US20180126444A1 - Device for direct screwing of structural components, in particular for flow hole screwing - Google Patents

Device for direct screwing of structural components, in particular for flow hole screwing Download PDF

Info

Publication number
US20180126444A1
US20180126444A1 US15/866,521 US201815866521A US2018126444A1 US 20180126444 A1 US20180126444 A1 US 20180126444A1 US 201815866521 A US201815866521 A US 201815866521A US 2018126444 A1 US2018126444 A1 US 2018126444A1
Authority
US
United States
Prior art keywords
feed
drive
switchover
feed force
screwing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/866,521
Inventor
Rolf Pfeiffer
Carsten Rosenkranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deprag Schulz GmbH u Co
Original Assignee
Deprag Schulz GmbH u Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53189557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180126444(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Deprag Schulz GmbH u Co filed Critical Deprag Schulz GmbH u Co
Priority to US15/866,521 priority Critical patent/US20180126444A1/en
Publication of US20180126444A1 publication Critical patent/US20180126444A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/063Friction heat forging
    • B21J5/066Flow drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/027Setting rivets by friction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • B21J15/285Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups for controlling the rivet upset cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • B21K25/005Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components by friction heat forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0021Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being metal, e.g. sheet-metal or aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/10Screws performing an additional function to thread-forming, e.g. drill screws or self-piercing screws
    • F16B25/106Screws performing an additional function to thread-forming, e.g. drill screws or self-piercing screws by means of a self-piercing screw-point, i.e. without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49909Securing cup or tube between axially extending concentric annuli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53039Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
    • Y10T29/53061Responsive to work or work-related machine element
    • Y10T29/53065Responsive to work or work-related machine element with means to fasten by deformation
    • Y10T29/5307Self-piercing work part

Definitions

  • the invention relates to a method for direct screwing of structural components, in particular for flow hole screwing, in which a hole is produced in a first process stage in a structural component, and in a second process stage a thread is formed in the produced hole, and for this purpose, a feed and a feed force are produced with the aid of a feed drive and are transmitted to a screw shaft, the screw shaft is set in a rotational movement, in the first process stage a high rotational speed of the rotational movement and by using the feed drive a high feed force being set, and at a defined switchover point with penetration of the structural component for the second process stage a switchover is made to a lower feed force and a slower rotational speed.
  • the invention and also relates to a device for direct screwing of structural components, in particular for flow hole screwing, including a rotatably drivable screw shaft, which can be moved in an axial direction to exert a feed, a feed drive for generating a feed and a feed force and also for transmission thereof to the screw shaft, a control unit for controlling the flow hole screwing procedure, constructed in such a way that, in a first process stage, a high rotational speed of the screw shaft and by using the feed drive a high feed force are set and a switchover is made to a lower feed force and a slower rotational speed at a defined switchover point for a second process stage
  • a method of this type for flow hole screwing can be inferred for example from DE 103 48 427 A1.
  • two structural components are screwed to one another by means of a screwing to one another without preliminary piercing.
  • a hole is produced in the structural component in a non-cutting manner and in a second process stage a thread is formed in the produced hole.
  • Both process stages are performed here with a flow hole screw, with which the hole is firstly produced in a non-cutting manner and the thread is then formed.
  • the flow hole screw is then also used, lastly, to connect the two structural components to one another via a screwed connection in a third process stage.
  • the flow hole screw is set here in a rotational movement and is moved in the axial direction with predefined feed force with the aid of a feed drive.
  • the flow hole screw usually has a conical tip.
  • the structural component is first heated by the flow hole screw at the intended hole position on account of a high rotational speed and also a high feed force, and is then plastically deformed.
  • the flow hole screw infiltrates further and uses its screw thread to form the thread in the previously formed hole.
  • the rotational speed of the flow hole screw is usually reduced.
  • rotational speeds in the range from 1000 to 5000 rpm and feed or pressing forces in the range between 0.3 to 1.5 kN are achieved in accordance with DE 103 48 427 A1.
  • the structural components are additionally pressed against one another during the screwing by a holding-down force, which is applied by way of example pneumatically or also by springs.
  • a feed force acts on the flow hole screw by means of a screw spindle.
  • a further device for flow hole grooving is described from DE 199 11 308 A1.
  • a single tool is used, which for the hole operation is controlled to a slower feed compared with the subsequent thread forming.
  • a pressing force is generated here by means of a coiled compression screw.
  • Direct screwing is understood generally to mean a process in which the hole-form ing procedure and the screwing procedure are performed in a common screwing procedure using a screw element also designed to generate the passage in the structural component accompanied by the forming of the thread.
  • the object of the invention is to reliably ensure at high cycle rate a direct screwing, in particular flow hole screwing, that has high process stability.
  • the object is achieved in accordance with the invention by a method for direct screwing, in particular for flow hole screwing, having the features described below and also by a device for direct screwing, in particular for flow hole screwing having the features described below.
  • a hole is produced in a first process stage in a structural component with the aid of a screw element, specifically a flow hole screw or a drill screw, and in a second process stage a thread is formed in the produced hole with the aid of the flow hole screw or the drill screw.
  • a feed and a feed force or also pressing force is generally produced for this purpose with the aid of a feed drive and is transmitted to a screw shaft.
  • the screw element is held at the front end of the screw shaft.
  • a high rotational speed is set for the rotational movement of the screw shaft and a high feed force is set by means of the feed drive.
  • a switch is then made into the second process stage, and in so doing a lower feed force and a slower rotational speed are set.
  • the feed force is now generated by means of a non-pneumatic feed drive, and a drive parameter of the feed drive correlated to the feed force is also monitored and a characteristic change of the value of this drive parameter defines the switchover point from which a switch is to be made to the lower feed force and the slower rotational speed.
  • This embodiment is based on the consideration that the switchover is extremely time-critical, since, following completion of the hole-forming procedure, the high rotational speed (particularly in the case of flow hole forming) and also the high feed force are still present and, if these process parameters are retained, there is the risk of damaging the thread turns of the screw element, in particular of the flow hole screw, if this thus moves at high force and/or high feed rate against the structural component. This may mean ultimately that the thread is not formed or is formed only insufficiently, and on the whole that the structural component connection does not meet the required quality demands. Due to the sudden elimination of the counterforce following the penetration of the structural component, the feed rate usually rises uncontrollably. The thread of the screw element therefore often contacts the previously formed hole at high speed.
  • the feed force applied to the screw element is now monitored.
  • a parameter correlated at least with the feed force is detected and monitored.
  • the parameter in principle, may also be the feed force itself, which is thus monitored directly in this case.
  • the parameter is preferably merely a parameter correlated to the feed force, i.e. a variable that indirectly defines the feed force.
  • An accurately defined and reliable switchover criterion is given by the at least indirect monitoring of the feed force and allows a sufficiently rapid switchover.
  • the invention is also based on the consideration that, with the use of pneumatic feed drives, which nowadays are used conventionally, these do not allow a sufficiently rapid switchover. Due to the compressibility of the air in the case of a pneumatic drive, there is, with a pneumatic drive of this type, no possibility of a defined rapid decrease of the feed force and of the feed rate, i.e. no possibility of a sufficiently rapid switchover.
  • a switchover value of the parameter is selectively predefined, the switchover being performed once this value is reached (or undershot or overshot). Alternatively or in addition, a characteristic change of the value is used as switchover criterion.
  • the switchover is preferably performed here immediately after the penetration of the structural component and chronologically before the start of the thread-forming procedure. Damage to the thread is thus reliably eliminated.
  • use is made of the fact that, already during penetration, i.e. when the tip of the screw element exits for the first time from the underside of the structural component, there is a significant decrease in feed force.
  • the switchover is therefore performed already at this earliest possible moment in time.
  • the ‘passage’ is also preferably formed, i.e. the substantially cylindrical forming of the hole is performed.
  • This shaping of the cylindrical passage is necessary due to the usually conically tapering tip of the screw element. Only then does the thread-forming procedure begin.
  • a partial process step is therefore integrated between the switchover and the thread forming, such that a sufficient time interval is ensured until the thread contacts the structural component surface. This ensures that the switchover procedure is terminated and the lower feed force and the slower rotational speed are already set.
  • a parameter correlated to the feed force in particular a drive parameter of the feed drive, is monitored.
  • This embodiment is based on the consideration of monitoring a drive parameter of the feed drive, since state changes during the hole-forming procedure can be identified on this basis in a timely and also reliable manner.
  • driver parameter correlated to feed force is understood here in particular to mean an input-side parameter of the feed drive, which parameter is fed to the feed drive and via which the currently generated feed force is indirectly defined.
  • the input-side drive parameter is usually a characteristic for the power consumption of the drive.
  • the parameter is therefore usually not an output-side parameter.
  • it is not constituted by variables directly characterizing the feed, specifically the generated feed force or the generated feed rate. There is thus in particular no direct force measurement of the generated feed force. State changes are identified in good time by the use of input-side parameters.
  • the feed drive here has an electric motor, in particular a brushless DC motor.
  • the feed and also the feed force are thus generated via the electric motor.
  • an electric motor of this type has good controllability and a high switchover speed between different operating states.
  • a hydraulic motor for generating the feed force and the feed is used advantageously. Due to the incompressibility of the used hydraulic fluid (in contrast to a pneumatic drive), a very rapid switchover is enabled in this case as well.
  • a decrease of the value of a drive parameter in particular is evaluated as a characteristic change. This is based in principle on the consideration that high forces are exerted for the hole-forming procedure on account of the resistance of the structural component.
  • the counterforce decreases relatively abruptly already as the structural components are penetrated, i.e. when the tip of the screw element pierces through the underside of the structural component, and is expressed also in a characteristic decrease of the input-side drive parameter of the feed drive.
  • the parameter can also be monitored on the basis of an undershoot of a predefined limit or switchover value.
  • a motor characteristic in particular the motor current or a variable correlated to the motor current, is preferably monitored in the case of the electric motor.
  • This parameter could also be, for example, the rotational speed or the torque of the electric motor of the feed drive.
  • a particular advantage with the use of an electric motor and the monitoring of the motor current is the early identification of a change of the motor current.
  • a characteristic decrease of the motor current can be detected already at the end of the hole-forming procedure, specifically with the insertion and penetration of the flow hole screw through the structural components following completion of the heating process, this decrease of motor current thus already indicating the final penetration.
  • a maximum feed rate is predefined as limitation in an expedient embodiment for the feed drive. It is thus ensured that, independently of a switchover, the feed drive moves with a maximum speed. Even though the hole-forming procedure is thus completed and the counterforce is thus cancelled, which would usually lead to a sudden rise in speed of the feed movement, the feed drive immediately runs in a speed limitation.
  • the drive is not a pneumatic drive, since otherwise a limitation of this type would not be possible for the intended application.
  • a maximum feed force is also predefined as limitation for the feed drive. This is significant in particular in the case of the hole-forming procedure in order to thus delimit the exerted force on the whole. In the case of the use of an electric motor for the feed drive, this is achieved by a delimitation of the current consumption of the electric motor.
  • This maximum feed force or also the maximum feed rate preferably can be parameterized here, i.e. they can be adjusted by the user, who for example controls the device for flow hole screwing at the production line. This adjustment is made here preferably by a software-based control. Alternatively other adjustment elements, such as adjustment buttons, etc., may also be provided.
  • a switchover is performed a number of times between the first and the second process stage during a flow hole screwing procedure under defined preconditions.
  • this embodiment is based on the consideration that gaps or also intermediate layers, for example adhesive layers, are often present between the two structural components to be connected. In the case of the hole-forming procedure this ultimately causes the counterforce to decrease abruptly following the penetration of the first structural component, although the process is not complete, since the second structural component must still be penetrated.
  • the corresponding control logic is therefore designed in such a way that it recognizes a subsequent increase of the value of the monitored parameter when the flow hole screw contacts the second structural component. In this case a switchover is again made to the high feed force and the high rotational speed.
  • a characteristic rise of the feed force is expediently used as a further switchover point for the renewed switchover into the first process stage.
  • the parameter correlated to the feed force in particular the motor current, is again preferably monitored and evaluated.
  • the entire process procedure is thus adaptively adjusted to a respective, present, current situation.
  • Particular situations of this type such as structural components connected to one another via an adhesive layer, are likewise processed reliably, with process stability and at high speed via the stored control logic.
  • an additional screw drive is provided in an expedient embodiment and is thus arranged next to the feed drive.
  • the rotational movement of the screw shaft is generated via the screw drive and is transmitted suitably thereto.
  • the axial feed of the screw shaft and also the feed force transmitted to the screw shaft and therefore also to the screw element, in particular to the flow hole screw is generated and transmitted via the feed drive.
  • the screw drive here is expediently a second electric motor, which is additionally designed for a controlled screwing procedure.
  • the screw drive is therefore on the whole a controllable, specialized screw drive.
  • This comprises, in a manner known per se, selectively or also in combination a torque controller, an angle of rotation controller and also various stored process algorithms so as to be able to perform different screwing and tightening methods using the same electric motor.
  • this electric motor in the screw drive again preferably can be parameterized.
  • the drive parameters of the screw drive preferably are not monitored in terms of the switchover point. A switchover is performed via the screw drive merely between the high rotational speed during the hole-forming procedure and the low rotational speed during the thread forming.
  • the screw drive must be monitored in particular for the third process stage, or what is known as the final tightening of the screw element, following the thread-forming procedure.
  • this third process stage the screw element is screwed into the previously formed thread and tightened in order to screw the two structural components.
  • the secure fit of the screw element and therefore the end of the screwing procedure is provided in this case for example by a torque monitoring.
  • a feed force of greater than 1000N and a rotational speed for the screw shaft in the range from 5000 rpm to 8000 rpm are generated during the flow hole screwing procedure in the first process stage.
  • a feed force in the range of merely up to 500N and also a rotational speed in the range from approximately 500 to 2500 rpm are then expediently set.
  • the advantages specified with regard to the method and preferred embodiments can also be transferred analogously to the device as claimed in the invention.
  • the device is typically an automatic device which is not hand-operated.
  • the device is a secured to a machine and in particular to a robot arm and is operated in an automated manner by the machine or the robot arm. It is therefore in particular a robot-operated system.
  • FIG. 1 shows a device for flow hole screwing in a schematic and highly simplified illustration
  • FIG. 2A shows a graph illustrating the progression of rotational speed and torque of the screw drive during the flow hole screwing procedure
  • FIG. 2B shows a graph illustrating the progression of the rotational speed and the motor current of the feed drive during the flow hole screwing procedure.
  • the device 2 illustrated in FIG. 1 is used to carry out a flow hole screwing procedure. During this procedure what is known as a flow hole screw 4 is inserted into at least one structural component 6 .
  • a flow hole screw 4 is inserted into at least one structural component 6 .
  • two structural components 6 to be connected to one another via the flow hole screw 4 are illustrated and are connected to one another additionally via an adhesive layer 8 .
  • the device 2 comprises a holder 10 , which for example is formed in the manner of a housing.
  • a screw shaft 12 is mounted rotatably about an axis of rotation 14 within the holder 10 .
  • the device 2 also comprises a feed drive 16 for generating a feed movement in the axial direction 18 and also for generating a feed force F.
  • the feed force F and the feed movement are transmitted here to the screw shaft 12 .
  • a feed rate v is transmitted to the screw shaft 12 via the feed drive 16 and is thus used to move the screw shaft in the axial direction 18 .
  • the feed drive 16 has a first electric motor 20 , with the aid of which the feed force F and the feed rate v are generated. These drive variables are transmitted to the screw shaft 12 via suitable further drive structural components not illustrated in greater detail here.
  • the device 2 also comprises a screw drive 22 , which sets the screw shaft 12 in rotational movement about the axis of rotation 14 .
  • the screw drive 22 has a second electric motor 24 , of which the output is in turn connected to the screw shaft 12 via structural components (not illustrated here in greater detail) of the screw drive 22 in order to generate the rotational movement.
  • the device also comprises a control unit 26 for controlling the flow hole screwing procedure.
  • the control unit 26 emits control signals to the two drives 16 , 22 .
  • a hole (not illustrated here in greater detail) is formed in a first process stage I in the structural components 6 .
  • the screw shaft 12 is driven by means of the screw drive 22 at high rotational speed n s1 .
  • the index s stands here for the rotational speed n s of the screw shaft 12 .
  • a high feed force F 1 is exerted by means of the feed drive 16 . This lies for example in a range above 1000N.
  • the high rotational speed n s1 lies in a range between 5000 rpm to 8000 rpm.
  • the rotational speed n s is switched over to a slow rotational speed n s2 , which merely lies still at 1000 to 2500 rpm.
  • a low feed force F 2 is set, which lies merely still in the range up to 500N.
  • the motor current i is monitored in the exemplary embodiment. With a characteristic change of the value of the motor current i, this is identified as the end of the hole-forming procedure and therefore as the end of the first process stage I and is used as the switchover point for the switchover.
  • the flow hole screw 4 is designed especially for this purpose. It has a screw head 30 , an adjoining threaded shaft with thread 32 and also a usually conical tip 34 arranged at the end.
  • the tip 34 is designed in such a way that, as the hole is formed, merely a plastic deformation occurs, with no cutting procedure.
  • FIGS. 2A and 2B The progressions of various drive parameters both of the screw drive 22 and of the feed drive 16 are illustrated in FIGS. 2A and 2B , wherein FIG. 2A specifies the drive parameters of the screw drive 22 , i.e. in particular of the second electric motor 24 , and FIG. 2B specifies essential drive parameters of the feed drive 16 and in particular of the first electric motor 20 .
  • the individual parameters of the feed drive 16 are provided here with the index “v” and those of the screw drive 22 are provided with the index “s.”
  • the entire flow hole screwing procedure can be divided into different sub-steps as follows:
  • Sub-steps b and c here form the first process stage I, and sub-steps d and e form the second process stage II.
  • the upstream sub-steps constituted by the delivery and also the downstream sub-steps constituted by screwing through and tightening are therefore additional process stages during the course of the entire flow hole screwing procedure.
  • the sub-steps f and g here define a third process stage III of the actual screwing.
  • FIG. 2A the rotational speed n s and also the torque m s of the second electric motor 24 are plotted.
  • FIG. 2B the progressions of the rotational speed n v and also of the motor current i v of the first electric motor 20 are plotted.
  • the delivery and therefore the feed rate v is provided at constant rotational speed n v . Since no substantial counterforces are to be overcome, the current consumption is comparatively low. As soon as the flow hole screw 4 contacts the uppermost structural component 6 , the feed rate v is zero and the rotational speed n v decreases accordingly to zero. At the same time, the current consumption jumps suddenly to a maximum value I vmax , which is stored as a current limitation. A maximum feed force Fmax is defined simultaneously via this maximum value i vmax .
  • the rotational speed n s is first increased continuously to a high rotational speed n s1 , which is reached at the start of sub-step b.
  • the torque m s rises up to a constant value, on account of the resistance by the sheet metal.
  • this is a frictional resistance.
  • the high rotational speed n s1 and also the high feed force Fmax now lead to a heating of the structural component 6 .
  • the structural component 6 deforms plastically and the flow hole screw 4 infiltrates the structural component 6 .
  • a characteristic change of the motor current i then occurs, which is assessed as an indication for the final penetration.
  • the resistance exerted by the structural component 6 thus already reduces toward the end of the penetration and drops away immediately after.
  • the motor current i v thus decreases suddenly. This decrease is detected by the control unit 26 and evaluated.
  • the change of the motor current ⁇ i v / ⁇ t is detected here as an indication for the penetration and is evaluated. If the change ⁇ i v / ⁇ t exceeds a predefined threshold value, this is thus assessed as switchover criterion for the switchover into the process step II.
  • a switchover value i vU is predefined as switchover criterion, which, once reached or undershot, prompts the switchover.
  • the monitoring and evaluation of the motor current i v is integrated for example in the feed drive 16 , in which part of the control unit 26 is thus integrated, for example.
  • a switchover signal S is emitted, for example from the feed drive 16 , which is transmitted to the screw drive 22 , under some circumstances in a slightly delayed manner on account of signal propagation times.
  • the control unit 26 thus prompts a switchover of the rotational speed of the screw drive 22 to a reduced rotational speed n s2 at a switchover point, said reduced rotational speed preferably being constant over the sub-steps d and e.
  • a passage is formed by plastic deformation, i.e. a cylindrical hole is formed here. Due to the conical tip of the flow hole screw 4 , there is initially not yet a cylindrical hole formed over the entire structural component thickness at the end of sub-step c immediately with penetration. This occurs only in sub-step d.
  • sub-step e constituted by thread forming a thread is then formed with the aid of the flow hole screw 4 in the cylindrical hole, once this has been shaped.
  • the rotational speed n v of the feed drive 16 increases initially continuously until it reaches a maximum value n max predefined by a limitation, which leads to a maximum feed rate v max .
  • n max predefined by a limitation
  • v max maximum feed rate
  • the rotational speed n v remains at this maximum value in the further sub-step e and also during the actual screwing-in procedure during sub-step f. Only when the flow hole screw 4 reaches what is known as head contact, in which case the screw head 30 comes to rest on the structural component 6 , does the feed rate v fall again to zero, that is to say until the flow hole screw is tightened.
  • the motor current i is typically constant and increases again only in sub-step g.
  • the rotational speed is held at the constant lower value n s2 during sub-steps d to f.
  • the rotational speed of the screw drive 22 is therefore controlled in particular, more specifically over the two process stages I and II and also in addition over sub-step f.
  • the torque m s rises.
  • the torque m s falls again to a minimal value.
  • the torque m s increases again.
  • the screwing-in procedure is controlled via the control of the screw drive 22 and is concluded once a switch-off criterion has been reached, for example once a predetermined torque has been reached.
  • the torque progression illustrated in FIG. 2A correlates here generally to a current consumption of the screw drive 22 .
  • the progressions described here of the various parameters are provided at least comparably also in the case of a drill screwing procedure.
  • the characteristic progression at the transition from sub-step c to sub-step d is maintained, such that a switchover criterion can be defined in the same way.
  • a hydraulic drive can also be used in principle.
  • a characteristic change and decrease of a pressure of the hydraulic fluid in particular a hydraulic oil, can be used as switch-off criterion.
  • a delimitation of the feed speed is controlled for example by a hydraulic limitation of the inflow quantity of the hydraulic fluid in a corresponding cylinder. This is implemented for example via a throttle, which can be controlled with regard to the through flow opening.
  • the delimitation of the maximum feed force is achieved in this case by the limitation of the maximum oil pressure, for example.
  • FIG. 1 the two structural components 6 are separated from one another by the adhesive layer 8 .
  • the progression is comparable to that illustrated in FIG. 2 between sub-steps c and d.
  • the rotational speed n v will fall again to zero following contact of the flow hole screw 4 with the second, lower structural component 6 , and in addition the motor current i v will suddenly increase again.
  • the fact that this second switchover point may lie only within a predefined window, for example time interval or also path interval, is also stored here in the control unit 26 . Otherwise there is an error.

Abstract

A method for direct screwing, in particular flow hole screwing, includes producing a hole in a first stage in a structural component without cutting and forming a thread with a flow hole screw in a second stage. A feed and feed force are produced by a non-pneumatic feed drive and transmitted to a screw shaft rotated by high feed force and high rotational speed in the first stage and at a defined switchover point with penetration of the structural component a switchover is made to the second stage with lower feed force and slower rotational speed. A drive parameter correlated to the feed force, especially a motor current of an electric motor of the feed drive, is monitored and a characteristic change of this parameter is defined as switchover point. A rapid switchover with process stability is attained and damage to the flow hole screw thread is avoided.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of patent application Ser. No. 14/711,346, filed May 13, 2015; this application also claims the priority, under 35 U.S.C. § 119, of German patent application DE 10 2014 208 989.1, filed May 13, 2014; the prior applications are herewith incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The invention relates to a method for direct screwing of structural components, in particular for flow hole screwing, in which a hole is produced in a first process stage in a structural component, and in a second process stage a thread is formed in the produced hole, and for this purpose, a feed and a feed force are produced with the aid of a feed drive and are transmitted to a screw shaft, the screw shaft is set in a rotational movement, in the first process stage a high rotational speed of the rotational movement and by using the feed drive a high feed force being set, and at a defined switchover point with penetration of the structural component for the second process stage a switchover is made to a lower feed force and a slower rotational speed. The invention, and also relates to a device for direct screwing of structural components, in particular for flow hole screwing, including a rotatably drivable screw shaft, which can be moved in an axial direction to exert a feed, a feed drive for generating a feed and a feed force and also for transmission thereof to the screw shaft, a control unit for controlling the flow hole screwing procedure, constructed in such a way that, in a first process stage, a high rotational speed of the screw shaft and by using the feed drive a high feed force are set and a switchover is made to a lower feed force and a slower rotational speed at a defined switchover point for a second process stage
  • A method of this type for flow hole screwing can be inferred for example from DE 103 48 427 A1. In the case of flow hole screwing two structural components are screwed to one another by means of a screwing to one another without preliminary piercing. Here, in a first process stage a hole is produced in the structural component in a non-cutting manner and in a second process stage a thread is formed in the produced hole. Both process stages are performed here with a flow hole screw, with which the hole is firstly produced in a non-cutting manner and the thread is then formed. The flow hole screw is then also used, lastly, to connect the two structural components to one another via a screwed connection in a third process stage. For the flow hole screwing procedure, the flow hole screw is set here in a rotational movement and is moved in the axial direction with predefined feed force with the aid of a feed drive.
  • The flow hole screw usually has a conical tip. During the hole-forming procedure in the first process stage, the structural component is first heated by the flow hole screw at the intended hole position on account of a high rotational speed and also a high feed force, and is then plastically deformed. Following the hole-forming procedure, the flow hole screw infiltrates further and uses its screw thread to form the thread in the previously formed hole. For the thread-forming procedure in the second process stage, the rotational speed of the flow hole screw is usually reduced. In the first process stage, in which the structural components are plastically deformed by the heating, rotational speeds in the range from 1000 to 5000 rpm and feed or pressing forces in the range between 0.3 to 1.5 kN are achieved in accordance with DE 103 48 427 A1.
  • In accordance with DE 103 48 427 A1, the structural components are additionally pressed against one another during the screwing by a holding-down force, which is applied by way of example pneumatically or also by springs. In addition, a feed force acts on the flow hole screw by means of a screw spindle.
  • A further device for flow hole grooving is described from DE 199 11 308 A1. Here, a single tool is used, which for the hole operation is controlled to a slower feed compared with the subsequent thread forming. A pressing force is generated here by means of a coiled compression screw.
  • Systems available on the market are characterized in terms of the generation of the feed force by pneumatic systems, by means of which the feed force is generated pneumatically and is transmitted to the screw shaft.
  • Flow hole screwing is also used noticeably in the automotive industry. Here, a high cycle rate alongside high process stability is required in particular. The switchover between the first process stage of hole forming to the second process stage of thread forming has proven to be problematic in particular.
  • Besides flow hole screwing, a further type of direct screwing is constituted by drill screwing, in which the hole is produced in the first process stage with the aid of a drill screw by drilling, i.e. in a cutting manner, and in the second process step (similarly to flow hole screwing), a thread is then formed. Direct screwing is understood generally to mean a process in which the hole-form ing procedure and the screwing procedure are performed in a common screwing procedure using a screw element also designed to generate the passage in the structural component accompanied by the forming of the thread.
  • On this basis, the object of the invention is to reliably ensure at high cycle rate a direct screwing, in particular flow hole screwing, that has high process stability.
  • BRIEF SUMMARY OF THE INVENTION
  • The object is achieved in accordance with the invention by a method for direct screwing, in particular for flow hole screwing, having the features described below and also by a device for direct screwing, in particular for flow hole screwing having the features described below.
  • In the method a hole is produced in a first process stage in a structural component with the aid of a screw element, specifically a flow hole screw or a drill screw, and in a second process stage a thread is formed in the produced hole with the aid of the flow hole screw or the drill screw. A feed and a feed force or also pressing force is generally produced for this purpose with the aid of a feed drive and is transmitted to a screw shaft. The screw element is held at the front end of the screw shaft. In the first process stage of hole forming a high rotational speed is set for the rotational movement of the screw shaft and a high feed force is set by means of the feed drive. At a defined switchover point with penetration of the structural component a switch is then made into the second process stage, and in so doing a lower feed force and a slower rotational speed are set. In order to ensure the quickest possible switchover with process stability the feed force is now generated by means of a non-pneumatic feed drive, and a drive parameter of the feed drive correlated to the feed force is also monitored and a characteristic change of the value of this drive parameter defines the switchover point from which a switch is to be made to the lower feed force and the slower rotational speed.
  • This embodiment is based on the consideration that the switchover is extremely time-critical, since, following completion of the hole-forming procedure, the high rotational speed (particularly in the case of flow hole forming) and also the high feed force are still present and, if these process parameters are retained, there is the risk of damaging the thread turns of the screw element, in particular of the flow hole screw, if this thus moves at high force and/or high feed rate against the structural component. This may mean ultimately that the thread is not formed or is formed only insufficiently, and on the whole that the structural component connection does not meet the required quality demands. Due to the sudden elimination of the counterforce following the penetration of the structural component, the feed rate usually rises uncontrollably. The thread of the screw element therefore often contacts the previously formed hole at high speed.
  • In order to ensure a reliable switchover, the feed force applied to the screw element is now monitored. For this purpose a parameter correlated at least with the feed force is detected and monitored. The parameter, in principle, may also be the feed force itself, which is thus monitored directly in this case. The parameter, however, is preferably merely a parameter correlated to the feed force, i.e. a variable that indirectly defines the feed force. An accurately defined and reliable switchover criterion is given by the at least indirect monitoring of the feed force and allows a sufficiently rapid switchover.
  • Here, the invention is also based on the consideration that, with the use of pneumatic feed drives, which nowadays are used conventionally, these do not allow a sufficiently rapid switchover. Due to the compressibility of the air in the case of a pneumatic drive, there is, with a pneumatic drive of this type, no possibility of a defined rapid decrease of the feed force and of the feed rate, i.e. no possibility of a sufficiently rapid switchover.
  • In order to determine the switchover point a switchover value of the parameter is selectively predefined, the switchover being performed once this value is reached (or undershot or overshot). Alternatively or in addition, a characteristic change of the value is used as switchover criterion.
  • By the solution described here, an immediate switchover at the end of the hole-forming procedure and before the start of the thread-forming procedure is therefore ensured reliably and with process stability.
  • The switchover is preferably performed here immediately after the penetration of the structural component and chronologically before the start of the thread-forming procedure. Damage to the thread is thus reliably eliminated. Here, use is made of the fact that, already during penetration, i.e. when the tip of the screw element exits for the first time from the underside of the structural component, there is a significant decrease in feed force. The switchover is therefore performed already at this earliest possible moment in time.
  • Following the switchover the ‘passage’ is also preferably formed, i.e. the substantially cylindrical forming of the hole is performed. This shaping of the cylindrical passage is necessary due to the usually conically tapering tip of the screw element. Only then does the thread-forming procedure begin. A partial process step is therefore integrated between the switchover and the thread forming, such that a sufficient time interval is ensured until the thread contacts the structural component surface. This ensures that the switchover procedure is terminated and the lower feed force and the slower rotational speed are already set.
  • In accordance with a preferred embodiment a parameter correlated to the feed force, in particular a drive parameter of the feed drive, is monitored. This embodiment is based on the consideration of monitoring a drive parameter of the feed drive, since state changes during the hole-forming procedure can be identified on this basis in a timely and also reliable manner.
  • The term “drive parameter correlated to feed force” is understood here in particular to mean an input-side parameter of the feed drive, which parameter is fed to the feed drive and via which the currently generated feed force is indirectly defined. Here, the input-side drive parameter is usually a characteristic for the power consumption of the drive. The parameter is therefore usually not an output-side parameter. In particular it is not constituted by variables directly characterizing the feed, specifically the generated feed force or the generated feed rate. There is thus in particular no direct force measurement of the generated feed force. State changes are identified in good time by the use of input-side parameters.
  • In a particularly expedient embodiment the feed drive here has an electric motor, in particular a brushless DC motor. The feed and also the feed force are thus generated via the electric motor. Compared with a pneumatic drive, an electric motor of this type has good controllability and a high switchover speed between different operating states.
  • Alternatively to an electric motor, a hydraulic motor for generating the feed force and the feed is used advantageously. Due to the incompressibility of the used hydraulic fluid (in contrast to a pneumatic drive), a very rapid switchover is enabled in this case as well.
  • In both cases a decrease of the value of a drive parameter in particular is evaluated as a characteristic change. This is based in principle on the consideration that high forces are exerted for the hole-forming procedure on account of the resistance of the structural component. The counterforce decreases relatively abruptly already as the structural components are penetrated, i.e. when the tip of the screw element pierces through the underside of the structural component, and is expressed also in a characteristic decrease of the input-side drive parameter of the feed drive. Alternatively the parameter can also be monitored on the basis of an undershoot of a predefined limit or switchover value.
  • As drive parameters which are to be monitored, a motor characteristic, in particular the motor current or a variable correlated to the motor current, is preferably monitored in the case of the electric motor. This parameter could also be, for example, the rotational speed or the torque of the electric motor of the feed drive.
  • In the case of a hydraulic motor the pressure within a hydraulic unit, via which the feed force is generated, is monitored as drive parameter.
  • A particular advantage with the use of an electric motor and the monitoring of the motor current is the early identification of a change of the motor current. In particular it has been found that a characteristic decrease of the motor current can be detected already at the end of the hole-forming procedure, specifically with the insertion and penetration of the flow hole screw through the structural components following completion of the heating process, this decrease of motor current thus already indicating the final penetration.
  • In order to reliably avoid damaging the thread following the hole-form ing procedure, a maximum feed rate is predefined as limitation in an expedient embodiment for the feed drive. It is thus ensured that, independently of a switchover, the feed drive moves with a maximum speed. Even though the hole-forming procedure is thus completed and the counterforce is thus cancelled, which would usually lead to a sudden rise in speed of the feed movement, the feed drive immediately runs in a speed limitation. Here as well it is again of key importance that the drive is not a pneumatic drive, since otherwise a limitation of this type would not be possible for the intended application.
  • In an expedient development a maximum feed force is also predefined as limitation for the feed drive. This is significant in particular in the case of the hole-forming procedure in order to thus delimit the exerted force on the whole. In the case of the use of an electric motor for the feed drive, this is achieved by a delimitation of the current consumption of the electric motor.
  • This maximum feed force or also the maximum feed rate preferably can be parameterized here, i.e. they can be adjusted by the user, who for example controls the device for flow hole screwing at the production line. This adjustment is made here preferably by a software-based control. Alternatively other adjustment elements, such as adjustment buttons, etc., may also be provided.
  • In a particularly expedient development a switchover is performed a number of times between the first and the second process stage during a flow hole screwing procedure under defined preconditions. Here, this embodiment is based on the consideration that gaps or also intermediate layers, for example adhesive layers, are often present between the two structural components to be connected. In the case of the hole-forming procedure this ultimately causes the counterforce to decrease abruptly following the penetration of the first structural component, although the process is not complete, since the second structural component must still be penetrated. The corresponding control logic is therefore designed in such a way that it recognizes a subsequent increase of the value of the monitored parameter when the flow hole screw contacts the second structural component. In this case a switchover is again made to the high feed force and the high rotational speed.
  • Here, a characteristic rise of the feed force is expediently used as a further switchover point for the renewed switchover into the first process stage. For this purpose the parameter correlated to the feed force, in particular the motor current, is again preferably monitored and evaluated. On the whole, the entire process procedure is thus adaptively adjusted to a respective, present, current situation. Particular situations of this type, such as structural components connected to one another via an adhesive layer, are likewise processed reliably, with process stability and at high speed via the stored control logic.
  • For the generation of the rotational movement of the screw shaft, an additional screw drive is provided in an expedient embodiment and is thus arranged next to the feed drive. Here, the rotational movement of the screw shaft is generated via the screw drive and is transmitted suitably thereto. By contrast, merely the axial feed of the screw shaft and also the feed force transmitted to the screw shaft and therefore also to the screw element, in particular to the flow hole screw, is generated and transmitted via the feed drive.
  • The screw drive here is expediently a second electric motor, which is additionally designed for a controlled screwing procedure. The screw drive is therefore on the whole a controllable, specialized screw drive. This comprises, in a manner known per se, selectively or also in combination a torque controller, an angle of rotation controller and also various stored process algorithms so as to be able to perform different screwing and tightening methods using the same electric motor. Here, this electric motor in the screw drive again preferably can be parameterized. The drive parameters of the screw drive preferably are not monitored in terms of the switchover point. A switchover is performed via the screw drive merely between the high rotational speed during the hole-forming procedure and the low rotational speed during the thread forming. The screw drive must be monitored in particular for the third process stage, or what is known as the final tightening of the screw element, following the thread-forming procedure. In this third process stage the screw element is screwed into the previously formed thread and tightened in order to screw the two structural components. The secure fit of the screw element and therefore the end of the screwing procedure is provided in this case for example by a torque monitoring.
  • In an expedient embodiment a feed force of greater than 1000N and a rotational speed for the screw shaft in the range from 5000 rpm to 8000 rpm are generated during the flow hole screwing procedure in the first process stage. In the second process stage a feed force in the range of merely up to 500N and also a rotational speed in the range from approximately 500 to 2500 rpm are then expediently set.
  • The advantages specified with regard to the method and preferred embodiments can also be transferred analogously to the device as claimed in the invention. The device is typically an automatic device which is not hand-operated. Here, the device is a secured to a machine and in particular to a robot arm and is operated in an automated manner by the machine or the robot arm. It is therefore in particular a robot-operated system.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • An exemplary embodiment of the invention will be explained in greater detail hereinafter with reference to the figures, in which:
  • FIG. 1 shows a device for flow hole screwing in a schematic and highly simplified illustration,
  • FIG. 2A shows a graph illustrating the progression of rotational speed and torque of the screw drive during the flow hole screwing procedure, and
  • FIG. 2B shows a graph illustrating the progression of the rotational speed and the motor current of the feed drive during the flow hole screwing procedure.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The device 2 illustrated in FIG. 1 is used to carry out a flow hole screwing procedure. During this procedure what is known as a flow hole screw 4 is inserted into at least one structural component 6. In the exemplary embodiment two structural components 6 to be connected to one another via the flow hole screw 4 are illustrated and are connected to one another additionally via an adhesive layer 8.
  • The device 2 comprises a holder 10, which for example is formed in the manner of a housing. A screw shaft 12 is mounted rotatably about an axis of rotation 14 within the holder 10. The device 2 also comprises a feed drive 16 for generating a feed movement in the axial direction 18 and also for generating a feed force F. The feed force F and the feed movement are transmitted here to the screw shaft 12. A feed rate v is transmitted to the screw shaft 12 via the feed drive 16 and is thus used to move the screw shaft in the axial direction 18.
  • The feed drive 16 has a first electric motor 20, with the aid of which the feed force F and the feed rate v are generated. These drive variables are transmitted to the screw shaft 12 via suitable further drive structural components not illustrated in greater detail here.
  • The device 2 also comprises a screw drive 22, which sets the screw shaft 12 in rotational movement about the axis of rotation 14. Here, the screw drive 22 has a second electric motor 24, of which the output is in turn connected to the screw shaft 12 via structural components (not illustrated here in greater detail) of the screw drive 22 in order to generate the rotational movement.
  • The device also comprises a control unit 26 for controlling the flow hole screwing procedure. Here, the control unit 26 emits control signals to the two drives 16, 22.
  • In the case of the flow hole screwing procedure a hole (not illustrated here in greater detail) is formed in a first process stage I in the structural components 6. For this purpose the screw shaft 12 is driven by means of the screw drive 22 at high rotational speed ns1. The index s stands here for the rotational speed ns of the screw shaft 12. At the same time a high feed force F1 is exerted by means of the feed drive 16. This lies for example in a range above 1000N. The high rotational speed ns1 lies in a range between 5000 rpm to 8000 rpm. Following completion of the hole-forming procedure the rotational speed ns is switched over to a slow rotational speed ns2, which merely lies still at 1000 to 2500 rpm. At the same time a low feed force F2 is set, which lies merely still in the range up to 500N. For timely recognition and rapid switchover the motor current i is monitored in the exemplary embodiment. With a characteristic change of the value of the motor current i, this is identified as the end of the hole-forming procedure and therefore as the end of the first process stage I and is used as the switchover point for the switchover.
  • The flow hole screw 4 is designed especially for this purpose. It has a screw head 30, an adjoining threaded shaft with thread 32 and also a usually conical tip 34 arranged at the end. Here, the tip 34 is designed in such a way that, as the hole is formed, merely a plastic deformation occurs, with no cutting procedure.
  • The progressions of various drive parameters both of the screw drive 22 and of the feed drive 16 are illustrated in FIGS. 2A and 2B, wherein FIG. 2A specifies the drive parameters of the screw drive 22, i.e. in particular of the second electric motor 24, and FIG. 2B specifies essential drive parameters of the feed drive 16 and in particular of the first electric motor 20. The individual parameters of the feed drive 16 are provided here with the index “v” and those of the screw drive 22 are provided with the index “s.” The entire flow hole screwing procedure can be divided into different sub-steps as follows:
      • a delivery movement
      • b heating
      • c penetration
      • d forming of a passage
      • e thread forming
      • f screwing in and through of the flow hole screw 4
      • g tightening of the flow hole screw 4
  • Sub-steps b and c here form the first process stage I, and sub-steps d and e form the second process stage II. The upstream sub-steps constituted by the delivery and also the downstream sub-steps constituted by screwing through and tightening are therefore additional process stages during the course of the entire flow hole screwing procedure. The sub-steps f and g here define a third process stage III of the actual screwing.
  • In FIG. 2A the rotational speed ns and also the torque ms of the second electric motor 24 are plotted. In FIG. 2B the progressions of the rotational speed nv and also of the motor current iv of the first electric motor 20 are plotted.
  • Considering first the progression of the drive parameters nv, iv of the feed drive 16, the following can be seen:
  • During the delivery movement, the delivery and therefore the feed rate v is provided at constant rotational speed nv. Since no substantial counterforces are to be overcome, the current consumption is comparatively low. As soon as the flow hole screw 4 contacts the uppermost structural component 6, the feed rate v is zero and the rotational speed nv decreases accordingly to zero. At the same time, the current consumption jumps suddenly to a maximum value Ivmax, which is stored as a current limitation. A maximum feed force Fmax is defined simultaneously via this maximum value ivmax.
  • With regard to the screw drive 22, the rotational speed ns is first increased continuously to a high rotational speed ns1, which is reached at the start of sub-step b. At the start of sub-step b, i.e. when the flow hole screw 4 sits on the structural component 6, the torque ms rises up to a constant value, on account of the resistance by the sheet metal. Here, this is a frictional resistance. The high rotational speed ns1 and also the high feed force Fmax now lead to a heating of the structural component 6. Following sufficient heating at the end of sub-step b, the structural component 6 deforms plastically and the flow hole screw 4 infiltrates the structural component 6. A feed movement thus occurs again, such that the rotational speed nv rises continuously. During this sub-step c of penetration of the structural component 6, the motor current iv remains at a high level, and the rotational speed ns and also the torque ms likewise remain at a constant level.
  • Toward the end of sub-step c, a characteristic change of the motor current i then occurs, which is assessed as an indication for the final penetration. The resistance exerted by the structural component 6 thus already reduces toward the end of the penetration and drops away immediately after. The motor current iv thus decreases suddenly. This decrease is detected by the control unit 26 and evaluated. In accordance with a first variant the change of the motor current Δiv/Δt is detected here as an indication for the penetration and is evaluated. If the change Δiv/Δt exceeds a predefined threshold value, this is thus assessed as switchover criterion for the switchover into the process step II. Alternatively or also parallel hereto, a switchover value ivU is predefined as switchover criterion, which, once reached or undershot, prompts the switchover. The monitoring and evaluation of the motor current iv is integrated for example in the feed drive 16, in which part of the control unit 26 is thus integrated, for example.
  • Once the switchover criterion has been reached a switchover signal S is emitted, for example from the feed drive 16, which is transmitted to the screw drive 22, under some circumstances in a slightly delayed manner on account of signal propagation times.
  • The control unit 26 thus prompts a switchover of the rotational speed of the screw drive 22 to a reduced rotational speed ns2 at a switchover point, said reduced rotational speed preferably being constant over the sub-steps d and e. In sub-step d a passage is formed by plastic deformation, i.e. a cylindrical hole is formed here. Due to the conical tip of the flow hole screw 4, there is initially not yet a cylindrical hole formed over the entire structural component thickness at the end of sub-step c immediately with penetration. This occurs only in sub-step d. In sub-step e constituted by thread forming a thread is then formed with the aid of the flow hole screw 4 in the cylindrical hole, once this has been shaped.
  • Due to the decreasing counterforce already in sub-step c and in addition in sub-step d, the rotational speed nv of the feed drive 16 increases initially continuously until it reaches a maximum value nmax predefined by a limitation, which leads to a maximum feed rate vmax. This is thus a delimitation of the rotational speed nv to a maximum value. In the exemplary embodiment this is identical to the maximum value during the delivery movement. Alternatively however, a higher feed rate v and therefore a higher rotational speed nv may also be permitted for the delivery movement.
  • The rotational speed nv remains at this maximum value in the further sub-step e and also during the actual screwing-in procedure during sub-step f. Only when the flow hole screw 4 reaches what is known as head contact, in which case the screw head 30 comes to rest on the structural component 6, does the feed rate v fall again to zero, that is to say until the flow hole screw is tightened. During sub-steps d, e and f, the motor current i is typically constant and increases again only in sub-step g.
  • With regard to the screw drive 22 the rotational speed is held at the constant lower value ns2 during sub-steps d to f. The rotational speed of the screw drive 22 is therefore controlled in particular, more specifically over the two process stages I and II and also in addition over sub-step f. During thread forming a higher resistance for the rotational movement again occurs, such that the torque ms rises. At the end of the thread-forming procedure the torque ms falls again to a minimal value. In the last sub-step g, in which the flow hole screw 4 is tightened, the torque ms increases again. The screwing-in procedure is controlled via the control of the screw drive 22 and is concluded once a switch-off criterion has been reached, for example once a predetermined torque has been reached. The torque progression illustrated in FIG. 2A correlates here generally to a current consumption of the screw drive 22.
  • The progressions described here of the various parameters are provided at least comparably also in the case of a drill screwing procedure. The characteristic progression at the transition from sub-step c to sub-step d is maintained, such that a switchover criterion can be defined in the same way.
  • Alternatively to the use of an electric motor 20 for the feed drive 16, a hydraulic drive can also be used in principle. In this case a characteristic change and decrease of a pressure of the hydraulic fluid, in particular a hydraulic oil, can be used as switch-off criterion. A delimitation of the feed speed is controlled for example by a hydraulic limitation of the inflow quantity of the hydraulic fluid in a corresponding cylinder. This is implemented for example via a throttle, which can be controlled with regard to the through flow opening. The delimitation of the maximum feed force is achieved in this case by the limitation of the maximum oil pressure, for example.
  • In FIG. 1 the two structural components 6 are separated from one another by the adhesive layer 8. This means that, already after penetration of the first structural component 6, this is identified by the control unit 26 as switchover point. The progression is comparable to that illustrated in FIG. 2 between sub-steps c and d. There is therefore initially a switchover into process stage II, as was described previously. In this case, however, the rotational speed nv will fall again to zero following contact of the flow hole screw 4 with the second, lower structural component 6, and in addition the motor current iv will suddenly increase again. This is again identified by the control unit 26 as the start of the first process stage I and a switchover is again made into this first process stage I. In addition, the fact that this second switchover point may lie only within a predefined window, for example time interval or also path interval, is also stored here in the control unit 26. Otherwise there is an error.
  • The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention:
      • 2 device
      • 4 flow hole screw
      • 6 structural component
      • 8 adhesive layer
      • 10 holder
      • 12 screw shaft
      • 14 axis of rotation
      • 16 feed drive
      • 18 axial direction
      • 20 first electric motor
      • 22 screw drive
      • 24 second electric motor
      • 26 control unit
      • 30 screw head
      • 32 thread
      • 34 tip
      • F feed force
      • Fmax maximum feed force
      • V feed rate
      • Vmax maximum feed rate
      • F1 high feed force
      • F2 low feed force
      • iv motor current of the first electric motor
      • ivmax maximum motor current
      • (ivU) switchover value
      • nv rotational speed of the first electric motor
      • nvmax maximum rotational speed of the first electric motor
      • nv rotational speed of the first electric motor
      • ns rotational speed of the second electric motor
      • ms torque of the second electric motor
      • ns1 high rotational speed of the second electric motor/the screw shaft
      • ns2 reduced rotational speed of the second electric motor/screw shaft
      • S switchover signal

Claims (14)

1. A device for direct screwing or flow hole screwing of structural components, the device comprising:
a rotatably drivable screw shaft configured to be moved in an axial direction to exert a feed;
a non-pneumatic feed drive for generating a feed and a feed force and for transmitting said feed and said feed force to said screw shaft; and
a control unit for controlling a flow hole screwing procedure, said control unit setting a high rotational speed of said screw shaft and a high feed force produced by said non-pneumatic feed drive in a first process stage and switching over to a lower feed force and a slower rotational speed at a defined switchover point for a second process stage; and
said control unit monitoring a parameter correlated at least with said feed force and defining said switchover point upon reaching a characteristic value or upon a characteristic change of a value of said parameter.
2. The device according to claim 1, wherein said control unit is configured to define the switchover point immediately with penetration of the structural component and before starting formation of the thread.
3. The device according to claim 1, wherein, following the switchover, a cylindrical passage is formed in a sub-step before the thread is formed.
4. The device according to claim 1, wherein said parameter is a drive parameter of said feed drive.
5. The device according to claim 1, wherein said feed drive comprises a first electric motor.
6. The device according to claim 5, wherein said parameter is a motor characteristic.
7. The device according to claim 6, wherein said parameter is a motor current of said first electric motor.
8. The device according to claim 1, wherein said feed drive has a predefined maximum feed rate.
9. The device according to claim 1, said feed drive has a predefined maximum feed force.
10. The device according to claim 8, which further comprises:
wherein said feed drive has a predefined maximum feed force; and
at least one of the maximum feed force or the maximum feed rate are parameterized.
11. The device according to claim 1, wherein said control unit is configured to automatically carry out a switchover a number of times between the first process stage and the second process stage under predefined conditions during a flow hole screwing procedure.
12. The device according to claim 11, wherein said control unit is configured to:
define a further switchover point with a characteristic rise of the feed force in the second process stage; and
switch over again into the first process stage with the high feed force.
13. The device according to claim 1, wherein said screw shaft is rotated by using an additional screw drive having a second electric motor with a controller for a controlled screwing procedure.
14. The device according to claim 1, wherein:
the first process stage is defined with a feed force of greater than 1000 N and a rotational speed for the screw shaft in a range from 5000 rpm to 8000 rpm; and
the second process stage is defined with a feed force in a range of up to 500 N and a rotational speed in a range from 500 to 2500 rpm.
US15/866,521 2014-05-13 2018-01-10 Device for direct screwing of structural components, in particular for flow hole screwing Abandoned US20180126444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/866,521 US20180126444A1 (en) 2014-05-13 2018-01-10 Device for direct screwing of structural components, in particular for flow hole screwing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014208989.1 2014-05-13
DE102014208989.1A DE102014208989A1 (en) 2014-05-13 2014-05-13 Method for direct screwing of components, in particular for flow hole screwing and device for direct screwing of components
US14/711,346 US9901974B2 (en) 2014-05-13 2015-05-13 Method for direct screwing of structural components, in particular for flow hole screwing and device for direct screwing of structural components
US15/866,521 US20180126444A1 (en) 2014-05-13 2018-01-10 Device for direct screwing of structural components, in particular for flow hole screwing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/711,346 Division US9901974B2 (en) 2014-05-13 2015-05-13 Method for direct screwing of structural components, in particular for flow hole screwing and device for direct screwing of structural components

Publications (1)

Publication Number Publication Date
US20180126444A1 true US20180126444A1 (en) 2018-05-10

Family

ID=53189557

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/711,346 Active 2036-06-10 US9901974B2 (en) 2014-05-13 2015-05-13 Method for direct screwing of structural components, in particular for flow hole screwing and device for direct screwing of structural components
US15/866,521 Abandoned US20180126444A1 (en) 2014-05-13 2018-01-10 Device for direct screwing of structural components, in particular for flow hole screwing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/711,346 Active 2036-06-10 US9901974B2 (en) 2014-05-13 2015-05-13 Method for direct screwing of structural components, in particular for flow hole screwing and device for direct screwing of structural components

Country Status (4)

Country Link
US (2) US9901974B2 (en)
EP (1) EP2954973B1 (en)
DE (1) DE102014208989A1 (en)
ES (1) ES2627279T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222640A1 (en) * 2012-12-10 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft the bolted
DE102014208994A1 (en) 2014-05-13 2015-11-19 Deprag Schulz Gmbh U. Co. Device for direct screwing of components, in particular for flow hole screwing and method for direct screwing of components
JP6363653B2 (en) * 2016-06-02 2018-07-25 ファナック株式会社 Motor control device
US10239285B2 (en) * 2016-12-13 2019-03-26 GM Global Technology Operations LLC Spinning joining of similar and dissimilar materials
DE102017100813A1 (en) * 2017-01-17 2018-07-19 Weber Schraubautomaten Gmbh Method and device for setting a screw
JP6822290B2 (en) * 2017-04-10 2021-01-27 トヨタ自動車株式会社 Joining method and joining device
DE102018103205A1 (en) 2018-02-13 2019-08-14 Ejot Gmbh & Co. Kg joining element
CN108941424B (en) * 2018-06-14 2019-09-27 同济大学 A kind of hot melt self tapping blind riveting device
CN109277803B (en) * 2018-09-25 2024-04-09 佛山市北泰合金制品有限公司 Automatic axle loading machine
DE102019120863A1 (en) 2019-08-01 2021-02-04 Atlas Copco Ias Gmbh Method for controlling a mechanical joining or forming process
DE102021115209A1 (en) * 2021-06-11 2022-12-15 Atlas Copco Ias Gmbh Method and device for monitoring and/or controlling a flow drilling and thread forming process
DE102021115210A1 (en) * 2021-06-11 2022-12-15 Atlas Copco Ias Gmbh Method and device for monitoring and/or controlling a flow drilling and thread forming process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931901B2 (en) * 2003-10-21 2005-08-23 General Motors Corporation Method and apparatus for forming a threaded hole in a hydroformed part
US7552610B2 (en) * 2005-11-01 2009-06-30 Honda Motor Co., Ltd. Thread forming method, thread forming device, and thread forming tool
US8857040B2 (en) * 2012-02-01 2014-10-14 Ford Global Technologies, Llc Method of flow drill screwing parts
US8919456B2 (en) * 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801466A (en) * 1988-06-07 1990-01-02 Emerson Electric Co DEVICE FOR DRIVING A DRILL AND / OR IMPACT TOOL.
DE4225157A1 (en) * 1992-07-30 1994-02-03 Reich Maschf Gmbh Karl Electric screwdriver for self tapping screws having drill tip and threaded part - has electronic sensor which is activated depending on current taken so that rpm of electric motor is reduced whilst thread is screwed in
DE19911308A1 (en) 1999-03-13 2000-09-14 Glimpel Emuge Werk Device for grooving flow holes and threaded grooves has flow hole grooving member mounted coaxial behind threaded grooving member on single tool with adjustable drive speed
DE10348427A1 (en) 2003-10-14 2005-05-19 Volkswagen Ag Direct screwing process for joining two or more components involves pressing components together by holding-down force during screwing
JP4891672B2 (en) * 2006-06-30 2012-03-07 日東精工株式会社 Screw parts fastening machine
JP5452272B2 (en) * 2010-02-12 2014-03-26 株式会社大武ルート工業 Automatic screw tightening device
DE102011109815A1 (en) * 2011-08-08 2013-02-14 Volkswagen Aktiengesellschaft Connection of at least two adjoining components
ES2435734B1 (en) 2012-05-16 2014-10-03 Loxin 2002, S.L. Electromandrino with axial force control for friction welding and other applications
DE102012215905A1 (en) * 2012-09-07 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Method for direct screwing of components by apparatus, involves rotating screw for introducing hole in upper component in rotational direction and carrying out rotation direction reversal by impinging hole forming section on lower component
DE102012215908A1 (en) * 2012-09-07 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Method and device for the pre-hole-free direct screwing of at least two components using a hold-down device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931901B2 (en) * 2003-10-21 2005-08-23 General Motors Corporation Method and apparatus for forming a threaded hole in a hydroformed part
US7552610B2 (en) * 2005-11-01 2009-06-30 Honda Motor Co., Ltd. Thread forming method, thread forming device, and thread forming tool
US8857040B2 (en) * 2012-02-01 2014-10-14 Ford Global Technologies, Llc Method of flow drill screwing parts
US8919456B2 (en) * 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver

Also Published As

Publication number Publication date
ES2627279T3 (en) 2017-07-27
US9901974B2 (en) 2018-02-27
EP2954973B1 (en) 2017-03-15
DE102014208989A1 (en) 2015-11-19
EP2954973A1 (en) 2015-12-16
US20150328677A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US20180126444A1 (en) Device for direct screwing of structural components, in particular for flow hole screwing
JP4918273B2 (en) Bolt / Nut electric tightening machine
US10010928B2 (en) Device for connecting structural components, in particularly by means of direct screwing, especially flow hole screwing, or by means of friction welding, and method for connecting structural components, in particular by means of direct screwing or friction welding
JP4129317B2 (en) Punch rivet joint forming method
US10589341B2 (en) Multi-step joining device and joining method therefor
DE102007059422B4 (en) Method for setting rivet elements by means of a portable riveting device driven by an electric motor and a riveting device
CN106696944A (en) Crawling control method for vehicle
CN103433882B (en) A kind of control method of current feedback type numerical control electric screw driver
US10118215B2 (en) Blind rivet setting device and method for setting a blind rivet
JP6762046B2 (en) How to assemble a solenoid valve
US9097228B2 (en) Method for adjusting the valve stroke
CN112236262A (en) Fastening method and fastening device for bolt and nut
JP2018179102A (en) Connection method and connection device
CN204954140U (en) Depth control device is sent to double -screw bolt
JP6154641B2 (en) Automatic screwing machine
CN105511850B (en) Screwing and/or riveting system and method for monitoring a screwing and/or riveting system
EP2271461B1 (en) Power tool for tightening screw joints
CN112207175B (en) Automatic punching device and method for steel billet
JP2015024487A (en) Tap machining device
US20220395893A1 (en) Method and Device for 1 Monitoring and/or Control of a Flow-Hole and Thread-Forming Process
US8244407B2 (en) Method for actuating a hydraulic servo system
CN203751454U (en) Blind hole tapering device
CN215545765U (en) Friction stir welding system for detecting and feeding back temperature change
US10876357B2 (en) Flowing drilling apparatus and flow drilling process
CN116722791A (en) Control method and control device of electric tool and electric tool

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION