US20180045120A1 - Gas turbine engine with high speed low pressure turbine section - Google Patents

Gas turbine engine with high speed low pressure turbine section Download PDF

Info

Publication number
US20180045120A1
US20180045120A1 US15/791,825 US201715791825A US2018045120A1 US 20180045120 A1 US20180045120 A1 US 20180045120A1 US 201715791825 A US201715791825 A US 201715791825A US 2018045120 A1 US2018045120 A1 US 2018045120A1
Authority
US
United States
Prior art keywords
section
turbine section
low pressure
pressure turbine
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/791,825
Inventor
Frederick M. Schwarz
Gabriel L. Suciu
Daniel Bernard Kupratis
William K. Ackermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/363,154 external-priority patent/US20130192196A1/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US15/791,825 priority Critical patent/US20180045120A1/en
Publication of US20180045120A1 publication Critical patent/US20180045120A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan

Definitions

  • a gas turbine engine comprises a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section.
  • the turbine section includes a first turbine section and a second turbine section.
  • the first turbine section has a first exit area at a first exit point and rotates at a first speed.
  • the second turbine section has a second exit area at a second exit point and rotates at a second speed, which is higher than the first speed.
  • a first performance quantity is defined as the product of the first speed squared and the first area.
  • a second performance quantity is defined as the product of the second speed squared and the second area.
  • a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
  • a gear reduction is included between the fan and a low spool is driven by the first turbine section such that the fan rotates at a lower speed than the first turbine section.
  • FIG. 1 shows a gas turbine engine
  • FIG. 4 shows yet another embodiment.
  • the core airflow C is compressed by the low pressure compressor section 44 then the high pressure compressor section 52 , mixed and burned with fuel in the combustor 56 , then expanded over the high pressure turbine section 54 and low pressure turbine section 46 .
  • the mid-turbine frame 57 includes airfoils 59 which are in the core airflow path.
  • the turbine sections 46 , 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • the engine 20 in one example is a high-bypass geared aircraft engine.
  • the bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C.
  • the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10)
  • the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine section 46 has a pressure ratio that is greater than about 5.
  • the engine 20 bypass ratio is greater than about ten (10:1)
  • the fan diameter is significantly larger than that of the low pressure compressor section 44
  • the low pressure turbine section 46 has a pressure ratio that is greater than about 5:1.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ram Air Temperature deg R)/518.7) ⁇ 0.5].
  • the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second. Further, the fan 42 may have 26 or fewer blades.
  • An exit area 400 is shown, in FIG. 1 and FIG. 2 , at the exit location for the high pressure turbine section 54 .
  • An exit area for the low pressure turbine section is defined at exit 401 for the low pressure turbine section.
  • the turbine engine 20 may be counter-rotating. This means that the low pressure turbine section 46 and low pressure compressor section 44 rotate in one direction, while the high pressure spool 32 , including high pressure turbine section 54 and high pressure compressor section 52 rotate in an opposed direction.
  • the gear reduction 48 which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that the fan 42 rotates in the same direction as the high spool 32 .
  • a lpt is the area of the low pressure turbine section at the exit thereof (e.g., at 401 ), where V lpt is the speed of the low pressure turbine section, where A hpt is the area of the high pressure turbine section at the exit thereof (e.g., at 400 ), and where V hpt is the speed of the low pressure turbine section.
  • the areas of the low and high pressure turbine sections are 557.9 in 2 and 90.67 in 2 , respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively.
  • the performance quantities for the low and high pressure turbine sections are:
  • FIG. 3 shows an embodiment 200 , wherein there is a fan drive turbine 208 driving a shaft 206 to in turn drive a fan rotor 202 .
  • a gear reduction 204 may be positioned between the fan drive turbine 208 and the fan rotor 202 .
  • This gear reduction 204 may be structured and operate like the gear reduction disclosed above.
  • a compressor rotor 210 is driven by an intermediate pressure turbine 212
  • a second stage compressor rotor 214 is driven by a turbine rotor 216 .
  • a combustion section 218 is positioned intermediate the compressor rotor 214 and the turbine section 216 .
  • FIG. 3 or 4 engines may be utilized with the features disclosed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. application Ser. No. 14/573,003, filed Dec. 17, 2014, which is a continuation-in-part of U.S. application Ser. No. 13/363,154, filed Jan. 31, 2012.
  • BACKGROUND OF THE INVENTION
  • This application relates to a gas turbine engine wherein the low pressure turbine section is rotating at a higher speed and centrifugal pull stress relative to the high pressure turbine section speed and centrifugal pull stress than prior art engines.
  • Gas turbine engines are known, and typically include a fan delivering air into a low pressure compressor section. The air is compressed in the low pressure compressor section, and passed into a high pressure compressor section. From the high pressure compressor section the air is introduced into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over a high pressure turbine section, and then a low pressure turbine section.
  • Traditionally, on many prior art engines the low pressure turbine section has driven both the low pressure compressor section and a fan directly. As fuel consumption improves with larger fan diameters relative to core diameters it has been the trend in the industry to increase fan diameters. However, as the fan diameter is increased, high fan blade tip speeds may result in a decrease in efficiency due to compressibility effects. Accordingly, the fan speed, and thus the speed of the low pressure compressor section and low pressure turbine section (both of which historically have been coupled to the fan via the low pressure spool), have been a design constraint. More recently, gear reductions have been proposed between the low pressure spool (low pressure compressor section and low pressure turbine section) and the fan.
  • SUMMARY
  • In a featured embodiment, a gas turbine engine comprises a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section. The turbine section includes a first turbine section and a second turbine section. The first turbine section has a first exit area at a first exit point and rotates at a first speed. The second turbine section has a second exit area at a second exit point and rotates at a second speed, which is higher than the first speed. A first performance quantity is defined as the product of the first speed squared and the first area. A second performance quantity is defined as the product of the second speed squared and the second area. A ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5. A gear reduction is included between the fan and a low spool is driven by the first turbine section such that the fan rotates at a lower speed than the first turbine section.
  • In another embodiment according to the previous embodiment, a gear ratio of the gear reduction is greater than about 2.3.
  • In another embodiment according to any of the previous embodiments, the gear ratio is greater than about 2.5.
  • In another embodiment according to any of the previous embodiments, there is a third turbine section. The first turbine section drives the fan, and the second and third turbine sections each drive a compressor rotor of the compressor section.
  • In another embodiment according to any of the previous embodiments, the gear reduction is positioned intermediate the fan and a compressor rotor driven by the first turbine section.
  • In another embodiment according to any of the previous embodiments, the gear reduction is positioned intermediate the first turbine section and a compressor rotor driven by the first turbine section.
  • These and other features may be best understood from the following drawings and specification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a gas turbine engine.
  • FIG. 2 schematically shows the arrangement of the low and high spool, along with the fan drive.
  • FIG. 3 shows another embodiment.
  • FIG. 4 shows yet another embodiment.
  • DETAILED DESCRIPTION
  • FIG. 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.
  • The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
  • The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure (or first) compressor section 44 and a low pressure (or first) turbine section 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and high pressure (or second) turbine section 54. A combustor 56 is arranged between the high pressure compressor section 52 and the high pressure turbine section 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine section 54 and the low pressure turbine section 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. As used herein, the high pressure turbine section experiences higher pressures than the low pressure turbine section. A low pressure turbine section is a section that powers a fan 42. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes. The high and low spools can be either co-rotating or counter-rotating.
  • The core airflow C is compressed by the low pressure compressor section 44 then the high pressure compressor section 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine section 54 and low pressure turbine section 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbine sections 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • The engine 20 in one example is a high-bypass geared aircraft engine. The bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine section 46 has a pressure ratio that is greater than about 5. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor section 44, and the low pressure turbine section 46 has a pressure ratio that is greater than about 5:1. In some embodiments, the high pressure turbine section may have two or fewer stages. In contrast, the low pressure turbine section 46, in some embodiments, has between 3 and 6 stages. Further, the low pressure turbine section 46 pressure ratio is total pressure measured prior to the inlet of low pressure turbine section 46 as related to the total pressure at the outlet of the low pressure turbine section 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (“TSFC”). TSFC is the industry standard parameter of the rate of lbm of fuel being burned per hour divided by lbf of thrust the engine produces at that flight condition. “Low fan pressure ratio” is the ratio of total pressure across the fan blade alone, before the fan exit guide vanes. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ram Air Temperature deg R)/518.7)̂0.5]. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second. Further, the fan 42 may have 26 or fewer blades.
  • An exit area 400 is shown, in FIG. 1 and FIG. 2, at the exit location for the high pressure turbine section 54. An exit area for the low pressure turbine section is defined at exit 401 for the low pressure turbine section. As shown in FIG. 2, the turbine engine 20 may be counter-rotating. This means that the low pressure turbine section 46 and low pressure compressor section 44 rotate in one direction, while the high pressure spool 32, including high pressure turbine section 54 and high pressure compressor section 52 rotate in an opposed direction. The gear reduction 48, which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that the fan 42 rotates in the same direction as the high spool 32. With this arrangement, and with the other structure as set forth above, including the various quantities and operational ranges, a very high speed can be provided to the low pressure spool. Low pressure turbine section and high pressure turbine section operation are often evaluated looking at a performance quantity which is the exit area for the turbine section multiplied by its respective speed squared. This performance quantity (“PQ”) is defined as:

  • PQ ltp=(A lpt ×V lpt 2)  Equation 1:

  • PQ hpt=(A hpt ×V hpt 2)  Equation 2:
  • where Alpt is the area of the low pressure turbine section at the exit thereof (e.g., at 401), where Vlpt is the speed of the low pressure turbine section, where Ahpt is the area of the high pressure turbine section at the exit thereof (e.g., at 400), and where Vhpt is the speed of the low pressure turbine section.
  • Thus, a ratio of the performance quantity for the low pressure turbine section compared to the performance quantify for the high pressure turbine section is:

  • (A lpt ×V lpt 2)/(A hpt ×V hpt 2)=PQ ltp /PQ hpt  Equation 3:
  • In one turbine embodiment made according to the above design, the areas of the low and high pressure turbine sections are 557.9 in2 and 90.67 in2, respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively. Thus, using Equations 1 and 2 above, the performance quantities for the low and high pressure turbine sections are:

  • PQ ltp=(A lpt ×V lpt 2)=(557.9 in2)(10179 rpm)2=57805157673.9 in2 rpm2  Equation 1:

  • PQ hpt=(A hpt ×V hpt 2)=(90.67 in2)(24346 rpm)2=53742622009.72 in2 rpm2  Equation 2:
  • and using Equation 3 above, the ratio for the low pressure turbine section to the high pressure turbine section is:

  • Ratio=PQ ltp /PQ hpt=57805157673.9 in2 rpm2/53742622009.72 in2 rpm2=1.075
  • In another embodiment, the ratio was about 0.5 and in another embodiment the ratio was about 1.5. With PQltp/PQhpt ratios in the 0.5 to 1.5 range, a very efficient overall gas turbine engine is achieved. More narrowly, PQltp/PQhpt ratios of above or equal to about 0.8 are more efficient. Even more narrowly, PQltp/PQhpt ratios above or equal to 1.0 are even more efficient. As a result of these PQltp/PQhpt ratios, in particular, the turbine section can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.
  • The low pressure compressor section is also improved with this arrangement, and behaves more like a high pressure compressor section than a traditional low pressure compressor section. It is more efficient than the prior art, and can provide more work in fewer stages. The low pressure compressor section may be made smaller in radius and shorter in length while contributing more toward achieving the overall pressure ratio design target of the engine.
  • FIG. 3 shows an embodiment 200, wherein there is a fan drive turbine 208 driving a shaft 206 to in turn drive a fan rotor 202. A gear reduction 204 may be positioned between the fan drive turbine 208 and the fan rotor 202. This gear reduction 204 may be structured and operate like the gear reduction disclosed above. A compressor rotor 210 is driven by an intermediate pressure turbine 212, and a second stage compressor rotor 214 is driven by a turbine rotor 216. A combustion section 218 is positioned intermediate the compressor rotor 214 and the turbine section 216.
  • FIG. 4 shows yet another embodiment 300 wherein a fan rotor 302 and a first stage compressor 304 rotate at a common speed. The gear reduction 306 (which may be structured as disclosed above) is intermediate the compressor rotor 304 and a shaft 308 which is driven by a low pressure turbine section.
  • The FIG. 3 or 4 engines may be utilized with the features disclosed above.
  • While this invention has been disclosed with reference to one embodiment, it should be understood that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims (20)

1. A gas turbine engine comprising:
a fan;
a compressor section in fluid communication with the fan;
a combustion section in fluid communication with the compressor section;
a turbine section in fluid communication with the combustion section,
wherein the turbine section includes a low pressure turbine section and a high pressure turbine section,
wherein said low pressure turbine section has a first exit area at a first exit point and is configured to rotate at or below a first speed,
wherein said high pressure turbine section has a second exit area at a second exit point and is configured to rotate at or below a second speed, which is higher than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first area,
wherein a second performance quantity is defined as the product of the second speed squared and the second area:
wherein a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5; and
a gear reduction is included between said fan and a low spool driven by the low pressure turbine section such that the fan rotates at a lower speed than the low pressure turbine section.
2. The gas turbine engine as set forth in claim 1, wherein the gear reduction is positioned intermediate the fan and a compressor rotor driven by the low pressure turbine section.
3. The gas turbine engine as set forth in claim 1, wherein the gear reduction is positioned intermediate the low pressure turbine section and a compressor rotor driven by the low pressure turbine section.
4. The gas turbine engine as set forth in claim 1, wherein there is a third turbine section, the low pressure turbine section driving the fan, and the high pressure turbine section and third turbine section each driving a compressor rotor of the compressor section.
5. The gas turbine engine as set forth in claim 1, wherein the ratio is above or equal to 0.8.
6. The gas turbine engine as set forth in claim 1, wherein the ratio is above or equal to 1.0.
7. The gas turbine engine as set forth in claim 1, comprising a mid-turbine frame positioned intermediate the low pressure and high pressure turbine sections, the mid-turbine frame having a first bearing and a second bearing, the first bearing supporting a first shaft coupled to the low pressure turbine section, and the second bearing supporting a second shaft coupled to the high pressure turbine section.
8. The gas turbine engine as set forth in claim 7, wherein the first and second bearings are situated between the first exit area and the second exit area.
9. The gas turbine engine as set forth in claim 1, wherein the compressor section includes a low pressure compressor section upstream of a high pressure compressor section, the low pressure compressor section including fewer stages than the high pressure compressor section.
10. The gas turbine engine as set forth in claim 1, wherein each of low pressure turbine section and the high pressure turbine section is configured to rotate in a first direction.
11. The gas turbine engine as set forth in claim 1, wherein the high pressure turbine section has fewer stages than the low pressure turbine section.
12. The gas turbine engine as set forth in claim 11, wherein the low pressure turbine section has between three and six stages and the high pressure turbine section has two or fewer stages.
13. The gas turbine engine as set forth in claim 1, wherein the fan defines a pressure ratio of less than 1.45.
14. A gas turbine engine comprising:
a compressor section in fluid communication with a fan;
a turbine section in fluid communication with the compressor section, the turbine section including a low pressure turbine section and a high pressure turbine section,
wherein said low pressure turbine section has a first exit area at a first exit point and is configured to rotate at a first speed, and said high pressure turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first area, a second performance quantity is defined as the product of the second speed squared and the second area, and a ratio of the first performance quantity to the second performance quantity is less than or equal to 1.5; and
a gear reduction situated between the fan and a low spool driven by the first turbine section such that the fan rotates at a lower speed than the first turbine section.
15. The gas turbine engine of claim 14, comprising a mid-turbine frame positioned intermediate the low pressure turbine section and the high pressure turbine section, the mid-turbine frame having a first bearing and a second bearing, the first bearing supporting a first shaft coupled to the low pressure turbine section, and the second bearing supporting a second shaft coupled to the second turbine section.
16. The gas turbine engine as set forth in claim 15, wherein the first and second bearings are situated between the first exit area and the second exit area.
17. The gas turbine engine as set forth in claim 14, wherein the ratio is above or equal to 0.8.
18. The gas turbine engine as set forth in claim 14, wherein the ratio is above or equal to 1.0.
19. The gas turbine engine as set forth in claim 14, wherein:
the low pressure turbine section has between three and six stages;
the high pressure turbine section has two or fewer stages; and
the fan defines a pressure ratio less than 1.45.
20. The gas turbine engine as set forth in claim 14, wherein there is a third turbine section, the low pressure turbine section driving the fan, and the high pressure turbine section and third turbine section each driving a compressor rotor of the compressor section.
US15/791,825 2012-01-31 2017-10-24 Gas turbine engine with high speed low pressure turbine section Abandoned US20180045120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/791,825 US20180045120A1 (en) 2012-01-31 2017-10-24 Gas turbine engine with high speed low pressure turbine section

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/363,154 US20130192196A1 (en) 2012-01-31 2012-01-31 Gas turbine engine with high speed low pressure turbine section
US14/573,003 US9816442B2 (en) 2012-01-31 2014-12-17 Gas turbine engine with high speed low pressure turbine section
US15/791,825 US20180045120A1 (en) 2012-01-31 2017-10-24 Gas turbine engine with high speed low pressure turbine section

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/573,003 Continuation US9816442B2 (en) 2012-01-31 2014-12-17 Gas turbine engine with high speed low pressure turbine section

Publications (1)

Publication Number Publication Date
US20180045120A1 true US20180045120A1 (en) 2018-02-15

Family

ID=52775835

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/573,003 Active 2032-05-28 US9816442B2 (en) 2012-01-31 2014-12-17 Gas turbine engine with high speed low pressure turbine section
US15/791,825 Abandoned US20180045120A1 (en) 2012-01-31 2017-10-24 Gas turbine engine with high speed low pressure turbine section

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/573,003 Active 2032-05-28 US9816442B2 (en) 2012-01-31 2014-12-17 Gas turbine engine with high speed low pressure turbine section

Country Status (1)

Country Link
US (2) US9816442B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088702A1 (en) 2011-12-30 2016-11-02 United Technologies Corporation Gas turbine engine gear train
US9416677B2 (en) 2012-01-10 2016-08-16 United Technologies Corporation Gas turbine engine forward bearing compartment architecture
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US9222417B2 (en) * 2012-01-31 2015-12-29 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US8572943B1 (en) 2012-05-31 2013-11-05 United Technologies Corporation Fundamental gear system architecture
US8753065B2 (en) 2012-09-27 2014-06-17 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
EP3093473A1 (en) * 2015-05-06 2016-11-16 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
EP3165754A1 (en) * 2015-11-03 2017-05-10 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
CA2945264A1 (en) * 2015-11-05 2017-05-05 United Technologies Corporation Gas turbine engine with mount for low pressure turbine section
US20180128206A1 (en) * 2016-11-09 2018-05-10 General Electric Company Gas turbine engine
US11421627B2 (en) 2017-02-22 2022-08-23 General Electric Company Aircraft and direct drive engine under wing installation
US10654577B2 (en) 2017-02-22 2020-05-19 General Electric Company Rainbow flowpath low pressure turbine rotor assembly
US10711797B2 (en) 2017-06-16 2020-07-14 General Electric Company Inlet pre-swirl gas turbine engine
US10794396B2 (en) 2017-06-16 2020-10-06 General Electric Company Inlet pre-swirl gas turbine engine
US10724435B2 (en) 2017-06-16 2020-07-28 General Electric Co. Inlet pre-swirl gas turbine engine
US10815886B2 (en) 2017-06-16 2020-10-27 General Electric Company High tip speed gas turbine engine
GB2566047B (en) 2017-08-31 2019-12-11 Rolls Royce Plc Gas turbine engine
GB2566045B (en) 2017-08-31 2019-12-11 Rolls Royce Plc Gas turbine engine
GB2566046B (en) * 2017-08-31 2019-12-11 Rolls Royce Plc Gas turbine engine
GB201907256D0 (en) 2019-05-23 2019-07-10 Rolls Royce Plc Gas turbine engine
GB201907255D0 (en) * 2019-05-23 2019-07-10 Rolls Royce Plc Gas turbine engine
GB201908978D0 (en) * 2019-06-24 2019-08-07 Rolls Royce Plc Gas turbine engine transfer efficiency
GB201908972D0 (en) 2019-06-24 2019-08-07 Rolls Royce Plc Compression in a gas turbine engine
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021731A (en) 1951-11-10 1962-02-20 Wilhelm G Stoeckicht Planetary gear transmission
US2936655A (en) 1955-11-04 1960-05-17 Gen Motors Corp Self-aligning planetary gearing
US3033002A (en) 1957-11-08 1962-05-08 Fairfield Shipbuilding And Eng Marine propulsion steam turbine installations
US3287906A (en) 1965-07-20 1966-11-29 Gen Motors Corp Cooled gas turbine vanes
US3352178A (en) 1965-11-15 1967-11-14 Gen Motors Corp Planetary gearing
GB1436796A (en) 1972-08-22 1976-05-26 Mtu Muenchen Gmbh Gas turbine ducted fan engines of multi-shaft and multi-flow construction
GB1516041A (en) 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
US4448019A (en) 1978-03-27 1984-05-15 The Boeing Company Turbine bypass turbojet with mid-turbine reingestion and method of operating the same
GB2041090A (en) 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
GB2207191B (en) 1987-07-06 1992-03-04 Gen Electric Gas turbine engine
US5433674A (en) 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
JP2997319B2 (en) 1994-12-14 2000-01-11 ユナイテッド テクノロジーズ コーポレイション Stall and surge control using asymmetric compressor airflow.
JP2002512337A (en) 1998-04-16 2002-04-23 3カー−ヴァルナー・トゥルボズュステームズ・ゲーエムベーハー Internal combustion engine with turbocharge
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US6763654B2 (en) 2002-09-30 2004-07-20 General Electric Co. Aircraft gas turbine engine having variable torque split counter rotating low pressure turbines and booster aft of counter rotating fans
GB0406174D0 (en) 2004-03-19 2004-04-21 Rolls Royce Plc Turbine engine arrangement
US7137245B2 (en) 2004-06-18 2006-11-21 General Electric Company High area-ratio inter-turbine duct with inlet blowing
EP1928943B1 (en) 2005-09-28 2014-07-09 Entrotech Composites, LLC. Linerless prepregs, composite articles therefrom, and related methods
US7513103B2 (en) 2005-10-19 2009-04-07 General Electric Company Gas turbine engine assembly and methods of assembling same
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
US7600370B2 (en) 2006-05-25 2009-10-13 Siemens Energy, Inc. Fluid flow distributor apparatus for gas turbine engine mid-frame section
US8585538B2 (en) 2006-07-05 2013-11-19 United Technologies Corporation Coupling system for a star gear train in a gas turbine engine
US7694505B2 (en) 2006-07-31 2010-04-13 General Electric Company Gas turbine engine assembly and method of assembling same
US7254997B1 (en) * 2006-10-12 2007-08-14 David Hui Anti-steal tire pressure monitoring apparatus
JP5264742B2 (en) * 2006-10-12 2013-08-14 ユナイテッド テクノロジーズ コーポレイション Variable area fan nozzle for a gas turbine engine fan nacelle with a sliding actuator
WO2008063152A2 (en) * 2006-10-12 2008-05-29 United Technologies Corporation Turbofan engine
US7721549B2 (en) 2007-02-08 2010-05-25 United Technologies Corporation Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system
US8017188B2 (en) 2007-04-17 2011-09-13 General Electric Company Methods of making articles having toughened and untoughened regions
US8844265B2 (en) 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US9957918B2 (en) 2007-08-28 2018-05-01 United Technologies Corporation Gas turbine engine front architecture
US8205432B2 (en) 2007-10-03 2012-06-26 United Technologies Corporation Epicyclic gear train for turbo fan engine
US8006479B2 (en) * 2007-10-15 2011-08-30 United Technologies Corporation Thrust reversing variable area nozzle
US7762086B2 (en) 2008-03-12 2010-07-27 United Technologies Corporation Nozzle extension assembly for ground and flight testing
US8061969B2 (en) 2008-11-28 2011-11-22 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
US8091371B2 (en) 2008-11-28 2012-01-10 Pratt & Whitney Canada Corp. Mid turbine frame for gas turbine engine
US8172716B2 (en) 2009-06-25 2012-05-08 United Technologies Corporation Epicyclic gear system with superfinished journal bearing
US8375695B2 (en) 2009-06-30 2013-02-19 General Electric Company Aircraft gas turbine engine counter-rotatable generator
US20130192191A1 (en) * 2012-01-31 2013-08-01 Frederick M. Schwarz Gas turbine engine with high speed low pressure turbine section and bearing support features
US8915700B2 (en) 2012-02-29 2014-12-23 United Technologies Corporation Gas turbine engine with fan-tied inducer section and multiple low pressure turbine sections
EP2841718A4 (en) 2012-04-25 2016-03-02 United Technologies Corp Gas turbine engine with high speed low pressure turbine section and bearing support features
US20130318998A1 (en) 2012-05-31 2013-12-05 Frederick M. Schwarz Geared turbofan with three turbines with high speed fan drive turbine
US8834099B1 (en) 2012-09-28 2014-09-16 United Technoloiies Corporation Low noise compressor rotor for geared turbofan engine
US20140130479A1 (en) 2012-11-14 2014-05-15 United Technologies Corporation Gas Turbine Engine With Mount for Low Pressure Turbine Section
US20160032826A1 (en) 2014-08-04 2016-02-04 MTU Aero Engines AG Turbofan aircraft engine

Also Published As

Publication number Publication date
US20150096303A1 (en) 2015-04-09
US9816442B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
US20180045120A1 (en) Gas turbine engine with high speed low pressure turbine section
US10240526B2 (en) Gas turbine engine with high speed low pressure turbine section
CA2856723C (en) Gas turbine engine with high speed low pressure turbine section
US9845726B2 (en) Gas turbine engine with high speed low pressure turbine section
US20200049077A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
CA2856561C (en) Gas turbine engine with high speed low pressure turbine section
CA2889618C (en) Gas turbine engine with mount for low pressure turbine section
US9611859B2 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
US20160061052A1 (en) Gas turbine engine with high speed low pressure turbine section
US20130192265A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
EP2841718A2 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
US20160115865A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
US20160053679A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
US20160053631A1 (en) Gas turbine engine with mount for low pressure turbine section
US20160053634A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
CA2945265A1 (en) Gas turbine engine with high speed low pressure turbine section
EP3034849A1 (en) Gas turbine engine with high speed low pressure turbine section
US20160047306A1 (en) Gas turbine engine with high speed low pressure turbine section and bearing support features
CA2945264A1 (en) Gas turbine engine with mount for low pressure turbine section

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403