US20180147264A1 - Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto - Google Patents
Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto Download PDFInfo
- Publication number
- US20180147264A1 US20180147264A1 US15/876,323 US201815876323A US2018147264A1 US 20180147264 A1 US20180147264 A1 US 20180147264A1 US 201815876323 A US201815876323 A US 201815876323A US 2018147264 A1 US2018147264 A1 US 2018147264A1
- Authority
- US
- United States
- Prior art keywords
- plygrcs
- activity
- amino acid
- endolysin
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000008194 pharmaceutical composition Substances 0.000 title claims description 37
- 241000191940 Staphylococcus Species 0.000 title claims description 8
- 238000000034 method Methods 0.000 title abstract description 31
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 71
- 229920001184 polypeptide Polymers 0.000 claims abstract description 70
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 70
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 15
- 230000003115 biocidal effect Effects 0.000 claims description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 20
- 241000894006 Bacteria Species 0.000 claims description 18
- 230000002147 killing effect Effects 0.000 claims description 15
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 claims description 14
- 108010059993 Vancomycin Proteins 0.000 claims description 13
- 150000007523 nucleic acids Chemical class 0.000 claims description 13
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 claims description 13
- 229960003165 vancomycin Drugs 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 102000039446 nucleic acids Human genes 0.000 claims description 11
- 241000192125 Firmicutes Species 0.000 claims description 10
- 239000003937 drug carrier Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 claims description 6
- 108010028921 Lipopeptides Proteins 0.000 claims description 6
- 229930182555 Penicillin Natural products 0.000 claims description 6
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 claims description 6
- 229940049954 penicillin Drugs 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 229930186147 Cephalosporin Natural products 0.000 claims description 5
- 108010040201 Polymyxins Proteins 0.000 claims description 5
- 229940124587 cephalosporin Drugs 0.000 claims description 5
- 150000001780 cephalosporins Chemical class 0.000 claims description 5
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 claims description 5
- ATEBXHFBFRCZMA-VXTBVIBXSA-N rifabutin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC(=C2N3)C(=O)C=4C(O)=C5C)C)OC)C5=C1C=4C2=NC13CCN(CC(C)C)CC1 ATEBXHFBFRCZMA-VXTBVIBXSA-N 0.000 claims description 5
- 229960000885 rifabutin Drugs 0.000 claims description 5
- 229940124530 sulfonamide Drugs 0.000 claims description 5
- 150000003456 sulfonamides Chemical class 0.000 claims description 5
- FPZLLRFZJZRHSY-HJYUBDRYSA-N tigecycline Chemical compound C([C@H]1C2)C3=C(N(C)C)C=C(NC(=O)CNC(C)(C)C)C(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2[C@H](N(C)C)C(O)=C(C(N)=O)C1=O FPZLLRFZJZRHSY-HJYUBDRYSA-N 0.000 claims description 5
- 229960004089 tigecycline Drugs 0.000 claims description 5
- 108010013198 Daptomycin Proteins 0.000 claims description 4
- DOAKLVKFURWEDJ-QCMAZARJSA-N daptomycin Chemical compound C([C@H]1C(=O)O[C@H](C)[C@@H](C(NCC(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H](CO)C(=O)N[C@H](C(=O)N1)[C@H](C)CC(O)=O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CCCCCCCCC)C(=O)C1=CC=CC=C1N DOAKLVKFURWEDJ-QCMAZARJSA-N 0.000 claims description 4
- 229960005484 daptomycin Drugs 0.000 claims description 4
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 claims description 4
- 229960003907 linezolid Drugs 0.000 claims description 4
- ZVGNESXIJDCBKN-WUIGKKEISA-N R-Tiacumicin B Natural products O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC1=CC=CC[C@H](O)C(C)=C[C@@H]([C@H](C(C)=CC(C)=CC[C@H](OC1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-WUIGKKEISA-N 0.000 claims description 3
- ZVGNESXIJDCBKN-UUEYKCAUSA-N fidaxomicin Chemical compound O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC\1=C/C=C/C[C@H](O)/C(C)=C/[C@@H]([C@H](/C(C)=C/C(/C)=C/C[C@H](OC/1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-UUEYKCAUSA-N 0.000 claims description 3
- 229960000628 fidaxomicin Drugs 0.000 claims description 3
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 3
- 229960000282 metronidazole Drugs 0.000 claims description 3
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 abstract description 84
- KDXKERNSBIXSRK-UHFFFAOYSA-N lysine Chemical compound NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 abstract description 82
- 239000000203 mixture Substances 0.000 abstract description 39
- 241001515965 unidentified phage Species 0.000 abstract description 21
- 208000035143 Bacterial infection Diseases 0.000 abstract description 9
- 208000022362 bacterial infectious disease Diseases 0.000 abstract description 9
- 230000000694 effects Effects 0.000 description 61
- 230000001580 bacterial effect Effects 0.000 description 38
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 37
- 108010013639 Peptidoglycan Proteins 0.000 description 37
- 230000002101 lytic effect Effects 0.000 description 32
- 230000003197 catalytic effect Effects 0.000 description 31
- 108010059378 Endopeptidases Proteins 0.000 description 22
- 102000005593 Endopeptidases Human genes 0.000 description 22
- 241000191967 Staphylococcus aureus Species 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 21
- 210000002421 cell wall Anatomy 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 20
- 208000015181 infectious disease Diseases 0.000 description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 19
- 239000013598 vector Substances 0.000 description 18
- 239000003242 anti bacterial agent Substances 0.000 description 17
- 238000003556 assay Methods 0.000 description 17
- 108090000623 proteins and genes Proteins 0.000 description 17
- 238000001228 spectrum Methods 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 16
- 229940088598 enzyme Drugs 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- -1 D-alanyl-glycyl Chemical group 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 239000004599 antimicrobial Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 13
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 13
- 229960003085 meticillin Drugs 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- 230000007017 scission Effects 0.000 description 13
- 108700023418 Amidases Proteins 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 241000191963 Staphylococcus epidermidis Species 0.000 description 12
- 102000005922 amidase Human genes 0.000 description 12
- 229940088710 antibiotic agent Drugs 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 description 10
- 102100030397 N-acetylmuramoyl-L-alanine amidase Human genes 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 238000002983 circular dichroism Methods 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000012512 characterization method Methods 0.000 description 8
- 235000018417 cysteine Nutrition 0.000 description 8
- 229960002433 cysteine Drugs 0.000 description 8
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 8
- 230000009089 cytolysis Effects 0.000 description 8
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 102000004092 Amidohydrolases Human genes 0.000 description 7
- 108090000531 Amidohydrolases Proteins 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 208000035473 Communicable disease Diseases 0.000 description 7
- 230000005526 G1 to G0 transition Effects 0.000 description 7
- 230000000845 anti-microbial effect Effects 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 241000193830 Bacillus <bacterium> Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000004949 mass spectrometry Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 108090000988 Lysostaphin Proteins 0.000 description 5
- 238000010256 biochemical assay Methods 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 239000001974 tryptic soy broth Substances 0.000 description 5
- 108010050327 trypticase-soy broth Proteins 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- 102220467847 MyoD family inhibitor domain-containing protein 2_H92A_mutation Human genes 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 102220531334 Serpin B10_C29S_mutation Human genes 0.000 description 4
- 241000193998 Streptococcus pneumoniae Species 0.000 description 4
- 241000193996 Streptococcus pyogenes Species 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 244000144972 livestock Species 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 3
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 101000925662 Enterobacteria phage PRD1 Endolysin Proteins 0.000 description 3
- 241000194033 Enterococcus Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 241000186781 Listeria Species 0.000 description 3
- 239000006137 Luria-Bertani broth Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000295644 Staphylococcaceae Species 0.000 description 3
- 241001247837 Streptococcus phage B30 Species 0.000 description 3
- 241000194054 Streptococcus uberis Species 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000001420 bacteriolytic effect Effects 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 3
- 229940115922 streptococcus uberis Drugs 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 101000847476 Autographa californica nuclear polyhedrosis virus Uncharacterized 54.7 kDa protein in IAP1-SOD intergenic region Proteins 0.000 description 2
- 101000736075 Bacillus subtilis (strain 168) Uncharacterized protein YcbP Proteins 0.000 description 2
- 208000031729 Bacteremia Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 101100221834 Caenorhabditis elegans cpl-1 gene Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 208000003322 Coinfection Diseases 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108030003376 Glutathionylspermidine synthases Proteins 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 101001066788 Haemophilus phage HP1 (strain HP1c1) Probable portal protein Proteins 0.000 description 2
- 101000748192 Herpetosiphon aurantiacus Uncharacterized 15.4 kDa protein in HgiDIIM 5'region Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000037942 Methicillin-resistant Staphylococcus aureus infection Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 206010041925 Staphylococcal infections Diseases 0.000 description 2
- 241000724233 Staphylococcus virus 11 Species 0.000 description 2
- 241000194048 Streptococcus equi Species 0.000 description 2
- 241000194021 Streptococcus suis Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003214 anti-biofilm Effects 0.000 description 2
- 230000008262 antibiotic resistance mechanism Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000007622 bioinformatic analysis Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000003235 crystal violet staining Methods 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 108010060371 endo-N-acetylmuramidase Proteins 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 244000000059 gram-positive pathogen Species 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 208000004396 mastitis Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002895 organic esters Chemical class 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000011012 sanitization Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000008174 sterile solution Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000009777 vacuum freeze-drying Methods 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- WDMUXYQIMRDWRC-UHFFFAOYSA-N 2-hydroxy-3,4-dinitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C([N+]([O-])=O)=C1O WDMUXYQIMRDWRC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000186046 Actinomyces Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 208000031462 Bovine Mastitis Diseases 0.000 description 1
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 101150016835 CPL1 gene Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000210651 Enterobacteria phage 1 Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 101000591312 Homo sapiens Putative MORF4 family-associated protein 1-like protein UPP Proteins 0.000 description 1
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- MNLRQHMNZILYPY-MKFCKLDKSA-N N-acetyl-D-muramic acid Chemical compound OC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1NC(C)=O MNLRQHMNZILYPY-MKFCKLDKSA-N 0.000 description 1
- 206010028885 Necrotising fasciitis Diseases 0.000 description 1
- NVNLLIYOARQCIX-MSHCCFNRSA-N Nisin Chemical compound N1C(=O)[C@@H](CC(C)C)NC(=O)C(=C)NC(=O)[C@@H]([C@H](C)CC)NC(=O)[C@@H](NC(=O)C(=C/C)/NC(=O)[C@H](N)[C@H](C)CC)CSC[C@@H]1C(=O)N[C@@H]1C(=O)N2CCC[C@@H]2C(=O)NCC(=O)N[C@@H](C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(NCC(=O)N[C@H](C)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCSC)C(=O)NCC(=O)N[C@H](CS[C@@H]2C)C(=O)N[C@H](CC(N)=O)C(=O)N[C@H](CCSC)C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(N[C@H](C)C(=O)N[C@@H]3C(=O)N[C@@H](C(N[C@H](CC=4NC=NC=4)C(=O)N[C@H](CS[C@@H]3C)C(=O)N[C@H](CO)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H](CC=3NC=NC=3)C(=O)N[C@H](C(C)C)C(=O)NC(=C)C(=O)N[C@H](CCCCN)C(O)=O)=O)CS[C@@H]2C)=O)=O)CS[C@@H]1C NVNLLIYOARQCIX-MSHCCFNRSA-N 0.000 description 1
- 108010053775 Nisin Proteins 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000013494 PH determination Methods 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000334136 Pseudomonas phage phi12 Species 0.000 description 1
- 102100034096 Putative MORF4 family-associated protein 1-like protein UPP Human genes 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 101100468774 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RIM13 gene Proteins 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 102100037205 Sal-like protein 2 Human genes 0.000 description 1
- 101710192308 Sal-like protein 2 Proteins 0.000 description 1
- 241000701835 Salmonella virus P22 Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 206010051017 Staphylococcal bacteraemia Diseases 0.000 description 1
- 241000707280 Staphylococcus aureus 2011-60-1490-31 Species 0.000 description 1
- 241001613948 Staphylococcus phage 66 Species 0.000 description 1
- 241000204572 Staphylococcus phage S24-1 Species 0.000 description 1
- 241001480830 Staphylococcus phage SAP-2 Species 0.000 description 1
- 241001186872 Staphylococcus virus 44AHJD Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 201000005010 Streptococcus pneumonia Diseases 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000941 anti-staphylcoccal effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 238000002802 antimicrobial activity assay Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 108700016158 assemblin Proteins 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000000339 bright-field microscopy Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 238000001142 circular dichroism spectrum Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 108010091000 endorhamnosidase Proteins 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 108700010690 exebacase Proteins 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 102000034238 globular proteins Human genes 0.000 description 1
- 108091005896 globular proteins Proteins 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 210000005255 gram-positive cell Anatomy 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 201000007970 necrotizing fasciitis Diseases 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004309 nisin Substances 0.000 description 1
- 235000010297 nisin Nutrition 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000020200 pasteurised milk Nutrition 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- MXHCPCSDRGLRER-UHFFFAOYSA-N pentaglycine Chemical compound NCC(=O)NCC(=O)NCC(=O)NCC(=O)NCC(O)=O MXHCPCSDRGLRER-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 206010040872 skin infection Diseases 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 108020005087 unfolded proteins Proteins 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/14—Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2462—Lysozyme (3.2.1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/01—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
- C12Y305/01028—N-Acetylmuramoyl-L-alanine amidase (3.5.1.28)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- the present invention relates to methods of treating or preventing bacterial infection, antibacterial compositions, and devices including antibacterial surfaces, incorporating isolated endolysin polypeptides from bacteriophage GRCS.
- MRSA methicillin-resistant S. aureus
- H-MRSA Hospital-acquired MRSA
- CA-MRSA community-acquired MRSA
- Endolysin therapy is one avenue that is being pursued (Borysowski J et al. (2011) Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives . BioDrugs 25(6):347-55; Nelson D C et al. (2012) Endolysins as antimicrobials . Adv Virus Res 83:299-365).
- Endolysins are enzymes released by bacteriophages during the lytic cycle of viral infection.
- a lytic enzyme is capable of specifically cleaving bonds that are present in the peptidoglycan of bacterial cells to disrupt the bacterial cell wall.
- the bacterial cell wall peptidoglycan is highly conserved among most bacteria, and cleavage of only a few bonds is believed to disrupt the bacterial cell wall. Once produced within the bacterial cytoplasm by replicating bacteriophage, endolysins hydrolyze bonds in the bacterial cell wall (i.e. peptidoglycan) until lysis is complete.
- Gram-positive bacteria include, inter alia, numerous species within the genera Actinomyces, Bacillus, Listeria, Lactococcus, Staphylococcus, Streptococcus, Enterococcus, Mycobacterium, Corynebacterium , and Clostridium.
- the classical structure of endolysins that act on Gram-positive cell walls employs a modular architecture consisting of an N-terminal catalytic domain linked to a C-terminal cell wall binding domain (CBD).
- the catalytic domain is responsible for cleaving specific covalent bonds in the peptidoglycan structure that are essential for maintaining its intrinsic structural integrity.
- the CBD confers endolysin specificity by recognizing and noncovalent binding to species- or strain-specific epitopes associated with the cell envelope.
- endolysins have been shown to be effective in killing specific bacterial strains.
- endolysin-based therapeutics particularly therapeutics exhibiting superior activity and/or which target other bacterial strains as compared to known therapeutics.
- the increasing rate of resistance of pathogenic bacteria, such as S. aureus , to classical antibiotics has driven research towards identification of other means to fight infectious diseases.
- the present invention relates to methods of treating such infectious diseases by administering to a subject a therapeutically effective amount of particular bacteriophage-encoded peptidoglycan hydrolase, called endolysin(s) or enzybiotic(s).
- the endolysin polypeptides of the present invention lyse the bacterial cell wall upon direct contact, are not inhibited by traditional antibiotic resistance mechanisms, and thus are suitable for numerous applications, e.g., such as in the areas of food safety, human health, and veterinary science.
- PlyGRCS endolysin or endolysin polypeptide which have the disclosed amino acid sequences, variants thereof, or active fragments thereof.
- PlyGRCS endolysin(s) are utilized for treating infectious disease associated with Gram-positive bacteria, in particular Staphylococcus bacteria (e.g., S. aureus and S. epidermidis ) including methicillin- and vancomycin-resistant strains (e.g., methicillin-resistant S. aureus (MRSA), vancomycin-intermediate-resistant S. aureus (VISA), and methicillin-resistant S. epidermidis ).
- one aspect of the present invention provides for endolysin polypeptides having killing activity against gram-positive bacteria, particularly Staphylococcus bacteria.
- a method of killing gram-positive bacteria is provided by contacting bacteria with a composition comprising an amount of isolated endolysin polypeptide effective to kill such bacteria, the isolated endolysin polypeptide comprising an amino acid sequence of SEQ ID NOs: 5, 6 and/or 7 or variants thereof.
- Another aspect of the present invention relates to methods of treating bacterial infection (e.g., an infection or disease caused by a Staphylococcus species such as S. aureus ) in a subject (e.g., a human patient) comprising administering to the patient a therapeutically effective amount of an isolated endolysin polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto.
- the method includes the further step of administering to the subject a secondary therapeutic agent (e.g., one or more antibiotic) after or concurrent with the administration of the isolated polypeptide.
- a secondary therapeutic agent e.g., one or more antibiotic
- the present invention also relates to pharmaceutical compositions for killing Gram-positive bacteria comprising an isolated polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto, and a pharmaceutically acceptable carrier.
- the pharmaceutical composition further comprises one or more antibiotic, such as for example a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and/or an oxazolidinone.
- the antibiotic is selected from the group consisting of linezolid, daptomycin, and tigecycline, vancomycin, fidaxomicin, and metronidazole.
- the present invention is also directed to a substrate (e.g., such as a device or apparatus, such as a medical instrument or device or an implantable medical device) including a surface comprising an antibacterial coating or material coupled thereto, wherein the coating or material comprises an isolated polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto.
- a substrate e.g., such as a device or apparatus, such as a medical instrument or device or an implantable medical device
- the coating or material comprises an isolated polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto.
- the coating or material comprises one or more secondary therapeutic agent(s), such as for example an antimicrobial or an antibiotic (e.g., a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone).
- an antimicrobial or an antibiotic e.g., a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone.
- FIG. 1 illustrates biochemical characterization of optimal conditions for PlyGRCS activity.
- the influence of dose FIG. 1 , Plate A
- pH FIG. 1 , Plate B
- NaCl FIG. 1 , Plate C
- divalent cations FIG. 1 , Plate D
- Error bars represent the standard deviation, and all experiments were done in triplicate.
- FIG. 2 are brightfield ( FIG. 2 , Plate A) and fluorescent ( FIG. 2 , Plate B) images showing SH3_5 GRCS directly interacting with S. aureus NRS-14.
- PlyGRCS contains a C-terminal cell wall binding domain. Cell wall binding was detected via Mouse Anti-His and Goat Anti-Mouse IgG AlexaFluor 488.
- FIG. 3 illustrates PlyGRCS temperature stability. Stationary phase S. aureus NRS-14 treated with 25 ⁇ g/ml of PlyGRCS after being held at indicated temperatures for 30 min and recovered on ice for 5 min is shown in FIG. 3 , Plate A.
- the thermal stability of full length PlyGRCS ( FIG. 3 , Plate B) as well as CHAP GRCS ( FIG. 3 , Plate C) and SH3_5 GRCS ( FIG. 3 , Plate D) was determined by means of circular dichroism (CD) melting experiments. Samples were heated from 20° C. to 95° C. at 1° C./min in 20 mM sodium phosphate buffer pH 7 using a protein concentration of 0.1 mg/ml.
- FIG. 4 illustrates antibiofilm activity of PlyGRCS.
- S. aureus NRS-14 was allowed to form static biofilms for 24 hours and treated with PlyGRCS at indicated concentrations for 1 hour.
- the amount of biofilm is represented by the quantification of crystal violet staining of biomass at OD 595 . Error bars represent the standard deviation, and all experiments were done in triplicate.
- FIG. 5 illustrates stationary phase S. aureus NRS-14 treated with 25 ⁇ g/ml PlyGRCS, PlyGRCS-C29S, or PlyGRCS-H92A.
- PlyGRCS contains an N-terminal catalytic domain with an active-site cysteine and histidine.
- the reduction in activity of PlyGRCS-C29S and PlyGRCS-H92A indicates that these are the active-site residues. Error bars represent the standard deviation, and all experiments were done in triplicate.
- FIG. 6 illustrates the catalytic mechanism of PlyGRCS.
- Plate B shows schematically the A 2 QKG 5 fragment corresponding to the 702.35 peak generated by both an N-acetylmuramoyl-L-alanine amidase activity (black arrows) and a D-alanyl-glycyl endopeptidase activity (white arrows).
- PlyGRCS peptidoglycan digest data shows both the A 2 QKG 5 (702.35 m/z peak) and the larger, doubly charged A 4 Q 2 K 2 G 10 moiety (684.84 m/z peak).
- Embodiments of the present invention relate to compositions, methods and devices for preventing or treating disease or infection associated with or caused by gram-positive bacteria, such compositions, methods and devices incorporating and/or utlizing isolated endolysin polypeptide(s) from the GRCS bacteriophase (Sunagar R et al. (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin - induced diabetic mice . Res Microbiol 161(10):854-60).
- an “isolated” endolysin polypeptide(s) or nucleic acid encoding such polypeptide(s) are free or substantially free of material with which they are naturally associated such as other polypeptides or nucleic acids.
- Polypeptides and nucleic acid may be formulated or mixed with pharmaceutically acceptable carriers, diluents or adjuvants (e.g., such as in pharmaceutical compositions and/or when used in methods of treatment or therapy) and still be isolated.
- the PlyGRCS endolysin(s) of the present invention displays dose-dependent antimicrobial activity against both planktonic and biofilm S. aureus , including MRSA.
- the host range for this enzyme includes all S. aureus and S. epidermidis strains tested.
- compositions and methods including PlyGRCS endolysin(s) exhibit activity against S. aureus and S. epidermidis strains, but not against other Gram-positive pathogens.
- PlyGRCS contains an N-terminal cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain and a C-terminal bacterial src-homology 3 (SH3_5) binding domain.
- CHAP histidine-dependent amidohydrolase/peptidase
- SH3_5 C-terminal bacterial src-homology 3
- PlyGRCS Native DNA Sequence (unoptimized) (SEQ ID NO: 1): ATGAAATCACAACAACaAGCaAAAGAATGGATATATAAACATGAGGGTAC TgGTGTTgACTTTGATGGTGCATATgGtTTTCAATGTATGGAcTTAGCtg TTGctTaTgTATAtTACATTACAGACGGTAAAGTTCGTATGTgGGGTAAC GCCAAAGACGCTATTAATAATGACTTTAAAGGTTTAGCAACGGTGTATGA AAATACACCGAGCTTTAAACCTCAATTAGGTGACGTTGCTGTTTATACTA ATTCTCAATATGGTCACATTCAATGTGTaATAAGTGGTAATTTAGATTAT TATACATGtTTAGAGCaAAACTGGTTAGGTGGTGGGTTTGACGGTTGGGa aAAAGCAACAATAAGAACACATTATTATGACGGTGTAACACACTTTATTA GACCtAAATTTTcTGCTAGTAATAGTAATGTATTAGA
- polypeptide includes a polymer molecule comprised of multiple amino acid residues joined in a linear manner.
- the polypeptide may include conservative substitutions where the naturally occurring amino acid(s) is replaced by one having similar properties, where such conservative substitutions do not alter the function of the polypeptide.
- endolysin polypeptides may be engineered through domain shuffling or used in combination with other endolysins or antibiotics to prolong therapeutic efficacy (Shen Y et al. (2012) Phage - based Enzybiotics . In: Abedon S, Hyman P (eds) Bacteriophages in Health and Disease. CABI Press, pp 217-239).
- Endolysin polypeptides of the present invention may be truncated, chimeric, shuffled or natural (e.g., corresponding to wild-type).
- a “chimeric” polypeptide may be produced by combining two or more proteins having two or more active sites. Chimeric polypeptides may act independently on the same or different molecules, and hence may potentially exhibit activity against two or more different bacterial species or antigen targets.
- polypeptides are prepared or engineered to exhibit amino acid sequence percent identity of at least 60%, 70%, 80%, 85%, and preferably at least 90%, 95%, 98% or 99% percent identity, with active regions of PlyGRCS endolysin, including in SEQ ID NOs: 5, 6 and/or 7, and also exhibiting functionality and/or comparable therapeutic efficacy (e.g., bacterial effects) therewith.
- Amino acid sequence percent identity is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the wild-type bacteriophage associated PlyGRCS endolysin sequence, after aligning the sequences in the same reading frame and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
- Mutations can be made in the disclosed amino acid sequences, or in the nucleic acid sequences encoding the polypeptides herein, or in active fragments or truncations thereof, such that a particular codon is modified to a codon which codes for a different amino acid, an amino acid is substituted for another amino acid, or one or more amino acids are deleted.
- any such mutations do not significantly alter the activity of the resulting polypeptide.
- one of skill in the art may implement amino acid mutations in the polypeptide sequences to identify additional variants thereof (e.g., via random mutagenesis or by a site-directed method such as polymerase chain-mediated amplification with primers that encode the mutated locus). Further, mutagenizing entire codons rather than single nucleotides results in a semi-randomized repertoire of amino acid mutations. Libraries can be constructed consisting of a pool of variants each of which differs by a single amino acid alteration and/or which contain variants representing each possible amino acid substitution for each residue. Variants may be screened for desired activity using any screening method known in the art.
- Variants may include one or more amino acid mutations (e.g., 1, 1-5, 1-10, or 10 or more) in the sequence of the endolysin polypeptide(s), and also exhibit comparable functionality (e.g., comparable activity against bacteria) to the native endolysin polypeptide. Activity of such variant(s) may be tested using assays and methods as described herein and as known in the art. One of skill in the art may predict suitable amino acid mutations to achieve such variants based on the disclosure herein.
- amino acid mutations e.g., 1, 1-5, 1-10, or 10 or more
- comparable functionality e.g., comparable activity against bacteria
- PlyGRCS contains a putative cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain.
- CHAP histidine-dependent amidohydrolase/peptidase
- the CHAP domain alone displayed reduced (about 10%) activity as compared to the full length protein, thus indicating that while this domain is responsible for catalytic activity, the binding domain may be desirable in some applications for enhanced efficacy.
- the SH3_5 binding domain lacked activity but was shown to interact directly with the staphylococcal cell wall via fluorescent microscopy.
- Biochemical assays coupled with mass spectrometry analysis determined that PlyGRCS displays both N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase hydrolytic activities despite possessing only a single catalytic domain.
- PlyGRCS was found to exhibit strong activity against Staphylococcus species (e.g., such as S. aureus and S. epidermidis ), and including methicillin- and vancomycin-resistant strains (e.g., methicillin-resistant S. aureus (MRSA), vancomycin intermediate-resistant S. aureus (VISA), and methicillin-resistant S. epidermidis ).
- Staphylococcus species e.g., such as S. aureus and S. epidermidis
- methicillin- and vancomycin-resistant strains e.g., methicillin-resistant S. aureus (MRSA), vancomycin intermediate-resistant S. aureus (VISA), and methicillin-resistant S. epidermidis.
- MRSA methicillin-resistant S. aureus
- VISA vancomycin intermediate-resistant S. aureus
- methicillin-resistant S. epidermidis methicillin-resistant S. epidermidis
- compositions and methods utilizing or including the endolysin polypeptide(s) of the present invention are effective in killing or treating gram-positive bacteria in subjects, either alone or in composition with one or more additional therapeutic agents, such as an antimicrobial or an antibiotic (e.g., including but not limited to, a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone.
- an antimicrobial or an antibiotic e.g., including but not limited to, a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone.
- compositions or methods of treatment provide for the use of PlyGRCS endolysin(s) in combination with one or more antibiotic selected from linezolid, daptomycin, tigecycline, vancomycin, fidaxomicin, and/or metronidazole.
- the endolysin polypeptide(s) of the present invention, or therapeutically active variants thereof are covalently attached to an agent that provides additional functionality or enhances efficacy thereof.
- agent(s) includes, for example, a tag, label, targeting moiety or ligand, a cell binding motif or therapeutic agent, an antibacterial, an antibody, and an antibiotic.
- PlyGRCS turbidity reduction of stationary phase S. aureus as a measure of lytic activity
- optimal conditions for PlyGRCS were determined, finding that it is active in the physiological range.
- PlyGRCS is relatively active as only 25 ⁇ g/mL produced a 70% decrease in optical density in just 15 minutes.
- its host range was characterized via plate lysis assays; PlyGRCS maintained lytic activity against all strains of S. aureus tested as well as other staphylococcal species.
- the disclosed endolysin polypeptides and/or compositions including the endolysin polypeptide(s) of the present invention are coupled to a surface of a substrate.
- a medical device e.g., a grasper, a clamp, a retractor, a dilator, a suction, a sealing device, a scope, a probe, etc.
- a medical device includes an outer surface coupled to or coated with the endolysin polypeptide(s) or composition comprising the endolysin polypeptide(s) of the present invention.
- the medical device coupled to or coated with the disclosed endolysin polypeptide(s) or composition(s) is an implantable medical device (e.g., a drainage tube, a feeding tube, a shunt, a prosthesis, a guidance tube, a catheter, a valve, a pacemaker, a graft, a tissue scaffold, a stent, etc.).
- an implantable medical device e.g., a drainage tube, a feeding tube, a shunt, a prosthesis, a guidance tube, a catheter, a valve, a pacemaker, a graft, a tissue scaffold, a stent, etc.
- the present invention provide for methods of treating a bacterial infection in a patient comprising administering to the patient a therapeutically effective amount of an isolated endolysin polypeptide of the present invention, and in particular a polypeptide(s) comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof such as a polypeptide(s) having at least 80% identity thereto and exhibiting comparable functionality and efficacy against bacteria associated with or causing said infection.
- the term “treat” or “treating” a disease, including an infectious disease or infection refers to killing or reducing the growth of the bacteria causing such disease or infection, and/or reducing, ameliorating or eliminating symptoms associated with such disease or infection.
- a “therapeutically effective amount” refers to the amount of polypeptide(s) sufficient to elicit a desired biological response in a subject, and in particular an amount sufficient to kill, reduce or stabilize a bacterial population causing such disease or infection and/or sufficient to reduce symptoms associated with such disease or infection.
- a therapeutically effective amount of the polypeptide(s) of the present invention is effective in reducing growth of the bacterial population by at least about 50%, more preferably by at least about 75%, most preferably by about 90% or more.
- the present invention is also directed to expression vectors prepared from the disclosed DNA sequences for expression in host systems, and encoding one or more of the endolysin polypeptide chains of the present invention.
- Such expression vectors may be used for recombinant production of the endolysin polypeptides of the invention.
- An expression vector in the context of the present invention may be any suitable DNA or RNA vector, including chromosomal, non-chromosomal, and synthetic nucleic acid vectors (a nucleic acid sequence comprising a suitable set of expression control elements).
- vectors examples include derivatives of SV40 bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA, and viral nucleic acid (RNA or DNA) vectors.
- the vector is suitable for expression of an endolysin polypeptide of the present invention in a bacterial cell.
- examples of such vectors include expression vectors such as BlueScript (Stratagene), pIN vectors (Van Heeke & Schuster, J. Biol. Chem. 264, 5503-5509 (1989), pET vectors (Novagen, Madison, Wis.), and the like.
- An expression vector may also or alternatively be a vector suitable for expression in a yeast system. Any vector suitable for expression in a yeast system may be employed. Suitable vectors include, for example, vectors comprising constitutive or inducible promoters such as alpha factor, alcohol oxidase and PGH (F.
- nucleic acids encoding the disclosed polypeptides may comprise or be associated with any suitable promoter, enhancer, and other expression-facilitating elements.
- suitable promoter, enhancer, and other expression-facilitating elements include strong expression promoters (e.g., human CMV IE promoter/enhancer as well as RSV, SV40, SL3-3, MMTV, and HIV LTR promoters), effective poly (A) termination sequences, an origin of replication for plasmid product in E. coli , an antibiotic resistance gene as selectable marker, and/or a convenient cloning site (e.g., a polylinker).
- Nucleic acids may also comprise an inducible promoter as opposed to a constitutive promoter such as CMV IE.
- Vectors containing polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (e.g., where the vector is an infectious agent such as vaccinia virus).
- electroporation employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances
- microprojectile bombardment e.g., where the vector is an infectious agent such as vaccinia virus.
- infection e.g., where the vector is an infectious agent such as vaccinia virus.
- Any host cell capable of overexpressing heterologous DNAs can be used for the purpose of isolating the genes encoding the polypeptide or protein of interest, including for example, eukaryotic and prokaryotic hosts (e.g., strains of E.
- the present invention provides for nucleic acids capable of encoding the disclosed endolysin polypeptide(s).
- “Primer” as used herein refers to an oligonucleotide that is capable of acting as a point of initiation of synthesis when placed under suitable conditions in which synthesis of a primer extension product is induced.
- the primer may be either single-stranded or double-stranded and sufficiently long to prime the synthesis of the desired extension product in the presence of an inducing agent. Exemplary primers are provided in Table 2 below.
- the present invention also relates to pharmaceutical compositions containing therapeutically effective amounts of PlyGRCS endolysin(s) and/or variants and active fragments thereof.
- the pharmaceutical compositions may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 21th Edition, Gennaro, Ed., Mack Publishing Co., Easton, Pa., 2005.
- the pharmaceutically acceptable carriers or diluents should be suitable for the chosen compound of the present invention and the chosen mode of administration. Suitability for carriers and other components of pharmaceutical compositions is determined based on the lack of significant negative impact on the desired biological properties of the chosen compound or pharmaceutical composition of the present invention (e.g., less than a substantial impact (10% or less relative inhibition, 5% or less relative inhibition, etc.)) on antigen binding.
- a pharmaceutical composition of the present invention may thus include diluents, fillers, salts, buffers, detergents (e.g., a nonionic detergent, such as Tween-20 or Tween-80), stabilizers (e.g., sugars or protein-free amino acids), preservatives, tissue fixatives, solubilizers, and/or other materials suitable for inclusion in the composition.
- the diluent is selected to not affect the biological activity of the combination. Examples of such diluents are distilled water, physiological phosphate-buffered saline, Ringer's solutions, dextrose solution, and Hank's solution.
- compositions or formulation may also include other carriers, or non-toxic, nontherapeutic, non-immunogenic stabilizers and the like.
- the compositions may also include large, slowly metabolized macromolecules, such as proteins, polysaccharides like chitosan, polylactic acids, polyglycolic acids and copolymers (e.g., latex functionalized sepharose, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (e.g., oil droplets or liposomes).
- the actual dosage levels of the active ingredient(s) in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration.
- the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- compositions of the present invention may be administered by any suitable route and mode, including: parenteral, topical, oral or intranasal means for prophylactic and/or therapeutic treatment.
- a pharmaceutical composition of the present invention is administered orally.
- a pharmaceutical composition of the present invention is administered parenterally.
- parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and include epidermal, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, intratendinous, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, intracranial, intrathoracic, epidural and intrastemal injection and infusion. Additional suitable routes of administering a compound of the present invention in vivo and in vitro are well known in the art and may be selected by those of ordinary skill in the art.
- Pharmaceutically acceptable carriers include any and all suitable solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonicity agents, antioxidants and absorption delaying agents, and the like that are physiologically compatible with a compound of the present invention.
- suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the present invention include water, saline, phosphate buffered saline, ethanol, dextrose, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, corn oil, peanut oil, cottonseed oil, and sesame oil, carboxymethyl cellulose colloidal solutions, tragacanth gum and injectable organic esters, such as ethyl oleate, and/or various buffers.
- Other carriers are well known in the pharmaceutical arts and may alternatively or additionally be included.
- Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- the use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the present invention is contemplated.
- compositions of the present invention may also comprise pharmaceutically acceptable antioxidants for instance (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- Pharmaceutical compositions of the present invention may also comprise isotonicity agents, such as sugars, polyalcohols, such as mannitol, sorbitol, glycerol or sodium chloride in the compositions.
- compositions of the present invention may also contain one or more adjuvants appropriate for the chosen route of administration such as preservatives, wetting agents, emulsifying agents, dispersing agents, preservatives or buffers, which may enhance the shelf life or effectiveness of the pharmaceutical composition.
- adjuvants appropriate for the chosen route of administration such as preservatives, wetting agents, emulsifying agents, dispersing agents, preservatives or buffers, which may enhance the shelf life or effectiveness of the pharmaceutical composition.
- compositions of the present invention may include a secondary therapeutic agent in addition to therapeutically effective amounts of the endolysin polypeptides disclosed herein, such as for example an additional antimicrobial, antibiotic, and/or lytic enzyme.
- the compounds of the present invention may be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
- a controlled release formulation including implants, transdermal patches, and microencapsulated delivery systems.
- Such carriers may include gelatin, glyceryl monostearate, glyceryl distearate, biodegradable, biocompatible polymers such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid alone or with a wax, or other materials well known in the art.
- Methods for the preparation of such formulations are generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems , J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
- the compounds of the present invention may be formulated to ensure proper distribution and efficacy in vivo.
- Pharmaceutically acceptable carriers for parenteral administration include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- the use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound(s), use thereof in the pharmaceutical compositions of the present invention is contemplated. Supplementary active compounds may also be incorporated into the compositions.
- compositions for injection must typically be sterile and stable under the conditions of manufacture and storage.
- the composition may be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
- the carrier may be a aqueous or nonaqueous solvent or dispersion medium containing for instance water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- the proper fluidity may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols such as glycerol, mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the compositions may be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- Sterile solutions may be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients e.g. as enumerated above, as required, followed by sterilization microfiltration.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients e.g.
- sterile powders for the preparation of sterile injectable solutions examples of methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Sterile solutions may be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- examples of methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Dosage regimens in the above methods of treatment and uses are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation.
- Pharmaceutical compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the present invention are dictated by and dependent on (a) the characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) any limitations in the art of compounding such an active compound for the treatment of sensitivity in individuals.
- a physician having ordinary skill in the art may readily determine and prescribe the therapeutically effective amount of the pharmaceutical composition required for a particular patient. Such amount may vary according to factors such as the disease state, age, sex, and weight of the patient. In addition, the therapeutically effective amount is one in which any toxic or detrimental effects of the pharmaceutical composition are outweighed by the therapeutically beneficial effects.
- the physician may start doses of the endolysin polypeptide(s) in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
- a suitable daily dose of a composition of the present invention will be that amount of the compound which is the lowest dose effective to produce the desired therapeutic effect (e.g., killing gram-positive bacteria, and in particular Staphylococcus species, e.g., S. aureus and S. epidermidis , and including methicillin- and vancomycin-resistant strains (e.g., MRSA, VISA, MRSE), and/or for treating or preventing infection, and/or for ameliorating or alleviating symptoms associated with such bacteria in a subject).
- the desired therapeutic effect e.g., killing gram-positive bacteria, and in particular Staphylococcus species, e.g., S. aureus and S. epidermidis , and including methicillin- and vancomycin-resistant strains (e.g., MRSA, VISA, MRSE), and/or for treating or preventing infection, and/or for ameliorating or alleviating symptoms associated with such bacteria in a subject.
- Such an effective dose will generally depend upon
- compositions in accordance with the present invention may be administered via spray, inhaler, topical, etc.
- Pharmaceutical compositions and polypeptides in accordance with disclosed embodiments may be administered via lozenges, chewing gums, tablets, powders, sprays, liquids, ointments, etc.
- Formulations including endolysin polypeptides of the present invention may include additives, stabilizers, buffers, etc. as described above.
- the endolysin polypeptides, compositions and methods of the present invention are also suitable for veterinary (non-human) applications.
- S. aureus is one of the most common causes of bovine mastitis in milking cows and prevention and control of such infection is difficult.
- S. aureus infections do not respond well to conventional antibiotic therapy, and infected cows or other livestock must often be segregated or culled from the herd.
- the spread of such infection within a group of livestock may occur through, inter alia, human contact (e.g., milkers' hands), equipment for maintaining and processing the animals, and flies.
- polypeptide(s) of the present invention may be utilized for treating bacterial infection or contamination in livestock or other animals (e.g., by administering the polypeptide(s) of the present invention to such livestock or animal orally, nasally, parenternally, onto the skin or coat, via intramammary infusion, teat dip, etc. as described herein).
- the endolysin polypeptides of the present invention are also suitable for use as a sanitizing agent or disinfectant of a target surface or area.
- the present invention provides for methods and compositions for treating or preventing bacterial contamination of dental and medical devices, surfaces in hospitals and dental and medical facilities, food processing equipment, surfaces in food processing facilities, equipment and surfaces in schools, and other equipment or surfaces on which sanitization is desired.
- compositions of the present invention may be used in combination with other disinfecting ingredients, cleaners, and agents (e.g., such as detergents, solvents, antibiotics, antimicrobials, etc.).
- endolysin polypeptide(s) and compositions of the present invention are applied to target surfaces or areas as a liquid or spray formulation (e.g., aerosolized or mist formulation).
- a liquid or spray formulation e.g., aerosolized or mist formulation
- Disclosed compositions may be applied, e.g., with a dry mist fogger or other such application, for disinfecting surfaces within a target area or volume (e.g., a milking parlor, school gymnasium or auditorium, surgical suite, medical equipment, etc.).
- Tested bacterial species, strains, and associated antimicrobial resistance phenotypes are shown in Table 1 below.
- NRS strain designations were provided by the Network on Antimicrobial Resistance in S. aureus (NARSA), which is distributed by BEI Resources depository (Manassas, Va.) under the direction of the National Institute of Allergy and Infectious Diseases and the National Institutes of Health.
- a Streptococcus suis clinical isolate was obtained from Dr. Randy Shirbroun at Newport Laboratories (Worthington, Minn.).
- Streptococcus pyogenes and Enterococcus facealis were obtained from Drs. Vincent Fischetti and Alexander Tomasz, respectively, at The Rockefeller University, USA).
- a Bacillus pumulis clinical isolate was obtained from Dr. John Mayo at Louisiana State University, USA.
- the remaining strains, Streptococcus pneumonia, Streptococcus uberis , and Streptococcus equi were obtained from the American Type Culture Collection (ATCC).
- Streptococcal strains were grown in Todd-Hewitt broth, supplemented with 1% yeast extract (THY) (Alpha Bioscience), or on THY plates; staphylococcal strains, B. pumulis , and E. facealis , were grown in trypticase soy broth (TSB) (Becton-Dickinson), or on TSB plates; Escherichia coli was cultivated in Luria Broth (LB) (Alpha Bioscience), or on LB plates. Chemicals were purchased from Sigma and were of the highest purity available.
- PlyGRCS The phage GRCS genome has recently been elucidated (GenBank Accession KJ210330) (Swift S M & Nelson D C (2014) Complete genome sequence of Staphylococcus aureus phage GRCS. Genome Announc 2(2)). Bioinformatic analysis using BLAST and PFAM programs [National Center for Biotechnology Information (NCBI)] predicted a putative endolysin for ORF15 (AHJ10590), referred to as PlyGRCS. As noted above, PlyGRCS contains an N-terminal cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain and a C-terminal bacterial src-homology 3 (SH3_5) binding domain.
- CHBI National Center for Biotechnology Information
- CHAP GRCS CHAP GRCS
- SH3_5 SH3_5 GRCS
- PlyGRCS was serially diluted and each dosage (100 ⁇ l) was added in triplicate to a 96-well polystyrene microtiter plate (Nest Biotech Co, Ltd) just before addition of bacterial cells (100 ⁇ l) according to the turbidity reduction assay described above.
- bacterial cells were suspended in 40 mM boric acid/phosphoric acid (BP) buffer, pH 3-11, and were challenged against PlyGRCS.
- BP boric acid/phosphoric acid
- the influence of NaCl on PlyGRCS activity was tested in BP buffer at the experimentally determined pH optimum using the same assay.
- the effect of divalent cations was determined using the turbidity reduction assay with several modifications.
- PlyGRCS was incubated at room temperature in PBS or PBS supplemented with 5 mM EDTA for 10 minutes.
- the EDTA-treated samples received either no further treatment, or were supplemented with 6 mM CaCl 2 or 6 mM MgCl 2 .
- the lytic active of the samples was then immediately assayed and compared to PlyGRCS in PBS prior to EDTA inactivation.
- Kinetic stability was evaluated (Son B et al. (2012) Characterization of LysB 4 , an endolysin from the Bacillus cereus - infecting bacteriophage B 4. BMC Microbiol 12:33) with minor modifications. Lytic assays were performed in optimal conditions after PlyGRCS was incubated at indicated temperatures for 30 minutes and subsequently recovered on ice for 5 minutes.
- Sterile-filtered PlyGRCS was 2-fold serially diluted in PBS supplemented with 1 mM CaCl 2 and an equal volume of either various concentrations of enzyme or buffer only was added to 10 5 S. aureus NRS-14 in a microtiter plate. Samples were incubated at 37° C. for 1 hour, then serially diluted, plated on TSB agar, and incubated overnight at 37° C. to obtain CFU counts. The MBC (minimum bactericidal concentration) was determined as the minimum concentration of enzyme that killed ⁇ 99.9% of bacteria.
- CD experiments for wild-type (WT) and active-site mutants were performed on a Chirascan CD spectrometer (Applied Photophysics) equipped with a thermoelectrically controlled cell holder.
- CD spectra were obtained in the far-UV range (190-260 nm) in a 1 mm path length quartz cuvette at 1 nm steps with 5 second signal averaging per data point. Spectra were collected in triplicate, followed by averaging, baseline subtraction, smoothing and conversion to mean residue ellipticity (MRE) by the Pro-Data software (Applied Photophysics).
- Secondary structure prediction was performed using the Provencher and Glockner method (Provencher S W & Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism .
- DNSA dinitrosalicylic acid
- S. aureus NRS-14 peptidoglycan was purified (Pritchard D G et al. (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B 30. Microbiology 150(Pt 7):2079-87; Schmelcher M et al.
- Teichoic acids are temporal and spatial regulators of peptidoglycan cross - linking in Staphylococcus aureus .
- Nat Med 10(3):243-5 were digested in 25 mM Tris, 200 mM NaCl, pH 7.4 at 37° C.
- Controls included peptidoglycan digested with the amidase domain of 2638A, a known N-acetylmuramoyl-L-alanine amidase, or undigested peptidoglycan.
- the phage GRCS genome was recently sequenced (KJ210330) (Swift S M & Nelson D C (2014) Complete genome sequence of Staphylococcus aureus phage GRCS . Genome Announc 2(2)). Bioinformatic analysis predicted an endolysin for ORF15 (AHJ10590), referred to as PlyGRCS.
- This enzyme contains a putative N-terminal CHAP domain, which is shown to encompass bacteriolytic activity in other characterized endolysins, and a C-terminal bacterial src-homology 3 (SH3_5) domain that functions as a CBD in many staphylococcal and streptococcal endolysins (Nelson D C et al. (2012) Endolysins as antimicrobials . Adv Virus Res 83:299-365).
- the closest homologs to PlyGRCS are a hypothetical protein from S. aureus 2011-60-1490-31 (EZV76040.1, 98% identity), an amidase from Staphylococcus phage 44AHJD (NP_817310.1, 96% identity), ORF009 of Staphylococcus phage 66 (YP_239469.1, 97% identity), the SAL-2 amidase from Staphylococcus phage SAP-2 (YP_001491539.1, 96% identity), and an unnamed protein product of Staphylococcus phage S24-1 (YP_004957430.1, 92% identity).
- the full length PlyGRCS was cloned, as well as its isolated CHAP domain (CHAP GRCS , amino acids 1-140) and SH3_5 domain (SH3_5 GRCS , amino acids 150-250) into expression vectors. All three constructs were expressed as soluble proteins and purified to homogeneity by nickel affinity chromatography via the C-terminal 6 ⁇ His tags on each protein.
- PlyGRCS displayed a dose response curve from 28 to 1.75 ⁇ g/ml when tested in a turbidity reduction assay using stationary phase S. aureus NRS-14 cells ( FIG. 1 , Plate A). The highest dose corresponded to a 70% decrease in optical density in just 15 minutes (50% decrease in ⁇ 10 minutes).
- CHAP GRCS displayed ⁇ 8-10% of full-length PlyGRCS activity.
- SH3_5 GRCS displayed little to no lytic activity; however, this domain alone possessed the ability to specifically bind staphylococci as detected by antibody recognition of the 6 ⁇ His purification tag on the staphylococcal surface ( FIG. 2 ).
- Lytic activity of PlyGRCS was then tested in BP buffer with a pH range from 3.0 to 11.0 to determine optimum conditions. Optimal pH was determined to be 7.0, with an active range between 6.0 and 8.0 ( FIG. 1 , Plate B). PlyGRCS activity was markedly reduced at pH extremes. Based on the above observations, subsequent turbidity reduction and antimicrobial assays were performed in BP buffer pH 7.0. Because the activity of many endolysins, including various staphylococcal endolysins (Becker S C et al. (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA .
- the activity of PlyGRCS was analyzed in either the presence or absence of calcium.
- PlyGRCS was first incubated with EDTA to remove all divalent cations from solution.
- EDTA-treated PlyGRCS was devoid of lytic activity ( FIG. 1 , Plate D).
- EDTA-treated PlyGRCS was incubated with excess CaCl 2 .
- Calcium-treated PlyGRCS displayed nearly twice the lytic activity when compared to PlyGRCS prior to EDTA treatment.
- the activity of the EDTA-treated endolysin was measured after the addition of an alternative divalent metal, magnesium.
- the activity of magnesium-treated PlyGRCS mimicked that of the EDTA-treated sample, indicating that the divalent metal dependence of PlyGRCS is calcium-specific.
- the minimal inhibitory concentration (MIC) assay may not be the most appropriate assay to measure endolysin efficacy due to the speed at which the enzyme acts (Kusuma C M et al. (2005) Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus . Antimicrobial agents and chemotherapy 49(8):3256-63). Therefore, we employed the minimum bactericidal concentration (MBC) assay, which is the lowest concentration of enzyme that kills ⁇ 99.9% (i.e. 3 logs) of the test inoculum (Jones R et al. (1985) Susceptibility tests: microdilution andmacrodilution broth procedures . In: Balows A, Hausler J, Shadomy H (eds) Manual of Clinical Microbiology. American Society for Microbiology, Washington, DC, pp 972-7).
- VISA strains possess thicker cell walls than other S. aureus strains. This phenotype may cause the bacteria to be more resilient to endolysin treatment, and hence require higher than normal MBC values (Howden B P et al. (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin - intermediate and heterogeneous vancomycin - intermediate strains: resistance mechanisms, laboratory detection , and clinical implications .
- Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin - resistant Staphylococcus aureus .
- CHAP domains contain two invariant residues, a cysteine and a histidine (Bateman A & Rawlings N. Dak. (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases . Trends Biochem Sci 28(5):234-7; Rigden D J et al. (2003) Amidase domains from bacterial and phage autolysins define a family of gamma - D,L - glutamate - specific amidohydrolases . Trends Biochem Sci 28(5):230-4).
- the cysteine acts as a catalytic nucleophile and the histidine may function as a general base to deprotonate the thiol group of the cysteine.
- CHAP domains are associated with N-muramoyl-L-alanine amidase (amidase) or endopeptidase activity (Bateman A & Rawlings N. Dak. (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases . Trends Biochem Sci 28(5):234-7). Specifically, CHAP domains of staphylococcal endolysins have been characterized as amidases or D-alanyl-glycyl endopeptidases (Schmelcher M et al. (2012) Bacteriophage endolysins as novel antimicrobials . Future Microbiol 7(10):1147-71).
- endolysins provides a targeted treatment for bacterial infections that circumvents traditional antibiotic resistance mechanisms (Sprott B G (1994) Resistance to antibiotics mediated by target alterations . Science 264(5157):388-93).
- PlyGRCS endolysin was characterized and demonstrated bacteriolytic activity against MRSA successfully.
- the endolysin dosage used demonstrated that the efficacy of PlyGRCS is comparable to or better than other published staphylococcal endolysins (Gilmer D B et al.
- Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin - resistant Staphylococcus aureus .
- Antimicrobial agents and chemotherapy 57(6):2743-50; Jun S Y et al. (2011) Comparison of the antibacterial properties of phage endolysins SAL -1 and LysK .
- this enzyme is suitable for use as an antimicrobial agent.
- both amidase and endopeptidase activities would yield free amine groups via cleavage of peptide moieties and additionally would not liberate reducing sugars, which requires the cleavage of at least one of the two glycosidic bonds responsible for maintaining the glycan backbone of peptidoglycan.
- endolysins display synergy with other endolysins of different cleavage specificities. For example, killing of pneumococci is enhanced when the endolysins Cpl-1, an N-acetylmuramidase, and PAL, an N-acetylmuramoyl-L-alanine amidase, are used together compared to twice the concentration of either enzyme alone (Loeffler J M & Fischetti V A (2003) Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin - sensitive and— resistant Streptococcus pneumoniae strains.
- a second benefit of a catalytic domain with dual activities is that it is less susceptible to development of resistance. While there are currently no specific reports of bacterial strains developing resistance to phage-encoded endolysins, resistance to peptidoglycan hydrolases as a general class has been reported. Notably, modifications to the peptidoglycan backbone can render N-acetylmuramidases (i.e. lysozymes) ineffective (Davis K M & Weiser J N (2011) Modifications to the peptidoglycan backbone help bacteria to establish infection . Infect Immun 79(2):562-70; Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 14/794,186, filed Jul. 8, 2015, which application is based on U.S. Provisional Patent Application Ser. No. 62/023,096, filed Jul. 10, 2014, which applications are incorporated herein by reference in their entireties and to which priority is claimed.
- This work was supported by the U.S. Department of Defense as provided for by the terms of Contract No. W81XWH1120006 (Grant No. DM102823). The U.S. government has certain rights in this invention.
- This application includes one or more Sequence Listings pursuant to 37 C.F.R. 1.821 et seq., which are disclosed in computer-readable media (file name: 2105_0062C_SUB_SeqList_ST25.txt, created Oct. 21, 2015, and having a size of 10,715 bytes), which file is herein incorporated by reference in its entirety.
- The present invention relates to methods of treating or preventing bacterial infection, antibacterial compositions, and devices including antibacterial surfaces, incorporating isolated endolysin polypeptides from bacteriophage GRCS.
- It has been estimated that 70% of the bacteria that cause hospital-acquired infections are now resistant to one or more antibiotics (Taubes G (2008) The bacteria fight back. Science 321(5887):356-61). One of the most alarming antibiotic-resistant bacterial species is Staphylococcus aureus. Specifically, methicillin-resistant S. aureus (MRSA) are the group of S. aureus strains resistant to the entire class of β-lactam antibiotics. Hospital-acquired MRSA (HA-MRSA) often leads to severe and life-threatening infections, such as those at surgical sites, in the bloodstream, or pneumonia, while community-acquired MRSA (CA-MRSA) typically leads to superficial skin infections that can ultimately progress to induce severe invasive complications, such as necrotizing fasciitis (Lowy F D (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520-32; Tang Y W & Stratton C W (2010) Staphylococcus aureus: An old pathogen with new weapons. Clin Lab Med 30(1):179-208). In some cases, individuals have died within two days of infection due to the ineffectiveness of present-day antibiotics (Romero-Vivas et al. (1995) Mortality associated with nosocomial bacteremia due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 21(6):1417-23).
- Approval of new antibiotics, including linezolid (oxazolidinone class) in 2000, daptomycin (cyclic lipopeptide class) in 2003, and tigecycline (glycylcycline class) in 2005, provides alternatives to vancomycin, which was formerly the only antibiotic treatment for MRSA (Micek S T (2007) Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 45 Suppl 3:S184-90). These new antibiotics, along with increased awareness and adherence to universal decolonization practices, have led to a decrease in the incidence of MRSA in intensive care units (Huang S S et al. (2013) Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 368(24):2255-65). Nonetheless, a recent report from the Centers for Disease Control and Prevention indicates there are still over 80,000 severe MRSA infections per year in the United States, resulting in over 11,000 deaths (e.g., see CDC (2013) Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention, Atlanta). The same CDC report labeled MRSA as a “serious” public health threat, and vancomycin-resistant S. aureus (VRSA) as a “concerning” threat, underscoring the need for development of alternative therapeutics.
- To counteract bacterial resistance and ameliorate the problems caused by S. aureus infections, endolysin therapy is one avenue that is being pursued (Borysowski J et al. (2011) Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives. BioDrugs 25(6):347-55; Nelson D C et al. (2012) Endolysins as antimicrobials. Adv Virus Res 83:299-365). Endolysins are enzymes released by bacteriophages during the lytic cycle of viral infection. A lytic enzyme is capable of specifically cleaving bonds that are present in the peptidoglycan of bacterial cells to disrupt the bacterial cell wall. The bacterial cell wall peptidoglycan is highly conserved among most bacteria, and cleavage of only a few bonds is believed to disrupt the bacterial cell wall. Once produced within the bacterial cytoplasm by replicating bacteriophage, endolysins hydrolyze bonds in the bacterial cell wall (i.e. peptidoglycan) until lysis is complete.
- The idea of utilizing endolysins therapeutically is based on the phenomenon of “lysis from without”, a phrase used to describe the destruction of the bacterial envelope without production of phage virions (Abedon S T (2011) Lysis from without. Bacteriophage 1(1):46-49). This phenomenon only occurs in Gram-positive organisms, such as MRSA, because such bacteria lack an outer membrane protecting the cell wall (Schmelcher et al. (2011) Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb Biotechnol 4(5):651-62). Rather, the cell wall of such Gram-positive bacteria includes interconnecting layers consisting primarily of peptidoglycan. Gram-positive bacteria include, inter alia, numerous species within the genera Actinomyces, Bacillus, Listeria, Lactococcus, Staphylococcus, Streptococcus, Enterococcus, Mycobacterium, Corynebacterium, and Clostridium.
- The classical structure of endolysins that act on Gram-positive cell walls employs a modular architecture consisting of an N-terminal catalytic domain linked to a C-terminal cell wall binding domain (CBD). The catalytic domain is responsible for cleaving specific covalent bonds in the peptidoglycan structure that are essential for maintaining its intrinsic structural integrity. The CBD confers endolysin specificity by recognizing and noncovalent binding to species- or strain-specific epitopes associated with the cell envelope. It is the high specificity derived by the combined actions of the catalytic and CBD domains that cause endolysins to be highly refractory to the resistance commonly observed upon treatment with classical antibiotics (Fischetti V A (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13(10):491-6; Schuch R et al. (2002) A bacteriolytic agent that detects and kills Bacillus anthraces. Nature 418(6900):884-9). This is due to the evolution of bacteriophage to target specific, conserved bonds in the peptidoglycan of a bacteria cell wall, ensuring that the progeny phage will survive (Low L Y et al. (2011) Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 286(39):34391-403). However, if resistance were to develop, endolysins could be engineered through domain shuffling or used in combination with other endolysins or antibiotics to prolong the use of these enzymes (Shen Y et al. (2012) Phage-based Enzybiotics. In: Abedon S, Hyman P (eds) Bacteriophages in Health and Disease. CABI Press, pp 217-239).
- Thus, identified endolysins have been shown to be effective in killing specific bacterial strains. However, there still exists a need for additional and/or alternative endolysin-based therapeutics, particularly therapeutics exhibiting superior activity and/or which target other bacterial strains as compared to known therapeutics.
- The increasing rate of resistance of pathogenic bacteria, such as S. aureus, to classical antibiotics has driven research towards identification of other means to fight infectious diseases. The present invention relates to methods of treating such infectious diseases by administering to a subject a therapeutically effective amount of particular bacteriophage-encoded peptidoglycan hydrolase, called endolysin(s) or enzybiotic(s). The endolysin polypeptides of the present invention lyse the bacterial cell wall upon direct contact, are not inhibited by traditional antibiotic resistance mechanisms, and thus are suitable for numerous applications, e.g., such as in the areas of food safety, human health, and veterinary science.
- In particular, the present invention is directed to methods, compositions and devices incorporating or utilizing particular endolysin polypeptide(s) from the bacteriophage GRCS, sometimes referred to herein as PlyGRCS endolysin or endolysin polypeptide (which have the disclosed amino acid sequences, variants thereof, or active fragments thereof). According to disclosed embodiments, PlyGRCS endolysin(s) are utilized for treating infectious disease associated with Gram-positive bacteria, in particular Staphylococcus bacteria (e.g., S. aureus and S. epidermidis) including methicillin- and vancomycin-resistant strains (e.g., methicillin-resistant S. aureus (MRSA), vancomycin-intermediate-resistant S. aureus (VISA), and methicillin-resistant S. epidermidis).
- Thus, one aspect of the present invention provides for endolysin polypeptides having killing activity against gram-positive bacteria, particularly Staphylococcus bacteria. In accordance with disclosed embodiments, a method of killing gram-positive bacteria is provided by contacting bacteria with a composition comprising an amount of isolated endolysin polypeptide effective to kill such bacteria, the isolated endolysin polypeptide comprising an amino acid sequence of SEQ ID NOs: 5, 6 and/or 7 or variants thereof.
- Another aspect of the present invention relates to methods of treating bacterial infection (e.g., an infection or disease caused by a Staphylococcus species such as S. aureus) in a subject (e.g., a human patient) comprising administering to the patient a therapeutically effective amount of an isolated endolysin polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto. In some embodiments, the method includes the further step of administering to the subject a secondary therapeutic agent (e.g., one or more antibiotic) after or concurrent with the administration of the isolated polypeptide.
- The present invention also relates to pharmaceutical compositions for killing Gram-positive bacteria comprising an isolated polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto, and a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more antibiotic, such as for example a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and/or an oxazolidinone. In some implementations, the antibiotic is selected from the group consisting of linezolid, daptomycin, and tigecycline, vancomycin, fidaxomicin, and metronidazole.
- The present invention is also directed to a substrate (e.g., such as a device or apparatus, such as a medical instrument or device or an implantable medical device) including a surface comprising an antibacterial coating or material coupled thereto, wherein the coating or material comprises an isolated polypeptide comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof having at least 80% identity thereto. In some implementations, the coating or material comprises one or more secondary therapeutic agent(s), such as for example an antimicrobial or an antibiotic (e.g., a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone).
-
FIG. 1 illustrates biochemical characterization of optimal conditions for PlyGRCS activity. The influence of dose (FIG. 1 , Plate A), pH (FIG. 1 , Plate B), NaCl (FIG. 1 , Plate C), and divalent cations (FIG. 1 , Plate D) on PlyGRCS activity against stationary phase S. aureus NRS-14 are shown. Error bars represent the standard deviation, and all experiments were done in triplicate. -
FIG. 2 are brightfield (FIG. 2 , Plate A) and fluorescent (FIG. 2 , Plate B) images showing SH3_5GRCS directly interacting with S. aureus NRS-14. PlyGRCS contains a C-terminal cell wall binding domain. Cell wall binding was detected via Mouse Anti-His and Goat Anti-Mouse IgG AlexaFluor 488. -
FIG. 3 illustrates PlyGRCS temperature stability. Stationary phase S. aureus NRS-14 treated with 25 μg/ml of PlyGRCS after being held at indicated temperatures for 30 min and recovered on ice for 5 min is shown inFIG. 3 , Plate A. The thermal stability of full length PlyGRCS (FIG. 3 , Plate B) as well as CHAPGRCS (FIG. 3 , Plate C) and SH3_5GRCS (FIG. 3 , Plate D) was determined by means of circular dichroism (CD) melting experiments. Samples were heated from 20° C. to 95° C. at 1° C./min in 20 mM sodiumphosphate buffer pH 7 using a protein concentration of 0.1 mg/ml. -
FIG. 4 illustrates antibiofilm activity of PlyGRCS. S. aureus NRS-14 was allowed to form static biofilms for 24 hours and treated with PlyGRCS at indicated concentrations for 1 hour. The amount of biofilm is represented by the quantification of crystal violet staining of biomass at OD595. Error bars represent the standard deviation, and all experiments were done in triplicate. -
FIG. 5 illustrates stationary phase S. aureus NRS-14 treated with 25 μg/ml PlyGRCS, PlyGRCS-C29S, or PlyGRCS-H92A. PlyGRCS contains an N-terminal catalytic domain with an active-site cysteine and histidine. The reduction in activity of PlyGRCS-C29S and PlyGRCS-H92A indicates that these are the active-site residues. Error bars represent the standard deviation, and all experiments were done in triplicate. -
FIG. 6 illustrates the catalytic mechanism of PlyGRCS. As shown inFIG. 6 , Plate A, ESI-MS analysis of PlyGRCS digested peptidoglycan results in a spectrum (top) containing a peak at m/z=702.35, indicating that PlyGRCS possesses endopeptidase and amidase activities. This peak is absent in peptidoglycan digested with a known N-acetylmuramoyl-L-alanine amidase (second spectrum), or undigested peptodiglycan (third spectrum). Double digest with PlyGRCS and CHAP-K (bottom spectrum) yields a spectrum identical to that of PlyGRCS alone.FIG. 6 , Plate B, shows schematically the A2QKG5 fragment corresponding to the 702.35 peak generated by both an N-acetylmuramoyl-L-alanine amidase activity (black arrows) and a D-alanyl-glycyl endopeptidase activity (white arrows). As shown inFIG. 6 , Plate C, PlyGRCS peptidoglycan digest data shows both the A2QKG5 (702.35 m/z peak) and the larger, doubly charged A4Q2K2G10 moiety (684.84 m/z peak). - Embodiments of the present invention relate to compositions, methods and devices for preventing or treating disease or infection associated with or caused by gram-positive bacteria, such compositions, methods and devices incorporating and/or utlizing isolated endolysin polypeptide(s) from the GRCS bacteriophase (Sunagar R et al. (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol 161(10):854-60). As used herein, an “isolated” endolysin polypeptide(s) or nucleic acid encoding such polypeptide(s) are free or substantially free of material with which they are naturally associated such as other polypeptides or nucleic acids. Polypeptides and nucleic acid may be formulated or mixed with pharmaceutically acceptable carriers, diluents or adjuvants (e.g., such as in pharmaceutical compositions and/or when used in methods of treatment or therapy) and still be isolated.
- The PlyGRCS endolysin(s) of the present invention displays dose-dependent antimicrobial activity against both planktonic and biofilm S. aureus, including MRSA. The host range for this enzyme includes all S. aureus and S. epidermidis strains tested. In some implementations, compositions and methods including PlyGRCS endolysin(s) exhibit activity against S. aureus and S. epidermidis strains, but not against other Gram-positive pathogens.
- PlyGRCS contains an N-terminal cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain and a C-terminal bacterial src-homology 3 (SH3_5) binding domain. The endolysin polypeptide(s) of the present invention may be isolated from the GRCS bacteriophage, or prepared by recombinant or synthetic methods as known in the art. Nucleic acid and amino acid sequences of embodiments of the present invention are presented below:
-
PlyGRCS Native DNA Sequence (unoptimized) (SEQ ID NO: 1): ATGAAATCACAACAACaAGCaAAAGAATGGATATATAAACATGAGGGTAC TgGTGTTgACTTTGATGGTGCATATgGtTTTCAATGTATGGAcTTAGCtg TTGctTaTgTATAtTACATTACAGACGGTAAAGTTCGTATGTgGGGTAAC GCCAAAGACGCTATTAATAATGACTTTAAAGGTTTAGCAACGGTGTATGA AAATACACCGAGCTTTAAACCTCAATTAGGTGACGTTGCTGTTTATACTA ATTCTCAATATGGTCACATTCAATGTGTaATAAGTGGTAATTTAGATTAT TATACATGtTTAGAGCaAAACTGGTTAGGTGGTGGGTTTGACGGTTGGGa aAAAGCAACAATAAGAACACATTATTATGACGGTGTAACACACTTTATTA GACCtAAATTTTcTGCTAGTAATAGTAATGTATTAGAAACATCAAAAGTA AATaCATTTGGAAATTGGaAACaAAACCAATACGGAACATATTACAGAAA TGAAAATgcAACATTTACATGTGGAtTTTTACCAATATTTGCACGTGTaG GTAGTcCTAAAtTAAGTGAAcCTAATgGATAtTgGtTcCaAcCaAATGGT TATACAcCATAtgACGAAGTTTGTTTATCAGATGGACTAgTGTGGATTgG TTATAATTGGCAAgGaACACGTTAttatttaccagtgaGACAATGGAACG GTAAAACGGGTAATAGTTATAGCATTGGTTTACCCTGGGGGGTGTTCTCA TAA PlyGRCS Native DNA Sequence (unoptimized; including 6x His tag (underlined) added at the C-terminus) (SEQ ID NO: 2): ATGAAATCACAACAACaAGCaAAAGAATGGATATATAAACATGAGGGTAC TgGTGTTgACTTTGATGGTGCATATgGtTTTCAATGTATGGAcTTAGCtg TTGctTaTgTATAtTACATTACAGACGGTAAAGTTCGTATGTgGGGTAAC GCCAAAGACGCTATTAATAATGACTTTAAAGGTTTAGCAACGGTGTATGA AAATACACCGAGCTTTAAACCTCAATTAGGTGACGTTGCTGTTTATACTA ATTCTCAATATGGTCACATTCAATGTGTaATAAGTGGTAATTTAGATTAT TATACATGtTTAGAGCaAAACTGGTTAGGTGGTGGGTTTGACGGTTGGGa aAAAGCAACAATAAGAACACATTATTATGACGGTGTAACACACTTTATTA GACCtAAATTTTcTGCTAGTAATAGTAATGTATTAGAAACATCAAAAGTA AATaCATTTGGAAATTGGaAACaAAACCAATACGGAACATATTACAGAAA TGAAAATgcAACATTTACATGTGGAtTTTTACCAATATTTGCACGTGTaG GTAGTcCTAAAtTAAGTGAAcCTAATgGATAtTgGtTcCaAcCaAATGGT TATACAcCATAtgACGAAGTTTGTTTATCAGATGGACTAgTGTGGATTgG TTATAATTGGCAAgGaACACGTTAttatttaccagtgaGACAATGGAACG GTAAAACGGGTAATAGTTATAGCATTGGTTTACCCTGGGGGGTGTTCTCA CATCATCATCATCATCATTAA PlyGRCS Codon Optimized DNA Sequence (75% similarity to native DNA sequence) (SEQ ID NO: 3): ATGAAATCACAGCAGCAGGCTAAAGAATGGATTTATAAACATGAAGGAAC TGGTGTTGATTTCGACGGCGCTTACGGGTTTCAGTGTATGGACCTGGCCG TGGCGTATGTGTACTATATTACCGACGGGAAAGTCCGTATGTGGGGTAAT GCGAAGGATGCGATTAATAACGATTTTAAAGGCTTAGCCACGGTCTATGA AAATACTCCGTCATTTAAGCCGCAGCTGGGGGACGTGGCCGTATATACGA ACAGCCAGTATGGGCATATCCAGTGCGTGATTAGCGGAAATCTGGACTAC TACACGTGCCTTGAACAGAACTGGCTCGGGGGAGGGTTCGACGGTTGGGA AAAAGCGACTATCCGTACCCATTATTACGATGGAGTGACCCATTTTATTC GTCCGAAGTTTAGTGCTTCTAACAGCAATGTTCTGGAAACTAGCAAGGTG AATACTTTTGGAAACTGGAAACAGAATCAGTACGGCACGTATTATCGGAA TGAGAACGCCACTTTCACGTGTGGTTTCCTGCCGATTTTCGCTCGTGTCG GCTCGCCTAAATTGTCCGAACCGAACGGCTATTGGTTCCAGCCGAATGGT TATACCCCGTATGATGAGGTGTGCTTGTCCGACGGTCTGGTGTGGATCGG TTACAACTGGCAGGGAACCCGTTACTACCTTCCGGTGCGTCAGTGGAATG GCAAAACGGGGAATTCTTACTCTATTGGACTTCCATGGGGCGTTTTTTCA TAA PlyGRCS Codon Optimized DNA Sequence (75% similarity to native DNA sequence; 6X His tag added at the C-terminus) (SEQ ID NO: 4): ATGAAATCACAGCAGCAGGCTAAAGAATGGATTTATAAACATGAAGGAAC TGGTGTTGATTTCGACGGCGCTTACGGGTTTCAGTGTATGGACCTGGCCG TGGCGTATGTGTACTATATTACCGACGGGAAAGTCCGTATGTGGGGTAAT GCGAAGGATGCGATTAATAACGATTTTAAAGGCTTAGCCACGGTCTATGA AAATACTCCGTCATTTAAGCCGCAGCTGGGGGACGTGGCCGTATATACGA ACAGCCAGTATGGGCATATCCAGTGCGTGATTAGCGGAAATCTGGACTAC TACACGTGCCTTGAACAGAACTGGCTCGGGGGAGGGTTCGACGGTTGGGA AAAAGCGACTATCCGTACCCATTATTACGATGGAGTGACCCATTTTATTC GTCCGAAGTTTAGTGCTTCTAACAGCAATGTTCTGGAAACTAGCAAGGTG AATACTTTTGGAAACTGGAAACAGAATCAGTACGGCACGTATTATCGGAA TGAGAACGCCACTTTCACGTGTGGTTTCCTGCCGATTTTCGCTCGTGTCG GCTCGCCTAAATTGTCCGAACCGAACGGCTATTGGTTCCAGCCGAATGGT TATACCCCGTATGATGAGGTGTGCTTGTCCGACGGTCTGGTGTGGATCGG TTACAACTGGCAGGGAACCCGTTACTACCTTCCGGTGCGTCAGTGGAATG GCAAAACGGGGAATTCTTACTCTATTGGACTTCCATGGGGCGTTTTTTCA CACCACCACCACCATCATTAA PlyGRCS Protein Sequence (amino acids 1-250) (SEQ ID NO: 5): MKSQQQAKEWIYKHEGTGVDFDGAYGFQCMDLAVAYVYYITDGKVRMWGN AKDAINNDFKGLATVYENTPSFKPQLGDVAVYTNSQYGHIQCVISGNLDY YTCLEQNWLGGGFDGWEKATIRTHYYDGVTHFIRPKFSASNSNVLETSKV NTFGNWKQNQYGTYYRNENATFTCGFLPIFARVGSPKLSEPNGYWFQPNG YTPYDEVCLSDGLVWIGYNWQGTRYYLPVRQWNGKTGNSYSIGLPWGVFS PlyGRCS Catalytic Domain (CHAPGRCS, amino acids 1-140) (SEQ ID NO: 6): MKSQQQAKEWIYKHEGTGVDFDGAYGFQCMDLAVAYVYYITDGKVRMWGN AKDAINNDFKGLATVYENTPSFKPQLGDVAVYTNSQYGHIQCVISGNLDY YTCLEQNWLGGGFDGWEKATIRTHYYDGVTHFIRPKFSAS PlyGRCS Binding Domain (SH3_5GRCS, amino acids 150-250) (SEQ ID NO: 7): NTFGNWKQNQYGTYYRNENATFTCGFLPIFARVGSPKLSEPNGYWFQPNG YTPYDEVCLSDGLVWIGYNWQGTRYYLPVRQWNGKTGNSYSIGLPWGVFS - A “polypeptide” includes a polymer molecule comprised of multiple amino acid residues joined in a linear manner. The polypeptide may include conservative substitutions where the naturally occurring amino acid(s) is replaced by one having similar properties, where such conservative substitutions do not alter the function of the polypeptide.
- The disclosed endolysin polypeptides may be engineered through domain shuffling or used in combination with other endolysins or antibiotics to prolong therapeutic efficacy (Shen Y et al. (2012) Phage-based Enzybiotics. In: Abedon S, Hyman P (eds) Bacteriophages in Health and Disease. CABI Press, pp 217-239). Endolysin polypeptides of the present invention may be truncated, chimeric, shuffled or natural (e.g., corresponding to wild-type). A “chimeric” polypeptide may be produced by combining two or more proteins having two or more active sites. Chimeric polypeptides may act independently on the same or different molecules, and hence may potentially exhibit activity against two or more different bacterial species or antigen targets.
- In accordance with some embodiments, polypeptides are prepared or engineered to exhibit amino acid sequence percent identity of at least 60%, 70%, 80%, 85%, and preferably at least 90%, 95%, 98% or 99% percent identity, with active regions of PlyGRCS endolysin, including in SEQ ID NOs: 5, 6 and/or 7, and also exhibiting functionality and/or comparable therapeutic efficacy (e.g., bacterial effects) therewith. Amino acid sequence percent identity is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the wild-type bacteriophage associated PlyGRCS endolysin sequence, after aligning the sequences in the same reading frame and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
- Mutations can be made in the disclosed amino acid sequences, or in the nucleic acid sequences encoding the polypeptides herein, or in active fragments or truncations thereof, such that a particular codon is modified to a codon which codes for a different amino acid, an amino acid is substituted for another amino acid, or one or more amino acids are deleted. Preferably, any such mutations do not significantly alter the activity of the resulting polypeptide.
- Thus, one of skill in the art, based on a review of the disclosed sequences of the PlyGRCS endolysin(s) of the present invention, may implement amino acid mutations in the polypeptide sequences to identify additional variants thereof (e.g., via random mutagenesis or by a site-directed method such as polymerase chain-mediated amplification with primers that encode the mutated locus). Further, mutagenizing entire codons rather than single nucleotides results in a semi-randomized repertoire of amino acid mutations. Libraries can be constructed consisting of a pool of variants each of which differs by a single amino acid alteration and/or which contain variants representing each possible amino acid substitution for each residue. Variants may be screened for desired activity using any screening method known in the art.
- Variants may include one or more amino acid mutations (e.g., 1, 1-5, 1-10, or 10 or more) in the sequence of the endolysin polypeptide(s), and also exhibit comparable functionality (e.g., comparable activity against bacteria) to the native endolysin polypeptide. Activity of such variant(s) may be tested using assays and methods as described herein and as known in the art. One of skill in the art may predict suitable amino acid mutations to achieve such variants based on the disclosure herein.
- As discussed in further detail below, contributions of the PlyGRCS putative catalytic and cell wall binding domains were investigated through deletion analysis. PlyGRCS contains a putative cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain. The CHAP domain alone displayed reduced (about 10%) activity as compared to the full length protein, thus indicating that while this domain is responsible for catalytic activity, the binding domain may be desirable in some applications for enhanced efficacy. In contrast, the SH3_5 binding domain lacked activity but was shown to interact directly with the staphylococcal cell wall via fluorescent microscopy.
- Site-directed mutagenesis studies determined that active-site residues in the CHAP catalytic domain were C29 and H92, with catalytic functionality benefiting from calcium as a co-factor. A decrease in activity was observed, indicating the importance of these two residues and the presence of an active CHAP domain.
- Contributions of the putative catalytic and binding domains were investigated through deletion analysis by turbidity reduction assay. The CHAP catalytic domain displayed activity, though reduced and thus indicating advantages of also providing the binding domain for full efficacy as noted above. The binding domain was confirmed by visualization of cell wall interaction via fluorescent microscopy. Further, as determined by biochemical assays and mass spectrometry, PlyGRCS possesses an N-acetylmuramoyl-L-alanine amidase and a D-alanyl-glycyl endopeptidase catalytic mechanism.
- Biochemical assays coupled with mass spectrometry analysis determined that PlyGRCS displays both N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase hydrolytic activities despite possessing only a single catalytic domain. Mass spectrometry of S. aureus peptidoglycan digested by PlyGRCS showed a predominant peak at m/z=702, representative of dual catalytic activity. The results herein indicate that PlyGRCS is a revolutionary therapeutic option to combat bacterial infections.
- PlyGRCS was found to exhibit strong activity against Staphylococcus species (e.g., such as S. aureus and S. epidermidis), and including methicillin- and vancomycin-resistant strains (e.g., methicillin-resistant S. aureus (MRSA), vancomycin intermediate-resistant S. aureus (VISA), and methicillin-resistant S. epidermidis). Thus, the endolysin polypeptides of the present invention were demonstrated to be highly effective in killing, reducing or eliminating bacterial growth and/or population, and thus are suitable for treating or preventing bacterial infection or symptoms associated with such bacteria in a subject (e.g., a human patient).
- Compositions and methods utilizing or including the endolysin polypeptide(s) of the present invention are effective in killing or treating gram-positive bacteria in subjects, either alone or in composition with one or more additional therapeutic agents, such as an antimicrobial or an antibiotic (e.g., including but not limited to, a penicillin, a cephalosporin, a polymyxin, an ansamycin, a quinolone, a sulfonamide, a lipopeptide, a glycycline, and an oxazolidinone. In some implementations, compositions or methods of treatment provide for the use of PlyGRCS endolysin(s) in combination with one or more antibiotic selected from linezolid, daptomycin, tigecycline, vancomycin, fidaxomicin, and/or metronidazole. In some implementations, the endolysin polypeptide(s) of the present invention, or therapeutically active variants thereof, are covalently attached to an agent that provides additional functionality or enhances efficacy thereof. Such agent(s) includes, for example, a tag, label, targeting moiety or ligand, a cell binding motif or therapeutic agent, an antibacterial, an antibody, and an antibiotic.
- Using turbidity reduction of stationary phase S. aureus as a measure of lytic activity, optimal conditions for PlyGRCS were determined, finding that it is active in the physiological range. Compared to other staphylococcal endolysins, PlyGRCS is relatively active as only 25 μg/mL produced a 70% decrease in optical density in just 15 minutes. In addition, its host range was characterized via plate lysis assays; PlyGRCS maintained lytic activity against all strains of S. aureus tested as well as other staphylococcal species.
- Further, crystal violet staining of PlyGRCS treated biofilms demonstrated that this enzyme is suitable for use on medical devices. In some embodiments, the disclosed endolysin polypeptides and/or compositions including the endolysin polypeptide(s) of the present invention are coupled to a surface of a substrate. For example, in some implementations, a medical device (e.g., a grasper, a clamp, a retractor, a dilator, a suction, a sealing device, a scope, a probe, etc.) includes an outer surface coupled to or coated with the endolysin polypeptide(s) or composition comprising the endolysin polypeptide(s) of the present invention. In some implementations, the medical device coupled to or coated with the disclosed endolysin polypeptide(s) or composition(s) is an implantable medical device (e.g., a drainage tube, a feeding tube, a shunt, a prosthesis, a guidance tube, a catheter, a valve, a pacemaker, a graft, a tissue scaffold, a stent, etc.).
- The present invention provide for methods of treating a bacterial infection in a patient comprising administering to the patient a therapeutically effective amount of an isolated endolysin polypeptide of the present invention, and in particular a polypeptide(s) comprising the amino acid sequence of SEQ ID NOs: 5, 6 and/or 7, or variants thereof such as a polypeptide(s) having at least 80% identity thereto and exhibiting comparable functionality and efficacy against bacteria associated with or causing said infection. The term “treat” or “treating” a disease, including an infectious disease or infection, refers to killing or reducing the growth of the bacteria causing such disease or infection, and/or reducing, ameliorating or eliminating symptoms associated with such disease or infection.
- A “therapeutically effective amount” refers to the amount of polypeptide(s) sufficient to elicit a desired biological response in a subject, and in particular an amount sufficient to kill, reduce or stabilize a bacterial population causing such disease or infection and/or sufficient to reduce symptoms associated with such disease or infection. Preferably, a therapeutically effective amount of the polypeptide(s) of the present invention is effective in reducing growth of the bacterial population by at least about 50%, more preferably by at least about 75%, most preferably by about 90% or more.
- The present invention is also directed to expression vectors prepared from the disclosed DNA sequences for expression in host systems, and encoding one or more of the endolysin polypeptide chains of the present invention. Such expression vectors may be used for recombinant production of the endolysin polypeptides of the invention. An expression vector in the context of the present invention may be any suitable DNA or RNA vector, including chromosomal, non-chromosomal, and synthetic nucleic acid vectors (a nucleic acid sequence comprising a suitable set of expression control elements). Examples of such vectors include derivatives of SV40 bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA, and viral nucleic acid (RNA or DNA) vectors.
- In one embodiment, the vector is suitable for expression of an endolysin polypeptide of the present invention in a bacterial cell. Examples of such vectors include expression vectors such as BlueScript (Stratagene), pIN vectors (Van Heeke & Schuster, J. Biol. Chem. 264, 5503-5509 (1989), pET vectors (Novagen, Madison, Wis.), and the like. An expression vector may also or alternatively be a vector suitable for expression in a yeast system. Any vector suitable for expression in a yeast system may be employed. Suitable vectors include, for example, vectors comprising constitutive or inducible promoters such as alpha factor, alcohol oxidase and PGH (F. Ausubel et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley InterScience New York (1987); Grant et al., Methods in Enzymol 153, 516-544 (1987); Mattanovich, D. et al. Methods Mol. Biol. 824, 329-358 (2012); Celik, E. et al. Biotechnol. Adv. 30(5), 1108-1118 (2012); and Holliger, P. Methods Mol. Biol. 178, 349-357 (2002)).
- In an expression vector of the present invention, nucleic acids encoding the disclosed polypeptides may comprise or be associated with any suitable promoter, enhancer, and other expression-facilitating elements. Examples of such elements include strong expression promoters (e.g., human CMV IE promoter/enhancer as well as RSV, SV40, SL3-3, MMTV, and HIV LTR promoters), effective poly (A) termination sequences, an origin of replication for plasmid product in E. coli, an antibiotic resistance gene as selectable marker, and/or a convenient cloning site (e.g., a polylinker). Nucleic acids may also comprise an inducible promoter as opposed to a constitutive promoter such as CMV IE.
- Vectors containing polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (e.g., where the vector is an infectious agent such as vaccinia virus). The choice of introducing vectors or polynucleotides will often depend on features of the host cell. Any host cell capable of overexpressing heterologous DNAs can be used for the purpose of isolating the genes encoding the polypeptide or protein of interest, including for example, eukaryotic and prokaryotic hosts (e.g., strains of E. coli, Pseudomonas, Bacillus, Streptomyces, yeasts, etc.). As understood by those skilled in the art, not all vectors expression control sequences and hosts will function equally well to express the DNA sequences of the present invention. However, those skilled in the art will be able to readily select the proper vectors, expression control sequences, and hosts to achieve the desired expression.
- The present invention provides for nucleic acids capable of encoding the disclosed endolysin polypeptide(s). “Primer” as used herein refers to an oligonucleotide that is capable of acting as a point of initiation of synthesis when placed under suitable conditions in which synthesis of a primer extension product is induced. The primer may be either single-stranded or double-stranded and sufficiently long to prime the synthesis of the desired extension product in the presence of an inducing agent. Exemplary primers are provided in Table 2 below.
- The present invention also relates to pharmaceutical compositions containing therapeutically effective amounts of PlyGRCS endolysin(s) and/or variants and active fragments thereof. The pharmaceutical compositions may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 21th Edition, Gennaro, Ed., Mack Publishing Co., Easton, Pa., 2005.
- The pharmaceutically acceptable carriers or diluents, as well as any other known adjuvants and excipients, should be suitable for the chosen compound of the present invention and the chosen mode of administration. Suitability for carriers and other components of pharmaceutical compositions is determined based on the lack of significant negative impact on the desired biological properties of the chosen compound or pharmaceutical composition of the present invention (e.g., less than a substantial impact (10% or less relative inhibition, 5% or less relative inhibition, etc.)) on antigen binding.
- A pharmaceutical composition of the present invention may thus include diluents, fillers, salts, buffers, detergents (e.g., a nonionic detergent, such as Tween-20 or Tween-80), stabilizers (e.g., sugars or protein-free amino acids), preservatives, tissue fixatives, solubilizers, and/or other materials suitable for inclusion in the composition. The diluent is selected to not affect the biological activity of the combination. Examples of such diluents are distilled water, physiological phosphate-buffered saline, Ringer's solutions, dextrose solution, and Hank's solution. In addition, the pharmaceutical composition or formulation may also include other carriers, or non-toxic, nontherapeutic, non-immunogenic stabilizers and the like. The compositions may also include large, slowly metabolized macromolecules, such as proteins, polysaccharides like chitosan, polylactic acids, polyglycolic acids and copolymers (e.g., latex functionalized sepharose, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (e.g., oil droplets or liposomes).
- The actual dosage levels of the active ingredient(s) in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- The pharmaceutical compositions of the present invention may be administered by any suitable route and mode, including: parenteral, topical, oral or intranasal means for prophylactic and/or therapeutic treatment. In one embodiment, a pharmaceutical composition of the present invention is administered orally. In another embodiment, a pharmaceutical composition of the present invention is administered parenterally. The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and include epidermal, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, intratendinous, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, intracranial, intrathoracic, epidural and intrastemal injection and infusion. Additional suitable routes of administering a compound of the present invention in vivo and in vitro are well known in the art and may be selected by those of ordinary skill in the art.
- Pharmaceutically acceptable carriers include any and all suitable solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonicity agents, antioxidants and absorption delaying agents, and the like that are physiologically compatible with a compound of the present invention. Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the present invention include water, saline, phosphate buffered saline, ethanol, dextrose, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, corn oil, peanut oil, cottonseed oil, and sesame oil, carboxymethyl cellulose colloidal solutions, tragacanth gum and injectable organic esters, such as ethyl oleate, and/or various buffers. Other carriers are well known in the pharmaceutical arts and may alternatively or additionally be included.
- Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the present invention is contemplated.
- Pharmaceutical compositions of the present invention may also comprise pharmaceutically acceptable antioxidants for instance (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like. Pharmaceutical compositions of the present invention may also comprise isotonicity agents, such as sugars, polyalcohols, such as mannitol, sorbitol, glycerol or sodium chloride in the compositions.
- Pharmaceutical compositions of the present invention may also contain one or more adjuvants appropriate for the chosen route of administration such as preservatives, wetting agents, emulsifying agents, dispersing agents, preservatives or buffers, which may enhance the shelf life or effectiveness of the pharmaceutical composition.
- The pharmaceutical compositions of the present invention may include a secondary therapeutic agent in addition to therapeutically effective amounts of the endolysin polypeptides disclosed herein, such as for example an additional antimicrobial, antibiotic, and/or lytic enzyme.
- The compounds of the present invention may be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Such carriers may include gelatin, glyceryl monostearate, glyceryl distearate, biodegradable, biocompatible polymers such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid alone or with a wax, or other materials well known in the art. Methods for the preparation of such formulations are generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
- In one embodiment, the compounds of the present invention may be formulated to ensure proper distribution and efficacy in vivo. Pharmaceutically acceptable carriers for parenteral administration include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound(s), use thereof in the pharmaceutical compositions of the present invention is contemplated. Supplementary active compounds may also be incorporated into the compositions.
- Pharmaceutical compositions for injection must typically be sterile and stable under the conditions of manufacture and storage. The composition may be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier may be a aqueous or nonaqueous solvent or dispersion medium containing for instance water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. The proper fluidity may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In some cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as glycerol, mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the compositions may be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin. Sterile solutions may be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients e.g. as enumerated above, as required, followed by sterilization microfiltration. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients e.g. from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, examples of methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Sterile solutions may be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, examples of methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Dosage regimens in the above methods of treatment and uses are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. Pharmaceutical compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the present invention are dictated by and dependent on (a) the characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) any limitations in the art of compounding such an active compound for the treatment of sensitivity in individuals.
- A physician having ordinary skill in the art may readily determine and prescribe the therapeutically effective amount of the pharmaceutical composition required for a particular patient. Such amount may vary according to factors such as the disease state, age, sex, and weight of the patient. In addition, the therapeutically effective amount is one in which any toxic or detrimental effects of the pharmaceutical composition are outweighed by the therapeutically beneficial effects. The physician may start doses of the endolysin polypeptide(s) in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a composition of the present invention will be that amount of the compound which is the lowest dose effective to produce the desired therapeutic effect (e.g., killing gram-positive bacteria, and in particular Staphylococcus species, e.g., S. aureus and S. epidermidis, and including methicillin- and vancomycin-resistant strains (e.g., MRSA, VISA, MRSE), and/or for treating or preventing infection, and/or for ameliorating or alleviating symptoms associated with such bacteria in a subject). Such an effective dose will generally depend upon the factors described above. While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical composition as described above.
- Pharmaceutical compositions in accordance with the present invention may be administered via spray, inhaler, topical, etc. Pharmaceutical compositions and polypeptides in accordance with disclosed embodiments may be administered via lozenges, chewing gums, tablets, powders, sprays, liquids, ointments, etc. Formulations including endolysin polypeptides of the present invention may include additives, stabilizers, buffers, etc. as described above.
- While some embodiments are described with respect to use in humans, the endolysin polypeptides, compositions and methods of the present invention are also suitable for veterinary (non-human) applications. For example, S. aureus is one of the most common causes of bovine mastitis in milking cows and prevention and control of such infection is difficult. Once established, S. aureus infections do not respond well to conventional antibiotic therapy, and infected cows or other livestock must often be segregated or culled from the herd. The spread of such infection within a group of livestock may occur through, inter alia, human contact (e.g., milkers' hands), equipment for maintaining and processing the animals, and flies. Thus, the polypeptide(s) of the present invention may be utilized for treating bacterial infection or contamination in livestock or other animals (e.g., by administering the polypeptide(s) of the present invention to such livestock or animal orally, nasally, parenternally, onto the skin or coat, via intramammary infusion, teat dip, etc. as described herein).
- The endolysin polypeptides of the present invention, and compositions comprising such polypeptides, are also suitable for use as a sanitizing agent or disinfectant of a target surface or area. Thus, the present invention provides for methods and compositions for treating or preventing bacterial contamination of dental and medical devices, surfaces in hospitals and dental and medical facilities, food processing equipment, surfaces in food processing facilities, equipment and surfaces in schools, and other equipment or surfaces on which sanitization is desired.
- In addition, the compositions of the present invention may be used in combination with other disinfecting ingredients, cleaners, and agents (e.g., such as detergents, solvents, antibiotics, antimicrobials, etc.). In some implementations, endolysin polypeptide(s) and compositions of the present invention are applied to target surfaces or areas as a liquid or spray formulation (e.g., aerosolized or mist formulation). Disclosed compositions may be applied, e.g., with a dry mist fogger or other such application, for disinfecting surfaces within a target area or volume (e.g., a milking parlor, school gymnasium or auditorium, surgical suite, medical equipment, etc.).
- Additional characteristics and features of the present invention will be further understood through reference to the following examples and discussion, which are provided by way of further illustration and are not intended to be limiting of the present invention.
- Materials and Methods
- Bacterial Strains.
- Tested bacterial species, strains, and associated antimicrobial resistance phenotypes are shown in Table 1 below.
-
TABLE 1 PlyGRCS Host Range Resis- Bacterial species, strains tested1 tance2 PlyGRCS3 CHAPGRCS Staphylococcus aureus, NRS-385 MRSA + − Staphylococcus aureus, NRS-382 MRSA + − Staphylococcus aureus, NRS-384 MRSA + + Staphylococcus aureus, NRS-71 MRSA ++ + Staphylococcus aureus, NRS-14 VISA ++ − Staphylococcus epidermidis, MRSE ++ + NRS-101 Streptococcus suis, 730082 − − Streptococcus pyogenes, D471 − − Streptococcus pneumoniae, ATCC − − BAA-334 Streptococcus uberis, ATCC 700407 − − Streptococcus equi, ATCC 9528 − − Bacillus pumulis, BJ0055 − − Enterococcus facealis, EF24 − − 1See below for source of strains. 2MRSA: methicillin-resistant S. aureus; VISA: vancomycin intermediate-resistant S. aueus; MRSE: methicillin-resistant S. epidermidis. 3Activity of 6 μg PlyGRCS or CHAPGRCS was evaluated via plate lysis assays. The strength of lytic zones was defined qualitatively: strong lytic zone = ++, weak lytic zone = +, no lytic zone = −. - All staphylococci containing the NRS strain designations were provided by the Network on Antimicrobial Resistance in S. aureus (NARSA), which is distributed by BEI Resources depository (Manassas, Va.) under the direction of the National Institute of Allergy and Infectious Diseases and the National Institutes of Health. A Streptococcus suis clinical isolate was obtained from Dr. Randy Shirbroun at Newport Laboratories (Worthington, Minn.). Streptococcus pyogenes and Enterococcus facealis were obtained from Drs. Vincent Fischetti and Alexander Tomasz, respectively, at The Rockefeller University, USA). A Bacillus pumulis clinical isolate was obtained from Dr. John Mayo at Louisiana State University, USA. The remaining strains, Streptococcus pneumonia, Streptococcus uberis, and Streptococcus equi, were obtained from the American Type Culture Collection (ATCC).
- All strains were stored at −80° C. and routinely grown at 37° C. Streptococcal strains were grown in Todd-Hewitt broth, supplemented with 1% yeast extract (THY) (Alpha Bioscience), or on THY plates; staphylococcal strains, B. pumulis, and E. facealis, were grown in trypticase soy broth (TSB) (Becton-Dickinson), or on TSB plates; Escherichia coli was cultivated in Luria Broth (LB) (Alpha Bioscience), or on LB plates. Chemicals were purchased from Sigma and were of the highest purity available.
- Cloning, Domain Constructs, and Site-Directed Mutagenesis.
- The phage GRCS genome has recently been elucidated (GenBank Accession KJ210330) (Swift S M & Nelson D C (2014) Complete genome sequence of Staphylococcus aureus phage GRCS. Genome Announc 2(2)). Bioinformatic analysis using BLAST and PFAM programs [National Center for Biotechnology Information (NCBI)] predicted a putative endolysin for ORF15 (AHJ10590), referred to as PlyGRCS. As noted above, PlyGRCS contains an N-terminal cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain and a C-terminal bacterial src-homology 3 (SH3_5) binding domain.
- Individual domain clones for CHAP (i.e. CHAPGRCS) and SH3_5 (i.e. SH3_5GRCS) were amplified using the primer pairs shown in Table 2.
-
TABLE 2 Primers Primer Sequence CHAP- F 5′-GGGGAATTCATTATGAAATCACAACAACAAGCAAAAGAATGGATATA-3′ (SEQ ID NO: 8) CHAP- R 5′-AAATCTAGATTAATGATGATGATGATGATGACTAGCAGAAAATTTAG-3′ (SEQ ID NO: 9) SH3_5 5′-GGGGAATTCATTATGAATACATTTGGAAATTGGAAACAAAACCAATAC-3′ (SEQ ID NO: 10) SH3_5R 5′-AAATCTAGATTAATGATGATGATGATGATGTGAGAACACCCCCCAAG-3′ (SEQ ID NO: 11) C29S 5′-[Phos]-GCATATGGTTTTCAAAGCATGGACTTAGCTGTT-3′ (SEQ ID NO: 12) H92A 5′-[Phos]-AATTCTCAATATGGTGCGATTCAATGTGTAATA-3′ (SEQ ID NO: 13) - For the full-length PlyGRCS, the CHAP-F and SH3 SR primers were utilized. All reverse primers incorporated a 6×His purification tag. Specific point mutations to putative active-site residues (C29S and H92A) were made with phosphorylated primers (Table 2) using the Change-IT Multiple Mutation Site Directed Mutagenesis Kit (Affymetrix USB) according to the manufacturer's instructions. All PCR products were cloned into pBAD24, transformed into E. coli BL21 (DE3) cells and consequently sequenced (Macrogen, Rockville, Md.). The ApE program (University of Utah) was utilized for DNA sequence analysis and manipulations.
- Expression and Purification.
- E. coli were grown at 37° C. in baffled flasks to an OD600=1 in LB supplemented with 100 μg/ml ampicillin. Expression was induced with 0.25% arabinose overnight at 18° C. Crude protein extracts were purified by a Bio-Scale Mini Profinity IMAC Cartridge (Bio-Rad) and eluted in 10 ml fractions of 20 mM, 50 mM, 100 mM, 250 mM, and 500 mM imidazole, followed by SDS-PAGE analysis. Fractions containing proteins of the correct predicted molecular weight were pooled and dialyzed against PBS pH 7.4 with 300 mM NaCl.
- Quantification of Lytic Activity.
- Lytic activity was based on turbidity reduction assay (Nelson D C et al. (2012) Endolysins as antimicrobials. Adv Virus Res 83:299-365). Briefly, bacterial cells were centrifuged (4,000 RPM, 5 minutes, 4° C.), re-suspended in buffer and mixed 1:1 (v/v) with endolysin to a final OD600=1. OD600 readings were taken every 15 seconds for 20 minutes at 37° C. Endolysin activity was equated to the Vmax dictated by the linear portion of the resulting killing curve. Each experiment was performed in triplicate.
- Characterization of PlyGRCS.
- To determine dose response, PlyGRCS was serially diluted and each dosage (100 μl) was added in triplicate to a 96-well polystyrene microtiter plate (Nest Biotech Co, Ltd) just before addition of bacterial cells (100 μl) according to the turbidity reduction assay described above. For optimum pH determination, bacterial cells were suspended in 40 mM boric acid/phosphoric acid (BP) buffer, pH 3-11, and were challenged against PlyGRCS. The influence of NaCl on PlyGRCS activity was tested in BP buffer at the experimentally determined pH optimum using the same assay. The effect of divalent cations was determined using the turbidity reduction assay with several modifications. First, PlyGRCS was incubated at room temperature in PBS or PBS supplemented with 5 mM EDTA for 10 minutes. Second, the EDTA-treated samples received either no further treatment, or were supplemented with 6 mM CaCl2 or 6 mM MgCl2. Finally, the lytic active of the samples was then immediately assayed and compared to PlyGRCS in PBS prior to EDTA inactivation. Kinetic stability was evaluated (Son B et al. (2012) Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC Microbiol 12:33) with minor modifications. Lytic assays were performed in optimal conditions after PlyGRCS was incubated at indicated temperatures for 30 minutes and subsequently recovered on ice for 5 minutes.
- Cell Wall Binding.
- An overnight culture of S. aureus NRS-14 was concentrated 5× in BP buffer and was incubated at room temperature with 10 μg SH3_5GRCS containing the 6×His tag for 10 minutes. A control without SH3_5GRCS was also utilized. The samples were washed with PBS and incubated for 10 minutes at room temperature with 1 μl mouse anti-His antibody (Gen Script). After washing with PBS, AlexaFluor-488 conjugated goat anti-mouse IgG (H+L) antibody (1 μl) (Invitrogen) was incubated with samples for an additional 10 minutes. Samples were washed again with PBS before being visualized via fluorescence and bright field microscopy. An Eclipse 80i epifluorescent microscope workstation (Nikon) with X-Cite 120 illuminator (EXFO) and Retiga 2000R CCD camera was used. NIS-Elements software (Nikon) was used for image analysis.
- Spectrum of Lytic Activity.
- The PlyGRCS spectrum of lytic activity was performed (Schmelcher M et al. (2012) Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78(7):2297-305) with minor modifications. Bacterial cells were diluted in sterile PBS to an OD600=1, and 100 μl was spread on each plate. 10 μl spots (600 μg/ml) of PlyGRCS or CHAPGRCS were applied. Plates were incubated overnight at 37° C. Strength of lytic zones was defined qualitatively.
- Biofilm Assay.
- An overnight culture of S. aureus NRS-14 (1 ml per well) was placed into 24-well CELLBIND plates (Corning) containing 500 μl of TSB per well. After an additional 24 hour incubation at 37° C., media was aspirated and samples were washed with PBS to remove unattached cells. Two-fold serial dilutions of PlyGRCS in triplicate were added in 1 ml
BP buffer pH 7 and incubated at 37° C. for one hour. Liquid was aspirated and samples were washed with distilled water before drying. Biofilms were stained with 0.01% crystal violet for 10 min at room temperature. After removing the excess crystal violet, samples were washed with PBS and dried before the addition of 1ml 10% SDS to extract the crystal violet from the biomass for quantification at OD595. - Bactericidal Analysis.
- Sterile-filtered PlyGRCS was 2-fold serially diluted in PBS supplemented with 1 mM CaCl2 and an equal volume of either various concentrations of enzyme or buffer only was added to 105 S. aureus NRS-14 in a microtiter plate. Samples were incubated at 37° C. for 1 hour, then serially diluted, plated on TSB agar, and incubated overnight at 37° C. to obtain CFU counts. The MBC (minimum bactericidal concentration) was determined as the minimum concentration of enzyme that killed ≥99.9% of bacteria.
- Circular Dichroism (CD) Spectropolarimetry.
- CD experiments for wild-type (WT) and active-site mutants were performed on a Chirascan CD spectrometer (Applied Photophysics) equipped with a thermoelectrically controlled cell holder. CD spectra were obtained in the far-UV range (190-260 nm) in a 1 mm path length quartz cuvette at 1 nm steps with 5 second signal averaging per data point. Spectra were collected in triplicate, followed by averaging, baseline subtraction, smoothing and conversion to mean residue ellipticity (MRE) by the Pro-Data software (Applied Photophysics). Secondary structure prediction was performed using the Provencher and Glockner method (Provencher S W & Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33-7) provided by DICHROWEB (Whitmore L & Wallace B A (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668-73).
- Melting experiments were performed by heating PlyGRCS at a 0.1 mg/ml concentration in 20 mM sodium
phosphate buffer pH 7 from 20° C. to 95° C. using a 1° C./min heating rate. MRE was monitored at 218 nm in a 1 mm path length quartz cuvette at 0.5° C. steps with 5 second signal averaging per data point. The melting data was smoothed, normalized and fit with a Boltzmann sigmoidal curve. The first derivative of the melting curve was then taken to determine the temperature (Tm) at which the folded and unfolded protein species in solution were at equilibrium (Fallas J A & Hartgerink J D (2012) Computational design of self-assembling register-specific collagen heterotrimers. Nat Commun 3:1087). - Biochemical Assays.
- For analysis of reducing sugars released from the peptidoglycan, the dinitrosalicylic acid (DNSA) assay was used (Danner M et al. (1993) Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain. Eur J Biochem 215(3):653-61). S. aureus NRS-14 peptidoglycan was purified (Pritchard D G et al. (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150(Pt 7):2079-87; Schmelcher M et al. (2012) Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Appl Microbiol Biotechnol 93(2):633-43), and treated for one hour at 37° C. with 50 μg/ml of PlyGRCS in optimal conditions. Samples were centrifuged and the supernatant was added to an equal volume of 87.7 mM DNSA (20 g/L in 0.7 M NaOH). After boiling for 5 min, samples were allowed to cool and the absorbance was read at OD535. Known concentrations of glucose were used to create a standard curve. To determine an increase in free amine groups, the trinitrophenylation reaction was used, originally described by Satake et al. and modified by Mokrasch (Satake M et al. (1960) Incorporation of leucine into microsomalprotein by a cell-free system of guinea-pig brain. Biochim Biophys Acta 41:366-7; Mokrasch L (1967) Use of 2,4,6-trinitrobenzenesulfonic acid for the coestimation of amines, amino acids, and proteins in mixtures. Anal Biochem 18:64-71). Purified peptidoglycan (OD600=1) was treated with PlyGRCS (50 μg/ml) for one hour at 37° C. Samples were pelleted and the supernatant was filtered through a 0.22 μM filter. The sterile filtrate was added to sodium tetraborate and trinitrobenzenesulfonic acid and incubated for 30 minutes at room temperature. Samples were read at OD420. Lysine was used as a standard.
- Cleavage Analysis by Mass Spectrometry.
- For determination of cut sites within the staphylococcal peptidoglycan, purified cell walls were digested with PlyGRCS and the resulting fragments were analyzed via mass spectrometry (Becker S C et al. (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294(1):52-60; Pritchard D G et al. (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150(Pt 7):2079-87). Briefly, SA113 ΔtagO cell walls (Atilano M L et al. (2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci USA 107(44):18991-6; Weidenmaier C et al. (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243-5) were digested in 25 mM Tris, 200 mM NaCl, pH 7.4 at 37° C. for 18 hours with 50 μg/ml of PlyGRCS, filtered through 5000-
MW cutoff Vivaspin 500 units (Sartorius North America Inc., Bohemia, N.Y.), and desalted using C18 Zip Tips (Millipore, Zug, Switzerland). Controls included peptidoglycan digested with the amidase domain of 2638A, a known N-acetylmuramoyl-L-alanine amidase, or undigested peptidoglycan. To further define the PlyGRCS cut site, double digests with PlyGRCS and a truncation construct containing only the CHAP domain of LysK (CHAP-K), a D-alany-glycyl endopeptidase were performed. The samples were eluted from the Zip Tips with 50:50:0.01 (v/v/v) CH3OH:H2O:HCOH (pH ˜2), and NanoESI-MS analysis was performed on a Q-TOF Ultima API mass spectrometer (Micromass, UK). - Expression of PlyGRCS and Domain Constructs.
- The phage GRCS genome was recently sequenced (KJ210330) (Swift S M & Nelson D C (2014) Complete genome sequence of Staphylococcus aureus phage GRCS. Genome Announc 2(2)). Bioinformatic analysis predicted an endolysin for ORF15 (AHJ10590), referred to as PlyGRCS. This enzyme contains a putative N-terminal CHAP domain, which is shown to encompass bacteriolytic activity in other characterized endolysins, and a C-terminal bacterial src-homology 3 (SH3_5) domain that functions as a CBD in many staphylococcal and streptococcal endolysins (Nelson D C et al. (2012) Endolysins as antimicrobials. Adv Virus Res 83:299-365).
- The closest homologs to PlyGRCS are a hypothetical protein from S. aureus 2011-60-1490-31 (EZV76040.1, 98% identity), an amidase from Staphylococcus phage 44AHJD (NP_817310.1, 96% identity), ORF009 of Staphylococcus phage 66 (YP_239469.1, 97% identity), the SAL-2 amidase from Staphylococcus phage SAP-2 (YP_001491539.1, 96% identity), and an unnamed protein product of Staphylococcus phage S24-1 (YP_004957430.1, 92% identity). To study the full-length enzyme and elucidate the contributions of each domain, the full length PlyGRCS was cloned, as well as its isolated CHAP domain (CHAPGRCS, amino acids 1-140) and SH3_5 domain (SH3_5GRCS, amino acids 150-250) into expression vectors. All three constructs were expressed as soluble proteins and purified to homogeneity by nickel affinity chromatography via the C-terminal 6×His tags on each protein.
- Characterization of PlyGRCS.
- PlyGRCS displayed a dose response curve from 28 to 1.75 μg/ml when tested in a turbidity reduction assay using stationary phase S. aureus NRS-14 cells (
FIG. 1 , Plate A). The highest dose corresponded to a 70% decrease in optical density in just 15 minutes (50% decrease in <10 minutes). When tested at equimolar concentrations, CHAPGRCS displayed ˜8-10% of full-length PlyGRCS activity. In contrast, SH3_5GRCS displayed little to no lytic activity; however, this domain alone possessed the ability to specifically bind staphylococci as detected by antibody recognition of the 6×His purification tag on the staphylococcal surface (FIG. 2 ). Control experiments without SH3_5GRCS did demonstrate binding of the antibody. Therefore, while the CHAP domain is independently capable of lysing S. aureus, for some applications, enhanced antimicrobial efficacy of the endolysin is provided by the simultaneous presence of both the CHAP and SH3_5GRCS domains. - Lytic activity of PlyGRCS was then tested in BP buffer with a pH range from 3.0 to 11.0 to determine optimum conditions. Optimal pH was determined to be 7.0, with an active range between 6.0 and 8.0 (
FIG. 1 , Plate B). PlyGRCS activity was markedly reduced at pH extremes. Based on the above observations, subsequent turbidity reduction and antimicrobial assays were performed in BP buffer pH 7.0. Because the activity of many endolysins, including various staphylococcal endolysins (Becker S C et al. (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287(2):185-91; Garcia P et al. (2010) Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol 141(3):151-5), is enhanced by the addition of NaCl, we investigated the activity of PlyGRCS in the presence of NaCl ranging from 0 to 500 mM. Surprisingly, NaCl had little effect (±10%) on PlyGRCS activity up to 125 mM and only slightly inhibited activity at higher concentrations (˜35% decrease at 500 mM) (FIG. 1 , Plate C). - Several other CHAP domain-containing staphylococcal endolysins (Donovan D M et al. (2006) Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett 265(1):133-9; Fenton M et al. (2011) Characterization of the staphylococcal bacteriophage lysin CHAP(K). J Appl Microbiol 111(4):1025-35), as well as streptococcal endolysins (Celia L K et al. (2008) Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol 130(1-2):107-17; Pritchard D G et al. (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150(Pt 7):2079-87) have been shown to require calcium for activity. Furthermore, the structure of the staphylococcal LysGH15 CHAP domain shows calcium in an μF-hand-like structure (Gu J et al. (2014) Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-Hand-like” calcium-binding phage lysin. PLoS pathogens 10(5):e1004109). The CHAP domain of PlyGRCS shares identity in three aspartic acid residues known to complex this cation in LysGH15 and other calcium-binding proteins, although it only shows 42% in overall identity with the LysGH15 CHAP domain.
- With this in mind, the activity of PlyGRCS was analyzed in either the presence or absence of calcium. PlyGRCS was first incubated with EDTA to remove all divalent cations from solution. EDTA-treated PlyGRCS was devoid of lytic activity (
FIG. 1 , Plate D). Next, EDTA-treated PlyGRCS was incubated with excess CaCl2. Calcium-treated PlyGRCS displayed nearly twice the lytic activity when compared to PlyGRCS prior to EDTA treatment. To determine whether divalent metal dependence of PlyGRCS is specific to calcium, the activity of the EDTA-treated endolysin was measured after the addition of an alternative divalent metal, magnesium. The activity of magnesium-treated PlyGRCS mimicked that of the EDTA-treated sample, indicating that the divalent metal dependence of PlyGRCS is calcium-specific. - Finally, the kinetic and thermodynamic stability of PlyGRCS was investigated. PlyGRCS displayed >90% residual lytic activity after incubating at temperatures ranging from 4° C. to 37° C. for a total of 30 minutes. At temperatures of ≥40° C., lytic activity was not observed (
FIG. 3 , Plate A). Melting experiments performed on a CD spectrophotometer show cooperative unfolding of PlyGRCS with a Tm of 43.5° C. (FIG. 3 , Plate B), which further confirms the lack of activity at ≥40° C. observed during the kinetic stability experiment. CHAPGRCS (FIG. 3 , Plate C) and SH3_5GRCS (FIG. 3 , Plate D) had similar Tm values of 44.8° C. and 44.5° C., respectively. The observed PlyGRCS stability profile is consistent with that of other phage lysins. For example, the S. aureus endolysin LysK is kinetically inactivated at 42.0° C. and the Streptococcus pneumoniae endolysin Cpl-1 displays at Tm of 43.5° C. (Filatova L Y et al. (2010) LysK, the enzyme lysing Staphylococcus aureus cells: specific kinetic features and approaches towards stabilization. Biochimie 92(5):507-13; Sanz J M et al. (1993) Thermal stability and cooperative domains of CPL1 lysozyme and its NH2-and COOH-terminal modules. Dependence on choline binding. J Biol Chem 268(9):6125-30). - PlyGRCS Spectrum of Lytic Activity.
- In order to determine the spectrum of lytic activity of PlyGRCS, activity was tested against 13 different bacterial strains including methicillin-resistant and vancomycin-intermediate resistant S. aureus, methicillin-resistant S. epidermidis, and several other representative Gram-positive pathogens (see Table 1). At 6 lytic activity was seen against all staphylococcal strains, with PlyGRCS exhibiting the greatest strength against S. aureus strains NRS-71 and NRS-14 and S. epidermidis NRS-101. CHAPGRCS exhibited less activity, causing relatively weak clearing zones on plates of S. aureus strains NRS-384 and NRS-71 and S. epidermidis NRS-101. Little to no lytic activity was observed on other strains. Thus, PlyGRCS has an activity spectrum relatively confined to staphylococcal species, as little or no activity was observed against tested streptococci or representative bacilli and enterococci species (Table 1).
- Biofilm Assay.
- Considering the ability of S. aureus to form biofilms and thus present a further barrier to traditional treatments, we investigated the anti-biofilm properties of PlyGRCS. When 1 day biofilms were treated with PlyGRCS for 1 hour, a dose response decrease in the amount of biofilm was visualized, with as little as 6.25 μg/ml affecting a ˜50% decrease in biofilm biomass (
FIG. 4 ). - Bactericidal Effects of PlyGRCS.
- It has been noted that the minimal inhibitory concentration (MIC) assay may not be the most appropriate assay to measure endolysin efficacy due to the speed at which the enzyme acts (Kusuma C M et al. (2005) Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrobial agents and chemotherapy 49(8):3256-63). Therefore, we employed the minimum bactericidal concentration (MBC) assay, which is the lowest concentration of enzyme that kills ≥99.9% (i.e. 3 logs) of the test inoculum (Jones R et al. (1985) Susceptibility tests: microdilution andmacrodilution broth procedures. In: Balows A, Hausler J, Shadomy H (eds) Manual of Clinical Microbiology. American Society for Microbiology, Washington, DC, pp 972-7).
- When tested against a VISA strain in stationary phase, 25 μg/ml PlyGRCS resulted in 3 log killing, 12.5 μg/ml yielded a 2.5 log decrease, and 6.25 μg/ml reduced bacterial counts by 2 logs. Of note, VISA strains possess thicker cell walls than other S. aureus strains. This phenotype may cause the bacteria to be more resilient to endolysin treatment, and hence require higher than normal MBC values (Howden B P et al. (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23(1):99-139; Sieradzki K et al. (2003) Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185(24):7103-10). Nonetheless, the results compare favorably to other anti-staphylococcal endolysins. For example, PlySs2 represents the only other staphylococcal endolysin with reported bactericidal activity against a VISA strain, requiring 128 μg/ml to decrease the colony counts of mid-log phase cells by 2 logs (Gilmer et al. (2013) Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57(6):2743-50).
- Confirmation of N-Terminal CHAP Catalytic Domain.
- By definition, CHAP domains contain two invariant residues, a cysteine and a histidine (Bateman A & Rawlings N. Dak. (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28(5):234-7; Rigden D J et al. (2003) Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamate-specific amidohydrolases. Trends Biochem Sci 28(5):230-4). The cysteine acts as a catalytic nucleophile and the histidine may function as a general base to deprotonate the thiol group of the cysteine.
- To determine the contributions of these putative residues in PlyGRCS, we used site-directed mutagenesis to alter C29 and H92, the residues identified by a PFAM alignment of PlyGRCS to archetypical CHAP domains. Circular dichroism analysis demonstrated that both the C29S and H92A point mutants had similar secondary structures to WT PlyGRCS. No lytic activity was observed when the C29S mutant was used against S. aureus NRS-14 in a turbidity reduction assay (
FIG. 5 ); however, H92A still exhibited lytic activity, although reduced to about 40% as compared to WT activity. Similar mutagenesis of active-site histidine residues in cysteine proteases have likewise displayed reduced but measurable activity (Ekici O D et al. (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein science: a publication of the Protein Society 17(12):2023-37; Khayat R et al. (2001) Investigating the role of histidine 157 in the catalytic activity of human cytomegalovirus protease. Biochemistry 40(21):6344-51). Thus, other residues near the active-site residues may substitute for the histidine as an electron acceptor during the nucleophilic attack by the cysteine. - Cleavage Specificity of the CHAP Domain.
- CHAP domains are associated with N-muramoyl-L-alanine amidase (amidase) or endopeptidase activity (Bateman A & Rawlings N. Dak. (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28(5):234-7). Specifically, CHAP domains of staphylococcal endolysins have been characterized as amidases or D-alanyl-glycyl endopeptidases (Schmelcher M et al. (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7(10):1147-71). To determine the specific catalytic nature of the PlyGRCS CHAP domain, two biochemical assays were employed to analyze the reducing sugar (indicative of glycosidase activity) or amine (indicative of amidase/endopeptidase activity) release upon PlyGRCS treatment. As expected, PlyGRCS did not show any glycosidase activity. However, free amines were detected when S. aureus cell walls were treated with PlyGRCS, demonstrating that the catalytic activity is indeed an amidase or endopeptidase.
- To further elucidate which hydrolytic activity PlyGRCS possesses, enzymatically digested S. aureus peptidoglycan preparations were subjected to electron spray ionization-mass spectrometry (ESI-MS). Unexpectedly, the PlyGRCS digest (
FIG. 6 , Plate A, top spectrum) revealed a peak at m/z=702.35, which could only be produced by the presence of two enzymatic activities, an N-acetylmuramoyl-L-alanine amidase and either a D-alanyl-glycyl endopeptidase or a glycyl-glycyl endopeptidase, to yield the fragment A2QKG5 (single letter amino acid code) (FIG. 6 , Plate B). - Moreover, a larger double-charged ion (m/z=684.84) was also observed that likely corresponds to the fragment A4Q2K2G10 (without a water molecule), resulting from incomplete peptidoglycan digest (
FIG. 6 , Plates A and C). Presence of the 702.35 and 684.84 peaks was reproducible on independent digests and ESI-MS experiments. Control experiments with peptidoglycan digested with the 2638A amidase domain, a known N-acetylmuramoyl-L-alanine amidase (FIG. 6 , Plate A, second spectrum), or undigested peptidoglycan (FIG. 6 , Plate A, third spectrum) did not contain the 702.35 or 684.84 peaks indicating that generation of the 702.35 and 684.84 fragments by PlyGRCS was not an artifact of a single enzymatic activity acting on uncrosslinked or partially cleaved peptidoglycan. - Furthermore, a double digest with PlyGRCS and CHAP-K, which has D-alanyl-glycyl endopeptidase activity (Becker S C et al. (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294(1):52-60) was performed to elucidate the specific nature of the endopeptidase activity. Because this spectrum was identical to that of the PlyGRCS alone digested peptidoglycan, it was determined that PlyGRCS possesses a D-alanyl-glycyl endopeptidase activity, as a glycyl-glycyl endopeptidase activity would have yielded a different fragment pattern.
- Thus, these data indicate that PlyGRCS, which has a single catalytic CHAP domain, can cleave two distinct bonds in the staphylococcal peptidoglycan.
- The use of endolysins provides a targeted treatment for bacterial infections that circumvents traditional antibiotic resistance mechanisms (Sprott B G (1994) Resistance to antibiotics mediated by target alterations. Science 264(5157):388-93). In accordance with embodiments of the present invention, PlyGRCS endolysin was characterized and demonstrated bacteriolytic activity against MRSA successfully. The endolysin dosage used demonstrated that the efficacy of PlyGRCS is comparable to or better than other published staphylococcal endolysins (Gilmer D B et al. (2013) Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy 57(6):2743-50; Jun S Y et al. (2011) Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrobial agents and chemotherapy 55(4):1764-7; Sass P & Bierbaum G (2007) Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73(1):347-52). Moreover, because the optimal conditions for PlyGRCS activity were determined to be in the physiological range, this enzyme is suitable for use as an antimicrobial agent.
- Even more impressive is the ability of PlyGRCS to act against stationary phase staphylococci as well as medically relevant biofilms, a further hindrance to traditional antibiotic therapy. Given the ability of endolysins like PlyGRCS to disrupt biofilms, they could be utilized in conjunction with classical antibiotics. In some embodiments, the endolysin provides the initial disturbance to the biofilm structure, thereby allowing the antibiotic to subsequently access the now susceptible target bacteria. Antibiotics applied in combination with endolysins bind more efficiently to their planktonic target bacterial cells, and thus this same phenomenon may be observed in biofilms as well (Schuch R et al. (2013) Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 2014:209).
- Identification of the PlyGRCS cleavage sites is also an important finding. This is believed to be the first demonstration of a single CHAP domain, or any individual endolysin catalytic domain, that possesses the ability to cleave two disparate bonds in the bacterial peptidoglycan. Initially, it was thought that the results were attributed to a single cleavage of uncrosslinked peptidoglycan, resulting in a fragment that appeared to be created by two cleavage events. However, spectra from repeated experiments on undigested control peptidoglycan and control digests with enzymes of known specificity collectively indicate that PlyGRCS is capable of liberating the fragment A2QKG5 from the staphylococcal peptidoglycan. This would necessitate cleavage of the amide bond formed between MurNAc and Ala residues as well as the hydrolysis of the amide bond formed between D-Ala and Gly residues or one of the Gly-Gly bonds. Further experiments with a double digest including PlyGRCS and CHAP-K, a D-alanyl-glycyl endopeptidase, showed an identical pattern to the PlyGRCS only spectrum, indicating that the endopeptidase activity of PlyGRCS is identical to CHAP-K.
- While these findings indicating both amidase and endopeptidase activities associated with the single CHAP domain-containing PlyGRCS were surprising, other CHAP domains have been associated with an N-acetylmuramoyl-L-alanine amidase activity in the streptococcal PlyC endolysin (McGowan S et al. (2012) X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci USA 109(31):12752-7) as well as D-alanyl-glycyl endopeptidase activity in multiple staphylococcal endolysins (Schmelcher M et al. (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7(10):1147-71). Moreover, the recently crystallized CHAP domain from the staphylococcal endolysin LysGH15 shows highest structural homology to the aforementioned CHAP domain of PlyC, with a root-mean-square deviation (RMSD)=2.32 Å (Gu J et al. (2014) Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-Hand-like” calcium-binding phage lysin. PLoS pathogens 10(5):e1004109), further supporting the conclusion that these domains exhibit multiple activities. Finally, consistent with the findings of our biochemical assays, both amidase and endopeptidase activities would yield free amine groups via cleavage of peptide moieties and additionally would not liberate reducing sugars, which requires the cleavage of at least one of the two glycosidic bonds responsible for maintaining the glycan backbone of peptidoglycan.
- The implications of a single catalytic domain with two cleavage specificities are numerous for bioengineering efforts. First, endolysins display synergy with other endolysins of different cleavage specificities. For example, killing of pneumococci is enhanced when the endolysins Cpl-1, an N-acetylmuramidase, and PAL, an N-acetylmuramoyl-L-alanine amidase, are used together compared to twice the concentration of either enzyme alone (Loeffler J M & Fischetti V A (2003) Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and—resistant Streptococcus pneumoniae strains. Antimicrobial agents and chemotherapy 47(1):375-7). Likewise, mutagenesis of active-site residues was used to show synergy between two catalytic domains, an N-acetylmuramoyl-L-alanine amidase and a glycosyl hydrolase, within the PlyC endolysin (McGowan S et al. (2012) X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci USA 109(31):12752-7). It is believed that synergy arises from cleaving the peptidoglycan at two different locations, which is more destabilizing to the superstructure than repetitive cleavages at one location and would result in accelerated osmolysis of the bacterial cell. Additionally, cleavage of one bond may facilitate access to the second target, further contributing to this synergistic effect.
- A second benefit of a catalytic domain with dual activities is that it is less susceptible to development of resistance. While there are currently no specific reports of bacterial strains developing resistance to phage-encoded endolysins, resistance to peptidoglycan hydrolases as a general class has been reported. Notably, modifications to the peptidoglycan backbone can render N-acetylmuramidases (i.e. lysozymes) ineffective (Davis K M & Weiser J N (2011) Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 79(2):562-70; Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32(2):287-306). More specific to the staphylococcal peptidoglycan, resistance to lysostaphin, a bacterial derived glycyl-glycine endopeptidase, can be achieved by simple modification of the pentaglycine crossbridge in these species (Nelson D C et al. (2012) Endolysins as antimicrobials. Adv Virus Res 83:299-365). Thus, endolysins engineered to have more than one catalytic activity would circumvent resistance development targeting the specificity of one activity. As protein therapeutics, PlyGRCS is amenable to domain shuffling, directed evolution, and bioengineering approaches to further enhance efficacy and/or specificity. The unique dual substrate activity of the PlyGRCS catalytic domain thus offers an ideal model for identifying other domains from staphylococcal-specific endolysins.
- All publications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference in its entirety. While the invention has been described in connection with exemplary embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the features hereinbefore set forth.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/876,323 US20180147264A1 (en) | 2014-07-10 | 2018-01-22 | Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462023096P | 2014-07-10 | 2014-07-10 | |
US14/794,186 US9872893B2 (en) | 2014-07-10 | 2015-07-08 | Endolysins active against Staphylococcus bacteria, pharmaceutical compositions, and methods relating thereto |
US15/876,323 US20180147264A1 (en) | 2014-07-10 | 2018-01-22 | Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/794,186 Division US9872893B2 (en) | 2014-07-10 | 2015-07-08 | Endolysins active against Staphylococcus bacteria, pharmaceutical compositions, and methods relating thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180147264A1 true US20180147264A1 (en) | 2018-05-31 |
Family
ID=55266610
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/794,186 Active US9872893B2 (en) | 2014-07-10 | 2015-07-08 | Endolysins active against Staphylococcus bacteria, pharmaceutical compositions, and methods relating thereto |
US15/876,323 Abandoned US20180147264A1 (en) | 2014-07-10 | 2018-01-22 | Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/794,186 Active US9872893B2 (en) | 2014-07-10 | 2015-07-08 | Endolysins active against Staphylococcus bacteria, pharmaceutical compositions, and methods relating thereto |
Country Status (1)
Country | Link |
---|---|
US (2) | US9872893B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180291357A1 (en) * | 2015-05-18 | 2018-10-11 | Wuhan Phagelux Bio-Tech Company Limited | Staphylococcus Lysin and Use Thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2463181B (en) | 2007-05-14 | 2013-03-27 | Univ New York State Res Found | Induction of a physiological dispersion response in bacterial cells in a biofilm |
US11185555B2 (en) | 2016-04-11 | 2021-11-30 | Noah James Harrison | Method to kill pathogenic microbes in a patient |
US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
KR102097128B1 (en) * | 2019-06-19 | 2020-04-06 | 서울대학교산학협력단 | Chimeric endolysin Lys109 with antimicrobial activity against Staphylococcus aureus |
AU2024234022A1 (en) * | 2023-03-09 | 2025-08-28 | BioNTech SE | Peptidoglycan hydrolases with bactericidal activity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100910961B1 (en) * | 2007-09-13 | 2009-08-05 | 주식회사 인트론바이오테크놀로지 | Bacteriophage or lysate protein derived from it effective in treating biofilm of Staphylococcus aureus |
-
2015
- 2015-07-08 US US14/794,186 patent/US9872893B2/en active Active
-
2018
- 2018-01-22 US US15/876,323 patent/US20180147264A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180291357A1 (en) * | 2015-05-18 | 2018-10-11 | Wuhan Phagelux Bio-Tech Company Limited | Staphylococcus Lysin and Use Thereof |
US10626387B2 (en) * | 2015-05-18 | 2020-04-21 | Phagelux, Inc. | Staphylococcus lysin and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US20160038572A1 (en) | 2016-02-11 |
US9872893B2 (en) | 2018-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Linden et al. | Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus | |
US20180147264A1 (en) | Endolysins Active Against Staphylococcus Bacteria, Pharmaceutical Compositions, and Methods Relating Thereto | |
Szweda et al. | Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus | |
Roach et al. | Antimicrobial bacteriophage-derived proteins and therapeutic applications | |
JP2022058682A (en) | Bacteriophage lysin and antibiotic combinations against gram-positive bacteria | |
Lu et al. | Phage endolysin LysP108 showed promising antibacterial potential against methicillin-resistant Staphylococcus aureus | |
Schmelcher et al. | Bacteriophage endolysins as novel antimicrobials | |
JP5882968B2 (en) | Antimicrobial activity derived from phage | |
US8481289B2 (en) | Triple acting antimicrobials that are refractory to resistance development | |
JP2020189860A (en) | Biofilm prevention, disruption and treatment with bacteriophage lysin | |
US12121568B2 (en) | Identification of lysins and derivatives thereof with bactericidal activity against Pseudomonas aeruginosa | |
Heselpoth et al. | Enzybiotics: endolysins and bacteriocins | |
KR20200045468A (en) | Strengthening blood components of lytic protein antibacterial activity and methods and uses thereof | |
US20100216711A1 (en) | Protease-Stable, Cell Wall-Lysing Enzymes | |
US12005099B2 (en) | Targeted antimicrobials and related compositions, methods and systems | |
US20220160843A1 (en) | Lysins and derivatives thereof with bactericidal activity against pseudomonas aeruginosa, in the presence of human serum | |
US11890330B2 (en) | Endolysins active against Bacillus bacteria, pharmaceutical compositions, and methods relating thereto | |
US20220024992A1 (en) | Compositions and methods comprising lysocins as bioengineered antimicrobials for use in targeting gram-negative bacteria | |
KR20230028132A (en) | Antibiotics against novel polypeptides and Gram-negative bacteria containing the same | |
Linden | An investigation on a bacteriophage endolysin possessing antimicrobial activity against antibiotic-resistant Staphylococcus aureus | |
Shang | Structure-Guided Engineering of a Multimeric Bacteriophage-Encoded Endolysin PlyC | |
Arroyo Moreno | Development of phage therapy strategies against Gram-positive bacterial pathogens | |
Fernandes | Endolysins as Antibacterial Agents: from Engineering Approaches to the Uncovering of Holin as a Key Factor Influencing Lytic Activity | |
Rodríguez et al. | The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance | |
Rodrıguez-Rubio et al. | The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MRDC, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MARYLAND;REEL/FRAME:060045/0622 Effective date: 20220526 |