US20180111759A1 - System for discharging dry solids and an associated method thereof - Google Patents

System for discharging dry solids and an associated method thereof Download PDF

Info

Publication number
US20180111759A1
US20180111759A1 US15/848,569 US201715848569A US2018111759A1 US 20180111759 A1 US20180111759 A1 US 20180111759A1 US 201715848569 A US201715848569 A US 201715848569A US 2018111759 A1 US2018111759 A1 US 2018111759A1
Authority
US
United States
Prior art keywords
peripheral wall
pocket
dry solids
holes
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/848,569
Inventor
Yashwanth Tummala
Tiffany Elizabeth Pinard Westendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US15/848,569 priority Critical patent/US20180111759A1/en
Publication of US20180111759A1 publication Critical patent/US20180111759A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4616Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning parallel to flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/20Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids
    • B65G11/203Auxiliary devices, e.g. for deflecting, controlling speed of, or agitating articles or solids for articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/02Chutes of straight form
    • B65G11/026Chutes of straight form for bulk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/12Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements
    • G01F11/20Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements wherein the measuring chamber rotates or oscillates
    • G01F11/24Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements wherein the measuring chamber rotates or oscillates for fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups

Definitions

  • the present disclosure relates to a method and system for discharging dry solids, such as incompressible dry solids into a high pressure environment.
  • a rotary valve system and a rotary air-lock system may be configured to rotate about a horizontal axis while pressurizing dry solids and discharging pressurized dry solids into a high pressure environment.
  • Such conventional systems have limited pressure capability due to deflection of the systems under high pressure conditions.
  • such conventional systems may be susceptible to wear while pressurizing and discharging abrasive dry solids.
  • Such conventional systems may also lack active venting (de-pressurizing) after discharging the dry solids into the high pressure environment.
  • Another conventional feeder system such as a lock hopper system, may be configured to discharge the pressurized dry solids in batch mode.
  • a conventional system has a limited pressure capability and may be susceptible to wear while pressurizing and discharging abrasive dry solids.
  • a system for discharging dry solids includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device.
  • the feeder device includes a rotatable casing having a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves.
  • Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes.
  • the stationary core includes a plurality of channels, wherein each channel among the plurality of channels includes a plurality of second through-holes.
  • Each valve among the plurality of valves is disposed at the outlet of a corresponding pocket from the plurality of pockets.
  • the discharge device includes a valve actuator configured to actuate each valve.
  • a method for discharging dry solids involves feeding dry solids at atmospheric pressure, from a hopper into a first pocket among a plurality of pockets formed in a rotatable casing of a feeder device.
  • Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes.
  • the feeder device further includes a plurality of valves, each valve being disposed at the outlet of a corresponding pocket from the plurality of pockets.
  • the method further involves driving the rotatable casing about a stationary core of the feeder device, which is disposed within the rotatable casing.
  • the stationary core includes a plurality of channels, each channel including a plurality of second through-holes.
  • the method involves injecting a pressurized fluid from a first channel among the plurality of channels into the first pocket through the plurality of corresponding second through-holes and the plurality of corresponding first through-holes, to generate pressurized dry solids.
  • the method also involves actuating a corresponding valve from the plurality of valves through a valve actuator of a discharge device, for discharging the pressurized dry solids from the first pocket into the discharge device.
  • the method further involves extracting the pressurized fluid from the first pocket through the plurality of corresponding first and second through-holes and the first channel.
  • FIG. 1 is a perspective view of a hopper in accordance with one exemplary embodiment
  • FIG. 2 is a schematic perspective view of a rotatable casing of a feeder device in accordance with one exemplary embodiment
  • FIG. 3 is a perspective view of a rotatable casing and a plurality of valves of a feeder device in accordance with one exemplary embodiment
  • FIG. 4 is a perspective view of a stationary core of a feeder device in accordance with one exemplary embodiment
  • FIG. 5 is a partial perspective view of a feeder device in accordance with one exemplary embodiment
  • FIG. 6 is a perspective view of a discharge device in accordance with one exemplary embodiment
  • FIG. 7 is a perspective view of a feeder system in accordance with one exemplary embodiment
  • FIG. 8 is a perspective view of the feeder system including a drive unit in accordance with the exemplary embodiment of FIG. 7 ;
  • FIG. 9 is a schematic perspective view of a feeder device in accordance with the exemplary embodiments of FIGS. 7 and 8 ;
  • FIG. 10 is a schematic view of a discharge device and a valve in accordance with the exemplary embodiments of FIGS. 7, 8, and 9 ;
  • FIG. 11 is a schematic perspective view of a stationary core in accordance with the exemplary embodiments of FIGS. 7, 8, 9, and 10 .
  • Embodiments discussed herein disclose a system, for example, a feeder system configured to pressurize dry solids and discharge pressurized dry solids into a high pressure environment.
  • the exemplary feeder system is configured to rotate about a vertical axis, for example, a central axis for pressurizing and discharging the dry solids into the high pressure environment, such as a pressurized blender of a carbon di-oxide (CO 2 ) fracturing system.
  • the feeder system may be configured to continuously discharge the pressurized dry solids into the pressurized blender.
  • the pressurized blender is configured to blend the pressurized dry solids and a liquefied gas to form a mixture before delivering to a downstream component of the fracturing system.
  • the dry solids may be incompressible and abrasive.
  • a feeder system includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device.
  • the feeder device includes a rotatable casing including a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves.
  • Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes.
  • the stationary core includes a plurality of channels, where each channel among the plurality of channels includes a plurality of second through-holes.
  • Each valve among the plurality of valves is disposed at the outlet of a corresponding pocket from the plurality of pockets.
  • the discharge device includes a valve actuator configured to actuate each valve.
  • FIG. 1 illustrates a perspective side view of a hopper 100 in accordance with one exemplary embodiment.
  • the hopper 100 has a funnel shape and is configured to feed dry solids to a feeder device (not shown in FIG. 1 ).
  • the hopper 100 includes a storage portion 102 and a discharge portion 104 coupled to the storage portion 102 .
  • the storage portion 102 may receive the dry solids at atmospheric pressure from a source (not shown in FIG. 1 ) and temporarily store the dry solids before discharging to the feeder device via the discharge portion 104 .
  • the term “atmospheric pressure” may be referred to as a force exerted by atmospheric air on the dry solids.
  • the hopper 100 further includes a metering device 106 disposed within the discharge portion 104 .
  • the metering device 106 is a valve.
  • the metering device 106 is configured to regulate discharge of dry solids to the feeder device.
  • the metering device 106 is configured to control a flow rate of the dry solids from the storage portion 102 to the feeder device via the discharge portion 104 .
  • the metering device 106 is configured to minimize clogging of the dry solids within the feeder device.
  • FIG. 2 illustrates a schematic perspective view of a rotatable casing 210 of a feeder device in accordance with one exemplary embodiment.
  • the rotatable casing 210 has a substantially conical shape and is configured to rotate about a stationary core (not shown in FIG. 2 ) of the feeder device.
  • the rotatable casing 210 includes a plurality of pockets, for example, 212 a , 212 b , 212 c , 212 d .
  • Each pocket 212 a , 212 b , 212 c , 212 d includes an inlet 214 , an outlet 216 , and a plurality of first through-holes 218 .
  • the rotatable casing 210 includes a first outer-peripheral wall 220 , a first inner-peripheral wall 222 , and a plurality of first partition-walls 224 spaced apart from each other and extending from the first outer-peripheral wall 220 to the first inner-peripheral wall 222 to define the plurality of pockets 212 a , 212 b , 212 c , 212 d .
  • the first inner-peripheral wall 222 includes the plurality of first through-holes 218 corresponding to each pocket 212 a , 212 b , 212 c , 212 d.
  • the number of pockets may vary depending on the application and design criteria.
  • the rotatable casing 210 is configured to rotate about a central axis 226 of the feeder system such that each pocket 212 a , 212 b , 212 c , 212 d moves through a plurality of stages to continuously pressurize and discharge pressurized dry solids to a high pressure environment.
  • the plurality of stages includes a i) feeding stage, ii) pressurizing stage, iii) discharging stage, and iv) depressurizing stage. The plurality of stages is explained in greater detail below with reference to subsequent figures.
  • FIG. 3 illustrates a perspective view of the rotatable casing 210 and a plurality of valves 240 in accordance with one exemplary embodiment.
  • the rotatable casing 210 further includes an inlet end 228 , an outlet end 230 (as shown in FIG. 8 ), and a plurality of seals 232 coupled to the inlet end 228 .
  • the plurality of seals 232 is disposed on the first outer-peripheral wall 220 , the first inner-peripheral wall 222 , and the plurality of first partition-walls 224 .
  • the plurality of seals 232 includes a first circumferential seal 232 a disposed on the first outer-peripheral wall 220 , a second circumferential seal 232 b disposed on the first inner-peripheral wall 222 , and a plurality of rib seals 232 c disposed on the plurality of first partition-walls 224 .
  • the inlet end 228 is larger than the outlet end 230 .
  • Each valve 240 is disposed at the outlet 216 (shown in FIG. 2 ) of the corresponding pocket 212 a , 212 b , 212 c , 212 d .
  • the number of valves 240 is dependent on the number of pockets 212 a , 212 b , 212 c , 212 d formed in the rotatable casing 210 .
  • each valve 240 is a ball valve. In other embodiments, the type of valve may vary depending on the application.
  • the outlet 216 of each pocket 212 a , 212 b , 212 c , 212 d has a dimension smaller than a dimension of each valve 240 .
  • a portion of each valve 240 projects outward from the corresponding outlet 216 to dynamically seal the corresponding outlet 216 of the corresponding pocket 212 a , 212 b , 212 c , 212 d.
  • FIG. 4 illustrates a perspective view of a stationary core 250 of a feeder device in accordance with one exemplary embodiment.
  • the stationary core 250 has a cylindrical shape and is configured to supply a pressurized fluid into the rotatable casing and extract the pressurized fluid from the rotatable casing.
  • the shape of the stationary core 250 may vary depending on the application.
  • the stationary core 250 includes a plurality of channels 252 a , 252 b , 252 c , 252 d .
  • Each channel 252 a , 252 b , 252 c , 252 d includes a plurality of second through-holes 258 .
  • the stationary core 250 includes a second outer-peripheral wall 260 , a second inner-peripheral wall 262 , a plurality of second partition-walls 264 spaced apart from each other and extending from the second outer-peripheral wall 260 to the second inner-peripheral wall 262 to define the plurality of channels 252 a , 252 b , 252 c , 252 d .
  • the second outer-peripheral wall 260 includes the plurality of second through-holes 258 corresponding to each channel 252 a , 252 b , 252 c , 252 d.
  • the rotatable casing is configured to rotate around the stationary core 250 .
  • the stationary core 250 further includes a first end 268 and a second end 270 opposite to the first end 268 .
  • the first end 268 has a plurality of inlets 254 corresponding to the plurality of channels 252 a , 252 b , 252 c , 252 d .
  • the second end 270 has a closed section 256 (as shown in FIG. 5 ).
  • the stationary core 250 further includes a first seal 272 coupled to the first end 268 , a second seal 274 coupled to the second end 270 , and at least two vertical seals 276 spaced apart from each other and coupled to the first and second seals 272 , 274 .
  • the first and second seals 272 , 274 are ring seals.
  • the first and second seals 272 , 274 are disposed circumferentially around an outer surface 278 of the stationary core 250 .
  • the vertical seals 276 are disposed vertically along the outer surface 278 of the stationary core 250 .
  • the first and second seals 272 , 274 are configured to seal the stationary core 250 from the atmospheric pressure.
  • the vertical seals 276 are configured to isolate a high pressure side of the feeder device from a low pressure side of the feeder device.
  • the term “high pressure side” refers to a portion of the stationary core 250 configured to inject a pressurized fluid through the plurality of second through-holes 258 .
  • the term “low pressure side” refers to another portion of the stationary core 250 configured to extract the pressurized fluid through the plurality of second through-holes 258 .
  • FIG. 5 illustrates a partial perspective view of a feeder device 200 in accordance with one exemplary embodiment.
  • the feeder device 200 includes the rotatable casing 210 , the stationary core 250 , and the plurality of valves 240 .
  • the stationary core 250 is disposed within the rotatable casing 210 .
  • the rotatable casing 210 includes the plurality of pockets 212 a , 212 b , 212 c , 212 d , where each pocket 212 a , 212 b , 212 c , 212 d includes the inlet 214 , the outlet 216 (as shown in FIG. 2 ), and the plurality of first through-holes 218 .
  • the stationary core 250 includes the plurality of channels 252 a , 252 b , 252 c , 252 d , where each channel 252 a , 252 b , 252 c , 252 d includes the plurality of second through-holes 258 .
  • the plurality of first and second through-holes 218 , 258 are aligned to form a first fluid path 282 and a second fluid path 284 between the corresponding pocket 212 a , 212 b , 212 c , 212 d and the corresponding channel 252 a . 252 b , 252 c , 252 d.
  • FIG. 6 illustrates a perspective view of a discharge device 300 in accordance with one exemplary embodiment.
  • the discharge device 300 is disposed downstream relative to the feeder device 200 (shown in FIG. 5 ) and configured to receive pressurized dry solids from the feeder device.
  • the discharge device 300 is a stationary component and configured to intermittently contact the corresponding valve of the feeder device during rotation of the casing.
  • the discharge device 300 includes a receiving portion 302 and a guide portion 304 coupled to the receiving portion 302 .
  • the receiving portion 302 has a funnel shape and includes an inlet 306 and an outlet 308 .
  • the receiving portion 302 further includes a valve actuator 310 coupled to a peripheral end wall 312 of the receiving portion 302 .
  • the valve actuator 310 is disposed protruding outwards from the receiving portion 302 .
  • the valve actuator 310 is a projection.
  • the valve actuator 310 is configured to actuate each valve of the feeder device. During operation, the valve actuator 310 contacts the valve and pushes the valve upwards, thereby opening the outlet of the corresponding pocket and discharging the pressurized dry solids from the feeder device to the discharge device 300 . Then the pressurized dry solids are fed via the guide portion 304 to a high pressure environment such as a pressurized blender of a CO 2 fracturing system.
  • FIG. 7 illustrates a perspective view of a feeder system 400 in accordance with one exemplary embodiment.
  • the feeder system 400 may be used for a CO 2 fracturing application.
  • the feeder system 400 may be configured to pressurize proppant and feed a pressurized proppant to a blender containing a liquefied CO 2 fracturing fluid.
  • the feeder system 400 may be used in a wide range of industrial applications that require feeding dry solids into high pressure environments at high flow rates. Such industrial applications may include chemical processing, pharmaceuticals, food processing, paper and pulp, gasification, and the like.
  • the feeder system 400 includes the hopper 100 , the feeder device 200 , and the discharge device 300 as discussed in the embodiments of FIGS. 1-6 .
  • the hopper 100 is coupled to the feeder device 200 and the discharge device 300 is disposed downstream relative to the feeder device 200 .
  • the hopper 100 is configured to receive dry solids 10 at atmospheric pressure and feed the received dry solids 10 to the feeder device 200 .
  • the feeder device 200 is configured to pressurize the dry solids 10 and discharge pressurized dry solids 20 to the discharge device 300 .
  • the feeder system 400 further includes a stationary cover 402 , a pressure source 404 , and a vacuum source 406 .
  • the stationary cover 402 is configured to substantially cover the inlet end 228 of the rotatable casing 210 .
  • the stationary cover 402 is disposed on the plurality of seals 232 coupled to the inlet end 228 of the feeder device 200 .
  • the stationary cover 402 further includes an opening 108 for feeding the dry solids from the hopper 100 to the feeder device 200 .
  • the plurality of seals 232 and the stationary cover 402 are configured to seal the rotatable casing 210 from atmospheric pressure and to isolate the plurality of pockets 212 a , 212 b , 212 c , 212 d within the rotatable casing 210 .
  • the pressure source 404 is fluidically coupled to at least one channel 252 a , 252 b , 252 c , 252 d of the stationary core 250 .
  • the pressure source 404 is configured to supply a pressurized fluid 30 to at least one corresponding pocket 212 a , 212 b , 212 c , 212 d of the rotatable casing 210 through the corresponding plurality of first and second through-holes.
  • the pressure source 404 is fluidically coupled to two mutually adjacent channels, for example, 252 a , 252 b of the stationary core 250 .
  • the pressure source 404 is configured to feed compressed air.
  • the type of pressure source 404 may vary depending on the application.
  • the vacuum source 406 is fluidically coupled to at least one channel 252 a , 252 b , 252 c , 252 d of the stationary core 250 .
  • the vacuum source 406 is configured to extract the pressurized fluid from at least one corresponding pocket 212 a , 212 b , 212 c , 212 d of the rotatable casing 210 through the corresponding plurality of first and second through-holes.
  • the vacuum source 406 is fluidically coupled to another two mutually adjacent channels, for example, 252 c , 252 d of the stationary core 250 .
  • FIG. 8 illustrates a perspective view of the feeder system 400 including the drive unit 408 in accordance with the exemplary embodiment of FIG. 7 .
  • the feeder system 400 includes a drive unit 408 such as a motor coupled to the outlet end 230 of the rotatable casing 210 .
  • the drive unit 408 is configured to drive the rotatable casing 210 about the stationary core 250 of the feeder device 200 .
  • the rotatable casing 210 rotates about the central axis 226 of the feeder system 400 .
  • each pocket 212 a , 212 b , 212 c , 212 c moves through a plurality of stages to discharge dry solids at a substantial high pressure into the high pressure environment.
  • the plurality of stages include i) a feeding stage, ii) a pressurizing stage, a discharging stage, and iv) a de-pressurizing stage.
  • the dry solids may be proppant.
  • the dry solids may include powdered coals, sand, bio-mass mixtures, sawdust, wood chips, powdered chemicals, and the like.
  • FIG. 9 illustrates a schematic top view of the feeder device 200 in accordance with the exemplary embodiments of FIGS. 7 and 8 .
  • the feeder device 200 moves through a plurality of stages such as i) a feeding stage 502 , ii) a pressurizing stage 504 , iii) a discharging stage 506 , and iv) a de-pressurizing stage 508 .
  • the dry solids 10 at atmospheric pressure are fed from the hopper into the pocket 212 a , for example, of the rotatable casing 210 of the feeder device 200 .
  • the metering device is used to regulate the feeding of the dry solids from the hopper 100 to the pocket 212 a .
  • the pressure source is actuated to simultaneously inject a pressurized fluid to the first pocket 212 a through a corresponding channel 252 a and the corresponding plurality of first and second through-holes.
  • the drive unit further drives the rotatable casing 210 about the stationary core 250 such that the first pocket 212 a moves from the feeding stage 502 to the pressurizing stage 504 . As a result, the subsequent pocket 212 d moves to the feeding stage 502 .
  • the pressure source injects the pressurized fluid to the first pocket 212 a through a corresponding channel 252 b and the corresponding plurality of first and second through-holes.
  • the dry solids 10 are pressurized from about 0 psig to about at least 80 psig to form pressurized dry solids 20 .
  • the drive unit further drives the rotatable casing 210 about the stationary core 250 such that the pocket 212 a moves from the pressurizing stage 504 to the discharging stage 506 .
  • the pocket 212 b moves from the feeding stage 502 to the pressurizing stage 504 .
  • the valve actuator of the discharge device opens a corresponding valve 240 of the pocket 212 a for discharging the pressurized dry solids 20 to the discharge device.
  • the vacuum source is actuated to simultaneously extract the pressurized fluid from the pocket 212 a through a corresponding channel 252 c and the corresponding plurality of first and second through-holes.
  • the discharging stage 506 is explained in greater detail below with reference to FIG. 10 .
  • the drive unit further drives the rotatable casing 210 about the stationary core 250 such that the pocket 212 a moves from the discharging stage 506 to the de-pressurizing stage 508 .
  • the second pocket 212 b moves from the pressurizing stage 504 to the discharging stage 506 .
  • the vacuum source continues to extract the pressurized fluid from the pocket 212 a through a corresponding channel 252 d and the corresponding plurality of first and second through-holes so as to de-pressurize the pocket 212 a .
  • the pocket 212 b moves from the discharging stage 506 to the de-pressurizing stage 508 .
  • the drive unit is configured to continuously drive the rotatable casing 210 for moving each pocket to different stages 502 , 504 , 506 , 508 of the feeder system 400 .
  • FIG. 10 illustrates a schematic perspective view of the discharge device 300 and the corresponding valve 240 in accordance with the exemplary embodiments of FIGS. 7, 8, and 9 .
  • the valve actuator 310 of the discharge device 300 opens the corresponding valve 240 of the pocket 212 a for discharging the pressurized dry solids 20 to the discharge device 300 .
  • the valve actuator 310 contacts and pushes the corresponding valve 240 upwards as indicated by reference numeral 422 , to open the outlet end 230 of the pocket 212 a , thereby allowing the pressurized dry solids 20 to discharge from the first pocket 212 a to the discharge device 300 .
  • FIG. 1 is a schematic perspective view of the stationary core 250 in accordance with the exemplary embodiments of FIGS. 7, 8, 9, and 10 .
  • the channels 252 a , 252 b may be referred to as high pressure supply lines, which are configured to supply the pressurized fluid to the corresponding pockets 212 a , 212 b (shown in FIG. 9 ).
  • the channels 252 c , 252 d may be referred to as vent lines, which are configured to extract the pressurized fluid from the corresponding pockets 212 c , 212 d (shown in FIG. 9 ).
  • the plurality of second through-holes 258 includes a first set of through-holes 258 a configured for injecting the pressurized fluid and a second set of through-holes 258 b configured for extracting the pressurized fluid.
  • the first set of through-holes 258 a is separated from the second set of through-holes 258 b through the at least two vertical seals 276 disposed along the stationary core 250 (shown in FIG. 4 ).
  • an exemplary feeder system is configured to continuously feed dry solids to a high pressure environment.
  • the feeder system is designed to discharge incompressible and abrasive dry solids.
  • the feeder system is configured to rotate about a vertical axis, thereby reducing bending stresses imparted by the pressurized fluid on the outlet side of the device, thereby enhancing pressure capability of the feeder system under high pressure conditions compared to conventional rotary valve devices.
  • dry solids may get trapped between clearances formed between rotor tips and housing body, resulting in wear of the rotor and housing body, and rapid degradation of sealing performance over time.
  • such clearances are eliminated, resulting in less wear compared to the conventional systems.
  • components, such as valves, which are also susceptible to wear are easily replaceable in accordance with embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

A system for discharging dry solids into high pressure environments is disclosed. The system includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device. The feeder device includes a rotatable casing including a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves. Each pocket includes an inlet, an outlet, and a plurality of first through-holes. The stationary core includes a plurality of channels, where each channel includes a plurality of second through-holes. Each valve is disposed at the outlet of a corresponding pocket from the plurality of pockets. The discharge device includes a valve actuator configured to actuate each valve.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application is a divisional of co-pending U.S. patent application Ser. No. 14/926,376 filed on Oct. 29, 2015, which is incorporated by reference herein in its entirety.
  • BACKGROUND
  • The present disclosure relates to a method and system for discharging dry solids, such as incompressible dry solids into a high pressure environment.
  • Continuously discharging low or atmospheric pressure dry solids into high pressure environments is generally a difficult task because solids typically have a high inter-particle volume through which pressurized fluids used to pressurize the dry solids may flow through, resulting in leakage of the pressurized fluids.
  • Some conventional systems, for example, a rotary valve system and a rotary air-lock system may be configured to rotate about a horizontal axis while pressurizing dry solids and discharging pressurized dry solids into a high pressure environment. However, such conventional systems have limited pressure capability due to deflection of the systems under high pressure conditions. Further, such conventional systems may be susceptible to wear while pressurizing and discharging abrasive dry solids. Such conventional systems may also lack active venting (de-pressurizing) after discharging the dry solids into the high pressure environment.
  • Another conventional feeder system, such as a lock hopper system, may be configured to discharge the pressurized dry solids in batch mode. Such a conventional system has a limited pressure capability and may be susceptible to wear while pressurizing and discharging abrasive dry solids.
  • Accordingly, there is a need for an improved feeder system and an associated method for pressurizing and discharging dry solids into a high pressure environment.
  • BRIEF DESCRIPTION
  • In accordance with one exemplary embodiment, a system for discharging dry solids is disclosed. The system includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device. The feeder device includes a rotatable casing having a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves. Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes. The stationary core includes a plurality of channels, wherein each channel among the plurality of channels includes a plurality of second through-holes. Each valve among the plurality of valves is disposed at the outlet of a corresponding pocket from the plurality of pockets. The discharge device includes a valve actuator configured to actuate each valve.
  • In accordance with one exemplary embodiment, a method for discharging dry solids is disclosed. The method involves feeding dry solids at atmospheric pressure, from a hopper into a first pocket among a plurality of pockets formed in a rotatable casing of a feeder device. Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes. The feeder device further includes a plurality of valves, each valve being disposed at the outlet of a corresponding pocket from the plurality of pockets. The method further involves driving the rotatable casing about a stationary core of the feeder device, which is disposed within the rotatable casing. The stationary core includes a plurality of channels, each channel including a plurality of second through-holes. Further, the method involves injecting a pressurized fluid from a first channel among the plurality of channels into the first pocket through the plurality of corresponding second through-holes and the plurality of corresponding first through-holes, to generate pressurized dry solids. The method also involves actuating a corresponding valve from the plurality of valves through a valve actuator of a discharge device, for discharging the pressurized dry solids from the first pocket into the discharge device. The method further involves extracting the pressurized fluid from the first pocket through the plurality of corresponding first and second through-holes and the first channel.
  • DRAWINGS
  • These and other features and aspects of embodiments of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
  • FIG. 1 is a perspective view of a hopper in accordance with one exemplary embodiment;
  • FIG. 2 is a schematic perspective view of a rotatable casing of a feeder device in accordance with one exemplary embodiment;
  • FIG. 3 is a perspective view of a rotatable casing and a plurality of valves of a feeder device in accordance with one exemplary embodiment;
  • FIG. 4 is a perspective view of a stationary core of a feeder device in accordance with one exemplary embodiment;
  • FIG. 5 is a partial perspective view of a feeder device in accordance with one exemplary embodiment;
  • FIG. 6 is a perspective view of a discharge device in accordance with one exemplary embodiment;
  • FIG. 7 is a perspective view of a feeder system in accordance with one exemplary embodiment;
  • FIG. 8 is a perspective view of the feeder system including a drive unit in accordance with the exemplary embodiment of FIG. 7;
  • FIG. 9 is a schematic perspective view of a feeder device in accordance with the exemplary embodiments of FIGS. 7 and 8;
  • FIG. 10 is a schematic view of a discharge device and a valve in accordance with the exemplary embodiments of FIGS. 7, 8, and 9; and
  • FIG. 11 is a schematic perspective view of a stationary core in accordance with the exemplary embodiments of FIGS. 7, 8, 9, and 10.
  • DETAILED DESCRIPTION
  • Embodiments discussed herein disclose a system, for example, a feeder system configured to pressurize dry solids and discharge pressurized dry solids into a high pressure environment. The exemplary feeder system is configured to rotate about a vertical axis, for example, a central axis for pressurizing and discharging the dry solids into the high pressure environment, such as a pressurized blender of a carbon di-oxide (CO2) fracturing system. In certain embodiments, the feeder system may be configured to continuously discharge the pressurized dry solids into the pressurized blender. The pressurized blender is configured to blend the pressurized dry solids and a liquefied gas to form a mixture before delivering to a downstream component of the fracturing system. In some embodiments, the dry solids may be incompressible and abrasive. In certain embodiments, such a feeder system includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device. The feeder device includes a rotatable casing including a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves. Each pocket among the plurality of pockets includes an inlet, an outlet, and a plurality of first through-holes. The stationary core includes a plurality of channels, where each channel among the plurality of channels includes a plurality of second through-holes. Each valve among the plurality of valves is disposed at the outlet of a corresponding pocket from the plurality of pockets. The discharge device includes a valve actuator configured to actuate each valve.
  • FIG. 1 illustrates a perspective side view of a hopper 100 in accordance with one exemplary embodiment. The hopper 100 has a funnel shape and is configured to feed dry solids to a feeder device (not shown in FIG. 1). In the illustrated embodiment, the hopper 100 includes a storage portion 102 and a discharge portion 104 coupled to the storage portion 102. In certain embodiments, the storage portion 102 may receive the dry solids at atmospheric pressure from a source (not shown in FIG. 1) and temporarily store the dry solids before discharging to the feeder device via the discharge portion 104. The term “atmospheric pressure” may be referred to as a force exerted by atmospheric air on the dry solids.
  • The hopper 100 further includes a metering device 106 disposed within the discharge portion 104. In certain embodiments, the metering device 106 is a valve. The metering device 106 is configured to regulate discharge of dry solids to the feeder device. Specifically, the metering device 106 is configured to control a flow rate of the dry solids from the storage portion 102 to the feeder device via the discharge portion 104. The metering device 106 is configured to minimize clogging of the dry solids within the feeder device.
  • FIG. 2 illustrates a schematic perspective view of a rotatable casing 210 of a feeder device in accordance with one exemplary embodiment. In the illustrated embodiment, the rotatable casing 210 has a substantially conical shape and is configured to rotate about a stationary core (not shown in FIG. 2) of the feeder device.
  • The rotatable casing 210 includes a plurality of pockets, for example, 212 a, 212 b, 212 c, 212 d. Each pocket 212 a, 212 b, 212 c, 212 d includes an inlet 214, an outlet 216, and a plurality of first through-holes 218. Specifically, the rotatable casing 210 includes a first outer-peripheral wall 220, a first inner-peripheral wall 222, and a plurality of first partition-walls 224 spaced apart from each other and extending from the first outer-peripheral wall 220 to the first inner-peripheral wall 222 to define the plurality of pockets 212 a, 212 b, 212 c, 212 d. The first inner-peripheral wall 222 includes the plurality of first through-holes 218 corresponding to each pocket 212 a, 212 b, 212 c, 212 d.
  • The number of pockets may vary depending on the application and design criteria. During operation, the rotatable casing 210 is configured to rotate about a central axis 226 of the feeder system such that each pocket 212 a, 212 b, 212 c, 212 d moves through a plurality of stages to continuously pressurize and discharge pressurized dry solids to a high pressure environment. The plurality of stages includes a i) feeding stage, ii) pressurizing stage, iii) discharging stage, and iv) depressurizing stage. The plurality of stages is explained in greater detail below with reference to subsequent figures.
  • FIG. 3 illustrates a perspective view of the rotatable casing 210 and a plurality of valves 240 in accordance with one exemplary embodiment. The rotatable casing 210 further includes an inlet end 228, an outlet end 230 (as shown in FIG. 8), and a plurality of seals 232 coupled to the inlet end 228. Specifically, the plurality of seals 232 is disposed on the first outer-peripheral wall 220, the first inner-peripheral wall 222, and the plurality of first partition-walls 224. More specifically, the plurality of seals 232 includes a first circumferential seal 232 a disposed on the first outer-peripheral wall 220, a second circumferential seal 232 b disposed on the first inner-peripheral wall 222, and a plurality of rib seals 232 c disposed on the plurality of first partition-walls 224. In the illustrated embodiment, the inlet end 228 is larger than the outlet end 230.
  • Each valve 240 is disposed at the outlet 216 (shown in FIG. 2) of the corresponding pocket 212 a, 212 b, 212 c, 212 d. The number of valves 240 is dependent on the number of pockets 212 a, 212 b, 212 c, 212 d formed in the rotatable casing 210. In one embodiment, each valve 240 is a ball valve. In other embodiments, the type of valve may vary depending on the application. The outlet 216 of each pocket 212 a, 212 b, 212 c, 212 d has a dimension smaller than a dimension of each valve 240. A portion of each valve 240 projects outward from the corresponding outlet 216 to dynamically seal the corresponding outlet 216 of the corresponding pocket 212 a, 212 b, 212 c, 212 d.
  • FIG. 4 illustrates a perspective view of a stationary core 250 of a feeder device in accordance with one exemplary embodiment. In the illustrated embodiment, the stationary core 250 has a cylindrical shape and is configured to supply a pressurized fluid into the rotatable casing and extract the pressurized fluid from the rotatable casing. The shape of the stationary core 250 may vary depending on the application.
  • The stationary core 250 includes a plurality of channels 252 a, 252 b, 252 c, 252 d. Each channel 252 a, 252 b, 252 c, 252 d includes a plurality of second through-holes 258. Specifically, the stationary core 250 includes a second outer-peripheral wall 260, a second inner-peripheral wall 262, a plurality of second partition-walls 264 spaced apart from each other and extending from the second outer-peripheral wall 260 to the second inner-peripheral wall 262 to define the plurality of channels 252 a, 252 b, 252 c, 252 d. The second outer-peripheral wall 260 includes the plurality of second through-holes 258 corresponding to each channel 252 a, 252 b, 252 c, 252 d.
  • The number of channels may vary depending on the application and design criteria. As discussed previously, during operation, the rotatable casing is configured to rotate around the stationary core 250.
  • The stationary core 250 further includes a first end 268 and a second end 270 opposite to the first end 268. The first end 268 has a plurality of inlets 254 corresponding to the plurality of channels 252 a, 252 b, 252 c, 252 d. The second end 270 has a closed section 256 (as shown in FIG. 5). The stationary core 250 further includes a first seal 272 coupled to the first end 268, a second seal 274 coupled to the second end 270, and at least two vertical seals 276 spaced apart from each other and coupled to the first and second seals 272, 274. In the illustrated embodiment, the first and second seals 272, 274 are ring seals. The first and second seals 272, 274 are disposed circumferentially around an outer surface 278 of the stationary core 250. The vertical seals 276 are disposed vertically along the outer surface 278 of the stationary core 250. The first and second seals 272, 274 are configured to seal the stationary core 250 from the atmospheric pressure. The vertical seals 276 are configured to isolate a high pressure side of the feeder device from a low pressure side of the feeder device. The term “high pressure side” refers to a portion of the stationary core 250 configured to inject a pressurized fluid through the plurality of second through-holes 258. The term “low pressure side” refers to another portion of the stationary core 250 configured to extract the pressurized fluid through the plurality of second through-holes 258.
  • FIG. 5 illustrates a partial perspective view of a feeder device 200 in accordance with one exemplary embodiment. The feeder device 200 includes the rotatable casing 210, the stationary core 250, and the plurality of valves 240.
  • The stationary core 250 is disposed within the rotatable casing 210. The rotatable casing 210 includes the plurality of pockets 212 a, 212 b, 212 c, 212 d, where each pocket 212 a, 212 b, 212 c, 212 d includes the inlet 214, the outlet 216 (as shown in FIG. 2), and the plurality of first through-holes 218. The stationary core 250 includes the plurality of channels 252 a, 252 b, 252 c, 252 d, where each channel 252 a, 252 b, 252 c, 252 d includes the plurality of second through-holes 258. During operation of the feeder device 200, the plurality of first and second through- holes 218, 258 are aligned to form a first fluid path 282 and a second fluid path 284 between the corresponding pocket 212 a, 212 b, 212 c, 212 d and the corresponding channel 252 a. 252 b, 252 c, 252 d.
  • FIG. 6 illustrates a perspective view of a discharge device 300 in accordance with one exemplary embodiment. The discharge device 300 is disposed downstream relative to the feeder device 200 (shown in FIG. 5) and configured to receive pressurized dry solids from the feeder device. The discharge device 300 is a stationary component and configured to intermittently contact the corresponding valve of the feeder device during rotation of the casing.
  • The discharge device 300 includes a receiving portion 302 and a guide portion 304 coupled to the receiving portion 302. In the illustrated embodiment, the receiving portion 302 has a funnel shape and includes an inlet 306 and an outlet 308. The receiving portion 302 further includes a valve actuator 310 coupled to a peripheral end wall 312 of the receiving portion 302. The valve actuator 310 is disposed protruding outwards from the receiving portion 302. In one embodiment, the valve actuator 310 is a projection.
  • The valve actuator 310 is configured to actuate each valve of the feeder device. During operation, the valve actuator 310 contacts the valve and pushes the valve upwards, thereby opening the outlet of the corresponding pocket and discharging the pressurized dry solids from the feeder device to the discharge device 300. Then the pressurized dry solids are fed via the guide portion 304 to a high pressure environment such as a pressurized blender of a CO2 fracturing system.
  • FIG. 7 illustrates a perspective view of a feeder system 400 in accordance with one exemplary embodiment. In one embodiment, the feeder system 400 may be used for a CO2 fracturing application. In such an embodiment, the feeder system 400 may be configured to pressurize proppant and feed a pressurized proppant to a blender containing a liquefied CO2 fracturing fluid. In certain other embodiments, the feeder system 400 may be used in a wide range of industrial applications that require feeding dry solids into high pressure environments at high flow rates. Such industrial applications may include chemical processing, pharmaceuticals, food processing, paper and pulp, gasification, and the like.
  • The feeder system 400 includes the hopper 100, the feeder device 200, and the discharge device 300 as discussed in the embodiments of FIGS. 1-6. The hopper 100 is coupled to the feeder device 200 and the discharge device 300 is disposed downstream relative to the feeder device 200. During operation, the hopper 100 is configured to receive dry solids 10 at atmospheric pressure and feed the received dry solids 10 to the feeder device 200. The feeder device 200 is configured to pressurize the dry solids 10 and discharge pressurized dry solids 20 to the discharge device 300.
  • The feeder system 400 further includes a stationary cover 402, a pressure source 404, and a vacuum source 406. In the illustrated embodiment, only a portion of the stationary cover 402 is shown to simplify the illustration of the feeder system 400. The stationary cover 402 is configured to substantially cover the inlet end 228 of the rotatable casing 210. In certain specific embodiments, the stationary cover 402 is disposed on the plurality of seals 232 coupled to the inlet end 228 of the feeder device 200. The stationary cover 402 further includes an opening 108 for feeding the dry solids from the hopper 100 to the feeder device 200. The plurality of seals 232 and the stationary cover 402 are configured to seal the rotatable casing 210 from atmospheric pressure and to isolate the plurality of pockets 212 a, 212 b, 212 c, 212 d within the rotatable casing 210.
  • The pressure source 404 is fluidically coupled to at least one channel 252 a, 252 b, 252 c, 252 d of the stationary core 250. The pressure source 404 is configured to supply a pressurized fluid 30 to at least one corresponding pocket 212 a, 212 b, 212 c, 212 d of the rotatable casing 210 through the corresponding plurality of first and second through-holes. In certain embodiments, the pressure source 404 is fluidically coupled to two mutually adjacent channels, for example, 252 a, 252 b of the stationary core 250. In one embodiment, the pressure source 404 is configured to feed compressed air. The type of pressure source 404 may vary depending on the application.
  • The vacuum source 406 is fluidically coupled to at least one channel 252 a, 252 b, 252 c, 252 d of the stationary core 250. The vacuum source 406 is configured to extract the pressurized fluid from at least one corresponding pocket 212 a, 212 b, 212 c, 212 d of the rotatable casing 210 through the corresponding plurality of first and second through-holes. In certain embodiments, the vacuum source 406 is fluidically coupled to another two mutually adjacent channels, for example, 252 c, 252 d of the stationary core 250.
  • FIG. 8 illustrates a perspective view of the feeder system 400 including the drive unit 408 in accordance with the exemplary embodiment of FIG. 7. The feeder system 400 includes a drive unit 408 such as a motor coupled to the outlet end 230 of the rotatable casing 210. The drive unit 408 is configured to drive the rotatable casing 210 about the stationary core 250 of the feeder device 200. In such embodiments, the rotatable casing 210 rotates about the central axis 226 of the feeder system 400.
  • During operation, each pocket 212 a, 212 b, 212 c, 212 c moves through a plurality of stages to discharge dry solids at a substantial high pressure into the high pressure environment. The plurality of stages include i) a feeding stage, ii) a pressurizing stage, a discharging stage, and iv) a de-pressurizing stage. In certain embodiments, the dry solids may be proppant. In some other embodiments, the dry solids may include powdered coals, sand, bio-mass mixtures, sawdust, wood chips, powdered chemicals, and the like.
  • FIG. 9 illustrates a schematic top view of the feeder device 200 in accordance with the exemplary embodiments of FIGS. 7 and 8. The feeder device 200 moves through a plurality of stages such as i) a feeding stage 502, ii) a pressurizing stage 504, iii) a discharging stage 506, and iv) a de-pressurizing stage 508. In the illustrated embodiment, during the feeding stage 502, the dry solids 10 at atmospheric pressure are fed from the hopper into the pocket 212 a, for example, of the rotatable casing 210 of the feeder device 200. The metering device is used to regulate the feeding of the dry solids from the hopper 100 to the pocket 212 a. In such an embodiment, the pressure source is actuated to simultaneously inject a pressurized fluid to the first pocket 212 a through a corresponding channel 252 a and the corresponding plurality of first and second through-holes.
  • The drive unit further drives the rotatable casing 210 about the stationary core 250 such that the first pocket 212 a moves from the feeding stage 502 to the pressurizing stage 504. As a result, the subsequent pocket 212 d moves to the feeding stage 502.
  • During the pressurizing stage 504, for example, the pressure source injects the pressurized fluid to the first pocket 212 a through a corresponding channel 252 b and the corresponding plurality of first and second through-holes. The dry solids 10 are pressurized from about 0 psig to about at least 80 psig to form pressurized dry solids 20. The drive unit further drives the rotatable casing 210 about the stationary core 250 such that the pocket 212 a moves from the pressurizing stage 504 to the discharging stage 506. The pocket 212 b moves from the feeding stage 502 to the pressurizing stage 504.
  • During the discharging stage 506, the valve actuator of the discharge device opens a corresponding valve 240 of the pocket 212 a for discharging the pressurized dry solids 20 to the discharge device. In such an embodiment, the vacuum source is actuated to simultaneously extract the pressurized fluid from the pocket 212 a through a corresponding channel 252 c and the corresponding plurality of first and second through-holes. The discharging stage 506 is explained in greater detail below with reference to FIG. 10. The drive unit further drives the rotatable casing 210 about the stationary core 250 such that the pocket 212 a moves from the discharging stage 506 to the de-pressurizing stage 508. The second pocket 212 b moves from the pressurizing stage 504 to the discharging stage 506.
  • During the de-pressurizing stage 508, the vacuum source continues to extract the pressurized fluid from the pocket 212 a through a corresponding channel 252 d and the corresponding plurality of first and second through-holes so as to de-pressurize the pocket 212 a. The pocket 212 b moves from the discharging stage 506 to the de-pressurizing stage 508.
  • Similarly, the drive unit is configured to continuously drive the rotatable casing 210 for moving each pocket to different stages 502, 504, 506, 508 of the feeder system 400.
  • FIG. 10 illustrates a schematic perspective view of the discharge device 300 and the corresponding valve 240 in accordance with the exemplary embodiments of FIGS. 7, 8, and 9. As discussed previously, during the discharging stage 506, the valve actuator 310 of the discharge device 300 opens the corresponding valve 240 of the pocket 212 a for discharging the pressurized dry solids 20 to the discharge device 300. Specifically, the valve actuator 310 contacts and pushes the corresponding valve 240 upwards as indicated by reference numeral 422, to open the outlet end 230 of the pocket 212 a, thereby allowing the pressurized dry solids 20 to discharge from the first pocket 212 a to the discharge device 300.
  • FIG. 1 is a schematic perspective view of the stationary core 250 in accordance with the exemplary embodiments of FIGS. 7, 8, 9, and 10. In one embodiment, the channels 252 a, 252 b may be referred to as high pressure supply lines, which are configured to supply the pressurized fluid to the corresponding pockets 212 a, 212 b (shown in FIG. 9). The channels 252 c, 252 d may be referred to as vent lines, which are configured to extract the pressurized fluid from the corresponding pockets 212 c, 212 d (shown in FIG. 9). In the illustrated embodiment, the plurality of second through-holes 258 includes a first set of through-holes 258 a configured for injecting the pressurized fluid and a second set of through-holes 258 b configured for extracting the pressurized fluid. The first set of through-holes 258 a is separated from the second set of through-holes 258 b through the at least two vertical seals 276 disposed along the stationary core 250 (shown in FIG. 4).
  • In accordance with one or more embodiments discussed herein, an exemplary feeder system is configured to continuously feed dry solids to a high pressure environment. The feeder system is designed to discharge incompressible and abrasive dry solids. The feeder system is configured to rotate about a vertical axis, thereby reducing bending stresses imparted by the pressurized fluid on the outlet side of the device, thereby enhancing pressure capability of the feeder system under high pressure conditions compared to conventional rotary valve devices. In conventional rotary valve systems, dry solids may get trapped between clearances formed between rotor tips and housing body, resulting in wear of the rotor and housing body, and rapid degradation of sealing performance over time. In accordance with the embodiments of the present disclosure, such clearances are eliminated, resulting in less wear compared to the conventional systems. Further, components, such as valves, which are also susceptible to wear, are easily replaceable in accordance with embodiments of the present disclosure.
  • While only certain features of embodiments have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended embodiments are intended to cover all such modifications and changes as falling within the spirit of the invention.

Claims (13)

1. A system for discharging dry solids, comprising:
a hopper;
a feeder device coupled to the hopper, wherein the feeder device comprises:
a rotatable casing comprising a plurality of pockets, wherein each pocket comprises an inlet, an outlet, and a plurality of first through-holes;
a stationary core disposed within the rotatable casing, wherein the stationary core comprises a plurality of channels, each channel comprising a plurality of second through-holes; and
a plurality of valves, wherein each valve is disposed at the outlet of a corresponding pocket from the plurality of pockets; and
a discharge device disposed downstream relative to the feeder device, wherein the discharge device comprises a valve actuator configured to actuate each valve.
2. The system of claim 1, wherein the hopper includes a metering device configured to regulate discharge of the dry solids to the feeder device.
3. The system of claim 1, further comprising a pressure source coupled to at least one channel and configured to supply a pressurized fluid to at least one corresponding pocket through the corresponding plurality of second and first through-holes.
4. The system of claim 1, further comprising a vacuum source coupled to at least one channel and configured to extract a pressurized fluid from at least one corresponding pocket through the corresponding plurality of first and second through-holes.
5. The system of claim 1, wherein the rotatable casing further comprises an inlet end, an outlet end, and a plurality of seals coupled to the inlet end.
6. The system of claim 5, wherein the feeder device further comprises a stationary cover disposed on the plurality of seals, wherein the stationary cover comprises an opening for feeding the dry solids from the hopper to the feeder device.
7. The system of claim 1, wherein each valve comprises a ball valve and the valve actuator comprises a projection.
8. The system of claim 1, wherein the stationary core comprises a first end, a second end opposite to the first end, a first seal coupled to the first end, a second seal coupled to the second end, and at least two vertical seals spaced apart from each other and coupled to the first and second seals.
9. The system of claim 1, further comprising a drive unit coupled to the rotatable casing.
10. The system of claim 1, wherein the rotatable casing comprises a first outer-peripheral wall, a first inner-peripheral wall, and a plurality of first partition-walls spaced apart from each other and extending from the first outer-peripheral wall to the first inner-peripheral wall to define the plurality of pockets.
11. The system of claim 10, wherein the first inner-peripheral wall comprises the plurality of first through-holes corresponding to each pocket.
12. The system of claim 10, wherein the stationary core comprises a second outer-peripheral wall, a second inner-peripheral wall, a plurality of second partition-walls spaced apart from each other and extending from the second outer-peripheral wall to the second inner-peripheral wall to define the plurality of channels.
13. The system of claim 12, wherein the second outer-peripheral wall comprises the plurality of second through-holes corresponding to each channel.
US15/848,569 2015-10-29 2017-12-20 System for discharging dry solids and an associated method thereof Abandoned US20180111759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/848,569 US20180111759A1 (en) 2015-10-29 2017-12-20 System for discharging dry solids and an associated method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/926,376 US9902561B2 (en) 2015-10-29 2015-10-29 System for discharging dry solids and an associated method thereof
US15/848,569 US20180111759A1 (en) 2015-10-29 2017-12-20 System for discharging dry solids and an associated method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/926,376 Division US9902561B2 (en) 2015-10-29 2015-10-29 System for discharging dry solids and an associated method thereof

Publications (1)

Publication Number Publication Date
US20180111759A1 true US20180111759A1 (en) 2018-04-26

Family

ID=58634313

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/926,376 Active 2036-02-15 US9902561B2 (en) 2015-10-29 2015-10-29 System for discharging dry solids and an associated method thereof
US15/848,569 Abandoned US20180111759A1 (en) 2015-10-29 2017-12-20 System for discharging dry solids and an associated method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/926,376 Active 2036-02-15 US9902561B2 (en) 2015-10-29 2015-10-29 System for discharging dry solids and an associated method thereof

Country Status (1)

Country Link
US (2) US9902561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130532B1 (en) * 2021-08-04 2024-04-24 Technische Hochschule Rosenheim Device for the production of biopolymers from biomass
US20230234793A1 (en) * 2022-01-24 2023-07-27 Jenike & Johanson, Inc. System and method for feeding bulk material into a pressurized environment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858212A (en) 1956-02-13 1958-10-28 Condi Engineering Corp Wood chip feeders
US3397801A (en) 1966-11-07 1968-08-20 Union Carbide Corp Valve seals for dry solid pumps
US3775071A (en) 1971-06-20 1973-11-27 Hydrocarbon Research Inc Method for feeding dry coal to superatmospheric pressure
US4557403A (en) 1984-04-13 1985-12-10 Texaco Inc. Dry feeder for finely divided solids into high pressure atmosphere
US5265983A (en) 1992-06-02 1993-11-30 The Babcock & Wilcox Company Cascading pressure continuous blow bottle
US5997220A (en) * 1994-12-14 1999-12-07 Wormser Systems, Inc. Vertical-shaft airlock
US5560550A (en) 1994-12-22 1996-10-01 Combustion Engineering, Inc. Dry solids pump system for feeding a high pressure combustor
US5657704A (en) 1996-01-23 1997-08-19 The Babcock & Wilcox Company Continuous high pressure solids pump system
US6641336B1 (en) * 2003-03-17 2003-11-04 Andritz Inc. High pressure feeder rotor having conduits for pressure equalization
US6966466B2 (en) 2003-11-07 2005-11-22 Asj Holding Aps Rotary airlock valve
US7597219B2 (en) 2005-12-16 2009-10-06 Owens Corning Intellectual Capital, Llc Rotary valve for handling solid particulate material
US7757903B2 (en) * 2006-10-20 2010-07-20 Flsmidth A/S Feeder assembly for bulk solids
US8672588B2 (en) * 2009-04-15 2014-03-18 Andritz Inc. Unobstructed low pressure outlet and screen grid for a high pressure feeder
EP2302018A1 (en) 2009-09-24 2011-03-30 Faramarz Bairamijamal Method for continuous dry moving of a material for loading a pressurised reactor which is to be partially oxidised
US8464860B2 (en) * 2010-09-21 2013-06-18 General Electric Company System for thermally controlling a solid feed pump

Also Published As

Publication number Publication date
US9902561B2 (en) 2018-02-27
US20170121116A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
EP3265271B1 (en) Particle feeder
US20180111759A1 (en) System for discharging dry solids and an associated method thereof
US4744181A (en) Particle-blast cleaning apparatus and method
US7857321B2 (en) Bearing protector with air purge
US7278595B2 (en) Particle feed apparatus for jet mill
US8128095B2 (en) Mechanical shaft seal
CN102644755A (en) Sealing structure of rotating shaft of powder feeder
US3574411A (en) Side inlet rotary valve
US20180022554A1 (en) Device and method for conveying bulk material into a pressure chamber
WO2015033432A1 (en) Check valve, method for manufacturing same, liquid supply device with said check valve, and liquid chromatograph with said liquid supply device
JP5359043B2 (en) Vertical crusher
US10155912B2 (en) Device and method for conveying bulk material
US7666066B2 (en) Feeding solid particles into a fluid stream
CN116853846A (en) Eccentric rotary valve
US6293439B1 (en) High pressure valve
KR20230001101A (en) Rotary valve with guideline for preventing damage to raw materials
JP2005200173A (en) Rotary feeder and sealing device
JPS5827174B2 (en) Dynamic extrusion equipment: dry fine powder solid material pump
US10040014B2 (en) Annular gas feed element for use in gasification plants with a dry fuel supply
EP0076254B1 (en) Solids pumping apparatus
KR200390458Y1 (en) High pressure rotary valve
JPS5877976A (en) Prevention of entry of foreign substance into ball valve
WO2018053560A1 (en) Dry gland stuffing box
CN103644308B (en) Air seal offset type bell valve
US11905946B2 (en) Backup ring and liquid feeding pump using backup ring

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE