US20180207173A1 - Administration of aurora kinase inhibitor and chemotherapeutic agents - Google Patents

Administration of aurora kinase inhibitor and chemotherapeutic agents Download PDF

Info

Publication number
US20180207173A1
US20180207173A1 US15/746,008 US201615746008A US2018207173A1 US 20180207173 A1 US20180207173 A1 US 20180207173A1 US 201615746008 A US201615746008 A US 201615746008A US 2018207173 A1 US2018207173 A1 US 2018207173A1
Authority
US
United States
Prior art keywords
cancer
administered
alisertib
day
cisplatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/746,008
Inventor
Jeffrey A. ECSEDY
Mengkun Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Pharmaceuticals Inc
Original Assignee
Millennium Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharmaceuticals Inc filed Critical Millennium Pharmaceuticals Inc
Priority to US15/746,008 priority Critical patent/US20180207173A1/en
Publication of US20180207173A1 publication Critical patent/US20180207173A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • This present disclosure relates to oncology and to methods for the treatment of cancer.
  • the present disclosure provides methods for treatment of various cancers by administering an Aurora kinase inhibitor in combination with one or more chemotherapeutic agents.
  • Cancer is the second most common cause of death in the U.S. and accounts for one of every eight deaths globally (American Cancer Society, Cancer Facts and Figures, 2014). The American Cancer Society expects that in 2014 at least 1,665,540 new cancer cases will be diagnosed in the US and 585,720 Americans are expected to die of cancer, almost 1,600 people per day.
  • Currently available paradigms for treating solid tumors may include systemic treatment such as chemotherapy, hormonal therapy, use of targeted agents and biological agents, either as single agents or in combination. These treatments can be delivered in combination with localized treatments such as surgery or radiotherapy.
  • anti-cancer paradigms can be use in the curative setting as adjuvant or neo-adjuvant treatments or in the metastatic setting as palliative case for prolonged survival and to help manage symptoms and side-effects.
  • stem cell transplants may also be an option in certain cancers as well as chemotherapy and/or radiation.
  • Cancer is characterized by uncontrolled cell reproduction. Uncontrolled cell reproduction results from the deregulation of the normal processes that control cell division, differentiation and apoptotic cell death.
  • Mitosis is a stage in the cell cycle during which a series of complex events ensure the fidelity of chromosome separation into two daughter cells. Mitotic progression is largely regulated by proteolysis and by phosphorylation events that are mediated by mitotic kinases.
  • Aurora kinase family members e.g., Aurora A, Aurora B regulate mitotic progression through modulation of centrosome separation, spindle dynamics, spindle assembly checkpoint, chromosome alignment/segregation, and cytokinesis.
  • Aurora kinases Overexpression and/or amplification of Aurora kinases have been linked to oncogenesis in several tumor types including those of colon and breast. Moreover, Aurora kinase inhibition in tumor cells results in mitotic arrest and apoptosis, suggesting that these kinases are important targets for cancer therapy.
  • New combinations of therapeutic agents that provide a beneficial effect in the treatment of cancers are desirable in order to prolong patient's lives while maintaining a high quality of life. Further, new combinations may provide an increased benefit as compared to each of the agents alone. This is especially true in the case where the cancers may be resistant or refractory to currently available therapeutic regimens.
  • the present disclosure relates to methods of treating cancer comprising administering an Aurora kinase inhibitor and a platin in combination to a patient in need of such treatment.
  • the Aurora kinase inhibitor is 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoic acid (alisertib (MLN8237)) of formula (I), or a pharmaceutically acceptable salt thereof:
  • the Aurora kinase inhibitor is sodium 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoate of formula (II), or a crystalline form thereof:
  • the present disclosure relates to methods of treating cancer comprising administering 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof and a platin in combination to a patient in need of such treatment, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer.
  • the present disclosure relates to a kit comprising a medicament for use in treating cancer in a subject in need of such treatment.
  • the kit comprises a medicament comprising an Aurora kinase inhibitor, and instructions for administering the Aurora kinase inhibitor and a platin; or the kit comprises a medicament comprising a platin, and instructions for administering the platin and an Aurora kinase inhibitor.
  • the kit can contain both a medicament comprising an Aurora kinase inhibitor and a medicament comprising a platin, and instructions for administering the Aurora kinase inhibitor and the platin.
  • the present disclosure relates to a medicament for use in treating cancer in a subject in need of such treatment.
  • the medicament comprises an Aurora kinase inhibitor and a platin.
  • FIG. 1 shows the anti-tumor activity of alisertib and carboplatin in the NCI-H82 xenograft model.
  • FIG. 2 shows the anti-tumor activity of alisertib and cisplatin in the NCI-H82 xenograft model.
  • FIG. 3 shows the anti-tumor activity of alisertib and cisplatin in the NCI-69 xenograft model.
  • cancer refers to a cellular disorder characterized by uncontrolled or dysregulated cell proliferation, decreased cellular differentiation, inappropriate ability to invade surrounding tissue, and/or ability to establish new growth at ectopic sites.
  • cancer includes solid tumors and hematological tumors.
  • cancer encompasses diseases of skin, tissues, organs, bone, cartilage, blood, and vessels.
  • cancer further encompasses primary and metastatic cancers.
  • clinical effective amount means an amount of a therapeutic substance that is sufficient upon appropriate administration to a patient (a) to cause a detectable decrease in the severity of the disorder or disease state being treated; (b) to ameliorate or alleviate the patient's symptoms of the disease or disorder; or (c) to slow or prevent advancement of, or otherwise stabilize or prolong stabilization of, the disorder or disease state being treated (e.g., prevent additional tumor growth of a cancer).
  • the “clinically effective total amount” means that the sum of the individual amounts of each therapeutic substance meets the definition of “clinically effective amount” even if the individual amounts of any number of the individual therapeutic substances would not. For example, if 10 mg of A were not a clinically effective amount, and 20 mg of B were not a clinically effective amount, but the administration of 10 mg A+20 mg B resulted in at least one of the results enumerated for the definition of “clinically effective amount”, then the sum of 10 mg A+20 mg B would be considered a “clinically effective total amount”.
  • the administered dose(s) or the clinically effective (total) amount can be expressed as amount(s) of therapeutic substance(s) per patient as either based on (i) BSA, e.g., as mg/m 2 , or (ii) amount e.g. as mg.
  • patient means a human being diagnosed with, exhibiting symptoms of or otherwise believed to be afflicted with a disease, disorder or condition.
  • body surface area is calculated using a standard nomogram, e.g.,
  • dosing for carboplatin is based upon an estimate of the GFR (glomerular filtration rate) and the desired level of drug exposure, according to the area under the curve of concentration ⁇ time (AUC, mg/mL ⁇ min), rather than the more common dosing calculation based upon the body surface area (mg/m 2 ).
  • GFR glomerular filtration rate
  • AUC concentration ⁇ time
  • the estimation of the GFR is based upon a calculation of creatinine clearance according to the Cockcroft-Gault Equation (Cockcroft D W, Gault M H. Prediction of creatinine clearance from serum creatinine Nephron. 1976; 16(1):31-41):
  • Creatinine Clearance 0.85 (140 ⁇ age [years] ⁇ weight [kg])/72 ⁇ (serum creatinine [mg/dL]).
  • the illustrative terms “include”, “such as”, “for example” and the like (and variations thereof, e.g., “includes” and “including”, “examples”), unless otherwise specified, are intended to be non-limiting. That is, unless explicitly stated otherwise, such terms are intended to imply “but not limited to”, e.g., “including” means including but not limited to.
  • structures depicted herein are meant to include chemical entities which differ only in the presence of one or more isotopically enriched atoms.
  • chemical entities having the present structure except for the replacement of a hydrogen atom by a deuterium or tritium, or the replacement of a carbon atom by a 13 C- or 14 C-enriched carbon are within the scope of the invention.
  • stereochemical configuration is denoted, structures depicted herein are meant to include all stereochemical forms of the structure, i.e., the R and S configurations for each asymmetric center. Therefore, unless otherwise indicated, single stereochemical isomers as well as enantiomeric, racemic and diastereomeric mixtures of the present chemical entities are within the scope of the invention.
  • the diastereoisomeric or enantiomeric excess of the compound is at least 99.0%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9%.
  • the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of an Aurora kinase inhibitor or pharmaceutically acceptable salt thereof and a platin.
  • the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of an Aurora kinase inhibitor or pharmaceutically acceptable salt thereof and a platin, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer.
  • Aurora kinase inhibitors include the compounds described herein, as well as compounds disclosed in, for example, WO 05/111039, US 2005/0256102, US 2007/0185087, WO 08/021038, US 2008/0045501, WO 08/063525, US 2008/0167292, WO 07/113212, EP 1644376, US 2005/0032839, WO 05/005427, WO 06/070192, WO 06/070198, WO 06/070202, WO 06/070195, WO 06/003440, WO 05/002576, WO 05/002552, WO 04/071507, WO 04/058781, WO 06/055528, WO 06/055561, WO 05/118544, WO 05/013996, WO 06/036266, US
  • Aurora kinase inhibitors can be prepared in a number of ways well known to one skilled in the art of organic synthesis, including, but not limited to, the methods of synthesis described in detail in the above references.
  • the Aurora kinase inhibitor is a small molecular weight compound.
  • the Aurora kinase inhibitor include the compounds described herein, as well as compounds disclosed in, for example, US 2008/0045501, U.S. Pat. No. 7,572,784, WO 05/111039, WO 08/021038, U.S. Pat. No. 7,718,648, WO 08/063525, US 2008/0167292, U.S. Pat. No.
  • the Aurora kinase inhibitor is an Aurora A kinase inhibitor.
  • Aurora A kinase inhibitors can be assayed in vitro or in vivo for their ability to selectively bind to and/or inhibit an Aurora A kinase.
  • In vitro assays include assays to determine selective inhibition of the ability of an Aurora A kinase to phosphorylate a substrate protein or peptide. Alternate in vitro assays quantitate the ability of the compound to selectively bind to an Aurora A kinase. Selective inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/Aurora A kinase complex and determining the amount of radiolabel bound.
  • selective inhibitor binding may be determined by running a competition experiment in which new inhibitors are incubated with Aurora A kinase bound to a known radioligand.
  • the compounds also can be assayed for their ability to affect cellular or physiological functions mediated by Aurora A kinase activity.
  • inhibitors can also be assayed in vitro and in vivo for their ability to selectively bind to and/or inhibit an Aurora B kinase, using assays analogous to those described above for Aurora A kinase.
  • Inhibitors can be assayed in vitro and in vivo for their ability to inhibit Aurora A kinase in the absence of Aurora B kinase inhibition, by immunofluorescent detection of pHisH3. ( Proc. Natl. Acad. Sci. (2007) 104, 4106). Assays for each of these activities are known in the art.
  • the Aurora kinase inhibitor is 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoic acid (alisertib (MLN8237)) of formula (I), or a pharmaceutically acceptable salt thereof:
  • a pharmaceutically acceptable salt of formula (I) is sodium 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoate of formula (II), or a crystalline form thereof:
  • the compound of formula (II) is sodium 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoate. In some embodiments, the compound of formula (II) is sodium 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoate monohydrate.
  • the compound of formula (II) is sodium 4- ⁇ [9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino ⁇ -2-methoxybenzoate polymorph Form 2, as described in US2008/0167292, U.S. Pat. No. 8,026,246, and US 2011/0245234, each of which is hereby incorporated by reference in their entirety.
  • Platinum containing chemotherapeutic agents include agents such as cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin and triplatin. Platinum containing chemotherapeutic agents cause crosslinking of DNA as monoadduct, interstrand crosslinks, intrastrand crosslinks or DNA protein crosslinks. The resulting crosslinking inhibits DNA repair and/or DNA synthesis in cancer cells. These agents are sometimes described as being alkylating-like agents despite the fact that they do not have an alkyl group. Cisplatin was the first platinum containing compound to be discovered and was first approved by the U.S. Food and Drug Administration in 1978. Carboplatin was introduced in the 1980s and has been demonstrated to have lower side-effects than cisplatin in ovarian cancer and lung cancer (Hartmann and Lipp, Exper. Opin. Pharmacother. 2003, 4(6) 889-901).
  • the platin is cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin or triplatin. In some embodiments, the platin is nedaplatin, cisplatin, carboplatin or oxaliplatin. In some embodiments, the platin is cisplatin, carboplatin or oxaliplatin. In some embodiments, the platin is cisplatin or carboplatin. In some embodiments, the platin is cisplatin. In some embodiments, the platin is carboplatin.
  • the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof and a platin.
  • the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in combination with a platin for the treatment of cancer.
  • the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in combination with a platin in the manufacture of a medicament for use in treating cancer.
  • the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in the manufacture of a medicament for treating cancer, wherein alisertib or a pharmaceutically acceptable salt thereof is administered with a platin.
  • the present disclosure relates to a kit for treating cancer comprising at least one medicament comprising at least one dose of alisertib or a pharmaceutically acceptable salt thereof, and at least one medicament comprising at least one dose of a platin, said kit for treating cancer further comprising dosing instructions for administering the medicaments for treatment of the subject in recognized need thereof.
  • Alisertib or a pharmaceutically acceptable salt thereof can be administered in combination with the platin in a single dosage form or as a separate dosage forms.
  • the platin when administered as a separate dosage form, can be administered prior to, at the same time as, or following administration of alisertib.
  • one or more doses of alisertib or a pharmaceutically acceptable salt thereof may be administered prior to the platin.
  • the platin is administered prior to the administration of alisertib or a pharmaceutically acceptable salt thereof.
  • the administration in “combination” of alisertib and a platin refers not only to simultaneous or sequential administration of the two agents, but also to the administration of both compounds during a single treatment cycle, as understood by one skilled in the art.
  • alisertib or a pharmaceutically acceptable salt thereof is administered in combination with the platin a clinically effective total amount is administered.
  • the Aurora kinase inhibitor can be administered by any method known to one skilled in the art.
  • the Aurora kinase inhibitor can be administered in the form of a second composition, in some embodiments a pharmaceutical composition of the Aurora kinase inhibitor and a pharmaceutically acceptable carrier, such as those described herein.
  • the pharmaceutical composition is suitable for oral administration.
  • the pharmaceutical composition is a tablet for oral administration, such as an enteric coated tablet. Such tablets are described in US 2010/0310651, which is hereby incorporated by reference in its entirety.
  • the pharmaceutical composition is a liquid dosage form for oral administration. Such liquid dosage forms are described in US 2011/0039826, hereby incorporated by reference.
  • these compositions optionally further comprise one or more additional therapeutic agents.
  • the platin is administered intravenously (IV).
  • the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and a further therapeutic agent.
  • the further therapeutic agent is a taxane.
  • Taxanes are diterpenes produced by the plants of the genus Taxus (yew trees). Taxanes were first discovered and isolated from this natural source but are mostly now produced by synthetic or semi-synthetic methods. The principle mechanism by which taxanes exert their effect is the disruption of microtubule function during cell division, thereby preventing effective growth and division of cancer cells.
  • Taxane agents include paclitaxel, docetaxel and nab-paclitaxel. In some embodiments, the taxane is paclitaxel. In some embodiments, the taxane is docetaxel.
  • the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and paclitaxel. In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and a docetaxel.
  • the cancer is a solid tumor.
  • solid tumors include pancreatic cancer; bladder cancer, including invasive bladder cancer; colorectal cancer; thyroid cancer; gastric cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; renal cancer, including, e.g., metastatic renal cell carcinoma; liver cancer including e.g.
  • lung and bronchus cancer including non-small cell lung cancer (NSCLC), squamous lung cancer, brochioloalveolar carcinoma (BAC), adenocarcinoma of the lung, and small cell lung cancer (SCLC); ovarian cancer including, e.g., progressive epithelial and primary peritoneal cancer; cervical cancer; uterine cancer including e.g.
  • uterine corpus and uterine cervix endometrial cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck, nasopharyngeal caner, oral cavity and pharynx; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain cancer, including, e.g., glioma/glioblastoma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; bone cancer; gastro-esophageal junction cancer, and soft tissue sarcoma.
  • brain cancer including, e.g., glioma/glioblastoma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocyto
  • the cancer is breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, gastric cancer, or head and neck cancer. In some embodiments, the cancer is breast cancer, colorectal cancer, ovarian cancer, ganstric cancer, or lung cancer. In some embodiments, the cancer is breast cancer, gastric cancer, or small cell lung cancer. In some embodiments, the cancer is gastric cancer, or small cell lung cancer.
  • the cancer is lung cancer.
  • Lung cancer includes different sub-types such as small cell lung cancer (SCLC); non-small cell lung cancer (NSCLC) including squamous NSCLC; bronchioloalveolar carcinoma (BAC); and adenocarcinoma.
  • SCLC small cell lung cancer
  • NSCLC non-small cell lung cancer
  • BAC bronchioloalveolar carcinoma
  • adenocarcinoma adenocarcinoma.
  • the cancer is small cell lung cancer.
  • the cancer is non-small cell lung cancer.
  • the cancer is breast cancer.
  • Breast cancer includes different sub-types such as luminal A, luminal B, triple-negative (basal-like) and HER-2 type.
  • the cancer is triple-negative breast cancer.
  • the cancer is ovarian cancer.
  • Ovarian cancer includes different sub-types such as epithelial, germ-cell and sex-cord stromal.
  • Primary peritoneal carcinoma is a related cancer that starts in the lining of the pelvis and abdomen.
  • the cancer is epithelial ovarian cancer.
  • the cancer is prostate cancer.
  • Prostate cancer includes androgen-dependent and androgen independent prostate cancer and adenocarcinomas.
  • the cancer is gastric cancer.
  • Adenocarcinoma is the most common type of gastric cancer.
  • Other gastric cancers may include gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, and lymphomas.
  • the cancer is esophageal cancer.
  • esophageal cancer The most common types of esophageal cancer are squamous cell carcinoma and adenocarcinoma.
  • Gastro-esophageal cancer is a related cancer that develops at the point where the esophagus joins the stomach.
  • the cancer is colorectal cancer.
  • Adenocarcinoma is the most common type of colorectal cancer.
  • Other colorectal cancers may include gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, and squamous cell carcinoma.
  • the cancer is head and neck cancer.
  • Head and neck cancer are those that arise in the head and neck region and the cancer may be found in areas such as nasal cavities, sinuses, lips, mouth, salivary glands, pharynx or larynx. 90% of head and neck cancers are squamous cell carcinomas (SCCHN), which originate from the mucosal lining (epithelium) of these regions.
  • SCCHN squamous cell carcinomas
  • the cancer is a hematological cancer. In some embodiments, the cancer is multiple myeloma, Hodgkin's lymphoma, or non-Hodgkin's lymphoma.
  • the cancer is relapsed.
  • relapsed cancer is cancer which has returned after a period of time in which no cancer could be detected.
  • the cancer is refractory. In one aspect, refractory cancer does not respond to cancer treatment; it is also known as resistant cancer. In some embodiments, the cancer is resistant to a platin. In some embodiments, the cancer does not respond to the treatment of a platin. In some embodiments, the cancer is platin-resistant recurrent cancer. In some embodiments, the patient has become refractory to a platin-containing regimen. In some embodiments, the tumor is unresectable. In one aspect, an unresectable tumor is unable to be removed by surgery. In some embodiments, the cancer has not been previously treated. In some embodiments, the cancer is locally advanced. In one aspect, “locally advanced” refers to cancer that is somewhat extensive but still confined to one area.
  • “locally advanced” can refer to a small tumor that hasn't spread but has invaded nearby organs or tissues that make it difficult to remove with surgery alone.
  • the cancer is metastatic.
  • metastatic cancer is a cancer that has spread from the part of the body where it started (the primary site) to other parts of the body.
  • the cancer is an Aurora kinase-mediated disorder. In some embodiments, the cancer is an Aurora A kinase-mediated disorder.
  • alisertib or a pharmaceutically acceptable salt thereof is administered 3 days on and 4 days off for 3 weeks of a 4 week cycle (e.g., 28-days). In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on a 28-day cycle in which alisertib or a pharmaceutically acceptable salt thereof is administered on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28-day cycle. In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered twice-daily on a 28-day cycle in which alisertib or a pharmaceutically acceptable salt thereof is administered on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28-day cycle.
  • suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 20 mg to about 120 mg per day.
  • Other suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 30 mg to about 90 mg per day.
  • Other suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 40 mg to about 80 mg per day.
  • the suitable dosages are from about 10 mg to about 50 mg per dose given twice daily. In some embodiments, the suitable dosages are from about 15 mg to about 50 mg per dose given twice daily. In some other embodiments, the suitable dosages are from about 25 mg to about 40 mg per dose given twice daily. In certain other embodiments, suitable dosages are about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, or about 60 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 15 mg per dose given twice daily.
  • the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 20 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 25 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 30 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 35 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 40 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 50 mg per dose given twice daily.
  • a platin is administered on day 1 of a 21 day schedule. In some embodiments, a platin is administered on day 1 of a 28 day schedule. In some embodiments, a platin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, a platin is administered on each of days 1, 8, and 15 of a 28 day schedule.
  • carboplatin is administered on day 1 of a 21 day schedule. In some embodiments, the amount of carboplatin that is administered on day 1 of a 21 day schedule is AUC 6 (calculated as per the Calvert calculation above). In some embodiments, the amount of carboplatin that is administered on day 1 of a 21 day schedule is AUC 5.
  • carboplatin is administered on day 1 of a 28 day schedule. In some embodiments, the amount of carboplatin that is administered on day 1 of a 28 day schedule is AUC 6 (calculated as per the Calvert calculation above). In some embodiments, the amount of carboplatin that is administered on day 1 of a 28 day schedule is AUC 5.
  • carboplatin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, the amount of carboplatin that is administered on each of days 1, 8, and 15 of a 21 day schedule is AUC 2-6.
  • carboplatin is administered on each of days 1, 8, and 15 of a 28 day schedule. In some embodiments, the amount of carboplatin that is administered on each of days 1, 8, and 15 of a 28 day schedule is AUC 2-6.
  • cisplatin is administered on day 1 of a 21 day schedule. In some embodiments, the amount of cisplatin administered on day 1 of a 21 day schedule is about 75 mg/m 2 to about 100 mg/m 2 . In some embodiments, the amount of cisplatin administered on day 1 of a 21 day schedule is about 50 mg/m 2 to about 70 mg/m 2 .
  • cisplatin is administered on day 1 of a 28 day schedule. In some embodiments, the amount of cisplatin administered on day 1 of a 28 day schedule is about 75 mg/m 2 to about 100 mg/m 2 . In some embodiments, the amount of cisplatin administered on day 1 of a 28 day schedule is about 50 mg/m 2 to about 70 mg/m 2 .
  • cisplatin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, the amount of cisplatin that is administered on each of days 1, 8, and 15 of a 21 day schedule is about 25 mg/m 2 to about 50 mg/m 2 .
  • cisplatin is administered on each of days 1, 8, and 15 of a 28 day schedule. In some embodiments, the amount of cisplatin that is administered on each of days 1, 8, and 15 of a 28 day schedule is about 25 mg/m 2 to about 50 mg/m 2 .
  • alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and a platin is administered on day 1 of a 28 day schedule.
  • alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and a platin is administered on each of days 1, 8, and 15 of a 28 day schedule.
  • alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and carboplatin is administered on day 1 of a 28 day schedule.
  • alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and cisplatin is administered on day 1 of a 28 day schedule.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and carboplatin or cisplatin.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and a platin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and the platin is administered on day 1 of a 28 day schedule.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and a platin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered from about 15 mg to about 50 mg per dose twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and the platin is administered from about 50 mg/mm 2 to about 70 mg/mm 2 on day 1 of a 28 day schedule.
  • the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered from about 15 mg to about 50 mg per dose twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and cisplatin is administered from about 50 mg/mm 2 to about 70 mg/mm 2 on day 1 of a 28 day schedule.
  • any of therapeutic agents described herein can be in the form of a pharmaceutically acceptable salt.
  • such salts are derived from inorganic or organic acids or bases.
  • suitable salts see, e.g., Berge et al., J. Pharm. Sci., 1977, 66, 1-19 and Remington: The Science and Practice of Pharmacy, 20th Ed., A. Gennaro (ed.), Lippincott Williams & Wilkins (2000).
  • Suitable acid addition salts include acetate, adipate, alginate, aspartate, benzoate, benzene sulfonate, bisulfate, butyrate, citrate, camphorate, camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, lucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate
  • suitable base addition salts include ammonium salts; alkali metal salts, such as sodium and potassium salts; alkaline earth metal salts, such as calcium and magnesium salts; salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine; and salts with amino acids such as arginine, lysine, and the like.
  • “pharmaceutically acceptable carrier” refers to a material that is compatible with a recipient subject (a human) and is suitable for delivering an active agent to the target site without terminating the activity of the agent.
  • the toxicity or adverse effects, if any, associated with the carrier preferably are commensurate with a reasonable risk/benefit ratio for the intended use of the active agent.
  • compositions for use in the methods of the present disclosure can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others.
  • Compositions can be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions.
  • Formulations can contain stabilizers, pH modifiers, surfactants, solubilizing agents, bioavailability modifiers and combinations of these.
  • compositions include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates or carbonates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates or carbonates
  • glycine, sorbic acid, potassium sorbate partial gly
  • compositions are formulated for pharmaceutical administration to a human being.
  • Such compositions can be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intraperitoneal, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intravenously or subcutaneously.
  • the compositions are administered orally.
  • the compositions are administered intravenously.
  • These formulations can be designed to be short-acting, fast-releasing, or long-acting.
  • the compositions can be administered in a local rather than systemic means, such as administration (e.g., by injection) at a tumor site.
  • compositions can be prepared as liquid suspensions or solutions using a liquid, such as an oil, water, an alcohol, and combinations of these. Solubilizing agents such as cyclodextrins can be included. Pharmaceutically suitable surfactants, suspending agents, or emulsifying agents, can be added for oral or parenteral administration. Suspensions can include oils, such as peanut oil, sesame oil, cottonseed oil, corn oil and olive oil. Suspension preparations can also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides.
  • Suspension formulations can include alcohols, such as ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol; ethers, such as poly(ethyleneglycol); petroleum hydrocarbons such as mineral oil and petrolatum; and water.
  • alcohols such as ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol
  • ethers such as poly(ethyleneglycol)
  • petroleum hydrocarbons such as mineral oil and petrolatum
  • Sterile injectable forms of these pharmaceutical compositions can be aqueous or oleaginous suspensions. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or di-glycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • oils such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions can also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • compositions can be formulated for parenteral administration by injection such as by bolus injection or continuous infusion.
  • a unit dosage form for injection can be in ampoules or in multi-dose containers.
  • compositions can be orally administered in any orally acceptable dosage form including capsules, tablets, aqueous suspensions or solutions.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents can also be added.
  • useful diluents include lactose and dried cornstarch.
  • carriers that are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • Coatings may be used for a variety of purposes, e.g., to mask taste, to affect the site of dissolution or absorption, or to prolong drug action. Coatings can be applied to a tablet or to granulated particles for use in a capsule.
  • these pharmaceutical compositions can be administered in the form of suppositories for rectal administration.
  • suppositories for rectal administration.
  • These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions can also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract may be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches can also be used.
  • the pharmaceutical compositions can be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • Carriers for topical administration of the compounds of the present disclosure include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active component(s) suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • the pharmaceutical compositions can be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride.
  • the pharmaceutical compositions can be formulated in an ointment such as petrolatum.
  • compositions can also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and can be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • the methods of the present disclosure further comprise administering a anti-cancer agent.
  • anticancer agent refers to any agent that is administered to a subject with cancer for purposes of treating the cancer.
  • the administration of the further anti-cancer agent includes administration concurrently or sequentially with the combinations of the present disclosure.
  • the further anti-cancer agent can be combined into one composition with the combinations of the present disclosure which is administered to the patient.
  • Non-limiting examples of anti-cancer agents include DNA damaging chemotherapeutic agents such as topoisomerase I inhibitors (e.g., irinotecan, topotecan, camptothecin and analogs or metabolites thereof); topoisomerase II inhibitors (e.g., etoposide, and teniposide); anthracyclines (e.g.
  • doxorubicin, daunorubicin and idarubicin alkylating agents e.g., melphalan, chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, methotrexate, pemetrexed, mitomycin C, and cyclophosphamide
  • DNA intercalators DNA intercalators and free radical generators such as bleomycin
  • nucleoside mimetics e.g., 5-fluorouracil, capecitibine, fludarabine, cytarabine, mercaptopurine, thioguanine, pentostatin, and hydroxyurea).
  • Chemotherapeutic agents that disrupt cell replication include: vincristine, vinblastin, and related analogs; thalidomide, lenalidomide, and related analogs (e.g., CC-5013 and CC-4047); protein tyrosine kinase inhibitors (e.g., imatinib mesylate, erlotonib, crortinib and gefitinib); proteasome inhibitors (e.g., bortezomib); NF- ⁇ B inhibitors, including inhibitors of I ⁇ B kinase; antibodies which bind to proteins overexpressed in cancers and thereby downregulate cell replication (e.g., trastuzumab, panitumumab, rituximab, cetuximab, and bevacizumab); and other inhibitors of proteins or enzymes known to be upregulated, over-expressed or activated in cancers, the inhibition of which downregulates cell replication.
  • alisertib or platin described herein can be manufactured for inclusion in a kit.
  • a “kit” is any article of manufacture (e.g., a package or container) comprising at least one reagent or chemotherapeutic agent.
  • a kit for use in the methods herein can comprise an Aurora kinase inhibitor, such as alisertib or a pharmaceutically acceptable salt thereof.
  • the kit can further include a platin.
  • the kit can include alisertib or a pharmaceutically acceptable salt thereof and carboplatin.
  • the kit can include alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • a kit comprising alisertib or a pharmaceutically acceptable salt thereof and a platin can further include another component or reagent.
  • a reagent in the kit can be a diluent for preparing the alisertib or a pharmaceutically acceptable salt thereof for administration.
  • a reagent in the kit can be a diluent for preparing the platin for administration.
  • a component in the kit can be a vessel for mixing the combination of alisertib and the platin.
  • the kit can include instructions for calculating the dose of each therapeutic component of the kit.
  • the instructions can include the Calvert formula.
  • An 8 mg/mL suspension of alisertib was formulated weekly by adding a half volume of 20% HPBCD in water for injection (WFI) to the alisertib powder, then mixing by vortexing, and sonicating for one minute.
  • the suspension was diluted to 4 mg/mL with 2% sodium bicarbonate (NaHCO 3 ) in WFI.
  • the final composition of the alisertib vehicle was 10% HPBCD/1% NaHCO 3 in WFI.
  • the 4 mg/mL solution was diluted to 2 mg/mL with complete vehicle for the lower dose.
  • the alisertib dosing formulations were stored in brown bottles at room temperature during the dosing period. All alisertib injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.05 mL/10 g body weight.
  • a 10 mg/mL stock solution of carboplatin (Hospira, Inc.) was diluted each day of treatment with saline.
  • Carboplatin injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.10 mL/10 g body weight.
  • Cisplatin Injection PCH PHAMACHEMIE
  • saline 0.8 and 0.4 mg/mL
  • Cisplatin injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.05 mL/10 g body weight.
  • mice are euthanized when their tumor volume reached 10% of their body weight, or when the average tumor volume of a treatment or control group reached approximately 2000 mm 3 . Tumor growth continued to be monitored after the dosing period in some studies. Tumor volumes on study Days 20 or 21 from the day of treatment initiation are shown in Tables 1a, 2a and 3a. Average tumor volume is reported as a function of time for selected arms of selected studies in FIGS. 1, 2 and 3 .
  • Measurements from the day of treatment initiation to Day 20 or Day 21 following treatment initiation are analyzed as specified in Tables below. All tumor volumes have a value of 1 added to them before log 10 transformation. For each animal, the log tumor volume at the day of treatment initiation is subtracted from the log tumor volume on the subsequent days. This difference vs. time is used to calculate an area under the curve (AUC) for each animal using the trapezoid rule. In instances when an animal in a treatment group is removed early from the study, the last observed tumor value is carried forward through all subsequent time points.
  • the synergy score for the combination of agents A and B is defined as
  • AUC AB , AUC A , AUC B , and AUC ctl are the AUC values for animals in the combination group, the A group, the B group, and the control group, respectively.
  • the standard error of the synergy score is computed based on the variation in the AUC values among the animals.
  • a two sided t-test is used to determine if the synergy score is significantly different from zero. If the P-value is above 0.05, then the combination is considered to be additive. If the P-value is below 0.05, and the synergy score is less than zero, then the combination is considered to be synergistic.
  • the combination was sub-additive. If the P-value is below 0.05 and if the synergy score was greater than zero, and the mean AUC for the combination was greater than the mean AUC for at least one of the single agent treatments, then the combination was antagonistic.
  • the combination arms of alisertib with carboplatin yielded additive to synergistic anti-tumor effects.
  • the treatment groups from the study are shown in Table 1a.
  • the combination effect for this combination is shown in Table 1b.
  • Tumor growth curves are shown during the treatment period ( FIG. 1 ). Error bars shown in FIG. 1 indicate the standard error of the mean (SEM).
  • the combination arms of alisertib with cisplatin yielded additive to synergistic anti-tumor effects.
  • the treatment groups from the study are shown in Table 2a.
  • the combination benefit for this combination is shown in Table 2b.
  • Tumor growth curves are shown during the treatment period ( FIG. 2 ). Error bars shown in FIG. 2 indicate the standard error of the mean (SEM).
  • the treatment groups from the study are shown in Table 3a.
  • the combination benefit for this combination in this study was scored and is shown in Table 3b.
  • Tumor growth curves are shown during the treatment period ( FIG. 3 ). Error bars shown in FIG. 3 indicate the standard error of the mean (SEM).

Abstract

Disclosed are methods for the treatment of cancer in patients in need of such treatment. The methods comprise administering to such a patient an Aurora kinase inhibitor such as 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt in combination with a platin. Also disclosed are medicaments for use in the treatment of cancer.

Description

    PRIORITY
  • This application claims the benefit of U.S. Provisional Patent Application No. 62/195,103, filed Jul. 21, 2015, which is incorporated by reference in their entirety.
  • FIELD
  • This present disclosure relates to oncology and to methods for the treatment of cancer. In particular, the present disclosure provides methods for treatment of various cancers by administering an Aurora kinase inhibitor in combination with one or more chemotherapeutic agents.
  • BACKGROUND
  • Cancer is the second most common cause of death in the U.S. and accounts for one of every eight deaths globally (American Cancer Society, Cancer Facts and Figures, 2014). The American Cancer Society expects that in 2014 at least 1,665,540 new cancer cases will be diagnosed in the US and 585,720 Americans are expected to die of cancer, almost 1,600 people per day. Currently available paradigms for treating solid tumors may include systemic treatment such as chemotherapy, hormonal therapy, use of targeted agents and biological agents, either as single agents or in combination. These treatments can be delivered in combination with localized treatments such as surgery or radiotherapy. These anti-cancer paradigms can be use in the curative setting as adjuvant or neo-adjuvant treatments or in the metastatic setting as palliative case for prolonged survival and to help manage symptoms and side-effects. In hematological cancers, stem cell transplants may also be an option in certain cancers as well as chemotherapy and/or radiation. Although medical advances have improved cancer survival rates, there remains a continuing need for new and more effective treatments.
  • Cancer is characterized by uncontrolled cell reproduction. Uncontrolled cell reproduction results from the deregulation of the normal processes that control cell division, differentiation and apoptotic cell death. Mitosis is a stage in the cell cycle during which a series of complex events ensure the fidelity of chromosome separation into two daughter cells. Mitotic progression is largely regulated by proteolysis and by phosphorylation events that are mediated by mitotic kinases. Aurora kinase family members (e.g., Aurora A, Aurora B) regulate mitotic progression through modulation of centrosome separation, spindle dynamics, spindle assembly checkpoint, chromosome alignment/segregation, and cytokinesis. Overexpression and/or amplification of Aurora kinases have been linked to oncogenesis in several tumor types including those of colon and breast. Moreover, Aurora kinase inhibition in tumor cells results in mitotic arrest and apoptosis, suggesting that these kinases are important targets for cancer therapy.
  • New combinations of therapeutic agents that provide a beneficial effect in the treatment of cancers are desirable in order to prolong patient's lives while maintaining a high quality of life. Further, new combinations may provide an increased benefit as compared to each of the agents alone. This is especially true in the case where the cancers may be resistant or refractory to currently available therapeutic regimens.
  • SUMMARY
  • In one aspect, the present disclosure relates to methods of treating cancer comprising administering an Aurora kinase inhibitor and a platin in combination to a patient in need of such treatment.
  • In some embodiments, the Aurora kinase inhibitor is 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid (alisertib (MLN8237)) of formula (I), or a pharmaceutically acceptable salt thereof:
  • Figure US20180207173A1-20180726-C00001
  • In some embodiments, the Aurora kinase inhibitor is sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate of formula (II), or a crystalline form thereof:
  • Figure US20180207173A1-20180726-C00002
  • In one aspect, the present disclosure relates to methods of treating cancer comprising administering 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof and a platin in combination to a patient in need of such treatment, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer.
  • In one aspect, the present disclosure relates to a kit comprising a medicament for use in treating cancer in a subject in need of such treatment. The kit comprises a medicament comprising an Aurora kinase inhibitor, and instructions for administering the Aurora kinase inhibitor and a platin; or the kit comprises a medicament comprising a platin, and instructions for administering the platin and an Aurora kinase inhibitor. The kit can contain both a medicament comprising an Aurora kinase inhibitor and a medicament comprising a platin, and instructions for administering the Aurora kinase inhibitor and the platin.
  • In one aspect, the present disclosure relates to a medicament for use in treating cancer in a subject in need of such treatment. The medicament comprises an Aurora kinase inhibitor and a platin.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the anti-tumor activity of alisertib and carboplatin in the NCI-H82 xenograft model.
  • FIG. 2 shows the anti-tumor activity of alisertib and cisplatin in the NCI-H82 xenograft model.
  • FIG. 3 shows the anti-tumor activity of alisertib and cisplatin in the NCI-69 xenograft model.
  • DESCRIPTION
  • Definitions and Abbreviations.
    • AUC area under the plasma concentration versus time curve
    • BSA body surface area
    • CR complete response
    • MTD maximum tolerated dose
    • IV Intravenous(ly)
    • IP Intraperitoneal(ly)
    • PR partial response
    • BIW twice weekly
    • QD once daily
    • Q every
    • NSCLC non-small cell lung cancer
    • SCLC small cell lung cancer
  • As used herein, the term “cancer” refers to a cellular disorder characterized by uncontrolled or dysregulated cell proliferation, decreased cellular differentiation, inappropriate ability to invade surrounding tissue, and/or ability to establish new growth at ectopic sites. The term “cancer” includes solid tumors and hematological tumors. The term “cancer” encompasses diseases of skin, tissues, organs, bone, cartilage, blood, and vessels. The term “cancer” further encompasses primary and metastatic cancers.
  • As used herein, “clinically effective amount” means an amount of a therapeutic substance that is sufficient upon appropriate administration to a patient (a) to cause a detectable decrease in the severity of the disorder or disease state being treated; (b) to ameliorate or alleviate the patient's symptoms of the disease or disorder; or (c) to slow or prevent advancement of, or otherwise stabilize or prolong stabilization of, the disorder or disease state being treated (e.g., prevent additional tumor growth of a cancer).
  • When more than one therapeutic substance is being administered, the “clinically effective total amount” means that the sum of the individual amounts of each therapeutic substance meets the definition of “clinically effective amount” even if the individual amounts of any number of the individual therapeutic substances would not. For example, if 10 mg of A were not a clinically effective amount, and 20 mg of B were not a clinically effective amount, but the administration of 10 mg A+20 mg B resulted in at least one of the results enumerated for the definition of “clinically effective amount”, then the sum of 10 mg A+20 mg B would be considered a “clinically effective total amount”.
  • In any form or composition, the administered dose(s) or the clinically effective (total) amount can be expressed as amount(s) of therapeutic substance(s) per patient as either based on (i) BSA, e.g., as mg/m2, or (ii) amount e.g. as mg.
  • As used herein, “patient” means a human being diagnosed with, exhibiting symptoms of or otherwise believed to be afflicted with a disease, disorder or condition.
  • As used herein, “body surface area” (BSA) is calculated using a standard nomogram, e.g.,
  • BSA ( m 2 ) = Ht ( cm ) × Wt ( kg ) 3600 or BSA = Ht ( in ) × Wt ( lb ) 3131
  • As used herein, dosing for carboplatin is based upon an estimate of the GFR (glomerular filtration rate) and the desired level of drug exposure, according to the area under the curve of concentration×time (AUC, mg/mL×min), rather than the more common dosing calculation based upon the body surface area (mg/m2). For a desired target AUC (which typically varies between 5 and 7 mg/mL×min) and the estimated GFR, the dose of carboplatin is then calculated by use of the Calvert formula:

  • Total carboplatin dose, mg=Target AUC×(estimated creatinine clearance+25).
  • Because of potential changes in weight or renal function, this calculation should be repeated prior to each administered course of carboplatin.
  • The estimation of the GFR is based upon a calculation of creatinine clearance according to the Cockcroft-Gault Equation (Cockcroft D W, Gault M H. Prediction of creatinine clearance from serum creatinine Nephron. 1976; 16(1):31-41):
  • For Males:

  • Creatinine Clearance=(140−age [years]×weight [kg])])/72×(serum creatinine [mg/dL])
  • For Females:

  • Creatinine Clearance=0.85 (140−age [years]×weight [kg])/72×(serum creatinine [mg/dL]).
  • As used herein, the illustrative terms “include”, “such as”, “for example” and the like (and variations thereof, e.g., “includes” and “including”, “examples”), unless otherwise specified, are intended to be non-limiting. That is, unless explicitly stated otherwise, such terms are intended to imply “but not limited to”, e.g., “including” means including but not limited to.
  • Unless otherwise stated, structures depicted herein are meant to include chemical entities which differ only in the presence of one or more isotopically enriched atoms. For example, chemical entities having the present structure except for the replacement of a hydrogen atom by a deuterium or tritium, or the replacement of a carbon atom by a 13C- or 14C-enriched carbon are within the scope of the invention.
  • Unless stereochemical configuration is denoted, structures depicted herein are meant to include all stereochemical forms of the structure, i.e., the R and S configurations for each asymmetric center. Therefore, unless otherwise indicated, single stereochemical isomers as well as enantiomeric, racemic and diastereomeric mixtures of the present chemical entities are within the scope of the invention. When a stereochemical configuration is denoted for a compound, the diastereoisomeric or enantiomeric excess of the compound is at least 99.0%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9%.
  • DETAILED DESCRIPTION
  • In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of an Aurora kinase inhibitor or pharmaceutically acceptable salt thereof and a platin.
  • In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of an Aurora kinase inhibitor or pharmaceutically acceptable salt thereof and a platin, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer.
  • Compounds capable of inhibiting the enzymatic activity of an Aurora kinase may be used in the methods of the instant disclosure. In particular, Aurora kinase inhibitors include the compounds described herein, as well as compounds disclosed in, for example, WO 05/111039, US 2005/0256102, US 2007/0185087, WO 08/021038, US 2008/0045501, WO 08/063525, US 2008/0167292, WO 07/113212, EP 1644376, US 2005/0032839, WO 05/005427, WO 06/070192, WO 06/070198, WO 06/070202, WO 06/070195, WO 06/003440, WO 05/002576, WO 05/002552, WO 04/071507, WO 04/058781, WO 06/055528, WO 06/055561, WO 05/118544, WO 05/013996, WO 06/036266, US2006/0160874, US2007/0142368, WO 04/043953, WO 07/132220, WO 07/132221, WO 07/132228, WO 04/00833 and WO 07/056164. Also suitable for use in the methods of the disclosure are solvated and hydrated forms of any of these compounds. Also suitable for use in the methods of the disclosure are pharmaceutically acceptable salts of any of the compounds, and solvated and hydrated forms of such salts. These Aurora kinase inhibitors can be prepared in a number of ways well known to one skilled in the art of organic synthesis, including, but not limited to, the methods of synthesis described in detail in the above references.
  • In some embodiments the Aurora kinase inhibitor is a small molecular weight compound. In particular, the Aurora kinase inhibitor include the compounds described herein, as well as compounds disclosed in, for example, US 2008/0045501, U.S. Pat. No. 7,572,784, WO 05/111039, WO 08/021038, U.S. Pat. No. 7,718,648, WO 08/063525, US 2008/0167292, U.S. Pat. No. 8,026,246, WO 10/134965, US 2010/0310651, WO 11/014248, US 2011/0039826, and US 2011/0245234, each of which is hereby incorporated by reference in its entirety, sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate, KW-2449 (Kyowa), ENMD-2076 (EntreMed), and MK-5108 (Vertex/Merck). In some embodiments the Aurora kinase inhibitor is an Aurora A kinase inhibitor.
  • Aurora A kinase inhibitors can be assayed in vitro or in vivo for their ability to selectively bind to and/or inhibit an Aurora A kinase. In vitro assays include assays to determine selective inhibition of the ability of an Aurora A kinase to phosphorylate a substrate protein or peptide. Alternate in vitro assays quantitate the ability of the compound to selectively bind to an Aurora A kinase. Selective inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/Aurora A kinase complex and determining the amount of radiolabel bound. Alternatively, selective inhibitor binding may be determined by running a competition experiment in which new inhibitors are incubated with Aurora A kinase bound to a known radioligand. The compounds also can be assayed for their ability to affect cellular or physiological functions mediated by Aurora A kinase activity. In order to assess selectivity for Aurora A kinase over Aurora B kinase, inhibitors can also be assayed in vitro and in vivo for their ability to selectively bind to and/or inhibit an Aurora B kinase, using assays analogous to those described above for Aurora A kinase. Inhibitors can be assayed in vitro and in vivo for their ability to inhibit Aurora A kinase in the absence of Aurora B kinase inhibition, by immunofluorescent detection of pHisH3. (Proc. Natl. Acad. Sci. (2007) 104, 4106). Assays for each of these activities are known in the art.
  • In some embodiments, the Aurora kinase inhibitor is 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid (alisertib (MLN8237)) of formula (I), or a pharmaceutically acceptable salt thereof:
  • Figure US20180207173A1-20180726-C00003
  • In some embodiments, a pharmaceutically acceptable salt of formula (I) is sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate of formula (II), or a crystalline form thereof:
  • Figure US20180207173A1-20180726-C00004
  • In some embodiments, the compound of formula (II) is sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate. In some embodiments, the compound of formula (II) is sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate monohydrate. In some embodiments, the compound of formula (II) is sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate polymorph Form 2, as described in US2008/0167292, U.S. Pat. No. 8,026,246, and US 2011/0245234, each of which is hereby incorporated by reference in their entirety.
  • Platinum containing chemotherapeutic agents (“platins”) include agents such as cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin and triplatin. Platinum containing chemotherapeutic agents cause crosslinking of DNA as monoadduct, interstrand crosslinks, intrastrand crosslinks or DNA protein crosslinks. The resulting crosslinking inhibits DNA repair and/or DNA synthesis in cancer cells. These agents are sometimes described as being alkylating-like agents despite the fact that they do not have an alkyl group. Cisplatin was the first platinum containing compound to be discovered and was first approved by the U.S. Food and Drug Administration in 1978. Carboplatin was introduced in the 1980s and has been demonstrated to have lower side-effects than cisplatin in ovarian cancer and lung cancer (Hartmann and Lipp, Exper. Opin. Pharmacother. 2003, 4(6) 889-901).
  • In some embodiments, the platin is cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin or triplatin. In some embodiments, the platin is nedaplatin, cisplatin, carboplatin or oxaliplatin. In some embodiments, the platin is cisplatin, carboplatin or oxaliplatin. In some embodiments, the platin is cisplatin or carboplatin. In some embodiments, the platin is cisplatin. In some embodiments, the platin is carboplatin.
  • In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof and a platin.
  • In another aspect, the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in combination with a platin for the treatment of cancer.
  • In another aspect, the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in combination with a platin in the manufacture of a medicament for use in treating cancer.
  • In another aspect, the present disclosure relates to the use of alisertib or a pharmaceutically acceptable salt in the manufacture of a medicament for treating cancer, wherein alisertib or a pharmaceutically acceptable salt thereof is administered with a platin.
  • In another aspect, the present disclosure relates to a kit for treating cancer comprising at least one medicament comprising at least one dose of alisertib or a pharmaceutically acceptable salt thereof, and at least one medicament comprising at least one dose of a platin, said kit for treating cancer further comprising dosing instructions for administering the medicaments for treatment of the subject in recognized need thereof.
  • Alisertib or a pharmaceutically acceptable salt thereof can be administered in combination with the platin in a single dosage form or as a separate dosage forms. In one embodiment, when administered as a separate dosage form, the platin can be administered prior to, at the same time as, or following administration of alisertib. In some embodiments, when administered as a separate dosage form, one or more doses of alisertib or a pharmaceutically acceptable salt thereof, may be administered prior to the platin. In some embodiments, the platin is administered prior to the administration of alisertib or a pharmaceutically acceptable salt thereof. As used herein, the administration in “combination” of alisertib and a platin refers not only to simultaneous or sequential administration of the two agents, but also to the administration of both compounds during a single treatment cycle, as understood by one skilled in the art. When alisertib or a pharmaceutically acceptable salt thereof is administered in combination with the platin a clinically effective total amount is administered.
  • The Aurora kinase inhibitor can be administered by any method known to one skilled in the art. For example, the Aurora kinase inhibitor can be administered in the form of a second composition, in some embodiments a pharmaceutical composition of the Aurora kinase inhibitor and a pharmaceutically acceptable carrier, such as those described herein. In one aspect, the pharmaceutical composition is suitable for oral administration. In some embodiments, the pharmaceutical composition is a tablet for oral administration, such as an enteric coated tablet. Such tablets are described in US 2010/0310651, which is hereby incorporated by reference in its entirety. In some other embodiments, the pharmaceutical composition is a liquid dosage form for oral administration. Such liquid dosage forms are described in US 2011/0039826, hereby incorporated by reference. In some embodiments, these compositions optionally further comprise one or more additional therapeutic agents.
  • In some embodiments, the platin is administered intravenously (IV).
  • In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and a further therapeutic agent.
  • In some embodiments, the further therapeutic agent is a taxane. Taxanes are diterpenes produced by the plants of the genus Taxus (yew trees). Taxanes were first discovered and isolated from this natural source but are mostly now produced by synthetic or semi-synthetic methods. The principle mechanism by which taxanes exert their effect is the disruption of microtubule function during cell division, thereby preventing effective growth and division of cancer cells. Taxane agents include paclitaxel, docetaxel and nab-paclitaxel. In some embodiments, the taxane is paclitaxel. In some embodiments, the taxane is docetaxel.
  • In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and paclitaxel. In some embodiments, the present disclosure relates to a method of treating cancer in a patient by administering to a patient a combination of alisertib or pharmaceutically acceptable salt thereof, a platin, and a docetaxel.
  • In some embodiments, the cancer is a solid tumor. Non-limiting examples of solid tumors include pancreatic cancer; bladder cancer, including invasive bladder cancer; colorectal cancer; thyroid cancer; gastric cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; renal cancer, including, e.g., metastatic renal cell carcinoma; liver cancer including e.g. hepatocellular cancer and intrahepatic bile duct; lung and bronchus cancer including non-small cell lung cancer (NSCLC), squamous lung cancer, brochioloalveolar carcinoma (BAC), adenocarcinoma of the lung, and small cell lung cancer (SCLC); ovarian cancer including, e.g., progressive epithelial and primary peritoneal cancer; cervical cancer; uterine cancer including e.g. uterine corpus and uterine cervix; endometrial cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck, nasopharyngeal caner, oral cavity and pharynx; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain cancer, including, e.g., glioma/glioblastoma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; bone cancer; gastro-esophageal junction cancer, and soft tissue sarcoma.
  • In some embodiments, the cancer is breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, gastric cancer, or head and neck cancer. In some embodiments, the cancer is breast cancer, colorectal cancer, ovarian cancer, ganstric cancer, or lung cancer. In some embodiments, the cancer is breast cancer, gastric cancer, or small cell lung cancer. In some embodiments, the cancer is gastric cancer, or small cell lung cancer.
  • In some embodiments, the cancer is lung cancer. Lung cancer includes different sub-types such as small cell lung cancer (SCLC); non-small cell lung cancer (NSCLC) including squamous NSCLC; bronchioloalveolar carcinoma (BAC); and adenocarcinoma. In some embodiments, the cancer is small cell lung cancer. In some embodiments, the cancer is non-small cell lung cancer.
  • In some embodiments, the cancer is breast cancer. Breast cancer includes different sub-types such as luminal A, luminal B, triple-negative (basal-like) and HER-2 type. In some embodiments, the cancer is triple-negative breast cancer.
  • In some embodiments, the cancer is ovarian cancer. Ovarian cancer includes different sub-types such as epithelial, germ-cell and sex-cord stromal. Primary peritoneal carcinoma is a related cancer that starts in the lining of the pelvis and abdomen. In some embodiments, the cancer is epithelial ovarian cancer.
  • In some embodiments, the cancer is prostate cancer. Prostate cancer includes androgen-dependent and androgen independent prostate cancer and adenocarcinomas.
  • In some embodiments, the cancer is gastric cancer. Adenocarcinoma is the most common type of gastric cancer. Other gastric cancers may include gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, and lymphomas.
  • In some embodiments, the cancer is esophageal cancer. The most common types of esophageal cancer are squamous cell carcinoma and adenocarcinoma. Gastro-esophageal cancer is a related cancer that develops at the point where the esophagus joins the stomach.
  • In some embodiments, the cancer is colorectal cancer. Adenocarcinoma is the most common type of colorectal cancer. Other colorectal cancers may include gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, and squamous cell carcinoma.
  • In some embodiments, the cancer is head and neck cancer. Head and neck cancer are those that arise in the head and neck region and the cancer may be found in areas such as nasal cavities, sinuses, lips, mouth, salivary glands, pharynx or larynx. 90% of head and neck cancers are squamous cell carcinomas (SCCHN), which originate from the mucosal lining (epithelium) of these regions.
  • In some embodiments, the cancer is a hematological cancer. In some embodiments, the cancer is multiple myeloma, Hodgkin's lymphoma, or non-Hodgkin's lymphoma.
  • In some embodiments, the cancer is relapsed. In one aspect, relapsed cancer is cancer which has returned after a period of time in which no cancer could be detected.
  • In some embodiments, the cancer is refractory. In one aspect, refractory cancer does not respond to cancer treatment; it is also known as resistant cancer. In some embodiments, the cancer is resistant to a platin. In some embodiments, the cancer does not respond to the treatment of a platin. In some embodiments, the cancer is platin-resistant recurrent cancer. In some embodiments, the patient has become refractory to a platin-containing regimen. In some embodiments, the tumor is unresectable. In one aspect, an unresectable tumor is unable to be removed by surgery. In some embodiments, the cancer has not been previously treated. In some embodiments, the cancer is locally advanced. In one aspect, “locally advanced” refers to cancer that is somewhat extensive but still confined to one area. In some instances, “locally advanced” can refer to a small tumor that hasn't spread but has invaded nearby organs or tissues that make it difficult to remove with surgery alone. In some embodiments, the cancer is metastatic. In one aspect, metastatic cancer is a cancer that has spread from the part of the body where it started (the primary site) to other parts of the body.
  • In some embodiments, the cancer is an Aurora kinase-mediated disorder. In some embodiments, the cancer is an Aurora A kinase-mediated disorder.
  • In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered 3 days on and 4 days off for 3 weeks of a 4 week cycle (e.g., 28-days). In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on a 28-day cycle in which alisertib or a pharmaceutically acceptable salt thereof is administered on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28-day cycle. In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered twice-daily on a 28-day cycle in which alisertib or a pharmaceutically acceptable salt thereof is administered on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28-day cycle.
  • In some embodiments, suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 20 mg to about 120 mg per day. Other suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 30 mg to about 90 mg per day. Other suitable daily dosages of alisertib or a pharmaceutically acceptable salt thereof can generally range, in single or divided or multiple doses, from about 40 mg to about 80 mg per day.
  • In some embodiments, the suitable dosages are from about 10 mg to about 50 mg per dose given twice daily. In some embodiments, the suitable dosages are from about 15 mg to about 50 mg per dose given twice daily. In some other embodiments, the suitable dosages are from about 25 mg to about 40 mg per dose given twice daily. In certain other embodiments, suitable dosages are about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, or about 60 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 15 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 20 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 25 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 30 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 35 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 40 mg per dose given twice daily. In some embodiments, the suitable dosage of alisertib or a pharmaceutically acceptable salt thereof is about 50 mg per dose given twice daily.
  • In some embodiments, a platin is administered on day 1 of a 21 day schedule. In some embodiments, a platin is administered on day 1 of a 28 day schedule. In some embodiments, a platin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, a platin is administered on each of days 1, 8, and 15 of a 28 day schedule.
  • In some embodiments, carboplatin is administered on day 1 of a 21 day schedule. In some embodiments, the amount of carboplatin that is administered on day 1 of a 21 day schedule is AUC 6 (calculated as per the Calvert calculation above). In some embodiments, the amount of carboplatin that is administered on day 1 of a 21 day schedule is AUC 5.
  • In some embodiments, carboplatin is administered on day 1 of a 28 day schedule. In some embodiments, the amount of carboplatin that is administered on day 1 of a 28 day schedule is AUC 6 (calculated as per the Calvert calculation above). In some embodiments, the amount of carboplatin that is administered on day 1 of a 28 day schedule is AUC 5.
  • In some embodiments, carboplatin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, the amount of carboplatin that is administered on each of days 1, 8, and 15 of a 21 day schedule is AUC 2-6.
  • In some embodiments, carboplatin is administered on each of days 1, 8, and 15 of a 28 day schedule. In some embodiments, the amount of carboplatin that is administered on each of days 1, 8, and 15 of a 28 day schedule is AUC 2-6.
  • In some embodiments, cisplatin is administered on day 1 of a 21 day schedule. In some embodiments, the amount of cisplatin administered on day 1 of a 21 day schedule is about 75 mg/m2 to about 100 mg/m2. In some embodiments, the amount of cisplatin administered on day 1 of a 21 day schedule is about 50 mg/m2to about 70 mg/m2.
  • In some embodiments, cisplatin is administered on day 1 of a 28 day schedule. In some embodiments, the amount of cisplatin administered on day 1 of a 28 day schedule is about 75 mg/m2 to about 100 mg/m2. In some embodiments, the amount of cisplatin administered on day 1 of a 28 day schedule is about 50 mg/m2to about 70 mg/m2.
  • In some embodiments, cisplatin is administered on each of days 1, 8, and 15 of a 21 day schedule. In some embodiments, the amount of cisplatin that is administered on each of days 1, 8, and 15 of a 21 day schedule is about 25 mg/m2 to about 50 mg/m2.
  • In some embodiments, cisplatin is administered on each of days 1, 8, and 15 of a 28 day schedule. In some embodiments, the amount of cisplatin that is administered on each of days 1, 8, and 15 of a 28 day schedule is about 25 mg/m2 to about 50 mg/m2.
  • In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and a platin is administered on day 1 of a 28 day schedule.
  • In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and a platin is administered on each of days 1, 8, and 15 of a 28 day schedule.
  • In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and carboplatin is administered on day 1 of a 28 day schedule.
  • In some embodiments, alisertib or a pharmaceutically acceptable salt thereof is administered on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and cisplatin is administered on day 1 of a 28 day schedule.
  • In some embodiments, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and carboplatin or cisplatin.
  • In some embodiments, wherein the cancer is breast cancer, small cell lung cancer or gastric cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • In some embodiments, wherein the cancer is small cell lung cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • In some embodiments, wherein the cancer is breast cancer, small cell lung cancer or gastric cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and a platin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and the platin is administered on day 1 of a 28 day schedule.
  • In some embodiments, wherein the cancer is breast cancer, small cell lung cancer or gastric cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and a platin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered from about 15 mg to about 50 mg per dose twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and the platin is administered from about 50 mg/mm2 to about 70 mg/mm2 on day 1 of a 28 day schedule.
  • In some embodiments, wherein the cancer is breast cancer, small cell lung cancer or gastric cancer, the method comprises administering to a patient in need of such treatment a combination of alisertib or a pharmaceutically acceptable salt thereof and cisplatin, wherein alisertib or a pharmaceutically acceptable salt thereof is administered from about 15 mg to about 50 mg per dose twice daily on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule, and cisplatin is administered from about 50 mg/mm2 to about 70 mg/mm2 on day 1 of a 28 day schedule.
  • Therapeutic Substance; Pharmaceutical Compositions.
  • Any of therapeutic agents described herein can be in the form of a pharmaceutically acceptable salt. In some embodiments, such salts are derived from inorganic or organic acids or bases. For reviews of suitable salts, see, e.g., Berge et al., J. Pharm. Sci., 1977, 66, 1-19 and Remington: The Science and Practice of Pharmacy, 20th Ed., A. Gennaro (ed.), Lippincott Williams & Wilkins (2000).
  • Examples of suitable acid addition salts include acetate, adipate, alginate, aspartate, benzoate, benzene sulfonate, bisulfate, butyrate, citrate, camphorate, camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, lucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate.
  • Examples of suitable base addition salts include ammonium salts; alkali metal salts, such as sodium and potassium salts; alkaline earth metal salts, such as calcium and magnesium salts; salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine; and salts with amino acids such as arginine, lysine, and the like.
  • For example, Berge lists the following FDA-approved commercially marketed salts: anions acetate, besylate (benzenesulfonate), benzoate, bicarbonate, bitartrate, bromide, calcium edetate (ethylenediaminetetraacetate), camsylate (camphorsulfonate), carbonate, chloride, citrate, dihydrochloride, edetate (ethylenediaminetetraacetate), edisylate (1,2-ethanedisulfonate), estolate (lauryl sulfate), esylate (ethanesulfonate), fumarate, gluceptate (glucoheptonate), gluconate, glutamate, glycollylarsanilate (glycollamidophenylarsonate), hexylresorcinate, hydrabamine (N,N′-di(dehydroabietyl)ethylenediamine), hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate (2-hydroxyethanesulfonate), lactate, lactobionate, malate, maleate, mandelate, mesylate (methanesulfonate), methylbromide, methylnitrate, methylsulfate, mucate, napsylate (2-naphthalenesulfonate), nitrate, pamoate (embonate), pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate (8-chlorotheophyllinate) and triethiodide; organic cations benzathine (N,N′-dibenzylethylenediamine), chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine; and metallic cations aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
  • Berge additionally lists the following non-FDA-approved commercially marketed (outside the United States) salts: anions adipate, alginate, aminosalicylate, anhydromethylenecitrate, arecoline, aspartate, bisulfate, butylbromide, camphorate, digluconate, dihydrobromide, disuccinate, glycerophosphate, hemisulfate, hydrofluoride, hydroiodide, methylenebis(salicylate), napadisylate (1,5-naphthalenedisulfonate), oxalate, pectinate, persulfate, phenylethylbarbiturate, picrate, propionate, thiocyanate, tosylate and undecanoate; organic cations benethamine (N-benzylphenethylamine), clemizole (1-p-chlorobenzyl-2-pyrrolildine-1′-ylmethylbenzimidazole), diethylamine, piperazine and tromethamine (tris(hydroxymethyl)aminomethane); and metallic cations barium and bismuth.
  • As used herein, “pharmaceutically acceptable carrier” refers to a material that is compatible with a recipient subject (a human) and is suitable for delivering an active agent to the target site without terminating the activity of the agent. The toxicity or adverse effects, if any, associated with the carrier preferably are commensurate with a reasonable risk/benefit ratio for the intended use of the active agent.
  • The pharmaceutical compositions for use in the methods of the present disclosure can be manufactured by methods well known in the art such as conventional granulating, mixing, dissolving, encapsulating, lyophilizing, or emulsifying processes, among others. Compositions can be produced in various forms, including granules, precipitates, or particulates, powders, including freeze dried, rotary dried or spray dried powders, amorphous powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions. Formulations can contain stabilizers, pH modifiers, surfactants, solubilizing agents, bioavailability modifiers and combinations of these.
  • Pharmaceutically acceptable carriers that can be used in these compositions include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates or carbonates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • These pharmaceutical compositions are formulated for pharmaceutical administration to a human being. Such compositions can be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intravenous, intraperitoneal, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. In some embodiments, the compositions are administered orally, intravenously or subcutaneously. In some embodiments, the compositions are administered orally. In some embodiments, the compositions are administered intravenously. These formulations can be designed to be short-acting, fast-releasing, or long-acting. Furthermore, the compositions can be administered in a local rather than systemic means, such as administration (e.g., by injection) at a tumor site.
  • Pharmaceutical formulations can be prepared as liquid suspensions or solutions using a liquid, such as an oil, water, an alcohol, and combinations of these. Solubilizing agents such as cyclodextrins can be included. Pharmaceutically suitable surfactants, suspending agents, or emulsifying agents, can be added for oral or parenteral administration. Suspensions can include oils, such as peanut oil, sesame oil, cottonseed oil, corn oil and olive oil. Suspension preparations can also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides. Suspension formulations can include alcohols, such as ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol; ethers, such as poly(ethyleneglycol); petroleum hydrocarbons such as mineral oil and petrolatum; and water.
  • Sterile injectable forms of these pharmaceutical compositions can be aqueous or oleaginous suspensions. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions can also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as sorbitan alkyl esters, such as Tweens or Spans, and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms can also be used for the purposes of formulation. Compounds can be formulated for parenteral administration by injection such as by bolus injection or continuous infusion. A unit dosage form for injection can be in ampoules or in multi-dose containers.
  • These pharmaceutical compositions can be orally administered in any orally acceptable dosage form including capsules, tablets, aqueous suspensions or solutions. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents can also be added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. Coatings may be used for a variety of purposes, e.g., to mask taste, to affect the site of dissolution or absorption, or to prolong drug action. Coatings can be applied to a tablet or to granulated particles for use in a capsule.
  • Alternatively, these pharmaceutical compositions can be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
  • These pharmaceutical compositions can also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract may be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches can also be used. For topical applications, the pharmaceutical compositions can be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of the present disclosure include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active component(s) suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • For ophthalmic use, the pharmaceutical compositions can be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions can be formulated in an ointment such as petrolatum.
  • The pharmaceutical compositions can also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and can be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • In some embodiments, the methods of the present disclosure further comprise administering a anti-cancer agent. As used herein, the term “anticancer agent” refers to any agent that is administered to a subject with cancer for purposes of treating the cancer. The administration of the further anti-cancer agent includes administration concurrently or sequentially with the combinations of the present disclosure. Alternatively, the further anti-cancer agent can be combined into one composition with the combinations of the present disclosure which is administered to the patient.
  • Non-limiting examples of anti-cancer agents include DNA damaging chemotherapeutic agents such as topoisomerase I inhibitors (e.g., irinotecan, topotecan, camptothecin and analogs or metabolites thereof); topoisomerase II inhibitors (e.g., etoposide, and teniposide); anthracyclines (e.g. doxorubicin, daunorubicin and idarubicin) alkylating agents (e.g., melphalan, chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, semustine, streptozocin, decarbazine, methotrexate, pemetrexed, mitomycin C, and cyclophosphamide); DNA intercalators; DNA intercalators and free radical generators such as bleomycin; and nucleoside mimetics (e.g., 5-fluorouracil, capecitibine, fludarabine, cytarabine, mercaptopurine, thioguanine, pentostatin, and hydroxyurea). Chemotherapeutic agents that disrupt cell replication include: vincristine, vinblastin, and related analogs; thalidomide, lenalidomide, and related analogs (e.g., CC-5013 and CC-4047); protein tyrosine kinase inhibitors (e.g., imatinib mesylate, erlotonib, crortinib and gefitinib); proteasome inhibitors (e.g., bortezomib); NF-κB inhibitors, including inhibitors of IκB kinase; antibodies which bind to proteins overexpressed in cancers and thereby downregulate cell replication (e.g., trastuzumab, panitumumab, rituximab, cetuximab, and bevacizumab); and other inhibitors of proteins or enzymes known to be upregulated, over-expressed or activated in cancers, the inhibition of which downregulates cell replication.
  • Kits
  • In some embodiments, alisertib or platin described herein can be manufactured for inclusion in a kit. A “kit” is any article of manufacture (e.g., a package or container) comprising at least one reagent or chemotherapeutic agent. A kit for use in the methods herein can comprise an Aurora kinase inhibitor, such as alisertib or a pharmaceutically acceptable salt thereof. In some embodiments, the kit can further include a platin. In some embodiments, the kit can include alisertib or a pharmaceutically acceptable salt thereof and carboplatin. In some embodiments, the kit can include alisertib or a pharmaceutically acceptable salt thereof and cisplatin.
  • In some embodiments, a kit comprising alisertib or a pharmaceutically acceptable salt thereof and a platin can further include another component or reagent. In some embodiments, a reagent in the kit can be a diluent for preparing the alisertib or a pharmaceutically acceptable salt thereof for administration. In some embodiments, a reagent in the kit can be a diluent for preparing the platin for administration. In some embodiments, a component in the kit can be a vessel for mixing the combination of alisertib and the platin. In some embodiments, the kit can include instructions for calculating the dose of each therapeutic component of the kit. In some embodiments, the instructions can include the Calvert formula.
  • In order that this present disclosure be more fully understood, the following examples are set forth. These examples are illustrative only and are not intended to limit the scope of the present disclosure in any way.
  • EXAMPLES
  • Abbreviations
    • h hour
    • min minutes
    • HPLC High-pressure liquid chromatography
    • UPLC Ultra-pressure liquid chromatography
    • NMR Nuclear Magnetic Resonance
    • THF tetrahydrofuran
    • WFI Water for Injection
    • TGI tumor growth inhibition
    • mg milligram
    • mm3 cubic millimeter
    • HPBCD 2-hydroxypropyl-β-cyclodextrin
    • SC subcutaneously
    • SD starting day
    Example 1 In Vivo Tumor Efficacy Models
  • Xenograft Models
  • NCI-H82 1: A thirty-to-forty mg fragment of NCI-H82 small cell lung tumor, propagated in an in vivo passage, was implanted SC in the area of the right flank of female Athymic NCr nu/nu mice (age 5 weeks, Charles River Laboratories, Wilmington, Mass.) using a 12-gauge trocar needle. Tumors were allowed to reach 100-245 mm3 in volume before the start of treatment. A sufficient number of mice were implanted so that tumors in a volume range as narrow as possible were selected for the trial on the day of treatment initiation (day 13 after tumor implantation, designated as SD, or Day 0). Those animals selected with tumors in the proper volume range were randomized into 9 treatment and control groups (n=10/group) so that the median tumor volumes on the first day of treatment were as close as possible (206-219 mm3).
  • NCI-H82 2: A thirty-to-forty mg fragment of NCI-H82 small cell lung tumor, propagated in an in vivo passage, was implanted SC in the area of the right flank of female Athymic NCr nu/nu mice (age 5 weeks, Charles River Laboratories, Wilmington, Mass.) using a 12-gauge trocar needle. Tumors were allowed to reach 100-245 mm3 in volume before the start of treatment. A sufficient number of mice were implanted so that tumors in a volume range as narrow as possible were selected for the trial on the day of treatment initiation (day 14 after tumor implantation, designated as SD, or Day 0). Those animals selected with tumors in the proper volume range were randomized into 9 treatment and control groups (n=10/group) so that the median tumor volumes on the first day of treatment were as close as possible (196-198 mm3).
  • NCI-H69: A thirty-to-forty mg fragment of NCI-H69 small cell lung tumor, propagated in an in vivo passage, was implanted SC in the area of the right flank of female Athymic NCr nu/nu nice (age 6 weeks, Charles River Laboratories, Frederick, Md.) using a 12-gauge trocar needle. Tumors were allowed to reach 100-245 mm3 in volume before the start of treatment. A sufficient number of mice were implanted so that tumors in a volume range as narrow as possible were selected for the trial on the day of treatment initiation (day 24 after tumor implantation, designated as SD, or Day 0). Those animals selected with tumors in the proper volume range were randomized into 9 treatment and control groups (n=10/group) so that the mean tumor volumes on the first day of treatment were as close as possible (169-174 mm3).
  • Test Agents:
  • An 8 mg/mL suspension of alisertib was formulated weekly by adding a half volume of 20% HPBCD in water for injection (WFI) to the alisertib powder, then mixing by vortexing, and sonicating for one minute. The suspension was diluted to 4 mg/mL with 2% sodium bicarbonate (NaHCO3) in WFI. The final composition of the alisertib vehicle was 10% HPBCD/1% NaHCO3 in WFI. The 4 mg/mL solution was diluted to 2 mg/mL with complete vehicle for the lower dose. The alisertib dosing formulations were stored in brown bottles at room temperature during the dosing period. All alisertib injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.05 mL/10 g body weight.
  • A 10 mg/mL stock solution of carboplatin (Hospira, Inc.) was diluted each day of treatment with saline. Carboplatin injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.10 mL/10 g body weight.
  • A 1 mg/mL stock solution of cisplatin (Cisplatin Injection, PCH PHAMACHEMIE) was diluted each day of treatment with saline to 0.8 and 0.4 mg/mL. Cisplatin injections were administered on the basis of exact animal body weight on each day of treatment, using an injection volume of 0.05 mL/10 g body weight.
  • Tumor Measurements:
  • Tumors were measured twice weekly using vernier calipers. Tumor volumes were calculated using standard procedures V=W2×L/2.). When mean tumor volumes reached approximately 206-219 mm3 for NCI-H82 1, 196-198 mm3 for NCI-H82 2, or 169-174 mm3 for NCI-H69, mice were randomized into groups of n=10/arm as described in the tables below, and injected with vehicle, alisertib or agents (cisplatin, or carboplatin), or the combination of alisertib plus one of the agents, at various doses and schedules as described below in Tables 1a, 2a and 3a. Tumor size and body weight were measured approximately twice a week for the duration of the study. Mice are euthanized when their tumor volume reached 10% of their body weight, or when the average tumor volume of a treatment or control group reached approximately 2000 mm3. Tumor growth continued to be monitored after the dosing period in some studies. Tumor volumes on study Days 20 or 21 from the day of treatment initiation are shown in Tables 1a, 2a and 3a. Average tumor volume is reported as a function of time for selected arms of selected studies in FIGS. 1, 2 and 3.
  • Statistical Analyses of Combination Effect for Tumor Growth in Subcutaneous Xenograft Models
  • Measurements from the day of treatment initiation to Day 20 or Day 21 following treatment initiation are analyzed as specified in Tables below. All tumor volumes have a value of 1 added to them before log10 transformation. For each animal, the log tumor volume at the day of treatment initiation is subtracted from the log tumor volume on the subsequent days. This difference vs. time is used to calculate an area under the curve (AUC) for each animal using the trapezoid rule. In instances when an animal in a treatment group is removed early from the study, the last observed tumor value is carried forward through all subsequent time points. The synergy score for the combination of agents A and B is defined as

  • 100*(mean(AUCAB)−mean(AUCA)−mean(AUCB)+mean(AUCctl))/mean(AUCctl):
  • where AUCAB, AUCA, AUCB, and AUCctl are the AUC values for animals in the combination group, the A group, the B group, and the control group, respectively. The standard error of the synergy score is computed based on the variation in the AUC values among the animals. A two sided t-test is used to determine if the synergy score is significantly different from zero. If the P-value is above 0.05, then the combination is considered to be additive. If the P-value is below 0.05, and the synergy score is less than zero, then the combination is considered to be synergistic. If the P-value is below 0.05 and the synergy score was greater than zero, but the mean AUC for the combination was lower than the lowest mean AUC among the two single agent treatments, then the combination was sub-additive. If the P-value is below 0.05 and if the synergy score was greater than zero, and the mean AUC for the combination was greater than the mean AUC for at least one of the single agent treatments, then the combination was antagonistic.
  • Results
  • Mouse xenograft models, performed as described in the general methods above, were used to assess the combination effect in vivo of alisertib and cisplatin, and alisertib and carboplatin. The details for each study are as shown below in Tables 1a, 2a and 3a. The results were analyzed using the statistical analysis described above and the classification of the combination is shown below in Tables 1b, 2b and 3b.
  • Alisertib and Carboplatin
  • NCI-H82 Xenograft Model Study 1
  • In the NCI-H82 small cell lung tumer xenograft model, treatments began on day 13 following tumor implantation (Day 0) for all groups. Alisertib was tested at doses of 20 and 10 mg/kg administered PO on a QD×21 (once daily for 21 consecutive days) schedule. Carboplatin was tested at doses of 75 and 25 mg/kg administered IP on a Q7D×3 (once weekly for 3 weeks) schedule. In the combination treatment groups alisertib was administered first, followed immediately by the administration of carboplatin. One group served as a vehicle-treated control group (Group 1) receiving PO treatment with the vehicle used for administration of alisertib in treatment groups on a QD×21 schedule.
  • The combination arms of alisertib with carboplatin yielded additive to synergistic anti-tumor effects. The treatment groups from the study are shown in Table 1a. The combination effect for this combination is shown in Table 1b. Tumor growth curves are shown during the treatment period (FIG. 1). Error bars shown in FIG. 1 indicate the standard error of the mean (SEM).
  • TABLE 1a
    Combination of carboplatin and alisertib in the NCI-H82 xenograft model
    Number of mice
    in group
    Study Dosing Tumor Volume SEM Tumor (number on Day
    Group Treatment Regimen Route Day 21 Volume Day 21 21)
    1 10% QDx21 PO 1805 124 8
    HPBCD/1%
    NaHCO3 in
    WFI
    2 20 mg/kg QDx21 PO 1640 224 9
    Alisertib
    3 10 mg/kg QDx21 PO 1701 186 9
    Alisertib
    4 75 mg/kg Q7Dx3 IP 965 169 10
    Carboplatin
    5 25 mg/kg Q7Dx3 IP 1373 171 7
    Carboplatin
    6 20 mg/kg QDx21; PO; 199 44 10
    Alisertib, Q7Dx3 IP
    75 mg/kg
    Carboplatin
    7 20 mg/kg QDx21; PO; 1166 180 10
    Alisertib, Q7Dx3 IP
    25 mg/kg
    Carboplatin
    8 10 mg/kg QDx21; PO; 472 96 10
    Alisertib, Q7Dx3 IP
    75 mg/kg
    Carboplatin
    9 10 mg/kg QDx21; PO; 1299 145 10
    Alisertib, Q7Dx3 IP
    25 mg/kg
    Carboplatin
  • TABLE 1b
    Classification for in vivo combination of carboplatin
    and alisertib in the NCI-H82 xenograft model
    Treatment Synergy score SEM P-value Classification
    10 mg/kg Alisertib + −2.3 7.3 0.758 Additive
    25 mg/kg carboplatin
    10 mg/kg Alisertib + −2.5 11.7 0.836 Additive
    75 mg/kg carboplatin
    20 mg/kg Alisertib + −2.1 9.3 0.823 Additive
    25 mg/kg carboplatin
    20 mg/kg Alisertib + −31.0 13.1 0.027 Synergy
    75 mg/kg carboplatin
  • Alisertib and Cisplatin
  • NCI-H82 Xenograft Model Study 2
  • In the NCI-H82 small cell lung tumer xenograft model, treatments began on day 14 following tumor implantation (Day 0) for all groups. Alisertib was tested at doses of 20 and 10 mg/kg administered PO on a QD×21 (once daily for 21 consecutive days) schedule. Cisplatin was tested at doses of 4 and 2 mg/kg administered IP on a Q4D×3 (once every 4 days for 3 injections) schedule. In the combination treatment groups alisertib was administered first, followed immediately by the administration of cisplatin. One group served as a vehicle-treated control group (Group 1) receiving PO treatment with the vehicle used for administration of alisertib in treatment groups on a QD×21 schedule.
  • The combination arms of alisertib with cisplatin yielded additive to synergistic anti-tumor effects. The treatment groups from the study are shown in Table 2a. The combination benefit for this combination is shown in Table 2b. Tumor growth curves are shown during the treatment period (FIG. 2). Error bars shown in FIG. 2 indicate the standard error of the mean (SEM).
  • TABLE 2a
    Combination of cisplatin and alisertib in the NCI-H82 xenograft model
    Number of mice
    in group
    Study Dosing Tumor Volume SEM Tumor (number on Day
    Group Treatment Regimen Route Day 20 Volume Day 20 20)
    1 10% QDx21 PO 1622 233 8
    HPBCD/1%
    NaHCOS in
    WFI
    2 20 mg/kg QDx21 PO 1461 189 8
    Alisertib
    3 10 mg/kg QDx21 PO 1578 223 8
    Alisertib
    4 4 mg/kg Q4Dx3 IP 1270 182 8
    Cisplatin
    5 2 mg/kg Q4Dx3 IP 1429 314 7
    Cisplatin
    6 20 mg/kg QDx21; PO; 287 92 10
    Alisertib, Q4Dx3 IP
    4 mg/kg
    Cisplatin
    7 20 mg/kg QDx21; PO; 832 138 10
    Alisertib, Q4Dx3 IP
    2 mg/kg
    Cisplatin
    8 10 mg/kg QDx21; PO; 553 169 10
    Alisertib, Q4Dx3 IP
    4 mg/kg
    Cisplatin
    9 10 mg/kg QDx21; PO; 1318 139 10
    Alisertib, Q4Dx3 IP
    2 mg/kg
    Cisplatin
  • TABLE 2b
    Classification for in vivo combination of cisplatin
    and alisertib in the NCI-H82 xenograft model
    Treatment Synergy score SEM P-value Classification
    20 mg/kg Alisertib + −39.2 12.3 0.004 Synergy
    4 mg/kg cisplatin
    20 mg/kg Alisertib + −17.7 12.0 0.153 Additive
    2 mg/kg cisplatin
    10 mg/kg Alisertib + −28.1 14.7 0.067 Additive
    4 mg/kg cisplatin
    10 mg/kg Alisertib + −0.2 11.1 0.987 Additive
    2 mg/kg cisplatin
  • NCI-H69 Xenograft Model
  • In the NCI-H69 small cell lung tumer xenograft model, treatments began on day 24 following tumor implantation (Day 0) for all groups. Alisertib was tested at doses of 20 and 10 mg/kg administered PO on a QD×21 schedule. Cisplatin was tested at doses of 4 and 2 mg/kg administered IP on a Q4D×3 schedule. In the combination treatment groups alisertib was administered first, followed immediately by the administration of cisplatin. One group served as a vehicle-treated control group (Group 1) receiving PO treatment with the vehicle used in the administration of alisertib in treatment groups on a QD×21 schedule.
  • The combination treatment using these doses and schedules led to additive combination effects. The treatment groups from the study are shown in Table 3a. The combination benefit for this combination in this study was scored and is shown in Table 3b. Tumor growth curves are shown during the treatment period (FIG. 3). Error bars shown in FIG. 3 indicate the standard error of the mean (SEM).
  • TABLE 3a
    Combination of cisplatin and alisertib in the NCI-H69 xenograft model
    Number of mice
    in group
    Study Dosing Tumor Volume SEM Tumor (number on Day
    Group Treatment Regimen Route Day 20 Volume Day 20 20)
    1 10% QDx21 PO 848 112 10
    HPBCD/1%
    NaHCO3 in
    WFI
    2 20 mg/kg QDx21 PO 149 22 10
    Alisertib
    3 10 mg/kg QDx21 PO 374 57 10
    Alisertib
    4 4 mg/kg Q4Dx3 IP 300 45 10
    Cisplatin
    5 2 mg/kg Q4Dx3 IP 604 87 10
    Cisplatin
    6 20 mg/kg QDx21; PO; 30 8 10
    Alisertib, Q4Dx3 IP
    4 mg/kg
    Cisplatin
    7 20 mg/kg QDx21; PO; 57 9 10
    Alisertib, Q4Dx3 IP
    2 mg/kg
    Cisplatin
    8 10 mg/kg QDx21; PO; 49 9 10
    Alisertib, Q4Dx3 IP
    4 mg/kg
    Cisplatin
    9 10 mg/kg QDx21; PO; 187 29 10
    Alisertib, Q4Dx3 IP
    2 mg/kg
    Cisplatin
  • TABLE 3b
    Classification for in vivo combination of cisplatin
    and alisertib in the NCI-H69 xenograft model
    Treatment Synergy score SEM P-value Classification
    20 mg/kg Alisertib + −0.4 16.2 0.980 Additive
    4 mg/kg Cisplatin
    20 mg/kg Alisertib + −4.5 12.9 0.731 Additive
    2 mg/kg Cisplatin
    10 mg/kg Alisertib + −13.0 13.0 0.327 Additive
    4 mg/kg Cisplatin
    10 mg/kg Alisertib + −13.9 12.5 0.275 Additive
    2 mg/kg Cisplatin

Claims (17)

What is claimed is:
1. A method of treating cancer, comprising administering to a patient in need of such treatment a combination of 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof, and a platin, wherein the cancer is breast cancer, small cell lung cancer, or gastric cancer.
2. The method of claim 1, wherein the cancer is small cell lung cancer, or gastric cancer.
3. The method of claim 1, wherein the cancer is small cell lung cancer.
4. The method of any of claims 1-3, wherein the platin is cisplatin, carboplatin, oxaliplatin, satraplatin, picoplatin, nedaplatin or triplatin.
5. The method of any of claims 1-3, wherein the platin is cisplatin, or carboplatin.
6. The method of any of claims 1-3, wherein the platin is cisplatin.
7. The method of any of claims 1-6, wherein 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof is administered twice a day on each of days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 28 day schedule.
8. The method of any of claims 1-7, wherein 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof is administered from about 15 mg to about 50 mg per dose.
9. The method of any of claims 1-8, wherein 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof is administered about 25 mg per dose.
10. The method of any of claims 1-8, wherein 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof is administered about 30 mg per dose.
11. The method of any of claims 1-8, wherein 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoic acid or a pharmaceutically acceptable salt thereof is administered about 40 mg per dose.
12. The method of any one of claims 1-11, wherein the platin is administered on day 1 of a 28 day schedule.
13. The method of any one of claims 1-11, wherein the platin is administered on each of days 1, 8 and 15 of a 28 day schedule.
14. The method of any one of claims 1-13, wherein the platin is cisplatin.
15. The method of claim 14, wherein the cisplatin is administered from about 75 mg/m2 to about 100 mg/m2 per dose.
16. The method of claim 14, wherein the cisplatin is administered from about 50 mg/m2 to about 70 mg/m2 per dose.
17. The method of claim 14, wherein the cisplatin is administered from about 25 mg/m2 to about 50 mg/m2 per dose.
US15/746,008 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents Abandoned US20180207173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/746,008 US20180207173A1 (en) 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562195103P 2015-07-21 2015-07-21
PCT/US2016/043041 WO2017015316A1 (en) 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents
US15/746,008 US20180207173A1 (en) 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/043041 A-371-Of-International WO2017015316A1 (en) 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/838,684 Division US20200397799A1 (en) 2015-07-21 2020-04-02 Administration of aurora kinase inhibitor and chemotherapeutic agents

Publications (1)

Publication Number Publication Date
US20180207173A1 true US20180207173A1 (en) 2018-07-26

Family

ID=57834580

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/746,008 Abandoned US20180207173A1 (en) 2015-07-21 2016-07-20 Administration of aurora kinase inhibitor and chemotherapeutic agents
US16/838,684 Pending US20200397799A1 (en) 2015-07-21 2020-04-02 Administration of aurora kinase inhibitor and chemotherapeutic agents

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/838,684 Pending US20200397799A1 (en) 2015-07-21 2020-04-02 Administration of aurora kinase inhibitor and chemotherapeutic agents

Country Status (4)

Country Link
US (2) US20180207173A1 (en)
EP (1) EP3324976A4 (en)
JP (1) JP2018524292A (en)
WO (1) WO2017015316A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193750B (en) * 2004-05-14 2018-04-27 千禧药品公司 Suppress mitotic Compounds and methods for by suppressing aurora kinase
TW201316991A (en) * 2011-06-03 2013-05-01 Millennium Pharm Inc Combination of MEK inhibitors and selective inhibitors of Aurora A kinase

Also Published As

Publication number Publication date
EP3324976A1 (en) 2018-05-30
JP2018524292A (en) 2018-08-30
WO2017015316A1 (en) 2017-01-26
EP3324976A4 (en) 2019-03-27
US20200397799A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
ES2668272T3 (en) Administration of enzyme inhibitor that activates NEDD8 and hypomethylation agent
US20150111869A1 (en) Use of a combination of a mek inhibitor and an erk inhibitor for treatment of hyperproliferative diseases
US20210040050A1 (en) Combination compositions comprising bisfluoroalkyl-1,4- benzodiazepinone compounds and methods of use thereof
US20120115892A1 (en) Administration of nedd8-activating enzyme inhibitor
BR112020023204A2 (en) compositions comprising bisfluoroalkyl-1,4-benzodiazepinone compounds and methods of using them
US10786505B2 (en) Administration of NEDD8-activating enzyme inhibitor and chemotherapeutic agents
KR20160018534A (en) Combinations for the treatment of cancer comprising a mps-1 kinase inhibitor and a mitotic inhibitor
JP6373252B2 (en) Methods of treating cancer using aurora kinase inhibitors
KR20220008870A (en) Bisfluoroalkyl-1,4-benzodiazepinone compounds for treating Notch-activated breast cancer
US20200397799A1 (en) Administration of aurora kinase inhibitor and chemotherapeutic agents
EP3212650B1 (en) Administration of ubiquitin-activating enzyme inhibitor and chemotherapeutic agents
US11911374B2 (en) Methods and uses for treating cancer
WO2018144791A1 (en) Combination of vps34 inhibitors and mtor inhibitors

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION