US20180127082A1 - Airline door retractable wave fence with steps for evacuation - Google Patents

Airline door retractable wave fence with steps for evacuation Download PDF

Info

Publication number
US20180127082A1
US20180127082A1 US15/863,776 US201815863776A US2018127082A1 US 20180127082 A1 US20180127082 A1 US 20180127082A1 US 201815863776 A US201815863776 A US 201815863776A US 2018127082 A1 US2018127082 A1 US 2018127082A1
Authority
US
United States
Prior art keywords
aircraft
inflatable
evacuation unit
door
evacuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/863,776
Inventor
Sergey Barmichev
Mithra Sankrithi
David Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US15/863,776 priority Critical patent/US20180127082A1/en
Assigned to THE BOEING COMPANY reassignment THE BOEING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANKRITHI, MITHRA, BARMICHEV, SERGEY, ECKERT, DAVID
Publication of US20180127082A1 publication Critical patent/US20180127082A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/24Steps mounted on, and retractable within, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • B64D25/08Ejecting or escaping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • B64D25/08Ejecting or escaping means
    • B64D25/14Inflatable escape chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • B64D25/08Ejecting or escaping means
    • B64D25/18Flotation gear
    • Y10S244/905

Definitions

  • the present disclosure relates to airplane door steps for evacuation.
  • it relates to an airplane door retractable wave fence with steps for evacuation.
  • a particular door can be considered as not being usable for passenger egress subsequent to ditching. These situations may occur on multi-deck commercial airplanes, high-wing airplanes, mid-wing airplanes, and short narrow body low-wing airplanes.
  • the door may be considered as not being usable for passenger egress for several reasons. One of the reasons is that the airplane will sink faster than it is getting lighter due to the passenger egress, so the door sill becomes negative faster than the certification requirements for a positive door sill state. Even if the door sill does not decrease, the marginally positive sill allows for waves and splashes to enter into the cabin, thereby increasing the airplane sinking rate.
  • a method for permitting evacuation of an aircraft following a water landing involves deploying, an evacuation unit, from inside a storage housing located proximate a door of the aircraft.
  • the evacuation unit comprises at least one step and a wave fence.
  • the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • the top step of the step(s) comprises an upper surface of the wave fence upon which an occupant evacuating the aircraft can step.
  • the storage housing is located under at least one floor panel, located on a portion of an inflatable slide, located on an interior wall of the aircraft, or located on an exterior wall of the aircraft.
  • the method further involves opening, the storage housing, to expose the evacuation unit for deployment.
  • the evacuation unit further comprises a rigid infrastructure that is foldable.
  • the deploying of the evacuation unit comprises unfolding the rigid infrastructure by use of compressed gas, hydraulics, electrical power, pneumatics, at least one spring, and/or at least one manual pump.
  • the wave fence after deployment of the evacuation unit, is located interior to the aircraft and/or exterior to the aircraft.
  • the method further involves attaching, to a first location proximate a first side of the frame of the door, a first side of the wave fence; and attaching, to a second location proximate a second side of the frame of the door, a second side of the wave fence.
  • the attaching of the first side of the wave fence to the first location and the attaching of the second side of the wave fence to the second location are via at least one rail, at least one fastener, and/or at least one zipper.
  • the evacuation unit is constructed from an inflatable structure.
  • the deploying of the evacuation unit comprises inflating the inflatable structure by use of compressed gas and/or at least one manual pump.
  • the evacuation unit further comprises a rigid infrastructure that is foldable and housed within the inflatable structure.
  • the inflatable structure comprises at least three inflatable sleeves and/or an accordion structure.
  • an apparatus for permitting evacuation of an aircraft following a water landing comprises at least one step and a wave fence.
  • the apparatus is to be deployed from inside a storage housing located proximate a door of the aircraft.
  • at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • the apparatus further comprises a rigid infrastructure that is foldable.
  • the apparatus is deployed by unfolding the rigid infrastructure by use of compressed gas, hydraulics, electrical power, pneumatics, at least one spring, and/or at least one manual pump.
  • the apparatus is constructed from an inflatable structure.
  • the apparatus is deployed by inflation of the inflatable structure by use of compressed gas and/or at least one manual pump.
  • the apparatus further comprises a rigid infrastructure that is foldable and housed within the inflatable structure.
  • the inflatable structure comprises at least three inflatable sleeves and/or an accordion structure.
  • a system for permitting evacuation of an aircraft following a water landing comprises an evacuation unit to be deployed from inside a storage housing.
  • the evacuation unit comprises at least one step and a wave fence.
  • the system further comprises the storage housing located proximate a door of the aircraft.
  • at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • FIG. 1 is a diagram of an aircraft door with a marginally positive door sill, in accordance with at least one embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an interior aircraft cabin view of a first embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 3 is a diagram of the first embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 5 is a diagram showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an exterior aircraft view of the first embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 7A is a diagram of a second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 7B is a diagram showing a foldable rigid infrastructure of the second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 8A is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit in a stowed position with the floor panels closed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 8B is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit in a stowed position with the floor panels opened, in accordance with at least one embodiment of the present disclosure.
  • FIG. 9 is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an interior cabin view of the second embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 11A is a diagram showing a top view of a third embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 11B is a diagram showing a bottom view of the third embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 12A is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 12B is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13A is a diagram showing an interior aircraft cabin view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13B is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14A is a diagram showing a side view of a fourth embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14B is a diagram showing another side view of the fourth embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 15 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 16 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 17 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 18 is a diagram showing an interior aircraft cabin view of the fourth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 19A is a diagram showing an interior aircraft cabin view of the fifth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 19B is a diagram showing an exterior aircraft view of the fifth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 20 is a flow chart showing the disclosed method for permitting evacuation of an aircraft following a water landing, in accordance with at least one embodiment of the present disclosure.
  • the methods and apparatus disclosed herein provide an operative system for an airplane door retractable wave fence with steps for evacuation.
  • the disclosed system provides an evacuation unit that allows for safe emergency evacuation following a ditching event (i.e. a water landing) when using doors with marginally positive door sill values.
  • the evacuation unit comprises a wave fence (or dam), which typically will be stowed inside the passenger floor of the cabin of the aircraft next to the door threshold. When the wave fence is fully deployed, it will form a water-tight contact with the aircraft fuselage structure, thereby artificially increasing the positive water sill by one or more stairway steps.
  • FIG. 1 is a diagram 100 of an aircraft door 110 with a marginally positive door sill 120 a , in accordance with at least one embodiment of the present disclosure.
  • an exterior view of the aircraft 130 is shown.
  • the aircraft door 110 is shown to be open, and the evacuation slide (i.e. inflatable slide) 140 is shown to be deployed.
  • the water level 150 is shown to only be a few inches lower than the bottom of the aircraft door 110 , thereby establishing a marginally positive door sill 120 a .
  • a first embodiment of the evacuation unit 160 is shown to be in a stowed position in the cabin of the aircraft 130 .
  • FIG. 2 is a diagram 200 showing an interior aircraft cabin view of a first embodiment of the disclosed evacuation unit 160 in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 is shown to be closed, and the door 110 is shown to include a storage compartment 230 for storing the evacuation slide 140 .
  • the evacuation unit 160 is shown to be in a stowed position.
  • the evacuation unit 160 is housed within a storage housing (not shown) located under the cabin floor and flush with at least one floor panel 220 .
  • the floor panel 220 may have an increased thickness across the aisle, as is shown in FIG. 2 , so as to receive the evacuation unit 160 .
  • the evacuation unit 160 may be housed within a storage housing that is located under at least one floor panel, located on a portion of the inflatable side 140 , located on the interior wall of the aircraft cabin, or located on the exterior wall of the aircraft 130 .
  • rails 240 are shown to be located on either side of the aircraft door 110 . After the evacuation unit 160 is fully deployed, each side of the evacuation unit 160 is attached to each of the rails 240 , respectively.
  • FIG. 3 is a diagram 300 of the first embodiment of the disclosed evacuation unit 160 , in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 160 is shown to include two steps 310 and a wave fence 320 . It should be noted that in other embodiments, the evacuation unit 160 may include more or less than two steps 310 , as is shown in this figure.
  • the evacuation unit 160 is shown to include a foldable, rigid infrastructure 330 .
  • the rigid infrastructure 330 is used to support the steps 310 .
  • An actuator 340 powered by compressed gas 350 is utilized to deploy the evacuation unit 160 (i.e. to unfold the rigid infrastructure 330 ).
  • the top step of the two steps 310 comprises an upper surface of the wave fence 320 , where an evacuating occupant of the aircraft 130 can step on the upper surface for egress.
  • FIG. 4 is a diagram 400 showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit 160 being deployed, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 is shown to be starting to open, and the actuator 340 is shown to be in the process of deploying the evacuation unit 160 , where its wave fence 320 is shown to be partly deployed.
  • FIG. 5 is a diagram 500 showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit 160 fully deployed, in accordance with at least one embodiment of the present disclosure.
  • the actuator 340 has fully deployed the evacuation unit 160 from the storage housing 1220 , which is located under the cabin floor and flush with at least one floor panel 220 .
  • the each side of the wave fence 320 of the evacuation unit 160 is attached to each of the rails 240 , such that the wave fence 320 is forced against the frame of the aircraft door 110 and at least a portion of the wave fence 320 forms a water-tight contact with a portion of the interior cabin of the aircraft 130 .
  • the frame of the aircraft door 110 is the open structure that is located in between the interior of the aircraft 130 and the exterior of the aircraft 130 , and that receives the edges of the door 110 when the door 110 is in a closed position.
  • the wave fence 320 is attached by means other than rails 240 .
  • Examples of other means that may be utilized to attach the wave fence 320 include, but are not limited to, at least one fastener and at least one zipper.
  • FIG. 6 is a diagram 600 showing an exterior aircraft view of the first embodiment of the disclosed evacuation unit 160 fully deployed, in accordance with at least one embodiment of the present disclosure. This figure shows that after the evacuation unit 160 is fully deployed, the water sill 120 b has significantly increased, thereby allowing for the aircraft door 110 to be utilized for passenger egress.
  • FIG. 7A is a diagram 700 of a second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 705 is constructed from an inflatable structure 710 .
  • the evacuation unit 705 may be deployed (i.e. the inflatable structure 710 is inflated) by use of compressed gas and/or at least one manual pump.
  • the evacuation unit 705 is shown to include two steps 730 and a wave fence 720 . Additionally, the evacuation unit 705 may or may not include a foldable, rigid infrastructure (not shown) that is housed within the inflatable structure 710 .
  • FIG. 7B is a diagram 715 showing a foldable rigid infrastructure 740 of the second embodiment of the disclosed evacuation unit 705 , in accordance with at least one embodiment of the present disclosure.
  • the foldable rigid infrastructure 740 is used to support the steps 730 .
  • the rigid infrastructure 740 includes a pivot 750 on each side to allow for the folding of the rigid infrastructure 740 .
  • FIG. 8A is a diagram 800 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit (not shown) in a stowed position with the floor panels 820 closed, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 is shown to be open, thereby exposing the water surface (i.e. the water level) 150 .
  • the evacuation unit (not shown) is in a stowed position.
  • the evacuation unit When stowed, the evacuation unit is housed within a storage housing (not shown) located under the removable floor panels 820 , which are flush with at least one floor panel 220 .
  • the floor panel 220 may have an increased thickness across the aisle, as is shown in FIG. 8A , so as to receive the evacuation unit.
  • the evacuation unit may be housed within a storage housing that is located on a portion of the inflatable side 140 , located on the interior wall of the aircraft cabin, or located on the exterior wall of the aircraft 130 .
  • any wall that is not exposed to the airstream external to the aircraft 130 is considered an interior wall. So, for example, the walls on the interior of the door 110 opening are considered to be interior walls.
  • FIG. 8B is a diagram 810 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 in a stowed position with the floor panels 820 opened, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 is shown to be open, and the inflatable slide 140 is deployed.
  • the removable floor panels 820 are shown to be open, thereby exposing the evacuation unit 705 to be deployed.
  • FIG. 9 is a diagram 900 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 being deployed, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 705 is shown to be in the process of being deployed.
  • the direction of deployment of the evacuation unit is denoted by arrow 910 .
  • FIG. 10 is a diagram 1000 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 fully deployed, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 705 is shown to be fully deployed.
  • the steps 730 are fully stabilized by the internal pressure of the inflatable structure 710 of the evacuation unit 705 , and the internal pressure of the inflatable structure 710 forces the wave fence 720 of the evacuation unit 705 against the frame of the aircraft door 110 such that at least a portion of the wave fence 720 in water-tight contact with at least a portion of the interior cabin of the aircraft 130 .
  • FIG. 11A is a diagram 1100 showing a top view of a third embodiment of the disclosed evacuation unit 1110 , in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1110 is shown to be constructed from an inflatable structure.
  • the inflatable structure includes three inflatable sleeves 1120 .
  • the evacuation unit 1110 may be constructed to have more or less than the three inflatable sleeves, shown in this figure.
  • the evacuation unit 1110 is shown to include an inflating hose 1130 .
  • a source of air (not shown) is attached to the open end of the inflating hose 1130 , and the source of air causes air to pass through the inflating hose 1130 and into the evacuation unit 1110 to inflate the evacuation unit 1110 .
  • Various means may be used for the source of air including, but not limited to, compressed air and/or at least one manual pump.
  • FIG. 11B is a diagram 1105 showing a bottom view of the third embodiment of the disclosed evacuation unit 1110 , in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1110 is shown to include a girt bar 1140 .
  • the girt bar 1140 is used to secure the evacuation unit 1110 to the aircraft door frame or to the inflatable slide.
  • the direction of arrows 1150 illustrate the direction that the girt bar 1140 is moved to secure the girt bar 1140 appropriately.
  • FIG. 12A is a diagram 1200 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 of the aircraft 130 is shown to be open.
  • the inflatable slide 140 is shown to be deployed, and the inflatable slide 140 is shown to include a storage compartment (i.e. a storage housing) 1220 located near the aircraft door 110 .
  • the evacuation unit 1110 is shown to be in a stowed position. When stowed, the evacuation unit 1110 is housed within the storage housing 1220 .
  • FIG. 12B is a diagram 1210 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • the storage housing 1220 is opened to expose the evacuation unit 1110 .
  • the evacuation unit 1110 is removed from the storage housing 1220 and positioned within the frame of the aircraft door 110 . Then, a source of air is used to inflate the evacuation unit 1110 such that it is fully deployed.
  • a first sleeve 1120 of the evacuation unit 1110 lies within the cabin of the aircraft 130
  • a second sleeve 1120 of the evacuation unit 1110 lies within the frame of the aircraft door 110
  • a third sleeve 1120 of the evacuation unit 1110 lies exterior to the aircraft 130 , thereby creating a wave fence.
  • FIG. 13A is a diagram 1300 showing an interior aircraft cabin view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13B is a diagram 1310 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14A is a diagram 1400 showing a side view of a fourth embodiment of the disclosed evacuation unit 1410 , in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1410 is shown to be constructed from an inflatable structure.
  • the evacuation unit 1410 is shown to include a plurality of membrane ribs so as to form an accordion-type structure. It should be noted that in some embodiments, the evacuation unit 1410 may also include a foldable rigid structure (not shown) that is housed within the inflatable structure.
  • the evacuation unit 1410 is also shown to include two steps 1420 and a wave fence 1430 .
  • the evacuation unit 1410 is shown to include an inflating hose 1440 .
  • a source of air (not shown) is attached to the open end of the inflating hose 1440 , and the source of air causes air to pass through the inflating hose 1440 and into the evacuation unit 1410 to inflate the evacuation unit 1410 .
  • Different types of means may be used for the source of air including, but not limited to, compressed air and/or at least one manual pump.
  • the compressed air may be from various sources, such as from the inflatable slide 140 and/or from a separate pressurized gas bottle or aspirator.
  • FIG. 14B is a diagram 1405 showing another side view of the fourth embodiment of the disclosed evacuation unit 1410 , in accordance with at least one embodiment of the present disclosure.
  • FIG. 15 is a diagram 1500 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • the aircraft door 110 of the aircraft 130 is shown to be open.
  • the inflatable slide 140 is shown to be deployed, and the inflatable slide 140 is shown to include a storage compartment (i.e. a storage housing) 1510 located near the aircraft door 110 .
  • the evacuation unit 1410 is shown to be in a stowed position. When stowed, the evacuation unit 1410 is housed within the storage housing 1510 .
  • FIG. 16 is a diagram 1600 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 being deployed, in accordance with at least one embodiment of the present disclosure.
  • the storage housing 1510 is opened to expose the evacuation unit 1410 .
  • the evacuation unit 1410 is removed from the storage housing 1510 and positioned within the frame of the aircraft door 110 , as is shown in the figure.
  • a source of air is connected to an end of the inflating hose 1440 and is used to inflate the evacuation unit 1410 until it is fully deployed.
  • the source of air is located within the storage housing 1510 .
  • the source of air may be located in other areas other than the storage housing 1510 .
  • FIG. 17 is a diagram 1700 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1410 When the evacuation unit 1410 is fully deployed, the evacuation unit 1410 fits snugly within the frame of the aircraft door 110 , thereby creating a wave fence 1430 .
  • a clamp sleeve 1710 on either side of the evacuation unit 1410 clamps to the frame of the aircraft door 110 to assist in securing the evacuation unit 1410 when it is fully deployed.
  • FIG. 18 is a diagram 1800 showing an interior aircraft cabin view of the fourth embodiment of the disclosed evacuation unit 1410 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1410 is shown to be fully deployed, and the clamp sleeves 1710 are shown to be securely clamped to the frame of the aircraft door 110 .
  • the two steps 1420 of the evacuation unit 1410 can be seen. The two steps 1420 are for the passengers to use during their egress from the aircraft 130 .
  • FIG. 19A is a diagram 1900 showing an interior aircraft cabin view of the fifth embodiment of the disclosed evacuation unit 1910 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • the evacuation unit 1910 is shown to be deployed and secured within the frame of the aircraft door 110 of the aircraft 130 .
  • the evacuation unit 1910 is shown to be constructed from an inflatable structure.
  • the inflatable structure includes two steps 1920 and two inflatable sleeves 1930 , 1940 .
  • the evacuation unit 1910 may be constructed to have more or less than two steps 1920 , and more or less than two inflatable sleeves 1930 , 1940 , as is shown in this figure.
  • the two steps 1920 lie within the cabin of the aircraft 130 , one inflatable sleeve 1940 lies within the frame of the aircraft door 110 , and the other inflatable sleeve 1930 lies exterior to the aircraft 130 , thereby creating a wave fence.
  • FIG. 19B is a diagram 1905 showing an exterior aircraft view of the fifth embodiment of the disclosed evacuation unit 1910 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 20 is a flow chart 2000 showing the disclosed method for permitting evacuation of an aircraft following a water landing, in accordance with at least one embodiment of the present disclosure.
  • a storage housing is opened to expose the evacuation unit for deployment 2020 .
  • the evacuation unit is deployed from inside the storage housing, which is located proximate a door region of the aircraft 2030 .
  • the evacuation unit comprises at least one step and a wave fence.
  • the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • the method 2000 ends 2040 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

Systems, methods, and apparatus for permitting evacuation of an aircraft following a water landing are disclosed. In one or more embodiments, the disclosed method involves deploying, an evacuation unit, from inside a storage housing located proximate a door of the aircraft. In one or more embodiments, the evacuation unit comprises at least one step and a wave fence. In at least one embodiment, when the evacuation unit is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Divisional application of, and claims priority to and the benefit of, U.S. patent application Ser. No. 14/311,105, filed Jun. 20, 2014, the entire disclosure of which is expressly incorporated by reference herein.
  • FIELD
  • The present disclosure relates to airplane door steps for evacuation. In particular, it relates to an airplane door retractable wave fence with steps for evacuation.
  • BACKGROUND
  • In the art of commercial airplane design, there are possible situations when some of the aircraft doors cannot be used in a ditching (i.e. water landing) situation because immediately after landing on water, the water line is higher than the airplane door threshold (i.e. the door sill is negative).
  • Even in cases when the door sill is positive, but the water line is just a few inches lower than the door threshold, a particular door can be considered as not being usable for passenger egress subsequent to ditching. These situations may occur on multi-deck commercial airplanes, high-wing airplanes, mid-wing airplanes, and short narrow body low-wing airplanes. The door may be considered as not being usable for passenger egress for several reasons. One of the reasons is that the airplane will sink faster than it is getting lighter due to the passenger egress, so the door sill becomes negative faster than the certification requirements for a positive door sill state. Even if the door sill does not decrease, the marginally positive sill allows for waves and splashes to enter into the cabin, thereby increasing the airplane sinking rate.
  • As such, there is a need for a design that will allow for an evacuation of an aircraft following a water landing with a marginally positive door sill.
  • SUMMARY
  • The present disclosure relates to a method, system, and apparatus for an airplane door retractable wave fence with steps for evacuation. In one or more embodiments, a method for permitting evacuation of an aircraft following a water landing (e.g., a ditching event) involves deploying, an evacuation unit, from inside a storage housing located proximate a door of the aircraft. In one or more embodiments, the evacuation unit comprises at least one step and a wave fence. In at least one embodiment, when the evacuation unit is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • In one or more embodiments, the top step of the step(s) comprises an upper surface of the wave fence upon which an occupant evacuating the aircraft can step. In some embodiments, the storage housing is located under at least one floor panel, located on a portion of an inflatable slide, located on an interior wall of the aircraft, or located on an exterior wall of the aircraft. In at least one embodiment, the method further involves opening, the storage housing, to expose the evacuation unit for deployment.
  • In at least one embodiment, the evacuation unit further comprises a rigid infrastructure that is foldable. In some embodiments, the deploying of the evacuation unit comprises unfolding the rigid infrastructure by use of compressed gas, hydraulics, electrical power, pneumatics, at least one spring, and/or at least one manual pump.
  • In one or more embodiments, after deployment of the evacuation unit, the wave fence is located interior to the aircraft and/or exterior to the aircraft.
  • In at least one embodiment, the method further involves attaching, to a first location proximate a first side of the frame of the door, a first side of the wave fence; and attaching, to a second location proximate a second side of the frame of the door, a second side of the wave fence. In some embodiments, the attaching of the first side of the wave fence to the first location and the attaching of the second side of the wave fence to the second location are via at least one rail, at least one fastener, and/or at least one zipper.
  • In one or more embodiments, the evacuation unit is constructed from an inflatable structure. In at least one embodiment, the deploying of the evacuation unit comprises inflating the inflatable structure by use of compressed gas and/or at least one manual pump. In some embodiments, the evacuation unit further comprises a rigid infrastructure that is foldable and housed within the inflatable structure.
  • In at least one embodiment, the inflatable structure comprises at least three inflatable sleeves and/or an accordion structure.
  • In one or more embodiments, an apparatus for permitting evacuation of an aircraft following a water landing comprises at least one step and a wave fence. In at least one embodiment, the apparatus is to be deployed from inside a storage housing located proximate a door of the aircraft. In some embodiments, when the apparatus is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • In at least one embodiment, the apparatus further comprises a rigid infrastructure that is foldable. In some embodiments, the apparatus is deployed by unfolding the rigid infrastructure by use of compressed gas, hydraulics, electrical power, pneumatics, at least one spring, and/or at least one manual pump.
  • In one or more embodiments, the apparatus is constructed from an inflatable structure. In at least one embodiment, the apparatus is deployed by inflation of the inflatable structure by use of compressed gas and/or at least one manual pump.
  • In at least one embodiment, the apparatus further comprises a rigid infrastructure that is foldable and housed within the inflatable structure. In some embodiments, the inflatable structure comprises at least three inflatable sleeves and/or an accordion structure.
  • In one or more embodiments, a system for permitting evacuation of an aircraft following a water landing comprises an evacuation unit to be deployed from inside a storage housing. In at least one embodiment, the evacuation unit comprises at least one step and a wave fence. The system further comprises the storage housing located proximate a door of the aircraft. In one or more embodiments, when the evacuation unit is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited.
  • The features, functions, and advantages can be achieved independently in various embodiments of the present embodiments or may be combined in yet other embodiments.
  • DRAWINGS
  • These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, appended claims, and accompanying drawings where:
  • FIG. 1 is a diagram of an aircraft door with a marginally positive door sill, in accordance with at least one embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an interior aircraft cabin view of a first embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 3 is a diagram of the first embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 5 is a diagram showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an exterior aircraft view of the first embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 7A is a diagram of a second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 7B is a diagram showing a foldable rigid infrastructure of the second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 8A is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit in a stowed position with the floor panels closed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 8B is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit in a stowed position with the floor panels opened, in accordance with at least one embodiment of the present disclosure.
  • FIG. 9 is a diagram showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an interior cabin view of the second embodiment of the disclosed evacuation unit fully deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 11A is a diagram showing a top view of a third embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 11B is a diagram showing a bottom view of the third embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 12A is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 12B is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13A is a diagram showing an interior aircraft cabin view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13B is a diagram showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14A is a diagram showing a side view of a fourth embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14B is a diagram showing another side view of the fourth embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure.
  • FIG. 15 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit in a stowed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 16 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit being deployed, in accordance with at least one embodiment of the present disclosure.
  • FIG. 17 is a diagram showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 18 is a diagram showing an interior aircraft cabin view of the fourth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 19A is a diagram showing an interior aircraft cabin view of the fifth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 19B is a diagram showing an exterior aircraft view of the fifth embodiment of the disclosed evacuation unit being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 20 is a flow chart showing the disclosed method for permitting evacuation of an aircraft following a water landing, in accordance with at least one embodiment of the present disclosure.
  • DESCRIPTION
  • The methods and apparatus disclosed herein provide an operative system for an airplane door retractable wave fence with steps for evacuation. The disclosed system provides an evacuation unit that allows for safe emergency evacuation following a ditching event (i.e. a water landing) when using doors with marginally positive door sill values. The evacuation unit comprises a wave fence (or dam), which typically will be stowed inside the passenger floor of the cabin of the aircraft next to the door threshold. When the wave fence is fully deployed, it will form a water-tight contact with the aircraft fuselage structure, thereby artificially increasing the positive water sill by one or more stairway steps.
  • In the following description, numerous details are set forth in order to provide a more thorough description of the system. It will be apparent, however, to one skilled in the art, that the disclosed system may be practiced without these specific details. In the other instances, well known features have not been described in detail so as not to unnecessarily obscure the system.
  • For the sake of brevity, conventional techniques and components related to the system design, and other functional aspects of the system (and the individual operating components of the systems) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent example functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the present disclosure.
  • FIG. 1 is a diagram 100 of an aircraft door 110 with a marginally positive door sill 120 a, in accordance with at least one embodiment of the present disclosure. In this figure, an exterior view of the aircraft 130 is shown. The aircraft door 110 is shown to be open, and the evacuation slide (i.e. inflatable slide) 140 is shown to be deployed. In this figure, the water level 150 is shown to only be a few inches lower than the bottom of the aircraft door 110, thereby establishing a marginally positive door sill 120 a. Also in this figure, a first embodiment of the evacuation unit 160 is shown to be in a stowed position in the cabin of the aircraft 130.
  • FIG. 2 is a diagram 200 showing an interior aircraft cabin view of a first embodiment of the disclosed evacuation unit 160 in a stowed position, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 is shown to be closed, and the door 110 is shown to include a storage compartment 230 for storing the evacuation slide 140.
  • Also in this figure, the evacuation unit 160 is shown to be in a stowed position. When stowed, the evacuation unit 160 is housed within a storage housing (not shown) located under the cabin floor and flush with at least one floor panel 220. In one or more embodiments, the floor panel 220 may have an increased thickness across the aisle, as is shown in FIG. 2, so as to receive the evacuation unit 160. It should be noted that in other embodiments, the evacuation unit 160 may be housed within a storage housing that is located under at least one floor panel, located on a portion of the inflatable side 140, located on the interior wall of the aircraft cabin, or located on the exterior wall of the aircraft 130.
  • Additionally in this figure, rails 240 are shown to be located on either side of the aircraft door 110. After the evacuation unit 160 is fully deployed, each side of the evacuation unit 160 is attached to each of the rails 240, respectively.
  • FIG. 3 is a diagram 300 of the first embodiment of the disclosed evacuation unit 160, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 160 is shown to include two steps 310 and a wave fence 320. It should be noted that in other embodiments, the evacuation unit 160 may include more or less than two steps 310, as is shown in this figure. In addition, the evacuation unit 160 is shown to include a foldable, rigid infrastructure 330. The rigid infrastructure 330 is used to support the steps 310. An actuator 340 powered by compressed gas 350 is utilized to deploy the evacuation unit 160 (i.e. to unfold the rigid infrastructure 330).
  • It should be noted that in other embodiments, other means may be used in addition or instead of compressed gas 350 to deploy the evacuation unit 160. Types of other means that may be utilized include, but are not limited to, hydraulics, electrical power, pneumatics, at least one spring, and at least one manual pump.
  • Also, it should be noted that the top step of the two steps 310 comprises an upper surface of the wave fence 320, where an evacuating occupant of the aircraft 130 can step on the upper surface for egress.
  • FIG. 4 is a diagram 400 showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit 160 being deployed, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 is shown to be starting to open, and the actuator 340 is shown to be in the process of deploying the evacuation unit 160, where its wave fence 320 is shown to be partly deployed.
  • FIG. 5 is a diagram 500 showing an interior aircraft cabin view of the first embodiment of the disclosed evacuation unit 160 fully deployed, in accordance with at least one embodiment of the present disclosure. In this figure the actuator 340 has fully deployed the evacuation unit 160 from the storage housing 1220, which is located under the cabin floor and flush with at least one floor panel 220. The each side of the wave fence 320 of the evacuation unit 160 is attached to each of the rails 240, such that the wave fence 320 is forced against the frame of the aircraft door 110 and at least a portion of the wave fence 320 forms a water-tight contact with a portion of the interior cabin of the aircraft 130. It should be noted that the frame of the aircraft door 110 is the open structure that is located in between the interior of the aircraft 130 and the exterior of the aircraft 130, and that receives the edges of the door 110 when the door 110 is in a closed position.
  • It should be noted that in other embodiments, the wave fence 320 is attached by means other than rails 240. Examples of other means that may be utilized to attach the wave fence 320 include, but are not limited to, at least one fastener and at least one zipper.
  • FIG. 6 is a diagram 600 showing an exterior aircraft view of the first embodiment of the disclosed evacuation unit 160 fully deployed, in accordance with at least one embodiment of the present disclosure. This figure shows that after the evacuation unit 160 is fully deployed, the water sill 120 b has significantly increased, thereby allowing for the aircraft door 110 to be utilized for passenger egress.
  • FIG. 7A is a diagram 700 of a second embodiment of the disclosed evacuation unit, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 705 is constructed from an inflatable structure 710. The evacuation unit 705 may be deployed (i.e. the inflatable structure 710 is inflated) by use of compressed gas and/or at least one manual pump.
  • In addition, the evacuation unit 705 is shown to include two steps 730 and a wave fence 720. Additionally, the evacuation unit 705 may or may not include a foldable, rigid infrastructure (not shown) that is housed within the inflatable structure 710.
  • FIG. 7B is a diagram 715 showing a foldable rigid infrastructure 740 of the second embodiment of the disclosed evacuation unit 705, in accordance with at least one embodiment of the present disclosure. In this figure, the foldable rigid infrastructure 740 is used to support the steps 730. Also shown in this figure, the rigid infrastructure 740 includes a pivot 750 on each side to allow for the folding of the rigid infrastructure 740.
  • FIG. 8A is a diagram 800 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit (not shown) in a stowed position with the floor panels 820 closed, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 is shown to be open, thereby exposing the water surface (i.e. the water level) 150.
  • Also in this figure, the evacuation unit (not shown) is in a stowed position. When stowed, the evacuation unit is housed within a storage housing (not shown) located under the removable floor panels 820, which are flush with at least one floor panel 220. In one or more embodiments, the floor panel 220 may have an increased thickness across the aisle, as is shown in FIG. 8A, so as to receive the evacuation unit. It should be noted that in other embodiments, the evacuation unit may be housed within a storage housing that is located on a portion of the inflatable side 140, located on the interior wall of the aircraft cabin, or located on the exterior wall of the aircraft 130. For the purpose of clear definition, any wall that is not exposed to the airstream external to the aircraft 130 is considered an interior wall. So, for example, the walls on the interior of the door 110 opening are considered to be interior walls.
  • FIG. 8B is a diagram 810 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 in a stowed position with the floor panels 820 opened, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 is shown to be open, and the inflatable slide 140 is deployed. Also in this figure, the removable floor panels 820 are shown to be open, thereby exposing the evacuation unit 705 to be deployed.
  • FIG. 9 is a diagram 900 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 being deployed, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 705 is shown to be in the process of being deployed. The direction of deployment of the evacuation unit is denoted by arrow 910.
  • FIG. 10 is a diagram 1000 showing an interior aircraft cabin view of the second embodiment of the disclosed evacuation unit 705 fully deployed, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 705 is shown to be fully deployed. When the evacuation unit 705 is fully deployed, the steps 730 are fully stabilized by the internal pressure of the inflatable structure 710 of the evacuation unit 705, and the internal pressure of the inflatable structure 710 forces the wave fence 720 of the evacuation unit 705 against the frame of the aircraft door 110 such that at least a portion of the wave fence 720 in water-tight contact with at least a portion of the interior cabin of the aircraft 130.
  • FIG. 11A is a diagram 1100 showing a top view of a third embodiment of the disclosed evacuation unit 1110, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 1110 is shown to be constructed from an inflatable structure. The inflatable structure includes three inflatable sleeves 1120. It should be noted that in other embodiments, the evacuation unit 1110 may be constructed to have more or less than the three inflatable sleeves, shown in this figure. In addition, the evacuation unit 1110 is shown to include an inflating hose 1130. A source of air (not shown) is attached to the open end of the inflating hose 1130, and the source of air causes air to pass through the inflating hose 1130 and into the evacuation unit 1110 to inflate the evacuation unit 1110. Various means may be used for the source of air including, but not limited to, compressed air and/or at least one manual pump.
  • FIG. 11B is a diagram 1105 showing a bottom view of the third embodiment of the disclosed evacuation unit 1110, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 1110 is shown to include a girt bar 1140. The girt bar 1140 is used to secure the evacuation unit 1110 to the aircraft door frame or to the inflatable slide. The direction of arrows 1150 illustrate the direction that the girt bar 1140 is moved to secure the girt bar 1140 appropriately.
  • FIG. 12A is a diagram 1200 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a stowed position, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 of the aircraft 130 is shown to be open. Also in this figure, the inflatable slide 140 is shown to be deployed, and the inflatable slide 140 is shown to include a storage compartment (i.e. a storage housing) 1220 located near the aircraft door 110.
  • Also in this figure, the evacuation unit 1110 is shown to be in a stowed position. When stowed, the evacuation unit 1110 is housed within the storage housing 1220.
  • FIG. 12B is a diagram 1210 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure. For deployment of the evacuation unit 1110, the storage housing 1220 is opened to expose the evacuation unit 1110. The evacuation unit 1110 is removed from the storage housing 1220 and positioned within the frame of the aircraft door 110. Then, a source of air is used to inflate the evacuation unit 1110 such that it is fully deployed. When the evacuation unit 1110 is fully deployed, a first sleeve 1120 of the evacuation unit 1110 lies within the cabin of the aircraft 130, a second sleeve 1120 of the evacuation unit 1110 lies within the frame of the aircraft door 110, and a third sleeve 1120 of the evacuation unit 1110 lies exterior to the aircraft 130, thereby creating a wave fence.
  • FIG. 13A is a diagram 1300 showing an interior aircraft cabin view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 13B is a diagram 1310 showing an exterior aircraft view of the third embodiment of the disclosed evacuation unit 1110 in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 14A is a diagram 1400 showing a side view of a fourth embodiment of the disclosed evacuation unit 1410, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 1410 is shown to be constructed from an inflatable structure. The evacuation unit 1410 is shown to include a plurality of membrane ribs so as to form an accordion-type structure. It should be noted that in some embodiments, the evacuation unit 1410 may also include a foldable rigid structure (not shown) that is housed within the inflatable structure.
  • The evacuation unit 1410 is also shown to include two steps 1420 and a wave fence 1430. In addition, the evacuation unit 1410 is shown to include an inflating hose 1440. A source of air (not shown) is attached to the open end of the inflating hose 1440, and the source of air causes air to pass through the inflating hose 1440 and into the evacuation unit 1410 to inflate the evacuation unit 1410. Different types of means may be used for the source of air including, but not limited to, compressed air and/or at least one manual pump. It should be noted that the compressed air may be from various sources, such as from the inflatable slide 140 and/or from a separate pressurized gas bottle or aspirator.
  • FIG. 14B is a diagram 1405 showing another side view of the fourth embodiment of the disclosed evacuation unit 1410, in accordance with at least one embodiment of the present disclosure.
  • FIG. 15 is a diagram 1500 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 in a stowed position, in accordance with at least one embodiment of the present disclosure. In this figure, the aircraft door 110 of the aircraft 130 is shown to be open. Also in this figure, the inflatable slide 140 is shown to be deployed, and the inflatable slide 140 is shown to include a storage compartment (i.e. a storage housing) 1510 located near the aircraft door 110.
  • Also in this figure, the evacuation unit 1410 is shown to be in a stowed position. When stowed, the evacuation unit 1410 is housed within the storage housing 1510.
  • FIG. 16 is a diagram 1600 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 being deployed, in accordance with at least one embodiment of the present disclosure. For deployment of the evacuation unit 1410, the storage housing 1510 is opened to expose the evacuation unit 1410. The evacuation unit 1410 is removed from the storage housing 1510 and positioned within the frame of the aircraft door 110, as is shown in the figure. Then, a source of air is connected to an end of the inflating hose 1440 and is used to inflate the evacuation unit 1410 until it is fully deployed. In this figure, the source of air is located within the storage housing 1510. In other embodiments, as previously mentioned above, the source of air may be located in other areas other than the storage housing 1510.
  • FIG. 17 is a diagram 1700 showing an exterior aircraft view of the fourth embodiment of the disclosed evacuation unit 1410 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure. When the evacuation unit 1410 is fully deployed, the evacuation unit 1410 fits snugly within the frame of the aircraft door 110, thereby creating a wave fence 1430. And, a clamp sleeve 1710 on either side of the evacuation unit 1410 clamps to the frame of the aircraft door 110 to assist in securing the evacuation unit 1410 when it is fully deployed.
  • FIG. 18 is a diagram 1800 showing an interior aircraft cabin view of the fourth embodiment of the disclosed evacuation unit 1410 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 1410 is shown to be fully deployed, and the clamp sleeves 1710 are shown to be securely clamped to the frame of the aircraft door 110. In this figure, the two steps 1420 of the evacuation unit 1410 can be seen. The two steps 1420 are for the passengers to use during their egress from the aircraft 130.
  • FIG. 19A is a diagram 1900 showing an interior aircraft cabin view of the fifth embodiment of the disclosed evacuation unit 1910 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure. In this figure, the evacuation unit 1910 is shown to be deployed and secured within the frame of the aircraft door 110 of the aircraft 130.
  • In this figure, the evacuation unit 1910 is shown to be constructed from an inflatable structure. The inflatable structure includes two steps 1920 and two inflatable sleeves 1930, 1940. It should be noted that in other embodiments, the evacuation unit 1910 may be constructed to have more or less than two steps 1920, and more or less than two inflatable sleeves 1930, 1940, as is shown in this figure.
  • When the evacuation unit 1910 is fully deployed, the two steps 1920 lie within the cabin of the aircraft 130, one inflatable sleeve 1940 lies within the frame of the aircraft door 110, and the other inflatable sleeve 1930 lies exterior to the aircraft 130, thereby creating a wave fence.
  • FIG. 19B is a diagram 1905 showing an exterior aircraft view of the fifth embodiment of the disclosed evacuation unit 1910 being in a fully deployed position, in accordance with at least one embodiment of the present disclosure.
  • FIG. 20 is a flow chart 2000 showing the disclosed method for permitting evacuation of an aircraft following a water landing, in accordance with at least one embodiment of the present disclosure. At the start 2010 of the method 2000, optionally, a storage housing is opened to expose the evacuation unit for deployment 2020. Then, the evacuation unit is deployed from inside the storage housing, which is located proximate a door region of the aircraft 2030. In one or more embodiments, the evacuation unit comprises at least one step and a wave fence. In at least one embodiment, when the evacuation unit is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is prevented and/or inhibited. Then, the method 2000 ends 2040.
  • Although particular embodiments have been shown and described, it should be understood that the above discussion is not intended to limit the scope of these embodiments. While embodiments and variations of the many aspects of the present disclosure have been disclosed and described herein, such disclosure is provided for purposes of explanation and illustration only. Thus, various changes and modifications may be made without departing from the scope of the claims.
  • Where methods described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering may be modified and that such modifications are in accordance with the variations of the embodiment. Additionally, parts of methods may be performed concurrently in a parallel process when possible, as well as performed sequentially. In addition, more parts or less part of the methods may be performed.
  • Accordingly, embodiments are intended to exemplify alternatives, modifications, and equivalents that may fall within the scope of the claims.
  • Although certain illustrative embodiments and methods have been disclosed herein, it can be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods can be made without departing from the true spirit and scope of the art disclosed. Many other examples of the art disclosed exist, each differing from others in matters of detail only. Accordingly, it is intended that the art disclosed shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.

Claims (20)

We claim:
1. A method for permitting evacuation of an aircraft following a water landing, the method comprising:
deploying, an evacuation unit, from inside a storage housing located proximate a door of the aircraft,
wherein the evacuation unit comprises at least one step and a wave fence, and
wherein when the evacuation unit is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is substantially inhibited.
2. The method of claim 1, wherein the evacuation unit is constructed from an inflatable structure.
3. The method of claim 2, wherein the deploying of the evacuation unit comprises inflating the inflatable structure by compressed gas, a manual pump, or a combination thereof.
4. The method of claim 2, wherein the evacuation unit further comprises a rigid infrastructure that is foldable and housed within the inflatable structure.
5. The method of claim 2, wherein the inflatable structure comprises at least three inflatable sleeves.
6. The method of claim 5, wherein the inflatable structure further comprises a girt bar that is attached to one of the frame of the door of the aircraft or an inflatable slide.
7. The method of claim 5, wherein when the evacuation unit is deployed, a first sleeve of the at least three inflatable sleeves lies within a cabin of the aircraft, a second sleeve of the at least three inflatable sleeves lies within the frame of the door of the aircraft, and a third sleeve of the at least three inflatable sleeves lies exterior to the aircraft, thereby creating the wave fence.
8. The method of claim 2, wherein the inflatable structure comprises an accordion structure,
wherein when the evacuation unit is deployed, the accordion structure fits within the frame of the door of the aircraft, thereby creating the wave fence.
9. The method of claim 2, wherein the inflatable structure comprises at least one inflatable step and at least two inflatable sleeves.
10. The method of claim 9, wherein when the evacuation unit is deployed, the at least one inflatable step lies within a cabin of the aircraft, one of the inflatable sleeves lies within the frame of the door of the aircraft, and another one of the inflatable sleeves lies exterior to the aircraft, thereby creating the wave fence.
11. An apparatus for permitting evacuation of an aircraft following a water landing, the apparatus comprising:
at least one step; and
a wave fence,
wherein the apparatus is to be deployed from inside a storage housing located proximate a door of the aircraft, and
wherein when the apparatus is fully deployed, at least a portion of the wave fence is in water-tight contact with at least a portion of a frame of the door such that water flow into the aircraft is substantially inhibited.
12. The apparatus of claim 11, wherein the apparatus is constructed from an inflatable structure.
13. The apparatus of claim 12, wherein the apparatus further comprises a rigid infrastructure that is foldable and housed within the inflatable structure.
14. The apparatus of claim 12, wherein the inflatable structure comprises at least three inflatable sleeves.
15. The apparatus of claim 14, wherein the inflatable structure further comprises a girt bar that is attached to one of the frame of the door of the aircraft or an inflatable slide.
16. The apparatus of claim 14, wherein when the apparatus is deployed, a first sleeve of the at least three inflatable sleeves lies within a cabin of the aircraft, a second sleeve of the at least three inflatable sleeves lies within the frame of the door of the aircraft, and a third sleeve of the at least three inflatable sleeves lies exterior to the aircraft, thereby creating the wave fence.
17. The apparatus of claim 12, wherein the inflatable structure comprises an accordion structure,
wherein when the apparatus is deployed, the accordion structure fits within the frame of the door of the aircraft, thereby creating the wave fence.
18. The apparatus of claim 12, wherein the apparatus is configured to be deployed by inflation of the inflatable structure, and
wherein the inflatable structure is configured to be inflated by compressed gas, a manual pump, or a combination thereof.
19. The apparatus of claim 12, wherein the inflatable structure comprises at least one inflatable step and at least two inflatable sleeves.
20. The apparatus of claim 19, wherein when the apparatus is deployed, the at least one inflatable step lies within a cabin of the aircraft, one of the inflatable sleeves lies within the frame of the door of the aircraft, and another one of the inflatable sleeves lies exterior to the aircraft, thereby creating the wave fence.
US15/863,776 2014-06-20 2018-01-05 Airline door retractable wave fence with steps for evacuation Abandoned US20180127082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/863,776 US20180127082A1 (en) 2014-06-20 2018-01-05 Airline door retractable wave fence with steps for evacuation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/311,105 US9902485B2 (en) 2014-06-20 2014-06-20 Airline door retractable wave fence with steps for evacuation
US15/863,776 US20180127082A1 (en) 2014-06-20 2018-01-05 Airline door retractable wave fence with steps for evacuation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/311,105 Division US9902485B2 (en) 2014-06-20 2014-06-20 Airline door retractable wave fence with steps for evacuation

Publications (1)

Publication Number Publication Date
US20180127082A1 true US20180127082A1 (en) 2018-05-10

Family

ID=54868959

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/311,105 Active 2035-04-01 US9902485B2 (en) 2014-06-20 2014-06-20 Airline door retractable wave fence with steps for evacuation
US15/863,776 Abandoned US20180127082A1 (en) 2014-06-20 2018-01-05 Airline door retractable wave fence with steps for evacuation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/311,105 Active 2035-04-01 US9902485B2 (en) 2014-06-20 2014-06-20 Airline door retractable wave fence with steps for evacuation

Country Status (1)

Country Link
US (2) US9902485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135227A1 (en) * 2018-12-01 2022-05-05 Bombardier Inc. Airstair system with deployable upper step
EP4273045A1 (en) * 2022-05-02 2023-11-08 Goodrich Corporation Inflatable girth for evacuation slide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415413B1 (en) * 2017-06-15 2020-02-19 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A vehicle with a foldable fairing integrated footstep unit
CN109878694A (en) * 2019-04-03 2019-06-14 西安飞机工业(集团)有限责任公司 A kind of aircraft escape hatch baffle device for water and water blocking method
CN111959797B (en) * 2020-08-25 2021-11-19 南京禹智智能科技有限公司 Escape and rescue equipment special for large-scale aviation airliner

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765131A (en) * 1954-05-04 1956-10-02 Garrett Corp Inflatable escape chute assembly
GB2213520B (en) * 1987-12-10 1991-10-09 Philip John Willsher Folding steps
US4981391A (en) * 1989-10-26 1991-01-01 Klementovich William L Inflatable portable dam for containment of hazardous liquids
US5005667A (en) * 1990-03-21 1991-04-09 Eddy Anderson Extensible and retractable step assembly
US6109563A (en) * 1996-09-30 2000-08-29 Mcdonnell Douglas Corporation Plug door operating mechanism
GB2327971B (en) * 1997-08-09 2002-03-13 Malcolm Baxter Flood protection device
US6029405A (en) * 1998-04-23 2000-02-29 Wood; Barbara A. Apparatus and method for inhibiting water from entering a structure
US6189833B1 (en) * 1998-09-29 2001-02-20 Sikorsky Aircraft Corporation Aircraft sliding door system
FR2807388B1 (en) * 2000-04-07 2002-06-28 Aerospatiale Matra Airbus AIRCRAFT DOOR AND AIRCRAFT EQUIPPED WITH SUCH A DOOR
US20030167696A1 (en) * 2002-03-08 2003-09-11 Shih-Hsin Chen Gate for the entry of a gateway for stopping the flow water
US6659404B1 (en) * 2002-12-23 2003-12-09 Goodrich Corporation Overboard venting inflation system and control valve therefor
US7963075B2 (en) * 2005-11-22 2011-06-21 Warwick Mills, Inc. Inflatable barrier
DE102008009938B4 (en) * 2008-02-20 2011-05-12 Airbus Operations Gmbh Arrangement and method for stowing and removing a survival kit in a passenger cabin of an aircraft
US20100006527A1 (en) * 2008-07-10 2010-01-14 Interstate Container Reading Llc Collapsible merchandising display
US7690865B1 (en) * 2009-07-21 2010-04-06 Stewart Tommy D Flood prevention device
US9108719B2 (en) 2010-03-03 2015-08-18 The Boeing Company Aircraft with AFT split-level multi-deck fusealge
US9355581B2 (en) * 2011-11-03 2016-05-31 Skyline Displays, Inc. Airframe display systems and methods
US9080369B2 (en) * 2012-10-24 2015-07-14 Vladimir Rakhmanin Flood protection barrier system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135227A1 (en) * 2018-12-01 2022-05-05 Bombardier Inc. Airstair system with deployable upper step
US11878814B2 (en) * 2018-12-01 2024-01-23 Bombardier Inc. Airstair system with deployable upper step
EP4273045A1 (en) * 2022-05-02 2023-11-08 Goodrich Corporation Inflatable girth for evacuation slide

Also Published As

Publication number Publication date
US20150367944A1 (en) 2015-12-24
US9902485B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
US20180127082A1 (en) Airline door retractable wave fence with steps for evacuation
US8220742B2 (en) Assembly and method for stowing away and removing a survival kit in a passenger cabin of an aircraft
US8459594B2 (en) Emergency evacuation system, in particular for a tailless aeroplane
US10059425B2 (en) Aircraft having a self-erecting partition element in a compartment inside the fuselage
EP0636542B1 (en) Inflatable slide raft assembly
US10974834B2 (en) Separable vehicle cabin privacy partition assemblies which allow for emergency egress
US3973645A (en) Inflatable evacuation slide
US9340294B1 (en) Aircraft cabin egress
CN107021205B (en) Assembly and method for reconfiguring a door of an aircraft fuselage
US10829230B2 (en) Release system for evacuation slide assembly
US20120012704A1 (en) Accommodation module with separate private area
US6986485B2 (en) Overhead space access stowable staircase
US10611489B2 (en) Evacuation system with an extendable head end
RU2009109717A (en) AIRCRAFT WITH OPTIMIZED USED VOLUME AND METHOD FOR OPTIMIZING USED VOLUME OF AIRCRAFT
JP2002193191A (en) Getting-on/off device to aircraft, and flying wing with the getting-on/off device
US11492129B2 (en) Evacuation slide with safety gate readiness indicator
US20160311517A1 (en) Aircraft adapted for transporting cargo
US7513457B2 (en) Compartment for a transportation device and its installation
US20190241271A1 (en) Integral life raft, survival kit, and step
US20230129515A1 (en) Multi-stage evacuation systems and methods for aircraft
US11788537B2 (en) Dual system electric powered aspirators
US6557801B1 (en) Airplane evacuation system and method therefor
US11192658B2 (en) Evacuation slide ramp barrier readiness indicator
DE10206306A1 (en) Rescue cabin for aircraft accident, separates from remaining body of aircraft and carries passengers safely to ground using parachutes
US11999494B2 (en) Multi-stage evacuation systems and methods for aircraft

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE BOEING COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARMICHEV, SERGEY;SANKRITHI, MITHRA;ECKERT, DAVID;SIGNING DATES FROM 20140604 TO 20140610;REEL/FRAME:044573/0224

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION