB which contains all of the constituents essential to the invention. These embodiments possess a storage stability of at least 3 months, and in preferred embodiments storage stabilities of at least 6 months. An advantage of these embodiments, of course, is the absence of the mixing of the components before use, and the adhesion promoter compositions can be applied directly. This reduces possible user errors and reduces the need for storage space, and necessary operating steps, thereby shortening cycle times. When formulating the individual component KAB, care should be taken to ensure that there is a sufficiently high excess of water-soluble carboxylic acid CHS in comparison to amine hardener AH, so that the excess acid still has a stabilizing effect on the aminosilane AS. The required amount can be calculated by the person skilled in the art from the amine number of the amine hardener AH and the amount employed. It has proven advantageous to use an excess of, for example, 1 mole percent or more of carboxyl groups in the water-soluble carboxylic acid CHS, relative to the moles of amino groups in the amine hardener AH.
- It is of course also possible for further components—for example, components which comprise further organosilanes, catalysts, or dyes—to be part of a multicomponent system of the invention. Such additional components allow optimizations to be made, for example, for particular bond substrates, by means of additional organosilanes or other additives, or are able to meet specific esthetic requirements, such as color, for example, or permit the addition of particular stabilizers, such as UV stabilizers, which would be unnecessary or too expensive for general use.
- One particularly preferred embodiment of an at least two-component adhesion promoter composition in accordance with the present invention comprises: a first component KA comprising
-
- a) 75 to 95 wt % of an aqueous dispersion of at least one solid epoxy resin EP having a solids content of 50 to 60%, based on the aqueous dispersion;
- b) 0.5 to 2 wt % of at least one aminosilane AS; and
- c) 0.5 to 5 wt % of at least one acid HS, and also
- d) sufficient water to make the sum of the individual constituents a) to d) of component KA 100 wt %; and
- a second component KB, comprising
- a) 5 to 35 wt % of an aqueous dispersion of at least one amine hardener AH having a solids content of 75 to 85%, based on the aqueous dispersion;
- b) 0.5 to 10 wt % of at least one inorganic base BA;
- c) 0 to 35 wt % of carbon black and/or pigments;
- d) 0 to 0.5 wt % of at least one silane catalyst;
- e) 0 to 2 wt % of at least one wetting agent; and also
- f) sufficient water to make the sum of the individual constituents a) to f) of component KB 100 wt %.
- In the case of at least two-component adhesion promoter compositions of this kind, a volume mixing ratio of KA:KB of between 1:1 and 4:1 in particular has proven to be particularly advantageous.
- In general it is preferred for the ratio of the epoxide equivalents of the solid epoxy resin EP in component KA to the amine hydrogen equivalents of the amine hardener AH in component KB to be selected such that there is a slight excess of epoxide equivalents. This means, for example, that there is preferably a 1 to 10% excess of epoxide equivalents.
- Another particularly preferred embodiment is a one-component composition which comprises a single component KAB which comprises the following:
-
- a) 35 to 50 wt % of an aqueous dispersion of at least one solid epoxy resin EP having a solids content of 50 to 60%, based on the aqueous dispersion;
- b) 0.25 to 1 wt % of at least one aminosilane AS;
- c) 0.25 to 2.5 wt % of at least one water-soluble carboxylic acid CHS;
- d) 1 to 10 wt % of an aqueous dispersion of at least one amine hardener AH having a solids content of 75 to 85%, based on the aqueous dispersion; and also
- e) sufficient water to make the sum of the individual constituents a) to e) of component KAB 100 wt %.
- Following preparation, the individual components are typically packaged separately from one another into impervious packaging. Suitable packaging material includes, in particular, plastics, such as polyethylene or polypropylene, acid-resistant metals, metal-coated plastics, or glass, for example, of which plastic containers are preferred. The aqueous compositions of the invention or their components are of course not sensitive toward atmospheric moisture and need not be stored in particularly impervious—especially gastight—packaging. Nevertheless, it must be ensured that substantial quantities of water are unable to evaporate from the containers, or that unwanted extraneous substances are unable to penetrate the containers. The individual components are storage-stable separately from one another. The adhesion promoter composition of the invention is stored in particular at temperatures in the range from 5 to 30° C. This ensures the stability of the aqueous dispersion of the solid epoxy resin.
- The present invention further relates to the use of an adhesion promoter composition of the kind described above as a primer for adhesives, sealants or coatings. Using an adhesion promoter composition of this kind enhances the adhesion of the adhesive, sealant or coating under hot and humid conditions, especially after storage under conditions of heat and humidity.
- The adhesion promoter composition is used preferably as a primer for adhesives or sealants.
- The adhesion promoter composition of the invention is applied typically by means of cloth, felt, roller, spraying, sponge, brush, dip coating or the like, and may be applied either manually or by robot.
- Where the adhesion promoter composition is a multicomponent adhesion promoter composition, the components are mixed before or in the course of application.
- In detail, a preferred method for applying a two-component adhesion promoter composition of the invention consists typically of the following steps:
-
- a) mixing components KA and KB by combining the two components, preferably by tipping component KB into the vessel of the components KA, and subsequently stirring and/or shaking the resultant mixture;
- b) applying the mixture of components KA and KB to the surface to be bonded or coated, preferably by means of an impregnated sponge, brush or felt or by means of spraying;
- c) flashing off the applied adhesion promoter composition until the water present has undergone at least partial evaporation, preferably accelerated through use of a fan or blower;
- d) applying the adhesive or sealant to the bonding surface pretreated by steps a) to c).
- Following the application, a usual step, as described in section c), is the flashing-off of the adhesion promoter composition. Flashing off may take place under atmospheric conditions or at most at elevated temperature, under subatmospheric pressure and/or by application of a blown gas, through the use, for example, of a fan or blow dryer, which may result in a shortening of the flash-off time. Without further measures, the compositions of the invention typically require flash-off times of between 15 min and 2 h, the time being reduced by a dry and/or hot environment. By using a fan or blow dryer it is easily possible to shorten the flash-off time to no more than 5 min, preferably no more than one minute.
- One-component adhesion promoter compositions of the invention comprising a single component KAB are preferably also used in accordance with the method identified above, of course there being no need for a mixing operation in step a), since the mixture is already a completed mixture. Nevertheless, it may be advantageous to shake or stir component KAB prior to application, in order to ensure maximum homogeneity of mixing.
- The adhesion promoter composition of the invention is suitable for different kinds of substrates, such as metals and alloys, for example, more particularly steels, aluminum, and nonferrous metals, and also their alloys, concrete, mortar, brick, klinker, natural stone, glass, ceramic, glass-ceramic, wood, and plastics such as polystyrene. Preferred substrates are inorganic substrates, more particularly glass and glass-ceramic, metals, and also concrete and mortar.
- The substrates may where necessary be pretreated before the adhesion promoter composition of the invention is applied. Such pretreatments include, in particular, physical and/or chemical cleaning processes, examples being sanding, sandblasting, brushing or the like, or treatment with cleaners or solvents.
- The adhesive or sealant used may in principle be any customary adhesive or sealant. More particularly it is a moisture-curing adhesive or sealant.
- Suitable adhesives and sealants are, in particular, polyurethane adhesives and sealants, especially those which comprise polyurethane polymers containing isocyanate groups.
- The adhesion promoter composition of the invention is further suitable in particular for silane-crosslinking adhesives and sealants as well. The adhesion promoter composition of the invention is especially suitable for elastic, moisture-curing adhesives, of the kind sold commercially under the Sikaflex®, SikaTack® and SikaBond® product lines from Sika Schweiz AG.
- Preferred fields of application of the adhesion promoter composition of the invention are located in the construction and manufacturing industries and also in vehicle construction, particularly for joint sealing, wood-floor bonding, accessory-component bonding, seam sealing, cavity sealing, assembly, bodywork bonding, glass bonding, and the like.
- The present invention further relates to articles which have been bonded or coated using an adhesion promoter composition of the invention, or have been pretreated for the purpose of bonding or coating.
- Examples of articles which are produced by the bonding, sealing or coating of a substrate using an adhesion promoter composition of the invention include built structures, more particularly built structures in civil engineering or construction, means of transport, vehicles for example, more particularly automobiles, buses, trucks, rail vehicles, or boats, or accessory components thereof. The adhesion promoter composition of the invention is employed preferably for elastic bonds in vehicle construction, such as, for example, the bonded attachment of parts, such as plastic covers, trim strips, flanges, bumpers, driver's cabins or other accessory components, to the painted body of a means of transport, or the bonding of glass into the body.
- Set out hereinbelow are working examples which are intended to elucidate in more detail the invention described. Of course, the invention is not confined to these working examples described.
- Raw Materials Used
- Common chemicals which are traded as pure substances under their chemical name, such as phosphoric acid, for example, were obtained from Sigma Aldrich Switzerland. The chemicals known by a trade name are listed below. The water used was always standard laboratory deionized water.
-
A-1110 3-Aminopropyltrimethoxysilane Silquest ® A-1110, Momentive Performance Materials, Germany A-1120 N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane Silquest ® A-1120, Momentive Performance Materials, Germany A-1130 Diethylenetriaminopropyltrimethoxysilane Silquest ® A-1130, Momentive Performance Materials, Germany A-1170 Bis(trimethoxysilylpropyl)amine Silquest ® A-1170, Momentive Performance Materials, Germany A-187 3-Glycidyloxypropyltrimethoxysilane Silquest ® A-187, Momentive Performance Materials, Germany A-189 3-Mercaptopropyltrimethoxysilane Silquest ® A-189, Momentive Performance Materials, Germany Hydropalat 3031 Surfactant, Hydropalat ® 3031, Cognis, Germany AR555 Aqueous dispersion of a solid epoxy resin with 55% solids fraction, Ancarez ® AR555, AirProducts, USA Beckopox 623 Aliphatic polyamine adduct, aqueous dispersion with 80% solids fraction, Beckopox ® EH 623 W, Allnex, Germany Carbon black Low color furnace black, Printex ® 25, Evonik Industries, Germany Dispersant Copolymer preparation, Disperbyk ®-191, Byk Chemie, Germany Defoamer Polymer preparation, Byk ®-014, Byk Chemie, Germany Catalyst Dibutyltin dilaurate (DBTL), TIB KAT ® 218, TIB Chemicals, Germany - Production of the Adhesion Promoter Compositions
- Production of Components KA for Two-Component Adhesion Promoters
- A series of inventive (KA1 to KA3) and also two noninventive (KA4 and KA5) components KA were produced. The amounts of the individual ingredients are listed in wt % in table 1. KA4 is not inventive since it contains no aminosilane AS; KA5 is not inventive since it contains no acid HS or CHS.
-
TABLE 1 Inventive and noninventive components KA produced for the corresponding example compositions. All quantities in wt % are based on the overall respective component KA. KA4 KA5 KA1 KA2 KA3 (Ref.) (Ref.) AR555 89 89 89 94 90 Water — — — 2 — Acetic acid 1 1 1 — — Silane mixture ES1 — — — 4 — Silane mixture AS1 10 — — — — Silane mixture AS2 — 10 — — — Silane mixture AS3 — — 10 — — Silane mixture AS4 — — — — 10 Total (wt %) 100 100 100 100 100 - The production of components KA was identical in all cases. First, AR-555 was placed in a reactor and, with stirring, the acetic acid (glacial acetic acid; Sigma Aldrich Switzerland) or the additional water (in the case of KA4) was added. Thereafter, with vigorous stirring, the respective silane mixture was added slowly. The product in all cases was a milky fluid which was homogeneous but nontransparent.
- Production of the Silane Mixtures
- A series of silane mixtures for use in component KA were produced according to the compositions in wt % indicated in table 2, based on the respective silane mixtures. These silane mixtures then either were added as inventive aminosilanes AS to the corresponding components KA, or they served as an additive for reference compositions.
-
TABLE 2 Exemplary silane mixtures used in components KA. All quantities in wt % are based on the overall respective silane mixture. ES1 AS1 AS2 AS3 AS4 Water 55 70 77.5 77.5 80 H3PO4 5 15 10 — — H2SO4 — — — 10 — Potassium hydroxide — — — — 10 Hydropalat 3031 — 5 2.5 2.5 — A-1110 — 2.22 2.86 2.86 2.86 A-1120 — 2.22 2.86 2.86 2.86 A-1170 — 2.22 2.86 2.86 2.86 A-189 — 1.11 1.43 1.43 1.43 A-187 40 — — — — A-1130 — 2.22 — — — Total (wt %) 100 100 100 100 100 - The silane mixtures AS1 to AS4 were produced according to an identical scheme: First of all, the acid or base (where present), Hydropalat 3031, and water were premixed. The individual silanes were added slowly dropwise with stirring to this mixture at 23° C. under a nitrogen atmosphere. During the dropwise addition, care was taken to ensure that the silanes were added slowly and the solution remained clear. After all the silanes had been added, the solution was stirred for an hour. In all cases, a clear, colorless mixture was obtained. In the case of ES1, A-187 was added as the final raw material.
- Production of Components KB for Two-Component Adhesion Promoters
- A series of inventive (KB1 to KB5) and also one noninventive (KB6) components KB were produced. The amounts of the individual ingredients are listed in wt % in table 3. KB6 is not inventive since it contains no organic base BA.
-
TABLE 3 Inventive and noninventive components KB produced for the corresponding example compositions. All quantities in wt % are based on the overall respective component KB. KB6 KB1 KB2 KB3 KB4 KB5 (Ref.) Beckopox 623 27.8 7.7 7.7 7.7 7.7 30.76 Water 67.7 78.15 66.75 90.64 71.4 69.24 Ca(OH)2 4.5 1.15 1 — — — Ba(OH)2 — — — 1.66 — — Mg(OH)2 — — — — 0.8 — Carbon black — 12 24 — 20 — Dispersant — 1 0.5 — — — Defoamer — — 0.03 — 0.05 — Catalyst — — 0.02 — 0.05 — Total (wt %) 100 100 100 100 100 100 - The example components KB were always produced according to the following scheme: First, the amine hardener AH (Beckopox 623) was mixed with approximately half the water in a reactor, resulting in a decrease in viscosity and a greater ease in stirring. Thereafter the remainder of the water was added slowly with stirring, with the inorganic base BA dissolved therein, and also, where present, carbon black, dispersant, defoamer and catalyst dispersed therein. The mixture was subsequently stirred further for around 15 minutes until the resulting mixture was homogeneous and colorless or, if containing carbon black, was black.
- Production of Components KAB for One-Component Adhesion Promoters
- An inventive single component KAB1 and a noninventive single component KAB2 were produced. The fractions in wt % of the individual components KAB1 and KAB2 are set out in table 4. KAB2 is not inventive since no water-soluble carboxylic acid CHS is included.
-
TABLE 4 Inventive and noninventive components KAB produced for the corresponding example adhesion promoter compositions. All quantities in wt % are based on the overall respective component KAB. KAB1 KAB2 (Ref.) AR555 61 61 A-1110 0.45 0.45 A-1120 0.45 0.45 A-1170 0.45 0.45 A-189 0.15 0.15 Beckopox 623 6 6 Water 29.5 31.5 Acetic acid 2 — Total (wt %) 100 100 - KAB1 was produced in a number of steps. First of all, approximately half of the water used was introduced with half of the acetic acid in a glass flask. The silanes were then added slowly and the mixture was shaken. Thereafter AR555 was charged to a reactor and the silane mixture was added. With stirring, all of the ingredients were mixed. In a second reactor, Beckopox 623 was likewise diluted with the remainder of the water and stirred for several minutes. Thereafter the remainder of the acetic acid was admixed, and stirring was continued. The contents of the second reactor were subsequently added with the amine hardener to the contents of the first reactor. The mixture was stirred for one hour more until a milky, homogeneous mixture was obtained.
- KAB2 was produced in an almost identical process, except that the acetic acid was replaced by water. Again a milky, homogeneous mixture was obtained. This mixture, however, underwent gelling within four weeks after production, and could only be used in fresh form.
- Production of the Ready-to-Use One- or Two-Component Adhesion Promoter Compositions
- For the production of the two-component adhesion promoter compositions, the respective components KA and KB were mixed in a suitable volume ratio. Unless otherwise indicated in the adhesion results, this ratio is always 1:1. Mixing was accomplished by conjoint pouring and subsequent shaking for 5 minutes. The single component KAB was shaken only for 5 minutes prior to use. The completed adhesion promoter compositions are labeled Z1 to Z14 and are specified in table 5 and in the tables relating to the adhesion results.
-
TABLE 5 Ready-mixed inventive and noninventive (reference) adhesion promoter compositions Z1 to Z14, consisting of the respective components KA and KB or KAB. Adhesion promoter composition KA KB KAB Z1 KA1 KB1 — Z2 KA2 KB1 — Z3 KA2 KB2 — Z4 KA2 KB3 — Z5 KA2 KB4 — Z6 KA2 KB5 — Z7 (Ref.) KA2 KB6 — Z8 KA3 KB3 — Z9 (Ref.) KA4 KB1 — Z10 (Ref.) KA4 KB6 — Z11 (Ref.) KA5 KB3 — Z12 (Ref.) KA5 KB6 — Z13 — — KAB1 Z14 (Ref.) — — KAB2 - Adhesion Tests for Adhesion Promotion and Storage Stability
- The individual completed aqueous adhesion promoter compositions Z1 to Z14 of table 5 were tested, with regard to their promotion of adhesion to various substrates, as adhesion promoters in combination with various adhesives. To verify the storage stability, individual components KA, KB or KAB were stored for different times (up to 13 months) at 23° C. In some cases, in order to simulate accelerated aging, storage was carried out at an elevated temperature.
- Adhesives used for the test bonds were SikaTack® MOVEIT (“Move”), Sikaflex®-205 HMA-3 (“HMA3”), Sikaflex®-250 HMV-2+(“HMV2”), and Sikaflex®-265 (“S256”), which are one-component moisture-curing polyurethane adhesives that comprise polyurethane prepolymers having isocyanate groups and are available commercially from Sika Schweiz AG.
- Substrates used were float glass (tin-side “F—Sn” or air-side “F-air”), Ferro Frit 14251 (“14251”), Ferro Frit 3402 (“3402”), and Ferro Frit 14279 (“14279”). The aforementioned glass substrates are sold by Rocholl AG, Germany. They are laboratory substrates corresponding to the usual commercial glass ceramics for VSG and ESG glasses. Ferro is the manufacturer of the glass ceramic paste; the numbers are the type designation of the ceramics used.
- The aqueous compositions were applied to the respective substrate using a melamine sponge soaked with the compositions, and were flashed off for 60 minutes. A triangular bead of the adhesive was applied by extrusion cartridge and nozzle under standard conditions (23±1° C., 50±5% relative humidity).
- The bond was tested after a cure time of normally 7 days of conditioned storage under standard conditions at 23° C. (“RT”) and 50% relative humidity, and also after subsequent heat-and-humidity storage (“CP”) at 70° C. and 100% relative humidity for up to 21 days. The precise conditions of storage and the respective storage times are reported in the corresponding tables.
- The adhesion of the adhesive was tested by means of a ‘bead test’. In this test, the bead is incised at the end just above the bond area. The incised end of the bead is held with rounded-end tweezers and pulled from the substrate. This is done by cautiously rolling the bead up onto the tip of the tweezers, and by applying a cut at right angles to the direction of bead pulling, down to the bare substrate. The bead pulling rate should be selected such that a cut has to be made approximately every 3 seconds. The test distance must be at least 8 cm. After the bead has been pulled off, an assessment is made of the adhesive remaining on the substrate (cohesive fracture). The adhesion properties are evaluated by visual determination of the cohesive component of the adhesion area.
- The higher the cohesive fracture component, the better the estimation of the bond. Test results with cohesive fractures of less than 70% are typically considered to be inadequate. A cohesive fracture of 0% corresponds to a 100% adhesive fracture with complete failure of the bond and thus of the adhesion promoter. The results (numbers in % cohesive fracture) are summarized in tables 6a to 14b.
-
TABLE 6a Comparison of inventive adhesion promoter compositions Z4 and Z8 with nonadhesive composition Z7 through bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z4 F-Sn 100 100 100 100 100 100 100 100 F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 Z8 F-Sn 100 100 100 100 100 100 100 100 F-air 100 100 100 100 100 100 100 0 3402 100 100 100 100 100 99 100 100 14251 100 100 100 100 100 100 100 10 14279 100 100 100 100 100 90 100 100 Z7 F-Sn 10 10 50 100 0 0 0 0 (Ref) F-air 10 10 30 100 0 0 0 0 3402 10 70 30 100 100 100 100 100 14251 10 70 50 100 0 0 0 0 14279 10 30 10 100 0 0 95 80 -
TABLE 6b Comparison of inventive adhesion promoter compositions Z4 and Z8 with nonadhesive composition Z7 through bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z4 F-Sn 100 100 100 100 100 100 100 100 F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 Z8 F-Sn 100 99 100 0 100 90 100 0 F-air 100 99 100 0 99 90 100 0 3402 100 30 100 10 100 0 100 10 14251 100 80 100 0 99 90 95 0 14279 100 20 100 10 100 0 100 0 Z7 F-Sn 0 0 0 0 0 0 0 0 (Ref) F-air 0 0 0 0 0 0 0 0 3402 100 100 100 100 100 100 100 100 14251 0 0 0 0 0 0 0 0 14279 0 0 95 80 0 0 90 50 - Tables 6a and 6b show that the inventive adhesion promoter compositions Z4 and Z8 are significantly superior to the noninventive composition Z7, especially after heat-and-humidity storage.
-
TABLE 7a Comparison of inventive adhesion promoter composition Z1 with nonadhesive composition Z10 through bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP. Volume mixing ratio of KA to KB in both cases Z1 and Z10 was 4:1. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z1 F—Sn 100 99 100 100 100 100 100 100 14279 90 99 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 3402 99 100 100 100 90 95 100 100 Z10 F—Sn 0 0 30 10 0 0 0 100 (Ref.) 14279 100 20 100 100 0 0 0 50 14251 100 100 100 100 0 0 0 20 3402 100 100 100 100 0 0 0 0 -
TABLE 7b Comparison of inventive adhesion promoter composition Z1 with nonadhesive composition Z10 through bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. Volume mixing ratio of KA to KB in both cases Z1 and Z10 was 4:1. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z1 F—Sn 95 100 100 99 70 60 90 95 14279 99 99 99 100 95 95 99 99 14251 95 100 100 100 50 99 100 100 3402 20 70 100 100 10 20 100 100 Z10 F—Sn 0 0 0 80 0 0 0 50 (Ref.) 14279 0 0 0 20 0 0 0 30 14251 0 0 0 0 0 0 0 0 3402 0 0 0 0 0 0 0 0 - The comparison of the inventive Z1 with the noninventive Z10 (without aminosilane AS and without inorganic base BA) in tables 7a and 7b shows clearly the superiority of the inventive adhesion promoter composition.
-
TABLE 8a Comparison of inventive adhesion promoter compositions Z2 and Z3 on bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP. Volume mixing ratio of KA to KB in the case of Z2 was 4:1. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z2 F—Sn 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 Z3 F—Sn 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 -
TABLE 8b Comparison of inventive adhesion promoter compositions Z2 and Z3 on bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. Volume mixing ratio of KA to KB in the case of Z2 was 4:1. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z2 F—Sn 100 100 100 100 100 100 100 100 14279 99 99 100 100 99 100 100 100 14251 100 100 100 100 100 100 100 50 3402 100 100 100 100 100 100 100 100 Z3 F—Sn 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 90 3402 100 100 100 100 100 100 100 100 - Tables 8a and 8b show that inventive compositions with a KA:KB mixing ratio of 1:1 (Z3) and those with a ratio of 4:1 (Z2) permit outstanding adhesion results.
-
TABLE 9a Comparison of inventive adhesion promoter compositions Z5 and Z6 and noninventive composition Z7 on bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z5 F—Sn 99 100 100 100 0 0 80 100 F-air 100 100 100 100 0 0 95 100 Z6 F—Sn 100 100 100 100 20 70 30 100 F-air 99 100 100 100 100 100 100 100 Z7 F—Sn 10 10 50 100 0 0 0 0 (Ref.) F-air 10 10 30 100 0 0 0 0 -
TABLE 9b Comparison of inventive adhesion promoter compositions Z5 and Z6 and noninventive composition Z7 on bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z5 F—Sn 0 0 70 100 0 0 70 100 F-air 0 0 70 100 0 0 50 100 Z6 F—Sn 70 30 20 100 30 10 80 100 F-air 100 100 100 100 100 100 100 100 Z7 F—Sn 0 0 0 0 0 0 0 0 (Ref.) F-air 0 0 0 0 0 0 0 0 - Tables 9a and 9b show that inventive compositions with barium hydroxide (Z5) and magnesium hydroxide (Z6) as inorganic base BA also exhibit good adhesion results. The noninventive Z7 yields significantly poorer results.
-
TABLE 10a Comparison of the inventive Z8 with the noninventive adhesion promoter compositions Z11 and Z12 on bonds of different substrates using different adhesives after 3 d (days) RT and 3 d RT + 7 d CP. Volume mixing ratio of KA to KB in the case of Z12 was 2:1. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z8 F—Sn 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 99 100 100 14251 100 100 100 100 100 100 100 10 14279 100 100 100 100 100 90 100 100 Z11 F—Sn 100 100 100 100 0 10 70 10 (Ref.) 3402 100 100 100 100 0 0 0 90 14251 100 100 100 100 0 0 0 10 14279 100 100 100 100 0 0 0 50 Z12 F—Sn 100 100 100 100 0 0 50 10 (Ref.) 3402 100 100 100 100 0 0 0 0 14251 100 100 100 100 0 0 0 0 14279 100 100 100 100 0 0 0 0 -
TABLE 10b Comparison of the inventive Z8 with the noninventive adhesion promoter compositions Z11 and Z12 on bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. Volume mixing ratio of KA to KB in the case of Z12 was 2:1. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z8 F—Sn 100 99 100 0 100 90 100 0 3402 100 30 100 10 100 0 100 10 14251 100 80 100 0 99 90 95 0 14279 100 20 100 10 100 0 100 0 Z11 F—Sn 0 10 70 0 0 0 70 0 (Ref.) 3402 0 0 10 10 0 0 0 0 14251 0 0 0 0 0 0 0 0 14279 0 0 0 10 0 0 0 0 Z12 F—Sn 0 0 30 0 0 0 30 0 (Ref.) 3402 0 0 0 0 0 0 0 0 14251 0 0 0 0 0 0 0 0 14279 0 0 0 0 0 0 0 0 - From tables 10a and 10b it can be seen that noninventive compositions without acid HS (Z11) and without acid HS and also without inorganic base BA (Z12), particularly after heat-and-humidity storage, yield significantly poorer results than a comparable inventive composition (Z8). Moreover, the acid-free compositions undergo gelling usually within a few weeks.
-
TABLE 11a Comparison of the noninventive Z9 with the inventive adhesion promoter composition Z1 on bonds of different substrates using different adhesives after 3 d RT + 14 d CP and 3 d RT + 21 d CP and using components having undergone different heat aging. The volume mixing ratio of KA to KB for all compositions was 4:1. The temperature figures relate to storage of the component for 7 days at the stated temperature. The substrate in all cases was the tin side of float glass. 3 d RT 7 d CP Storage Adhesive Adhesive Ex. KA KB Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z9 RT RT 95 95 100 100 0 0 0 5 (Ref.) RT 40° C. 99 99 100 100 0 0 0 20 RT 60° C. 40 95 95 95 0 0 0 60 40° C. RT 20 95 95 100 0 0 0 40 40° C. 40° C. 95 95 99 99 0 0 0 40 40° C. 60° C. 95 90 95 100 0 0 0 50 Z1 RT RT 99 99 99 100 100 100 100 100 RT 40° C. 70 80 80 99 100 100 100 100 RT 60° C. 30 95 100 100 90 80 80 100 40° C. RT 95 100 100 100 100 90 100 100 40° C. 40° C. 95 95 95 100 95 99 99 100 40° C. 60° C. 95 99 99 100 95 80 100 100 -
TABLE 11b Comparison of the noninventive Z9 with the inventive adhesion promoter composition Z1 on bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP and using components having undergone different heat aging. The volume mixing ratio of KA to KB for all compositions was 4:1. The temperature figures relate to storage of the component for 7 days at the stated temperature. The substrate in all cases was the tin side of float glass. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. KA KB Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z9 RT RT 0 0 0 5 0 0 0 0 (Ref.) RT 40° C. 0 0 0 10 0 0 0 5 RT 60° C. 0 0 0 30 0 0 0 20 40° C. RT 0 0 0 10 0 0 0 0 40° C. 40° C. 0 0 0 20 0 0 0 5 40° C. 60° C. 0 0 0 20 0 0 0 5 Z1 RT RT 100 100 100 100 95 95 99 99 RT 40° C. 100 100 100 100 90 95 95 95 RT 60° C. 90 90 90 100 70 50 70 99 40° C. RT 99 95 99 100 80 70 95 99 40° C. 40° C. 95 99 99 100 80 90 99 99 40° C. 60° C. 95 99 99 100 80 90 99 99 - Tables 11a and 11b show adhesion results after heat aging (simulated accelerated aging) of components KA and KB of an inventive (Z1) against a noninventive (Z9) composition. The inventive Z1 exhibits very good adhesion promotion in all combinations of fresh and aged components.
-
TABLE 12a Differently aged KA2 of the inventive adhesion promoter composition Z4, tested on bonds of different substrates using different adhesives after 7 d (days) RT and 7 d RT + 7 d CP. The details in the first column describe the aging of the KA2 (13 months RT or 7 d 40° C. plus 13 months RT). KB3 was fresh in each case. 7 d RT 7 d CP Storage Adhesive Adhesive KA2 Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 13 m RT F—Sn 100 100 100 100 100 100 100 100 F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 100 100 100 7 d 40° C. + F—Sn 100 100 100 100 100 100 100 100 13 m RT F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 100 14279 100 100 100 100 100 90 100 100 -
TABLE 12b Differently aged KA2 of the inventive adhesion promoter composition Z4, tested on bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. The details in the first column describe the aging of the KA2 (13 months RT or 7 d 40° C. plus 13 months RT). KB3 was fresh in each case. 14 d CP 21 d CP Storage Adhesive Adhesive KA2 Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 13 M. RT F—Sn 100 100 100 100 100 100 100 100 F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 50 14279 100 100 100 100 100 100 100 100 7 d 40° C. + F—Sn 100 100 100 100 100 100 100 100 13 M. RT F-air 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 50 14279 100 100 100 100 100 90 100 100 - Tables 12a and 12b show clearly that even storage over 13 months at room temperature, and even additional heat aging of component KA, have virtually no influence on the adhesion results of an inventive composition.
-
TABLE 13 Test bonds with different flash-off times (1 min to 30 min) and after different storage of the test bond. In all cases the adhesion promoter used was Z4, the substrate used was the tin side of float glass, and the adhesive used was HMA3. Storage 1 min 2 min 5 min 10 min 15 min 30 min 7 d RT 100 100 100 100 100 100 7 d RT + 7 d CP 100 100 100 100 100 100 7 d RT + 14 d CP 100 100 100 100 100 100 7 d RT + 21 d CP 100 100 100 100 100 100 - Table 13 shows adhesion results after different flash-off times, using a fan. Flash-off times of no more than 1 minute, which are extremely short for aqueous compositions, can be readily employed without adversely affecting the adhesion results.
-
TABLE 14a Comparison of the inventive Z13 with the noninventive adhesion promoter compositions Z14 on bonds of different substrates using different adhesives after 3 d (days) RT and 3 d RT + 7 d CP. 7 d RT 7 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z13 F—Sn 100 100 100 100 100 100 100 100 3402 100 100 100 100 100 100 100 100 14251 100 100 100 100 100 100 100 10 14279 100 100 100 100 100 95 100 100 Z14 F—Sn 100 100 100 100 0 10 70 10 (Ref.) 3402 100 100 100 100 0 0 0 50 14251 100 100 100 100 0 0 0 0 14279 100 100 100 100 0 0 0 10 -
TABLE 14b Comparison of the inventive Z13 with the noninventive adhesion promoter composition Z14 on bonds of different substrates using different adhesives after 7 d RT + 14 d CP and 7 d RT + 21 d CP. 14 d CP 21 d CP Storage Adhesive Adhesive Ex. Substrate Move HMA3 HMV2 S265 Move HMA3 HMV2 S265 Z13 F—Sn 100 99 100 10 100 99 100 10 3402 100 50 100 20 100 20 100 20 14251 100 80 100 10 99 90 95 10 14279 100 30 100 30 100 20 100 20 Z14 F—Sn 0 10 70 0 0 0 50 0 (Ref.) 3402 0 0 10 10 0 0 0 0 14251 0 0 0 0 0 0 0 0 14279 0 0 0 10 0 0 0 0 - Tables 14a and 14b show that the inventive composition Z13, consisting of a single component KAB, also exhibits very good adhesion results, whereas the noninventive composition Z14 (without water-soluble carboxylic acid CHS) fails after heat-and-humidity storage. The storage stability of Z14, moreover, was just a few weeks, before it began to gel.
- The adhesion results show clearly that the inventive compositions are far superior to the noninventive reference examples in all cases, especially after storage under conditions of heat and humidity. The inventive compositions are storage-stable over long periods and may also be composed of components having different ages, without detriment to the promotion of adhesion.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15182033.9A EP3133101B1 (en) | 2015-08-21 | 2015-08-21 | Aqueous adhesive composition on the basus of an epoxy resin with improved adhesion and storage stability |
EP15182033 | 2015-08-21 | ||
EP15182033.9 | 2015-08-21 | ||
PCT/EP2016/069710 WO2017032714A1 (en) | 2015-08-21 | 2016-08-19 | Aqueous adhesive composition based on epoxy resin with improved adhesion and storage stability |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180215968A1 true US20180215968A1 (en) | 2018-08-02 |
US10975276B2 US10975276B2 (en) | 2021-04-13 |
Family
ID=54065686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/746,174 Active 2037-06-29 US10975276B2 (en) | 2015-08-21 | 2016-08-19 | Aqueous adhesive composition based on epoxy resin with improved adhesion and storage stability |
Country Status (5)
Country | Link |
---|---|
US (1) | US10975276B2 (en) |
EP (1) | EP3133101B1 (en) |
CN (1) | CN107922592B (en) |
BR (1) | BR112018002184A2 (en) |
WO (1) | WO2017032714A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020046058A1 (en) * | 2018-08-31 | 2020-03-05 | 씨제이제일제당(주) | Adhesive composition, and production method thereof |
KR20200026130A (en) * | 2018-08-31 | 2020-03-10 | 씨제이제일제당 (주) | An adhesive composition, and preparing method thereof |
JP2021042362A (en) * | 2019-09-06 | 2021-03-18 | ベック株式会社 | Curing agent and aqueous coating material |
CN113382822A (en) * | 2018-11-30 | 2021-09-10 | 康克利亚有限公司 | Dry-spreading type application method of concrete ground |
CN113800920A (en) * | 2021-08-25 | 2021-12-17 | 中国华能集团清洁能源技术研究院有限公司 | Preparation method of ceramic chip and sealing assembly |
CN114787314A (en) * | 2019-12-13 | 2022-07-22 | 汉高股份有限及两合公司 | Two-part (2K) curable adhesive composition |
CN115287031A (en) * | 2022-10-09 | 2022-11-04 | 建滔(广州)电子材料制造有限公司 | Temperature-resistant and aging-resistant epoxy resin and preparation method thereof |
WO2022236819A1 (en) * | 2021-05-14 | 2022-11-17 | Evonik Operations Gmbh | Amidoamine composition and adhesive composition containin the same |
CN116003961A (en) * | 2022-12-23 | 2023-04-25 | 广东盈骅新材料科技有限公司 | Epoxy resin composition and application thereof |
EP4279560A1 (en) * | 2022-05-18 | 2023-11-22 | fischerwerke GmbH & Co. KG | Aqueous aminosiloxane hardeners for adhesive masses, corresponding masses and uses and methods related thereto |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342419A (en) * | 2005-06-10 | 2006-12-21 | Jfe Steel Kk | Highly corrosion resistant surface treated steel sheet, and its production method |
US20110027591A1 (en) * | 2006-09-29 | 2011-02-03 | Sika Technology Ag | Aqueous two-component or multicomponent aqueous epoxy resin primer composition |
US20120270967A1 (en) * | 2009-12-08 | 2012-10-25 | Sika Technology Ag | Low-viscosity epoxy resin composition with low blushing |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0567831B1 (en) | 1992-04-28 | 2003-02-26 | Sika Schweiz AG | Hardener for aqueous dispersion of epoxy resin, process for producing it and its use |
US5363994A (en) * | 1992-06-26 | 1994-11-15 | Tremco, Inc. | Aqueous silane coupling agent solution for use as a sealant primer |
TW457284B (en) * | 1997-09-12 | 2001-10-01 | Cytec Tech Corp | Water based primer compositions and their use for treating metal surfaces |
US6037008A (en) * | 1998-09-08 | 2000-03-14 | Ck Witco Corporation | Use of emulsified silane coupling agents as primers to improve adhesion of sealants, adhesives and coatings |
US20020123592A1 (en) * | 2001-03-02 | 2002-09-05 | Zenastra Photonics Inc. | Organic-inorganic hybrids surface adhesion promoter |
JP3982277B2 (en) * | 2002-02-15 | 2007-09-26 | Jfeスチール株式会社 | Surface-treated steel sheet excellent in press formability and corrosion resistance and method for producing the same |
US10378120B2 (en) * | 2011-10-24 | 2019-08-13 | Chemetall Gmbh | Method for coating metallic surfaces with a multi-component aqueous composition |
-
2015
- 2015-08-21 EP EP15182033.9A patent/EP3133101B1/en active Active
-
2016
- 2016-08-19 WO PCT/EP2016/069710 patent/WO2017032714A1/en active Application Filing
- 2016-08-19 BR BR112018002184A patent/BR112018002184A2/en active Search and Examination
- 2016-08-19 CN CN201680047918.9A patent/CN107922592B/en active Active
- 2016-08-19 US US15/746,174 patent/US10975276B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342419A (en) * | 2005-06-10 | 2006-12-21 | Jfe Steel Kk | Highly corrosion resistant surface treated steel sheet, and its production method |
US20110027591A1 (en) * | 2006-09-29 | 2011-02-03 | Sika Technology Ag | Aqueous two-component or multicomponent aqueous epoxy resin primer composition |
US20120270967A1 (en) * | 2009-12-08 | 2012-10-25 | Sika Technology Ag | Low-viscosity epoxy resin composition with low blushing |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12110430B2 (en) | 2018-08-31 | 2024-10-08 | Cj Cheiljedang Corporation | Adhesive composition, and production method thereof |
KR20200026130A (en) * | 2018-08-31 | 2020-03-10 | 씨제이제일제당 (주) | An adhesive composition, and preparing method thereof |
KR102190916B1 (en) | 2018-08-31 | 2020-12-15 | 씨제이제일제당 주식회사 | An adhesive composition, and preparing method thereof |
CN112334555A (en) * | 2018-08-31 | 2021-02-05 | Cj第一制糖株式会社 | Adhesive composition and method for preparing the same |
WO2020046058A1 (en) * | 2018-08-31 | 2020-03-05 | 씨제이제일제당(주) | Adhesive composition, and production method thereof |
AU2019328986B2 (en) * | 2018-08-31 | 2022-01-20 | Cj Cheiljedang Corporation | Adhesive composition, and production method thereof |
RU2769812C1 (en) * | 2018-08-31 | 2022-04-06 | СиДжей ЧеилДжеданг Корпорейшн | Adhesive composition and method for production thereof |
CN113382822A (en) * | 2018-11-30 | 2021-09-10 | 康克利亚有限公司 | Dry-spreading type application method of concrete ground |
US12109663B2 (en) | 2018-11-30 | 2024-10-08 | Concria Oy | Method in dry-shake coating of a concrete floor |
JP2021042362A (en) * | 2019-09-06 | 2021-03-18 | ベック株式会社 | Curing agent and aqueous coating material |
JP7527160B2 (en) | 2019-09-06 | 2024-08-02 | ベック株式会社 | Hardener and water-based coating material |
CN114787314A (en) * | 2019-12-13 | 2022-07-22 | 汉高股份有限及两合公司 | Two-part (2K) curable adhesive composition |
WO2022236819A1 (en) * | 2021-05-14 | 2022-11-17 | Evonik Operations Gmbh | Amidoamine composition and adhesive composition containin the same |
CN113800920A (en) * | 2021-08-25 | 2021-12-17 | 中国华能集团清洁能源技术研究院有限公司 | Preparation method of ceramic chip and sealing assembly |
EP4279560A1 (en) * | 2022-05-18 | 2023-11-22 | fischerwerke GmbH & Co. KG | Aqueous aminosiloxane hardeners for adhesive masses, corresponding masses and uses and methods related thereto |
CN115287031A (en) * | 2022-10-09 | 2022-11-04 | 建滔(广州)电子材料制造有限公司 | Temperature-resistant and aging-resistant epoxy resin and preparation method thereof |
CN116003961A (en) * | 2022-12-23 | 2023-04-25 | 广东盈骅新材料科技有限公司 | Epoxy resin composition and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107922592A (en) | 2018-04-17 |
EP3133101B1 (en) | 2018-03-21 |
EP3133101A1 (en) | 2017-02-22 |
US10975276B2 (en) | 2021-04-13 |
BR112018002184A2 (en) | 2018-09-18 |
WO2017032714A1 (en) | 2017-03-02 |
CN107922592B (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10975276B2 (en) | Aqueous adhesive composition based on epoxy resin with improved adhesion and storage stability | |
JP6208662B2 (en) | Two component formulations based on silane functional polymers | |
JP5899125B2 (en) | Aqueous two-component or multi-component epoxy resin primer composition | |
US9834639B2 (en) | Curing agent for moisture-curing compositions | |
JP7290574B2 (en) | Solvent-based primer with long open time and improved adhesion | |
JP2009524721A (en) | Moisture curable composition containing a silane functional polymer and an aminosilane adduct with good adhesive properties | |
WO2020165288A1 (en) | Thermally conductive curable composition | |
CN110546220B (en) | Aqueous pretreatment for bonding with increased thermal stability | |
CN115315493B (en) | Composition based on silane-functional polymers and having enhanced overlap-coatability | |
WO2023139172A1 (en) | Process for producing a storage-stable aqueous primer for glass and ceramic substrates | |
US20240166850A1 (en) | Rapid-curing two-component composition of silylated polymers having a long open time | |
JP2023512697A (en) | Polymer containing silane groups |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIKA TECHNOLOGY AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORSARO, ANTONIO;REEL/FRAME:044666/0861 Effective date: 20180117 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |