US20180184221A9 - Enable and disable comparator voltage reference - Google Patents

Enable and disable comparator voltage reference Download PDF

Info

Publication number
US20180184221A9
US20180184221A9 US15/466,638 US201715466638A US2018184221A9 US 20180184221 A9 US20180184221 A9 US 20180184221A9 US 201715466638 A US201715466638 A US 201715466638A US 2018184221 A9 US2018184221 A9 US 2018184221A9
Authority
US
United States
Prior art keywords
comparator
mobile device
switch
reference input
accessory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/466,638
Other versions
US20170201843A1 (en
US10142751B2 (en
Inventor
Seth M. Prentice
Julie Lynn Stultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Priority to US15/466,638 priority Critical patent/US10142751B2/en
Assigned to FAIRCHILD SEMICONDUCTOR CORPORATION reassignment FAIRCHILD SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRENTICE, SETH M., STULTZ, JUNE LYNN
Publication of US20170201843A1 publication Critical patent/US20170201843A1/en
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: FAIRCHILD SEMICONDUCTOR CORPORATION, SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
Publication of US20180184221A9 publication Critical patent/US20180184221A9/en
Application granted granted Critical
Publication of US10142751B2 publication Critical patent/US10142751B2/en
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAIRCHILD SEMICONDUCTOR CORPORATION
Assigned to FAIRCHILD SEMICONDUCTOR CORPORATION reassignment FAIRCHILD SEMICONDUCTOR CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, FAIRCHILD SEMICONDUCTOR CORPORATION reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541 Assignors: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT
Assigned to FAIRCHILD SEMICONDUCTOR CORPORATION, SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC reassignment FAIRCHILD SEMICONDUCTOR CORPORATION RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 0799 Assignors: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6058Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72527
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/06Arranging circuit leads; Relieving strain on circuit leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers
    • H04M1/05Supports for telephone transmitters or receivers specially adapted for use on head, throat or breast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Mobile devices can include various accessories.
  • mobile devices with audio jacks can be configured to be coupled to a headset having at least one of a headphone, a speaker, a microphone, or a send/end key.
  • the mobile device can include a comparator configured to identify when the send/end key is activated on the headset.
  • activating the send/end key can reduce the microphone bias to ground or increase the microphone bias to a full microphone bias voltage level.
  • a voltage divider can be used to set the comparator threshold level to identify the send/end key activation.
  • the resistors used for the voltage divider are connected to a supply that is normally enabled, even if the headset is not connected, creating excess current draw.
  • the accessory detection device can be configured to be coupled to a mobile device having an audio jack configured to be coupled to a mobile device accessory having a send/end key.
  • the accessory detection device can include a comparator and a switch.
  • the comparator can be configured to receive mobile device accessory information from the mobile device accessory and to determine activation of the send/end key using the received mobile device accessory information.
  • the switch can be configured to receive connection information indicative of mobile device accessory connection to the audio jack and to isolate a reference input of the comparator from a supply voltage using the connection information, for example, to reduce leakage current.
  • FIG. 1 illustrates generally an example of a system including an accessory detection device.
  • FIG. 2 illustrates generally an example of a system including an accessory detection device and an external resistor divider.
  • FIG. 3 illustrates generally an example of a system including an accessory detection device, a baseband processor, an audio codec, an applications processor, and an audio jack.
  • FIG. 4 illustrates generally an example of a logic diagram for an accessory detection device.
  • FIG. 5 illustrates generally an example of a standard PMOS device.
  • FIG. 6 illustrates generally an example of a PMOS device designed for electrostatic discharge (ESD) robustness.
  • an accessory detection device e.g., a circuit configured to be placed inside of the mobile device
  • the accessory detection device can include enable/disable circuitry that can recognize when the voltage reference is or is not required.
  • a switch can isolate the detection device from a supply voltage, in certain examples eliminating excess leakage current and increasing the battery life of the mobile device.
  • integrating a standard PMOS gate to isolate the detection device from the supply voltage can introduce electrostatic discharge (ESD) concerns.
  • ESD electrostatic discharge
  • the detection device can include a customized PMOS cell configured to increase ESD robustness while maintaining functionality.
  • FIG. 1 illustrates generally an example of a system 100 including a comparator 105 , a switch 110 , and a resistor divider including first and second resistors 111 , 112 .
  • the comparator 105 can be configured to receive a reference voltage at a reference input (+) and mobile device accessory information, such as information from a microphone pin of a mobile device accessory (e.g., a headset, etc.), at a microphone input (J_MIC), to compare the mobile device accessory information to the reference voltage and to provide an indication of a send/end key activation using the comparison (e.g., using a send/end key (S/E) output).
  • mobile device accessory information such as information from a microphone pin of a mobile device accessory (e.g., a headset, etc.), at a microphone input (J_MIC)
  • J_MIC microphone input
  • S/E send/end key
  • the switch 110 can be configured to receive connection information indicative of mobile device accessory connection to the audio jack, for example, at a control input (CTRL) and to isolate a reference input of the comparator from a supply voltage (VDD) using the connection information.
  • the switch 110 can include a metal-oxide field-effect transistor (MOSFET), such as a p-type MOSFET (PMOS) device, and in certain examples, as described below, the PMOS or other device can include an ESD PMOS device configured to alleviate ESD concerns found in typical PMOS devices.
  • MOSFET metal-oxide field-effect transistor
  • PMOS p-type MOSFET
  • FIG. 2 illustrates generally an example of a system 200 including an accessory detection device 101 and an external resistor divider including first and second resistors 111 , 112 .
  • the detection device 101 can include a comparator 105 and a switch 110 .
  • the switch 110 can include a PMOS device or other switch configured to isolate a supply voltage (VDD) from the external resistor divider and the comparator 105 .
  • an integrated circuit can include the detection device 101 and not the external resistor divider, such as to allow a determinable reference voltage at a reference input (REF) of the comparator using the first and second resistors 111 , 112 .
  • FIG. 3 illustrates generally an example of a system 300 including an accessory detection device 101 , a baseband processor 130 , an audio codec 131 , an applications processor 132 , and an audio jack 125 .
  • the audio jack 125 can include four terminals, such as: (1) left audio (L); (2) right audio (R); (3) ground (GND); and (4) a data terminal.
  • the data terminal can be configured to receive mobile device accessory information, such as a microphone input (Mic).
  • the data terminal can be configured to receive or provide other accessory information, such as providing video data out, etc.
  • the audio jack 125 can be configured to receive an audio plug 135 , such as a 4-pole audio plug. In other examples, the audio jack 125 can be configured to receive one or more other types of audio plugs, or the audio jack 125 and audio plug 135 can be replaced with one or more other type of input/output (IO).
  • an audio plug 135 such as a 4-pole audio plug.
  • the audio jack 125 can be configured to receive one or more other types of audio plugs, or the audio jack 125 and audio plug 135 can be replaced with one or more other type of input/output (IO).
  • IO input/output
  • a baseband processor 130 can enable the detection device 101 , for example, using an enable input (EN) and an enable circuit 115 , and can close a microphone switch 116 , connecting a microphone pin (MIC) to a microphone input (J_MIC), such as by using a select (SEL) input, which can enable the detection device 101 to provide a voltage reference at a reference supply voltage (R_VDD) for the comparator 105 , such as through an external resistor divider (e.g., the first and second resistors 111 , 112 ) configured to provide a determinable (e.g., user determinable, etc.) reference voltage to the comparator 105 .
  • EN enable input
  • J_MIC microphone input
  • SEL select
  • a microphone line between the audio codec 131 and the detection device 101 can be pulled to a microphone bias (MIC_Bias) level through a microphone resistor (R MIC , e.g., typically 2.2k ⁇ ).
  • R MIC microphone resistor
  • a headset microphone e.g., a JFET type microphone, etc.
  • R MIC a microphone resistor
  • a headset microphone e.g., a JFET type microphone, etc.
  • the connection to the microphone can be open allowing the microphone bias to increase to or near the full microphone bias voltage potential.
  • the microphone bias can pass the reference voltage on the comparator 105 and the send/enable (S/E) output pin on the detection device 101 can be updated, communicating an S/E key activation to the baseband processor 130 .
  • the circuitry e.g., the switch 110
  • the reference voltage (REF) on the comparator 105 can be required only when a headset is plugged in. If a video switch (VID) is selected, for example, from an applications processor 132 , or the detection device 101 is disabled, the reference supply voltage (R_VDD) can be disabled using the switch 110 , eliminating excess current through the external resistor divider (e.g., the first and second resistors 111 , 112 ), etc.
  • VID video switch
  • R_VDD reference supply voltage
  • FIG. 4 illustrates generally an example of a timing diagram 400 of a detection device, such as that illustrated in the example of FIG. 3 , disclosing an example relationship between a supply voltage (VDD) 141 , an enable signal (EN) 142 , a reference supply voltage (R_VDD) 143 , a select signal (SEL) 144 , a microphone signal (MIC) 145 , a comparator output (COMP) 146 , and a video enable signal (VID) 147 with reference to time.
  • VDD supply voltage
  • EN enable signal
  • R_VDD reference supply voltage
  • SEL select signal
  • MIC microphone signal
  • VID video enable signal
  • VID video enable signal
  • FIG. 5 illustrates generally an example of a standard PMOS device 500 .
  • FIG. 6 illustrates generally an example of a p-type metal-oxide field-effect transistor (PMOS) device 600 designed for electrostatic discharge (ESD) robustness.
  • the PMOS device 600 between the supply voltage (VDD) and a reference supply voltage (R_VDD) can provide ESD robustness while still meeting application requirements (e.g., for the example illustrated in FIG. 3 ).
  • the PMOS device 600 includes increased source metal 170 and increased drain metal 171 in comparison to the standard PMOS device 500 of FIG. 5 .
  • the channel lengths and widths are increased with respect to the example illustrated in FIG. 5 .
  • the subject matter disclosed herein is likewise applicable to any comparator configured to compare a received signal to a reference voltage supplied using a supply voltage.
  • the supply voltage can be isolated or coupled to the comparator using information about the received signal, or using information about a device providing the received signal.
  • a system in Example 1, includes an accessory detection device configured to be coupled to a mobile device having an audio jack, wherein the audio jack is configured to be coupled to a mobile device accessory having a send/end key.
  • the accessory detection device can include a comparator configured to receive mobile device accessory information from the mobile device accessory and to determine activation of the send/end key using the received mobile device accessory information and a switch configured to receive connection information indicative of a mobile device accessory connection to the audio jack and to isolate a reference input of the comparator from a supply voltage using the connection information.
  • Example 1 can optionally include the audio jack, wherein the audio jack includes a 4-pole audio jack configured to receive a 4-pole audio plug, the 4-pole audio jack including left audio terminal, a right audio terminal, a ground terminal, and a data terminal, wherein the switch is optionally configured to receive connection information using the ground terminal of the 4-pole audio jack, and wherein the connection information is optionally different than the mobile device accessory information.
  • the audio jack includes a 4-pole audio jack configured to receive a 4-pole audio plug, the 4-pole audio jack including left audio terminal, a right audio terminal, a ground terminal, and a data terminal
  • the switch is optionally configured to receive connection information using the ground terminal of the 4-pole audio jack, and wherein the connection information is optionally different than the mobile device accessory information.
  • Example 3 the comparator of any one or more of Examples 1-2 is optionally configured to receive mobile device accessory information using the data terminal.
  • Example 4 the switch of any one or more of Examples 1-3 is optionally configured to isolate the reference input of the comparator from the supply voltage in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
  • Example 5 the switch of any one or more of Examples 1-4 is optionally configured to couple the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
  • Example 6 any one or more of Examples 1-5 optionally includes a resistor divider configured to receive a voltage from the switch and to provide a reference voltage to the reference input of the comparator.
  • any one or more of Examples 1-6 optionally includes an integrated circuit (IC) including the comparator and the switch, and the comparator of any one or more of Examples 1-6 is optionally configured to receive a determinable reference voltage at the reference input using an external resistor divider and the switch.
  • IC integrated circuit
  • any one or more of Examples 1-7 optionally includes the external resistor divider, including first and second resistors having first and second resistance values, wherein the IC of any one or more of Examples 1-7 optionally includes a switch output and a reference input, wherein the first resistor of any one or more of Examples 1-7 is optionally coupled between the switch output and the reference input, wherein the second resistor of any one or more of Examples 1-7 is optionally coupled between the reference input and a voltage level, and wherein the switch of any one or more of Examples 1-7 is optionally configured to selectively provide the supply voltage to the external resistor divider to provide the determinable reference voltage to the reference input of the comparator as a function of the first and second resistance values and the supply voltage.
  • the mobile device accessory of any one or more of Examples 1-8 optionally includes at least one of a 4-pole mobile device headset having a send/end key or a 4-pole audio/video interface configured to provide audio or video output from the mobile device to an external display.
  • Example 10 the switch of any one or more of Examples 1-9 optionally includes a metal-oxide-semiconductor field-effect transistor (MOSFET).
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • Example 11 the switch of any one or more of Examples 1-10 optionally includes a p-channel MOSFET (PMOS) device.
  • PMOS p-channel MOSFET
  • the PMOS device of any one or more of Examples 1-11 optionally includes an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness.
  • ESD electrostatic-discharge
  • any one or more of Examples 1-12 can include receiving connection information indicative of mobile device accessory connection to an audio jack of a mobile device, receiving mobile device accessory information, different from the connection information, from the mobile device accessory at a comparator, determining activation of a send/end key of the mobile device accessory using the comparator and the mobile device accessory information, and isolating a reference input of the comparator from a supply voltage using the connection information and a switch.
  • Example 14 the receiving connection information of any one or more of Examples 1-13 optionally includes receiving connection information from a ground terminal of a 4-pole audio jack configured to receive a 4-pole audio plug of the mobile device accessory.
  • Example 15 the isolating the reference input of the comparator of any one or more of Examples 1-14 optionally includes in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
  • Example 16 any one or more of Examples 1-15 optionally includes coupling the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
  • any one or more of Examples 1-16 optionally includes selectively providing a determinable reference voltage to the reference input of the comparator using a resistor divider coupled to the switch, the resistor divider optionally including first and second resistors having first and second resistance values, the reference voltage determinable as a function of the first and second resistance values.
  • Example 18 the isolating the reference input of the comparator of any one or more of Examples 1-17 using the switch optionally includes using a metal-oxide-semiconductor field-effect transistor (MOSFET).
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • Example 19 the isolating the reference input of the comparator using the MOSFET of any one or more of Examples 1-18 optionally includes using a p-channel MOSFET (PMOS) device.
  • PMOS p-channel MOSFET
  • Example 20 the isolating the reference input of the comparator using the PMOS device of any one or more of Examples 1-19 optionally includes using an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness.
  • ESD electrostatic-discharge
  • one or more other ranges can be provided to provide a desired current density and ESD robustness, with space and cost tradeoffs.
  • a system or apparatus can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1-20 to include, means for performing any one or more of the functions of Examples 1-20, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.
  • the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.”
  • the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Telephone Function (AREA)
  • Protection Of Static Devices (AREA)

Abstract

This document discusses, among other things, systems and methods to reduce power use of an accessory detection device. The accessory detection device can be configured to be coupled to a mobile device having an audio jack configured to be coupled to a mobile device accessory having a send/end key. In an example, the accessory detection device can include a comparator and a switch. The comparator can be configured to receive mobile device accessory information from the mobile device accessory and to determine activation of the send/end key using the received mobile device accessory information. The switch can be configured to receive connection information indicative of mobile device accessory connection to the audio jack and to isolate a reference input of the comparator from a supply voltage using the connection information, for example, to reduce leakage current.

Description

    CLAIM OF PRIORITY
  • This application is a continuation of U.S. patent application Ser. No. 14/689,247, filed Apr. 17, 2015, which is a continuation of U.S. patent application Ser. No. 13/302,644, filed on Nov. 22, 2011, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/416,245, filed on Nov. 22, 2010 which is incorporated by reference herein in its entirety, the benefit of priority of each of which is claimed hereby, and each of which are incorporated by reference herein in its entirety.
  • BACKGROUND
  • Mobile devices (e.g., mobile phones, etc.) can include various accessories. For example, mobile devices with audio jacks can be configured to be coupled to a headset having at least one of a headphone, a speaker, a microphone, or a send/end key. In an example, the mobile device can include a comparator configured to identify when the send/end key is activated on the headset. In certain examples, activating the send/end key can reduce the microphone bias to ground or increase the microphone bias to a full microphone bias voltage level. In an example, a voltage divider can be used to set the comparator threshold level to identify the send/end key activation. In many devices, the resistors used for the voltage divider are connected to a supply that is normally enabled, even if the headset is not connected, creating excess current draw.
  • Overview
  • This document discusses, among other things, systems and methods to reduce power use of an accessory detection device. The accessory detection device can be configured to be coupled to a mobile device having an audio jack configured to be coupled to a mobile device accessory having a send/end key. In an example, the accessory detection device can include a comparator and a switch. The comparator can be configured to receive mobile device accessory information from the mobile device accessory and to determine activation of the send/end key using the received mobile device accessory information. The switch can be configured to receive connection information indicative of mobile device accessory connection to the audio jack and to isolate a reference input of the comparator from a supply voltage using the connection information, for example, to reduce leakage current.
  • This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
  • FIG. 1 illustrates generally an example of a system including an accessory detection device.
  • FIG. 2 illustrates generally an example of a system including an accessory detection device and an external resistor divider.
  • FIG. 3 illustrates generally an example of a system including an accessory detection device, a baseband processor, an audio codec, an applications processor, and an audio jack.
  • FIG. 4 illustrates generally an example of a logic diagram for an accessory detection device.
  • FIG. 5 illustrates generally an example of a standard PMOS device.
  • FIG. 6 illustrates generally an example of a PMOS device designed for electrostatic discharge (ESD) robustness.
  • DETAILED DESCRIPTION
  • The present inventors have recognized, among other things, systems and methods to detect connection of one or more mobile device accessories to a mobile device, for example, to an audio jack of the mobile device or one or more other inputs or outputs. In an example, an accessory detection device (e.g., a circuit configured to be placed inside of the mobile device) can include a comparator and a microphone switch with an external voltage reference pin. In an example, the accessory detection device can include enable/disable circuitry that can recognize when the voltage reference is or is not required. When the voltage reference is not required, a switch can isolate the detection device from a supply voltage, in certain examples eliminating excess leakage current and increasing the battery life of the mobile device. In an example, integrating a standard PMOS gate to isolate the detection device from the supply voltage can introduce electrostatic discharge (ESD) concerns. Accordingly, in certain examples, the detection device can include a customized PMOS cell configured to increase ESD robustness while maintaining functionality.
  • FIG. 1 illustrates generally an example of a system 100 including a comparator 105, a switch 110, and a resistor divider including first and second resistors 111, 112. In an example, the comparator 105 can be configured to receive a reference voltage at a reference input (+) and mobile device accessory information, such as information from a microphone pin of a mobile device accessory (e.g., a headset, etc.), at a microphone input (J_MIC), to compare the mobile device accessory information to the reference voltage and to provide an indication of a send/end key activation using the comparison (e.g., using a send/end key (S/E) output).
  • In an example, the switch 110 can be configured to receive connection information indicative of mobile device accessory connection to the audio jack, for example, at a control input (CTRL) and to isolate a reference input of the comparator from a supply voltage (VDD) using the connection information. In an example, the switch 110 can include a metal-oxide field-effect transistor (MOSFET), such as a p-type MOSFET (PMOS) device, and in certain examples, as described below, the PMOS or other device can include an ESD PMOS device configured to alleviate ESD concerns found in typical PMOS devices.
  • FIG. 2 illustrates generally an example of a system 200 including an accessory detection device 101 and an external resistor divider including first and second resistors 111, 112. In an example, the detection device 101 can include a comparator 105 and a switch 110. In an example, the switch 110 can include a PMOS device or other switch configured to isolate a supply voltage (VDD) from the external resistor divider and the comparator 105. In an example, an integrated circuit (IC) can include the detection device 101 and not the external resistor divider, such as to allow a determinable reference voltage at a reference input (REF) of the comparator using the first and second resistors 111, 112.
  • FIG. 3 illustrates generally an example of a system 300 including an accessory detection device 101, a baseband processor 130, an audio codec 131, an applications processor 132, and an audio jack 125.
  • In an example, the audio jack 125 can include four terminals, such as: (1) left audio (L); (2) right audio (R); (3) ground (GND); and (4) a data terminal. In an example, the data terminal can be configured to receive mobile device accessory information, such as a microphone input (Mic). In other examples, the data terminal can be configured to receive or provide other accessory information, such as providing video data out, etc.
  • In certain examples, the audio jack 125 can be configured to receive an audio plug 135, such as a 4-pole audio plug. In other examples, the audio jack 125 can be configured to receive one or more other types of audio plugs, or the audio jack 125 and audio plug 135 can be replaced with one or more other type of input/output (IO).
  • In an example, when a headset is plugged into the audio jack 125, a baseband processor 130 can enable the detection device 101, for example, using an enable input (EN) and an enable circuit 115, and can close a microphone switch 116, connecting a microphone pin (MIC) to a microphone input (J_MIC), such as by using a select (SEL) input, which can enable the detection device 101 to provide a voltage reference at a reference supply voltage (R_VDD) for the comparator 105, such as through an external resistor divider (e.g., the first and second resistors 111, 112) configured to provide a determinable (e.g., user determinable, etc.) reference voltage to the comparator 105.
  • In the example of FIG. 3, a microphone line between the audio codec 131 and the detection device 101 can be pulled to a microphone bias (MIC_Bias) level through a microphone resistor (RMIC, e.g., typically 2.2kΩ). In an example, a headset microphone (e.g., a JFET type microphone, etc.) can represent a load of ˜2kΩ, creating a microphone bias level of ˜MIC_Bias/2. In an example, if a send/end (S/E) key is activated (e.g., pushed) on the headset, the connection to the microphone can be open allowing the microphone bias to increase to or near the full microphone bias voltage potential. The microphone bias can pass the reference voltage on the comparator 105 and the send/enable (S/E) output pin on the detection device 101 can be updated, communicating an S/E key activation to the baseband processor 130.
  • In an example, the circuitry (e.g., the switch 110) and the reference voltage (REF) on the comparator 105 can be required only when a headset is plugged in. If a video switch (VID) is selected, for example, from an applications processor 132, or the detection device 101 is disabled, the reference supply voltage (R_VDD) can be disabled using the switch 110, eliminating excess current through the external resistor divider (e.g., the first and second resistors 111, 112), etc.
  • FIG. 4 illustrates generally an example of a timing diagram 400 of a detection device, such as that illustrated in the example of FIG. 3, disclosing an example relationship between a supply voltage (VDD) 141, an enable signal (EN) 142, a reference supply voltage (R_VDD) 143, a select signal (SEL) 144, a microphone signal (MIC) 145, a comparator output (COMP) 146, and a video enable signal (VID) 147 with reference to time. In an example, at 166, the detection device can be enabled and the MIC switch can be selected. In an example, at 167, the detection device can be enabled, and the VID switch can be selected. In an example, at 168, the detection device can be disabled. Table 1, below, provides an example operation.
  • TABLE 1
    EN SEL MIC VID R_VDD S/E
    0 X 3-State 3-State GND H
    1 1 J_MIC Open VDD Active
    1 0 Open J_MIC GND H
  • FIG. 5 illustrates generally an example of a standard PMOS device 500.
  • FIG. 6 illustrates generally an example of a p-type metal-oxide field-effect transistor (PMOS) device 600 designed for electrostatic discharge (ESD) robustness. The PMOS device 600 between the supply voltage (VDD) and a reference supply voltage (R_VDD) can provide ESD robustness while still meeting application requirements (e.g., for the example illustrated in FIG. 3). In an example, the PMOS device 600 includes increased source metal 170 and increased drain metal 171 in comparison to the standard PMOS device 500 of FIG. 5. In certain examples, the channel lengths and widths are increased with respect to the example illustrated in FIG. 5. Further, the number of stripes has increased, as well as the source contact to gate spacing (SCGS) 172 and the drain contact to gate spacing (DCGS) 173, greatly increasing the current density in the PMOS device 500. Table 2 illustrates example changes for each of the parameters referenced above.
  • TABLE 2
    Parameter Standard PMOS ESD PMOS
    Channel Length 0.35 um 0.50 um
    Channel Width 80 um 400 um
    Number of Stripes 4 12
    SCGS/DCGS Spacing 0.30 um 1.80 um
    Current Density 6.40 ma 57.0 mA
  • Although certain examples above are illustrated with respect to a mobile device, an audio jack, and a headset, the subject matter disclosed herein is likewise applicable to any comparator configured to compare a received signal to a reference voltage supplied using a supply voltage. In an example, the supply voltage can be isolated or coupled to the comparator using information about the received signal, or using information about a device providing the received signal.
  • Additional Notes
  • In Example 1, a system includes an accessory detection device configured to be coupled to a mobile device having an audio jack, wherein the audio jack is configured to be coupled to a mobile device accessory having a send/end key. The accessory detection device can include a comparator configured to receive mobile device accessory information from the mobile device accessory and to determine activation of the send/end key using the received mobile device accessory information and a switch configured to receive connection information indicative of a mobile device accessory connection to the audio jack and to isolate a reference input of the comparator from a supply voltage using the connection information.
  • In Example 2, Example 1 can optionally include the audio jack, wherein the audio jack includes a 4-pole audio jack configured to receive a 4-pole audio plug, the 4-pole audio jack including left audio terminal, a right audio terminal, a ground terminal, and a data terminal, wherein the switch is optionally configured to receive connection information using the ground terminal of the 4-pole audio jack, and wherein the connection information is optionally different than the mobile device accessory information.
  • In Example 3, the comparator of any one or more of Examples 1-2 is optionally configured to receive mobile device accessory information using the data terminal.
  • In Example 4, the switch of any one or more of Examples 1-3 is optionally configured to isolate the reference input of the comparator from the supply voltage in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
  • In Example 5, the switch of any one or more of Examples 1-4 is optionally configured to couple the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
  • In Example 6, any one or more of Examples 1-5 optionally includes a resistor divider configured to receive a voltage from the switch and to provide a reference voltage to the reference input of the comparator.
  • In Example 7, any one or more of Examples 1-6 optionally includes an integrated circuit (IC) including the comparator and the switch, and the comparator of any one or more of Examples 1-6 is optionally configured to receive a determinable reference voltage at the reference input using an external resistor divider and the switch.
  • In Example 8, any one or more of Examples 1-7 optionally includes the external resistor divider, including first and second resistors having first and second resistance values, wherein the IC of any one or more of Examples 1-7 optionally includes a switch output and a reference input, wherein the first resistor of any one or more of Examples 1-7 is optionally coupled between the switch output and the reference input, wherein the second resistor of any one or more of Examples 1-7 is optionally coupled between the reference input and a voltage level, and wherein the switch of any one or more of Examples 1-7 is optionally configured to selectively provide the supply voltage to the external resistor divider to provide the determinable reference voltage to the reference input of the comparator as a function of the first and second resistance values and the supply voltage.
  • In Example 9, the mobile device accessory of any one or more of Examples 1-8 optionally includes at least one of a 4-pole mobile device headset having a send/end key or a 4-pole audio/video interface configured to provide audio or video output from the mobile device to an external display.
  • In Example 10, the switch of any one or more of Examples 1-9 optionally includes a metal-oxide-semiconductor field-effect transistor (MOSFET).
  • In Example 11, the switch of any one or more of Examples 1-10 optionally includes a p-channel MOSFET (PMOS) device.
  • In Example 12, the PMOS device of any one or more of Examples 1-11 optionally includes an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness.
  • In Example 13, any one or more of Examples 1-12 can include receiving connection information indicative of mobile device accessory connection to an audio jack of a mobile device, receiving mobile device accessory information, different from the connection information, from the mobile device accessory at a comparator, determining activation of a send/end key of the mobile device accessory using the comparator and the mobile device accessory information, and isolating a reference input of the comparator from a supply voltage using the connection information and a switch.
  • In Example 14, the receiving connection information of any one or more of Examples 1-13 optionally includes receiving connection information from a ground terminal of a 4-pole audio jack configured to receive a 4-pole audio plug of the mobile device accessory.
  • In Example 15, the isolating the reference input of the comparator of any one or more of Examples 1-14 optionally includes in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
  • In Example 16, any one or more of Examples 1-15 optionally includes coupling the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
  • In Example 17, any one or more of Examples 1-16 optionally includes selectively providing a determinable reference voltage to the reference input of the comparator using a resistor divider coupled to the switch, the resistor divider optionally including first and second resistors having first and second resistance values, the reference voltage determinable as a function of the first and second resistance values.
  • In Example 18, the isolating the reference input of the comparator of any one or more of Examples 1-17 using the switch optionally includes using a metal-oxide-semiconductor field-effect transistor (MOSFET).
  • In Example 19, the isolating the reference input of the comparator using the MOSFET of any one or more of Examples 1-18 optionally includes using a p-channel MOSFET (PMOS) device.
  • In Example 20, the isolating the reference input of the comparator using the PMOS device of any one or more of Examples 1-19 optionally includes using an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness. In other examples, one or more other ranges can be provided to provide a desired current density and ESD robustness, with space and cost tradeoffs.
  • In Example 21, a system or apparatus can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1-20 to include, means for performing any one or more of the functions of Examples 1-20, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.
  • The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
  • In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
  • The above description is intended to be illustrative, and not restrictive. For example, although the examples above have been described relating to p-type devices, one or more examples can be applicable to n-type devices. In other examples, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (21)

1. (canceled)
2. A system comprising:
an accessory detection device, including:
a comparator having a first input and a reference input, wherein the first input is configured to receive mobile device accessory information from a mobile device accessory; and
a switch configured to receive connection information indicative of a mobile device accessory connection to an audio jack, the switch having a first state and a second state,
wherein the switch is configured to couple the reference input of the comparator to a supply voltage in the first state and to isolate the reference input of the comparator from the supply voltage in a second state using the connection information to reduce leakage current from the supply voltage through a reference circuit coupled to the reference input of the comparator.
3. The system of claim 2, wherein the switch is configured to ground the reference input in the second state.
4. The system of claim 2, wherein the first input of the comparator is configured to receive mobile device accessory information from a data terminal of the audio jack.
5. The system of claim 2, wherein the switch is configured to isolate the reference input of the comparator from the supply voltage in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
6. The system of claim 2, wherein the switch is configured to couple the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
7. The system of claim 2, including a mobile device, the mobile device including the accessory detection circuit and the audio jack, wherein the audio jack is configured to receive an audio plug of the mobile device accessory.
8. The system of claim 7, wherein the audio jack includes a 4-pole audio jack configured to receive a 4-pole audio plug, the 4-pole audio jack including left audio terminal, a right audio terminal, a ground terminal, and a data terminal, wherein the connection information is different than the mobile device accessory information.
9. The system of claim 2, wherein the reference circuit includes a resistor divider having first and second resistors, the first resistor configured to be coupled between the supply voltage and the reference input of the comparator, the second resistor configured to be coupled between the reference input of the comparator and the reference voltage.
10. The system of claim 9, including:
an integrated circuit, the integrated circuit including the comparator and the switch, wherein the reference circuit is external to the integrated circuit.
11. The system of claim 2, wherein the switch includes a p-channel MOSFET (PMOS) device.
12. The system of claim 11, wherein the PMOS device includes an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness.
13. The system of claim 2, wherein the comparator is configured to determine activation of a send/end key of a mobile device accessory using the received mobile device accessory information.
14. A method comprising:
receiving connection information indicative of mobile device accessory connection to an audio jack of a mobile device;
receiving mobile device accessory information, different from the connection information, from the mobile device accessory at a first input of a comparator;
coupling a reference input of the comparator to a supply voltage using a switch in a first state and isolating the reference input of the comparator from the supply voltage using the switch in a second state to reduce leakage current from the supply voltage through a reference circuit coupled to the reference input of the comparator; and
controlling the state of the switch using the connection information.
15. The method of claim 14, wherein the isolating the reference input of the comparator from the supply voltage using the switch in the second state includes grounding the reference input.
16. The method of claim 14, wherein the isolating the reference input of the comparator includes in response to the connection information indicating that the mobile device accessory is not coupled to the audio jack.
17. The method of claim 14, including coupling the reference input of the comparator to the supply voltage in response to the connection information indicating that the mobile device accessory is coupled to the audio jack.
18. The method of claim 14, including selectively providing a determinable reference voltage to the reference input of the comparator using a resistor divider coupled to the switch, the resistor divider including first and second resistors having first and second resistance values, the reference voltage determinable as a function of the first and second resistance values.
19. The method of claim 14, wherein the reference circuit includes a resistor divider having first and second resistors, and
wherein isolating the reference input of the comparator from the supply voltage using the switch in the second state includes to reduce leakage current from the supply voltage through the resistor divider.
20. The method of claim 14, wherein the isolating the reference input of the comparator includes using a p-channel MOSFET (PMOS) device.
21. The method of claim 14, wherein the isolating the reference input of the comparator using the PMOS device includes using an electrostatic-discharge (ESD) PMOS device having a channel width at least 500 times greater than a channel length and a source-contact to gate spacing and a drain-contact to gate spacing at least 3 times greater than the channel length to provide a desired current density and ESD robustness.
US15/466,638 2010-11-22 2017-03-22 Enable and disable comparator voltage reference Active US10142751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/466,638 US10142751B2 (en) 2010-11-22 2017-03-22 Enable and disable comparator voltage reference

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41624510P 2010-11-22 2010-11-22
US13/302,644 US9014388B2 (en) 2010-11-22 2011-11-22 Enable and disable comparator voltage reference
US14/689,247 US9635453B2 (en) 2010-11-22 2015-04-17 Enable and disable comparator voltage reference
US15/466,638 US10142751B2 (en) 2010-11-22 2017-03-22 Enable and disable comparator voltage reference

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/689,247 Continuation US9635453B2 (en) 2010-11-22 2015-04-17 Enable and disable comparator voltage reference

Publications (3)

Publication Number Publication Date
US20170201843A1 US20170201843A1 (en) 2017-07-13
US20180184221A9 true US20180184221A9 (en) 2018-06-28
US10142751B2 US10142751B2 (en) 2018-11-27

Family

ID=46126670

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/302,644 Active 2033-05-01 US9014388B2 (en) 2010-11-22 2011-11-22 Enable and disable comparator voltage reference
US14/689,247 Active US9635453B2 (en) 2010-11-22 2015-04-17 Enable and disable comparator voltage reference
US15/466,638 Active US10142751B2 (en) 2010-11-22 2017-03-22 Enable and disable comparator voltage reference

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/302,644 Active 2033-05-01 US9014388B2 (en) 2010-11-22 2011-11-22 Enable and disable comparator voltage reference
US14/689,247 Active US9635453B2 (en) 2010-11-22 2015-04-17 Enable and disable comparator voltage reference

Country Status (3)

Country Link
US (3) US9014388B2 (en)
KR (1) KR101934463B1 (en)
CN (3) CN105142091B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994713B2 (en) * 2010-10-01 2015-03-31 Z124 Smart pad operation with differing display parameters applied to different display elements
US9001103B2 (en) * 2010-10-01 2015-04-07 Z124 Smart pad operation of display elements with differing display parameters
US9092191B2 (en) 2010-10-01 2015-07-28 Z124 Smart pad operation with differing aspect ratios
CN105142091B (en) * 2010-11-22 2018-07-06 快捷半导体(苏州)有限公司 accessory detection system and method
TWI464569B (en) * 2012-11-06 2014-12-11 Upi Semiconductor Corp Voltage identification definition reference voltage generating circuit and boot voltage generating method thereof
TWI633794B (en) * 2017-01-13 2018-08-21 茂達電子股份有限公司 Pop-free headset detection circuit
CN112688674A (en) * 2020-12-15 2021-04-20 郑州嘉晨电器有限公司 Overcurrent protection circuit of power switch tube

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87208602U (en) * 1987-05-25 1988-07-20 南京工学院 Double-grid type high-voltage mos integrated circuit
CN87209110U (en) * 1987-06-10 1988-06-08 南京工学院 Mos grid-controlled transverse thyristor
US6594366B1 (en) * 1997-12-02 2003-07-15 Siemens Information & Communication Networks, Inc. Headset/radio auto sensing jack
EP0999721A3 (en) * 1998-11-07 2003-05-21 Samsung Electronics Co., Ltd. Device for controlling connection of built-in type ear-microphone for portable radio terminal
MXPA00012847A (en) * 2000-01-07 2003-04-25 Motorola Inc Radio broadcasting receiver has control unit that switches.
US6856046B1 (en) * 2002-03-08 2005-02-15 Analog Devices, Inc. Plug-in device discrimination circuit and method
KR100871260B1 (en) 2002-08-24 2008-11-28 삼성전자주식회사 Apparatus for detecting the earjack plug
US7450726B2 (en) 2004-03-11 2008-11-11 Texas Instruments Incorporated Headset detector in a device generating audio signals
JP2005261141A (en) * 2004-03-15 2005-09-22 Kaga Component Kk Overcurrent protecting circuit in switching power supply for audio amplifier
KR100598463B1 (en) * 2005-05-16 2006-07-10 엘지전자 주식회사 Apparatus and method for automatic recognition tty terminal and ctm converter of mobile communication terminal
US7495509B2 (en) 2006-12-06 2009-02-24 Panasonic Corporation Co., Ltd. Audio power amplifier
US9215304B2 (en) 2008-01-14 2015-12-15 Apple Inc. Data store and enhanced features for headset of portable media device
CN101493490B (en) 2009-02-23 2013-03-27 华为终端有限公司 Terminal port insertion detection circuit
US8787588B2 (en) 2009-02-27 2014-07-22 St-Ericsson Sa Coupling of speakers with integrated circuit
CN201509235U (en) * 2009-09-25 2010-06-16 宇龙计算机通信科技(深圳)有限公司 Headphone detection circuit of mobile terminal and mobile terminal thereof
US8829932B2 (en) * 2010-07-23 2014-09-09 Fairchild Semiconductor Corporation No pin test mode
CN105142091B (en) 2010-11-22 2018-07-06 快捷半导体(苏州)有限公司 accessory detection system and method

Also Published As

Publication number Publication date
US20150222982A1 (en) 2015-08-06
US9635453B2 (en) 2017-04-25
US20120134516A1 (en) 2012-05-31
US20170201843A1 (en) 2017-07-13
KR101934463B1 (en) 2019-01-02
CN202364377U (en) 2012-08-01
CN102595299B (en) 2015-09-23
US9014388B2 (en) 2015-04-21
KR20120055473A (en) 2012-05-31
US10142751B2 (en) 2018-11-27
CN102595299A (en) 2012-07-18
CN105142091B (en) 2018-07-06
CN105142091A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US10142751B2 (en) Enable and disable comparator voltage reference
US9591421B2 (en) Audio jack detection circuit
US20180220230A1 (en) Audio i o headset plug and plug detection circuitry
US8120884B2 (en) Reverse voltage protection circuit
US9253564B2 (en) Noise-canceling headphone depletion-mode switch
US10015578B2 (en) Remote ground sensing for reduced crosstalk of headset and microphone audio signals
US9674598B2 (en) Audio accessory communication with active noise cancellation
JP2009545260A (en) Low power on-chip headset switch detection
US20090302806A1 (en) Control circuitry for providing an interface between connectable terminal and peripheral device circuitry
JP5902867B2 (en) Audio interface self-adaptive method, apparatus, and audio information receiving apparatus
DK2950552T3 (en) Headphone and method for automatic selection of remote control circuits for a headphone
WO2013188155A1 (en) Electronic device power protection circuitry
US20140049861A1 (en) Protective multiplexer
US9479882B2 (en) Initial command to switch transistors disconnecting keys from microphone line
US9584893B2 (en) Apparatus and method for recovering from partial insertion of an audio jack
US20230224621A1 (en) 2 pogo pin design for tws headphone
EP2845284B1 (en) Electronic device power protection circuitry
TWI548287B (en) Earphone detecting circuit and communication terminal using the same
US9825629B2 (en) Apparatus comprising a switch feature
KR100258218B1 (en) Apparatus and method for connecting plug

Legal Events

Date Code Title Description
AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRENTICE, SETH M.;STULTZ, JUNE LYNN;SIGNING DATES FROM 20111129 TO 20111222;REEL/FRAME:041688/0636

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541

Effective date: 20170504

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541

Effective date: 20170504

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:057694/0374

Effective date: 20210722

AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:057969/0206

Effective date: 20211027

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;REEL/FRAME:058871/0799

Effective date: 20211028

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459

Effective date: 20230622

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459

Effective date: 20230622

AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 0799;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065653/0001

Effective date: 20230622

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 058871, FRAME 0799;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065653/0001

Effective date: 20230622