US20180127618A1 - Buffered slurry formulation for cobalt cmp - Google Patents

Buffered slurry formulation for cobalt cmp Download PDF

Info

Publication number
US20180127618A1
US20180127618A1 US15/797,685 US201715797685A US2018127618A1 US 20180127618 A1 US20180127618 A1 US 20180127618A1 US 201715797685 A US201715797685 A US 201715797685A US 2018127618 A1 US2018127618 A1 US 2018127618A1
Authority
US
United States
Prior art keywords
acid
polishing composition
tris
polishing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/797,685
Other versions
US10570315B2 (en
Inventor
Hooi-Sung Kim
Anne Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to US15/797,685 priority Critical patent/US10570315B2/en
Publication of US20180127618A1 publication Critical patent/US20180127618A1/en
Application granted granted Critical
Publication of US10570315B2 publication Critical patent/US10570315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Definitions

  • the present invention relates generally to the field of polishing compositions.
  • polishing compositions comprising an abrasive and a buffering material, wherein the buffering material comprises a first component and a second component; the first component comprises a Lewis acid or a Bronsted-Lowry acid; and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9 and wherein the difference between the pKa and the pH of the polishing composition at point of use is less than 1.
  • the abrasive comprises alumina, silica, or a combination thereof.
  • the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %.
  • the silica is precipitated silica.
  • the first component comprises acetic acid, ADA, bicine, boric acid, citric acid, 5,5-diethylbarbituric acid, EDTA, formic acid, glycine, glycylglycine, lactic acid, maleic acid, malic acid, phosphoric acid, picolinic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, tricine, succinic acid, taurine, or a combination of two or more thereof.
  • the first component comprises a di- or tri-carboxylic acid.
  • the di- or tri-carboxylic acid is citric acid, malic acid, maleic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, or succinic acid.
  • the first component is present in an amount of about 0.01 wt. % to about 1 wt. %.
  • the second component comprises ammonia, ACES, AMP, AMPD, AMPSO, BES, Bis-Tris, Bis-Tris-Propane, CAPSO, CHES, diethanolamine, DIPSO, EPPS, ethanolamine, N-ethylmorpholine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt, POPSO, dihydrogen phosphate salt, potassium hydroxide, pyridine, hydrogen phosphate salt, TABS, TAPS, TAPSO, TEA, TES, Tris, or a combination of two or more thereof.
  • the second component comprises Tris, Bis-Tris, CHES, TAPS, TAPSO, HEPES, TES, MOPS, PIPES, or MES. In some embodiments, the second component comprises Tris, Bis-Tris, or CHES. In some embodiments, the second component is present in an amount of about 0.1 wt. % to about 4 wt. %. In some embodiments, the polishing composition further comprises a polishing accelerator. In some embodiments, the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %. In some embodiments, the polishing accelerator is an amino acid. In some embodiments, the amino acid is glycine.
  • the polishing composition further comprises an oxidizer.
  • the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %.
  • the oxidizer is hydrogen peroxide.
  • the pH of the polishing composition at point of use is about 6 to about 9.
  • the polishing composition further comprises a pH adjustor.
  • the pH adjustor is a base.
  • the base is potassium hydroxide or ammonium hydroxide.
  • the polishing composition is devoid of any corrosion inhibitor.
  • the polishing composition is devoid of any triazole-based corrosion inhibitor.
  • polishing compositions comprising an abrasive and a buffering material, wherein the pH of the polishing composition is about 6 to about 9.
  • the abrasive comprises alumina, silica, or a combination thereof.
  • the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %.
  • the silica is precipitated silica.
  • the buffering material comprises one or more compounds selected from the group consisting of acetate salt, acetic acid, boric acid, ACES, AMP, AMPD, AMPSO, BES, bicine, Bis-Tris, Bis-Tris-Propane, borate salt, boric acid, cacodylate salt, CAPSO, CHES, citrate salt, citric acid, diethanolamine, 5,5-diethylbarbituric acid, DIPSO, EDTA, EPPS, ethanolamine, N-ethylmorpholine, formate salt, formic acid, glycine, glycylglycine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, lactic acid, malate salt, maleate salt, maleic acid, malic acid, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt
  • the buffering material is present in an amount of about 0.01 wt. % to about 4 wt. %.
  • the polishing composition further comprises a polishing accelerator. In some embodiments, the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %.
  • the polishing accelerator is an amino acid. In some embodiments, the amino acid is glycine.
  • the polishing composition further comprises an oxidizer. In some embodiments, the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %. In some embodiments, the oxidizer is hydrogen peroxide.
  • the pH of the polishing composition at point of use is about 6 to about 9.
  • the polishing composition further comprises a pH adjustor.
  • the pH adjustor is a base.
  • the base is potassium hydroxide or ammonium hydroxide.
  • the polishing composition is devoid of any corrosion inhibitor. In some embodiments, the polishing composition is devoid of any triazole-based corrosion inhibitor.
  • methods of cobalt chemical-mechanical polishing comprising applying a polishing composition disclosed herein to a substrate comprising cobalt.
  • a polishing composition disclosed herein for cobalt chemical-mechanical polishing is disclosed herein for cobalt chemical-mechanical polishing.
  • provided herein are methods of stabilizing the cobalt removal rate in a chemical-mechanical polishing process for a substrate comprising cobalt, the method comprising applying a polishing composition disclosed herein to the substrate.
  • FIG. 1 depicts the changes in pH and cobalt removal rate during a 7-day pot life study of a comparative polishing slurry.
  • FIG. 2 depicts the changes in cobalt removal rate during a 7-day pot life study of the slurry of FIG. 1 with an analogous slurry wherein hydrogen peroxide is added only immediately before use (i.e., polishing).
  • FIG. 3 depicts the changes in pH during a 7-day pot life study of the slurry of FIG. 1 with an analogous slurry wherein hydrogen peroxide is added only immediately before use (i.e., polishing).
  • FIG. 4 depicts a 7-day pot life study and effects on pH and cobalt removal rate of a non-limiting example of a polishing composition disclosed herein.
  • FIG. 5 depicts a 7-day pot life study and total inorganic cobalt concentration of the polishing composition of FIG. 4 .
  • FIG. 6 depicts a 7-day pot life study and effects on cobalt removal rate of non-limiting examples of a polishing composition disclosed herein.
  • polishing compositions for cobalt chemical-mechanical polishing CMP
  • the polishing compositions described herein exhibit more stabilized pH than previously disclosed polishing compositions.
  • the polishing compositions described herein exhibit more stabilized cobalt removal rate than previously disclosed polishing compositions.
  • the polishing compositions described herein exhibit more stabilized pH as well as more stabilized cobalt removal rate than previously disclosed polishing compositions.
  • the polishing compositions described herein exhibit better shelf life than previously reported polishing compositions.
  • polishing compositions comprising an abrasive and a buffering material, wherein the pH of the polishing composition is about 6 to about 9.
  • polishing compositions comprising an abrasive and a buffering material, wherein the buffering material comprises a first component and a second component; the first component comprises a Lewis acid or a Bronsted-Lowry acid; and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9 and wherein the difference between the pKa and the pH of the polishing composition at point of use is less than 1.
  • the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and Tris.
  • the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and Bis-Tris. In some embodiments, the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and CHES. In further embodiments, the abrasive comprises precipitated silica.
  • abrasives include, but are not limited to alumina, silica, or combinations thereof.
  • Silica includes precipitated silica, also typically called colloidal silica.
  • the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %. This includes amounts of about 0.01 wt. % to about 8 wt. %, about 0.01 wt. % to about 5 wt. %, about 0.01 wt. % to about 3 wt. %, about 0.01 wt. % to about 1 wt. %, about 0.05 wt. % to about 10 wt. %, about 0.05 wt. % to about 8 wt. %, about 0.05 wt. % to about 5 wt. %, about 0.05 wt. % to about 3 wt.
  • % about 0.05 wt. % to about 1 wt. %, about 0.1 wt. % to about 10 wt. %, about 0.1 wt. % to about 8 wt. %, about 0.1 wt. % to about 5 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.5 wt. % to about 10 wt. %, about 0.5 wt. % to about 8 wt. %, about 0.5 wt. % to about 5 wt. %, about 0.5 wt. % to about 3 wt.
  • the abrasive is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 wt. %, including increments therein.
  • the abrasive is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 wt. %, including increments therein.
  • the buffering material comprises a first component and a second component.
  • Illustrative first components include, but are not limited to, ADA (N-(2-acetamido)-iminodiacetic acid), acetic acid, bicine (N,N-bis(2-hydroxyethyl)glycine), boric acid, citric acid, 5,5-diethylbarbituric acid, EDTA, formic acid, glycine, glycylglycine, lactic acid, maleic acid, malic acid, phosphoric acid, picolinic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, tricine (N-tris(hydroxymethyl)methylglycine), succinic acid, taurine, or a combination of two or more thereof.
  • ADA N-(2-acetamido)-iminodiacetic acid
  • acetic acid acetic acid
  • bicine N,N-bis(2-hydroxyethyl)glycine
  • boric acid citric acid
  • 5,5-diethylbarbituric acid EDTA
  • formic acid
  • the first component comprises a di- or tri-carboxylic acid.
  • the di- or tri-carboxylic acid is selected from the group consisting of citric acid, malic acid, maleic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, succinic acid, or a combination of any two or more thereof.
  • the first component comprises malic acid.
  • the first component is present in an amount of about 0.01 wt. % to about 1 wt. %. This includes about 0.03 wt. % to about 1 wt. %, about 0.05 wt. % to about 1 wt. %, about 0.07 wt. % to about 1 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.15 wt. % to about 1 wt. %, about 0.2 wt. % to about 1 wt. %, about 0.25 wt. % to about 1 wt. %, about 0.3 wt. % to about 1 wt.
  • the first component is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, or 1 wt. %, including increments therein.
  • the first component is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, or 1 wt. %, including increments therein.
  • Illustrative second components include, but are not limited to, ammonia, ACES (N-(2-acetamido)-aminoethanesulfonic acid), AMP (2-amino-2-methyl-1-propanol), AMPD (2-amino-2-methyl-1,3-propanediol), AMPSO (N-(1,1-dimethyl-2-hydroxyethyl)-3-amino-2-hydroxypropanesulfonic acid), BES (N,N-bis-(2-hydroxyethyl)-2-aminoethanesulfonic acid), Bis-Tris ([bis-(2-hydroxyethyl)-imino]-tris-(hydroxymethylmethane)), Bis-Tris-Propane (1,3-bis[tris(hydroxymethyl)-methylamino]propane), CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), CHES (cyclohexylamino
  • the second component comprises Tris, Bis-Tris, CHES, TAPS, TAPSO, HEPES, TES, MOPS, PIPES, or IVIES. In some embodiments, the second component comprises Tris, Bis-Tris, or CHES. In some embodiments, the second component comprises Tris. In some embodiments, the second component comprises Bis-Tris. In some embodiments, the second component comprises CHES.
  • the second component is present in an amount of about 0.1 wt. % to about 4 wt. %. This includes about 0.3 wt. % to about 3 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.7 wt. % to about 3 wt. %, about 1 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 0.1 wt. % to about 2 wt. %, about 0.1 wt. % to about 3 wt. %, 0.3 wt. % to about 2 wt. %, about 0.5 wt.
  • % to about 2 wt. % about 0.7 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 0.1 wt. % to about 1 wt. %, 0.3 wt. % to about 1 wt. %, about 0.5 wt. % to about 1 wt. %, or about 0.7 wt. % to about 1 wt. %.
  • the second component is present in an amount of at least about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein.
  • the second component is present in an amount of about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein.
  • the first component comprises a Lewis acid or a Bronsted-Lowry acid
  • the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9.
  • the first component comprises malic acid and the second component comprises Tris.
  • the first component comprises malic acid and the second component comprises Bis-Tris.
  • the first component comprises malic acid and the second component comprises CHES.
  • the buffering material comprises one or more compounds selected from the group consisting of acetate salt, acetic acid, boric acid, ACES, AMP, AMPD, AMPSO, BES, bicine, Bis-Tris, Bis-Tris-Propane, borate salt, boric acid, cacodylate salt, CAPSO, CHES, citrate salt, citric acid, diethanolamine, 5,5-diethylbarbituric acid, DIPSO, EDTA, EPPS, ethanolamine, N-ethylmorpholine, formate salt, formic acid, glycine, glycylglycine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, lactic acid, malate salt, maleate salt, maleic acid, malic acid, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt
  • the buffering material is present in an amount of about 0.01 wt. % to about 4 wt. %. This includes about 0.01 wt. % to about 3 wt. %, about 0.03 wt. % to about 3 wt. %, about 0.05 wt. % to about 3 wt. %, about 0.07 wt. % to about 3 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.2 wt. % to about 3 wt. %, about 0.3 wt. % to about 3 wt. %, about 0.4 wt. % to about 3 wt.
  • wt. % about 1.5 wt. % to about 3 wt. %, about 1.6 wt. % to about 3 wt. %, about 1.7 wt. % to about 3 wt. %, about 1.8 wt. % to about 3 wt. %, about 1.9 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 2.1 wt. % to about 3 wt. %, about 2.2 wt. % to about 3 wt. %, about 2.3 wt. % to about 3 wt. %, about 2.4 wt. % to about 3 wt.
  • wt. % about 0.3 wt. % to about 2 wt. %, about 0.4 wt. % to about 2 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.6 wt. % to about 2 wt. %, about 0.7 wt. % to about 3 wt. %, about 0.8 wt. % to about 2 wt. %, about 0.9 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 1.1 wt. % to about 2 wt. %, about 1.2 wt. % to about 2 wt.
  • wt. % about 1.3 wt. % to about 2 wt. %, about 1.4 wt. % to about 2 wt. %, about 1.5 wt. % to about 2 wt. %, about 1.6 wt. % to about 2 wt. %, about 1.7 wt. % to about 2 wt. %, about 1.8 wt. % to about 2 wt. %, about 1.9 wt. % to about 2 wt. %, about 0.01 wt. % to about 1 wt. %, about 0.03 wt. % to about 1 wt. %, 0.05 wt. % to about 1 wt.
  • % 0.07 wt. % to about 1 wt. %, 0.1 wt. % to about 1 wt. %, 0.15 wt. % to about 1 wt. %, 0.2 wt. % to about 1 wt. %, 0.25 wt. % to about 1 wt. %, 0.3 wt. % to about 1 wt. %, 0.35 wt. % to about 1 wt. %, 0.4 wt. % to about 1 wt. %, 0.45 wt. % to about 1 wt. %, 0.5 wt. % to about 1 wt. %, 0.55 wt.
  • % to about 1 wt. % 0.6 wt. % to about 1 wt. %, 0.65 wt. % to about 1 wt. %, 0.7 wt. % to about 1 wt. %, 0.75 wt. % to about 1 wt. %, 0.8 wt. % to about 1 wt. %, 0.85 wt. % to about 1 wt. %, about 0.03 wt. % to about 0.75 wt. %, about 0.05 wt. % to about 0.75 wt. %, about 0.07 wt. % to about 0.75 wt. %, about 0.1 wt.
  • % to about 0.75 wt. % about 0.15 wt. % to about 0.75 wt. %, about 0.2 wt. % to about 0.75 wt. %, about 0.25 wt. % to about 0.75 wt. %, about 0.3 wt. % to about 0.75 wt. %, about 0.35 wt. % to about 0.75 wt. %, about 0.4 wt. % to about 0.75 wt. %, about 0.45 wt. % to about 0.75 wt. %, or about 0.5 wt. % to about 0.75 wt. %.
  • the buffering material is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, or 3.9 wt. %, including increments therein.
  • the buffering material is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein.
  • the polishing composition further comprises a polishing accelerator.
  • the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %. This includes about 0.1 wt. % to about 9 wt. %, about 0.1 wt. % to about 8 wt. %, about 0.1 wt. % to about 7 wt. %, about 0.1 wt. % to about 6 wt. %, about 0.1 wt. % to about 5 wt. %, about 0.1 wt. % to about 4 wt. %, about 0.1 wt. % to about 3 wt.
  • % about 0.1 wt. % to about 2 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.1 wt. % to about 0.8 wt. %, about 0.1 wt. % to about 0.5 wt. %, about 0.5 wt. % to about 10 wt. %, about 0.5 wt. % to about 9 wt. %, about 0.5 wt. % to about 8 wt. %, about 0.5 wt. % to about 7 wt. %, about 0.5 wt. % to about 6 wt. %, about 0.5 wt. % to about 5 wt.
  • % about 0.5 wt. % to about 4 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.5 wt. % to about 1 wt. %, about 0.5 wt. % to about 0.8 wt. %, about 1 wt. % to about 10 wt. %, about 1 wt. % to about 9 wt. %, about 1 wt. % to about 8 wt. %, about 1 wt. % to about 7 wt. %, about 1 wt. % to about 6 wt.
  • the polishing accelerator is present in an amount of at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or 10.0 wt. %, including increments therein.
  • the polishing accelerator is present in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or 10.0 wt. %, including increments therein.
  • the polishing accelerator is an amino acid.
  • the amino acid is glycine.
  • the polishing composition further comprises an oxidizer.
  • the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %. This includes about 0.3 wt. % to about 4 wt. %, about 0.5 wt. % to about 4 wt. %, about 0.7 wt. % to about 4 wt. %, about 1 wt. % to about 4 wt. %, about 2 wt. % to about 4 wt. %, about 3 wt. % to about 4 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.3 wt.
  • % to about 3 wt. % about 0.5 wt. % to about 3 wt. %, about 0.7 wt. % to about 3 wt. %, about 1 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 0.1 wt. % to about 2 wt. %, 0.3 wt. % to about 2 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.7 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 0.1 wt.
  • the oxidizer is present in an amount of at least about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4 wt. %, including increments therein.
  • the oxidizer is present in an amount of about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4 wt. %, including increments therein.
  • the oxidizer is hydrogen peroxide.
  • the pH of the polishing composition at point of use is about 6 to about 9. This includes a pH of about 6 to about 8, about 6 to about 7, about 7 to about 9, about 7 to about 8, or about 8 to about 9.
  • the pH of the polishing composition may be adjusted during preparation of the raw slurry by adding a pH adjustor.
  • the pH adjustor is a base.
  • the base is potassium hydroxide or ammonium hydroxide.
  • the base is potassium hydroxide.
  • the base is ammonium hydroxide.
  • the pH adjustor is an acid.
  • the polishing composition is devoid of any triazole-based corrosion inhibitor. In some embodiments, the polishing composition is devoid of any corrosion inhibitor.
  • CMP cobalt chemical-mechanical polishing
  • polishing composition as described herein for cobalt CMP.
  • a polishing composition described herein the substrate is a wafer.
  • cobalt is located on an outer layer of the wafer.
  • the polishing composition removes cobalt but does not remove silicon-containing dielectric (e.g., SiO 2 , SiN, SiC, SiOC, SiCN).
  • the wafer comprises one or more adhesion and/or barrier layers containing one or more of titanium nitride (TiN), tantalum nitride (TaN), Ti, and Ta, located between the cobalt layer and the interlayered dielectric (ILD).
  • TiN titanium nitride
  • TaN tantalum nitride
  • Ti titanium
  • TaN tantalum nitride
  • Ti titanium
  • Ta tantalum nitride
  • Ta located between the cobalt layer and the interlayered dielectric
  • one or more adhesion and/or barrier layers are left intact after the CMP process.
  • a glycine-based slurry A (Table 1) was examined in a pot life study in ambient air environment ( FIG. 1 ).
  • Slurry A was mixed with deionized water and hydrogen peroxide at day 0 (bench top polisher; 250 rpm platen rotation speed; 90 mL/min slurry flow rate; 0.68% H 2 O 2 ; Fujibo H7000 pad; dilution factor: 3.3 ⁇ ).
  • a pH drop as well as a cobalt removal rate increase was observed after 7 days.
  • the comparative slurry A was further examined under conditions with or without a nitrogen purge.
  • the pot life study conducted under a nitrogen atmosphere exhibited minimal pH change and maintained its cobalt removal rate. Without being bound to any one particular theory, it is believed that the carbon dioxide in air dissolves in the composition and decreases the pH during the pot life.
  • Slurry A (as described in Example 1), but further comprising malic acid and Tris (pKa of 8.06 at 25° C.), was prepared (Table 1) and examined. As concentration of the buffering material increased, less change in cobalt removal rate was observed ( FIG. 4 ). The concentration of total inorganic carbon (TIC) was also examined ( FIG. 5 ) for this buffering material-containing slurry A and the slurries from FIGS. 2 and 3 .
  • TIC total inorganic carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Described herein are polishing compositions containing an abrasive and a buffering material, wherein the pH of the polishing composition is about 6 to about 9, and methods of preparing and using the same.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/419,356, filed Nov. 8, 2016, which is hereby expressly incorporated by reference in its entirety.
  • BACKGROUND
  • The present invention relates generally to the field of polishing compositions.
  • SUMMARY
  • In one aspect, provided herein are polishing compositions comprising an abrasive and a buffering material, wherein the buffering material comprises a first component and a second component; the first component comprises a Lewis acid or a Bronsted-Lowry acid; and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9 and wherein the difference between the pKa and the pH of the polishing composition at point of use is less than 1. In some embodiments, the abrasive comprises alumina, silica, or a combination thereof. In some embodiments, the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %. In some embodiments, the silica is precipitated silica. In some embodiments, the first component comprises acetic acid, ADA, bicine, boric acid, citric acid, 5,5-diethylbarbituric acid, EDTA, formic acid, glycine, glycylglycine, lactic acid, maleic acid, malic acid, phosphoric acid, picolinic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, tricine, succinic acid, taurine, or a combination of two or more thereof. In some embodiments, the first component comprises a di- or tri-carboxylic acid. In some embodiments, the di- or tri-carboxylic acid is citric acid, malic acid, maleic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, or succinic acid. In some embodiments, the first component is present in an amount of about 0.01 wt. % to about 1 wt. %. In some embodiments, the second component comprises ammonia, ACES, AMP, AMPD, AMPSO, BES, Bis-Tris, Bis-Tris-Propane, CAPSO, CHES, diethanolamine, DIPSO, EPPS, ethanolamine, N-ethylmorpholine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt, POPSO, dihydrogen phosphate salt, potassium hydroxide, pyridine, hydrogen phosphate salt, TABS, TAPS, TAPSO, TEA, TES, Tris, or a combination of two or more thereof. In some embodiments, the second component comprises Tris, Bis-Tris, CHES, TAPS, TAPSO, HEPES, TES, MOPS, PIPES, or MES. In some embodiments, the second component comprises Tris, Bis-Tris, or CHES. In some embodiments, the second component is present in an amount of about 0.1 wt. % to about 4 wt. %. In some embodiments, the polishing composition further comprises a polishing accelerator. In some embodiments, the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %. In some embodiments, the polishing accelerator is an amino acid. In some embodiments, the amino acid is glycine. In some embodiments, the polishing composition further comprises an oxidizer. In some embodiments, the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %. In some embodiments, the oxidizer is hydrogen peroxide. In some embodiments, the pH of the polishing composition at point of use is about 6 to about 9. In some embodiments, the polishing composition further comprises a pH adjustor. In some embodiments, the pH adjustor is a base. In some embodiments, the base is potassium hydroxide or ammonium hydroxide. In some embodiments, the polishing composition is devoid of any corrosion inhibitor. In some embodiments, the polishing composition is devoid of any triazole-based corrosion inhibitor.
  • In another aspect, provided herein are polishing compositions comprising an abrasive and a buffering material, wherein the pH of the polishing composition is about 6 to about 9. In some embodiments, the abrasive comprises alumina, silica, or a combination thereof. In some embodiments, the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %. In some embodiments, the silica is precipitated silica. In some embodiments, the buffering material comprises one or more compounds selected from the group consisting of acetate salt, acetic acid, boric acid, ACES, AMP, AMPD, AMPSO, BES, bicine, Bis-Tris, Bis-Tris-Propane, borate salt, boric acid, cacodylate salt, CAPSO, CHES, citrate salt, citric acid, diethanolamine, 5,5-diethylbarbituric acid, DIPSO, EDTA, EPPS, ethanolamine, N-ethylmorpholine, formate salt, formic acid, glycine, glycylglycine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, lactic acid, malate salt, maleate salt, maleic acid, malic acid, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt, phosphoric acid, picolinic acid, POPSO, dihydrogen phosphate salt, potassium hydrogen phthalate, potassium hydrogen tartrate, potassium hydroxide, propionate, pyridine, hydrogen phosphate salt, sodium tetraborate decahydrate, TABS, TAPS, TAPSO, TEA, TES, tetraoxalate, tricine, trimethylamine, Tris, succinate salt, succinic acid, and taurine. In some embodiments, the buffering material is present in an amount of about 0.01 wt. % to about 4 wt. %. In some embodiments, the polishing composition further comprises a polishing accelerator. In some embodiments, the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %. In some embodiments, the polishing accelerator is an amino acid. In some embodiments, the amino acid is glycine. In some embodiments, the polishing composition further comprises an oxidizer. In some embodiments, the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %. In some embodiments, the oxidizer is hydrogen peroxide. In some embodiments, the pH of the polishing composition at point of use is about 6 to about 9. In some embodiments, the polishing composition further comprises a pH adjustor. In some embodiments, the pH adjustor is a base. In some embodiments, the base is potassium hydroxide or ammonium hydroxide. In some embodiments, the polishing composition is devoid of any corrosion inhibitor. In some embodiments, the polishing composition is devoid of any triazole-based corrosion inhibitor.
  • In another aspect, provided herein are methods of cobalt chemical-mechanical polishing comprising applying a polishing composition disclosed herein to a substrate comprising cobalt.
  • In another aspect, provided herein are uses of a polishing composition disclosed herein for cobalt chemical-mechanical polishing.
  • In another aspect, provided herein are methods of stabilizing the cobalt removal rate in a chemical-mechanical polishing process for a substrate comprising cobalt, the method comprising applying a polishing composition disclosed herein to the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts the changes in pH and cobalt removal rate during a 7-day pot life study of a comparative polishing slurry.
  • FIG. 2 depicts the changes in cobalt removal rate during a 7-day pot life study of the slurry of FIG. 1 with an analogous slurry wherein hydrogen peroxide is added only immediately before use (i.e., polishing).
  • FIG. 3 depicts the changes in pH during a 7-day pot life study of the slurry of FIG. 1 with an analogous slurry wherein hydrogen peroxide is added only immediately before use (i.e., polishing).
  • FIG. 4 depicts a 7-day pot life study and effects on pH and cobalt removal rate of a non-limiting example of a polishing composition disclosed herein.
  • FIG. 5 depicts a 7-day pot life study and total inorganic cobalt concentration of the polishing composition of FIG. 4.
  • FIG. 6 depicts a 7-day pot life study and effects on cobalt removal rate of non-limiting examples of a polishing composition disclosed herein.
  • DETAILED DESCRIPTION
  • Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s).
  • As used herein, “about” will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the elements (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the embodiments and does not pose a limitation on the scope of the claims unless otherwise stated. No language in the specification should be construed as indicating any non-claimed element as essential.
  • Provided herein, in one aspect, are polishing compositions for cobalt chemical-mechanical polishing (CMP). In some embodiments, the polishing compositions described herein exhibit more stabilized pH than previously disclosed polishing compositions. In some embodiments, the polishing compositions described herein exhibit more stabilized cobalt removal rate than previously disclosed polishing compositions. In some embodiments, the polishing compositions described herein exhibit more stabilized pH as well as more stabilized cobalt removal rate than previously disclosed polishing compositions. In further embodiments, the polishing compositions described herein exhibit better shelf life than previously reported polishing compositions.
  • Also provided herein, in another aspect, are polishing compositions comprising an abrasive and a buffering material, wherein the pH of the polishing composition is about 6 to about 9.
  • Also provided herein, in another aspect, are polishing compositions comprising an abrasive and a buffering material, wherein the buffering material comprises a first component and a second component; the first component comprises a Lewis acid or a Bronsted-Lowry acid; and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9 and wherein the difference between the pKa and the pH of the polishing composition at point of use is less than 1. In some embodiments, the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and Tris. In some embodiments, the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and Bis-Tris. In some embodiments, the polishing composition comprises an abrasive and a buffering material, wherein the buffering material comprises malic acid and CHES. In further embodiments, the abrasive comprises precipitated silica.
  • Examples of abrasives include, but are not limited to alumina, silica, or combinations thereof. Silica includes precipitated silica, also typically called colloidal silica.
  • In some embodiments, the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %. This includes amounts of about 0.01 wt. % to about 8 wt. %, about 0.01 wt. % to about 5 wt. %, about 0.01 wt. % to about 3 wt. %, about 0.01 wt. % to about 1 wt. %, about 0.05 wt. % to about 10 wt. %, about 0.05 wt. % to about 8 wt. %, about 0.05 wt. % to about 5 wt. %, about 0.05 wt. % to about 3 wt. %, about 0.05 wt. % to about 1 wt. %, about 0.1 wt. % to about 10 wt. %, about 0.1 wt. % to about 8 wt. %, about 0.1 wt. % to about 5 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.5 wt. % to about 10 wt. %, about 0.5 wt. % to about 8 wt. %, about 0.5 wt. % to about 5 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.5 wt. % to about 1 wt. %, about 1 wt. % to about 10 wt. %, about 1 wt. % to about 8 wt. %, about 1 wt. % to about 5 wt. %, or about 1 wt. % to about 3 wt. %. In some embodiments, the abrasive is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 wt. %, including increments therein. In some embodiments, the abrasive is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 wt. %, including increments therein.
  • In some embodiments, the buffering material comprises a first component and a second component.
  • Illustrative first components include, but are not limited to, ADA (N-(2-acetamido)-iminodiacetic acid), acetic acid, bicine (N,N-bis(2-hydroxyethyl)glycine), boric acid, citric acid, 5,5-diethylbarbituric acid, EDTA, formic acid, glycine, glycylglycine, lactic acid, maleic acid, malic acid, phosphoric acid, picolinic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, tricine (N-tris(hydroxymethyl)methylglycine), succinic acid, taurine, or a combination of two or more thereof. In some embodiments, the first component comprises a di- or tri-carboxylic acid. In further embodiments, the di- or tri-carboxylic acid is selected from the group consisting of citric acid, malic acid, maleic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, succinic acid, or a combination of any two or more thereof. In some embodiments, the first component comprises malic acid.
  • In some embodiments, the first component is present in an amount of about 0.01 wt. % to about 1 wt. %. This includes about 0.03 wt. % to about 1 wt. %, about 0.05 wt. % to about 1 wt. %, about 0.07 wt. % to about 1 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.15 wt. % to about 1 wt. %, about 0.2 wt. % to about 1 wt. %, about 0.25 wt. % to about 1 wt. %, about 0.3 wt. % to about 1 wt. %, about 0.35 wt. % to about 1 wt. %, about 0.4 wt. % to about 1 wt. %, about 0.45 wt. % to about 1 wt. %, about 0.5 wt. % to about 1 wt. %, about 0.55 wt. % to about 1 wt. %, about 0.6 wt. % to about 1 wt. %, about 0.65 wt. % to about 1 wt. %, about 0.7 wt. % to about 1 wt. %, about 0.75 wt. % to about 1 wt. %, about 0.8 wt. % to about 1 wt. %, about 0.85 wt. % to about 1 wt. %, about 0.03 wt. % to about 0.75 wt. %, about 0.05 wt. % to about 0.75 wt. %, about 0.07 wt. % to about 0.75 wt. %, about 0.1 wt. % to about 0.75 wt. %, about 0.15 wt. % to about 0.75 wt. %, about 0.2 wt. % to about 0.75 wt. %, about 0.25 wt. % to about 0.75 wt. %, about 0.3 wt. % to about 0.75 wt. %, about 0.35 wt. % to about 0.75 wt. %, about 0.4 wt. % to about 0.75 wt. %, about 0.45 wt. % to about 0.75 wt. %, or about 0.5 wt. % to about 0.75 wt. %. In some embodiments, the first component is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, or 1 wt. %, including increments therein. In some embodiments, the first component is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, or 1 wt. %, including increments therein.
  • Illustrative second components include, but are not limited to, ammonia, ACES (N-(2-acetamido)-aminoethanesulfonic acid), AMP (2-amino-2-methyl-1-propanol), AMPD (2-amino-2-methyl-1,3-propanediol), AMPSO (N-(1,1-dimethyl-2-hydroxyethyl)-3-amino-2-hydroxypropanesulfonic acid), BES (N,N-bis-(2-hydroxyethyl)-2-aminoethanesulfonic acid), Bis-Tris ([bis-(2-hydroxyethyl)-imino]-tris-(hydroxymethylmethane)), Bis-Tris-Propane (1,3-bis[tris(hydroxymethyl)-methylamino]propane), CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), CHES (cyclohexylaminoethanesulfonic acid), diethanolamine, DIPSO (3-[N-bis(hydroxyethyl)amino]-2-hydroxypropanesulfonic acid), EPPS (N-(2-hydroxyethyl)-piperazine-N′-3-propanesulfonic acid), ethanolamine, N-ethylmorpholine, HEPBS (N-(2-hydroxyethyl)piperazine-N′-(4-butanesulfonic acid)), HEPES (N-(2-hydroxyethyl)-piperazine-N′-ethanesulfonic acid), HEPPSO (N-(2-hydroxyethyl)-piperazine-N′-2-hydroxypropanesulfonic acid), L-histidine, hydrazine, imidazole, MES (2-(N-morpholino)ethanesulfonic acid), methylamine, N-methyldiethanolamine, MOBS (4-(N-morpholino)butanesulfonic acid), MOPS (3-(N-morpholino)propanesulfonic acid), MOPSO, morpholine, PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid)), piperazine, phosphate salt, POPSO (piperazine-N,N′-bis(2-hydroxypropanesulfonic acid)), dihydrogen phosphate salt, potassium hydroxide, pyridine, hydrogen phosphate salt, TABS (N-tris(hydroxymethyl)methyl-4-aminobutanesulfonic acid), TAPS (3-{[tris(hydroxymethyl)-methyl]-amino}-propanesulfonic acid), TAPSO (3-[N-tris(hydroxymethyl)-methylamino]-2-hydroxypropanesulfonic acid), TEA (triethanolamine), TES (2-{[tris(hydroxymethyl)methyl]amino}ethanesulfonic acid), Tris (tris(hydroxymethyl)methylamine), or a combination of any two or more thereof. In some embodiments, the second component comprises Tris, Bis-Tris, CHES, TAPS, TAPSO, HEPES, TES, MOPS, PIPES, or IVIES. In some embodiments, the second component comprises Tris, Bis-Tris, or CHES. In some embodiments, the second component comprises Tris. In some embodiments, the second component comprises Bis-Tris. In some embodiments, the second component comprises CHES.
  • In some embodiments, the second component is present in an amount of about 0.1 wt. % to about 4 wt. %. This includes about 0.3 wt. % to about 3 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.7 wt. % to about 3 wt. %, about 1 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 0.1 wt. % to about 2 wt. %, about 0.1 wt. % to about 3 wt. %, 0.3 wt. % to about 2 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.7 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 0.1 wt. % to about 1 wt. %, 0.3 wt. % to about 1 wt. %, about 0.5 wt. % to about 1 wt. %, or about 0.7 wt. % to about 1 wt. %. In some embodiments, the second component is present in an amount of at least about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein. In some embodiments, the second component is present in an amount of about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein.
  • In some embodiments, the first component comprises a Lewis acid or a Bronsted-Lowry acid, and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9. In some embodiments, the first component comprises malic acid and the second component comprises Tris. In some embodiments, the first component comprises malic acid and the second component comprises Bis-Tris. In some embodiments, the first component comprises malic acid and the second component comprises CHES.
  • In some embodiments, the buffering material comprises one or more compounds selected from the group consisting of acetate salt, acetic acid, boric acid, ACES, AMP, AMPD, AMPSO, BES, bicine, Bis-Tris, Bis-Tris-Propane, borate salt, boric acid, cacodylate salt, CAPSO, CHES, citrate salt, citric acid, diethanolamine, 5,5-diethylbarbituric acid, DIPSO, EDTA, EPPS, ethanolamine, N-ethylmorpholine, formate salt, formic acid, glycine, glycylglycine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, lactic acid, malate salt, maleate salt, maleic acid, malic acid, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt, phosphoric acid, picolinic acid, POPSO, dihydrogen phosphate salt, potassium hydrogen phthalate, potassium hydrogen tartrate, potassium hydroxide, propionate, pyridine, hydrogen phosphate salt, sodium tetraborate decahydrate, TABS, TAPS, TAPSO, TEA, TES, tetraoxalate, tricine, trimethylamine, Tris, succinate salt, succinic acid, and taurine. In further embodiments, the buffering material is present in an amount of about 0.01 wt. % to about 4 wt. %. This includes about 0.01 wt. % to about 3 wt. %, about 0.03 wt. % to about 3 wt. %, about 0.05 wt. % to about 3 wt. %, about 0.07 wt. % to about 3 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.2 wt. % to about 3 wt. %, about 0.3 wt. % to about 3 wt. %, about 0.4 wt. % to about 3 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.6 wt. % to about 3 wt. %, about 0.7 wt. % to about 3 wt. %, about 0.8 wt. % to about 3 wt. %, about 0.9 wt. % to about 3 wt. %, about 1 wt. % to about 3 wt. %, about 1.1 wt. % to about 3 wt. %, about 1.2 wt. % to about 3 wt. %, about 1.3 wt. % to about 3 wt. %, about 1.4 wt. % to about 3 wt. %, about 1.5 wt. % to about 3 wt. %, about 1.6 wt. % to about 3 wt. %, about 1.7 wt. % to about 3 wt. %, about 1.8 wt. % to about 3 wt. %, about 1.9 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 2.1 wt. % to about 3 wt. %, about 2.2 wt. % to about 3 wt. %, about 2.3 wt. % to about 3 wt. %, about 2.4 wt. % to about 3 wt. %, about 2.5 wt. % to about 3 wt. %, about 2.6 wt. % to about 3 wt. %, about 2.7 wt. % to about 3 wt. %, about 2.8 wt. % to about 3 wt. %, about 2.9 wt. % to about 3 wt. %, 0.03 wt. % to about 2 wt. %, about 0.05 wt. % to about 2 wt. %, about 0.07 wt. % to about 2 wt. %, about 0.1 wt. % to about 2 wt. %, about 0.2 wt. % to about 2 wt. %, about 0.3 wt. % to about 2 wt. %, about 0.4 wt. % to about 2 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.6 wt. % to about 2 wt. %, about 0.7 wt. % to about 3 wt. %, about 0.8 wt. % to about 2 wt. %, about 0.9 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 1.1 wt. % to about 2 wt. %, about 1.2 wt. % to about 2 wt. %, about 1.3 wt. % to about 2 wt. %, about 1.4 wt. % to about 2 wt. %, about 1.5 wt. % to about 2 wt. %, about 1.6 wt. % to about 2 wt. %, about 1.7 wt. % to about 2 wt. %, about 1.8 wt. % to about 2 wt. %, about 1.9 wt. % to about 2 wt. %, about 0.01 wt. % to about 1 wt. %, about 0.03 wt. % to about 1 wt. %, 0.05 wt. % to about 1 wt. %, 0.07 wt. % to about 1 wt. %, 0.1 wt. % to about 1 wt. %, 0.15 wt. % to about 1 wt. %, 0.2 wt. % to about 1 wt. %, 0.25 wt. % to about 1 wt. %, 0.3 wt. % to about 1 wt. %, 0.35 wt. % to about 1 wt. %, 0.4 wt. % to about 1 wt. %, 0.45 wt. % to about 1 wt. %, 0.5 wt. % to about 1 wt. %, 0.55 wt. % to about 1 wt. %, 0.6 wt. % to about 1 wt. %, 0.65 wt. % to about 1 wt. %, 0.7 wt. % to about 1 wt. %, 0.75 wt. % to about 1 wt. %, 0.8 wt. % to about 1 wt. %, 0.85 wt. % to about 1 wt. %, about 0.03 wt. % to about 0.75 wt. %, about 0.05 wt. % to about 0.75 wt. %, about 0.07 wt. % to about 0.75 wt. %, about 0.1 wt. % to about 0.75 wt. %, about 0.15 wt. % to about 0.75 wt. %, about 0.2 wt. % to about 0.75 wt. %, about 0.25 wt. % to about 0.75 wt. %, about 0.3 wt. % to about 0.75 wt. %, about 0.35 wt. % to about 0.75 wt. %, about 0.4 wt. % to about 0.75 wt. %, about 0.45 wt. % to about 0.75 wt. %, or about 0.5 wt. % to about 0.75 wt. %. In some embodiments, the buffering material is present in an amount of at least about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, or 3.9 wt. %, including increments therein. In some embodiments, the buffering material is present in an amount of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6. 3.7, 3.8, 3.9, or 4.0 wt. %, including increments therein.
  • In some embodiments, the polishing composition further comprises a polishing accelerator. In some embodiments, the polishing accelerator is present in an amount of about 0.1 wt. % to about 10 wt. %. This includes about 0.1 wt. % to about 9 wt. %, about 0.1 wt. % to about 8 wt. %, about 0.1 wt. % to about 7 wt. %, about 0.1 wt. % to about 6 wt. %, about 0.1 wt. % to about 5 wt. %, about 0.1 wt. % to about 4 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.1 wt. % to about 2 wt. %, about 0.1 wt. % to about 1 wt. %, about 0.1 wt. % to about 0.8 wt. %, about 0.1 wt. % to about 0.5 wt. %, about 0.5 wt. % to about 10 wt. %, about 0.5 wt. % to about 9 wt. %, about 0.5 wt. % to about 8 wt. %, about 0.5 wt. % to about 7 wt. %, about 0.5 wt. % to about 6 wt. %, about 0.5 wt. % to about 5 wt. %, about 0.5 wt. % to about 4 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.5 wt. % to about 1 wt. %, about 0.5 wt. % to about 0.8 wt. %, about 1 wt. % to about 10 wt. %, about 1 wt. % to about 9 wt. %, about 1 wt. % to about 8 wt. %, about 1 wt. % to about 7 wt. %, about 1 wt. % to about 6 wt. %, about 1 wt. % to about 5 wt. %, about 1 wt. % to about 4 wt. %, about 1 wt. % to about 3 wt. %, about 1 wt. % to about 2 wt. %, about 3 wt. % to about 9 wt. %, about 3 wt. % to about 8 wt. %, about 3 wt. % to about 7 wt. %, about 3 wt. % to about 6 wt. %, about 3 wt. % to about 5 wt. %, about 3 wt. % to about 4 wt. %, or about 5 wt. % to about 10 wt. %. In some embodiments, the polishing accelerator is present in an amount of at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or 10.0 wt. %, including increments therein. In some embodiments, the polishing accelerator is present in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or 10.0 wt. %, including increments therein. In some embodiments, the polishing accelerator is an amino acid. In further embodiments, the amino acid is glycine.
  • In some embodiments, the polishing composition further comprises an oxidizer. In some embodiments, the oxidizer is present in an amount of about 0.1 wt. % to about 4 wt. %. This includes about 0.3 wt. % to about 4 wt. %, about 0.5 wt. % to about 4 wt. %, about 0.7 wt. % to about 4 wt. %, about 1 wt. % to about 4 wt. %, about 2 wt. % to about 4 wt. %, about 3 wt. % to about 4 wt. %, about 0.1 wt. % to about 3 wt. %, about 0.3 wt. % to about 3 wt. %, about 0.5 wt. % to about 3 wt. %, about 0.7 wt. % to about 3 wt. %, about 1 wt. % to about 3 wt. %, about 2 wt. % to about 3 wt. %, about 0.1 wt. % to about 2 wt. %, 0.3 wt. % to about 2 wt. %, about 0.5 wt. % to about 2 wt. %, about 0.7 wt. % to about 2 wt. %, about 1 wt. % to about 2 wt. %, about 0.1 wt. % to about 1 wt. %, 0.3 wt. % to about 1 wt. %, about 0.5 wt. % to about 1 wt. %, or about 0.7 wt. % to about 1 wt. %. In some embodiments, the oxidizer is present in an amount of at least about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4 wt. %, including increments therein. In some embodiments, the oxidizer is present in an amount of about 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4 wt. %, including increments therein. In some embodiments, the oxidizer is hydrogen peroxide.
  • In some embodiments, the pH of the polishing composition at point of use is about 6 to about 9. This includes a pH of about 6 to about 8, about 6 to about 7, about 7 to about 9, about 7 to about 8, or about 8 to about 9. The pH of the polishing composition may be adjusted during preparation of the raw slurry by adding a pH adjustor. In some embodiments, the pH adjustor is a base. In still further embodiments, the base is potassium hydroxide or ammonium hydroxide. In some embodiments, the base is potassium hydroxide. In some embodiments, the base is ammonium hydroxide. In some embodiments, the pH adjustor is an acid.
  • In some embodiments, the polishing composition is devoid of any triazole-based corrosion inhibitor. In some embodiments, the polishing composition is devoid of any corrosion inhibitor.
  • Methods/Uses
  • Provided herein, in another aspect, are methods of cobalt chemical-mechanical polishing (CMP) comprising applying a polishing composition described herein.
  • Provided herein, in another aspect, are uses of a polishing composition as described herein for cobalt CMP.
  • Provided herein, in another aspect, are methods of stabilizing the cobalt removal rate in a CMP process for a substrate comprising cobalt, the method comprising applying a polishing composition described herein. In some embodiments, the substrate is a wafer. In further embodiments, cobalt is located on an outer layer of the wafer. In some embodiments, the polishing composition removes cobalt but does not remove silicon-containing dielectric (e.g., SiO2, SiN, SiC, SiOC, SiCN). In some embodiments, the wafer comprises one or more adhesion and/or barrier layers containing one or more of titanium nitride (TiN), tantalum nitride (TaN), Ti, and Ta, located between the cobalt layer and the interlayered dielectric (ILD). In further embodiments, one or more adhesion and/or barrier layers are left intact after the CMP process.
  • The present invention, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention.
  • EXAMPLES Example 1. Study of Comparative Glycine-Based Slurry (without Buffering Material)
  • A glycine-based slurry A (Table 1) was examined in a pot life study in ambient air environment (FIG. 1). Slurry A was mixed with deionized water and hydrogen peroxide at day 0 (bench top polisher; 250 rpm platen rotation speed; 90 mL/min slurry flow rate; 0.68% H2O2; Fujibo H7000 pad; dilution factor: 3.3×). A pH drop as well as a cobalt removal rate increase was observed after 7 days.
  • The comparative slurry A was further examined under conditions with or without a nitrogen purge. The pot life study conducted under a nitrogen atmosphere exhibited minimal pH change and maintained its cobalt removal rate. Without being bound to any one particular theory, it is believed that the carbon dioxide in air dissolves in the composition and decreases the pH during the pot life.
  • The effect of the presence of hydrogen peroxide under ambient air conditions was also examined. Hydrogen peroxide was either added from day 0 or added immediately prior to testing (FIGS. 2 and 3). The results suggest that the presence of hydrogen peroxide from day 0 results in a pH drop and an increase in cobalt removal rate when the slurry is maintained under air.
  • Example 2. Study of Non-Limiting Example of Slurry with Buffering Material
  • Slurry A (as described in Example 1), but further comprising malic acid and Tris (pKa of 8.06 at 25° C.), was prepared (Table 1) and examined. As concentration of the buffering material increased, less change in cobalt removal rate was observed (FIG. 4). The concentration of total inorganic carbon (TIC) was also examined (FIG. 5) for this buffering material-containing slurry A and the slurries from FIGS. 2 and 3.
  • TABLE 1
    Slurry Slurry A Slurry A -(with Tris)
    pH (raw slurry) 8.1 8.1
    particle 1.38% 1.38%
    KOH 0.05% 0.05%
    glycine 3.64% 3.64%
    potassium 0.004%  0.004% 
    laurate
    biocide 0.032%  0.032% 
    malic acid 0.31%
    Tris 0.92%
  • Example 3. Study of Additional Non-Limiting Examples of Slurries with Buffering Material
  • Two slurries similar to slurry A (as described in Example 1), but further comprising malic acid and either Bis-Tris (pKa of 6.48 at 25° C.) or CHES (pKa of 9.50 at 25° C.), were prepared (Table 2) and examined. These slurries were compared with Slurry A and the slurry of Example 2. The slurries with malic acid and Tris, Bis-Tris, or CHES all maintained removal rates during a seven-day pot life study (FIG. 6), suggesting that the inclusion of buffering material is essential to avoid change in removal rate during the pot life study. Note: point of use (POU) sample included hydrogen peroxide (at POU) of 0.68 wt. % and a dilution factor of 3.3× by weight. conditions for the pot-life study: benchtop polisher, 150 rpm, 90 mL/min, 1.06 psi, Fujibo H7000 pad, coupon: 1.5 in×1.5 in.
  • TABLE 2
    Slurry Slurry A - (with Bis-Tris) Slurry A - (with CHES)
    pH (raw slurry) 6.5 8.6
    particle 1.38% 1.38%
    KOH 0.45%
    glycine 3.64% 3.64%
    potassium 0.004%  0.004% 
    laurate
    biocide 0.032%  0.032% 
    malic acid 3.97% 0.31%
    Bis-Tris 1.58%
    CHES 1.57%
  • While certain embodiments have been illustrated and described, it should be understood that changes and modifications can be made therein in accordance with ordinary skill in the art without departing from the technology in its broader aspects as defined in the following claims.
  • The embodiments, illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising,” “including,” “containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the claimed technology. Additionally, the phrase “consisting essentially of” will be understood to include those elements specifically recited and those additional elements that do not materially affect the basic and novel characteristics of the claimed technology. The phrase “consisting of” excludes any element not specified.
  • The present disclosure is not to be limited in terms of the particular embodiments described in this application. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and compositions within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, or compositions, which can of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
  • In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
  • As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member.
  • All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document was specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure.
  • Other embodiments are set forth in the following claims.

Claims (20)

1. A polishing composition comprising an abrasive and a buffering material, wherein the buffering material comprises a first component and a second component; the first component comprises a Lewis acid or a Bronsted-Lowry acid; and the second component comprises a compound devoid of a carboxylic acid moiety, with a pKa of about 6 to about 9 and wherein the difference between the pKa and the pH of the polishing composition at point of use is less than 1.
2. The polishing composition of claim 1, wherein the abrasive comprises alumina, silica, or a combination thereof.
3. The polishing composition of claim 1, wherein the abrasive is present in an amount of about 0.01 wt. % to about 10 wt. %.
4. The polishing composition of claim 1, wherein the silica is precipitated silica.
5. The polishing composition of claim 1, wherein the first component comprises acetic acid, ADA, bicine, boric acid, citric acid, 5,5-diethylbarbituric acid, EDTA, formic acid, glycine, glycylglycine, lactic acid, maleic acid, malic acid, phosphoric acid, picolinic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, tricine, succinic acid, taurine, or a combination of two or more thereof.
6. The polishing composition of claim 1, wherein the first component comprises a di- or tri-carboxylic acid.
7. The polishing composition of claim 6, wherein the di- or tri-carboxylic acid is citric acid, malic acid, maleic acid, potassium hydrogen phthalate, potassium hydrogen tartrate, or succinic acid.
8. The polishing composition of claim 1, wherein the first component is present in an amount of about 0.01 wt. % to about 1 wt. %.
9. The polishing composition of claim 1, wherein the second component comprises ammonia, ACES, AMP, AMPD, AMPSO, BES, Bis-Tris, Bis-Tris-Propane, CAPSO, CHES, diethanolamine, DIPSO, EPPS, ethanolamine, N-ethylmorpholine, HEPBS, HEPES, HEPPSO, L-histidine, hydrazine, imidazole, MES, methylamine, N-methyldiethanolamine, MOBS, MOPS, MOPSO, morpholine, PIPES, piperazine, phosphate salt, POPSO, dihydrogen phosphate salt, potassium hydroxide, pyridine, hydrogen phosphate salt, TABS, TAPS, TAPSO, TEA, TES, Tris, or a combination of two or more thereof.
10. The polishing composition of claim 9, wherein the second component comprises Tris, Bis-Tris, CHES, TAPS, TAPSO, HEPES, TES, MOPS, PIPES, or MES.
11. The polishing composition of claim 1, wherein the second component is present in an amount of about 0.1 wt. % to about 4 wt. %.
12.-15. (canceled)
16. The polishing composition of claim 1, further comprising an oxidizer.
17.-22. (canceled)
23. The polishing composition of claim 1, where the polishing composition is devoid of any corrosion inhibitor.
24. The polishing composition of claim 1, where the polishing composition is devoid of any triazole-based corrosion inhibitor.
25.-43. (canceled)
44. A method of cobalt chemical-mechanical polishing comprising applying a polishing composition of claim 1 to a substrate comprising cobalt.
45. (canceled)
46. A method of stabilizing a cobalt removal rate in a chemical-mechanical polishing process for a substrate comprising cobalt, the method comprising applying a polishing composition of claim 1 to the substrate.
US15/797,685 2016-11-08 2017-10-30 Buffered slurry formulation for cobalt CMP Active US10570315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/797,685 US10570315B2 (en) 2016-11-08 2017-10-30 Buffered slurry formulation for cobalt CMP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662419356P 2016-11-08 2016-11-08
US15/797,685 US10570315B2 (en) 2016-11-08 2017-10-30 Buffered slurry formulation for cobalt CMP

Publications (2)

Publication Number Publication Date
US20180127618A1 true US20180127618A1 (en) 2018-05-10
US10570315B2 US10570315B2 (en) 2020-02-25

Family

ID=62066094

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/797,685 Active US10570315B2 (en) 2016-11-08 2017-10-30 Buffered slurry formulation for cobalt CMP

Country Status (1)

Country Link
US (1) US10570315B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264010A (en) * 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
US20040152309A1 (en) * 2003-02-03 2004-08-05 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
US20140099790A1 (en) * 2012-05-10 2014-04-10 Air Products And Chemicals, Inc. Chemical Mechanical Polishing Composition Having Chemical Additives and Methods for Using Same
US20140335762A1 (en) * 2011-12-09 2014-11-13 Fujimi Incorporated Polishing composition, and polishing method and substrate production method using same
US20150184029A1 (en) * 2007-09-21 2015-07-02 Cabot Microelectronics Corporation Polishing composition and method utilizing abrasive particles treated with an aminosilane
WO2015129342A1 (en) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド Polishing composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740589B2 (en) 2000-11-30 2004-05-25 Showa Denko Kabushiki Kaisha Composition for polishing semiconductor wafer, semiconductor circuit wafer, and method for producing the same
CN100472729C (en) 2005-05-06 2009-03-25 旭硝子株式会社 Composition for copper wiring polishing and method of polishing surface of semiconductor integrated circuit
CN102304327A (en) 2011-07-05 2012-01-04 复旦大学 Polishing solution based on metal Co for polishing process
US20130186850A1 (en) 2012-01-24 2013-07-25 Applied Materials, Inc. Slurry for cobalt applications
KR102160024B1 (en) 2013-02-28 2020-09-25 가부시키가이샤 후지미인코퍼레이티드 Polishing slurry for cobalt removal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264010A (en) * 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
US20040152309A1 (en) * 2003-02-03 2004-08-05 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
US20150184029A1 (en) * 2007-09-21 2015-07-02 Cabot Microelectronics Corporation Polishing composition and method utilizing abrasive particles treated with an aminosilane
US20140335762A1 (en) * 2011-12-09 2014-11-13 Fujimi Incorporated Polishing composition, and polishing method and substrate production method using same
US20140099790A1 (en) * 2012-05-10 2014-04-10 Air Products And Chemicals, Inc. Chemical Mechanical Polishing Composition Having Chemical Additives and Methods for Using Same
WO2015129342A1 (en) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド Polishing composition
US20170009101A1 (en) * 2014-02-26 2017-01-12 Fujimi Incorporated Polishing composition

Also Published As

Publication number Publication date
US10570315B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
CN109609035B (en) Polishing composition comprising charged abrasive
EP2969391B1 (en) Methods of polishing sapphire surfaces
EP2888077B1 (en) Methods of polishing sapphire surfaces
KR101992996B1 (en) Chemical mechanical polishing composition having chemical additives and methods for using same
CN100432174C (en) Barrier polishing fluid
JP2017505532A (en) CMP composition and method for selective removal of silicon nitride
JP2016524325A (en) Method of using a chemical mechanical polishing (CMP) composition for polishing a substrate or layer containing at least one III-V material
CN101684392B (en) Chemical mechanical polishing solution
CN107210214A (en) Cmp treatment compositions, chemical and mechanical grinding method and cleaning method
KR20130126536A (en) Chemical mechanical polishing composition having chemical additives and methods for using same
US10570315B2 (en) Buffered slurry formulation for cobalt CMP
TW202024285A (en) Polishing compositions and methods of using same
WO2018180153A1 (en) Polishing composition and polishing method
TW202000848A (en) Low oxide trench dishing chemical mechanical polishing
TWI725462B (en) Low oxide trench dishing chemical mechanical polishing
JP2015532005A (en) Compositions and methods for selectively polishing platinum and ruthenium materials
JP7409917B2 (en) CMP composition and method using the same
KR101534338B1 (en) Cmp slurry composition and polishing method using the same
TWI791862B (en) Low oxide trench dishing chemical mechanical polishing composition, method and system
WO2018128849A1 (en) Composition and method for polishing silicon carbide
KR102185070B1 (en) Polishing slurry composition for sti process
CN111234705A (en) Polishing solution for chemical mechanical polishing of silicon carbide
KR101076625B1 (en) A Slurry Composition for Forming Tungsten Line and Method for Manufacturing Semiconductor Device Using the Same
CN101622695A (en) CMP slurry for silicon film
TWI767355B (en) High oxide removal rates shallow trench isolation chemical mechanical planarization compositions, system and method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4