US20180207621A1 - Method of preparing catalyst for oxidative dehydrogenation - Google Patents

Method of preparing catalyst for oxidative dehydrogenation Download PDF

Info

Publication number
US20180207621A1
US20180207621A1 US15/744,721 US201715744721A US2018207621A1 US 20180207621 A1 US20180207621 A1 US 20180207621A1 US 201715744721 A US201715744721 A US 201715744721A US 2018207621 A1 US2018207621 A1 US 2018207621A1
Authority
US
United States
Prior art keywords
solution
aqueous
catalyst
weight
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/744,721
Other versions
US10926246B2 (en
Inventor
Jun Kyu HAN
Dong Hyun Ko
Kyong Yong Cha
Myung Ji Suh
Sun Hwan Hwang
Seong Min Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2017/002778 external-priority patent/WO2017160071A1/en
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHA, KYONG YONG, HAN, JUN KYU, HWANG, SUN HWAN, KIM, SEONG MIN, KO, DONG HYUN, SUH, MYUNG JI
Publication of US20180207621A1 publication Critical patent/US20180207621A1/en
Application granted granted Critical
Publication of US10926246B2 publication Critical patent/US10926246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • B01J35/023
    • B01J35/1009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ⁇ -iron oxide content in a catalyst in a predetermined range.
  • 1,3-butadiene which is an intermediate in petrochemical products, and the value thereof are gradually increasing throughout the world.
  • methods such as naphtha cracking, direct butene dehydrogenation, and oxidative dehydrogenation of butene, have been used.
  • naphtha cracking energy consumption is high due to high reaction temperature.
  • naphtha cracking is not a process specifically designed for production of 1,3-butadiene production, other basic oils, other than 1,3-butadiene, are disadvantageously produced as surplus products.
  • direct dehydrogenation of normal-butene is thermodynamically unfavorable.
  • oxidative dehydrogenation of butene wherein butene reacts with oxygen in the presence of a metal oxide catalyst to generate 1,3-butadiene and water, stable water is generated and oxidative dehydrogenation of butene is thermodynamically advantageous.
  • oxidative dehydrogenation of butene is an exothermic reaction unlike direct dehydrogenation of butene, oxidative dehydrogenation of butene may produce 1,3-butadiene in a high yield even at low reaction temperature, compared to direct dehydrogenation of butene.
  • oxidative dehydrogenation of butene may be considered an effective production process that produces only 1,3-butadiene and thus satisfies demand for 1,3-butadiene.
  • Metal oxide catalysts are generally synthesized by a precipitation method.
  • pH such as the pH of an aqueous metal oxide precursor solution, the pH of a basic aqueous solution, and the pH of a coprecipitate
  • Patent Document 1 JP2015-167886 A
  • the present invention has been made in view of the above problems, and it is one object of the present invention to provide a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ⁇ -iron oxide content in a catalyst in a predetermined range.
  • a method of preparing a catalyst for oxidative dehydrogenation including (a) a step of preparing an aqueous precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in water in a mole ratio (Fe/A) of 2 to 10; (b) a step of constantly maintaining pH of a coprecipitation solution by, when the aqueous precursor solution is fed dropwise into a coprecipitation tank in which a basic aqueous solution is prepared, feeding a basic aqueous solution identical to or different from the basic aqueous solution dropwise along with the aqueous precursor solution; and (c) a step of obtaining a coprecipitate by filtering the coprecipitation solution.
  • the present invention advantageously provides a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ⁇ -iron oxide content in a catalyst in a predetermined range.
  • FIG. 1 illustrates XRD (X-ray Diffraction) data of a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • FIG. 2 is a graph illustrating a relative content (% by weight) with respect to a phase of a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • FIG. 3 is a graph illustrating butene conversion rate, butadiene selectivity, and yield when butadiene is prepared using a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • the present inventors confirmed that, when an aqueous metal oxide precursor solution and a basic aqueous solution are dually fed dropwise into a coprecipitation tank containing a basic aqueous solution that is adjusted to have a specific pH so as to prepare a metal oxide catalyst for oxidative dehydrogenation by a precipitation method, pH of a coprecipitate is more stably controlled and thus a phase of a metal oxide catalyst prepared from the coprecipitate is controlled, whereby selectivity and yield of conjugated diene are improved. Based on this finding, the present invention has been completed.
  • the method of preparing a catalyst for oxidative dehydrogenation includes (a) a step of preparing an aqueous precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in water in a mole ratio (Fe/A) of 2 to 10; (b) a step of constantly maintaining pH of a coprecipitation solution by, when the aqueous precursor solution is fed dropwise into a coprecipitation tank in which a basic aqueous solution is prepared, feeding a basic aqueous solution identical to or different from the basic aqueous solution dropwise along with the aqueous precursor solution; and (c) a step of obtaining a coprecipitate by filtering the coprecipitation solution.
  • the water may be, for example, distilled water or purified water, but is preferably distilled water.
  • the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor of step (a) are not specifically limited so long as they are generally used in the art.
  • a metal salt including the trivalent cation iron (Fe) precursor and divalent cation metal (A) precursor ingredients may be used.
  • a nitrate, ammonium salt, sulfate, or chloride of the metal ingredient may be used.
  • a chloride or nitrate thereof is used.
  • the divalent cation metal (A) may be, for example, one or more selected from the group consisting of divalent cation metals.
  • the divalent cation metal (A) may be one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co).
  • the divalent cation metal (A) is one or more selected from the group consisting of zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co). More preferably, the divalent cation metal (A) is zinc (Zn) or manganese (Mn).
  • the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor may be included, for example, in a mole ratio (Fe/A) of 2 to 10, 2 to 6, or 2 to 5 with respect to the aqueous precursor solution.
  • a mole ratio (Fe/A) of 2 to 10, 2 to 6, or 2 to 5 with respect to the aqueous precursor solution.
  • an ⁇ -iron oxide content in a catalyst may be controlled in a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • the aqueous precursor solution may have, for example, pH of 6 to 12, 6 to 10, or 8 to 10. Within this range, high activity and yield to prepare 1,3-butadiene may be obtained.
  • the aqueous precursor solution may have a concentration of 5% by weight to 10% by weight, 5% by weight to 8% by weight, or 6% by weight to 7% by weight. Within this range, reactivity of a catalyst for oxidative dehydrogenation may be improved.
  • the aqueous precursor solution may be prepared, for example, by dissolving 4% by weight or more and less than 10% by weight, 4% by weight to 7% by weight, or 4.5 to 6.5% by weight of a trivalent cation iron (Fe) precursor and 0.5% by weight or more and less than 10% by weight, 0.5% by weight to 6.5% by weight, or 0.5 to 6.2% by weight of a divalent cation metal precursor in greater than 80% by weight and 95.5% by weight or less, 86.5% by weight to 95.5% by weight, or 87.3% by weight to 95.0% by weight of distilled water.
  • a trivalent cation iron (Fe) precursor and 0.5% by weight or more and less than 10% by weight, 0.5% by weight to 6.5% by weight, or 0.5 to 6.2% by weight of a divalent cation metal precursor in greater than 80% by weight and 95.5% by weight or less, 86.5% by weight to 95.5% by weight, or 87.3% by weight to 95.0% by weight of distilled
  • the aqueous precursor solution may have, for example, pH of 0 to 4, 1 to 3, or 1 to 2. Within this range, desired active ingredients may be stably generated during synthesis of a catalyst.
  • the basic aqueous solution in the coprecipitation tank and the basic aqueous solution added dropwise to the coprecipitation tank in step b may be aqueous solutions having the same concentration and pH or different concentrations or pHs, or may be different aqueous basic solutions.
  • the basic aqueous solutions may be respectively one or more selected from the group consisting of potassium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, an aqueous sodium hydroxide solution, sodium carbonate, and an aqueous ammonia solution.
  • the basic aqueous solutions are aqueous ammonia solutions.
  • a particle size of the catalyst is large, a phase thereof meets the objectives of the present invention, and a washing process may be easily performed.
  • the pH of each of the basic aqueous solutions may be, for example, greater than 8 and less than 11, 9 to 10, or 9 to 9.5.
  • an ⁇ -iron oxide content in a catalyst may be controlled in a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • Each of the basic aqueous solutions may have, for example, a concentration of 10 to 50% by weight, 15 to 40% by weight, or 25 to 30% by weight.
  • the basic aqueous solution added dropwise which is provided to constantly maintain the pH of a coprecipitation solution changed due to the aqueous precursor solution added dropwise to a coprecipitation tank, might not be added dropwise, may be added dropwise with the aqueous precursor solution, or may be added alone, within a range within which the pH of the coprecipitation solution is constantly maintained.
  • the aqueous precursor solution and the basic aqueous solution may be respectively added dropwise from separate outlets.
  • the pH of a coprecipitation solution changed due to the aqueous precursor solution added dropwise to the coprecipitation tank may be constantly maintained by controlling a dropwise-added amount of the basic aqueous solution.
  • the aqueous precursor solution may be added to the coprecipitation tank dropwise at a rate of 20 g/min or more, 20 g/min to 50 g/min, or 40 g/min or more to 50 g/min. Within this range, selectivity and yield of butadiene according to oxidative dehydrogenation become superior.
  • the pH of the coprecipitation solution in step b may be, for example, greater than 8 and less than 11, 9 to 10, or 9 to 9.5. Within this range, an ⁇ -iron oxide content in a catalyst may be controlled within a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • Step b may further include, for example, a step of stirring a coprecipitation solution to which dropwise-addition of the aqueous precursor solution is completed.
  • coprecipitation of the precursor in a coprecipitation solution may be sufficiently accomplished.
  • the stirring may be carried out, for example, for 30 minutes to 3 hours, 30 minutes to 2 hours, or 30 minutes to 1 hour and 30 minutes.
  • the filtering in step (c) is not specifically limited so long as it is performed by a filtration method generally used in the art.
  • the filtering may be performed by a vacuum filtration method.
  • the filtering may be performed by a method of performing filtration under reduced pressure by means of a vacuum pump. In this case, washing effect and catalyst separation effect from moisture may be exhibited.
  • the method of preparing a catalyst for oxidative dehydrogenation may further include a step of drying; firing; or drying and firing the coprecipitate obtained by step (c).
  • the filtered coprecipitate may be, for example, dried at 60 to 100° C., 70 to 100° C., or 80 to 100° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours by means of a general drier.
  • the filtered coprecipitate may be fired, for example, at 400 to 800° C., 500 to 800° C., or 550 to 750° C. for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours by means of a general firing furnace.
  • the filtered coprecipitate may be, for example, dried at 60 to 100° C., 70 to 100° C., or 80 to 100° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours by means of a general drier.
  • the dried coprecipitate may be, for example, fired at 400 to 800° C., 500 to 800° C., or 550 to 750° C. for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours by means of a general firing furnace.
  • the firing may be carried out by a heat treatment method generally used in the art.
  • a catalyst for oxidative dehydrogenation prepared according to the method of the present invention may include, for example, a spinel ferrite (AFe 2 O 4 ) and an ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ).
  • the ⁇ -iron oxide may be included, for example, in an amount of 15 to 80% by weight. Within this range, selectivity and yield of a conjugated diene according to oxidative dehydrogenation are superior.
  • the catalyst for oxidative dehydrogenation of the present invention may include an AFe 2 O 4 structure and an Fe 2 O 3 structure.
  • A is one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co)
  • the content of AFe 2 O 4 may be 38 to 85% by weight, 66 to 85% by weight, or 46 to 70% by weight
  • the content of Fe 2 O 3 may be 15 to 62% by weight, 15 to 54% by weight, or 30 to 54% by weight. Within this range, selectivity and yield of a conjugated diene according to oxidative dehydrogenation are superior.
  • the AFe 2 O 4 structure may have a first peak having a maximum peak intensity in a range of 34.5° to 35.5°, a second peak having a second peak intensity in a range of 29.5° to 30.5°, and a third peak having a third peak intensity in a range of 62° to 63°, as a result of XRD analysis.
  • the AFe 2 O 4 structure may be, for example, ZnFe 2 O 4 or MnFe 2 O 4 .
  • the Fe 2 O 3 structure may have a first peak having a maximum peak intensity in a range of 33° to 34°, a second peak having a second peak intensity in a range of 35° to 36°, and a third peak having a third peak intensity in a range of 53.5° to 54.5°, as a result of XRD analysis.
  • the Fe 2 O 3 structure may be, for example, ⁇ -Fe 2 O 3 .
  • the catalyst may have, for example, a crystallite size (D) of 50 nm or more, 60 nm or more, 70 nm or more, 50 to 80 nm, 60 to 80 nm, or 70 to 80 nm, as measured by XRD.
  • D crystallite size
  • the catalyst may have, for example, a BET surface area of 4.0 m 2 /g or more, 4.7 m 2 /g or more, 4.0 to 8.0 m 2 /g, or 4.5 to 7.0 m 2 /g, as measured by a general BET method. Within this range, the activity of the catalyst is superior.
  • the catalyst is applicable to a fixed bed reactor, mobile bed reactor, and fluid bed reactor for oxidative dehydrogenation, and has very broad applicability as a catalyst.
  • step 1 895.181 g of an aqueous metal precursor solution (at a concentration of 6.67% by weight) was prepared by dissolving 12.019 g of zinc chloride (ZnCl 2 ) and 47.662 g of ferric chloride (FeCl 3 ) in distilled water.
  • ZnCl 2 zinc chloride
  • FeCl 3 ferric chloride
  • step 2 a coprecipitation tank containing an aqueous ammonia solution at pH 9.5, at a concentration of 28% by weight, and at room-temperature was equipped with an outlet for the aqueous metal precursor solution and an outlet for the basic aqueous solution.
  • An aqueous ammonia solution having the same pH and concentration as the aqueous ammonia solution in the coprecipitation tank was added to the coprecipitation tank through the basic aqueous solution outlet while adding the prepared aqueous metal precursor solution dropwise through the aqueous metal precursor solution outlet (at a dripping rate of 44.76 g/min), thereby constantly maintaining the pH of a coprecipitation solution in the coprecipitation tank at 9.5.
  • the coprecipitation solution was stirred for 1 hour such that sufficient coprecipitation was achieved. After stopping the stirring, a precipitate was allowed to settle for 1 hour at room temperature until the precipitate was completely settled, whereby phase separation was accomplished.
  • step 3 the coprecipitation solution was vacuum-filtered by means of a vacuum filter, thereby obtaining a coprecipitate.
  • the obtained coprecipitate was dried at 90° C. for 16 hours.
  • the dried coprecipitate was put into a firing furnace and was thermally treated at 650° C. for 6 hours therein, thereby preparing a zinc ferrite catalyst.
  • the contents of a spinel ferrite (ZnFe 2 O 4 ) and ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ) of the prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2 ). Results are summarized in Table 1 below.
  • the contents of a spinel ferrite (ZnFe 2 O 4 ) and ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2 ). Results are summarized in Table 1 below.
  • the contents of a spinel ferrite (ZnFe 2 O 4 ) and ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2 ). Results are summarized in Table 1 below.
  • the contents of a spinel ferrite (ZnFe 2 O 4 ) and ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2 ). Results are summarized in Table 1 below.
  • step 1 892.181 g of an aqueous metal precursor solution (at concentration of 6.69% by weight) was prepared by dissolving 12.019 g of zinc chloride (ZnCl 2 ) and 47.662 g of ferric chloride (FeCl 3 ) in distilled water.
  • ZnCl 2 zinc chloride
  • FeCl 3 ferric chloride
  • step 2 70 g of an aqueous ammonia solution at a concentration of 28% by weight was added batchwise to 892.18 g of the aqueous metal precursor solution to adjust the pH of a coprecipitation solution to 9.5. After the pH of the coprecipitation solution was stabilized, a coprecipitation solution was stirred for 1 hour such that coprecipitation was sufficiently carried (pH 9.5). After stopping the stirring, a precipitate was allowed to stand for 1 hour at room temperature until the precipitate was completely sunken, whereby phase separation was accomplished.
  • step 3 the coprecipitation solution was vacuum-filtered by means of a vacuum filter, thereby obtaining a coprecipitate.
  • the obtained coprecipitate was dried at 90° C. for 16 hours.
  • the dried coprecipitate was put into a firing furnace and was thermally treated at 650° C. for 6 hours therein, thereby preparing a zinc ferrite catalyst.
  • the contents of a spinel ferrite (ZnFe 2 O 4 ) and ⁇ -iron oxide ( ⁇ -Fe 2 O 3 ) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2 ). Results are summarized in Table 1 below.
  • a mixture of 1-butene, trans-2-butene, and cis-2-butene and oxygen were used as reactants, and nitrogen and steam were additionally added together thereto.
  • a reactor a metal tubular reactor was used. Ratios of reactants were determined as follows: oxygen/butene: 1, steam/butene: 4, and nitrogen/butene: 12.
  • a gas hourly space velocity (GHSV) was set to 500 h ⁇ 1 .
  • a fixed bed reactor was filled with the catalyst prepared according to each of the examples and the comparative examples, and the volume of a catalyst layer contacting reactants was fixed to 75 cc.
  • Water was vaporized into steam at 150° C. by means of a vaporizer and was injected into the reactor with a butene mixture and oxygen, as reactants.
  • the amount of the butene mixture was adjusted by means of a mass flow rate controller for liquids, addition of oxygen and nitrogen was controlled by means of a mass flow rate controller for gas, and an injection speed of steam was controlled by means of a liquid pump.
  • Reaction temperature was maintained at 340° C. and reaction pressure was maintained at atmospheric pressure. After reaction, a product was analyzed using gas chromatography (GC).
  • GC gas chromatography
  • a conversion rate of the butene mixture, a conversion rate of each butene in the mixture, selectivity of 1,3-butadiene, and a yield of 1,3-butadiene were calculated according to Mathematical Equations 1 to 3 below based on results obtained by gas chromatography.
  • MnCl 2 manganese chloride
  • FeCl 3 ferric chloride
  • a butene conversion rate was 22.66%
  • a 1-butene conversion rate was 27.36%
  • a trans-2-butene conversion rate was 20.27%
  • a cis-2-butene conversion rate was 23.15%
  • a 1,3-butadiene selectivity was 28.68%
  • a 1,3-butadiene yield was 6.50%.
  • a butene conversion rate was 17.31%
  • a 1-butene conversion rate was 20.38%
  • a trans-2-butene conversion rate was 14.72%
  • a cis-2-butene conversion rate was 19.54%
  • a 1,3-butadiene selectivity was 15.22%
  • a 1,3-butadiene yield was 2.63%.
  • Example 6 and Comparative Example 5 it can be confirmed that the catalyst prepared according to the present invention exhibits superior butene conversion rate, butadiene selectivity, and yield, compared to the pellet-type manganese ferrite catalyst having the same metal ingredient ratio generally used for oxidative dehydrogenation.
  • the present inventors confirmed that, when a metal oxide catalyst for oxidative dehydrogenation is prepared by a precipitation method, the pH of a coprecipitate is more stably controlled and the phase of a metal oxide catalyst prepared from the coprecipitate is controlled, by dually adding an aqueous metal oxide precursor solution and a basic aqueous solution dropwise to a coprecipitation tank containing a basic aqueous solution that has been adjusted to a specific pH, whereby a catalyst for oxidative dehydrogenation providing improved conjugated diene selectivity and yield is generated.
  • Butadiene was synthesized as described above, except that a catalyst prepared according to Example 7 below was used and ratios of reactants among experimental conditions were set as follows: a mole ratio of oxygen/butene: 0.75, a mole ratio of steam/butene: 15, and a mole ratio of nitrogen/butene: 3. Results are summarized in Table 3 below. In addition, a catalyst prepared according to Example 1 was used to prepare butadiene under these condition for comparison with Example 7. Results are summarized in Table 3 below.
  • Example 2 An experiment was carried out in the same manner as in Example 1, except that, in step 1, nitrate instead of chloride, as a metal precursor, was used in the same molar amount as the chloride.
  • a phase of a prepared catalyst was composed of 78% by weight of ZnFe 2 O 4 and 22% by weight of ⁇ -Fe 2 O 3 , a BET surface area (m 2 /g) thereof was 4.7, and a crystallite size D*(nm) thereof was 71.
  • a phase of the catalyst prepared according to Example 1 was composed of 85% ZnFe 2 O 4 and 15% ⁇ -Fe 2 O 3 , an Fe/Zn (mol/mol) ratio thereof was 2.5, a BET surface area (m 2 /g) thereof was 6.6, and a crystallite size D*(nm) thereof was 73.
  • Classification 1 7 Mole ratio between 2:1 2:1 metals % by weight of 85 78 ZnFe 2 O 4 % by weight of ⁇ - 15 22 Fe 2 O 3 % by weight of ZnO — — Butene conversion 82.9 81.7 rate 1-butene conversion 84.10 84.09 rate Trans-2-butene 80.90 83.37 conversion rate Cis-3-butene 85.79 84.33 conversion rate 1,3-butadiene 89.3 89.2 selectivity 1,3-butadiene yield 74.0 72.9
  • Example 7 As shown in Table 3, it can be confirmed that, in the case of Example 7 in which a nitrate-based metal precursor was used instead of chloride, a butene conversion rate and a 1,3-butadiene yield are slightly decreased, compared to Example 1 wherein a chloride-based metal precursor was used.
  • a catalyst for oxidative dehydrogenation was prepared in the same manner as in Example 1, except that, in step 2, 28% by weight of an aqueous ammonia solution at pH 9.0 was used and the pH of a coprecipitation solution in a coprecipitation tank was maintained at 9.0.
  • a prepared catalyst was used to synthesize butadiene in the same manner as described above, except that ratios of reactants were set as follows: a mole ratio of oxygen/butene: 0.75, a mole ratio of steam/butene: 15, and a mole ratio of nitrogen/butene: 3.
  • a butene conversion rate was 83.2%
  • a 1-butene conversion rate was 84.79%
  • a trans-2-butene conversion rate was 80.99%
  • a cis-3-butene conversion rate was 86.02%
  • a 1,3-butadiene selectivity was 90.8%
  • a 1,3-butadiene yield was 75.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention provides a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an α-iron oxide content in a catalyst in a predetermined range.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of Korean Patent Application No. 10-2016-0032647, filed on Mar. 18, 2016, and Korean Patent Application No. 10-2017-0030425, filed on Mar. 10, 2017, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an α-iron oxide content in a catalyst in a predetermined range.
  • BACKGROUND ART
  • Demand for 1,3-butadiene, which is an intermediate in petrochemical products, and the value thereof are gradually increasing throughout the world. To produce such 1,3-butadiene, methods, such as naphtha cracking, direct butene dehydrogenation, and oxidative dehydrogenation of butene, have been used. However, in the case of naphtha cracking, energy consumption is high due to high reaction temperature. In addition, since naphtha cracking is not a process specifically designed for production of 1,3-butadiene production, other basic oils, other than 1,3-butadiene, are disadvantageously produced as surplus products. Meanwhile, direct dehydrogenation of normal-butene is thermodynamically unfavorable. In addition, since direct dehydrogenation of normal-butene is an endothermic reaction, high-temperature and low-pressure conditions are required to produce 1,3-butadiene in a high yield. Accordingly, direct dehydrogenation of normal-butene is not suitable as a commercial process for producing 1,3-butadiene.
  • Meanwhile, since, in the case of oxidative dehydrogenation of butene wherein butene reacts with oxygen in the presence of a metal oxide catalyst to generate 1,3-butadiene and water, stable water is generated and oxidative dehydrogenation of butene is thermodynamically advantageous. In addition, since oxidative dehydrogenation of butene is an exothermic reaction unlike direct dehydrogenation of butene, oxidative dehydrogenation of butene may produce 1,3-butadiene in a high yield even at low reaction temperature, compared to direct dehydrogenation of butene. In addition, since oxidative dehydrogenation of butene does not require additional heat supply, oxidative dehydrogenation of butene may be considered an effective production process that produces only 1,3-butadiene and thus satisfies demand for 1,3-butadiene.
  • Metal oxide catalysts are generally synthesized by a precipitation method. In the precipitation method, pH, such as the pH of an aqueous metal oxide precursor solution, the pH of a basic aqueous solution, and the pH of a coprecipitate, acts as important synthesis parameters. Since such synthesis parameter affects the phase of a coprecipitate and a catalyst prepared by the precipitation method affects the selectivity and yield of 1,3-butadiene depending upon the phase of the coprecipitate, a technology of stably maintaining pH during synthesis is very important. Therefore, there is a need for a catalyst preparation method of more stably maintaining pH during preparation of a metal oxide catalyst according to a precipitation method.
  • Related Art Document
  • (Patent Document 1) JP2015-167886 A
  • DISCLOSURE Technical Problem
  • Therefore, the present invention has been made in view of the above problems, and it is one object of the present invention to provide a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an α-iron oxide content in a catalyst in a predetermined range.
  • The above and other objects can be accomplished by the present disclosure described below.
  • Technical Solution
  • In accordance with one aspect of the present invention, provided is a method of preparing a catalyst for oxidative dehydrogenation, the method including (a) a step of preparing an aqueous precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in water in a mole ratio (Fe/A) of 2 to 10; (b) a step of constantly maintaining pH of a coprecipitation solution by, when the aqueous precursor solution is fed dropwise into a coprecipitation tank in which a basic aqueous solution is prepared, feeding a basic aqueous solution identical to or different from the basic aqueous solution dropwise along with the aqueous precursor solution; and (c) a step of obtaining a coprecipitate by filtering the coprecipitation solution.
  • Advantageous Effects
  • As apparent from the fore-going, the present invention advantageously provides a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention relates to a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an α-iron oxide content in a catalyst in a predetermined range.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates XRD (X-ray Diffraction) data of a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • FIG. 2 is a graph illustrating a relative content (% by weight) with respect to a phase of a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • FIG. 3 is a graph illustrating butene conversion rate, butadiene selectivity, and yield when butadiene is prepared using a catalyst prepared according to each of Examples 1 to 5 of the present invention and Comparative Example 2.
  • BEST MODE
  • Hereinafter, the present invention is described in detail.
  • The present inventors confirmed that, when an aqueous metal oxide precursor solution and a basic aqueous solution are dually fed dropwise into a coprecipitation tank containing a basic aqueous solution that is adjusted to have a specific pH so as to prepare a metal oxide catalyst for oxidative dehydrogenation by a precipitation method, pH of a coprecipitate is more stably controlled and thus a phase of a metal oxide catalyst prepared from the coprecipitate is controlled, whereby selectivity and yield of conjugated diene are improved. Based on this finding, the present invention has been completed.
  • Hereinafter, a method of preparing a catalyst for oxidative dehydrogenation according to the present invention is described in detail.
  • The method of preparing a catalyst for oxidative dehydrogenation includes (a) a step of preparing an aqueous precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in water in a mole ratio (Fe/A) of 2 to 10; (b) a step of constantly maintaining pH of a coprecipitation solution by, when the aqueous precursor solution is fed dropwise into a coprecipitation tank in which a basic aqueous solution is prepared, feeding a basic aqueous solution identical to or different from the basic aqueous solution dropwise along with the aqueous precursor solution; and (c) a step of obtaining a coprecipitate by filtering the coprecipitation solution.
  • The water may be, for example, distilled water or purified water, but is preferably distilled water.
  • The trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor of step (a) are not specifically limited so long as they are generally used in the art. For example, a metal salt including the trivalent cation iron (Fe) precursor and divalent cation metal (A) precursor ingredients may be used. For a specific example, a nitrate, ammonium salt, sulfate, or chloride of the metal ingredient may be used. Preferably, a chloride or nitrate thereof is used.
  • The divalent cation metal (A) may be, for example, one or more selected from the group consisting of divalent cation metals. As a particular example, the divalent cation metal (A) may be one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co). Preferably, the divalent cation metal (A) is one or more selected from the group consisting of zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co). More preferably, the divalent cation metal (A) is zinc (Zn) or manganese (Mn).
  • The trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor may be included, for example, in a mole ratio (Fe/A) of 2 to 10, 2 to 6, or 2 to 5 with respect to the aqueous precursor solution. Within this range, an α-iron oxide content in a catalyst may be controlled in a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • The aqueous precursor solution may have, for example, pH of 6 to 12, 6 to 10, or 8 to 10. Within this range, high activity and yield to prepare 1,3-butadiene may be obtained.
  • The aqueous precursor solution may have a concentration of 5% by weight to 10% by weight, 5% by weight to 8% by weight, or 6% by weight to 7% by weight. Within this range, reactivity of a catalyst for oxidative dehydrogenation may be improved.
  • The aqueous precursor solution may be prepared, for example, by dissolving 4% by weight or more and less than 10% by weight, 4% by weight to 7% by weight, or 4.5 to 6.5% by weight of a trivalent cation iron (Fe) precursor and 0.5% by weight or more and less than 10% by weight, 0.5% by weight to 6.5% by weight, or 0.5 to 6.2% by weight of a divalent cation metal precursor in greater than 80% by weight and 95.5% by weight or less, 86.5% by weight to 95.5% by weight, or 87.3% by weight to 95.0% by weight of distilled water.
  • The aqueous precursor solution may have, for example, pH of 0 to 4, 1 to 3, or 1 to 2. Within this range, desired active ingredients may be stably generated during synthesis of a catalyst.
  • In an embodiment, the basic aqueous solution in the coprecipitation tank and the basic aqueous solution added dropwise to the coprecipitation tank in step b may be aqueous solutions having the same concentration and pH or different concentrations or pHs, or may be different aqueous basic solutions. In a particular embodiment, the basic aqueous solutions may be respectively one or more selected from the group consisting of potassium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, an aqueous sodium hydroxide solution, sodium carbonate, and an aqueous ammonia solution. Preferably, the basic aqueous solutions are aqueous ammonia solutions. In this case, a particle size of the catalyst is large, a phase thereof meets the objectives of the present invention, and a washing process may be easily performed.
  • The pH of each of the basic aqueous solutions may be, for example, greater than 8 and less than 11, 9 to 10, or 9 to 9.5. Within this range, an α-iron oxide content in a catalyst may be controlled in a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • Each of the basic aqueous solutions may have, for example, a concentration of 10 to 50% by weight, 15 to 40% by weight, or 25 to 30% by weight.
  • The basic aqueous solution added dropwise, which is provided to constantly maintain the pH of a coprecipitation solution changed due to the aqueous precursor solution added dropwise to a coprecipitation tank, might not be added dropwise, may be added dropwise with the aqueous precursor solution, or may be added alone, within a range within which the pH of the coprecipitation solution is constantly maintained.
  • In an embodiment, the aqueous precursor solution and the basic aqueous solution may be respectively added dropwise from separate outlets. In this case, the pH of a coprecipitation solution changed due to the aqueous precursor solution added dropwise to the coprecipitation tank may be constantly maintained by controlling a dropwise-added amount of the basic aqueous solution.
  • The aqueous precursor solution may be added to the coprecipitation tank dropwise at a rate of 20 g/min or more, 20 g/min to 50 g/min, or 40 g/min or more to 50 g/min. Within this range, selectivity and yield of butadiene according to oxidative dehydrogenation become superior.
  • The pH of the coprecipitation solution in step b may be, for example, greater than 8 and less than 11, 9 to 10, or 9 to 9.5. Within this range, an α-iron oxide content in a catalyst may be controlled within a predetermined range, whereby selectivity and yield of a conjugated diene according to oxidative dehydrogenation become superior.
  • Step b may further include, for example, a step of stirring a coprecipitation solution to which dropwise-addition of the aqueous precursor solution is completed. In this case, coprecipitation of the precursor in a coprecipitation solution may be sufficiently accomplished.
  • The stirring may be carried out, for example, for 30 minutes to 3 hours, 30 minutes to 2 hours, or 30 minutes to 1 hour and 30 minutes.
  • The filtering in step (c) is not specifically limited so long as it is performed by a filtration method generally used in the art. In an embodiment, the filtering may be performed by a vacuum filtration method. In a particular embodiment, the filtering may be performed by a method of performing filtration under reduced pressure by means of a vacuum pump. In this case, washing effect and catalyst separation effect from moisture may be exhibited.
  • In an embodiment, the method of preparing a catalyst for oxidative dehydrogenation may further include a step of drying; firing; or drying and firing the coprecipitate obtained by step (c).
  • The filtered coprecipitate may be, for example, dried at 60 to 100° C., 70 to 100° C., or 80 to 100° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours by means of a general drier.
  • The filtered coprecipitate may be fired, for example, at 400 to 800° C., 500 to 800° C., or 550 to 750° C. for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours by means of a general firing furnace.
  • The filtered coprecipitate may be, for example, dried at 60 to 100° C., 70 to 100° C., or 80 to 100° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours by means of a general drier. In addition, the dried coprecipitate may be, for example, fired at 400 to 800° C., 500 to 800° C., or 550 to 750° C. for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours by means of a general firing furnace.
  • The firing may be carried out by a heat treatment method generally used in the art.
  • A catalyst for oxidative dehydrogenation prepared according to the method of the present invention may include, for example, a spinel ferrite (AFe2O4) and an α-iron oxide (α-Fe2O3). Here, the α-iron oxide may be included, for example, in an amount of 15 to 80% by weight. Within this range, selectivity and yield of a conjugated diene according to oxidative dehydrogenation are superior.
  • In particular, the catalyst for oxidative dehydrogenation of the present invention may include an AFe2O4 structure and an Fe2O3 structure. Here, A is one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co), the content of AFe2O4 may be 38 to 85% by weight, 66 to 85% by weight, or 46 to 70% by weight, and the content of Fe2O3 may be 15 to 62% by weight, 15 to 54% by weight, or 30 to 54% by weight. Within this range, selectivity and yield of a conjugated diene according to oxidative dehydrogenation are superior.
  • The AFe2O4 structure may have a first peak having a maximum peak intensity in a range of 34.5° to 35.5°, a second peak having a second peak intensity in a range of 29.5° to 30.5°, and a third peak having a third peak intensity in a range of 62° to 63°, as a result of XRD analysis.
  • The AFe2O4 structure may be, for example, ZnFe2O4 or MnFe2O4.
  • The Fe2O3 structure may have a first peak having a maximum peak intensity in a range of 33° to 34°, a second peak having a second peak intensity in a range of 35° to 36°, and a third peak having a third peak intensity in a range of 53.5° to 54.5°, as a result of XRD analysis.
  • The Fe2O3 structure may be, for example, α-Fe2O3.
  • The catalyst may have, for example, a crystallite size (D) of 50 nm or more, 60 nm or more, 70 nm or more, 50 to 80 nm, 60 to 80 nm, or 70 to 80 nm, as measured by XRD. Within this range, the activity of the catalyst is superior, the phase thereof meets the objectives of the present invention, and washing may be easily carried out.
  • The catalyst may have, for example, a BET surface area of 4.0 m2/g or more, 4.7 m2/g or more, 4.0 to 8.0 m2/g, or 4.5 to 7.0 m2/g, as measured by a general BET method. Within this range, the activity of the catalyst is superior.
  • The catalyst is applicable to a fixed bed reactor, mobile bed reactor, and fluid bed reactor for oxidative dehydrogenation, and has very broad applicability as a catalyst.
  • Now, the present invention will be described in more detail with reference to the following preferred examples. However, these examples are provided for illustrative purposes only. Those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention. Therefore, it is obvious that the modifications, additions and substitutions are within the scope of the present invention.
  • EXAMPLE Example 1
  • In step 1, 895.181 g of an aqueous metal precursor solution (at a concentration of 6.67% by weight) was prepared by dissolving 12.019 g of zinc chloride (ZnCl2) and 47.662 g of ferric chloride (FeCl3) in distilled water. Here, a mole ratio of the metal ingredients included in the aqueous metal precursor solution was Fe:Zn=2:1.
  • In step 2, a coprecipitation tank containing an aqueous ammonia solution at pH 9.5, at a concentration of 28% by weight, and at room-temperature was equipped with an outlet for the aqueous metal precursor solution and an outlet for the basic aqueous solution. An aqueous ammonia solution having the same pH and concentration as the aqueous ammonia solution in the coprecipitation tank was added to the coprecipitation tank through the basic aqueous solution outlet while adding the prepared aqueous metal precursor solution dropwise through the aqueous metal precursor solution outlet (at a dripping rate of 44.76 g/min), thereby constantly maintaining the pH of a coprecipitation solution in the coprecipitation tank at 9.5.
  • After completing the addition of the aqueous metal precursor solution, the coprecipitation solution was stirred for 1 hour such that sufficient coprecipitation was achieved. After stopping the stirring, a precipitate was allowed to settle for 1 hour at room temperature until the precipitate was completely settled, whereby phase separation was accomplished.
  • In step 3, the coprecipitation solution was vacuum-filtered by means of a vacuum filter, thereby obtaining a coprecipitate. The obtained coprecipitate was dried at 90° C. for 16 hours. The dried coprecipitate was put into a firing furnace and was thermally treated at 650° C. for 6 hours therein, thereby preparing a zinc ferrite catalyst. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of the prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Example 2
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 8.593 g of zinc chloride (ZnCl2) and 51.118 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Zn=3:1, and the prepared aqueous metal precursor solution was used in an amount of 895.711. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Example 3
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 6.686 g of zinc chloride (ZnCl2) and 53.028 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Zn=4:1, and the prepared aqueous metal precursor solution was used in an amount of 895.714. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Example 4
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 5.469 g of zinc chloride (ZnCl2) and 54.222 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Zn=5:1, and the prepared aqueous metal precursor solution was used in an amount of 895.391. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Example 5
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 4.998 g of zinc chloride (ZnCl2) and 59.464 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Zn=6:1, and the prepared aqueous metal precursor solution was used in an amount of 966.962. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Comparative Example 1
  • In step 1, 892.181 g of an aqueous metal precursor solution (at concentration of 6.69% by weight) was prepared by dissolving 12.019 g of zinc chloride (ZnCl2) and 47.662 g of ferric chloride (FeCl3) in distilled water. Here, a mole ratio of the metal ingredients included in the aqueous metal precursor solution was as follows: Fe:Zn=2:1.
  • In step 2, 70 g of an aqueous ammonia solution at a concentration of 28% by weight was added batchwise to 892.18 g of the aqueous metal precursor solution to adjust the pH of a coprecipitation solution to 9.5. After the pH of the coprecipitation solution was stabilized, a coprecipitation solution was stirred for 1 hour such that coprecipitation was sufficiently carried (pH 9.5). After stopping the stirring, a precipitate was allowed to stand for 1 hour at room temperature until the precipitate was completely sunken, whereby phase separation was accomplished.
  • In step 3, the coprecipitation solution was vacuum-filtered by means of a vacuum filter, thereby obtaining a coprecipitate. The obtained coprecipitate was dried at 90° C. for 16 hours. The dried coprecipitate was put into a firing furnace and was thermally treated at 650° C. for 6 hours therein, thereby preparing a zinc ferrite catalyst. [89]
  • Comparative Example 2
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 16.382 g of zinc chloride (ZnCl2) and 43.311 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Zn=2:1.5, and the prepared aqueous metal precursor solution was used in an amount of 895.393 g. The contents of a spinel ferrite (ZnFe2O4) and α-iron oxide (α-Fe2O3) of a prepared zinc ferrite catalyst were respectively measured using XRD (see FIGS. 1 and 2). Results are summarized in Table 1 below.
  • Comparative Example 3
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 59.681 g of ferric chloride (FeCl3) was merely dissolved in distilled water to prepare an aqueous metal precursor solution, and the prepared aqueous metal precursor solution was used in an amount of 895.181 g.
  • Comparative Example 4
  • A pellet-type zinc ferrite catalyst including metal ingredients in a mole ratio of Fe:Zn=2:1 (ZnFe2O4: 99.9%, manufactured by KOJUNDO CHEMICAL LABORATORY CO., LTD.) was used.
  • TABLE 1
    Fe:Zn
    (mole ZnFe2O4 α-Fe2O3 ZnO
    Classification ratio) (% by weight)
    Example 1 2:1 85 15
    Example 2 3:1 70 30
    Example 3 4:1 52 48
    Example 4 5:1 46 54
    Example 5 6:1 38 62
    Comparative 2:1 86 14
    Example 1
    Comparative 2:1.5 96 4
    Example 2
    Comparative 1:0 100
    Example 3
    Comparative 2:1 100
    Example 4
  • Test Example
  • Using the catalyst for oxidative dehydrogenation prepared according to each of Examples 1 to 5 and Comparative Examples 1 to 4, butadiene was manufactured by the following method. Results are summarized in Table 2 below.
  • Butadiene Preparation
  • A mixture of 1-butene, trans-2-butene, and cis-2-butene and oxygen were used as reactants, and nitrogen and steam were additionally added together thereto. As a reactor, a metal tubular reactor was used. Ratios of reactants were determined as follows: oxygen/butene: 1, steam/butene: 4, and nitrogen/butene: 12. A gas hourly space velocity (GHSV) was set to 500 h−1.
  • A fixed bed reactor was filled with the catalyst prepared according to each of the examples and the comparative examples, and the volume of a catalyst layer contacting reactants was fixed to 75 cc. Water was vaporized into steam at 150° C. by means of a vaporizer and was injected into the reactor with a butene mixture and oxygen, as reactants. The amount of the butene mixture was adjusted by means of a mass flow rate controller for liquids, addition of oxygen and nitrogen was controlled by means of a mass flow rate controller for gas, and an injection speed of steam was controlled by means of a liquid pump.
  • Reaction temperature was maintained at 340° C. and reaction pressure was maintained at atmospheric pressure. After reaction, a product was analyzed using gas chromatography (GC). A conversion rate of the butene mixture, a conversion rate of each butene in the mixture, selectivity of 1,3-butadiene, and a yield of 1,3-butadiene were calculated according to Mathematical Equations 1 to 3 below based on results obtained by gas chromatography.

  • Conversion rate (%)=(moles of reacted butene/moles of supplied butene  [Mathematical Equation 1]

  • Selectivity (%)=(moles of generated 1,3-butadiene or COx/moles of reacted butene)×100  [Mathematical Equation 2]

  • Yield (%)=(moles of generated 1,3-butadiene/moles of supplied butene)×100  [Mathematical Equation 3]
  • TABLE 2
    Examples Comparative examples
    Classification
    1 2 3 4 5 1 2 3 4
    Mole ratio 2:1 3:1 4:1 5:1 6:1 2:1 2:1.5 1:0 2:1
    of Fe:Zn
    Butene 75.26 75.78 80.32 80.98 53.63 57.31 5.23 27.07 48.36
    conversion
    rate
    1-butene 79.77 76.60 81.45 83.27 58.36 59.00 8.93 21.97 50.69
    conversion
    rate
    Trans-2- 70.59 73.57 77.53 77.92 49.29 53.64 4.01 28.93 41.46
    butene
    conversion
    rate
    Cis-3- 80.33 78.93 84.47 84.85 57.57 62.86 4.59 27.15 58.74
    butene
    conversion
    rate
    1,3- 85.98 88.25 89.71 89.75 86.72 80.00 31.04 45.04 88.39
    butadiene
    selectivity
    1,3- 64.71 66.88 72.06 72.68 46.51 45.85 1.62 12.19 42.75
    butadiene
    yield
  • From Table 2, it can be confirmed that, in Examples 1 to 5 according to the present invention, all of butene conversion rate, butadiene selectivity, and yield are superior. In addition, it can be confirmed that, when a mole ratio of iron (Fe) to zinc (Zn) is increased during preparation of a catalyst, an α-iron oxide content in the catalyst increases (see Table 1), and thus, butene conversion rate, butadiene selectivity, and yield tend to increase in specific ranges. From these results, it can be confirmed that butene conversion rate, butadiene selectivity, and yield are improved by adjusting a mole ratio of zinc to iron in a predetermined range to control the phase of the zinc ferrite catalyst.
  • On the other hand, it can be confirmed that, in the case of Comparative Example 1 wherein a basic aqueous solution was added batchwise and a conventional method of adjusting pH of a coprecipitation solution was used, butene conversion rate, butadiene selectivity, and yield are poor despite a mole ratio of Fe:Zn being the same as in Example 1 of the present invention.
  • In addition, it can be confirmed that, in the case of Comparative Example 2 wherein the aqueous metal precursor solution and the basic aqueous solution were dually added according to the method of the present invention, but iron (Fe) and zinc (Zn) were mixed in a low mole ratio of about 1.33, zinc oxide was generated and, as a result, butene conversion rate, butadiene selectivity, and yield are very poor.
  • Further, it can be confirmed that, also in the case of Comparative Example 3 wherein a catalyst was prepared only using the aqueous iron precursor solution, butene conversion rate, butadiene selectivity, and yield are very poor. In addition, it can be confirmed that, also in the case of Comparative Example 4 wherein a pellet-type zinc ferrite catalyst generally used for oxidative dehydrogenation was used, butene conversion rate, butadiene selectivity, and yield are poor despite of a mole ratio of Fe Zn being the same as in Example 1 of the present invention.
  • Additional Experimental Example I
  • Using catalysts prepared according to Example 6 and Comparative Example 5 below, butadiene was synthesized according to the aforementioned method.
  • Example 6
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, 18.5 g of manganese chloride (MnCl2) and 50.7 g of ferric chloride (FeCl3) were dissolved in distilled water to prepare an aqueous metal precursor solution including the metal ingredients in a mole ratio of Fe:Mn=2:1, and the prepared aqueous metal precursor solution was used in an amount of 904.7 g. Here, a butene conversion rate was 22.66%, a 1-butene conversion rate was 27.36%, a trans-2-butene conversion rate was 20.27%, a cis-2-butene conversion rate was 23.15%, a 1,3-butadiene selectivity was 28.68%, and a 1,3-butadiene yield was 6.50%.
  • Comparative Example 5
  • A pellet-type manganese ferrite catalyst including metal ingredients in a mole ratio of Fe:Mn=2:1 (MnFe2O4: 99.5%, manufactured by KOJUNDO CHEMICAL LABORATORY CO., LTD.) was used. Here, a butene conversion rate was 17.31%, a 1-butene conversion rate was 20.38%, a trans-2-butene conversion rate was 14.72%, a cis-2-butene conversion rate was 19.54%, a 1,3-butadiene selectivity was 15.22%, and a 1,3-butadiene yield was 2.63%.
  • As observed in Example 6 and Comparative Example 5, it can be confirmed that the catalyst prepared according to the present invention exhibits superior butene conversion rate, butadiene selectivity, and yield, compared to the pellet-type manganese ferrite catalyst having the same metal ingredient ratio generally used for oxidative dehydrogenation.
  • From these results, the present inventors confirmed that, when a metal oxide catalyst for oxidative dehydrogenation is prepared by a precipitation method, the pH of a coprecipitate is more stably controlled and the phase of a metal oxide catalyst prepared from the coprecipitate is controlled, by dually adding an aqueous metal oxide precursor solution and a basic aqueous solution dropwise to a coprecipitation tank containing a basic aqueous solution that has been adjusted to a specific pH, whereby a catalyst for oxidative dehydrogenation providing improved conjugated diene selectivity and yield is generated.
  • Additional Experimental Example II
  • Butadiene was synthesized as described above, except that a catalyst prepared according to Example 7 below was used and ratios of reactants among experimental conditions were set as follows: a mole ratio of oxygen/butene: 0.75, a mole ratio of steam/butene: 15, and a mole ratio of nitrogen/butene: 3. Results are summarized in Table 3 below. In addition, a catalyst prepared according to Example 1 was used to prepare butadiene under these condition for comparison with Example 7. Results are summarized in Table 3 below.
  • Example 7
  • An experiment was carried out in the same manner as in Example 1, except that, in step 1, nitrate instead of chloride, as a metal precursor, was used in the same molar amount as the chloride. A phase of a prepared catalyst was composed of 78% by weight of ZnFe2O4 and 22% by weight of α-Fe2O3, a BET surface area (m2/g) thereof was 4.7, and a crystallite size D*(nm) thereof was 71. On the other hand, a phase of the catalyst prepared according to Example 1 was composed of 85% ZnFe2O4 and 15% α-Fe2O3, an Fe/Zn (mol/mol) ratio thereof was 2.5, a BET surface area (m2/g) thereof was 6.6, and a crystallite size D*(nm) thereof was 73.
  • TABLE 3
    Examples
    Classification
    1 7
    Mole ratio between 2:1 2:1
    metals
    % by weight of 85 78
    ZnFe2O4
    % by weight of α- 15 22
    Fe2O3
    % by weight of ZnO
    Butene conversion 82.9 81.7
    rate
    1-butene conversion 84.10 84.09
    rate
    Trans-2-butene 80.90 83.37
    conversion rate
    Cis-3-butene 85.79 84.33
    conversion rate
    1,3-butadiene 89.3 89.2
    selectivity
    1,3-butadiene yield 74.0 72.9
  • As shown in Table 3, it can be confirmed that, in the case of Example 7 in which a nitrate-based metal precursor was used instead of chloride, a butene conversion rate and a 1,3-butadiene yield are slightly decreased, compared to Example 1 wherein a chloride-based metal precursor was used.
  • Additional Experimental Example III Example 8
  • A catalyst for oxidative dehydrogenation was prepared in the same manner as in Example 1, except that, in step 2, 28% by weight of an aqueous ammonia solution at pH 9.0 was used and the pH of a coprecipitation solution in a coprecipitation tank was maintained at 9.0. A prepared catalyst was used to synthesize butadiene in the same manner as described above, except that ratios of reactants were set as follows: a mole ratio of oxygen/butene: 0.75, a mole ratio of steam/butene: 15, and a mole ratio of nitrogen/butene: 3. Here, a butene conversion rate was 83.2%, a 1-butene conversion rate was 84.79%, a trans-2-butene conversion rate was 80.99%, a cis-3-butene conversion rate was 86.02%, a 1,3-butadiene selectivity was 90.8%, and a 1,3-butadiene yield was 75.5%. From these results, it can be confirmed that, in the case of Example 8 wherein coprecipitation was carried out at pH 9.0, a butene conversion rate and a 1,3-butadiene yield are somewhat increased, compared to Example 1 in which coprecipitation was carried out at pH 9.5.

Claims (16)

1. A method of preparing a catalyst for oxidative dehydrogenation, the method comprising:
(a) a step of preparing an aqueous precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in water in a mole ratio (Fe/A) of 2 to 10;
(b) a step of constantly maintaining pH of a coprecipitation solution by, when the aqueous precursor solution is fed dropwise into a coprecipitation tank in which a basic aqueous solution is prepared, feeding a basic aqueous solution identical to or different from the basic aqueous solution dropwise along with the aqueous precursor solution; and
(c) a step of obtaining a coprecipitate by filtering the coprecipitation solution.
2. The method according to claim 1, further comprising drying; firing; or drying and firing the coprecipitate obtained in step (c).
3. The method according to claim 1, wherein the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor of step (a) are each independently a nitrate, an ammonium salt, a sulfate, or a chloride.
4. The method according to claim 1, wherein the divalent cation metal (A) is one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co).
5. The method according to claim 1, wherein the aqueous precursor solution has a concentration of 5% by weight to 10% by weight.
6. The method according to claim 1, wherein the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor are comprised in a mole ratio (Fe/A) of 2 to 6 in the aqueous precursor solution.
7. The method according to claim 1, wherein the aqueous precursor solution is prepared by dissolving 4% by weight or more and less than 10% by weight of a trivalent cation iron (Fe) precursor and 0.5% by weight or more and less than 10% by weight of a divalent cation metal precursor in greater than 80% by weight and 95.5% by weight or less of distilled water.
8. The method according to claim 1, wherein, in step b, pH of each of the basic aqueous solutions is 9 to 10.
9. The method according to claim 1, wherein, in step b, the basic aqueous solutions are each independently an aqueous sodium hydroxide solution or an aqueous ammonia solution.
10. The method according to claim 1, wherein, in step b, the aqueous precursor solution and the basic aqueous solution are added dropwise from separate outlets.
11. The method according to claim 1, wherein, in step b, the aqueous precursor solution is fed dropwise into the coprecipitation tank at a rate of 40 g/min or more.
12. The method according to claim 1, wherein, in step b, pH of the coprecipitation solution is maintained at greater than 8 and less than 11.
13. The method according to claim 1, wherein step b further comprises a step of stirring the coprecipitation solution to which the aqueous precursor solution has been added.
14. A catalyst for oxidative dehydrogenation, the catalyst comprising an AFe2O4 structure; and an Fe2O3 structure,
wherein A is one or more selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co), and
a content of the AFe2O4 structure is 38 to 85% by weight, and a content of the Fe2O3 structure is 15 to 62% by weight.
15. The catalyst according to claim 14, wherein the catalyst has a crystallite size (D) of 50 nm or more, as measured by XRD.
16. The catalyst according to claim 14, wherein the catalyst has a BET surface area of 4.0 m2/g or more, as measured by a BET method.
US15/744,721 2016-03-18 2017-03-15 Method of preparing catalyst for oxidative dehydrogenation Active US10926246B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0032647 2016-03-18
KR20160032647 2016-03-18
KR2017-0030425 2017-03-10
KR1020170030425A KR101973614B1 (en) 2016-03-18 2017-03-10 Method of preparing catalyst for oxidative dehydrogenation
KR10-2017-0030425 2017-03-10
PCT/KR2017/002778 WO2017160071A1 (en) 2016-03-18 2017-03-15 Method for preparing catalyst for oxidative dehydrogenation

Publications (2)

Publication Number Publication Date
US20180207621A1 true US20180207621A1 (en) 2018-07-26
US10926246B2 US10926246B2 (en) 2021-02-23

Family

ID=60036250

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/744,721 Active US10926246B2 (en) 2016-03-18 2017-03-15 Method of preparing catalyst for oxidative dehydrogenation

Country Status (4)

Country Link
US (1) US10926246B2 (en)
EP (1) EP3308855B1 (en)
KR (1) KR101973614B1 (en)
CN (1) CN107847923B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11865522B2 (en) 2019-09-27 2024-01-09 Lg Chem, Ltd. Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229193B1 (en) * 2017-05-04 2021-03-17 주식회사 엘지화학 Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and method for preparing butadiene using the same catalyst

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595810A (en) * 1969-06-24 1971-07-27 Gulf Research & Chemical Co Zinc chromium ferrite catalyst
CN1088624C (en) * 1996-09-25 2002-08-07 中国科学院兰州化学物理研究所 Iron group catalyst for producing butadiene by oxidative dehydrogenation of bytylene
KR100847206B1 (en) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR100950373B1 (en) 2007-10-02 2010-03-29 에스케이에너지 주식회사 Method of Preparing Zinc Ferrite Catalysts using Buffer Solution and Method of Preparing 1,3-Butadiene Using Said Catalysts
KR101713328B1 (en) * 2010-07-20 2017-03-08 에스케이이노베이션 주식회사 Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
US8551443B2 (en) * 2010-09-02 2013-10-08 Saudi Basic Industries Corporation Modified zinc ferrite catalyst and method of preparation and use
CN103055871B (en) * 2011-10-24 2015-07-01 中国石油化工股份有限公司 Method for preparing butadiene from C4 aliphatic hydrocarbons by oxidative dehydrogenation and catalyst used by same
CN103102238B (en) * 2011-11-14 2014-12-17 中国石油化工股份有限公司 Method for producing butadiene by oxidatively dehydrogenating butene and used catalyst
CN104001533B (en) 2013-02-25 2016-08-03 中国科学院金属研究所 The based structuring catalyst of a kind of foam silicon carbon and the application in preparing butadiene
JP6195246B2 (en) 2014-03-05 2017-09-13 Jxtgエネルギー株式会社 Method for producing ferrite-based catalyst for dehydrogenation of butene
CN105236454A (en) * 2015-09-14 2016-01-13 中国矿业大学 Method and apparatus for synthesizing hydrotalcite-like material by using coal gasification furnace residue as aluminum source
KR102017207B1 (en) * 2015-12-09 2019-09-02 주식회사 엘지화학 Catalyst for oxidative dehydrogenation and method for preparing the catalyst
KR102001144B1 (en) * 2016-03-04 2019-07-17 주식회사 엘지화학 Ferritic catalyst composite, method for preparing ferritic oxide catalyst composite and butadiene
KR101933480B1 (en) * 2016-03-25 2018-12-31 주식회사 엘지화학 Catalyst for oxidative dehydrogenation and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11865522B2 (en) 2019-09-27 2024-01-09 Lg Chem, Ltd. Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby

Also Published As

Publication number Publication date
KR20170108843A (en) 2017-09-27
CN107847923A (en) 2018-03-27
US10926246B2 (en) 2021-02-23
EP3308855B1 (en) 2021-02-24
EP3308855A1 (en) 2018-04-18
CN107847923B (en) 2020-08-07
EP3308855A4 (en) 2018-07-11
KR101973614B1 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
KR100888143B1 (en) Mixed manganese ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20120009687A (en) Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
US11040335B2 (en) Method for manufacturing zinc ferrite catalyst and zinc ferrite catalyst manufactured thereby
US10926246B2 (en) Method of preparing catalyst for oxidative dehydrogenation
CN108473388B (en) Method for preparing butadiene with catalyst reproducibility
US10543478B2 (en) Catalyst for oxidative dehydrogenation and method of preparing the same
US10486150B2 (en) Catalyst for oxidative dehydrogenation and method of preparing the same
US11731093B2 (en) Catalyst loading method and method for preparation of butadiene by using same
KR102229193B1 (en) Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and method for preparing butadiene using the same catalyst
JP6790319B2 (en) A method for producing a catalyst for an oxidative dehydrogenation reaction and a method for oxidative dehydrogenation using the catalyst.
KR102253420B1 (en) Catalyst for oxidative dehydrogenation and method of preparing the same
KR20190005521A (en) Method for preparing catalyst for oxidative dehydrogenation reaction and method for preparing butadiene using the same catalyst
EP3957396A1 (en) Method for producing catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction, and method for producing butadiene using same
KR102216767B1 (en) Method for preparing metal complex catalyst and metal complex catalyst prepared thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAN, JUN KYU;KO, DONG HYUN;CHA, KYONG YONG;AND OTHERS;REEL/FRAME:044614/0694

Effective date: 20170830

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE