US20180069208A1 - Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool - Google Patents

Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool Download PDF

Info

Publication number
US20180069208A1
US20180069208A1 US15/554,480 US201615554480A US2018069208A1 US 20180069208 A1 US20180069208 A1 US 20180069208A1 US 201615554480 A US201615554480 A US 201615554480A US 2018069208 A1 US2018069208 A1 US 2018069208A1
Authority
US
United States
Prior art keywords
cell
battery cells
battery pack
rechargeable battery
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/554,480
Inventor
Marcin Rejman
Thorsten Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REJMAN, MARCIN, SEIDEL, THORSTEN
Publication of US20180069208A1 publication Critical patent/US20180069208A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01M2/1022
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • H01M2/1094
    • H01M2/204
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a rechargeable battery pack for a hand-held power tool and to a method for manufacturing a rechargeable battery pack for a hand-held power tool.
  • rechargeable battery units allow for a great deal of flexibility while working and, in particular, are independent of mains-supplied power, and outside work may therefore also be conveniently carried out, it is often provided to utilize rechargeable battery packs during an operation of a hand-held power tool.
  • Such rechargeable battery packs are known, in principle, and include rechargeable accumulators, generally a plurality of battery cells connected in a parallel and/or series circuit.
  • a rechargeable battery pack is therefore to be understood to be an accumulator pack which may be made up of several electrically interconnected battery cells, may store electrical energy and delivers the energy for the operation of the hand-held power tool, and is exchangeably accommodated in a chamber, an interface, or the like of the hand-held power tool.
  • the rechargeable battery pack is assigned to the hand-held power tool by plugging or inserting the rechargeable battery pack into a complementary plug-in socket of the unit housing, the rechargeable battery pack being coupleable to the unit housing of the hand-held power tool in such a way that the power tool is electrically coupled and mechanically locked to the rechargeable battery pack upon the coupling of the two housings.
  • the electrical contacting takes place mostly in the area of the locking device.
  • waste heat is generated in every battery cell both during current delivery and during current draw, which may result in an elevated temperature of the entire rechargeable battery block.
  • waste heat must be reliably dissipated, on the one hand and, on the other hand, temperature control of the rechargeable battery pack must be possible at outside temperatures which are too low, which is advantageous, in particular, in the case of cells which are chemically based on lithium.
  • the battery cells in the rechargeable battery packs are fixed directly within the rechargeable battery housing or are positioned without being fixed. If fixing does not take place, cardboard sleeves may be utilized for insulating the cells with respect to one another.
  • Hand-held power tools in particular cordless drills, generate substantial vibrations during operation. These vibrations are transmitted via the housing to the rechargeable battery housing and, from there, to battery cells present in the rechargeable battery housing.
  • Such a vibration of the rechargeable battery pack is disadvantageous for the service life of the rechargeable battery pack, in particular for the service life of the battery cells and the electrical contactings.
  • the casting compound may reach the cell poles, which results in a detraction from the operational reliability of the rechargeable battery pack.
  • An object of the present invention is to avoid the aforementioned disadvantages and to provide a rechargeable battery pack for a hand-held power tool and to provide a method for manufacturing a rechargeable battery pack for a hand-held power tool, in which the aforementioned disadvantages are improved.
  • the rechargeable battery pack is to have good ergonomics and installability and to be cost-effective and simply configured, on the one hand, and, on the other hand, to allow for a reliable dissipation of generated waste heat.
  • This object may be achieved by a rechargeable battery pack as described herein and by a method for manufacturing a rechargeable battery pack for a hand-held power tool as described herein.
  • Advantageous embodiments, variants, and refinements of the present invention are provided in the further descriptions herein.
  • a hand-held power tool includes a rechargeable battery pack housing, the rechargeable battery pack housing including at least one first housing component and a second housing component.
  • the rechargeable battery pack further includes at least one cell holder, the cell holder accommodating at least two battery cells which are interconnected in a parallel and/or series circuit, the battery cells each including two end faces extending perpendicularly to a longitudinal axis.
  • the rechargeable battery pack housing includes a rechargeable battery pack electronics system including contact elements for establishing an electrical connection between the rechargeable battery pack and the hand-held power tool.
  • the cell holder includes sleeve-like insulating walls corresponding to the battery cells at least in some areas, the insulating walls being configured in such a way that an electrical contacting between the battery cells is prevented.
  • the cell holder has a cell opening, which is cylindrical, for each battery cell, in particular, and is intended for accommodating a battery cell, the insulating walls being situated between the cell openings.
  • each battery cell is surrounded by a sleeve-like insulating wall.
  • the battery cells are, in particular, cylindrical battery cells.
  • each battery cell is surrounded by a sleeve-like insulating wall over its entire lateral surface.
  • the cell holder may be made up of an injection-molded part, in particular, which includes corresponding receptacles for the battery cells, so that these are held in the cell holder, spaced apart from each other. In this way, short circuits are prevented from occurring due to the individual battery cells contacting each other.
  • the cell holder is at least partially made up of a material which is thermoconducting and electrically insulating, so that heat generated by the battery cells may be better dissipated.
  • a diameter D 1 of the cell openings before the battery cells are inserted into the cell openings is between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D 2 of the corresponding battery cells.
  • a diameter D 1 of the cell openings before the battery cells are inserted into the cell openings is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D 2 of the corresponding battery cells.
  • the cell holder rests on the battery cells in the area of the cell openings in an essentially gap-free manner, so that, in addition to a secure accommodation of the battery cells in the cell holder, good heat dissipation of the heat generated during the operation of the battery pack away from the battery cells may be achieved.
  • the cell holder rests on the battery cells in the area of the cell openings in an essentially gap-free manner in such a way that essentially no air is present between the cell holder and the battery cells.
  • the pressing-fit prevents insulating air gaps between the cell holder and the battery cells in the area of the cell openings.
  • the battery cells may be pressed into the cell holder.
  • each battery cell is pressed into its assigned cell opening. Due to the pressing-fit, a cell holding force of the cell holder acts on the battery cells in the cell openings.
  • a cell holding force acts between the cell holder and the accommodated battery cells, the cell holding force being between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N. This allows for a form-locked and force-fit connection of the battery cells to the cell holder.
  • the frictional connection prevents a movement of the battery cells relative to the cell holder and relative to the rechargeable battery pack housing.
  • the cell holder has free areas in the area of the end faces of the battery cells, in which the electrical connection of the battery cells to each other takes place via cell connectors.
  • the cell holder is open in the area of the end faces of the battery cells.
  • the cell holder is therefore open in the area of the two poles of each battery cell.
  • a tolerance compensation and a thermal expansion compensation may also be achieved with the aid of an appropriately configured welded joint.
  • the cell holder may include, in the area of the cell openings, stops which correspond to the battery cells and ensure a desired position of the battery cells in the cell holder.
  • these stops are located only on one side of the cell holder or, for example, always on the negative pole side or the positive pole side of the pressed-in battery cells. In principle, these stops make it easier to correctly press the battery cells into the cell holder.
  • the cell holder in one particularly specific embodiment forms an outer side of the rechargeable battery pack housing, at least in some areas. This allows for greater thermal conductivity than is the case with rechargeable battery packs having an additional outer side, and it is space-saving and also reduces the material costs. It is particularly advantageous when the battery cells have no insulating sheathing, at least in some areas. In this way, the pressing-fit of the battery cells into the cell holder may be facilitated, on the one hand, and better thermal conductivity may be ensured, on the other hand.
  • the rechargeable battery pack according to the present invention may be detachably connected to a hand-held power tool. Therefore, a hand-held power tool, provided it is connected to a rechargeable battery pack according to the present invention, is a further subject matter of the present invention.
  • the rechargeable battery pack inserted in the hand-held power tool is used in this case for driving the hand-held power tool.
  • the object is achieved by a method for manufacturing a rechargeable battery pack for a hand-held power tool.
  • the rechargeable battery pack includes a cell holder and at least two battery cells, the battery cells being electrically connected to each other via corresponding cell connectors in a parallel and/or series circuit.
  • the cell holder includes sleeve-like insulating walls, between which cylindrical cell openings for accommodating the battery cells are located, the battery cells being pressed into the cell openings in such a way that a form-locked and force-fit connection is established between the cell holder and the battery cells.
  • the cell holder is made up of a plastic material, which may be a thermoplastic polymer, a thermosetting plastic, or an elastomer, particularly a polyethylene, which may be a polyethylene having a density between 0.90 g/cm 3 and 1.0 g/cm 3 , which may be between 0.95 g/cm 3 and 0.99 g/cm 3 , particularly between 0.96 g/cm 3 and 0.98 g/cm 3 being used.
  • a plastic material which may be a thermoplastic polymer, a thermosetting plastic, or an elastomer, particularly a polyethylene, which may be a polyethylene having a density between 0.90 g/cm 3 and 1.0 g/cm 3 , which may be between 0.95 g/cm 3 and 0.99 g/cm 3 , particularly between 0.96 g/cm 3 and 0.98 g/cm 3 being used.
  • a diameter D 1 of the cell openings before the battery cells are pressed into the cell openings is advantageously between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D 2 of the corresponding battery cells.
  • a diameter D 1 of the cell openings before the battery cells are pressed into the cell openings is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D 2 of the corresponding battery cells.
  • a seat which is gap-free in this way may also be achieved when a circumference of the cell openings before the battery cells are inserted into the cell openings is 97% to 99.5% of a circumference of the cell casing, which may be 98% to 99%.
  • the cell holder is preheated before the press-fit process, which may be to a temperature between 60° C. and 90° C., in particular between 70° C. and 80° C.
  • the press-fit process may be carried out more efficiently and be gentler on the material.
  • a material expansion occurring in the cell holder after the battery cells have been pressed in is between 0.2% and 5%, in particular between 0.5% and 3%, particularly between 1% and 2%.
  • this cell holding force between the cell holder and the pressed-in battery cells is between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N.
  • lithium ion cells in particular, may be utilized as battery cells, since it is possible in the case of lithium cells in particular to combine several battery cells to form battery cell blocks in which several battery cells are connected in a parallel circuit.
  • the cell holder may accommodate battery cells having different diameters and lengths, whereby the application of the cell holder or the cell carrier in different rechargeable battery packs may be ensured.
  • the state of charge may be monitored and controlled via the voltage of the individual battery cells with the aid of a rechargeable battery pack electronics system.
  • a monitoring of individual cells may take place, individual battery cells being connectable directly to the circuit board of the rechargeable battery pack electronics system with the aid of contact arrangement.
  • Such a connection may take place, for example, with the aid of a soldered joint, the rechargeable battery pack electronics system advantageously being able to include appropriate soldering pads. It may therefore be established, on the basis of the connection between the battery cells and the rechargeable battery pack electronics system, whether all battery cells are being charged according to the directions or whether a charging amperage, which the battery cells are unable to handle, has possibly been reached.
  • the rechargeable battery pack electronics system may also include a number of further electronics elements for the control, regulation, or identification of the rechargeable battery pack.
  • further components such as, in particular, switches, but also charge level indicators and/or overload protection may be connected to the rechargeable battery pack electronics system.
  • the cell holder may, for example, perform the function of an installation platform and accommodate and fix the internal components of the rechargeable battery pack.
  • the installation process may be optimized for the rechargeable battery pack, and additional components such as, for example, adhesive films, cardboard sleeves, or insulating layers, may be dispensed with.
  • additional components such as, for example, adhesive films, cardboard sleeves, or insulating layers, may be dispensed with.
  • different specific embodiments of a cell holder may be utilized in one rechargeable battery pack, so that battery cells having different diameters and lengths may be accommodated and an application of the cell holder or the cell carrier in different rechargeable battery packs may be ensured.
  • a hand-held power tool within the scope of the application is understood to be all hand-held power tools including a tool carrier, which may be set into rotation or translation and which is directly drivable by a drive motor via a gear or a planetary gear set, such as, for example, baton screw drivers, cordless drills, percussion power drills, multi-function tools, saws, shears, grinders, and/or combi drills.
  • a tool carrier which may be set into rotation or translation and which is directly drivable by a drive motor via a gear or a planetary gear set, such as, for example, baton screw drivers, cordless drills, percussion power drills, multi-function tools, saws, shears, grinders, and/or combi drills.
  • transmission of electrical energy is to be understood, in particular, to mean that the hand-held power tool is supplied with energy via the rechargeable battery pack.
  • FIG. 1 shows a view of a hand-held power tool including a rechargeable battery pack according to the present invention, by way of example.
  • FIG. 2 shows a perspective representation of a rechargeable battery pack according to the present invention.
  • FIG. 3 shows a top view of the rechargeable battery pack from FIG. 2 .
  • FIG. 4 shows a perspective exploded representation of a rechargeable battery pack according to the present invention.
  • FIG. 5 shows a sectional view of the rechargeable battery pack from FIG. 4 .
  • FIG. 6 shows a perspective view of two battery cells.
  • FIG. 1 shows an electrical device which is configured as a hand-held power tool 300 .
  • hand-held power tool 300 is mechanically and electrically connectable to rechargeable battery pack 100 for battery-supplied power.
  • hand-held power tool 300 is configured as a cordless combi drill, by way of example. It is pointed out, however, that the present invention is not restricted to cordless combi drills, but rather may be utilized with different hand-held power tools 300 which are operated with the aid of a rechargeable battery pack 100 .
  • Hand-held power tool 300 includes a base body 305 , on which a tool holder 310 is fastened, and includes a handle 315 which includes an interface 380 at which a corresponding interface 180 of a rechargeable battery pack 100 according to the present invention is situated, in the locked position in this case.
  • Rechargeable battery pack 100 is configured as a sliding rechargeable battery pack.
  • receiving arrangement provided on hand-held power tool 300 for example, guide grooves and guide ribs, are brought into engagement with corresponding guide elements 150 of rechargeable battery pack 100 , rechargeable battery pack 100 being inserted in a sliding direction y along the receiving arrangement of handle 315 and rechargeable battery pack 100 is pushed along a lower outer surface 316 of handle 315 , which is oriented essentially perpendicularly to the longitudinal direction of handle 315 , into the rechargeable battery pack receptacle of a hand-held power tool 300 .
  • rechargeable battery pack 100 is fastened on handle 315 of hand-held power tool 300 and is locked with the aid of locking arrangement.
  • the locking arrangement includes a locking element and an actuating element 220 . By way of the actuation of actuating arrangement 220 , rechargeable battery pack 100 may be released from handle 315 of hand-held power tool 300 .
  • FIGS. 2 through 5 show a rechargeable battery pack 100 according to the present invention for a hand-held power tool 300 .
  • This includes a rechargeable battery pack housing 110 made up of a first housing component 120 and a second housing component 130 , the housing accommodating, between first housing component 120 and second housing component 130 , at least one battery cell, which may be a plurality of battery cells 400 , as represented here, which are interconnected in parallel or in series.
  • Battery cells 400 may be positioned and held in rechargeable battery pack housing 110 with the aid of a cell holder 600 for insulating battery cells 400 with respect to each other.
  • battery cells 400 may be provided with an insulating sheathing 430 , which is known per se from the related art, for the insulation with respect to each other.
  • Cardboard sleeves or plastic sleeves, for example, shrinkable tubing, may be provided as insulating sheathing 430 .
  • Insulating sheathing 430 is described further below in conjunction with FIG. 6 .
  • rechargeable battery pack 100 is configured as a sliding rechargeable battery pack.
  • rechargeable battery pack 100 For the releasable mounting of rechargeable battery pack 100 on a hand-held power tool 300 or on a charging device, rechargeable battery pack 100 includes an interface 180 for the releasable mechanical and electrical connection to a corresponding interface 380 of hand-held power tool 300 or a corresponding interface of the charging device.
  • receiving arrangement for example, guide grooves and guide ribs, of hand-held power tool 300 or of the charging device are brought into engagement with rechargeable battery pack 100 in order to accommodate the corresponding guide elements of rechargeable battery pack 100 , rechargeable battery pack 100 being inserted along the receiving arrangement in a contacting direction y, and interface 180 of rechargeable battery pack 100 being pushed into corresponding interface 380 of hand-held power tool 300 or the corresponding interface of the charging device.
  • Rechargeable battery pack 100 may be assigned to hand-held power tool 300 and/or the charging device via interfaces 180 , 380 .
  • rechargeable battery pack 100 In order to lock rechargeable battery pack 100 on handle 315 , rechargeable battery pack 100 is pushed in a sliding direction y along handle 315 , in particular along a lower outer surface of handle 315 , which is oriented essentially perpendicularly to the longitudinal direction of handle 315 . In the position shown in FIG. 1 , rechargeable battery pack 100 is locked on handle 315 with the aid of locking arrangement 200 .
  • Locking arrangement 200 include, inter alia, a locking element 210 , which is indicated only schematically, and an actuating element 220 . By way of the actuation of actuating element 220 , rechargeable battery pack 100 may be released from handle 315 of hand-held power tool 300 .
  • rechargeable battery pack 100 After rechargeable battery pack 100 is unlocked, it may be separated from handle 315 , in particular by sliding rechargeable battery pack 100 counter to sliding direction y along a lower surface of handle 315 .
  • locking element 210 is brought into engagement with a corresponding receptacle—which is not shown in greater detail—in handle 315 of hand-held power tool 300 .
  • interface 180 also includes contact elements 140 for electrical contacting of rechargeable battery pack 100 to hand-held power tool 300 or the charging device.
  • Contact elements 143 are configured as voltage contact elements and are used as charging and/or discharging contact elements.
  • Contact elements 144 are configured as signal contact elements and are used for the transmission of signals from rechargeable battery pack 100 to hand-held power tool 300 or the charging device and/or from hand-held power tool 300 or the charging device to rechargeable battery pack 100 .
  • FIG. 4 shows a rechargeable battery pack 100 in an exploded view.
  • rechargeable battery pack housing 110 includes a cell holder 600 which includes a plurality of battery cells 400 interconnected in a series circuit, second housing component 130 directly forming cell holder 600 .
  • Cell holder 600 simultaneously forms second housing component 130 .
  • the connection of battery cells 400 to each other is implemented via cell connectors 500 .
  • individual battery cells 400 are accommodated spaced apart from each other in order to be mechanically fixed in cell holder 600 .
  • Cell holder 600 is used not only for fixing battery cells 400 in rechargeable battery pack housing 110 or in second housing component 130 , but also for cooling battery cells 400 and is made up of a thermally conductive material, for example aluminum or a plastic.
  • cell holder 600 includes sleeve-like insulating walls 620 , so that individual battery cells 400 are separated and an electrical insulation of individual battery cells 400 from each other may be ensured.
  • the heat transmission resistance between adjacent battery cells 400 and between battery cells 400 and cell holder 600 may be low in this case, so that the waste heat generated by battery cells 400 may be well dissipated to the outside and an overheating of rechargeable battery pack 100 in the interior may be prevented.
  • a circuit board 810 of a rechargeable battery pack electronics system is fastened on the surface of cell holder 600 , within rechargeable battery pack housing 110 .
  • the rechargeable battery pack electronics system includes contact elements 140 for establishing the electrical and mechanical connection between rechargeable battery pack 100 and hand-held power tool 300 or between rechargeable battery pack 100 and the charging device.
  • the connection between the rechargeable battery pack electronics system and cell holder 600 is ensured by way of fastening elements which are not shown in greater detail.
  • rechargeable battery pack housing 110 further includes two lateral components 125 , only one of the two lateral components 125 being represented in FIG. 4 .
  • lateral components 125 hold first housing component 120 and second housing component 130 together in such a way that a detachment of first housing component 120 from second housing component 130 , or vice versa, is prevented.
  • Alternative installation and fastening principles of the housing components of rechargeable battery pack housing 110 are possible.
  • cell holder 600 forms, in areas, an outer side of second housing component 130 or of rechargeable battery pack 100 , cell holder 600 alternatively also being able to form, in areas, an outer side of first housing component 120 .
  • cell holder 600 essentially completely encompasses lateral surfaces 405 of battery cells 400 .
  • essentially only end faces 410 of battery cells 400 are exposed, as is apparent in FIGS. 4 and 5 .
  • Lateral components 125 form an outer side of rechargeable battery pack 100 in the area of end faces 410 .
  • Cell holder 600 includes sleeve-like insulating walls 620 , between which cylindrical cell openings 625 for accommodating battery cells 400 are located. Battery cells 400 are pressed into cell openings 625 in such a way that a form-locked and force-fit connection is established between cell holder 600 and battery cells 400 . In this way, an electrical insulation of battery cells 400 with respect to each other is achieved. After battery cells 400 have been pressed in, cell holder 600 rests on battery cells 400 in the area of cell openings 625 in an essentially gap-free manner. In addition to a secure accommodation of battery cells 400 in cell holder 600 , good heat dissipation of the heat generated during the operation of battery pack 100 away from battery cells 400 may be achieved in this way.
  • a diameter D 1 of cell openings 625 may be selected in such a way that diameter D 1 before battery cells 400 are pressed into cell openings 625 is between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D 2 of corresponding battery cells 400 .
  • a gap-free fit of battery cells 400 in cell holder 600 being achievable, on the one hand, when a diameter D 1 is selected for cell openings 625 in such a way that diameter D 1 of cell openings 625 before battery cells 400 are pressed into cell openings 625 is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D 2 of corresponding battery cells 400 and, on the other hand, the gap-free fit may be achieved when a circumference of cell openings 625 before battery cells 400 are inserted into cell openings 625 is between 97% to 99.5% of a circumference of the cell casing, which may be between 98% to 99%.
  • Cell holder 600 is made up of a plastic material, alternatively a thermoplastic polymer, a thermosetting plastic, or an elastomer, in particular a polyethylene also being usable.
  • the polyethylene has a density between 0.90 g/cm 3 and 1.0 g/cm 3 , which may be between 0.95 g/cm 3 and 0.99 g/cm 3 , particularly between 0.96 g/cm 3 and 0.98 g/cm 3 .
  • cell holder 600 is preheated before the press-fit process to a temperature between 60° C. and 110° C., in particular between 70° C. and 80° C.
  • This has the advantage, on the one hand, that thermal expansions set in, which anticipate a part of the necessary deformations occurring during the press-fit; on the other hand, the deformability of the thermoplastic polymers increases as the temperature increases, which is advantageous for the manufacturing process.
  • the material expansion occurring in cell holder 600 after battery cells 400 have been pressed in is between 0.2% and 5%, in particular between 0.5% and 3%, particularly between 1% and 2%.
  • This cell holding force between cell holder 600 and pressed-in battery cells 400 is between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N.
  • cell connectors 500 are represented in FIG. 4 , with the aid of which an electrical interconnection of battery cells 400 to each other in a parallel and/or series circuit may be implemented.
  • FIG. 5 is a sectional view of rechargeable battery pack 100 according to the present invention, it also being apparent here that cell holder 600 forms second housing component 130 and, therefore, also an outer side of rechargeable battery pack housing 110 . Moreover, it may be gathered from FIG. 5 that lateral surfaces 405 of two battery cells 400 situated next to each other in cell holder 600 do not contact each other, but rather are mechanically and electrically separated from each other by sleeve-like insulating walls 620 . It is also clear from FIG. 5 , as it is from FIG. 4 , that cell holder 600 includes, in the area of cell openings 625 , stops 630 which correspond to battery cells 400 and ensure a desired position of battery cells 400 in cell holder 600 .
  • Stops 630 ensure a desired position of battery cells 400 in cell holder 600 along longitudinal axis x of battery cells 400 . Due to the fact that stops 630 ensure the position of battery cells 400 in cell holder 600 , they make it easier to correctly press the battery cells into the cell holder.
  • FIG. 6 shows, on the left side, a cylindrical battery cell 400 including an insulating sheathing 430 , which is known per se from the related art, and, on the right side, a cylindrical battery cell 400 without an insulating sheathing 430 , battery cells 400 each including a lateral surface 405 which extends in parallel to a longitudinal axis x and is limited by two end faces 410 situated perpendicularly to longitudinal axis x. Lateral surface 405 and end faces 410 form an outer shell of battery cell 400 .
  • the electrical poles of battery cells 400 for the electrical contacting are located on end faces 410 .
  • the outer shell of battery cells 400 is made up of an electrically conductive material, in particular a metal, which may be aluminum. Insulating sheathing 430 essentially completely surrounds at least lateral surface 405 .
  • End faces 410 are exposed in order to allow for the electrical contacting.
  • End faces 410 are free of insulating sheathing 430 .
  • Electrically non-conductive materials for example, paper, cardboard, and plastic, are suitable for use as insulating sheathing 430 .
  • Insulating sheathing 430 forms, in particular, a thin sleeve which rests closely on lateral surface 405 .

Abstract

A rechargeable battery pack for a hand-held power tool, including a housing having at least first and second housing components, the pack including at least one cell holder, accommodating at least two battery cells in a parallel/series circuit, the battery cells each including two end faces extending perpendicularly to a longitudinal axis; and a pack electronics system including contact elements for establishing electrical connection between the pack and a power tool. The cell holder includes sleeve-like insulating walls, corresponding to the battery cells at least in some areas, to prevent electrical contact between the battery cells. A method for manufacturing a pack for a hand-held power tool, the cell holder including sleeve-like insulating walls, having cylindrical cell openings for accommodating the battery cells, the battery cells being pressed into the cell openings so that a form-locked and force-fit connection is established between the cell holder and the battery cells.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a rechargeable battery pack for a hand-held power tool and to a method for manufacturing a rechargeable battery pack for a hand-held power tool.
  • BACKGROUND INFORMATION
  • Since rechargeable battery units allow for a great deal of flexibility while working and, in particular, are independent of mains-supplied power, and outside work may therefore also be conveniently carried out, it is often provided to utilize rechargeable battery packs during an operation of a hand-held power tool.
  • Such rechargeable battery packs are known, in principle, and include rechargeable accumulators, generally a plurality of battery cells connected in a parallel and/or series circuit. As part of this application, a rechargeable battery pack is therefore to be understood to be an accumulator pack which may be made up of several electrically interconnected battery cells, may store electrical energy and delivers the energy for the operation of the hand-held power tool, and is exchangeably accommodated in a chamber, an interface, or the like of the hand-held power tool. The rechargeable battery pack is assigned to the hand-held power tool by plugging or inserting the rechargeable battery pack into a complementary plug-in socket of the unit housing, the rechargeable battery pack being coupleable to the unit housing of the hand-held power tool in such a way that the power tool is electrically coupled and mechanically locked to the rechargeable battery pack upon the coupling of the two housings. The electrical contacting takes place mostly in the area of the locking device.
  • With respect to the rechargeable battery packs, it proves to be disadvantageous that waste heat is generated in every battery cell both during current delivery and during current draw, which may result in an elevated temperature of the entire rechargeable battery block. In order to avoid damage to the battery cell and/or the rechargeable battery block, waste heat must be reliably dissipated, on the one hand and, on the other hand, temperature control of the rechargeable battery pack must be possible at outside temperatures which are too low, which is advantageous, in particular, in the case of cells which are chemically based on lithium.
  • In order to accommodate several battery cells which are interconnected in a parallel or series circuit, the battery cells in the rechargeable battery packs are fixed directly within the rechargeable battery housing or are positioned without being fixed. If fixing does not take place, cardboard sleeves may be utilized for insulating the cells with respect to one another. Hand-held power tools, in particular cordless drills, generate substantial vibrations during operation. These vibrations are transmitted via the housing to the rechargeable battery housing and, from there, to battery cells present in the rechargeable battery housing. Such a vibration of the rechargeable battery pack is disadvantageous for the service life of the rechargeable battery pack, in particular for the service life of the battery cells and the electrical contactings.
  • In this way, it is generally provided to connect the battery cells to each other in series or to connect the battery cell blocks to each other in series. Mechanical installation principles for this purpose are known from the related art, which combine elastic inserts such as elastomer cores or clamping wedges with force-fit connecting elements such as screws or snap-action elements in order to build up a high contact pressure between the outer cell wall and the inner housing wall. This is technically highly complex. Furthermore, it proves to be disadvantageous that the connection of the battery cell in the cell holder takes place only indirectly, whereby disadvantages result with respect to the mechanical robustness of the cell holder.
  • Moreover, it is believed from the related art to fill the air gaps in the cell holder with a casting compound. The relatively great amount of installation effort, in turn, is disadvantageous in this case. Furthermore, the casting compound may reach the cell poles, which results in a detraction from the operational reliability of the rechargeable battery pack.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to avoid the aforementioned disadvantages and to provide a rechargeable battery pack for a hand-held power tool and to provide a method for manufacturing a rechargeable battery pack for a hand-held power tool, in which the aforementioned disadvantages are improved. In this case, the rechargeable battery pack is to have good ergonomics and installability and to be cost-effective and simply configured, on the one hand, and, on the other hand, to allow for a reliable dissipation of generated waste heat.
  • This object may be achieved by a rechargeable battery pack as described herein and by a method for manufacturing a rechargeable battery pack for a hand-held power tool as described herein. Advantageous embodiments, variants, and refinements of the present invention are provided in the further descriptions herein.
  • According to the present invention, it is provided that a hand-held power tool includes a rechargeable battery pack housing, the rechargeable battery pack housing including at least one first housing component and a second housing component. The rechargeable battery pack further includes at least one cell holder, the cell holder accommodating at least two battery cells which are interconnected in a parallel and/or series circuit, the battery cells each including two end faces extending perpendicularly to a longitudinal axis. Moreover, the rechargeable battery pack housing includes a rechargeable battery pack electronics system including contact elements for establishing an electrical connection between the rechargeable battery pack and the hand-held power tool. According to the present invention, it is provided that the cell holder includes sleeve-like insulating walls corresponding to the battery cells at least in some areas, the insulating walls being configured in such a way that an electrical contacting between the battery cells is prevented.
  • Advantageously, the cell holder has a cell opening, which is cylindrical, for each battery cell, in particular, and is intended for accommodating a battery cell, the insulating walls being situated between the cell openings. In particular, each battery cell is surrounded by a sleeve-like insulating wall. The battery cells are, in particular, cylindrical battery cells. In particular, each battery cell is surrounded by a sleeve-like insulating wall over its entire lateral surface. The cell holder may be made up of an injection-molded part, in particular, which includes corresponding receptacles for the battery cells, so that these are held in the cell holder, spaced apart from each other. In this way, short circuits are prevented from occurring due to the individual battery cells contacting each other. Furthermore, it is provided that the cell holder is at least partially made up of a material which is thermoconducting and electrically insulating, so that heat generated by the battery cells may be better dissipated.
  • In one specific embodiment, a diameter D1 of the cell openings before the battery cells are inserted into the cell openings is between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D2 of the corresponding battery cells. Advantageously, a diameter D1 of the cell openings before the battery cells are inserted into the cell openings is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D2 of the corresponding battery cells. In this way, after the battery cells have been pressed in, the cell holder rests on the battery cells in the area of the cell openings in an essentially gap-free manner, so that, in addition to a secure accommodation of the battery cells in the cell holder, good heat dissipation of the heat generated during the operation of the battery pack away from the battery cells may be achieved. After the pressing-fit, the cell holder rests on the battery cells in the area of the cell openings in an essentially gap-free manner in such a way that essentially no air is present between the cell holder and the battery cells. The pressing-fit prevents insulating air gaps between the cell holder and the battery cells in the area of the cell openings.
  • The battery cells may be pressed into the cell holder. In particular, each battery cell is pressed into its assigned cell opening. Due to the pressing-fit, a cell holding force of the cell holder acts on the battery cells in the cell openings. A cell holding force acts between the cell holder and the accommodated battery cells, the cell holding force being between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N. This allows for a form-locked and force-fit connection of the battery cells to the cell holder. The frictional connection prevents a movement of the battery cells relative to the cell holder and relative to the rechargeable battery pack housing.
  • According to the present invention, it is provided that the cell holder has free areas in the area of the end faces of the battery cells, in which the electrical connection of the battery cells to each other takes place via cell connectors. In particular, the cell holder is open in the area of the end faces of the battery cells. The cell holder is therefore open in the area of the two poles of each battery cell. In this case, it is particularly advantageous when the cell connectors are connected to the battery cells via a welded joint and the cell connectors are connected to the rechargeable battery pack electronics via a soldered joint. As a result, a particularly simple mechanical and electrical contacting is achieved, and such connections are also particularly secure connections. Furthermore, a tolerance compensation and a thermal expansion compensation may also be achieved with the aid of an appropriately configured welded joint.
  • The cell holder may include, in the area of the cell openings, stops which correspond to the battery cells and ensure a desired position of the battery cells in the cell holder. In this case, it is possible that these stops are located only on one side of the cell holder or, for example, always on the negative pole side or the positive pole side of the pressed-in battery cells. In principle, these stops make it easier to correctly press the battery cells into the cell holder.
  • In order to ensure an optimal dissipation of the generated heat, the cell holder in one particularly specific embodiment forms an outer side of the rechargeable battery pack housing, at least in some areas. This allows for greater thermal conductivity than is the case with rechargeable battery packs having an additional outer side, and it is space-saving and also reduces the material costs. It is particularly advantageous when the battery cells have no insulating sheathing, at least in some areas. In this way, the pressing-fit of the battery cells into the cell holder may be facilitated, on the one hand, and better thermal conductivity may be ensured, on the other hand.
  • The rechargeable battery pack according to the present invention may be detachably connected to a hand-held power tool. Therefore, a hand-held power tool, provided it is connected to a rechargeable battery pack according to the present invention, is a further subject matter of the present invention. The rechargeable battery pack inserted in the hand-held power tool is used in this case for driving the hand-held power tool.
  • Moreover, the object is achieved by a method for manufacturing a rechargeable battery pack for a hand-held power tool. According to the present invention, it is provided that the rechargeable battery pack includes a cell holder and at least two battery cells, the battery cells being electrically connected to each other via corresponding cell connectors in a parallel and/or series circuit. The cell holder includes sleeve-like insulating walls, between which cylindrical cell openings for accommodating the battery cells are located, the battery cells being pressed into the cell openings in such a way that a form-locked and force-fit connection is established between the cell holder and the battery cells.
  • In the provided method, elastic and/or plastic material expansions occur in the area of the cell holder. In order to ensure a damage-free insertion of the battery cells into the cell openings, the cell holder is made up of a plastic material, which may be a thermoplastic polymer, a thermosetting plastic, or an elastomer, particularly a polyethylene, which may be a polyethylene having a density between 0.90 g/cm3 and 1.0 g/cm3, which may be between 0.95 g/cm3 and 0.99 g/cm3, particularly between 0.96 g/cm3 and 0.98 g/cm3 being used.
  • In order to avoid insulating air gaps between the cell holder and the battery cells, it is provided according to a further embodiment of the present invention that, after the battery cells have been pressed in, the cell holder rests against the battery cells in the area of the cell openings in an essentially gap-free manner. In order to achieve this, a diameter D1 of the cell openings before the battery cells are pressed into the cell openings is advantageously between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D2 of the corresponding battery cells. Alternatively, a diameter D1 of the cell openings before the battery cells are pressed into the cell openings is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D2 of the corresponding battery cells. Alternatively, a seat which is gap-free in this way may also be achieved when a circumference of the cell openings before the battery cells are inserted into the cell openings is 97% to 99.5% of a circumference of the cell casing, which may be 98% to 99%.
  • Advantageously, the cell holder is preheated before the press-fit process, which may be to a temperature between 60° C. and 90° C., in particular between 70° C. and 80° C. In this way, the press-fit process may be carried out more efficiently and be gentler on the material. This has the advantage, on the one hand, that thermal expansions set in, which anticipate a part of the necessary deformations occurring during the press-fit; on the other hand, the deformability of the thermoplastic polymers increases as the temperature increases, which is advantageous for the manufacturing process.
  • In this case, it is particularly advantageous that a material expansion occurring in the cell holder after the battery cells have been pressed in is between 0.2% and 5%, in particular between 0.5% and 3%, particularly between 1% and 2%. As a result, a sufficiently high cell holding force for fixing the battery cells in the cell carrier is mobilized. In one specific embodiment of the present invention, this cell holding force between the cell holder and the pressed-in battery cells is between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N.
  • Furthermore, lithium ion cells, in particular, may be utilized as battery cells, since it is possible in the case of lithium cells in particular to combine several battery cells to form battery cell blocks in which several battery cells are connected in a parallel circuit. In this case, it is particularly advantageous that the cell holder may accommodate battery cells having different diameters and lengths, whereby the application of the cell holder or the cell carrier in different rechargeable battery packs may be ensured.
  • The state of charge, inter alia, may be monitored and controlled via the voltage of the individual battery cells with the aid of a rechargeable battery pack electronics system. Alternatively, a monitoring of individual cells may take place, individual battery cells being connectable directly to the circuit board of the rechargeable battery pack electronics system with the aid of contact arrangement. Such a connection may take place, for example, with the aid of a soldered joint, the rechargeable battery pack electronics system advantageously being able to include appropriate soldering pads. It may therefore be established, on the basis of the connection between the battery cells and the rechargeable battery pack electronics system, whether all battery cells are being charged according to the directions or whether a charging amperage, which the battery cells are unable to handle, has possibly been reached. In addition, a regulation may be provided, with the aid of which the charging amperage is regulated in such a way that an overload of individual battery cells is prevented, on the one hand, and all battery cells may be completely charged, on the other hand. In this way, a good usability of the corresponding rechargeable battery pack is achieved over a long period of time. In addition, the rechargeable battery pack electronics system may also include a number of further electronics elements for the control, regulation, or identification of the rechargeable battery pack. Furthermore, further components such as, in particular, switches, but also charge level indicators and/or overload protection may be connected to the rechargeable battery pack electronics system.
  • With the aid of the described optimized embodiment of the rechargeable battery pack according to the present invention, many functions within the rechargeable battery pack are improved, so that the cell holder may, for example, perform the function of an installation platform and accommodate and fix the internal components of the rechargeable battery pack. In this way, the installation process may be optimized for the rechargeable battery pack, and additional components such as, for example, adhesive films, cardboard sleeves, or insulating layers, may be dispensed with. Moreover, different specific embodiments of a cell holder may be utilized in one rechargeable battery pack, so that battery cells having different diameters and lengths may be accommodated and an application of the cell holder or the cell carrier in different rechargeable battery packs may be ensured.
  • In general, a hand-held power tool within the scope of the application is understood to be all hand-held power tools including a tool carrier, which may be set into rotation or translation and which is directly drivable by a drive motor via a gear or a planetary gear set, such as, for example, baton screw drivers, cordless drills, percussion power drills, multi-function tools, saws, shears, grinders, and/or combi drills. In this context, “transmission of electrical energy” is to be understood, in particular, to mean that the hand-held power tool is supplied with energy via the rechargeable battery pack.
  • Further features, possible applications, and advantages of the present invention result from the following description of exemplary embodiments of the present invention, which are represented in the figures. It should be noted that the represented features merely have descriptive character and may also be used in combination with features of other above-described refinements and are not intended to restrict the present invention in any way.
  • The present invention is explained in greater detail in the following with reference to the exemplary embodiments, identical reference numerals being used for identical features. The drawings are schematic.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a view of a hand-held power tool including a rechargeable battery pack according to the present invention, by way of example.
  • FIG. 2 shows a perspective representation of a rechargeable battery pack according to the present invention.
  • FIG. 3 shows a top view of the rechargeable battery pack from FIG. 2.
  • FIG. 4 shows a perspective exploded representation of a rechargeable battery pack according to the present invention. and
  • FIG. 5 shows a sectional view of the rechargeable battery pack from FIG. 4.
  • FIG. 6 shows a perspective view of two battery cells.
  • DETAILED DESCRIPTION
  • FIG. 1 shows an electrical device which is configured as a hand-held power tool 300. According to the represented specific embodiment, hand-held power tool 300 is mechanically and electrically connectable to rechargeable battery pack 100 for battery-supplied power. In FIG. 1, hand-held power tool 300 is configured as a cordless combi drill, by way of example. It is pointed out, however, that the present invention is not restricted to cordless combi drills, but rather may be utilized with different hand-held power tools 300 which are operated with the aid of a rechargeable battery pack 100. Hand-held power tool 300 includes a base body 305, on which a tool holder 310 is fastened, and includes a handle 315 which includes an interface 380 at which a corresponding interface 180 of a rechargeable battery pack 100 according to the present invention is situated, in the locked position in this case. Rechargeable battery pack 100 is configured as a sliding rechargeable battery pack.
  • During the mounting of rechargeable battery pack 100 on hand-held power tool 300, receiving arrangement provided on hand-held power tool 300, for example, guide grooves and guide ribs, are brought into engagement with corresponding guide elements 150 of rechargeable battery pack 100, rechargeable battery pack 100 being inserted in a sliding direction y along the receiving arrangement of handle 315 and rechargeable battery pack 100 is pushed along a lower outer surface 316 of handle 315, which is oriented essentially perpendicularly to the longitudinal direction of handle 315, into the rechargeable battery pack receptacle of a hand-held power tool 300. In the position shown in FIG. 1, rechargeable battery pack 100 is fastened on handle 315 of hand-held power tool 300 and is locked with the aid of locking arrangement. The locking arrangement includes a locking element and an actuating element 220. By way of the actuation of actuating arrangement 220, rechargeable battery pack 100 may be released from handle 315 of hand-held power tool 300.
  • FIGS. 2 through 5 show a rechargeable battery pack 100 according to the present invention for a hand-held power tool 300. This includes a rechargeable battery pack housing 110 made up of a first housing component 120 and a second housing component 130, the housing accommodating, between first housing component 120 and second housing component 130, at least one battery cell, which may be a plurality of battery cells 400, as represented here, which are interconnected in parallel or in series. Battery cells 400 may be positioned and held in rechargeable battery pack housing 110 with the aid of a cell holder 600 for insulating battery cells 400 with respect to each other. In addition, battery cells 400 may be provided with an insulating sheathing 430, which is known per se from the related art, for the insulation with respect to each other. Cardboard sleeves or plastic sleeves, for example, shrinkable tubing, may be provided as insulating sheathing 430. Insulating sheathing 430 is described further below in conjunction with FIG. 6. In the shown embodiment variant rechargeable battery pack 100 is configured as a sliding rechargeable battery pack.
  • For the releasable mounting of rechargeable battery pack 100 on a hand-held power tool 300 or on a charging device, rechargeable battery pack 100 includes an interface 180 for the releasable mechanical and electrical connection to a corresponding interface 380 of hand-held power tool 300 or a corresponding interface of the charging device. During the mounting of rechargeable battery pack 100, receiving arrangement, for example, guide grooves and guide ribs, of hand-held power tool 300 or of the charging device are brought into engagement with rechargeable battery pack 100 in order to accommodate the corresponding guide elements of rechargeable battery pack 100, rechargeable battery pack 100 being inserted along the receiving arrangement in a contacting direction y, and interface 180 of rechargeable battery pack 100 being pushed into corresponding interface 380 of hand-held power tool 300 or the corresponding interface of the charging device. Rechargeable battery pack 100 may be assigned to hand-held power tool 300 and/or the charging device via interfaces 180, 380.
  • In order to lock rechargeable battery pack 100 on handle 315, rechargeable battery pack 100 is pushed in a sliding direction y along handle 315, in particular along a lower outer surface of handle 315, which is oriented essentially perpendicularly to the longitudinal direction of handle 315. In the position shown in FIG. 1, rechargeable battery pack 100 is locked on handle 315 with the aid of locking arrangement 200. Locking arrangement 200 include, inter alia, a locking element 210, which is indicated only schematically, and an actuating element 220. By way of the actuation of actuating element 220, rechargeable battery pack 100 may be released from handle 315 of hand-held power tool 300. After rechargeable battery pack 100 is unlocked, it may be separated from handle 315, in particular by sliding rechargeable battery pack 100 counter to sliding direction y along a lower surface of handle 315. During the mounting of rechargeable battery pack 100 on a hand-held power tool 300, locking element 210 is brought into engagement with a corresponding receptacle—which is not shown in greater detail—in handle 315 of hand-held power tool 300.
  • As is apparent in FIG. 3, interface 180 also includes contact elements 140 for electrical contacting of rechargeable battery pack 100 to hand-held power tool 300 or the charging device. Contact elements 143 are configured as voltage contact elements and are used as charging and/or discharging contact elements. Contact elements 144 are configured as signal contact elements and are used for the transmission of signals from rechargeable battery pack 100 to hand-held power tool 300 or the charging device and/or from hand-held power tool 300 or the charging device to rechargeable battery pack 100.
  • FIG. 4 shows a rechargeable battery pack 100 in an exploded view. In this case, it is clearly apparent that rechargeable battery pack housing 110 includes a cell holder 600 which includes a plurality of battery cells 400 interconnected in a series circuit, second housing component 130 directly forming cell holder 600. Cell holder 600 simultaneously forms second housing component 130. The connection of battery cells 400 to each other is implemented via cell connectors 500. Furthermore, it is apparent that individual battery cells 400 are accommodated spaced apart from each other in order to be mechanically fixed in cell holder 600. Cell holder 600 is used not only for fixing battery cells 400 in rechargeable battery pack housing 110 or in second housing component 130, but also for cooling battery cells 400 and is made up of a thermally conductive material, for example aluminum or a plastic. Moreover, cell holder 600 includes sleeve-like insulating walls 620, so that individual battery cells 400 are separated and an electrical insulation of individual battery cells 400 from each other may be ensured. The heat transmission resistance between adjacent battery cells 400 and between battery cells 400 and cell holder 600 may be low in this case, so that the waste heat generated by battery cells 400 may be well dissipated to the outside and an overheating of rechargeable battery pack 100 in the interior may be prevented. A circuit board 810 of a rechargeable battery pack electronics system is fastened on the surface of cell holder 600, within rechargeable battery pack housing 110. Furthermore, the rechargeable battery pack electronics system includes contact elements 140 for establishing the electrical and mechanical connection between rechargeable battery pack 100 and hand-held power tool 300 or between rechargeable battery pack 100 and the charging device. The connection between the rechargeable battery pack electronics system and cell holder 600 is ensured by way of fastening elements which are not shown in greater detail.
  • In the specific embodiment represented in FIG. 4, rechargeable battery pack housing 110 further includes two lateral components 125, only one of the two lateral components 125 being represented in FIG. 4. In the assembled state, lateral components 125 hold first housing component 120 and second housing component 130 together in such a way that a detachment of first housing component 120 from second housing component 130, or vice versa, is prevented. Alternative installation and fastening principles of the housing components of rechargeable battery pack housing 110 are possible. In the specific embodiment represented, it is clearly apparent that cell holder 600 forms, in areas, an outer side of second housing component 130 or of rechargeable battery pack 100, cell holder 600 alternatively also being able to form, in areas, an outer side of first housing component 120. As is described in greater detail further below, cell holder 600 essentially completely encompasses lateral surfaces 405 of battery cells 400. In this case, essentially only end faces 410 of battery cells 400 are exposed, as is apparent in FIGS. 4 and 5. Lateral components 125 form an outer side of rechargeable battery pack 100 in the area of end faces 410.
  • Cell holder 600 includes sleeve-like insulating walls 620, between which cylindrical cell openings 625 for accommodating battery cells 400 are located. Battery cells 400 are pressed into cell openings 625 in such a way that a form-locked and force-fit connection is established between cell holder 600 and battery cells 400. In this way, an electrical insulation of battery cells 400 with respect to each other is achieved. After battery cells 400 have been pressed in, cell holder 600 rests on battery cells 400 in the area of cell openings 625 in an essentially gap-free manner. In addition to a secure accommodation of battery cells 400 in cell holder 600, good heat dissipation of the heat generated during the operation of battery pack 100 away from battery cells 400 may be achieved in this way.
  • In order to achieve what may be a gap-free fit of battery cells 400 in cell holder 600, a diameter D1 of cell openings 625 may be selected in such a way that diameter D1 before battery cells 400 are pressed into cell openings 625 is between 97% and 99%, in particular between 97.5% and 98.5% of a diameter D2 of corresponding battery cells 400. A gap-free fit of battery cells 400 in cell holder 600 being achievable, on the one hand, when a diameter D1 is selected for cell openings 625 in such a way that diameter D1 of cell openings 625 before battery cells 400 are pressed into cell openings 625 is between 0.05 mm and 0.20 mm, in particular between 0.10 mm and 0.15 mm less than a diameter D2 of corresponding battery cells 400 and, on the other hand, the gap-free fit may be achieved when a circumference of cell openings 625 before battery cells 400 are inserted into cell openings 625 is between 97% to 99.5% of a circumference of the cell casing, which may be between 98% to 99%. In the provided method, elastic and/or plastic material expansions therefore occur in the area of cell holder 600. An adequate material for cell carrier 600 must be selected in order to ensure a damage-free insertion of battery cells 400 into cell openings 625. Cell holder 600 is made up of a plastic material, alternatively a thermoplastic polymer, a thermosetting plastic, or an elastomer, in particular a polyethylene also being usable. In this case, the polyethylene has a density between 0.90 g/cm3 and 1.0 g/cm3, which may be between 0.95 g/cm3 and 0.99 g/cm3, particularly between 0.96 g/cm3 and 0.98 g/cm3.
  • In order to make the press-fit process to be more efficient and gentler on the material, cell holder 600 is preheated before the press-fit process to a temperature between 60° C. and 110° C., in particular between 70° C. and 80° C. This has the advantage, on the one hand, that thermal expansions set in, which anticipate a part of the necessary deformations occurring during the press-fit; on the other hand, the deformability of the thermoplastic polymers increases as the temperature increases, which is advantageous for the manufacturing process. The material expansion occurring in cell holder 600 after battery cells 400 have been pressed in is between 0.2% and 5%, in particular between 0.5% and 3%, particularly between 1% and 2%. As a result, a sufficiently high cell holding force for fixing battery cells 400 in cell carrier 600 is mobilized. This cell holding force between cell holder 600 and pressed-in battery cells 400 is between 20 N and 400 N, in particular between 100 N and 300 N, particularly between 150 N and 250 N.
  • Furthermore, cell connectors 500 are represented in FIG. 4, with the aid of which an electrical interconnection of battery cells 400 to each other in a parallel and/or series circuit may be implemented.
  • FIG. 5 is a sectional view of rechargeable battery pack 100 according to the present invention, it also being apparent here that cell holder 600 forms second housing component 130 and, therefore, also an outer side of rechargeable battery pack housing 110. Moreover, it may be gathered from FIG. 5 that lateral surfaces 405 of two battery cells 400 situated next to each other in cell holder 600 do not contact each other, but rather are mechanically and electrically separated from each other by sleeve-like insulating walls 620. It is also clear from FIG. 5, as it is from FIG. 4, that cell holder 600 includes, in the area of cell openings 625, stops 630 which correspond to battery cells 400 and ensure a desired position of battery cells 400 in cell holder 600. Stops 630 ensure a desired position of battery cells 400 in cell holder 600 along longitudinal axis x of battery cells 400. Due to the fact that stops 630 ensure the position of battery cells 400 in cell holder 600, they make it easier to correctly press the battery cells into the cell holder.
  • FIG. 6 shows, on the left side, a cylindrical battery cell 400 including an insulating sheathing 430, which is known per se from the related art, and, on the right side, a cylindrical battery cell 400 without an insulating sheathing 430, battery cells 400 each including a lateral surface 405 which extends in parallel to a longitudinal axis x and is limited by two end faces 410 situated perpendicularly to longitudinal axis x. Lateral surface 405 and end faces 410 form an outer shell of battery cell 400. The electrical poles of battery cells 400 for the electrical contacting are located on end faces 410. The outer shell of battery cells 400 is made up of an electrically conductive material, in particular a metal, which may be aluminum. Insulating sheathing 430 essentially completely surrounds at least lateral surface 405.
  • End faces 410, in particular the poles at end faces 410, are exposed in order to allow for the electrical contacting. End faces 410, in particular the poles at end faces 410, are free of insulating sheathing 430. Electrically non-conductive materials, for example, paper, cardboard, and plastic, are suitable for use as insulating sheathing 430. Insulating sheathing 430 forms, in particular, a thin sleeve which rests closely on lateral surface 405.
  • In addition to the described and illustrated specific embodiments, further specific embodiments are conceivable, which may include further modifications and combinations of features.

Claims (39)

1-22. (canceled)
23. A rechargeable battery pack for a hand-held power tool, comprising:
a rechargeable battery pack housing having at least one first housing component and a second housing component;
at least one cell holder to accommodate at least two battery cells which are interconnected in a parallel circuit and/or a series circuit, each of the battery cells including two end faces extending perpendicularly to a longitudinal axis;
a rechargeable battery pack electronics system having contact elements for providing an electrical connection between the rechargeable battery pack and the hand-held power tool;
wherein the cell holder includes sleeve-like insulating walls corresponding to the battery cells at least in some areas, the insulating walls being configured to prevent electrical contact between the battery cells.
24. The rechargeable battery pack of claim 23, wherein, for each of the battery cells, the cell holder has a cell opening, which is intended for accommodating a battery cell, the insulating walls being situated between the cell openings.
25. The rechargeable battery pack of claim 24, wherein a diameter of the cell openings before the battery cells are inserted into the cell openings is between 97% and 99% of a diameter of the corresponding battery cells.
26. The rechargeable battery pack of claim 24, wherein a diameter of the cell openings before the battery cells are inserted into the cell openings is between 0.05 mm and 0.20 mm less than a diameter of the corresponding battery cells.
27. The rechargeable battery pack of claim 24, wherein a circumference of the cell openings before the battery cells are inserted into the cell openings is between 97% to 99.5% of a circumference of the cell casing
28. The rechargeable battery pack of claim 23, wherein a cell holding force acts between the cell holder and the accommodated battery cells, the cell holding force being between 20 N and 400 N.
29. The rechargeable battery pack of claim 23, wherein the cell holder has free areas in the area of the end faces of the battery cells, in which the electrical connection of the battery cells to each other takes place via cell connectors.
30. The rechargeable battery pack of claim 24, wherein the cell holder includes, in the area of the cell openings, stops which correspond to the battery cells and ensure a desired position of the battery cells in the cell holder.
31. The rechargeable battery pack of claim 23, wherein the cell holder forms an outer side of the rechargeable battery pack housing, at least in some areas.
32. The rechargeable battery pack of claim 23, wherein the cell holder forms the second housing component.
33. The rechargeable battery pack of claim 23, wherein the cell batteries do not include an insulating sheathing, at least in some areas.
34. A hand-held power tool, comprising:
an electric motor; and
a rechargeable battery pack, which is detachably connectable to the hand-held power tool, the rechargeable battery pack, including:
a rechargeable battery pack housing having at least one first housing component and a second housing component;
at least one cell holder to accommodate at least two battery cells which are interconnected in a parallel circuit and/or a series circuit, each of the battery cells including two end faces extending perpendicularly to a longitudinal axis;
a rechargeable battery pack electronics system having contact elements for providing an electrical connection between the rechargeable battery pack and the hand-held power tool;
wherein the cell holder includes sleeve-like insulating walls corresponding to the battery cells at least in some areas, the insulating walls being configured to prevent electrical contact between the battery cells.
35. A method for manufacturing a rechargeable battery pack for a hand-held power tool, the method comprising:
providing a cell holder and at least two battery cells, which are electrically connected to each other with corresponding cell connectors in a parallel circuit and/or a series circuit, wherein the cell holder includes sleeve-like insulating walls, between which cylindrical cell openings for accommodating the battery cells are located; and
pressing the battery cells into the cell openings so as to provide a form-locked and force-fit connection between the cell holder and the battery cells.
36. The method of claim 35, wherein, after the battery cells have been pressed in, the cell holder rests on the battery cells in the area of the cell openings in an essentially gap-free manner.
37. The method of claim 35, wherein a diameter of the cell openings before the press-fit of the battery cells into the cell openings is between 97% and 99% of a diameter of the corresponding battery cells.
38. The method of claim 35, wherein a circumference of the cell openings before the battery cells are inserted into the cell openings is between 97% to 99.5% of a circumference of the cell casing.
39. The method of claim 35, wherein a diameter of the cell openings before the press-fit of the battery cells into the cell openings is between 0.10 mm and 0.15 mm less than a diameter of the corresponding battery cells.
40. The method of claim 35, wherein the cell holder is made up of a plastic material, a thermosetting plastic, or an elastomer.
41. The method of claim 40, wherein the elastomer includes a polyethylene having a density between 0.90 g/cm3 and 1.0 g/cm3.
42. The method of claim 35, wherein the cell holder is preheated before the press-fit process to a temperature between 60° C. and 110° C.
43. The method of claim 35, wherein a material expansion occurs in the cell holder after the battery cells have been pressed in, the material expansion being between 0.2% and 5%.
44. The method of claim 35, wherein a cell holding force acts between the cell holder and the pressed-in battery cells, the cell holding force being between 20 N and 400 N.
45. The method of claim 35, wherein a diameter of the cell openings before the press-fit of the battery cells into the cell openings is between 97.5% and 98.5% of a diameter of the corresponding battery cells.
46. The method of claim 35, wherein a circumference of the cell openings before the battery cells are inserted into the cell openings is between 98% to 99% of a circumference of the cell casing.
47. The method of claim 35, wherein a diameter of the cell openings before the press-fit of the battery cells into the cell openings is between 0.10 mm and 0.15 mm less than a diameter of the corresponding battery cells.
48. The method of claim 35, wherein the cell holder is made up of a plastic material, including a thermoplastic polymer, a thermosetting plastic, or an elastomer, including a polyethylene.
49. The method of claim 48, wherein the polyethylene has a density between 0.95 g/cm3 and 0.99 g/cm3.
50. The method of claim 48, wherein the polyethylene has a density between 0.96 g/cm3 and 0.98 g/cm3.
51. The method of claim 35, wherein the cell holder is preheated before the press-fit process, to a temperature between 70° C. and 80° C.
51. The method of claim 35, wherein a material expansion occurs in the cell holder after the battery cells have been pressed in, the material expansion being between 0.5% and 3%.
52. The method of claim 35, wherein a material expansion occurs in the cell holder after the battery cells have been pressed in, the material expansion being between 1% and 2%.
53. The method of claim 35, wherein a cell holding force acts between the cell holder and the pressed-in battery cells, the cell holding force being between 100 N and 300 N.
54. The method of claim 35, wherein a cell holding force acts between the cell holder and the pressed-in battery cells, the cell holding force being between 150 N and 250 N.
55. The rechargeable battery pack of claim 24, wherein a diameter of the cell openings before the battery cells are inserted into the cell openings is between 97.5% and 98.5% of a diameter of the corresponding battery cells.
56. The rechargeable battery pack of claim 24, wherein a diameter of the cell openings before the battery cells are inserted into the cell openings is between 0.10 mm and 0.15 mm less than a diameter of the corresponding battery cells.
57. The rechargeable battery pack of claim 24, wherein a circumference of the cell openings before the battery cells are inserted into the cell openings is between 98% to 99% of a circumference of the cell casing.
58. The rechargeable battery pack of claim 23, wherein a cell holding force acts between the cell holder and the accommodated battery cells, the cell holding force being between 100 N and 300 N.
59. The rechargeable battery pack of claim 23, wherein a cell holding force acts between the cell holder and the accommodated battery cells, the cell holding force being between 150 N and 250 N.
US15/554,480 2015-03-06 2016-03-03 Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool Abandoned US20180069208A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102015204049 2015-03-06
DE102015204049.6 2015-03-06
DE102016203431.6 2016-03-02
DE102016203431.6A DE102016203431A1 (en) 2015-03-06 2016-03-02 Battery pack for a hand tool and method for producing a battery pack for a hand tool
PCT/EP2016/054501 WO2016142253A1 (en) 2015-03-06 2016-03-03 Battery pack for a handheld power tool and method for producing a battery pack for a handheld power tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/054501 A-371-Of-International WO2016142253A1 (en) 2015-03-06 2016-03-03 Battery pack for a handheld power tool and method for producing a battery pack for a handheld power tool

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/830,590 Division US11858108B2 (en) 2015-03-06 2022-06-02 Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool

Publications (1)

Publication Number Publication Date
US20180069208A1 true US20180069208A1 (en) 2018-03-08

Family

ID=56739070

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/554,480 Abandoned US20180069208A1 (en) 2015-03-06 2016-03-03 Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool
US17/830,590 Active US11858108B2 (en) 2015-03-06 2022-06-02 Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/830,590 Active US11858108B2 (en) 2015-03-06 2022-06-02 Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool

Country Status (5)

Country Link
US (2) US20180069208A1 (en)
EP (1) EP3266052A1 (en)
CN (1) CN107408649B (en)
DE (1) DE102016203431A1 (en)
WO (1) WO2016142253A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352847A1 (en) * 2016-06-07 2017-12-07 Robert Bosch Gmbh Circuit board and charging device including a circuit board for a rechargeable battery pack
EP3549229A4 (en) * 2016-11-29 2020-09-23 TTI (Macao Commercial Offshore) Limited Battery pack with multiple output modes
USD950483S1 (en) * 2019-08-01 2022-05-03 Ridge Tool Company Battery
USD954642S1 (en) * 2017-01-17 2022-06-14 Techtronic Cordless Gp Battery pack
USD958061S1 (en) 2017-07-26 2022-07-19 Walmart Apollo, Llc Battery pack
USD959363S1 (en) * 2019-08-05 2022-08-02 Ridge Tool Company Battery
USD978786S1 (en) * 2017-07-26 2023-02-21 Walmart Apollo, Llc Battery pack
USD981950S1 (en) * 2019-02-27 2023-03-28 Techtronic Floor Care Technology Limited Battery
USD987555S1 (en) * 2019-11-13 2023-05-30 Nanjing Chervon Industry Co., Ltd. Battery pack
USD988984S1 (en) * 2017-11-30 2023-06-13 Walmart Apollo, Llc Battery pack
WO2024022878A1 (en) 2022-07-27 2024-02-01 Sabic Global Technologies B.V. Battery pack with thermoplastic barrier between cells

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056020B1 (en) * 2016-09-13 2021-01-01 Pellenc Sa ELECTRIC BATTERY DEVICE, FOR BATTERY HOLDER
DE102017109919A1 (en) * 2017-05-09 2018-11-15 C. & E. Fein Gmbh Battery Pack
JP7023128B2 (en) * 2018-02-05 2022-02-21 第一工業製薬株式会社 Battery holder and battery pack
DE102018104341A1 (en) * 2018-02-26 2019-08-29 Metabowerke Gmbh Battery pack and electric hand tool device and method of manufacture
DE102019213965A1 (en) * 2019-09-04 2021-03-04 Robert Bosch Gmbh Cell holder for a plurality of cylindrical Li-ion cells, handheld power tool battery pack with such a cell holder, as well as a system with a handheld power tool and such a handheld power tool battery pack
DE102021204242A1 (en) * 2021-04-28 2022-11-03 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing a battery module, device for carrying it out and use of a battery module
WO2023099181A1 (en) 2021-12-01 2023-06-08 Hilti Aktiengesellschaft System consisting of a machine tool and an energy supply device, and energy supply device
EP4190500A1 (en) * 2021-12-01 2023-06-07 Hilti Aktiengesellschaft Power supply device and system consisting of machine tool and power supply device
CN115632274B (en) * 2022-11-11 2023-09-15 浙江煌嘉电器有限公司 Electric connection assembly of battery module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146151A (en) * 2010-01-12 2011-07-28 Sanyo Electric Co Ltd Battery pack
US20130183566A1 (en) * 2010-10-01 2013-07-18 Graftech International Holdings Inc. Thermal Management Structures for Battery Packs
US20140377622A1 (en) * 2013-06-19 2014-12-25 Robert Bosch Gmbh Handheld power tool battery pack
US20150249237A1 (en) * 2014-03-03 2015-09-03 Makita Corporation Battery pack for power tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043828B4 (en) 2004-09-10 2018-09-13 Robert Bosch Gmbh battery Pack
JP5268241B2 (en) * 2006-10-03 2013-08-21 三洋電機株式会社 Pack battery and manufacturing method thereof
DE102009012180A1 (en) * 2009-02-27 2010-09-02 Andreas Stihl Ag & Co. Kg Battery pack for a power tool
JP5787710B2 (en) 2011-10-17 2015-09-30 株式会社エニックス Double frame connection structure of eyeglass frames
JP6246483B2 (en) * 2013-04-04 2017-12-13 株式会社マキタ Battery pack for electric tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146151A (en) * 2010-01-12 2011-07-28 Sanyo Electric Co Ltd Battery pack
US20130183566A1 (en) * 2010-10-01 2013-07-18 Graftech International Holdings Inc. Thermal Management Structures for Battery Packs
US20140377622A1 (en) * 2013-06-19 2014-12-25 Robert Bosch Gmbh Handheld power tool battery pack
US20150249237A1 (en) * 2014-03-03 2015-09-03 Makita Corporation Battery pack for power tool

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352847A1 (en) * 2016-06-07 2017-12-07 Robert Bosch Gmbh Circuit board and charging device including a circuit board for a rechargeable battery pack
US10522797B2 (en) * 2016-06-07 2019-12-31 Robert Bosch Gmbh Circuit board and charging device including a circuit board for a rechargeable battery pack
EP3549229A4 (en) * 2016-11-29 2020-09-23 TTI (Macao Commercial Offshore) Limited Battery pack with multiple output modes
USD954642S1 (en) * 2017-01-17 2022-06-14 Techtronic Cordless Gp Battery pack
USD958061S1 (en) 2017-07-26 2022-07-19 Walmart Apollo, Llc Battery pack
USD978786S1 (en) * 2017-07-26 2023-02-21 Walmart Apollo, Llc Battery pack
USD988984S1 (en) * 2017-11-30 2023-06-13 Walmart Apollo, Llc Battery pack
USD981950S1 (en) * 2019-02-27 2023-03-28 Techtronic Floor Care Technology Limited Battery
USD950483S1 (en) * 2019-08-01 2022-05-03 Ridge Tool Company Battery
USD959363S1 (en) * 2019-08-05 2022-08-02 Ridge Tool Company Battery
USD987555S1 (en) * 2019-11-13 2023-05-30 Nanjing Chervon Industry Co., Ltd. Battery pack
WO2024022878A1 (en) 2022-07-27 2024-02-01 Sabic Global Technologies B.V. Battery pack with thermoplastic barrier between cells

Also Published As

Publication number Publication date
EP3266052A1 (en) 2018-01-10
CN107408649A (en) 2017-11-28
DE102016203431A1 (en) 2016-09-08
US11858108B2 (en) 2024-01-02
US20220294054A1 (en) 2022-09-15
CN107408649B (en) 2021-06-18
WO2016142253A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US11858108B2 (en) Rechargeable battery pack for a hand-held power tool and method for manufacturing a rechargeable battery pack for a hand-held power tool
CN107431158B (en) Battery pack for a hand-held power tool and corresponding hand-held power tool
CN107567663B (en) Battery pack for a hand-held power tool and hand-held power tool
US9847517B2 (en) Battery pack for a hand-held power tool
US11420315B2 (en) Handheld machine tool
CN108780859B (en) Battery pack for a hand-held power tool and hand-held power tool
US10797281B2 (en) Hand-held power tool and rechargeable battery pack for a hand-held power tool
US8354183B2 (en) Adapter for a power tool battery pack
KR20150097545A (en) Rechargeable hand tool battery
US20160322842A1 (en) Charging device for a battery pack for a hand-held power tool
CN108701777B (en) Battery pack for a hand-held power tool and hand-held power tool
CN110545961A (en) Staggered contacts on rechargeable batteries
EP1781074B1 (en) Diode assembly for a cordless power tool
US20070188984A1 (en) Remote id resistor assembly for wiring harness
US20120229083A1 (en) Handheld tool battery charging means
US10522797B2 (en) Circuit board and charging device including a circuit board for a rechargeable battery pack
US20080179078A1 (en) Remote diodes in a cordless tool
CN111148604A (en) Accumulator battery
JP5583228B2 (en) Restart prevention device for battery-operated electrical equipment
GB2538169A (en) System with two accumulator packs
CN117766928A (en) Battery pack, system having a first battery pack and a second battery pack
CN206639859U (en) Batteries for hand held power machine
EP4099485A1 (en) Battery pack and electric tool
US20230006310A1 (en) Rechargeable battery pack
WO2021027008A1 (en) Terminal and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REJMAN, MARCIN;SEIDEL, THORSTEN;REEL/FRAME:043949/0888

Effective date: 20170928

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION