US20180124938A1 - High power feedthrough for use with a high frequency power converter - Google Patents
High power feedthrough for use with a high frequency power converter Download PDFInfo
- Publication number
- US20180124938A1 US20180124938A1 US15/337,841 US201615337841A US2018124938A1 US 20180124938 A1 US20180124938 A1 US 20180124938A1 US 201615337841 A US201615337841 A US 201615337841A US 2018124938 A1 US2018124938 A1 US 2018124938A1
- Authority
- US
- United States
- Prior art keywords
- electrically conductive
- feedthrough
- conductive ring
- radius
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 72
- 238000010248 power generation Methods 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims 1
- JDZUWXRNKHXZFE-UHFFFAOYSA-N 1,2,3,4,5-pentachloro-6-(2,4,6-trichlorophenyl)benzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl JDZUWXRNKHXZFE-UHFFFAOYSA-N 0.000 description 30
- 238000000034 method Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 229910001369 Brass Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000010951 brass Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0247—Electrical details of casings, e.g. terminals, passages for cables or wiring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/35—Feed-through capacitors or anti-noise capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/26—Lead-in insulators; Lead-through insulators
- H01B17/265—Fastening of insulators to support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/0243—Printed circuits associated with mounted high frequency components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/167—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1401—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
- H05K7/1402—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0007—Casings
- H05K9/0018—Casings with provisions to reduce aperture leakages in walls, e.g. terminals, connectors, cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09036—Recesses or grooves in insulating substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09818—Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
- H05K2201/0999—Circuit printed on or in housing, e.g. housing as PCB; Circuit printed on the case of a component; PCB affixed to housing
Definitions
- the field of the disclosure relates generally to radio frequency (RF) feedthroughs, and more particularly, to a high power feedthrough for use with a high frequency power electronics system.
- RF radio frequency
- At least some feedthroughs are used in large-scale power electronics systems to conduct electrical current from a power source, through an enclosure, to a system within the enclosure.
- some feedthroughs are used to conduct electrical current from a photovoltaic (“PV”) array, through a cabinet, to a power inverter housed within the cabinet.
- PV photovoltaic
- the power inverter converts direct current to alternating current, direct current to direct current, alternating current to direct current, or alternating current to alternating current, for use as electrical power.
- power inverters include fast switching semiconductor switching elements, such as silicon carbide (“SiC”) and gallium nitride switching element.
- SiC silicon carbide
- gallium nitride switching element Such fast switching semiconductor switching elements are capable of reducing switching losses, allowing increased switching frequency, and so afford an advantage over more conventional power inverters.
- the faster switching transitions and larger switching frequency of fast switching power inverters may result in the production of undesirable high frequency electromagnetic energy, which may flow back over a power line, and other structures connecting to the PV array, causing the power line to act as an unintentional antenna transmitter.
- a feedthrough in one aspect, includes a flange comprising an inner cylindrical surface and a planar mounting surface.
- the inner cylindrical surface defines a cylindrical passage within the flange.
- the feedthrough further includes a printed circuit board (“PCB”) mounted on the planar mounting surface, and an electrically conductive element that extends through the cylindrical passage.
- PCB printed circuit board
- an electrical power generation system in another aspect, includes a power source, a power line coupled to the power source, a housing, a power inverter mounted within the housing, and a feedthrough that passes through the housing and that electrically couples the power line to the power inverter.
- the feedthrough includes a flange comprising an inner cylindrical surface and a planar mounting surface. The inner cylindrical surface defines a cylindrical passage within the flange.
- the feedthrough further includes a PCB mounted on the planar mounting surface, and an electrically conductive element that extends through the cylindrical passage.
- a PCB for use as part of a feedthrough.
- the PCB includes a first electrically conductive ring having a first radius, a second electrically conductive ring having a second radius that is greater than the first radius, and a third electrically conductive ring having a third radius that is greater than the second radius.
- the PCB further includes a first plurality of capacitors electrically coupled between the first electrically conductive ring and the second electrically conductive ring, and a second plurality of capacitors electrically coupled between the second electrically conductive ring and the third electrically conductive ring.
- FIG. 1 is a block diagram of an exemplary power conversion system including a feedthrough
- FIG. 2 is a cross-sectional view of the feedthrough shown in FIG. 1 ;
- FIG. 3 is a top view of an exemplary flange that may be used with the feedthrough shown in FIG. 2 ;
- FIG. 4 is a side view of the flange shown in FIG. 3 ;
- FIG. 5 is a top view of an exemplary printed circuit board shown in the feedthrough of FIG. 2 ;
- FIG. 6 is a circuit schematic of the printed circuit board shown in FIG. 5 .
- Approximating language may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
- range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
- Embodiments of the present disclosure relate to a high voltage and high current feedthrough.
- direct current is generated by a photovoltaic (“PV”) array and flows through a power line to the feedthrough.
- PV photovoltaic
- the electrical current is passed through a cabinet that houses a fast switching power converter, such as a silicon carbide (“SiC”) or gallium nitride power inverter.
- the fast switching power inverter converts the direct current to alternating current.
- high frequency noise is generated.
- the high frequency noise flows back into the feedthrough, where it is shunted to ground through a plurality of capacitors mounted on a printed circuit board (“PCB”) of the feedthrough.
- PCB printed circuit board
- the feedthrough significantly reduces the flow of high frequency noise onto the power line coupling the feedthrough to the PV array, and, in turn, reduces the ability of this line to act as an unintentional antenna transmitter.
- the feedthrough further facilitates transmission of the high power DC signal to the fast switching power inverter.
- PV array photovoltaic array
- the systems described herein are applicable to any type of electric generation system including, for example, solar power generation systems, wind turbines, fuel cells, geothermal generators, hydropower generators, and/or other devices that generate power from renewable and/or non-renewable energy sources.
- FIG. 1 is a perspective view of an exemplary electrical power generation system 100 .
- Electrical power generation system 100 includes a power source 102 , a power converter, such as a power inverter 104 , a cabinet 106 , a first feedthrough 108 , and a second feedthrough 110 .
- Power source 102 includes a power source, such as a PV array and/or any other suitable electric generation system. Power source 102 thus collects solar energy and converts the collected solar energy to electrical energy. Specifically, power source 102 converts solar energy to direct current.
- Power inverter 104 converts the direct current to alternating current. More particularly, power inverter 104 includes one or more power semiconductor switching elements (not shown) and converts direct current, through the switching action of the one or more semiconductor switching elements, to alternating current. Power inverter 104 may generate unintentional high frequency noise as a byproduct.
- Cabinet 106 is a protective enclosure for power inverter 104 .
- Cabinet 106 is electrically grounded and includes an electrically conductive material, such as a particular metal or an alloy of several metals.
- First feedthrough 108 and second feedthrough 110 are electrical feedthroughs (as described below with reference to FIG. 2 ).
- First feedthrough 108 is electrically coupled at a first end 114 to power source 102 through a power line 116 .
- First feedthrough 108 is electrically coupled at a second end 118 to power inverter 104 .
- second feedthrough 110 is electrically coupled at a first end 120 to power source 102 through a power line 122 .
- Second feedthrough 110 is further electrically coupled at a second end 124 to power inverter 104 .
- FIG. 2 is a cross-sectional view of an exemplary feedthrough 200 , such as first feedthrough 108 or second feedthrough 110 .
- Feedthrough 200 includes a flange 202 , a printed circuit board (“PCB”) 204 , and an electrically conductive element 206 , such as an elongated electrically conductive element.
- PCB printed circuit board
- FIG. 3 is a top view of flange 202 .
- FIG. 4 is a side view of flange 202 .
- flange 202 includes an outer ring portion 302 and an inner ring portion 304 .
- Outer ring portion 302 has a radius R 1
- inner ring portion 304 has a radius R 2 , where R 1 is greater than R 2 .
- Inner ring portion 304 is coupled to or integral with outer ring portion 302 and extends axially away from outer ring portion 302 .
- flange 202 is “T” shaped.
- a plurality of bolt holes, such as bolt holes 306 , 308 , 310 , 312 , 314 , 316 , 318 , and 320 are included in outer ring portion 302 .
- Flange 202 further includes a cylindrical inner surface 301 which defines a cylindrical passage 303 within flange 202 . As described in greater detail below, cylindrical passage 303 receives electrically conductive element 206 . Flange 202 further includes a planar mounting surface 402 , which receives PCB 204 . In the exemplary embodiment, flange 202 is an insulator or has electrically insulating properties. For instance, in some embodiments, flange 202 is fabricated from an FR-4 G10 glass reinforced epoxy laminate.
- FIG. 5 is a top view of PCB 204 .
- PCB 204 is ring shaped and has an outer radius R 3 , which is equal to radius R 1 of outer ring portion 302 of flange 202 (shown in FIG. 3 ).
- PCB 204 includes a cylindrical inner surface 502 which defines a cylindrical passage 504 within PCB 204 .
- cylindrical passage 504 of PCB 204 receives electrically conductive element 206 . This connection is described in greater detail below as well.
- PCB 204 further includes a first electrically conductive ring 506 , a second electrically conductive ring 508 , and a third electrically conductive ring 510 .
- First electrically conductive ring 506 is disposed concentrically within second electrically conductive ring 508
- second electrically conductive ring 508 is, in turn, disposed concentrically within third electrically conductive ring 510 .
- first electrically conductive ring has a radius R 4
- second electrically conductive ring has a radius R 5
- third electrically conductive ring has a radius R 6 .
- Radius R 6 is greater than radius R 5
- radius R 5 is greater than radius R 4 .
- Each electrically conductive ring 506 , 508 , and 510 includes an electrically conductive surface and is fabricated from, for example, silk screened copper on a printed circuit board.
- third electrically conductive ring 510 includes a plurality of bolt holes, such as bolt holes 512 , 514 , 516 , 518 , 520 , 522 , 524 , and 526 .
- bolt holes 512 - 526 are surrounded by a ring of exposed copper 528 , 530 , 534 , 536 , 538 , 540 , 542 , and 544 .
- Bolt holes 512 - 526 are machined in PCB 204 to overlap, when PCB 204 is disposed over planar mounting surface 402 of flange 202 , with bolt holes 306 - 320 .
- PCB 204 is sprayed or otherwise coated with a substance, such as silicone or another environmental spray, to reduce contamination of the surface of PCB 204 .
- a substance such as silicone or another environmental spray
- Such a coating maintains performance at high voltage.
- the coating may not be applied to bolt holes 512 - 526 .
- the coating may not, in some embodiments, be applied to cylindrical conductive passage 504 and/or first electrically conductive ring 506 on PCB 204 .
- a first plurality capacitors such as capacitors 550 , 552 , 554 , 556 , 558 , 560 , 562 , and 564 , are mounted on PCB 204 .
- capacitors 550 - 564 are mounted on PCB 204 between first electrically conductive ring 506 and second electrically conductive ring 508 .
- Capacitors 550 - 564 are electrically coupled in parallel.
- capacitors 550 - 564 form an electrical connection between first electrically conductive ring 506 and second electrically conductive ring 508 .
- capacitors 550 - 564 form an electrical connection between first electrically conductive ring 506 and second electrically conductive ring 508 that acts as a low impedance circuit to high frequency current and as an high impedance circuit to lower frequency current, such as, for example, low frequency alternating current and direct current.
- Capacitors 550 - 564 are selected to filter or reduce noise exceeding a particular frequency.
- Capacitors 550 - 564 include any suitable type of capacitor, including, for example, “Y” capacitors.
- One or more resistors, such as resistors 570 and 572 are also mounted on PCB 204 between first electrically conductive ring 506 and second electrically conductive ring 508 . Resistors 570 and 572 are coupled in parallel and act as voltage balancing resistors.
- a second plurality of capacitors such as capacitors 580 , 582 , 584 , 586 , 588 , 590 , 592 , and 594 , are mounted on PCB 204 .
- capacitors 580 - 594 are mounted on PCB 204 between second electrically conductive ring 508 and third electrically conductive ring 510 .
- Capacitors 580 - 594 are electrically coupled in parallel.
- capacitors 580 - 594 form an electrical connection between second electrically conductive ring 508 and third electrically conductive ring 510 .
- capacitors 580 - 594 form an electrical connection between second electrically conductive ring 508 and third electrically conductive ring 510 that acts as a low impedance circuit to high frequency current and as an high impedance circuit to lower frequency current, such as low frequency alternating current and direct current.
- Capacitors 580 - 594 are selected to filter or reduce noise exceeding a particular frequency.
- Capacitors 580 - 594 include any suitable type of capacitor, including, for example, “Y” capacitors.
- One or more resistors, such as resistors 573 and 574 are also mounted on PCB 204 between second electrically conductive ring 508 and third electrically conductive ring 510 . Resistors 573 and 574 are electrically coupled in parallel and act as voltage balancing resistors.
- FIG. 6 is a circuit schematic of PCB 204 (as shown at FIG. 5 ). Accordingly, capacitors 550 - 564 are electrically coupled in series with capacitors 580 - 594 . More particularly, each capacitor 550 - 564 is electrically coupled in series with a corresponding one of capacitors 580 - 594 . For example, capacitor 550 is electrically coupled in series with capacitor 580 , while capacitor 552 is electrically coupled in series with capacitor 582 .
- Capacitor 554 is electrically coupled in series with capacitor 584
- capacitor 556 is electrically coupled in series with capacitor 586
- capacitor 558 is electrically coupled in series with capacitor 588
- capacitor 560 is electrically coupled in series with capacitor 590
- capacitor 562 is electrically coupled in series with capacitor 592
- capacitor 564 is electrically coupled in series with capacitor 594 .
- resistor 570 is electrically coupled in series with resistor 573
- resistor 572 is electrically coupled in series with resistor 574 .
- PCB 204 is described above with reference to first, second, and third electrically conductive rings 506 , 508 , and 510 , in some embodiments, a greater number or fewer number of electrically conductive rings are implemented. Further, although PCB 204 is described with reference to first plurality of capacitors 550 - 564 and second plurality of capacitors 580 - 594 , in some embodiments, a greater or fewer number of capacitors are coupled between each ring. For example, PCB 204 may include a single plurality of capacitors, such as capacitors 550 - 564 coupled between first electrically conductive ring 506 and second electrically conductive ring 508 . Similarly, additional capacitors may be coupled between additional electrically conductive rings. The number of electrically conductive rings and capacitors coupled therebetween may be varied to adjust the voltage handling capacity of PCB 204 . Feedthrough 200 is thus scalable to handle greater and/or lesser voltages.
- feedthrough 200 is mounted on and coupled through cabinet 106 . More particularly, one or more fasteners are used to mount feedthrough 200 to cabinet 106 . In the exemplary embodiment, eight fasteners are used, and each fastener is inserted through one of bolt holes 306 - 320 in flange 202 and one of bolt holes 512 - 526 in PCB 204 . In the cross-section shown at FIG. 2 , a first fastener 212 and a second fastener 214 are shown.
- One or more fasteners, including first fastener 212 and second fastener 214 are fabricated from any metallic or electrically conductive material and are any suitable fastener, such as any suitable screw or any suitable bolt.
- Each fastener 212 and 214 is, in some embodiments, secured through cabinet 106 by a retaining nut, such as a retaining nut 240 and a retaining nut 242 .
- Electrically conductive element 206 is fabricated from any suitable electrically conductive material, such as, for example, brass, copper, aluminum, or steel. In some embodiments, electrically conductive element 206 is further threaded to receive one or more nuts, such as nuts 216 , 220 , 224 , 228 , 232 , and 234 . Thus, in one embodiment, electrically conductive element 206 is a threaded brass rod. Like electrically conductive element 206 , nuts 216 - 234 are fabricated from any suitable electrically conductive material, such as, for example, brass, copper, aluminum, or steel. As described below, the diameter or thickness of electrically conductive element 206 may be varied depending upon the desired current handling capacity of feedthrough 200 .
- the diameter of electrically conductive element 206 may be increased to increase the amount of current that feedthrough 200 is able to conduct, and the diameter of electrically conductive element 206 may be decreased to decrease the amount of current that feedthrough 200 is able to conduct.
- electrically conductive element 206 has a diameter in the range of 1-50 millimeters (mm.)
- nuts 216 - 234 are threaded over electrically conductive element 206 and tightened to secure electrically conductive element 206 within flange 202 . As shown at FIG. 2 , nuts 216 - 234 further secure PCB 204 against planar mounting surface 402 of flange 202 .
- electrically conductive element 206 includes threads
- an electrical contact lubricant or grease such as NO-OX-ID A-special electrical contact grease is used.
- feedthrough 200 includes electrically conductive element 206 inserted through flange 202 and PCB 204 and electrically connecting to cabinet 106 by a plurality of fasteners, such as fasteners 212 and 214 , passed through bolt holes 306 - 320 in flange 202 and through bolt holes 512 - 526 in PCB 204 .
- Electrically conductive element 206 makes electrical contact with first electrically conductive ring 506 of PCB 204 , which, as described above, makes electrical contact, through capacitors 550 - 564 , with second electrically conductive ring 508 .
- electrically conductive element 206 is in electrical contact with first electrically conductive ring 506 .
- Second electrically conductive ring 508 makes electrical contact, through capacitors 580 - 594 , with third electrically conductive ring 510
- third electrically conductive ring 510 makes electrical contact with each electrically conductive fastener, such as fasteners 212 and 214 , inserted through bolt holes 512 - 526 , which make electrical contact, in turn, with cabinet 106 .
- feedthrough 200 is constructed and installed, such that a path to ground is formed between electrically conductive element 206 and cabinet 106 through PCB 204 .
- capacitors 550 - 564 and capacitors 580 - 594 function as low impedance circuits to high frequency alternating current and as high impedance circuits to low frequency alternating current and direct current. More particularly, high frequency alternating current, such as high frequency noise, generated as a byproduct of the DC-to-AC power conversion process performed by power inverter 104 is shunted or conducted to ground through PCB 204 , whereas low frequency alternating current and direct current generated by power source 102 is unable to flow from first electrically conductive ring 506 of PCB to second electrically conductive ring 508 of PCB.
- Feedthrough 200 therefore functions to pass low frequency alternating current and direct current from power source 102 to power inverter 104 and prevents the introduction of high frequency alternating current on power line 116 and/or power line 122 produced by the fast switching semiconductor components of power inverter 104 .
- Power line 116 and/or power line 122 are not easily able to radiate, at least in the RF part of the electromagnetic frequency spectrum, as antenna transmitters. In various embodiments, power line 116 and/or power line 122 are not easily able to radiate, depending upon capacitances selected for each of capacitors 550 - 564 and/or 580 - 594 , in various parts of the electromagnetic frequency spectrum, including all portions of the spectrum.
- feedthrough 200 permits the flow of low frequency alternating current and direct current through cabinet 106 but filters or reduces the flow of high frequency alternating current generated by power inverter 104 that would otherwise flow onto power line 116 and/or power line 122 and that would cause power line 116 and/or power line 122 to act as an unintentional antenna transmitter.
- feedthrough 200 is suitable to conduct low frequency alternating current and direct current, such as low frequency alternating and direct current having a voltage from 0 volts up to approximately 4000 volts.
- electrically conductive element 206 is a brass rod having a thickness of 0.46 inches (“in.”) or 1.17 centimeters (“cm.”)
- feedthrough 200 is able to conduct low frequency alternating current and direct current, such as low frequency alternating and direct current having an amperage from 0 amps up to approximately 1000 amps.
- greater or fewer numbers of capacitors may be introduced to increase the voltage handling capacity of feedthrough 200 .
- the thickness of electrically conductive element 206 may be increased or decreased to adjust the current handling capacity of feedthrough 200 .
- Embodiments of the electrical power generation system facilitate the transmission of electrical power from a power source, such as a PV array, through a feedthrough, and to a power inverter.
- Embodiments further discourage or limit the introduction of high frequency alternating current on a power line used to transmit electrical power from the power source to the feedthrough. Rather, high frequency alternating current, or noise, is shunted to ground through a plurality of capacitors mounted on a PCB of the feedthrough.
- the feedthrough limits the flow of high frequency noise onto the power line connecting the feedthrough to the PV array, and, in turn, reducing radiation from the power line in the RF part of the electromagnetic spectrum as an unintentional antenna transmitter.
- Exemplary technical effects of the electrical power generation system described herein include, for example: (a) transmitting low frequency alternating current and direct current from a power source, through a feedthrough coupled to a cabinet, to a power inverter; (b) limiting or reducing noise generated by the power inverter on the power line connecting the power source to the feedthrough; and (c) conducting high voltage low frequency alternating current and direct current as well as high amperage low frequency alternating current and direct current, such as up to 4000 volts and 1000 amps.
- Exemplary embodiments of an electrical power generation system and related components are described above in detail.
- the system is not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein.
- the configuration of components described herein may also be used in combination with other processes, and is not limited to practice with the systems and related methods as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many applications where compressing a fluid is desired.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
- The field of the disclosure relates generally to radio frequency (RF) feedthroughs, and more particularly, to a high power feedthrough for use with a high frequency power electronics system.
- At least some feedthroughs are used in large-scale power electronics systems to conduct electrical current from a power source, through an enclosure, to a system within the enclosure. In particular, some feedthroughs are used to conduct electrical current from a photovoltaic (“PV”) array, through a cabinet, to a power inverter housed within the cabinet. Within the cabinet, the power inverter converts direct current to alternating current, direct current to direct current, alternating current to direct current, or alternating current to alternating current, for use as electrical power.
- Many known power inverters include fast switching semiconductor switching elements, such as silicon carbide (“SiC”) and gallium nitride switching element. Such fast switching semiconductor switching elements are capable of reducing switching losses, allowing increased switching frequency, and so afford an advantage over more conventional power inverters. However, the faster switching transitions and larger switching frequency of fast switching power inverters may result in the production of undesirable high frequency electromagnetic energy, which may flow back over a power line, and other structures connecting to the PV array, causing the power line to act as an unintentional antenna transmitter.
- In one aspect, a feedthrough is provided. The feedthrough includes a flange comprising an inner cylindrical surface and a planar mounting surface. The inner cylindrical surface defines a cylindrical passage within the flange. The feedthrough further includes a printed circuit board (“PCB”) mounted on the planar mounting surface, and an electrically conductive element that extends through the cylindrical passage.
- In another aspect, an electrical power generation system is provided. The electrical power generation system includes a power source, a power line coupled to the power source, a housing, a power inverter mounted within the housing, and a feedthrough that passes through the housing and that electrically couples the power line to the power inverter. The feedthrough includes a flange comprising an inner cylindrical surface and a planar mounting surface. The inner cylindrical surface defines a cylindrical passage within the flange. The feedthrough further includes a PCB mounted on the planar mounting surface, and an electrically conductive element that extends through the cylindrical passage.
- In another aspect, a PCB for use as part of a feedthrough is provided. The PCB includes a first electrically conductive ring having a first radius, a second electrically conductive ring having a second radius that is greater than the first radius, and a third electrically conductive ring having a third radius that is greater than the second radius. The PCB further includes a first plurality of capacitors electrically coupled between the first electrically conductive ring and the second electrically conductive ring, and a second plurality of capacitors electrically coupled between the second electrically conductive ring and the third electrically conductive ring.
- These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 is a block diagram of an exemplary power conversion system including a feedthrough; -
FIG. 2 is a cross-sectional view of the feedthrough shown inFIG. 1 ; -
FIG. 3 is a top view of an exemplary flange that may be used with the feedthrough shown inFIG. 2 ; -
FIG. 4 is a side view of the flange shown inFIG. 3 ; -
FIG. 5 is a top view of an exemplary printed circuit board shown in the feedthrough ofFIG. 2 ; and -
FIG. 6 is a circuit schematic of the printed circuit board shown inFIG. 5 . - Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
- In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
- The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
- “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
- Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
- Embodiments of the present disclosure relate to a high voltage and high current feedthrough. In general, direct current is generated by a photovoltaic (“PV”) array and flows through a power line to the feedthrough. At the feedthrough, the electrical current is passed through a cabinet that houses a fast switching power converter, such as a silicon carbide (“SiC”) or gallium nitride power inverter. The fast switching power inverter converts the direct current to alternating current. In the process, however, high frequency noise is generated. The high frequency noise flows back into the feedthrough, where it is shunted to ground through a plurality of capacitors mounted on a printed circuit board (“PCB”) of the feedthrough. Thus, the feedthrough significantly reduces the flow of high frequency noise onto the power line coupling the feedthrough to the PV array, and, in turn, reduces the ability of this line to act as an unintentional antenna transmitter. The feedthrough further facilitates transmission of the high power DC signal to the fast switching power inverter.
- Although generally described herein with respect to a photovoltaic array (“PV array”), the systems described herein are applicable to any type of electric generation system including, for example, solar power generation systems, wind turbines, fuel cells, geothermal generators, hydropower generators, and/or other devices that generate power from renewable and/or non-renewable energy sources.
-
FIG. 1 is a perspective view of an exemplary electricalpower generation system 100. Electricalpower generation system 100 includes apower source 102, a power converter, such as apower inverter 104, acabinet 106, afirst feedthrough 108, and asecond feedthrough 110. -
Power source 102 includes a power source, such as a PV array and/or any other suitable electric generation system.Power source 102 thus collects solar energy and converts the collected solar energy to electrical energy. Specifically,power source 102 converts solar energy to direct current. -
Power inverter 104 converts the direct current to alternating current. More particularly,power inverter 104 includes one or more power semiconductor switching elements (not shown) and converts direct current, through the switching action of the one or more semiconductor switching elements, to alternating current.Power inverter 104 may generate unintentional high frequency noise as a byproduct. -
Cabinet 106 is a protective enclosure forpower inverter 104.Cabinet 106 is electrically grounded and includes an electrically conductive material, such as a particular metal or an alloy of several metals. -
First feedthrough 108 andsecond feedthrough 110 are electrical feedthroughs (as described below with reference toFIG. 2 ).First feedthrough 108 is electrically coupled at afirst end 114 topower source 102 through apower line 116.First feedthrough 108 is electrically coupled at asecond end 118 topower inverter 104. Similarly,second feedthrough 110 is electrically coupled at afirst end 120 topower source 102 through apower line 122.Second feedthrough 110 is further electrically coupled at asecond end 124 topower inverter 104. -
FIG. 2 is a cross-sectional view of anexemplary feedthrough 200, such asfirst feedthrough 108 orsecond feedthrough 110.Feedthrough 200 includes aflange 202, a printed circuit board (“PCB”) 204, and an electricallyconductive element 206, such as an elongated electrically conductive element. -
FIG. 3 is a top view offlange 202.FIG. 4 is a side view offlange 202. As shown with respect to both figures,flange 202 includes anouter ring portion 302 and aninner ring portion 304.Outer ring portion 302 has a radius R1, andinner ring portion 304 has a radius R2, where R1 is greater than R2.Inner ring portion 304 is coupled to or integral withouter ring portion 302 and extends axially away fromouter ring portion 302. Thus, in cross-section,flange 202 is “T” shaped. A plurality of bolt holes, such as bolt holes 306, 308, 310, 312, 314, 316, 318, and 320 are included inouter ring portion 302. -
Flange 202 further includes a cylindricalinner surface 301 which defines acylindrical passage 303 withinflange 202. As described in greater detail below,cylindrical passage 303 receives electricallyconductive element 206.Flange 202 further includes a planar mountingsurface 402, which receivesPCB 204. In the exemplary embodiment,flange 202 is an insulator or has electrically insulating properties. For instance, in some embodiments,flange 202 is fabricated from an FR-4 G10 glass reinforced epoxy laminate. -
FIG. 5 is a top view ofPCB 204. In the exemplary embodiment,PCB 204 is ring shaped and has an outer radius R3, which is equal to radius R1 ofouter ring portion 302 of flange 202 (shown inFIG. 3 ). Likeflange 202,PCB 204 includes a cylindricalinner surface 502 which defines acylindrical passage 504 withinPCB 204. In addition, likecylindrical passage 303 of flange 202 (shown inFIG. 3 ),cylindrical passage 504 ofPCB 204 receives electricallyconductive element 206. This connection is described in greater detail below as well. -
PCB 204 further includes a first electricallyconductive ring 506, a second electricallyconductive ring 508, and a third electricallyconductive ring 510. First electricallyconductive ring 506 is disposed concentrically within second electricallyconductive ring 508, and second electricallyconductive ring 508 is, in turn, disposed concentrically within third electricallyconductive ring 510. Thus, first electrically conductive ring has a radius R4, second electrically conductive ring has a radius R5, and third electrically conductive ring has a radius R6. Radius R6 is greater than radius R5, and radius R5 is greater than radius R4. Each electricallyconductive ring - In the exemplary embodiment, third electrically
conductive ring 510 includes a plurality of bolt holes, such as bolt holes 512, 514, 516, 518, 520, 522, 524, and 526. In some embodiments, bolt holes 512-526 are surrounded by a ring of exposedcopper PCB 204 to overlap, whenPCB 204 is disposed over planar mountingsurface 402 offlange 202, with bolt holes 306-320. In some embodiments,PCB 204 is sprayed or otherwise coated with a substance, such as silicone or another environmental spray, to reduce contamination of the surface ofPCB 204. Such a coating maintains performance at high voltage. Further, the coating may not be applied to bolt holes 512-526. Similarly, the coating may not, in some embodiments, be applied to cylindricalconductive passage 504 and/or first electricallyconductive ring 506 onPCB 204. - In the exemplary embodiment, a first plurality capacitors, such as
capacitors PCB 204. For instance, capacitors 550-564 are mounted onPCB 204 between first electricallyconductive ring 506 and second electricallyconductive ring 508. Capacitors 550-564 are electrically coupled in parallel. Thus, capacitors 550-564 form an electrical connection between first electricallyconductive ring 506 and second electricallyconductive ring 508. More particularly, capacitors 550-564 form an electrical connection between first electricallyconductive ring 506 and second electricallyconductive ring 508 that acts as a low impedance circuit to high frequency current and as an high impedance circuit to lower frequency current, such as, for example, low frequency alternating current and direct current. Capacitors 550-564 are selected to filter or reduce noise exceeding a particular frequency. Capacitors 550-564 include any suitable type of capacitor, including, for example, “Y” capacitors. One or more resistors, such asresistors PCB 204 between first electricallyconductive ring 506 and second electricallyconductive ring 508.Resistors - A second plurality of capacitors, such as
capacitors PCB 204. For instance, capacitors 580-594 are mounted onPCB 204 between second electricallyconductive ring 508 and third electricallyconductive ring 510. Capacitors 580-594 are electrically coupled in parallel. Thus, capacitors 580-594 form an electrical connection between second electricallyconductive ring 508 and third electricallyconductive ring 510. More particularly, capacitors 580-594 form an electrical connection between second electricallyconductive ring 508 and third electricallyconductive ring 510 that acts as a low impedance circuit to high frequency current and as an high impedance circuit to lower frequency current, such as low frequency alternating current and direct current. Capacitors 580-594 are selected to filter or reduce noise exceeding a particular frequency. Capacitors 580-594 include any suitable type of capacitor, including, for example, “Y” capacitors. One or more resistors, such asresistors PCB 204 between second electricallyconductive ring 508 and third electricallyconductive ring 510.Resistors -
FIG. 6 is a circuit schematic of PCB 204 (as shown atFIG. 5 ). Accordingly, capacitors 550-564 are electrically coupled in series with capacitors 580-594. More particularly, each capacitor 550-564 is electrically coupled in series with a corresponding one of capacitors 580-594. For example,capacitor 550 is electrically coupled in series withcapacitor 580, whilecapacitor 552 is electrically coupled in series withcapacitor 582.Capacitor 554 is electrically coupled in series withcapacitor 584,capacitor 556 is electrically coupled in series withcapacitor 586,capacitor 558 is electrically coupled in series withcapacitor 588,capacitor 560 is electrically coupled in series withcapacitor 590,capacitor 562 is electrically coupled in series withcapacitor 592, andcapacitor 564 is electrically coupled in series withcapacitor 594. Similarly,resistor 570 is electrically coupled in series withresistor 573, whileresistor 572 is electrically coupled in series withresistor 574. As described in greater detail below, such a concentric pattern of capacitors 550-564 and 580-594 creates a low impedance conducting path for high frequency alternating current. - Although
PCB 204 is described above with reference to first, second, and third electricallyconductive rings PCB 204 is described with reference to first plurality of capacitors 550-564 and second plurality of capacitors 580-594, in some embodiments, a greater or fewer number of capacitors are coupled between each ring. For example,PCB 204 may include a single plurality of capacitors, such as capacitors 550-564 coupled between first electricallyconductive ring 506 and second electricallyconductive ring 508. Similarly, additional capacitors may be coupled between additional electrically conductive rings. The number of electrically conductive rings and capacitors coupled therebetween may be varied to adjust the voltage handling capacity ofPCB 204.Feedthrough 200 is thus scalable to handle greater and/or lesser voltages. - With returning reference to
FIG. 2 ,feedthrough 200 is mounted on and coupled throughcabinet 106. More particularly, one or more fasteners are used to mountfeedthrough 200 tocabinet 106. In the exemplary embodiment, eight fasteners are used, and each fastener is inserted through one of bolt holes 306-320 inflange 202 and one of bolt holes 512-526 inPCB 204. In the cross-section shown atFIG. 2 , afirst fastener 212 and asecond fastener 214 are shown. One or more fasteners, includingfirst fastener 212 andsecond fastener 214, are fabricated from any metallic or electrically conductive material and are any suitable fastener, such as any suitable screw or any suitable bolt. Eachfastener cabinet 106 by a retaining nut, such as a retainingnut 240 and a retainingnut 242. - Electrically
conductive element 206 is fabricated from any suitable electrically conductive material, such as, for example, brass, copper, aluminum, or steel. In some embodiments, electricallyconductive element 206 is further threaded to receive one or more nuts, such asnuts conductive element 206 is a threaded brass rod. Like electricallyconductive element 206, nuts 216-234 are fabricated from any suitable electrically conductive material, such as, for example, brass, copper, aluminum, or steel. As described below, the diameter or thickness of electricallyconductive element 206 may be varied depending upon the desired current handling capacity offeedthrough 200. For example, the diameter of electricallyconductive element 206 may be increased to increase the amount of current that feedthrough 200 is able to conduct, and the diameter of electricallyconductive element 206 may be decreased to decrease the amount of current that feedthrough 200 is able to conduct. Thus, in the exemplary embodiment, electricallyconductive element 206 has a diameter in the range of 1-50 millimeters (mm.) - In the exemplary embodiment, nuts 216-234 are threaded over electrically
conductive element 206 and tightened to secure electricallyconductive element 206 withinflange 202. As shown atFIG. 2 , nuts 216-234 furthersecure PCB 204 against planar mountingsurface 402 offlange 202. Where electricallyconductive element 206 includes threads, an electrical contact lubricant or grease, such as NO-OX-ID A-special electrical contact grease is used. - Thus, in the exemplary embodiment, once assembled,
feedthrough 200 includes electricallyconductive element 206 inserted throughflange 202 andPCB 204 and electrically connecting tocabinet 106 by a plurality of fasteners, such asfasteners flange 202 and through bolt holes 512-526 inPCB 204. - Electrically
conductive element 206 makes electrical contact with first electricallyconductive ring 506 ofPCB 204, which, as described above, makes electrical contact, through capacitors 550-564, with second electricallyconductive ring 508. In other words, electricallyconductive element 206 is in electrical contact with first electricallyconductive ring 506. Second electricallyconductive ring 508 makes electrical contact, through capacitors 580-594, with third electricallyconductive ring 510, and third electricallyconductive ring 510 makes electrical contact with each electrically conductive fastener, such asfasteners cabinet 106. Thus,feedthrough 200 is constructed and installed, such that a path to ground is formed between electricallyconductive element 206 andcabinet 106 throughPCB 204. - However, the path to ground is only available to high frequency alternating current, because capacitors 550-564 and capacitors 580-594 function as low impedance circuits to high frequency alternating current and as high impedance circuits to low frequency alternating current and direct current. More particularly, high frequency alternating current, such as high frequency noise, generated as a byproduct of the DC-to-AC power conversion process performed by
power inverter 104 is shunted or conducted to ground throughPCB 204, whereas low frequency alternating current and direct current generated bypower source 102 is unable to flow from first electricallyconductive ring 506 of PCB to second electricallyconductive ring 508 of PCB. -
Feedthrough 200 therefore functions to pass low frequency alternating current and direct current frompower source 102 topower inverter 104 and prevents the introduction of high frequency alternating current onpower line 116 and/orpower line 122 produced by the fast switching semiconductor components ofpower inverter 104.Power line 116 and/orpower line 122 are not easily able to radiate, at least in the RF part of the electromagnetic frequency spectrum, as antenna transmitters. In various embodiments,power line 116 and/orpower line 122 are not easily able to radiate, depending upon capacitances selected for each of capacitors 550-564 and/or 580-594, in various parts of the electromagnetic frequency spectrum, including all portions of the spectrum. In other words, feedthrough 200 permits the flow of low frequency alternating current and direct current throughcabinet 106 but filters or reduces the flow of high frequency alternating current generated bypower inverter 104 that would otherwise flow ontopower line 116 and/orpower line 122 and that would causepower line 116 and/orpower line 122 to act as an unintentional antenna transmitter. - With two stages of capacitors 550-564 and 580-594, as in some embodiments,
feedthrough 200 is suitable to conduct low frequency alternating current and direct current, such as low frequency alternating and direct current having a voltage from 0 volts up to approximately 4000 volts. Similarly, where electricallyconductive element 206 is a brass rod having a thickness of 0.46 inches (“in.”) or 1.17 centimeters (“cm.”),feedthrough 200 is able to conduct low frequency alternating current and direct current, such as low frequency alternating and direct current having an amperage from 0 amps up to approximately 1000 amps. As described above, greater or fewer numbers of capacitors may be introduced to increase the voltage handling capacity offeedthrough 200. Similarly, the thickness of electricallyconductive element 206 may be increased or decreased to adjust the current handling capacity offeedthrough 200. - Embodiments of the electrical power generation system, as described above, facilitate the transmission of electrical power from a power source, such as a PV array, through a feedthrough, and to a power inverter. Embodiments further discourage or limit the introduction of high frequency alternating current on a power line used to transmit electrical power from the power source to the feedthrough. Rather, high frequency alternating current, or noise, is shunted to ground through a plurality of capacitors mounted on a PCB of the feedthrough. Thus, the feedthrough limits the flow of high frequency noise onto the power line connecting the feedthrough to the PV array, and, in turn, reducing radiation from the power line in the RF part of the electromagnetic spectrum as an unintentional antenna transmitter.
- Exemplary technical effects of the electrical power generation system described herein include, for example: (a) transmitting low frequency alternating current and direct current from a power source, through a feedthrough coupled to a cabinet, to a power inverter; (b) limiting or reducing noise generated by the power inverter on the power line connecting the power source to the feedthrough; and (c) conducting high voltage low frequency alternating current and direct current as well as high amperage low frequency alternating current and direct current, such as up to 4000 volts and 1000 amps.
- Exemplary embodiments of an electrical power generation system and related components are described above in detail. The system is not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the configuration of components described herein may also be used in combination with other processes, and is not limited to practice with the systems and related methods as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many applications where compressing a fluid is desired.
- Although specific features of various embodiments of the present disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the present disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
- This written description uses examples to disclose the embodiments of the present disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the embodiments described herein is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Claims (22)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/337,841 US9974201B1 (en) | 2016-10-28 | 2016-10-28 | High power feedthrough for use with a high frequency power converter |
PCT/US2017/053523 WO2018080695A1 (en) | 2016-10-28 | 2017-09-26 | High power feedthrough for use with a high frequency power converter |
EP17784733.2A EP3533305A1 (en) | 2016-10-28 | 2017-09-26 | High power feedthrough for use with a high frequency power converter |
CN201780081409.2A CN110100507A (en) | 2016-10-28 | 2017-09-26 | The high power feedthrough used for RF power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/337,841 US9974201B1 (en) | 2016-10-28 | 2016-10-28 | High power feedthrough for use with a high frequency power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180124938A1 true US20180124938A1 (en) | 2018-05-03 |
US9974201B1 US9974201B1 (en) | 2018-05-15 |
Family
ID=60117755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/337,841 Active US9974201B1 (en) | 2016-10-28 | 2016-10-28 | High power feedthrough for use with a high frequency power converter |
Country Status (4)
Country | Link |
---|---|
US (1) | US9974201B1 (en) |
EP (1) | EP3533305A1 (en) |
CN (1) | CN110100507A (en) |
WO (1) | WO2018080695A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4344371A1 (en) * | 2022-09-22 | 2024-03-27 | Volvo Car Corporation | Electromagnetic filter assembly for attenuating electromagnetic interferences, feedtrhough assembly, enclosure assembly and vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11968793B1 (en) * | 2022-10-11 | 2024-04-23 | Lunar Energy, Inc. | Insulating enclosure with a conductive liner |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4928138A (en) * | 1989-06-30 | 1990-05-22 | Sundstrand Corporation | Power supply with integral filter and cooling device |
US5032692A (en) * | 1989-05-09 | 1991-07-16 | Avx Corporation | Process for manufactoring hermetic high temperature filter packages and the products produced thereby |
US5896267A (en) * | 1997-07-10 | 1999-04-20 | Greatbatch-Hittman, Inc. | Substrate mounted filter for feedthrough devices |
US20040163836A1 (en) * | 2002-02-14 | 2004-08-26 | Kumar Dev E | Multi-layer ceramic feedthrough structure in a transmitter optical subassembly |
US20110234096A1 (en) * | 2008-11-28 | 2011-09-29 | Knut Asmussen | Integrated Gas Discharge Lamp with an Ignition Electronics Integrated Into the Base for Generating Asymmetrical Ignition Pulses |
US20120261826A1 (en) * | 2011-04-13 | 2012-10-18 | Chien-Li Kuo | Tsv structure and method for forming the same |
US20120293910A1 (en) * | 2011-05-17 | 2012-11-22 | Kauffman George M | Feedthrough capacitor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2010300A (en) | 1935-08-06 | Cash register | ||
US4148003A (en) | 1977-07-08 | 1979-04-03 | Globe-Union Inc. | Series feed-through capacitor |
US4935842A (en) | 1989-07-12 | 1990-06-19 | Sundstrand Corporation | High current feed-through capacitor |
US5552976A (en) | 1994-06-10 | 1996-09-03 | Northrop Grumman Corporation | EMI filter topology for power inverters |
US5661390A (en) | 1995-06-23 | 1997-08-26 | Electric Power Research Institute, Inc. | Inverter-fed motor drive with EMI suppression |
US6643903B2 (en) | 1997-11-13 | 2003-11-11 | Greatbatch-Sierra, Inc. | Process for manufacturing an EMI filter feedthrough terminal assembly |
US6305975B1 (en) * | 2000-10-12 | 2001-10-23 | Bear Instruments, Inc. | Electrical connector feedthrough to low pressure chamber |
US7295086B2 (en) | 2002-10-23 | 2007-11-13 | Spectrum Control Inc. | Dielectric component array with failsafe link |
US7525825B2 (en) | 2005-09-02 | 2009-04-28 | Gm Global Technology Operations, Inc. | Snap in high power, high current connector with integrated EMI filtering |
DE102009011277B4 (en) * | 2009-03-05 | 2011-02-17 | Schott Ag | Electric current feedthrough |
US8154846B2 (en) * | 2009-06-02 | 2012-04-10 | Astec International Limited | Feedthrough capacitor assemblies |
CN203278641U (en) | 2013-04-08 | 2013-11-06 | 许继集团有限公司 | Photovoltaic grid-connected inverter based on EMI filter |
JP6298974B2 (en) | 2013-08-09 | 2018-03-28 | 北川工業株式会社 | Output noise reduction device |
CN204030937U (en) | 2014-07-19 | 2014-12-17 | 阳光电源股份有限公司 | A kind of high-power combining inverter and electromagnetic interface filter thereof |
JP6379401B2 (en) | 2014-09-11 | 2018-08-29 | 北川工業株式会社 | Output noise reduction device |
CN204206719U (en) * | 2014-10-22 | 2015-03-11 | 深圳振华富电子有限公司 | Electromagnetic interference filter |
EP3029782B1 (en) * | 2014-12-04 | 2016-11-02 | VEGA Grieshaber KG | High frequency signalling |
-
2016
- 2016-10-28 US US15/337,841 patent/US9974201B1/en active Active
-
2017
- 2017-09-26 CN CN201780081409.2A patent/CN110100507A/en active Pending
- 2017-09-26 WO PCT/US2017/053523 patent/WO2018080695A1/en unknown
- 2017-09-26 EP EP17784733.2A patent/EP3533305A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032692A (en) * | 1989-05-09 | 1991-07-16 | Avx Corporation | Process for manufactoring hermetic high temperature filter packages and the products produced thereby |
US4928138A (en) * | 1989-06-30 | 1990-05-22 | Sundstrand Corporation | Power supply with integral filter and cooling device |
US5896267A (en) * | 1997-07-10 | 1999-04-20 | Greatbatch-Hittman, Inc. | Substrate mounted filter for feedthrough devices |
US20040163836A1 (en) * | 2002-02-14 | 2004-08-26 | Kumar Dev E | Multi-layer ceramic feedthrough structure in a transmitter optical subassembly |
US20110234096A1 (en) * | 2008-11-28 | 2011-09-29 | Knut Asmussen | Integrated Gas Discharge Lamp with an Ignition Electronics Integrated Into the Base for Generating Asymmetrical Ignition Pulses |
US20120261826A1 (en) * | 2011-04-13 | 2012-10-18 | Chien-Li Kuo | Tsv structure and method for forming the same |
US20120293910A1 (en) * | 2011-05-17 | 2012-11-22 | Kauffman George M | Feedthrough capacitor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4344371A1 (en) * | 2022-09-22 | 2024-03-27 | Volvo Car Corporation | Electromagnetic filter assembly for attenuating electromagnetic interferences, feedtrhough assembly, enclosure assembly and vehicle |
Also Published As
Publication number | Publication date |
---|---|
US9974201B1 (en) | 2018-05-15 |
WO2018080695A1 (en) | 2018-05-03 |
CN110100507A (en) | 2019-08-06 |
EP3533305A1 (en) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8129653B2 (en) | Plasma supply device | |
CN102035356B (en) | Current transformer system | |
US20140077611A1 (en) | Capacitor bank, laminated bus, and power supply apparatus | |
US9515567B2 (en) | Radio frequency power source having precise power detector | |
US9974201B1 (en) | High power feedthrough for use with a high frequency power converter | |
CN111418141A (en) | Compact thermal efficiency traction motor inverter | |
US10349549B2 (en) | Electrically shielded direct current link busbar | |
Stewart et al. | Improved power density of a 6 kV, 1 mW power electronics building block through insulation coordination | |
KR20230026305A (en) | Antenna units, rectifier circuits and electronics | |
US10463863B2 (en) | High current flexible feedthrough for use with a power converter | |
EP0433443A1 (en) | High current feed-through capacitor | |
CN211653050U (en) | Fault arc detection circuit and detection device | |
JPH0833243A (en) | Microwave receiver | |
US20160262250A1 (en) | Power generation system and package | |
US11424069B2 (en) | Alternating current neutral and ground inductive electromagnetic rectification apparatus | |
CN113488462B (en) | Thick film hybrid integrated circuit and microcircuit system thereof | |
US20230061190A1 (en) | Device for connecting a power source to an inductor | |
CN215073168U (en) | Module power supply pin insulation structure | |
JP6161584B2 (en) | Power conditioner and connection method thereof | |
CN220087143U (en) | Reverse connection-preventing overvoltage-preventing surge-preventing comprehensive power supply filtering device | |
CA2634493C (en) | Capacitor based transformer | |
JP2023167199A (en) | Surge recovery structure, electrical machinery equipment for aircraft and electrical machinery equipment for wind power generation | |
CN101557163A (en) | Power supply unit with high power density and low noise | |
DE102021111867A1 (en) | Mobile energy supply system with battery modules, battery module and method for operating a mobile energy supply system | |
DE202010016732U1 (en) | Plasma supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHUTTEN, MICHAEL JOSEPH;THOMAS, ROBERT JAMES;HARFMAN TODOROVIC, MAJA;SIGNING DATES FROM 20161114 TO 20161216;REEL/FRAME:040672/0409 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GE GRID SOLUTIONS LLC, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:066000/0694 Effective date: 20231214 |