US20180127650A1 - Liquid crystal composition and liquid crystal display device - Google Patents

Liquid crystal composition and liquid crystal display device Download PDF

Info

Publication number
US20180127650A1
US20180127650A1 US15/573,482 US201615573482A US2018127650A1 US 20180127650 A1 US20180127650 A1 US 20180127650A1 US 201615573482 A US201615573482 A US 201615573482A US 2018127650 A1 US2018127650 A1 US 2018127650A1
Authority
US
United States
Prior art keywords
diyl
carbons
replaced
fluorine
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/573,482
Inventor
Masayuki Saito
Yoshimasa Furusato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Petrochemical Corp filed Critical JNC Corp
Assigned to JNC PETROCHEMICAL CORPORATION, JNC CORPORATION reassignment JNC PETROCHEMICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FURUSATO, YOSHIMASA, SAITO, MASAYUKI
Publication of US20180127650A1 publication Critical patent/US20180127650A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3021Cy-Ph-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3037Cy-Cy-C2H4-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Definitions

  • the invention relates to a liquid crystal composition, a liquid crystal display device including the composition, and so forth.
  • the invention relates to a liquid crystal composition having negative dielectric anisotropy, and a liquid crystal display device that includes the composition and has a mode such as an IPS mode, a VA mode, an FFS mode and an FPA mode.
  • the invention also relates to a polymer sustained alignment mode liquid crystal display device.
  • a classification based on an operating mode for liquid crystal molecules includes a phase change (PC) mode, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, an electrically controlled birefringence (ECB) mode, an optically compensated bend (OCB) mode, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a fringe field switching (FFS) mode and a field-induced photo-reactive alignment (FPA) mode.
  • a classification based on a driving mode in the device includes a passive matrix (PM) and an active matrix (AM).
  • the PM is classified into static, multiplex and so forth, and the AM is classified into a thin film transistor (TFT), a metal insulator metal (MIM) and so forth.
  • TFT thin film transistor
  • MIM metal insulator metal
  • the TFT is further classified into amorphous silicon and polycrystal silicon.
  • the latter is classified into a high temperature type and a low temperature type based on a production process.
  • a classification based on a light source includes a reflective type utilizing natural light, a transmissive type utilizing backlight and a transflective type utilizing both the natural light and the backlight.
  • the liquid crystal display device includes a liquid crystal composition having a nematic phase.
  • the composition has suitable characteristics.
  • An AM device having good characteristics can be obtained by improving characteristics of the composition.
  • Table 1 below summarizes a relationship in two characteristics. The characteristics of the composition will be further described based on a commercially available AM device.
  • a temperature range of the nematic phase relates to a temperature range in which the device can be used.
  • a preferred maximum temperature of the nematic phase is about 70° C. or higher, and a preferred minimum temperature of the nematic phase is about ⁇ 10° C. or lower.
  • Viscosity of the composition relates to a response time in the device. A short response time is preferred for displaying moving images on the device. A shorter response time even by one millisecond is desirable. Accordingly, a small viscosity in the composition is preferred. A small viscosity at low temperature is further preferred.
  • Optical anisotropy of the composition relates to a contrast ratio in the device.
  • a mode of the device large optical anisotropy or small optical anisotropy, more specifically, suitable optical anisotropy is required.
  • a product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and a cell gap (d) in the device is designed so as to maximize the contrast ratio.
  • a suitable value of the product depends on a type of the operating mode. In a device having the VA mode, the value is in the range of about 0.30 micrometer to about 0.40 micrometer, and in a device having the IPS mode or the FFS mode, the value is in the range of about 0.20 micrometer to about 0.30 micrometer.
  • a composition having large optical anisotropy is preferred for a device having a small cell gap.
  • Large dielectric anisotropy in the composition contributes to low threshold voltage, small electric power consumption and a large contrast ratio in the device. Accordingly, the large dielectric anisotropy is preferred.
  • Large specific resistance in the composition contributes to a large voltage holding ratio and the large contrast ratio in the device. Accordingly, a composition having the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase in an initial stage is preferred. The composition having the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time is preferred.
  • Stability of the composition to ultraviolet light and heat relates to a service life of the device. In the case where the stability is high, the device has a long service life. Such characteristics are preferred for an AM device for use in a liquid crystal projector, a liquid crystal television and so forth.
  • a liquid crystal composition containing a polymer is used.
  • a composition to which a small amount of a polymerizable compound is added is injected into the device.
  • the composition is irradiated with ultraviolet light while voltage is applied between substrates of the device.
  • the polymerizable compound is polymerized to forma network structure of the polymer in the composition.
  • alignment of liquid crystal molecules can be controlled by the polymer, and therefore the response time in the device is shortened and also image persistence is improved.
  • Such an effect of the polymer can be expected for a device having the mode such as the TN mode, the ECB mode, the OCB mode, the IPS mode, the VA mode, the FFS mode and the FPA mode.
  • a composition having positive dielectric anisotropy is used in an AM device having the TN mode.
  • a composition having negative dielectric anisotropy is used in an AM device having the VA mode.
  • a composition having positive or negative dielectric anisotropy is used in an AM device having the IPS mode or the FFS mode.
  • a composition having positive or negative dielectric anisotropy is used in an AM device having a polymer sustained alignment mode.
  • Patent literature No. 1 JP 2004-352722 A.
  • Patent literature No. 2 JP 2008-545669 A.
  • Patent literature No. 3 JP 2008-545671 A.
  • Patent literature No. 4 JP 2009-507759 A.
  • One of aims of the invention is to provide a liquid crystal composition satisfying at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light and high stability to heat.
  • Another aim is to provide a liquid crystal composition having a suitable balance regarding at least two of the characteristics.
  • Another aim is to provide a liquid crystal display device including such a composition.
  • Another aim is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life.
  • the invention concerns a liquid crystal composition that has negative dielectric anisotropy, and contains at least one compound selected from the group of compounds represented by formula (1) as a first component and at least one compound selected from the group of compounds represented by formula (2) as a second component, and a liquid crystal display device including the composition:
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in
  • One of advantages of the invention is a liquid crystal composition satisfying at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light and high stability to heat.
  • Another advantage is a liquid crystal composition having a suitable balance regarding at least two of the characteristics.
  • Another advantage is a liquid crystal display device including such a composition.
  • Another advantage is an AM device having characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life.
  • liquid crystal composition and “liquid crystal display device” may be occasionally abbreviated as “composition” and “device,” respectively.
  • “Liquid crystal display device” is a generic term for a liquid crystal display panel and a liquid crystal display module.
  • Liquid crystal compound is a generic term for a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a compound having no liquid crystal phase but to be mixed with the composition for the purpose of adjusting characteristics such as a temperature range of the nematic phase, viscosity and dielectric anisotropy.
  • the compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and has rod-like molecular structure.
  • Polymerizable compound is a compound to be added for the purpose of forming a polymer in the composition.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds.
  • a proportion (content) of the liquid crystal compounds is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition.
  • An additive such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, the polymerizable compound, a polymerization initiator and a polymerization inhibitor is added to the liquid crystal composition when necessary.
  • a proportion (amount of addition) of the additive is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition in a manner similar to the proportion of the liquid crystal compound. Weight parts per million (ppm) may be occasionally used.
  • a proportion of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the total amount of the polymerizable compound.
  • Maximum temperature of the nematic phase may be occasionally abbreviated as “maximum temperature.”
  • Minimum temperature of the nematic phase may be occasionally abbreviated as “minimum temperature.”
  • An expression “having large specific resistance” means that the composition has large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase in an initial stage, and the composition has the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time.
  • An expression “having a large voltage holding ratio” means that the device has a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature of the nematic phase in the initial stage, and the device has the large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time.
  • An expression “increase the dielectric anisotropy” means that a value of dielectric anisotropy positively increases in a composition having positive dielectric anisotropy, and the value of dielectric anisotropy negatively increases in a composition having negative dielectric anisotropy.
  • a compound represented by formula (1) may be occasionally abbreviated as “compound (1).” At least one compound selected from the group of compounds represented by formula (2) may be occasionally abbreviated as “compound (2).” “Compound (1)” means one compound, a mixture of two compounds or a mixture of three or more compounds represented by formula (1). A same rule applies also to any other compound represented by any other formula.
  • An expression “at least one piece of ‘A’” means that the number of ‘A’ is arbitrary.
  • An expression “at least one piece of ‘A’ may be replaced by ‘B’” means that, when the number of ‘A’ is 1, a position of ‘A’ is arbitrary, and also when the number of ‘A’ is 2 or more, positions thereof can be selected without restriction. A same rule applies also to an expression “at least one piece of ‘A’ is replaced by ‘B’.”
  • a symbol of terminal group R 1 is used in a plurality of compounds in chemical formulas of component compounds.
  • two groups represented by two pieces of arbitrary R 1 may be identical or different.
  • R 1 of compound (1-1) is ethyl and R 1 of compound (1-2) is ethyl.
  • R 1 of compound (1-1) is ethyl and R 1 of compound (1-2) is propyl.
  • a same rule applies also to a symbol of any other terminal group or the like.
  • formula (3) when d is 2, two of ring C exists.
  • two rings represented by two of ring C may be identical or different.
  • a same rule applies also to two of arbitrary ring C when d is larger than 2.
  • a same rule applies also to a symbol of Z 1 , ring A or the like.
  • a same rule applies also to such a case where two pieces of -Sp 2 -P 5 exists in compound (5-27).
  • Symbol A, B, C or the like surrounded by a hexagonal shape corresponds to ring A, ring B, ring C or the like, respectively, and represents a six-membered ring or a condensed ring.
  • An oblique line crossing the hexagonal shape represents that arbitrary hydrogen on the ring may be replaced by -Sp 1 -P 1 group or the like.
  • a subscript such as h represents the number of groups to be replaced. When the subscript is 0, no such replacement exists.
  • h is 2 or more, a plurality of pieces of -Sp 1 -P 1 exist on ring K.
  • the plurality of groups represented by -Sp 1 -P 1 may be identical or different.
  • 2-fluoro-1,4-phenylene means two divalent groups described below.
  • fluorine may be leftward (L) or rightward (R).
  • L leftward
  • R rightward
  • a same rule applies also to an asymmetrical divalent group derived from a ring such as tetrahydropyran-2,5-diyl.
  • a same rule applies also to a divalent bonding group such as carbonyloxy (—COO— or —OCO—).
  • the invention includes items described below.
  • a liquid crystal composition that has negative dielectric anisotropy, and contains at least one compound selected from the group of compounds represented by formula (1) as a first component and at least one compound selected from the group of compounds represented by formula (2) as a second component:
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in
  • Item 2 The liquid crystal composition according to item 1, containing at least one compound selected from the group of compounds represented by formula (1-1) or formula (1-7) as the first component:
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 3 The liquid crystal composition according to item 1 or 2, wherein a proportion of the first component is in the range of 5% by weight to 40% by weight, and a proportion of the second component is in the range of 10% by weight to 60% by weight, based on the total amount of the liquid crystal composition.
  • Item 4 The liquid crystal composition according to any one of items 1 to 3, containing at least one compound selected from the group of compounds represented by formula (3) as a third component:
  • R 5 and R 6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene;
  • Z 3 is a single bond, ethylene or carbonyloxy; and d is 1, 2 or 3; in which ring D is 1,4-phenylene when d is 1.
  • Item 5 The liquid crystal composition according to any one of items 1 to 4, containing at least one compound selected from the group of compounds represented by formula (3-1) to formula (3-12) as the third component:
  • R 5 and R 6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 6 The liquid crystal composition according to item 4 or 5, wherein a proportion of the third component is in the range of 5% by weight to 40%; by weight based on the total amount of the liquid crystal composition.
  • Item 7 The liquid crystal composition according to any one of items 1 to 6, containing at least one compound selected from the group of compounds represented by formula (4) as a fourth component:
  • R 7 and R 8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine;
  • ring F is 2,3-difluoro-1,
  • Item 8 The liquid crystal composition according to any one of items 1 to 7, containing at least one compound selected from the group of compounds represented by formula (4-1) to formula (4-19) as the fourth component:
  • R 7 and R 8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 9 The liquid crystal composition according to item 7 or 8, wherein a proportion of the fourth component is in the range of 10% by weight to 70% by weight based on the total amount of the liquid crystal composition.
  • Item 10 The liquid crystal composition according to any one of items 1 to 9, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
  • ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1, 3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl
  • Item 11 The liquid crystal composition according to item 10, wherein, in formula (5), P 1 , P 2 and P 3 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6):
  • M 1 , M 2 and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • Item 12 The liquid crystal composition according to any one of items 1 to 11, containing at least one polymerizable compound selected from the group of compounds represented by formula (5-1) to formula (5-27) as the additive component:
  • P 4 , P 5 and P 6 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-3);
  • M 1 , M 2 and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
  • Sp 1 , Sp 2 and Sp a are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH 2 — may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH 2 —CH 2 — may be replaced by —CH ⁇ CH— or —C ⁇ C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine.
  • Item 13 The liquid crystal composition according to any one of items 10 to 12, wherein a proportion of addition of the additive component is in the range of 0.03% by weight to 10% by weight based on the total amount of the liquid crystal composition.
  • Item 14 A liquid crystal display device, including the liquid crystal composition according to any one of items 1 to 13.
  • Item 15 The liquid crystal display device according to item 14, wherein an operating mode in the liquid crystal display device includes an IPS mode, a VA mode, an FFS mode or an FPA mode, and a driving mode in the liquid crystal display device includes an active matrix mode.
  • a polymer sustained alignment mode liquid crystal display device wherein the liquid crystal display device includes the liquid crystal composition according to any one of items 1 to 13, or the polymerizable compound in the liquid crystal composition is polymerized.
  • Item 17 Use of the liquid crystal composition according to any one of items 1 to 13 in a liquid crystal display device.
  • Item 18 Use of the liquid crystal composition according to any one of items 1 to 13 in a polymer sustained alignment mode liquid crystal display device.
  • the invention further includes the following items: (a) the composition, further containing at least one of additives such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator and a polymerization inhibitor; (b) an AM device including the composition; (c) a polymer sustained alignment (PSA) mode AM device, including the composition that further contains the polymerizable compound; (d) a polymer sustained alignment (PSA) mode AM device, wherein the device includes the composition, and the polymerizable compound in the composition is polymerized; (e) a device including the composition and having the PC mode, the TN mode, the STN mode, the ECB mode, the OCB mode, the IPS mode, the VA mode, the FFS mode or the FPA mode; (f) a transmissive device including the composition; (g) use of the composition as the composition having the nematic phase; and (h) use as an optically active composition by
  • composition of the invention will be described in the following order. First, a constitution of the component compounds in the composition will be described. Second, main characteristics of the component compounds and main effects of the compounds on the composition will be described. Third, a combination of components in the composition, a preferred proportion of the components and the basis thereof will be described. Fourth, a preferred embodiment of the component compounds will be described. Fifth, a preferred component compound will be described. Sixth, an additive that may be added to the composition will be described. Seventh, methods for synthesizing the component compounds will be described. Last, an application of the composition will be described.
  • composition A may further contain any other liquid crystal compound, an additive or the like in addition to the liquid crystal compound selected from compound (1), compound (2), compound (3) and compound (4).
  • An expression “any other liquid crystal compound” means a liquid crystal compound different from compound (1), compound (2), compound (3) and compound (4).
  • Such a compound is mixed with the composition for the purpose of further adjusting the characteristics.
  • the additive includes the optically active compound, the antioxidant, the ultraviolet light absorber, the dye, the antifoaming agent, the polymerizable compound, the polymerization initiator and the polymerization inhibitor.
  • Composition B consists essentially of liquid crystal compounds selected from compound (1), compound (2), compound (3) and compound (4).
  • An expression “essentially” means that the composition may contain the additive, but contains no any other liquid crystal compound.
  • Composition B has a smaller number of components than composition A has.
  • Composition B is preferred to composition A in view of cost reduction.
  • Composition A is preferred to composition B in view of possibility of further adjusting the characteristics by mixing any other liquid crystal compound.
  • the main characteristics of the component compounds and the main effects of the compounds on the characteristics of the composition will be described.
  • the main characteristics of the component compounds are summarized in Table 2 on the basis of advantageous effects of the invention.
  • a symbol L stands for “large” or “high”
  • a symbol M stands for “medium”
  • a symbol S stands for “small” or “low.”
  • the symbols L, M and S represent a classification based on a qualitative comparison among the component compounds, and 0 (zero) means that “a value is zero” or “a value is nearly zero.”
  • Compound (1) increases the dielectric anisotropy.
  • Compound (2) decreases the viscosity.
  • Compound (3) increases the maximum temperature or decreases the viscosity.
  • Compound (4) increases the dielectric anisotropy and decreases the minimum temperature.
  • Compound (5) is polymerized to give a polymer, and the polymer shortens a response time in the device, and improves image persistence.
  • a preferred combination of the components in the composition includes a combination of the first component and the second component, a combination of the first component, the second component and the third component, a combination of the first component, the second component and the fourth component, a combination of the first component, the second component and the additive component, a combination of the first component, the second component, the third component and the fourth component, a combination of the first component, the second component, the third component and the additive component, a combination of the first component, the second component, the fourth component and the additive component, or a combination of the first component, the second component, the third component, the fourth component and the additive component.
  • a further preferred combination includes a combination of the first component, the second component and the third component, a combination of the first component, the second component, the third component and the fourth component, a combination of the first component, the second component, the third component and the additive component, or a combination of the first component, the second component, the third component, the fourth component and the additive component.
  • a preferred proportion of the first component is about 5% by weight or more for increasing the dielectric anisotropy, and about 40% by weight or less for decreasing the minimum temperature.
  • a further preferred proportion is in the range of about 5% by weight to about 35% by weight.
  • a particularly preferred proportion is in the range of about 5% by weight to about 30% by weight.
  • a preferred proportion of the second component is about 10% by weight or more for decreasing the viscosity, and about 60% by weight or less for increasing the dielectric anisotropy.
  • a further preferred proportion is in the range of about 15% by weight to about 55% by weight.
  • a particularly preferred proportion is in the range of about 20% by weight to about 50% by weight.
  • a preferred proportion of the third component is about 5% by weight or more for increasing the maximum temperature or decreasing the viscosity, and about 40% by weight or less for increasing the dielectric anisotropy.
  • a further preferred proportion is in the range of about 5% by weight to about 35% by weight.
  • a particularly preferred proportion is in the range of about 5% by weight to about 30% by weight.
  • a preferred proportion of the fourth component is about 10% by weight or more for increasing the dielectric anisotropy, and about 70% by weight or less for decreasing the minimum temperature.
  • a further preferred proportion is in the range of about 15% by weight to about 70% by weight.
  • a particularly preferred proportion is in the range of about 20% by weight to about 65% by weight.
  • Compound (5) is added to the composition for the purpose of adapting the composition for the polymer sustained alignment mode device.
  • a preferred proportion of the additive component is about 0.03% by weight or more for aligning the liquid crystal molecules, and about 10% by weight or less for preventing poor display in the device.
  • a further preferred proportion is in the range of about 0.1% by weight to about 2% by weight.
  • a particularly preferred proportion is in the range of about 0.2% by weight to about 1.0% by weight.
  • R 1 , R 2 , R 7 and R 8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • R 1 , R 2 , R 7 or R 8 is alkyl having 1 to 12 carbons for increasing the stability, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy.
  • R 3 , R 4 , R 5 and R 6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Preferred R 3 , R 4 , R 5 or R 6 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability.
  • Alkyl is straight-chain alkyl or branched-chain alkyl, but includes no cyclic alkyl. Straight-chain alkyl is preferred to branched-chain alkyl. A same rule applies also to a terminal group such as alkoxy and alkenyl.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. Further preferred alkyl is ethyl, propyl, butyl, pentyl or heptyl for decreasing the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy or heptyloxy. Further preferred alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl or 5-hexenyl.
  • Further preferred alkenyl is vinyl, 1-propenyl, 3-butenyl or 3-pentenyl for decreasing the viscosity.
  • a preferred configuration of —CH ⁇ CH— in the alkenyl depends on a position of a double bond.
  • Trans is preferred in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity, for instance.
  • Cis is preferred in alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • preferred alkyl in which at least one hydrogen is replaced by fluorine or chlorine include fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl or 8-fluorooctyl. Further preferred examples include 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
  • preferred alkenyl in which at least one hydrogen is replaced by fluorine or chlorine include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4-pentenyl or 6,6-difluoro-5-hexenyl. Further preferred examples include 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, in which at least one of ring A and ring C is 3,6-dihydro-2H-pyran-2,5-diyl.
  • Preferred ring A or ring C is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • trans is preferred to cis for increasing the maximum temperature.
  • Tetrahydropyran-2,5-diyl includes:
  • 3,6-dihydro-2H-pyran-2,5-diyl includes:
  • Ring B and ring F are independently 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl.
  • Preferred ring B or ring F is 2, 3-difluoro-1,4-phenylene for decreasing the viscosity, 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
  • Ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene.
  • Preferred ring C or ring D is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • Ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine.
  • Preferred ring E or ring G is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
  • Z 1 , Z 2 , Z 4 and Z 5 are independently a single bond, ethylene, carbonyloxy or methyleneoxy.
  • Preferred Z 1 , Z 2 , Z 4 or Z 5 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
  • Z 3 is a single bond, ethylene or carbonyloxy. Preferred Z 3 is a single bond for increasing the stability.
  • Preferred a is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • Preferred b is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
  • d is 1, 2 or 3.
  • Preferred d is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • p is 1, 2 or 3, q is 0 or 1, and a sum of p and q is 3 or less.
  • Preferred p is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • Preferred q is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
  • P 1 , P 2 and P 3 are independently a polymerizable group.
  • Preferred P 1 , P 2 or P 3 is a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6). Further preferred P 1 , P 2 or P 3 is a group represented by formula (P-1), formula (P-2) or formula (P-3). Particularly preferred P 1 , P 2 or P 3 is a group represented by formula (P-1) or formula (P-2). Most preferred P 1 , P 2 or P 3 is a group represented by formula (P-1).
  • a preferred group represented by formula (P-1) is —OCO—CH ⁇ CH 2 or —OCO—C(CH 3 ) ⁇ CH 2 .
  • a wavy line in formula (P-1) to formula (P-6) represents a site to form a bonding.
  • M 1 , M 2 and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Preferred M 1 , M 2 or M 3 is hydrogen or methyl for increasing reactivity.
  • Further preferred M 1 is hydrogen or methyl, and further preferred M 2 or M 3 is hydrogen.
  • Preferred Sp 1 , Sp 2 or Sp 3 is a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CO—CH ⁇ CH— or —CH ⁇ CH—CO—. Further preferred Sp 1 , Sp 2 or Sp 3 is a single bond.
  • Ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Preferred ring K or ring M is phenyl.
  • Ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2, 3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluor
  • Z 6 and Z 7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH 2 — may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH 2 —CH 2 — may be replaced by —CH ⁇ CH—, —C(CH 3 ) ⁇ CH—, —CH ⁇ C(CH 3 )— or —C(CH 3 ) ⁇ C(CH 3 )—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine.
  • Preferred Z 6 or Z 7 is a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —COO— or —OCO—. Further preferred Z 6 or Z 7 is a single bond.
  • g is 0, 1 or 2.
  • Preferred g is 0 or 1.
  • h, j and k are independently 0, 1, 2, 3 or 4, and a sum of h, j and k is 1 or more.
  • Preferred h, j or k is 1 or 2.
  • Preferred compound (1) includes compound (1-1) to compound (1-7) described in item 2.
  • at least one of the first components preferably includes compound (1-1), compound (1-3), compound (1-4) or compound (1-6).
  • At least two of the first components preferably include a combination of compound (1-1) and compound (1-4), a combination of compound (1-1) and compound (1-6), a combination of compound (1-1) and compound (1-7), a combination of compound (1-3) and compound (1-4), a combination of compound (1-3) and compound (1-6) or a combination of compound (1-3) and compound (1-7).
  • Preferred compound (3) includes compound (3-1) to compound (3-12) described in item 5.
  • at least one of the third components preferably includes compound (3-2), compound (3-4), compound (3-5) or compound (3-6).
  • At least two of the third components preferably include a combination of compound (3-2) and compound (3-4) or a combination of compound (3-2) and compound (3-6).
  • Preferred compound (4) includes compound (4-1) to compound (4-19) described in item 8.
  • at least one of the fourth components preferably includes compound (4-1), compound (4-2), compound (4-3), compound (4-4), compound (4-6), compound (4-7), compound (4-8) or compound (4-10).
  • At least two of the fourth components preferably include a combination of compound (4-1) and compound (4-6), a combination of compound (4-1) and compound (4-10), a combination of compound (4-3) and compound (4-6), a combination of compound (4-3) and compound (4-10), a combination of compound (4-4) and compound (4-6) or a combination of compound (4-4) and compound (4-10).
  • Preferred compound (5) includes compound (5-1) to compound (5-27) described in item 12.
  • at least one of the additive components preferably includes compound (5-1), compound (5-2), compound (5-24), compound (5-25), compound (5-26) or compound (5-27).
  • At least two of the additive components preferably include a combination of compound (5-1) and compound (5-2), a combination of compound (5-1) and compound (5-18), a combination of compound (5-2) and compound (5-24), a combination of compound (5-2) and compound (5-25), a combination of compound (5-2) and compound (5-26), a combination of compound (5-25) and compound (5-26) or a combination of compound (5-18) and compound (5-24).
  • Such an additive includes the optically active compound, the antioxidant, the ultraviolet light absorber, the dye, the antifoaming agent, the polymerizable compound, the polymerization initiator and the polymerization inhibitor.
  • the optically active compound is added to the composition for the purpose of inducing a helical structure in liquid crystal molecules to give a twist angle.
  • Specific examples of such a compound include compound (6-1) to compound (6-5).
  • a preferred proportion of the optically active compound is about 5% by weight or less.
  • a further preferred proportion is in the range of about 0.01% by weight to about 2% by weight.
  • the antioxidant is added to the composition for preventing a decrease in the specific resistance caused by heating in air, or for maintaining a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature even after the device has been used for a long period of time.
  • Specific examples of a preferred antioxidant include compound (7) in which n is an integer from 1 to 9.
  • n 1, 3, 5, 7 or 9. Further preferred n is 7.
  • Compound (7) in which n is 7 is effective in maintaining a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature even after the device has been used for a long period of time because such compound (7) has small volatility.
  • a preferred proportion of the antioxidant is about 50 ppm or more for achieving an effect thereof, and about 600 ppm or less for avoiding a decrease in the maximum temperature or an increase in the minimum temperature.
  • a further preferred proportion is in the range of about 100 ppm to about 300 ppm.
  • a preferred ultraviolet light absorber examples include a benzophenone derivative, a benzoate derivative and a triazole derivative.
  • a light stabilizer such as an amine having steric hindrance is also preferred.
  • a preferred proportion of the absorber or the stabilizer is about 50 ppm or more for achieving an effect thereof, and about 10,000 ppm or less for avoiding a decrease in the maximum temperature or an increase in the minimum temperature.
  • a further preferred proportion is in the range of about 100 ppm to about 10,000 ppm.
  • a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition to be adapted for a device having a guest host (GH) mode.
  • a preferred proportion of the dye is in the range of about 0.01% by weight to about 10% by weight.
  • the antifoaming agent such as dimethyl silicone oil or methyl phenyl silicone oil is added to the composition for preventing foam formation.
  • a preferred proportion of the antifoaming agent is about 1 ppm or more for achieving an effect thereof, and about 1,000 ppm or less for preventing poor display.
  • a further preferred proportion is in the range of about 1 ppm to about 500 ppm.
  • the polymerizable compound is used to be adapted for a polymer sustained alignment (PSA) mode device.
  • Compound (5) is suitable for the purpose. Any other polymerizable compound that is different from compound (5) may be added to the composition together with compound (5). In place of compound (5), any other polymerizable compound that is different from compound (5) may be added to the composition. Specific examples of such a preferred polymerizable compound include a compound such as acrylate, methacrylate, a vinyl compound, a vinyloxy compound, propenyl ether, an epoxy compound (oxirane, oxetane) and vinyl ketone. Further preferred examples include an acrylate derivative or a methacrylate derivative.
  • a preferred proportion of compound (5) is about 10% by weight or more based on the total amount of the polymerizable compound. A further preferred proportion is about 50% by weight or more. A particularly preferred proportion is about 80% by weight or more. A most preferred proportion is 100% by weight.
  • the polymerizable compound such as compound (5) is polymerized by irradiation with ultraviolet light.
  • the polymerizable compound may be polymerized in the presence of a suitable initiator such as a photopolymerization initiator.
  • a suitable initiator such as a photopolymerization initiator.
  • suitable conditions for polymerization, suitable types of the initiator and suitable amounts thereof are known to those skilled in the art and are described in literature.
  • Irgacure 651 registered trademark; BASF
  • Irgacure 184 registered trademark; BASF
  • Darocur 1173 registered trademark; BASF
  • a preferred proportion of the photopolymerization initiator is in the range of about 0.1% by weight to about 5% by weight based on the total amount of the polymerizable compound.
  • a further preferred proportion is in the range of about 1% by weight to about 3% by weight.
  • the polymerization inhibitor may be added thereto for preventing polymerization.
  • the polymerizable compound is ordinarily added to the composition without removing the polymerization inhibitor.
  • Specific examples of the polymerization inhibitor include hydroquinone, a hydroquinone derivative such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol and phenothiazine.
  • the compounds can be prepared according to known methods. Examples of the synthetic methods are described.
  • Compound (1-1) is prepared according to a method described in JP 2004-352722 A.
  • Compound (2) is prepared according to a method described in JP S59-176221 A.
  • Compound (3-1) is prepared according to a method described in JP S56-68636 A.
  • Compound (4-1) is prepared according to a method described in JP H2-503441 A.
  • Compound (5-18) is prepared according to a method described in JP H7-101900 A.
  • the antioxidant is commercially available.
  • a compound in which n in formula (7) is 1 is available from Sigma-Aldrich Corporation.
  • Compound (7) in which n is 7 or the like is prepared according to a method described in U.S. Pat. No. 3,660,505 B.
  • any compounds whose synthetic methods are not described above can be prepared according to the methods described in books such as Organic Syntheses (John Wiley & Sons, Inc.), Organic Reactions (John Wiley & Sons, Inc.), Comprehensive Organic Synthesis (Pergamon Press) and New Experimental Chemistry Course (Shin Jikken Kagaku Koza in Japanese) (Maruzen Co., Ltd.).
  • the composition is prepared according to a publicly known method using the thus obtained compounds. For example, the component compounds are mixed and dissolved in each other by heating.
  • compositions have a minimum temperature of about ⁇ 10° C. or lower, a maximum temperature of about 70° C. or higher, and optical anisotropy in the range of about 0.07 to about 0.20.
  • the composition having optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the proportion of the component compounds or by mixing any other liquid crystal compound. Further, a composition having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared according to the method.
  • a device including the composition has the large voltage holding ratio.
  • the composition is suitable for use in the AM device.
  • the composition is particularly suitable for use in a transmissive AM device.
  • the composition can be used as the composition having the nematic phase, and as the optically active composition by adding the optically active compound.
  • the composition can be used in the AM device.
  • the composition can be also used in a PM device.
  • the composition can also be used in the AM device and the PM device each having a mode such as the PC mode, the TN mode, the STN mode, the ECB mode, the OCB mode, the IPS mode, the FFS mode, the VA mode and the FPA mode.
  • Use in the AM device having the TN mode, the OCB mode, the IPS mode or the FFS mode is particularly preferred.
  • alignment of liquid crystal molecules when no voltage is applied may be parallel or perpendicular to a glass substrate.
  • the devices may be of a reflective type, a transmissive type or a transflective type. Use in the transmissive device is preferred.
  • the composition can also be used in an amorphous silicon-TFT device or a polycrystal silicon-TFT device.
  • the composition can also be used in a nematic curvilinear aligned phase (NCAP) device prepared by microencapsulating the composition, or a polymer dispersed (PD) device in which a three-dimensional network-polymer is famed in the composition.
  • NCAP nematic curvilinear aligned phase
  • PD polymer dispersed
  • the invention will be described in greater detail by way of Examples. However, the invention is not limited by the Examples.
  • the invention includes a mixture of a composition in Example 1 and a composition in Example 2.
  • the invention also includes a mixture in which at least two compositions in Examples were mixed.
  • the thus prepared compound was identified by methods such as an NMR analysis. Characteristics of the compound, the composition and the device were measured by methods described below.
  • s, d, t, q, quin, sex and m stand for a singlet, a doublet, a triplet, a quartet, a quintet, a sextet and a multiplet, and br being broad, respectively.
  • a sample was prepared in an acetone solution (0.1% by weight), and then 1 microliter of the solution was injected into the sample vaporizing chamber.
  • a recorder was C-R5A Chromatopac made by Shimadzu Corporation or the equivalent thereof. The resulting gas chromatogram showed a retention time of a peak and a peak area corresponding to each of the component compounds.
  • capillary columns may also be used for separating component compounds: HP-1 (length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m) made by Agilent Technologies, Inc., Rtx-1 (length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m) made by Restek Corporation and BP-1 (length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m) made by SGE International Pty. Ltd.
  • HP-1 length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m
  • Rtx-1 length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m
  • BP-1 length 30 m, bore 0.32 mm, film thickness 0.25 ⁇ m
  • a capillary column CBP1-M50-025 length 50 m, bore 0.25 mm, film thickness 0.25 ⁇ m
  • Shimadzu Corporation may also be used for the purpose of preventing an overlap of peaks of the compounds.
  • a proportion of liquid crystal compounds contained in the composition may be calculated by the method as described below.
  • a mixture of liquid crystal compounds is detected by gas chromatograph (FID).
  • An area ratio of each peak in the gas chromatogram corresponds to the ratio (weight ratio) of the liquid crystal compound.
  • a correction coefficient of each of the liquid crystal compounds may be regarded as 1 (one). Accordingly, the proportion (% by weight) of the liquid crystal compounds can be calculated from the area ratio of each peak.
  • a base liquid crystal described below was used. A proportion of the component compound was expressed in terms of weight percent (% by weight).
  • Measuring method Characteristics were measured according to the methods described below. Most of the measuring methods are applied as described in the Standard of Japan Electronics and Information Technology Industries Association (hereinafter abbreviated as JEITA) (JEITA ED-2521B) discussed and established by JEITA, or modified thereon. No thin film transistor (TFT) was attached to a TN device used for measurement.
  • JEITA Japan Electronics and Information Technology Industries Association
  • NI nematic phase
  • a melting point apparatus equipped with a polarizing microscope, and heated at a rate of 1° C. per minute. Temperature when part of the sample began to change from a nematic phase to an isotropic liquid was measured. A maximum temperature of the nematic phase may be occasionally abbreviated as “maximum temperature.”
  • T c Minimum temperature of nematic phase
  • Viscosity Bulk viscosity; q; measured at 20° C.; mPa ⁇ s: For measurement, a cone-plate (E type) rotational viscometer made by Tokyo Keiki Inc. was used.
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25° C.; mPa ⁇ s): Measurement was carried out according to a method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, p. 37 (1995). A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 20 micrometers. Voltage was applied stepwise to the device in the range of 39 V to 50 V at an increment of 1 V. After a period of 0.2 second with no voltage application, voltage was repeatedly applied under conditions of only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds).
  • a peak current and a peak time of transient current generated by the applied voltage were measured.
  • a value of rotational viscosity was obtained from the measured values and calculation equation (8) described on page 40 of the paper presented by M. Imai et al. Dielectric anisotropy required for the calculation was measured according to section 6.
  • Threshold voltage (Vth; measured at 25° C.; V): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel, and the device was sealed with an ultraviolet-curable adhesive. A voltage (60 Hz, rectangular waves) to be applied to the device was stepwise increased from 0 V to 20 V at an increment of 0.02 V. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. A voltage-transmittance curve was prepared, in which the maximum amount of light corresponds to 100% transmittance and the minimum amount of light corresponds to 0% transmittance. A threshold voltage is expressed in terms of voltage at 10% transmittance.
  • VHR-1 Voltage holding ratio
  • a TN device used for measurement had a polyimide alignment film, and a distance (cell gap) between two glass substrates was 5 micrometers.
  • a sample was put in the device, and then the device was sealed with an ultraviolet-curable adhesive.
  • a pulse voltage 60 microseconds at 5 V was applied to the TN device, and the device was charged.
  • a decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and area A between a voltage curve and a horizontal axis in a unit cycle was determined.
  • Area B is an area without decay.
  • a voltage holding ratio is expressed in terms of a percentage of area A to area B.
  • VHR-2 Voltage holding ratio (VHR-2; measured at 80° C.; %): A voltage holding ratio was measured according to procedures identical with the procedures described above except that measurement was carried out at 80° C. in place of 25° C. The thus obtained value was expressed in terms of VHR-2.
  • VHR-3 Voltage holding ratio
  • Stability to ultraviolet light was evaluated by measuring a voltage holding ratio after a device was irradiated with ultraviolet light.
  • a TN device used for measurement had a polyimide alignment film, and a cell gap was 5 micrometers.
  • a sample was injected into the device, and the device was irradiated with light for 20 minutes.
  • a light source was an ultra high-pressure mercury lamp USH-500D (made by Ushio, Inc.), and a distance between the device and the light source was 20 centimeters.
  • USH-500D made by Ushio, Inc.
  • a decaying voltage was measured for 16.7 milliseconds.
  • a composition having large VHR-3 has large stability to ultraviolet light.
  • a value of VHR-3 is preferably 90% or more, and further preferably 95% or more.
  • VHR-4 Voltage holding ratio
  • Stability to heat was evaluated by measuring a voltage holding ratio after a TN device into which a sample was injected was heated in a constant-temperature bath at 80° C. for 500 hours. In measurement of VHR-4, a decaying voltage was measured for 16.7 milliseconds. A composition having large VHR-4 has large stability to heat.
  • Response time (i; measured at 25° C.; ms): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A low-pass filter was set to 5 kHz. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel. The device was sealed with an ultraviolet-curable adhesive. A voltage (rectangular waves; 60 Hz, 10 V, 0.5 second) was applied to the device. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. The maximum amount of light corresponds to 100% transmittance, and the minimum amount of light corresponds to 0% transmittance. A response time was expressed in terms of time required for a change from 90% transmittance to 10% transmittance (fall time; millisecond).
  • the compounds in Examples were represented using symbols according to definitions in Table 3 described below.
  • Table 3 the configuration of 1,4-cyclohexylene is trans.
  • a parenthesized number next to a symbolized compound corresponds to the number of the compound.
  • a symbol (-) means any other liquid crystal compound.
  • a proportion (percentage) of the liquid crystal compound is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition. Values of the characteristics of the composition were summarized in a last part.
  • a composition in Example 1 contains compound (1) as a first component.
  • Compound (1) has negative dielectric anisotropy.
  • Compound (4) also has the negative dielectric anisotropy.
  • a composition in which two compounds as the first components in Example 1 were replaced by compound (4) similar to each of the compounds was defined as Comparative Example 1 for comparison.
  • 3-Dpr2B(2F,3F)-O2 (1-2) 5% 3-HDprB(2F,3F)-O2 (1-4) 4% 5-HDprB(2F,3F)-O2 (1-4) 5% 2-HH-3 (2) 6% 2-HH-5 (2) 7% 3-HH-V (2) 10% 3-HH-V1 (2) 5% V-HHB-1 (3-4) 3% V-HBB-3 (3-5) 3% 3-HB(2F,3F)-O2 (4-1) 10% 2-H1OB(2F,3F)-O2 (4-3) 3% 3-BB(2F,3F)-O2 (4-4) 5% 5-BB(2F,3F)-O2 (4-4) 5% V-HH1OB(2F,3F)-O2 (4-8) 3% 3-HBB(2F,3F)-O2 (4-10) 6% 5-HBB(2F,3F)-O2 (4-10) 6% 3-HEB(2F,3F)B(2F,3F)-O2 (4
  • 3-DprB(2F,3F)-O2 (1-1) 5% 3-HDprB(2F,3F)-O2 (1-4) 5% 3-HDpr1OB(2F,3F)-O2 (1-6) 3% 5-HDpr1OB(2F,3F)-O2 (1-6) 4% 2-HH-3 (2) 20% 3-HH-4 (2) 10% 1V2-BB-1 (3-2) 3% 5-HB(F)BH-3 (3-11) 3% 3-HB(2F,3F)-O2 (4-1) 13% 5-HH2B(2F,3F)-O2 (4-7) 4% V-HH1OB(2F,3F)-O2 (4-8) 10% 4-HBB(2F,3F)-O2 (4-10) 6% 3-HEB(2F,3F)B(2F,3F)-O2 (4-11) 3% 3-HHB(2F,3Cl)-O2 (4-12) 5% 3-HchB(2F,3F)-O2 (4-19) 3% 5-Hch
  • Dielectric anisotropy ( ⁇ ) of a composition in Comparative Example 1 was ⁇ 3.9.
  • dielectric anisotropy of a composition in Example 1 was ⁇ 4.5.
  • compositions in the Examples had larger negative dielectric anisotropy in comparison with a composition in the Comparative Example. Accordingly, the liquid crystal composition of the invention is concluded to have superb characteristics.
  • a liquid crystal composition of the invention satisfies at least one of characteristics such as high maximum temperature, low minimum temperature, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, and high stability to heat, or has a suitable balance regarding at least two of the characteristics.
  • a liquid crystal display device including the composition has characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life, and therefore can be used in a liquid crystal projector, a liquid crystal television and so forth.

Abstract

Provided are a liquid crystal composition satisfying at least one of characteristics such as high maximum temperature, low minimum temperature, small viscosity, suitable optical anisotropy and large negative dielectric anisotropy, or having a suitable balance regarding at least two of the characteristics; and an AM device including the composition. The liquid crystal composition contains a specific compound having large negative dielectric anisotropy as a first component, and a specific compound having small viscosity as a second component, and may contain a specific compound having high maximum temperature or small viscosity as a third component, a specific compound having negative dielectric anisotropy as a fourth component, or a specific compound having a polymerizable group as an additive component.

Description

    TECHNICAL FIELD
  • The invention relates to a liquid crystal composition, a liquid crystal display device including the composition, and so forth. In particular, the invention relates to a liquid crystal composition having negative dielectric anisotropy, and a liquid crystal display device that includes the composition and has a mode such as an IPS mode, a VA mode, an FFS mode and an FPA mode. The invention also relates to a polymer sustained alignment mode liquid crystal display device.
  • BACKGROUND ART
  • In a liquid crystal display device, a classification based on an operating mode for liquid crystal molecules includes a phase change (PC) mode, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, an electrically controlled birefringence (ECB) mode, an optically compensated bend (OCB) mode, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a fringe field switching (FFS) mode and a field-induced photo-reactive alignment (FPA) mode. A classification based on a driving mode in the device includes a passive matrix (PM) and an active matrix (AM). The PM is classified into static, multiplex and so forth, and the AM is classified into a thin film transistor (TFT), a metal insulator metal (MIM) and so forth. The TFT is further classified into amorphous silicon and polycrystal silicon. The latter is classified into a high temperature type and a low temperature type based on a production process. A classification based on a light source includes a reflective type utilizing natural light, a transmissive type utilizing backlight and a transflective type utilizing both the natural light and the backlight.
  • The liquid crystal display device includes a liquid crystal composition having a nematic phase. The composition has suitable characteristics. An AM device having good characteristics can be obtained by improving characteristics of the composition. Table 1 below summarizes a relationship in two characteristics. The characteristics of the composition will be further described based on a commercially available AM device. A temperature range of the nematic phase relates to a temperature range in which the device can be used. A preferred maximum temperature of the nematic phase is about 70° C. or higher, and a preferred minimum temperature of the nematic phase is about −10° C. or lower. Viscosity of the composition relates to a response time in the device. A short response time is preferred for displaying moving images on the device. A shorter response time even by one millisecond is desirable. Accordingly, a small viscosity in the composition is preferred. A small viscosity at low temperature is further preferred.
  • TABLE 1
    Characteristics of Composition and AM Device
    Characteristics
    No. of Composition Characteristics of AM Device
    1 Wide temperature range of Wide usable temperature range
    a nematic phase
    2 Small viscosity Short response time
    3 Suitable optical anisotropy Large contrast ratio
    4 Large positive or negative Low threshold voltage and
    dielectric anisotropy small electric power consumption
    Large contrast ratio
    5 Large specific resistance Large voltage holding ratio and
    large contrast ratio
    6 High stability to ultraviolet Long service life
    light and heat
  • Optical anisotropy of the composition relates to a contrast ratio in the device. According to a mode of the device, large optical anisotropy or small optical anisotropy, more specifically, suitable optical anisotropy is required. A product (Δn×d) of the optical anisotropy (Δn) of the composition and a cell gap (d) in the device is designed so as to maximize the contrast ratio. A suitable value of the product depends on a type of the operating mode. In a device having the VA mode, the value is in the range of about 0.30 micrometer to about 0.40 micrometer, and in a device having the IPS mode or the FFS mode, the value is in the range of about 0.20 micrometer to about 0.30 micrometer. In the above case, a composition having large optical anisotropy is preferred for a device having a small cell gap. Large dielectric anisotropy in the composition contributes to low threshold voltage, small electric power consumption and a large contrast ratio in the device. Accordingly, the large dielectric anisotropy is preferred. Large specific resistance in the composition contributes to a large voltage holding ratio and the large contrast ratio in the device. Accordingly, a composition having the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase in an initial stage is preferred. The composition having the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time is preferred. Stability of the composition to ultraviolet light and heat relates to a service life of the device. In the case where the stability is high, the device has a long service life. Such characteristics are preferred for an AM device for use in a liquid crystal projector, a liquid crystal television and so forth.
  • In a liquid crystal display device having a polymer sustained alignment (PSA) mode, a liquid crystal composition containing a polymer is used. First, a composition to which a small amount of a polymerizable compound is added is injected into the device. Next, the composition is irradiated with ultraviolet light while voltage is applied between substrates of the device. The polymerizable compound is polymerized to forma network structure of the polymer in the composition. In the composition, alignment of liquid crystal molecules can be controlled by the polymer, and therefore the response time in the device is shortened and also image persistence is improved. Such an effect of the polymer can be expected for a device having the mode such as the TN mode, the ECB mode, the OCB mode, the IPS mode, the VA mode, the FFS mode and the FPA mode.
  • A composition having positive dielectric anisotropy is used in an AM device having the TN mode. A composition having negative dielectric anisotropy is used in an AM device having the VA mode. In an AM device having the IPS mode or the FFS mode, a composition having positive or negative dielectric anisotropy is used. In an AM device having a polymer sustained alignment mode, a composition having positive or negative dielectric anisotropy is used. An example of a first component in the invention is disclosed in Patent literature Nos. 1 to 4 described below.
  • CITATION LIST Patent Literature
  • Patent literature No. 1: JP 2004-352722 A.
  • Patent literature No. 2: JP 2008-545669 A.
  • Patent literature No. 3: JP 2008-545671 A.
  • Patent literature No. 4: JP 2009-507759 A.
  • SUMMARY OF INVENTION Technical Problem
  • One of aims of the invention is to provide a liquid crystal composition satisfying at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light and high stability to heat. Another aim is to provide a liquid crystal composition having a suitable balance regarding at least two of the characteristics. Another aim is to provide a liquid crystal display device including such a composition. Another aim is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life.
  • Solution to Problem
  • The invention concerns a liquid crystal composition that has negative dielectric anisotropy, and contains at least one compound selected from the group of compounds represented by formula (1) as a first component and at least one compound selected from the group of compounds represented by formula (2) as a second component, and a liquid crystal display device including the composition:
  • Figure US20180127650A1-20180510-C00001
  • wherein, in formula (1) and formula (2), R1 and R2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; R3 and R4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, in which at least one of ring A and ring C is 3,6-dihydro-2H-pyran-2,5-diyl; ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z1 and Z2 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; a is 1, 2 or 3; b is 0 or 1; and a sum of a and b is 3 or less.
  • Advantageous Effects of Invention
  • One of advantages of the invention is a liquid crystal composition satisfying at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light and high stability to heat. Another advantage is a liquid crystal composition having a suitable balance regarding at least two of the characteristics. Another advantage is a liquid crystal display device including such a composition. Another advantage is an AM device having characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life.
  • DESCRIPTION OF EMBODIMENTS
  • Usage of terms herein is as described below. Terms is “liquid crystal composition” and “liquid crystal display device” may be occasionally abbreviated as “composition” and “device,” respectively. “Liquid crystal display device” is a generic term for a liquid crystal display panel and a liquid crystal display module. “Liquid crystal compound” is a generic term for a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a compound having no liquid crystal phase but to be mixed with the composition for the purpose of adjusting characteristics such as a temperature range of the nematic phase, viscosity and dielectric anisotropy. The compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and has rod-like molecular structure. “Polymerizable compound” is a compound to be added for the purpose of forming a polymer in the composition.
  • The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. A proportion (content) of the liquid crystal compounds is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition. An additive such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, the polymerizable compound, a polymerization initiator and a polymerization inhibitor is added to the liquid crystal composition when necessary. A proportion (amount of addition) of the additive is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition in a manner similar to the proportion of the liquid crystal compound. Weight parts per million (ppm) may be occasionally used. A proportion of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the total amount of the polymerizable compound.
  • “Maximum temperature of the nematic phase” may be occasionally abbreviated as “maximum temperature.” “Minimum temperature of the nematic phase” may be occasionally abbreviated as “minimum temperature.” An expression “having large specific resistance” means that the composition has large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase in an initial stage, and the composition has the large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time. An expression “having a large voltage holding ratio” means that the device has a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature of the nematic phase in the initial stage, and the device has the large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time. An expression “increase the dielectric anisotropy” means that a value of dielectric anisotropy positively increases in a composition having positive dielectric anisotropy, and the value of dielectric anisotropy negatively increases in a composition having negative dielectric anisotropy.
  • A compound represented by formula (1) may be occasionally abbreviated as “compound (1).” At least one compound selected from the group of compounds represented by formula (2) may be occasionally abbreviated as “compound (2).” “Compound (1)” means one compound, a mixture of two compounds or a mixture of three or more compounds represented by formula (1). A same rule applies also to any other compound represented by any other formula. An expression “at least one piece of ‘A’” means that the number of ‘A’ is arbitrary. An expression “at least one piece of ‘A’ may be replaced by ‘B’” means that, when the number of ‘A’ is 1, a position of ‘A’ is arbitrary, and also when the number of ‘A’ is 2 or more, positions thereof can be selected without restriction. A same rule applies also to an expression “at least one piece of ‘A’ is replaced by ‘B’.”
  • A symbol of terminal group R1 is used in a plurality of compounds in chemical formulas of component compounds. In the compounds, two groups represented by two pieces of arbitrary R1 may be identical or different. For example, in one case, R1 of compound (1-1) is ethyl and R1 of compound (1-2) is ethyl. In another case, R1 of compound (1-1) is ethyl and R1 of compound (1-2) is propyl. A same rule applies also to a symbol of any other terminal group or the like. In formula (3), when d is 2, two of ring C exists. In the compound, two rings represented by two of ring C may be identical or different. A same rule applies also to two of arbitrary ring C when d is larger than 2. A same rule applies also to a symbol of Z1, ring A or the like. A same rule applies also to such a case where two pieces of -Sp2-P5 exists in compound (5-27).
  • Symbol A, B, C or the like surrounded by a hexagonal shape corresponds to ring A, ring B, ring C or the like, respectively, and represents a six-membered ring or a condensed ring. An oblique line crossing the hexagonal shape represents that arbitrary hydrogen on the ring may be replaced by -Sp1-P1 group or the like. A subscript such as h represents the number of groups to be replaced. When the subscript is 0, no such replacement exists. When h is 2 or more, a plurality of pieces of -Sp1-P1 exist on ring K. The plurality of groups represented by -Sp1-P1 may be identical or different.
  • Then, 2-fluoro-1,4-phenylene means two divalent groups described below. In a chemical formula, fluorine may be leftward (L) or rightward (R). A same rule applies also to an asymmetrical divalent group derived from a ring such as tetrahydropyran-2,5-diyl. A same rule applies also to a divalent bonding group such as carbonyloxy (—COO— or —OCO—).
  • Figure US20180127650A1-20180510-C00002
  • The invention includes items described below.
  • Item 1. A liquid crystal composition that has negative dielectric anisotropy, and contains at least one compound selected from the group of compounds represented by formula (1) as a first component and at least one compound selected from the group of compounds represented by formula (2) as a second component:
  • Figure US20180127650A1-20180510-C00003
  • wherein, in formula (1) and formula (2), R1 and R2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; R3 and R4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, in which at least one of ring A and ring C is 3,6-dihydro-2H-pyran-2,5-diyl; ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z1 and Z2 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; a is 1, 2 or 3; b is 0 or 1; and a sum of a and b is 3 or less.
  • Item 2. The liquid crystal composition according to item 1, containing at least one compound selected from the group of compounds represented by formula (1-1) or formula (1-7) as the first component:
  • Figure US20180127650A1-20180510-C00004
  • wherein, in formula (1-1) to formula (1-7), R1 and R2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 3. The liquid crystal composition according to item 1 or 2, wherein a proportion of the first component is in the range of 5% by weight to 40% by weight, and a proportion of the second component is in the range of 10% by weight to 60% by weight, based on the total amount of the liquid crystal composition.
  • Item 4. The liquid crystal composition according to any one of items 1 to 3, containing at least one compound selected from the group of compounds represented by formula (3) as a third component:
  • Figure US20180127650A1-20180510-C00005
  • wherein, in formula (3), R5 and R6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z3 is a single bond, ethylene or carbonyloxy; and d is 1, 2 or 3; in which ring D is 1,4-phenylene when d is 1.
  • Item 5. The liquid crystal composition according to any one of items 1 to 4, containing at least one compound selected from the group of compounds represented by formula (3-1) to formula (3-12) as the third component:
  • Figure US20180127650A1-20180510-C00006
  • wherein, in formula (3-1) to formula (3-12), R5 and R6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 6. The liquid crystal composition according to item 4 or 5, wherein a proportion of the third component is in the range of 5% by weight to 40%; by weight based on the total amount of the liquid crystal composition.
  • Item 7. The liquid crystal composition according to any one of items 1 to 6, containing at least one compound selected from the group of compounds represented by formula (4) as a fourth component:
  • Figure US20180127650A1-20180510-C00007
  • wherein, in formula (4), R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine; ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z4 and Z5 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; p is 1, 2 or 3; q is 0 or 1; and a sum of p and q is 3 or less.
  • Item 8. The liquid crystal composition according to any one of items 1 to 7, containing at least one compound selected from the group of compounds represented by formula (4-1) to formula (4-19) as the fourth component:
  • Figure US20180127650A1-20180510-C00008
    Figure US20180127650A1-20180510-C00009
    Figure US20180127650A1-20180510-C00010
  • wherein, in formula (4-1) to formula (4-19), R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 9. The liquid crystal composition according to item 7 or 8, wherein a proportion of the fourth component is in the range of 10% by weight to 70% by weight based on the total amount of the liquid crystal composition.
  • Item 10. The liquid crystal composition according to any one of items 1 to 9, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
  • Figure US20180127650A1-20180510-C00011
  • wherein, in formula (5), ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1, 3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; P1, P2 and P3 are independently a polymerizable group; and Sp1, Sp2 and Sp3 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; g is 0, 1 or 2; h, j and k are independently 0, 1, 2, 3 or 4; and a sum of h, j and k is 1 or more.
  • Item 11. The liquid crystal composition according to item 10, wherein, in formula (5), P1, P2 and P3 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6):
  • Figure US20180127650A1-20180510-C00012
  • wherein, in formula (P-1) to formula (P-6), M1, M2 and M3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and
  • in formula (5), when all of h pieces of P1 and k pieces of P3 are a group represented by formula (P-4), at least one of h pieces of Sp1 and k pieces of Sp3 is alkylene in which at least one piece of —CH2— is replaced by —O—, —COO—, —OCO— or —OCOO—.
  • Item 12. The liquid crystal composition according to any one of items 1 to 11, containing at least one polymerizable compound selected from the group of compounds represented by formula (5-1) to formula (5-27) as the additive component:
  • Figure US20180127650A1-20180510-C00013
    Figure US20180127650A1-20180510-C00014
    Figure US20180127650A1-20180510-C00015
  • wherein, in formula (5-1) to formula (5-27), P4, P5 and P6 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-3);
  • Figure US20180127650A1-20180510-C00016
  • wherein, in formula (P-1) to formula (P-3), M1, M2 and M3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and
  • in formula (5-1) to formula (5-27), Sp1, Sp2 and Spa are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine.
  • Item 13. The liquid crystal composition according to any one of items 10 to 12, wherein a proportion of addition of the additive component is in the range of 0.03% by weight to 10% by weight based on the total amount of the liquid crystal composition.
  • Item 14. A liquid crystal display device, including the liquid crystal composition according to any one of items 1 to 13.
  • Item 15. The liquid crystal display device according to item 14, wherein an operating mode in the liquid crystal display device includes an IPS mode, a VA mode, an FFS mode or an FPA mode, and a driving mode in the liquid crystal display device includes an active matrix mode.
  • Item 16. A polymer sustained alignment mode liquid crystal display device, wherein the liquid crystal display device includes the liquid crystal composition according to any one of items 1 to 13, or the polymerizable compound in the liquid crystal composition is polymerized.
  • Item 17. Use of the liquid crystal composition according to any one of items 1 to 13 in a liquid crystal display device.
  • Item 18. Use of the liquid crystal composition according to any one of items 1 to 13 in a polymer sustained alignment mode liquid crystal display device.
  • The invention further includes the following items: (a) the composition, further containing at least one of additives such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator and a polymerization inhibitor; (b) an AM device including the composition; (c) a polymer sustained alignment (PSA) mode AM device, including the composition that further contains the polymerizable compound; (d) a polymer sustained alignment (PSA) mode AM device, wherein the device includes the composition, and the polymerizable compound in the composition is polymerized; (e) a device including the composition and having the PC mode, the TN mode, the STN mode, the ECB mode, the OCB mode, the IPS mode, the VA mode, the FFS mode or the FPA mode; (f) a transmissive device including the composition; (g) use of the composition as the composition having the nematic phase; and (h) use as an optically active composition by adding the optically active compound to the composition.
  • The composition of the invention will be described in the following order. First, a constitution of the component compounds in the composition will be described. Second, main characteristics of the component compounds and main effects of the compounds on the composition will be described. Third, a combination of components in the composition, a preferred proportion of the components and the basis thereof will be described. Fourth, a preferred embodiment of the component compounds will be described. Fifth, a preferred component compound will be described. Sixth, an additive that may be added to the composition will be described. Seventh, methods for synthesizing the component compounds will be described. Last, an application of the composition will be described.
  • First, the constitution of the component compounds in the composition will be described. The composition of the invention is classified into composition A and composition B. Composition A may further contain any other liquid crystal compound, an additive or the like in addition to the liquid crystal compound selected from compound (1), compound (2), compound (3) and compound (4). An expression “any other liquid crystal compound” means a liquid crystal compound different from compound (1), compound (2), compound (3) and compound (4). Such a compound is mixed with the composition for the purpose of further adjusting the characteristics. The additive includes the optically active compound, the antioxidant, the ultraviolet light absorber, the dye, the antifoaming agent, the polymerizable compound, the polymerization initiator and the polymerization inhibitor.
  • Composition B consists essentially of liquid crystal compounds selected from compound (1), compound (2), compound (3) and compound (4). An expression “essentially” means that the composition may contain the additive, but contains no any other liquid crystal compound. Composition B has a smaller number of components than composition A has. Composition B is preferred to composition A in view of cost reduction. Composition A is preferred to composition B in view of possibility of further adjusting the characteristics by mixing any other liquid crystal compound.
  • Second, the main characteristics of the component compounds and the main effects of the compounds on the characteristics of the composition will be described. The main characteristics of the component compounds are summarized in Table 2 on the basis of advantageous effects of the invention. In Table 2, a symbol L stands for “large” or “high,” a symbol M stands for “medium” and a symbol S stands for “small” or “low.” The symbols L, M and S represent a classification based on a qualitative comparison among the component compounds, and 0 (zero) means that “a value is zero” or “a value is nearly zero.”
  • TABLE 2
    Characteristics of Compounds
    Com- Com- Com- Com-
    Compounds pound (1) pound (2) pound (3) pound (4)
    Maximum temperature S to L M S to L S to L
    Viscosity M to L S S to M M to L
    Optical anisotropy M to L S S to L M to L
    Dielectric anisotropy M to L1) 0 0 M to L1)
    Specific resistance L L L L
    1)A compound having negative dielectric anisotropy.
  • Upon mixing the component compounds with the composition, the main effects of the component compounds on the characteristics of the composition are as described below. Compound (1) increases the dielectric anisotropy. Compound (2) decreases the viscosity. Compound (3) increases the maximum temperature or decreases the viscosity. Compound (4) increases the dielectric anisotropy and decreases the minimum temperature. Compound (5) is polymerized to give a polymer, and the polymer shortens a response time in the device, and improves image persistence.
  • Third, the combination of components in the composition, the preferred proportion of the component compounds and the basis thereof will be described. A preferred combination of the components in the composition includes a combination of the first component and the second component, a combination of the first component, the second component and the third component, a combination of the first component, the second component and the fourth component, a combination of the first component, the second component and the additive component, a combination of the first component, the second component, the third component and the fourth component, a combination of the first component, the second component, the third component and the additive component, a combination of the first component, the second component, the fourth component and the additive component, or a combination of the first component, the second component, the third component, the fourth component and the additive component. A further preferred combination includes a combination of the first component, the second component and the third component, a combination of the first component, the second component, the third component and the fourth component, a combination of the first component, the second component, the third component and the additive component, or a combination of the first component, the second component, the third component, the fourth component and the additive component.
  • A preferred proportion of the first component is about 5% by weight or more for increasing the dielectric anisotropy, and about 40% by weight or less for decreasing the minimum temperature. A further preferred proportion is in the range of about 5% by weight to about 35% by weight. A particularly preferred proportion is in the range of about 5% by weight to about 30% by weight.
  • A preferred proportion of the second component is about 10% by weight or more for decreasing the viscosity, and about 60% by weight or less for increasing the dielectric anisotropy. A further preferred proportion is in the range of about 15% by weight to about 55% by weight. A particularly preferred proportion is in the range of about 20% by weight to about 50% by weight.
  • A preferred proportion of the third component is about 5% by weight or more for increasing the maximum temperature or decreasing the viscosity, and about 40% by weight or less for increasing the dielectric anisotropy. A further preferred proportion is in the range of about 5% by weight to about 35% by weight. A particularly preferred proportion is in the range of about 5% by weight to about 30% by weight.
  • A preferred proportion of the fourth component is about 10% by weight or more for increasing the dielectric anisotropy, and about 70% by weight or less for decreasing the minimum temperature. A further preferred proportion is in the range of about 15% by weight to about 70% by weight. A particularly preferred proportion is in the range of about 20% by weight to about 65% by weight.
  • Compound (5) is added to the composition for the purpose of adapting the composition for the polymer sustained alignment mode device. A preferred proportion of the additive component is about 0.03% by weight or more for aligning the liquid crystal molecules, and about 10% by weight or less for preventing poor display in the device. A further preferred proportion is in the range of about 0.1% by weight to about 2% by weight. A particularly preferred proportion is in the range of about 0.2% by weight to about 1.0% by weight.
  • Fourth, the preferred embodiment of the component compounds will be described. In formula (1), formula (2), formula (3) and formula (4), R1, R2, R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Preferred R1, R2, R7 or R8 is alkyl having 1 to 12 carbons for increasing the stability, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy. R3, R4, R5 and R6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Preferred R3, R4, R5 or R6 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability. Alkyl is straight-chain alkyl or branched-chain alkyl, but includes no cyclic alkyl. Straight-chain alkyl is preferred to branched-chain alkyl. A same rule applies also to a terminal group such as alkoxy and alkenyl.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. Further preferred alkyl is ethyl, propyl, butyl, pentyl or heptyl for decreasing the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy or heptyloxy. Further preferred alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl or 5-hexenyl. Further preferred alkenyl is vinyl, 1-propenyl, 3-butenyl or 3-pentenyl for decreasing the viscosity. A preferred configuration of —CH═CH— in the alkenyl depends on a position of a double bond. Trans is preferred in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity, for instance. Cis is preferred in alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • Specific examples of preferred alkyl in which at least one hydrogen is replaced by fluorine or chlorine include fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl or 8-fluorooctyl. Further preferred examples include 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
  • Specific examples of preferred alkenyl in which at least one hydrogen is replaced by fluorine or chlorine include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4-pentenyl or 6,6-difluoro-5-hexenyl. Further preferred examples include 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, in which at least one of ring A and ring C is 3,6-dihydro-2H-pyran-2,5-diyl. Preferred ring A or ring C is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature. With regard to a configuration of 1,4-cyclohexylene, trans is preferred to cis for increasing the maximum temperature. Tetrahydropyran-2,5-diyl includes:
  • Figure US20180127650A1-20180510-C00017
  • or
  • Figure US20180127650A1-20180510-C00018
  • and preferably
  • Figure US20180127650A1-20180510-C00019
  • Then, 3,6-dihydro-2H-pyran-2,5-diyl includes:
  • Figure US20180127650A1-20180510-C00020
  • or
  • Figure US20180127650A1-20180510-C00021
  • and preferably
  • Figure US20180127650A1-20180510-C00022
  • Ring B and ring F are independently 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl. Preferred ring B or ring F is 2, 3-difluoro-1,4-phenylene for decreasing the viscosity, 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
  • Ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene. Preferred ring C or ring D is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • Ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine. Preferred ring E or ring G is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
  • Z1, Z2, Z4 and Z5 are independently a single bond, ethylene, carbonyloxy or methyleneoxy. Preferred Z1, Z2, Z4 or Z5 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy. Z3 is a single bond, ethylene or carbonyloxy. Preferred Z3 is a single bond for increasing the stability.
  • Then, a is 1, 2 or 3; b is 0 or 1; and a sum of a and b is 3 or less. Preferred a is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. Preferred b is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature. Then, d is 1, 2 or 3. Preferred d is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. Then, p is 1, 2 or 3, q is 0 or 1, and a sum of p and q is 3 or less. Preferred p is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. Preferred q is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
  • In formula (5), P1, P2 and P3 are independently a polymerizable group. Preferred P1, P2 or P3 is a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6). Further preferred P1, P2 or P3 is a group represented by formula (P-1), formula (P-2) or formula (P-3). Particularly preferred P1, P2 or P3 is a group represented by formula (P-1) or formula (P-2). Most preferred P1, P2 or P3 is a group represented by formula (P-1). A preferred group represented by formula (P-1) is —OCO—CH═CH2 or —OCO—C(CH3)═CH2. A wavy line in formula (P-1) to formula (P-6) represents a site to form a bonding.
  • Figure US20180127650A1-20180510-C00023
  • In formula (P-1) to formula (P-6), M1, M2 and M3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Preferred M1, M2 or M3 is hydrogen or methyl for increasing reactivity. Further preferred M1 is hydrogen or methyl, and further preferred M2 or M3 is hydrogen.
  • Sp1, Sp2 and Spa are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine. Preferred Sp1, Sp2 or Sp3 is a single bond, —CH2CH2—, —CH2O—, —OCH2—, —COO—, —OCO—, —CO—CH═CH— or —CH═CH—CO—. Further preferred Sp1, Sp2 or Sp3 is a single bond.
  • In formula (5), when all of h pieces of P1 and k pieces of P3 are a group represented by formula (P-4), at least one of h pieces of Sp1 and k pieces of Sp3 is alkylene having 1 to 10 carbons in which at least one piece of —CH2— is replaced by —O—, —COO—, —OCO— or —OCOO—.
  • Ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Preferred ring K or ring M is phenyl. Ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2, 3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Preferred ring L is 1,4-phenylene or 2-fluoro-1,4-phenylene.
  • Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine. Preferred Z6 or Z7 is a single bond, —CH2CH2—, —CH2O—, —OCH2—COO— or —OCO—. Further preferred Z6 or Z7 is a single bond.
  • Then, g is 0, 1 or 2. Preferred g is 0 or 1. Then, h, j and k are independently 0, 1, 2, 3 or 4, and a sum of h, j and k is 1 or more. Preferred h, j or k is 1 or 2.
  • Fifth, the preferred component compound will be described. Preferred compound (1) includes compound (1-1) to compound (1-7) described in item 2. In the compounds, at least one of the first components preferably includes compound (1-1), compound (1-3), compound (1-4) or compound (1-6). At least two of the first components preferably include a combination of compound (1-1) and compound (1-4), a combination of compound (1-1) and compound (1-6), a combination of compound (1-1) and compound (1-7), a combination of compound (1-3) and compound (1-4), a combination of compound (1-3) and compound (1-6) or a combination of compound (1-3) and compound (1-7).
  • Preferred compound (3) includes compound (3-1) to compound (3-12) described in item 5. In the compounds, at least one of the third components preferably includes compound (3-2), compound (3-4), compound (3-5) or compound (3-6). At least two of the third components preferably include a combination of compound (3-2) and compound (3-4) or a combination of compound (3-2) and compound (3-6).
  • Preferred compound (4) includes compound (4-1) to compound (4-19) described in item 8. In the compounds, at least one of the fourth components preferably includes compound (4-1), compound (4-2), compound (4-3), compound (4-4), compound (4-6), compound (4-7), compound (4-8) or compound (4-10). At least two of the fourth components preferably include a combination of compound (4-1) and compound (4-6), a combination of compound (4-1) and compound (4-10), a combination of compound (4-3) and compound (4-6), a combination of compound (4-3) and compound (4-10), a combination of compound (4-4) and compound (4-6) or a combination of compound (4-4) and compound (4-10).
  • Preferred compound (5) includes compound (5-1) to compound (5-27) described in item 12. In the compounds, at least one of the additive components preferably includes compound (5-1), compound (5-2), compound (5-24), compound (5-25), compound (5-26) or compound (5-27). At least two of the additive components preferably include a combination of compound (5-1) and compound (5-2), a combination of compound (5-1) and compound (5-18), a combination of compound (5-2) and compound (5-24), a combination of compound (5-2) and compound (5-25), a combination of compound (5-2) and compound (5-26), a combination of compound (5-25) and compound (5-26) or a combination of compound (5-18) and compound (5-24).
  • Sixth, the additive that may be added to the composition will be described. Such an additive includes the optically active compound, the antioxidant, the ultraviolet light absorber, the dye, the antifoaming agent, the polymerizable compound, the polymerization initiator and the polymerization inhibitor. The optically active compound is added to the composition for the purpose of inducing a helical structure in liquid crystal molecules to give a twist angle. Specific examples of such a compound include compound (6-1) to compound (6-5). A preferred proportion of the optically active compound is about 5% by weight or less. A further preferred proportion is in the range of about 0.01% by weight to about 2% by weight.
  • Figure US20180127650A1-20180510-C00024
  • The antioxidant is added to the composition for preventing a decrease in the specific resistance caused by heating in air, or for maintaining a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature even after the device has been used for a long period of time. Specific examples of a preferred antioxidant include compound (7) in which n is an integer from 1 to 9.
  • Figure US20180127650A1-20180510-C00025
  • In compound (7), preferred n is 1, 3, 5, 7 or 9. Further preferred n is 7. Compound (7) in which n is 7 is effective in maintaining a large voltage holding ratio at room temperature and also at a temperature close to the maximum temperature even after the device has been used for a long period of time because such compound (7) has small volatility. A preferred proportion of the antioxidant is about 50 ppm or more for achieving an effect thereof, and about 600 ppm or less for avoiding a decrease in the maximum temperature or an increase in the minimum temperature. A further preferred proportion is in the range of about 100 ppm to about 300 ppm.
  • Specific examples of a preferred ultraviolet light absorber include a benzophenone derivative, a benzoate derivative and a triazole derivative. A light stabilizer such as an amine having steric hindrance is also preferred. A preferred proportion of the absorber or the stabilizer is about 50 ppm or more for achieving an effect thereof, and about 10,000 ppm or less for avoiding a decrease in the maximum temperature or an increase in the minimum temperature. A further preferred proportion is in the range of about 100 ppm to about 10,000 ppm.
  • A dichroic dye such as an azo dye or an anthraquinone dye is added to the composition to be adapted for a device having a guest host (GH) mode. A preferred proportion of the dye is in the range of about 0.01% by weight to about 10% by weight. The antifoaming agent such as dimethyl silicone oil or methyl phenyl silicone oil is added to the composition for preventing foam formation. A preferred proportion of the antifoaming agent is about 1 ppm or more for achieving an effect thereof, and about 1,000 ppm or less for preventing poor display. A further preferred proportion is in the range of about 1 ppm to about 500 ppm.
  • The polymerizable compound is used to be adapted for a polymer sustained alignment (PSA) mode device. Compound (5) is suitable for the purpose. Any other polymerizable compound that is different from compound (5) may be added to the composition together with compound (5). In place of compound (5), any other polymerizable compound that is different from compound (5) may be added to the composition. Specific examples of such a preferred polymerizable compound include a compound such as acrylate, methacrylate, a vinyl compound, a vinyloxy compound, propenyl ether, an epoxy compound (oxirane, oxetane) and vinyl ketone. Further preferred examples include an acrylate derivative or a methacrylate derivative. A preferred proportion of compound (5) is about 10% by weight or more based on the total amount of the polymerizable compound. A further preferred proportion is about 50% by weight or more. A particularly preferred proportion is about 80% by weight or more. A most preferred proportion is 100% by weight.
  • The polymerizable compound such as compound (5) is polymerized by irradiation with ultraviolet light. The polymerizable compound may be polymerized in the presence of a suitable initiator such as a photopolymerization initiator. Suitable conditions for polymerization, suitable types of the initiator and suitable amounts thereof are known to those skilled in the art and are described in literature. For example, Irgacure 651 (registered trademark; BASF), Irgacure 184 (registered trademark; BASF) or Darocur 1173 (registered trademark; BASF), each being a photoinitiator, is suitable for radical polymerization. A preferred proportion of the photopolymerization initiator is in the range of about 0.1% by weight to about 5% by weight based on the total amount of the polymerizable compound. A further preferred proportion is in the range of about 1% by weight to about 3% by weight.
  • Upon storing the polymerizable compound such as compound (5), the polymerization inhibitor may be added thereto for preventing polymerization. The polymerizable compound is ordinarily added to the composition without removing the polymerization inhibitor. Specific examples of the polymerization inhibitor include hydroquinone, a hydroquinone derivative such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol and phenothiazine.
  • Seventh, the methods for synthesizing the component compounds will be described. The compounds can be prepared according to known methods. Examples of the synthetic methods are described. Compound (1-1) is prepared according to a method described in JP 2004-352722 A. Compound (2) is prepared according to a method described in JP S59-176221 A. Compound (3-1) is prepared according to a method described in JP S56-68636 A. Compound (4-1) is prepared according to a method described in JP H2-503441 A. Compound (5-18) is prepared according to a method described in JP H7-101900 A. The antioxidant is commercially available. A compound in which n in formula (7) is 1 is available from Sigma-Aldrich Corporation. Compound (7) in which n is 7 or the like is prepared according to a method described in U.S. Pat. No. 3,660,505 B.
  • Any compounds whose synthetic methods are not described above can be prepared according to the methods described in books such as Organic Syntheses (John Wiley & Sons, Inc.), Organic Reactions (John Wiley & Sons, Inc.), Comprehensive Organic Synthesis (Pergamon Press) and New Experimental Chemistry Course (Shin Jikken Kagaku Koza in Japanese) (Maruzen Co., Ltd.). The composition is prepared according to a publicly known method using the thus obtained compounds. For example, the component compounds are mixed and dissolved in each other by heating.
  • Last, the application of the composition will be described. Most of the compositions have a minimum temperature of about −10° C. or lower, a maximum temperature of about 70° C. or higher, and optical anisotropy in the range of about 0.07 to about 0.20. The composition having optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the proportion of the component compounds or by mixing any other liquid crystal compound. Further, a composition having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared according to the method. A device including the composition has the large voltage holding ratio. The composition is suitable for use in the AM device. The composition is particularly suitable for use in a transmissive AM device. The composition can be used as the composition having the nematic phase, and as the optically active composition by adding the optically active compound.
  • The composition can be used in the AM device. The composition can be also used in a PM device. The composition can also be used in the AM device and the PM device each having a mode such as the PC mode, the TN mode, the STN mode, the ECB mode, the OCB mode, the IPS mode, the FFS mode, the VA mode and the FPA mode. Use in the AM device having the TN mode, the OCB mode, the IPS mode or the FFS mode is particularly preferred. In the AM device having the IPS mode or the FFS mode, alignment of liquid crystal molecules when no voltage is applied may be parallel or perpendicular to a glass substrate. The devices may be of a reflective type, a transmissive type or a transflective type. Use in the transmissive device is preferred. The composition can also be used in an amorphous silicon-TFT device or a polycrystal silicon-TFT device. The composition can also be used in a nematic curvilinear aligned phase (NCAP) device prepared by microencapsulating the composition, or a polymer dispersed (PD) device in which a three-dimensional network-polymer is famed in the composition.
  • EXAMPLES
  • The invention will be described in greater detail by way of Examples. However, the invention is not limited by the Examples. The invention includes a mixture of a composition in Example 1 and a composition in Example 2. The invention also includes a mixture in which at least two compositions in Examples were mixed. The thus prepared compound was identified by methods such as an NMR analysis. Characteristics of the compound, the composition and the device were measured by methods described below.
  • NMR analysis: For measurement, DRX-500 made by Bruker BioSpin Corporation was used. In 1H-NMR measurement, a sample was dissolved in a deuterated solvent such as CDCl3, and measurement was carried out under conditions of room temperature, 500 MHz and 16 times of accumulation. Tetramethylsilane was used as an internal standard. In 19F-NMR measurement, CFCl3 was used as an internal standard, and measurement was carried out under conditions of 24 times of accumulation. In explaining nuclear magnetic resonance spectra obtained, s, d, t, q, quin, sex and m stand for a singlet, a doublet, a triplet, a quartet, a quintet, a sextet and a multiplet, and br being broad, respectively.
  • Gas chromatographic analysis: For measurement, GC-14B Gas Chromatograph made by Shimadzu Corporation was used. A carrier gas was helium (2 mL per minute). A sample vaporizing chamber and a detector (FID) were set to 280° C. and 300° C., respectively. A capillary column DB-1 (length 30 m, bore 0.32 mm, film thickness 0.25 μm; dimethylpolysiloxane as a stationary liquid phase; non-polar) made by Agilent Technologies, Inc. was used for separation of component compounds. After the column was kept at 200° C. for 2 minutes, the column was heated to 280° C. at a rate of 5° C. per minute. A sample was prepared in an acetone solution (0.1% by weight), and then 1 microliter of the solution was injected into the sample vaporizing chamber. A recorder was C-R5A Chromatopac made by Shimadzu Corporation or the equivalent thereof. The resulting gas chromatogram showed a retention time of a peak and a peak area corresponding to each of the component compounds.
  • As a solvent for diluting the sample, chloroform, hexane or the like may also be used. The following capillary columns may also be used for separating component compounds: HP-1 (length 30 m, bore 0.32 mm, film thickness 0.25 μm) made by Agilent Technologies, Inc., Rtx-1 (length 30 m, bore 0.32 mm, film thickness 0.25 μm) made by Restek Corporation and BP-1 (length 30 m, bore 0.32 mm, film thickness 0.25 μm) made by SGE International Pty. Ltd. A capillary column CBP1-M50-025 (length 50 m, bore 0.25 mm, film thickness 0.25 μm) made by Shimadzu Corporation may also be used for the purpose of preventing an overlap of peaks of the compounds.
  • A proportion of liquid crystal compounds contained in the composition may be calculated by the method as described below. A mixture of liquid crystal compounds is detected by gas chromatograph (FID). An area ratio of each peak in the gas chromatogram corresponds to the ratio (weight ratio) of the liquid crystal compound. When the capillary columns described above were used, a correction coefficient of each of the liquid crystal compounds may be regarded as 1 (one). Accordingly, the proportion (% by weight) of the liquid crystal compounds can be calculated from the area ratio of each peak.
  • Sample for measurement: When characteristics of the composition and the device were measured, the composition was used as a sample as was. Upon measuring characteristics of a compound, a sample for measurement was prepared by mixing the compound (15% by weight) with a base liquid crystal (85% by weight). Values of characteristics of the compound were calculated, according to an extrapolation method, using values obtained by measurement. (Extrapolated value)={(measured value of a sample)−0.85×(measured value of a base liquid crystal)}/0.15. When a smectic phase (or crystals) precipitated at the ratio thereof at 25° C., a ratio of the compound to the base liquid crystal was changed step by step in the order of (10% by weight:90% by weight), (5% by weight:95% by weight) and (1% by weight:99% by weight). Values of maximum temperature, optical anisotropy, viscosity and dielectric anisotropy with regard to the compound were determined according to the extrapolation method.
  • A base liquid crystal described below was used. A proportion of the component compound was expressed in terms of weight percent (% by weight).
  • Figure US20180127650A1-20180510-C00026
  • Measuring method: Characteristics were measured according to the methods described below. Most of the measuring methods are applied as described in the Standard of Japan Electronics and Information Technology Industries Association (hereinafter abbreviated as JEITA) (JEITA ED-2521B) discussed and established by JEITA, or modified thereon. No thin film transistor (TFT) was attached to a TN device used for measurement.
  • (1) Maximum temperature of nematic phase (NI; ° C.): A sample was placed on a hot plate in a melting point apparatus equipped with a polarizing microscope, and heated at a rate of 1° C. per minute. Temperature when part of the sample began to change from a nematic phase to an isotropic liquid was measured. A maximum temperature of the nematic phase may be occasionally abbreviated as “maximum temperature.”
  • (2) Minimum temperature of nematic phase (Tc; ° C.): Samples each having a nematic phase were put in glass vials and kept in freezers at temperatures of 0° C., −10° C., −20° C., −30° C. and −40° C. for 10 days, and then liquid crystal phases were observed. For example, when the sample was maintained in the nematic phase at −20° C. and changed to crystals or a smectic phase at −30° C., Tc was expressed as Tc<−20° C. A minimum temperature of the nematic phase may be occasionally abbreviated as “minimum temperature.”
  • (3) Viscosity (bulk viscosity; q; measured at 20° C.; mPa·s): For measurement, a cone-plate (E type) rotational viscometer made by Tokyo Keiki Inc. was used.
  • (4) Viscosity (rotational viscosity; γ1; measured at 25° C.; mPa·s): Measurement was carried out according to a method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, p. 37 (1995). A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 20 micrometers. Voltage was applied stepwise to the device in the range of 39 V to 50 V at an increment of 1 V. After a period of 0.2 second with no voltage application, voltage was repeatedly applied under conditions of only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds). A peak current and a peak time of transient current generated by the applied voltage were measured. A value of rotational viscosity was obtained from the measured values and calculation equation (8) described on page 40 of the paper presented by M. Imai et al. Dielectric anisotropy required for the calculation was measured according to section 6.
  • (5) Optical anisotropy (refractive index anisotropy; Δn; measured at 25° C.): Measurement was carried out by an Abbe refractometer with a polarizing plate mounted on an ocular, using light at a wavelength of 589 nanometers. A surface of a main prism was rubbed in one direction, and then a sample was added dropwise onto the main prism. A refractive index (n∥) was measured when a direction of polarized light was parallel to a direction of rubbing. A refractive index (n⊥) was measured when the direction of polarized light was perpendicular to the direction of rubbing. A value of optical anisotropy was calculated from an equation: Δn=n∥−n⊥.
  • (6) Dielectric anisotropy (Δ∈; measured at 25° C.): A value of dielectric anisotropy was calculated from an equation: Δ∈=∈∥−∈⊥. A dielectric constant (∈∥ and ∈⊥) was measured as described below.
  • (1) Measurement of dielectric constant (∈∥): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. After rotating the glass substrate with a spinner, the glass substrate was heated at 150° C. for 1 hour. A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 4 micrometers, and the device was sealed with an ultraviolet-curable adhesive. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (∈∥) of liquid crystal molecules in a major axis direction was measured.
  • (2) Measurement of dielectric constant (∈⊥): A polyimide solution was applied to a well-cleaned glass substrate. After calcining the glass substrate, rubbing treatment was applied to the alignment film obtained. A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 micrometers and a twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (∈⊥) of liquid crystal molecules in a minor axis direction was measured.
  • (7) Threshold voltage (Vth; measured at 25° C.; V): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel, and the device was sealed with an ultraviolet-curable adhesive. A voltage (60 Hz, rectangular waves) to be applied to the device was stepwise increased from 0 V to 20 V at an increment of 0.02 V. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. A voltage-transmittance curve was prepared, in which the maximum amount of light corresponds to 100% transmittance and the minimum amount of light corresponds to 0% transmittance. A threshold voltage is expressed in terms of voltage at 10% transmittance.
  • (8) Voltage holding ratio (VHR-1; measured at 25° C.; %): A TN device used for measurement had a polyimide alignment film, and a distance (cell gap) between two glass substrates was 5 micrometers. A sample was put in the device, and then the device was sealed with an ultraviolet-curable adhesive. A pulse voltage (60 microseconds at 5 V) was applied to the TN device, and the device was charged. A decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and area A between a voltage curve and a horizontal axis in a unit cycle was determined. Area B is an area without decay. A voltage holding ratio is expressed in terms of a percentage of area A to area B.
  • (9) Voltage holding ratio (VHR-2; measured at 80° C.; %): A voltage holding ratio was measured according to procedures identical with the procedures described above except that measurement was carried out at 80° C. in place of 25° C. The thus obtained value was expressed in terms of VHR-2.
  • (10) Voltage holding ratio (VHR-3; measured at 25° C.; %): Stability to ultraviolet light was evaluated by measuring a voltage holding ratio after a device was irradiated with ultraviolet light. A TN device used for measurement had a polyimide alignment film, and a cell gap was 5 micrometers. A sample was injected into the device, and the device was irradiated with light for 20 minutes. A light source was an ultra high-pressure mercury lamp USH-500D (made by Ushio, Inc.), and a distance between the device and the light source was 20 centimeters. In measurement of VHR-3, a decaying voltage was measured for 16.7 milliseconds. A composition having large VHR-3 has large stability to ultraviolet light. A value of VHR-3 is preferably 90% or more, and further preferably 95% or more.
  • (11) Voltage holding ratio (VHR-4; measured at 25° C.; %): Stability to heat was evaluated by measuring a voltage holding ratio after a TN device into which a sample was injected was heated in a constant-temperature bath at 80° C. for 500 hours. In measurement of VHR-4, a decaying voltage was measured for 16.7 milliseconds. A composition having large VHR-4 has large stability to heat.
  • (12) Response time (i; measured at 25° C.; ms): For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A low-pass filter was set to 5 kHz. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel. The device was sealed with an ultraviolet-curable adhesive. A voltage (rectangular waves; 60 Hz, 10 V, 0.5 second) was applied to the device. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. The maximum amount of light corresponds to 100% transmittance, and the minimum amount of light corresponds to 0% transmittance. A response time was expressed in terms of time required for a change from 90% transmittance to 10% transmittance (fall time; millisecond).
  • (13) Specific resistance (ρ; measured at 25° C.; Ωcm): Into a vessel equipped with electrodes, 1.0 milliliter of sample was injected. A direct current voltage (10 V) was applied to the vessel, and a direct current after 10 seconds was measured. Specific resistance was calculated from the following equation: (specific resistance)={(voltage)×(electric capacity of a vessel)}/{(direct current)×(dielectric constant of vacuum)}.
  • The compounds in Examples were represented using symbols according to definitions in Table 3 described below. In Table 3, the configuration of 1,4-cyclohexylene is trans. A parenthesized number next to a symbolized compound corresponds to the number of the compound. A symbol (-) means any other liquid crystal compound. A proportion (percentage) of the liquid crystal compound is expressed in terms of weight percent (% by weight) based on the total amount of the liquid crystal composition. Values of the characteristics of the composition were summarized in a last part.
  • TABLE 3
    Method for Description of Compounds using Symbols
    R-(A1)-Z1- . . . -Zn-(An)-R′
    1) Left-terminal Group R- Symbol
    FCnH2n Fn-
    CnH2n+1 n-
    CnH2n+1O— nO—
    CmH2m+1OCnH2n mOn-
    CH2═CH— V—
    CnH2n+1—CH═CH— nV-
    CH2═CH—CnH2n Vn-
    CmH2m+1—CH═CH—CnH2n mVn-
    CF2═CH— VFF—
    CF2═CH—CnH2n VFFn-
    CmH2m+1CF2CnH2n m(CF2)n-
    CH2═CHCOO— AC—
    CH2═C(CH3)COO— MAC-
    2) Right-terminal Group -R′ Symbol
    —CnH2n+1 -n
    —OCnH2n+1 -On
    —CH═CH2 —V
    —CH═CH—CnH2n+1 -Vn
    —CnH2n—CH═CH2 -nV
    —CmH2m—CH═CH—CnH2n+1 -mVn
    —CH═CF2 —VFF
    —OCOCH═CH2 —AC
    —OCOC(CH3)═CH2 -MAC
    3) Bonding Group -Zn- Symbol
    —CnH2n n
    —COO— E
    —CH═CH— V
    —CH═CHO— VO
    —OCH═CH— OV
    —CH2O— 1O
    —OCH2 O1
    Figure US20180127650A1-20180510-C00027
    ch
    4) Ring Structure -An- Symbol
    Figure US20180127650A1-20180510-C00028
    H
    Figure US20180127650A1-20180510-C00029
    B
    Figure US20180127650A1-20180510-C00030
    B(F)
    Figure US20180127650A1-20180510-C00031
    B(2F)
    Figure US20180127650A1-20180510-C00032
    B(2F,5F)
    Figure US20180127650A1-20180510-C00033
    B(2F,3F)
    Figure US20180127650A1-20180510-C00034
    B(2F,3Cl)
    Figure US20180127650A1-20180510-C00035
    dh
    Figure US20180127650A1-20180510-C00036
    Dh
    Figure US20180127650A1-20180510-C00037
    dpr
    Figure US20180127650A1-20180510-C00038
    Dpr
    Figure US20180127650A1-20180510-C00039
    Cro(7F,8F)
    5) Examples of Description
    Example 1 V-HHB(2F,3F)—O2
    Figure US20180127650A1-20180510-C00040
    Example 2 5-DprB(2F,3F)—O2
    Figure US20180127650A1-20180510-C00041
    Example 3 3-HBB-1
    Figure US20180127650A1-20180510-C00042
    Example 4 Ac-BB-AC
    Figure US20180127650A1-20180510-C00043
  • Example 1
  • 3-HDprB(2F,3F)-O2 (1-4) 5%
    5-HDprB(2F,3F)-O2 (1-4) 5%
    3-HH-V (2) 24%
    1-BB-3 (3-2) 3%
    3-HB(2F,3F)-O2 (4-1) 14%
    3-BB(2F,3F)-O2 (4-4) 10%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 10%
    2-HBB(2F,3F)-O2 (4-10) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    NI = 81.7° C.; Tc <−20° C. η = 21.9 mPa · s; Δn = 0.108; Δε = −4.5; Vth = 1.88 V; γ1 = 128.4 mPa · s.
  • Comparative Example 1
  • A composition in Example 1 contains compound (1) as a first component. Compound (1) has negative dielectric anisotropy. Compound (4) also has the negative dielectric anisotropy. A composition in which two compounds as the first components in Example 1 were replaced by compound (4) similar to each of the compounds was defined as Comparative Example 1 for comparison.
  • 3-HchB(2F,3F)-O2 (4-19) 5%
    5-HchB(2F,3F)-O2 (4-19) 5%
    3-HH-V (2) 24%
    1-BB-3 (3-2) 3%
    3-HB(2F,3F)-O2 (4-1) 14%
    3-BB(2F,3F)-O2 (4-4) 10%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 10%
    2-HBB(2F,3F)-O2 (4-10) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    NI = 84.9° C.; Δn = 0.107; Δε = −3.9; Vth = 2.06 V.
  • Example 2
  • 5-DprB(2F,3F)-O2 (1-1) 3%
    3-Dpr1OB(2F,3F)-O2 (1-3) 3%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr1OB(2F,3F)-O2 (1-6) 3%
    3-HH-V (2) 25%
    3-HH-V1 (2) 8%
    5-HBB(F)B-2 (3-12) 3%
    3-HB(2F,3F)-O2 (4-1) 10%
    5-BB(2F,3F)-O2 (4-4) 5%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 10%
    3-HBB(2F,3F)-O2 (4-10) 5%
    3-HEB(2F,3F)B(2F,3F)-O2 (4-11) 7%
    5-HBB(2F,3Cl)-O2 (4-13) 3%
    NI = 86.9° C.; Tc <−20° C. η = 23.3 mPa · s; Δn = 0.102; Δε = −4.3; Vth = 1.90 V; γ1 = 136.5 mPa · s.
  • Example 3
  • 3-Dpr1OB(2F,3F)-O2 (1-3) 3%
    5-Dpr1OB(2F,3F)-O2 (1-3) 3%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr2B(2F,3F)-O2 (1-5) 5%
    2-HH-3 (2) 16%
    3-HH-O1 (2) 4%
    5-HH-O1 (2) 5%
    2-BB(F)B-2V (3-6) 3%
    3-HHEBH-3 (3-9) 4%
    V-HB(2F,3F)-O2 (4-1) 3%
    3-HB(2F,3F)-O2 (4-1) 10%
    3-H1OB(2F,3F)-O2 (4-3) 4%
    3-BB(2F,3F)-O2 (4-4) 10%
    3-HHB(2F,3F)-O2 (4-6) 5%
    V-HHB(2F,3F)-O2 (4-6) 5%
    3-HH1OB(2F,3F)-O2 (4-8) 5%
    3-HBB(2F,3F)-O2 (4-10) 10%
    NI = 74.4° C.; Tc <−20° C. η = 22.5 mPa · s; Δn = 0.104; Δε = −4.8; Vth = 1.81 V; γ1 = 131.9 mPa · s.
  • Example 4
  • 3-DprB(2F,3F)-O2 (1-1) 3%
    5-Dpr1OB(2F,3F)-O2 (1-3) 5%
    3-HDprB(2F,3F)-O2 (1-4) 4%
    5-HDprB(2F,3F)-O2 (1-4) 3%
    3-HH-V (2) 18%
    3-HH-V1 (2) 13%
    1-BB-5 (3-2) 3%
    5-HB(2F,3F)-O2 (4-1) 13%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 5%
    2-BB(2F,3F)B-3 (4-9) 4%
    2-HBB(2F,3F)-O2 (4-10) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    NI = 83.7° C.; Tc <−20° C.; η = 19.2 mPa · s; Δn = 0.106; Δε = −4.3; Vth = 1.88 V; γ1 = 112.5 mPa · s.
  • Example 5
  • 3-HDprB(2F,3F)-O2 (1-4) 5%
    5-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr2B(2F,3F)-O2 (1-5) 4%
    5-HDpr2B(2F,3F)-O2 (1-5) 3%
    2-HH-5 (2) 4%
    3-HH-4 (2) 3%
    3-HH-O1 (2) 3%
    3-HH-V (2) 10%
    3-HH-V1 (2) 7%
    3-HB-O2 (3-1) 3%
    V-HHB-1 (3-4) 3%
    3-HB(2F,3F)-O2 (4-1) 6%
    5-HB(2F,3F)-O2 (4-1) 8%
    5-H2B(2F,3F)-O2 (4-2) 3%
    3-B(2F,3F)B(2F,3F)-O2 (4-5) 3%
    2-HHB(2F,3F)-O2 (4-6) 8%
    3-HHB(2F,3F)-O2 (4-6) 9%
    2-HBB(2F,3F)-O2 (4-10) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    NI = 88.2° C.; Tc <−20° C.; η = 22.1 mPa · s; Δn = 0.102; Δε = −4.4; Vth = 1.92 V; γ1 = 129.5 mPa · s.
  • Example 6
  • 3-DprB(2F,3F)-O2 (1-1) 4%
    5-DprB(2F,3F)-O2 (1-1) 3%
    2-HH-3 (2) 9%
    2-HH-5 (2) 4%
    3-HH-4 (2) 5%
    3-HH-V1 (2) 10%
    7-HB-1 (3-1) 5%
    2-BB(F)B-3 (3-6) 3%
    V-HB(2F,3F)-O2 (4-1) 4%
    3-HB(2F,3F)-O2 (4-1) 10%
    3-HHB(2F,3F)-O2 (4-6) 10%
    V-HHB(2F,3F)-O2 (4-6) 10%
    2-HH1OB(2F,3F)-O2 (4-8) 3%
    3-HBB(2F,3F)-O2 (4-10) 8%
    5-HBB(2F,3F)-O2 (4-10) 7%
    V-HBB(2F,3F)-O2 (4-10) 3%
    3-chB(2F,3F)-O2 (4-18) 2%
    NI = 77.8° C.; Tc <−20° C.; η = 20.2 mPa · s; Δn = 0.103; Δε = −4.4; Vth = 1.90 V; γ1 = 118.4 mPa · s.
  • Example 7
  • 3-HDprB(2F,3F)-O2 (1-4) 5%
    5-HDprB(2F,3F)-O2 (1-4) 4%
    3-HDpr1OB(2F,3F)-O2 (1-6) 4%
    3-HH-V (2) 15%
    5-HH-V (2) 8%
    3-HH-V1 (2) 5%
    1-BB-3 (3-2) 3%
    5-HBB(F)B-3 (3-12) 3%
    3-HB(2F,3F)-O2 (4-1) 9%
    5-HB(2F,3F)-O2 (4-1) 10%
    V-HHB(2F,3F)-O2 (4-6) 10%
    3-HBB(2F,3F)-O2 (4-10) 10%
    5-HBB(2F,3F)-O2 (4-10) 6%
    3-HDhB(2F,3F)-O2 (4-16) 5%
    1O1-HBBH-5 (—) 3%
    NI = 91.9° C.; Tc <−20° C.; η = 22.7 mPa · s; Δn = 0.108; Δε = −4.3; Vth = 1.92 V; γ1 = 133.0 mPa · s.
  • Example 8
  • 3-Dpr2B(2F,3F)-O2 (1-2) 5%
    3-HDprB(2F,3F)-O2 (1-4) 4%
    5-HDprB(2F,3F)-O2 (1-4) 5%
    2-HH-3 (2) 6%
    2-HH-5 (2) 7%
    3-HH-V (2) 10%
    3-HH-V1 (2) 5%
    V-HHB-1 (3-4) 3%
    V-HBB-3 (3-5) 3%
    3-HB(2F,3F)-O2 (4-1) 10%
    2-H1OB(2F,3F)-O2 (4-3) 3%
    3-BB(2F,3F)-O2 (4-4) 5%
    5-BB(2F,3F)-O2 (4-4) 5%
    V-HH1OB(2F,3F)-O2 (4-8) 3%
    3-HBB(2F,3F)-O2 (4-10) 6%
    5-HBB(2F,3F)-O2 (4-10) 6%
    3-HEB(2F,3F)B(2F,3F)-O2 (4-11) 8%
    V-chB(2F,3F)-O2 (4-18) 3%
    5-HchB(2F,3F)-O2 (4-19) 3%
    NI = 71.5° C.; Tc <−20° C.; η = 22.2 mPa · s; Δn = 0.108; Δε = −4.5; Vth = 1.87 V; γ1 = 130.1 mPa · s.
  • Example 9
  • 3-DprB(2F,3F)-O2 (1-1) 4%
    5-DprB(2F,3F)-O2 (1-1) 4%
    3-Dpr1OB(2F,3F)-O2 (1-3) 4%
    3-HDprB(2F,3F)-O2 (1-4) 4%
    5-HDprB(2F,3F)-O2 (1-4) 4%
    3-HH-V (2) 15%
    3-HH-V1 (2) 10%
    3-HB-O2 (3-1) 3%
    3-HHEH-3 (3-3) 5%
    3-H2B(2F,3F)-O2 (4-2) 3%
    5-H2B(2F,3F)-O2 (4-2) 3%
    3-BB(2F,3F)-O2 (4-4) 10%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 10%
    3-HBB(2F,3F)-O2 (4-10) 8%
    V2-HchB(2F,3F)-O2 (4-19) 3%
    NI = 83.4° C.; Tc <−20° C.; η = 20.8 mPa · s; Δn = 0.103; Δε = −4.5; Vth = 1.89 V; γ1 = 121.9 mPa · s.
  • Example 10
  • 3-Dpr2B(2F,3F)-O2 (1-2) 3%
    3-Dpr1OB(2F,3F)-O2 (1-3) 4%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr2B(2F,3F)-O2 (1-5) 5%
    3-HH-V (2) 18%
    3-HH-V1 (2) 12%
    5-HB-O2 (3-1) 3%
    3-HBB-2 (3-5) 3%
    3-HB(2F,3F)-O2 (4-1) 8%
    5-HB(2F,3F)-O2 (4-1) 6%
    2O-BB(2F,3F)-O2 (4-4) 5%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    3-HBB(2F,3F)-O2 (4-10) 12%
    NI = 82.2° C.; Tc <−20° C.; η = 17.9 mPa · s; Δn = 0.105; Δε = −4.3; Vth = 1.90 V; γ1 = 104.9 mPa · s.
  • Example 11
  • 5-DprB(2F,3F)-O2 (1-1) 4%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    5-HDprB(2F,3F)-O2 (1-4) 3%
    3-HDpr1OB(2F,3F)-O2 (1-6) 4%
    5-HDpr1OB(2F,3F)-O2 (1-6) 3%
    1V2-HH-2V1 (2) 3%
    3-HH-V (2) 15%
    3-HH-V1 (2) 12%
    1-BB-5 (3-2) 3%
    5-B(F)BB-2 (3-7) 3%
    3-HB(F)HH-2 (3-8) 2%
    3-HB(2F,3F)-O2 (4-1) 8%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    3-HH2B(2F,3F)-O2 (4-7) 3%
    3-HBB(2F,3F)-O2 (4-10) 6%
    3-HEB(2F,3F)B(2F,3F)-O2 (4-11) 3%
    3-HDhB(2F,3F)-O2 (4-16) 7%
    NI = 94.6° C.; Tc <−20° C.; η = 23.1 mPa · s; Δn = 0.106; Δε = −4.2; Vth = 1.94; γ1 = 135.4 mPa · s.
  • Example 12
  • 3-DprB(2F,3F)-O2 (1-1) 4%
    5-DprB(2F,3F)-O2 (1-1) 3%
    3-HDprB(2F,3F)-O2 (1-4) 4%
    5-HDprB(2F,3F)-O2 (1-4) 4%
    5-dprBB(2F,3F)-O2 (1-7) 3%
    3-HH-V (2) 18%
    5-HH-V (2) 4%
    3-HH-V1 (2) 5%
    3-HHB-1 (3-4) 3%
    3-HB(2F,3F)-O2 (4-1) 13%
    3-BB(2F,3F)-O2 (4-4) 10%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    V-HBB(2F,3F)-O2 (4-10) 10%
    5-HHB(2F,3Cl)-O2 (4-12) 3%
    NI = 77.0° C.; Tc <−20° C.; η = 20.8 mPa · s; Δn = 0.106; Δε = −4.3; Vth = 1.87 V; γ1 = 121.9 mPa · s.
  • Example 13
  • 3-HDprB(2F,3F)-O2 (1-4) 4%
    5-HDprB(2F,3F)-O2 (1-4) 3%
    3-HDpr1OB(2F,3F)-O2 (1-6) 4%
    5-HDpr1OB(2F,3F)-O2 (1-6) 4%
    2-HH-3 (2) 7%
    3-HH-O1 (2) 3%
    3-HH-V (2) 10%
    5-HH-V (2) 10%
    3-HH-V1 (2) 10%
    V-HBB-2 (3-5) 3%
    5-HB(2F,3F)-O2 (4-1) 5%
    2-H1OB(2F,3F)-O2 (4-3) 5%
    3-H1OB(2F,3F)-O2 (4-3) 5%
    V-HHB(2F,3F)-O2 (4-6) 5%
    3-HH1OB(2F,3F)-O2 (4-8) 5%
    2-BB(2F,3F)B-3 (4-9) 3%
    3-H1OCro(7F,8F)-5 (4-14) 4%
    3-HDhB(2F,3F)-O2 (4-16) 5%
    3-HchB(2F,3F)-O2 (4-19) 5%
    NI = 72.0° C.; Tc <−20° C.; η = 18.6 mPa · s; Δn = 0.085; Δε = −4.1; Vth = 1.90 V; γ1 = 109.0 mPa · s.
  • Example 14
  • 5-DprB(2F,3F)-O2 (1-1) 5%
    3-Dpr1OB(2F,3F)-O2 (1-3) 3%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr1OB(2F,3F)-O2 (1-6) 4%
    2-HH-3 (2) 12%
    2-HH-5 (2) 12%
    3-HH-VFF (2) 3%
    V2-BB-1 (3-2) 3%
    3-HHB-O1 (3-4) 3%
    3-HB(2F,3F)-O2 (4-1) 9%
    5-HB(2F,3F)-O2 (4-1) 7%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 8%
    3-HBB(2F,3F)-O2 (4-10) 11%
    3-HBB(2F,3Cl)-O2 (4-13) 5%
    NI = 80.1° C.; Tc <−20° C.; η = 23.5 mPa · s; Δn = 0.097; Δε = −4.4; Vth = 1.88 V; γ1 = 137.7 mPa · s.
  • Example 15
  • 5-Dpr2B(2F,3F)-O2 (1-2) 3%
    3-HDprB(2F,3F)-O2 (1-4) 3%
    5-HDprB(2F,3F)-O2 (1-4) 3%
    3-HDpr1OB(2F,3F)-O2 (1-6) 3%
    5-HDpr1OB(2F,3F)-O2 (1-6) 3%
    2-HH-5 (2) 8%
    3-HH-4 (2) 8%
    3-HH-V1 (2) 13%
    V2-HHB-1 (3-4) 3%
    3-HHEBH-4 (3-9) 3%
    3-HB(2F,3F)-O2 (4-1) 14%
    2-HHB(2F,3F)-O2 (4-6) 6%
    3-HHB(2F,3F)-O2 (4-6) 10%
    2-BB(2F,3F)B-4 (4-9) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    3-HBB(2F,3Cl)-O2 (4-13) 3%
    3-H1OCro(7F,8F)-5 (4-14) 4%
    NI = 93.1° C.; Tc <−20° C.; η = 24.9 mPa · s; Δn = 0.102; Δε = −4.2; Vth = 1.91 V; γ1 = 145.9 mPa · s.
  • Example 16
  • 3-DprB(2F,3F)-O2 (1-1) 5%
    3-Dpr2B(2F,3F)-O2 (1-2) 3%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    5-HDpr1OB(2F,3F)-O2 (1-6) 3%
    3-dprBB(2F,3F)-O2 (1-7) 3%
    3-HH-V (2) 17%
    3-HH-V1 (2) 10%
    F3-HH-V (2) 3%
    VFF-HHB-1 (3-4) 3%
    3-HB(2F,3F)-O2 (4-1) 12%
    3-BB(2F,3F)-O2 (4-4) 10%
    3-HHB(2F,3F)-O2 (4-6) 10%
    V-HHB(2F,3F)-O2 (4-6) 10%
    4-HBB(2F,3F)-O2 (4-10) 3%
    3-HH1OCro(7F,8F)-5 (4-15) 3%
    NI = 73.3° C.; Tc <−20° C.; η = 18.9 mPa · s; Δn = 0.100; Δε = −4.2; Vth = 1.90 V; γ1 = 110.8 mPa · s.
  • Example 17
  • 3-Dpr2B(2F,3F)-O2 (1-2) 3%
    3-Dpr1OB(2F,3F)-O2 (1-3) 5%
    5-Dpr1OB(2F,3F)-O2 (1-3) 5%
    3-HDprB(2F,3F)-O2 (1-4) 4%
    3-HH-V (2) 27%
    3-HHEH-5 (3-3) 3%
    5-HBBH-3 (3-10) 3%
    3-HB(2F,3F)-O2 (4-1) 14%
    3-HHB(2F,3F)-O2 (4-6) 10%
    4-HHB(2F,3F)-O2 (4-6) 10%
    2-HBB(2F,3F)-O2 (4-10) 3%
    3-HBB(2F,3F)-O2 (4-10) 10%
    3-dhBB(2F,3F)-O2 (4-17) 3%
    NI = 84.5° C.; Tc <−20° C.; η = 21.9 mPa · s; Δn = 0.098; Δε = −4.3; Vth = 1.89 V; γ1 = 128.3 mPa · s.
  • Example 18
  • 3-DprB(2F,3F)-O2 (1-1) 5%
    3-HDprB(2F,3F)-O2 (1-4) 5%
    3-HDpr1OB(2F,3F)-O2 (1-6) 3%
    5-HDpr1OB(2F,3F)-O2 (1-6) 4%
    2-HH-3 (2) 20%
    3-HH-4 (2) 10%
    1V2-BB-1 (3-2) 3%
    5-HB(F)BH-3 (3-11) 3%
    3-HB(2F,3F)-O2 (4-1) 13%
    5-HH2B(2F,3F)-O2 (4-7) 4%
    V-HH1OB(2F,3F)-O2 (4-8) 10%
    4-HBB(2F,3F)-O2 (4-10) 6%
    3-HEB(2F,3F)B(2F,3F)-O2 (4-11) 3%
    3-HHB(2F,3Cl)-O2 (4-12) 5%
    3-HchB(2F,3F)-O2 (4-19) 3%
    5-HchB(2F,3F)-O2 (4-19) 3%
    NI = 81.4° C.; Tc <−20° C.; η = 23.8 mPa · s; Δn = 0.093; Δε = −4.2; Vth = 1.89 V; γ1 = 139.5 mPa · s.
  • Dielectric anisotropy (Δ∈) of a composition in Comparative Example 1 was −3.9. On the other hand, dielectric anisotropy of a composition in Example 1 was −4.5. Thus, compositions in the Examples had larger negative dielectric anisotropy in comparison with a composition in the Comparative Example. Accordingly, the liquid crystal composition of the invention is concluded to have superb characteristics.
  • INDUSTRIAL APPLICABILITY
  • A liquid crystal composition of the invention satisfies at least one of characteristics such as high maximum temperature, low minimum temperature, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, and high stability to heat, or has a suitable balance regarding at least two of the characteristics. A liquid crystal display device including the composition has characteristics such as a short response time, a large voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life, and therefore can be used in a liquid crystal projector, a liquid crystal television and so forth.

Claims (22)

1. A liquid crystal composition that has negative dielectric anisotropy, and contains at least one compound selected from the group of compounds represented by formula (1) as a first component and at least one compound selected from the group of compounds represented by formula (2) as a second component:
Figure US20180127650A1-20180510-C00044
wherein, in formula (1) and formula (2), R1 and R2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; R3 and R4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring A and ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, in which at least one of ring A and ring C is 3,6-dihydro-2H-pyran-2,5-diyl; ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z1 and Z2 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; a is 1, 2 or 3; b is 0 or 1; and a sum of a and b is 3 or less.
2. The liquid crystal composition according to claim 1, containing at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-7) as the first component:
Figure US20180127650A1-20180510-C00045
wherein, in formula (1-1) to formula (1-7), R1 and R2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
3. The liquid crystal composition according to claim 1, wherein a proportion of the first component is in the range of 5% by weight to 40% by weight, and a proportion of the second component is in the range of 10% by weight to 60% by weight, based on the total amount of the liquid crystal composition.
4. The liquid crystal composition according to claim 1, containing at least one compound selected from the group of compounds represented by formula (3) as a third component:
Figure US20180127650A1-20180510-C00046
wherein, in formula (3), R5 and R6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z3 is a single bond, ethylene or carbonyloxy; and d is 1, 2 or 3; in which ring D is 1,4-phenylene when d is 1.
5. The liquid crystal composition according to claim 4, containing at least one compound selected from the group of compounds represented by formula (3-1) to formula (3-12) as the third component:
Figure US20180127650A1-20180510-C00047
wherein, in formula (3-1) to formula (3-12), R5 and R6 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
6. The liquid crystal composition according to claim 4, wherein a proportion of the third component is in the range of 5% by weight to 40% by weight based on the total amount of the liquid crystal composition.
7. The liquid crystal composition according to claim 1, containing at least one compound selected from the group of compounds represented by formula (4) as a fourth component:
Figure US20180127650A1-20180510-C00048
wherein, in formula (4), R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine; ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z4 and Z5 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; p is 1, 2 or 3; q is 0 or 1; and a sum of p and q is 3 or less.
8. The liquid crystal composition according to claim 7, containing at least one compound selected from the group of compounds represented by formula (4-1) to formula (4-19) as the fourth component:
Figure US20180127650A1-20180510-C00049
Figure US20180127650A1-20180510-C00050
Figure US20180127650A1-20180510-C00051
wherein, in formula (4-1) to formula (4-19), R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
9. The liquid crystal composition according to claim 7, wherein a proportion of the fourth component is in the range of 10% by weight to 70% by weight based on the total amount of the liquid crystal composition.
10. The liquid crystal composition according to claim 1, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
Figure US20180127650A1-20180510-C00052
wherein, in formula (5), ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH—CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)—C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; P1, P2 and P3 are independently a polymerizable group; and Sp1, Sp2 and Sp3 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH↑CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; g is 0, 1 or 2; h, j and k are independently 0, 1, 2, 3 or 4; and a sum of h, j and k is 1 or more.
11. The liquid crystal composition according to claim 10, wherein, in formula (5), P1, P2 and P3 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6):
Figure US20180127650A1-20180510-C00053
wherein, in formula (P-1) to formula (P-6), M1, M2 and M3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and in formula (5), when all of h pieces of P′ and k pieces of P3 are a group represented by formula (P-4), at least one of h pieces of Sp′ and k pieces of Sp3 is alkylene in which at least one piece of —CH2— is replaced by —O—, —COO—, —OCO— or —OCOO—.
12. The liquid crystal composition according to claim 10, containing at least one polymerizable compound selected from the group of compounds represented by formula (5-1) to formula (5-27) as the additive component:
Figure US20180127650A1-20180510-C00054
Figure US20180127650A1-20180510-C00055
Figure US20180127650A1-20180510-C00056
wherein, in formula (5-1) to formula (5-27), P4, P5 and P6 are independently a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-3);
Figure US20180127650A1-20180510-C00057
wherein, in formula (P-1) to formula (P-3), M1, M2 and M3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and
in formula (5-1) to formula (5-27), Sp1, Sp2 and Spa are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH↑CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine.
13. The liquid crystal composition according to claim 10, wherein a proportion of addition of the additive component is in the range of 0.03% by weight to 10% by weight based on the total amount of the liquid crystal composition.
14. A liquid crystal display device, including the liquid crystal composition according to claim 1.
15. The liquid crystal display device according to claim 14, wherein an operating mode in the liquid crystal display device includes an IPS mode, a VA mode, an FFS mode or an FPA mode, and a driving mode in the liquid crystal display device includes an active matrix mode.
16. A polymer sustained alignment mode liquid crystal display device, wherein the liquid crystal display device includes the liquid crystal composition according to claim 10, or the polymerizable compound in the liquid crystal composition is polymerized.
17. (canceled)
18. (canceled)
19. The liquid crystal composition according to claim 4, containing at least one compound selected from the group of compounds represented by formula (4) as a fourth component:
Figure US20180127650A1-20180510-C00058
wherein, in formula (4), R7 and R8 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; ring E and ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine; ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z4 and Z5 are independently a single bond, ethylene, carbonyloxy or methyleneoxy; p is 1, 2 or 3; q is 0 or 1; and a sum of p and q is 3 or less.
20. The liquid crystal composition according to claim 4, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
Figure US20180127650A1-20180510-C00059
wherein, in formula (5), ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH—CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; P1, P2 and P3 are independently a polymerizable group; and Sp1, Sp2 and Sp3 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; g is 0, 1 or 2; h, j and k are independently 0, 1, 2, 3 or 4; and a sum of h, j and k is 1 or more.
21. The liquid crystal composition according to claim 7, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
Figure US20180127650A1-20180510-C00060
wherein, in formula (5), ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; P1, P2 and P3 are independently a polymerizable group; and Sp1, Sp2 and Spa are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; g is 0, 1 or 2; h, j and k are independently 0, 1, 2, 3 or 4; and a sum of h, j and k is 1 or more.
22. The liquid crystal composition according to claim 19, containing at least one polymerizable compound selected from the group of compounds represented by formula (5) as an additive component:
Figure US20180127650A1-20180510-C00061
wherein, in formula (5), ring K and ring M are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and ring L is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; and Z6 and Z7 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; P1, P2 and P3 are independently a polymerizable group; and Sp1, Sp2 and Sp are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2—CH2— may be replaced by —CH═CH— or —C≡C—, and in these groups, at least one hydrogen may be replaced by fluorine or chlorine; g is 0, 1 or 2; h, j and k are independently 0, 1, 2, 3 or 4; and a sum of h, j and k is 1 or more.
US15/573,482 2015-05-20 2016-03-24 Liquid crystal composition and liquid crystal display device Abandoned US20180127650A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015102797 2015-05-20
JP2015-102797 2015-05-20
PCT/JP2016/059378 WO2016185793A1 (en) 2015-05-20 2016-03-24 Liquid crystal composition and liquid crystal display element

Publications (1)

Publication Number Publication Date
US20180127650A1 true US20180127650A1 (en) 2018-05-10

Family

ID=57320146

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/573,482 Abandoned US20180127650A1 (en) 2015-05-20 2016-03-24 Liquid crystal composition and liquid crystal display device

Country Status (4)

Country Link
US (1) US20180127650A1 (en)
JP (1) JP6597776B2 (en)
TW (1) TW201708520A (en)
WO (1) WO2016185793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057742A1 (en) * 2016-08-24 2018-03-01 Jnc Corporation Liquid crystal composition and liquid crystal display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485106B2 (en) * 2015-02-24 2019-03-20 Jnc株式会社 Liquid crystal composition and liquid crystal display element
US20180187079A1 (en) * 2015-07-01 2018-07-05 Dic Corporation Composition and liquid crystal display device using the same
JP6862923B2 (en) * 2016-08-24 2021-04-21 Jnc株式会社 Liquid crystal composition and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038267A1 (en) * 2003-05-27 2005-02-17 Eike Poetsch Pyran derivatives containing an exocyclic double bond
WO2013054682A1 (en) * 2011-10-12 2013-04-18 Jnc株式会社 Polymerizable compound, liquid crystal composition, and liquid crystal display element
US20140010973A1 (en) * 2012-07-05 2014-01-09 Jnc Petrochemical Corporation Liquid crystal composition and liquid crystal display device
US9790427B2 (en) * 2015-02-06 2017-10-17 Jnc Corporation Liquid crystal compound having a 3,6-dihydro-2H-pyran ring, negative dielectric anisotropy, liquid crystal composition and liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261779A (en) * 1990-03-12 1991-11-21 Mitsubishi Petrochem Co Ltd Optically active compound and liquid crystal composition containing the same
JP4423877B2 (en) * 2003-04-15 2010-03-03 チッソ株式会社 2-trifluoromethyldihydropyran derivative, liquid crystal composition and liquid crystal display device
KR101233223B1 (en) * 2004-12-21 2013-02-14 제이엔씨 석유 화학 주식회사 Liquid crystal compound having a chroman ring, liquid crystal composition, and liquid crystal display device comprising the liquid crystal composition
WO2006125550A1 (en) * 2005-05-25 2006-11-30 Merck Patent Gmbh Method for producing tetrahydropyranes from tetrahydropyran-3-ones
TWI480363B (en) * 2009-08-19 2015-04-11 Jnc Corp Tetrahydropyran compound, liquid crystal composition and liquid crystal display device
JP6623567B2 (en) * 2014-06-13 2019-12-25 Jnc株式会社 Dihydropyran compound, liquid crystal composition and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038267A1 (en) * 2003-05-27 2005-02-17 Eike Poetsch Pyran derivatives containing an exocyclic double bond
WO2013054682A1 (en) * 2011-10-12 2013-04-18 Jnc株式会社 Polymerizable compound, liquid crystal composition, and liquid crystal display element
US20140010973A1 (en) * 2012-07-05 2014-01-09 Jnc Petrochemical Corporation Liquid crystal composition and liquid crystal display device
US9790427B2 (en) * 2015-02-06 2017-10-17 Jnc Corporation Liquid crystal compound having a 3,6-dihydro-2H-pyran ring, negative dielectric anisotropy, liquid crystal composition and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057742A1 (en) * 2016-08-24 2018-03-01 Jnc Corporation Liquid crystal composition and liquid crystal display device
US10544366B2 (en) * 2016-08-24 2020-01-28 Jnc Corporation Liquid crystal composition and liquid crystal display device

Also Published As

Publication number Publication date
JP6597776B2 (en) 2019-10-30
TW201708520A (en) 2017-03-01
JPWO2016185793A1 (en) 2018-03-08
WO2016185793A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US10774264B2 (en) Liquid crystal composition and liquid crystal display device
EP3425025B1 (en) Liquid crystal composition and liquid crystal display element
EP3418350B1 (en) Liquid crystal composition and liquid crystal display device
US9994768B2 (en) Liquid crystal composition and liquid crystal display device
US9732275B2 (en) Liquid crystal composition and liquid crystal display device
US10647919B2 (en) Liquid crystal composition and liquid crystal display device
US10273410B2 (en) Liquid crystal composition and liquid crystal display device
US10294425B2 (en) Liquid crystal composition and liquid crystal display device
US10597583B2 (en) Liquid crystal composition and liquid crystal display device
US20160244668A1 (en) Liquid crystal composition and liquid crystal display device
US20160108314A1 (en) Liquid crystal composition and liquid crystal display device
US20180016500A1 (en) Liquid crystal composition and liquid crystal display device
JP6597776B2 (en) Liquid crystal composition and liquid crystal display element
US9376620B2 (en) Liquid crystal composition and liquid crystal display device
US9714382B2 (en) Liquid crystal composition and liquid crystal display device
US10407618B2 (en) Liquid crystal composition and liquid crystal display device
US10442993B2 (en) Liquid crystal composition and liquid crystal display device
US9605209B2 (en) Liquid crystal composition and liquid crystal display device
JP6413632B2 (en) Liquid crystal composition and liquid crystal display element
US10544366B2 (en) Liquid crystal composition and liquid crystal display device
US10655063B2 (en) Liquid crystal composition and liquid crystal display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: JNC PETROCHEMICAL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, MASAYUKI;FURUSATO, YOSHIMASA;REEL/FRAME:044205/0154

Effective date: 20171017

Owner name: JNC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, MASAYUKI;FURUSATO, YOSHIMASA;REEL/FRAME:044205/0154

Effective date: 20171017

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION