US20180023759A1 - Assembly Including a Mounting Portion and an Implement-Retaining Portion - Google Patents

Assembly Including a Mounting Portion and an Implement-Retaining Portion Download PDF

Info

Publication number
US20180023759A1
US20180023759A1 US15/679,297 US201715679297A US2018023759A1 US 20180023759 A1 US20180023759 A1 US 20180023759A1 US 201715679297 A US201715679297 A US 201715679297A US 2018023759 A1 US2018023759 A1 US 2018023759A1
Authority
US
United States
Prior art keywords
implement
wedging
mounting
assembly
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/679,297
Inventor
Timothy P. Stender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3 T Assets LLC
Original Assignee
3 T Assets LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/086,019 external-priority patent/US20170284592A1/en
Application filed by 3 T Assets LLC filed Critical 3 T Assets LLC
Priority to US15/679,297 priority Critical patent/US20180023759A1/en
Publication of US20180023759A1 publication Critical patent/US20180023759A1/en
Priority to US17/070,635 priority patent/US20210270413A1/en
Priority to US17/326,595 priority patent/US20210278033A1/en
Priority to US17/565,736 priority patent/US20220120376A1/en
Priority to US17/887,602 priority patent/US20220390063A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/041Allowing quick release of the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/22Undercarriages with or without wheels with approximately constant height, e.g. with constant length of column or of legs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0015Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being a soft organic material, e.g. wood or plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0026Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being a hard non-organic material, e.g. stone, concrete or drywall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/06Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips
    • F16B5/0607Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips joining sheets or plates to each other
    • F16B5/0621Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips joining sheets or plates to each other in parallel relationship
    • F16B5/0664Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips joining sheets or plates to each other in parallel relationship at least one of the sheets or plates having integrally formed or integrally connected snap-in-features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/08Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing
    • F16L3/12Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing
    • F16L3/13Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing and engaging it by snap action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting

Definitions

  • the disclosure relates to an assembly including a mounting portion and an implement-retaining portion.
  • the mounting portion includes a body portion and a substrate-penetrating portion.
  • the body portion is defined by a substrate-engaging portion and an implement retainer interface portion connected to the substrate-engaging portion.
  • the implement-retaining portion is removably-connected to the implement retainer interface portion of the body portion of the mounting portion.
  • Implementations of the disclosure may include one or more of the following optional features.
  • the implement retainer interface portion of the body portion of the mounting portion includes an implement-retaining-portion-engaging surface.
  • the implement-retaining-portion-engaging surface defines a plurality of male-receiving portions and a plurality of wedging passages.
  • the plurality of male-receiving portions includes a plurality of female portions.
  • the plurality of female portions includes a first pair of female portions defined by a first female portion and a second female portion.
  • the plurality of female portions also includes second pair of female portions defined by a third female portion and a fourth female portion.
  • the plurality of wedging passages includes a first wedging passage and a second wedging passage.
  • the first wedging passage is arranged between the first female portion of the first pair of female portions and the second female portion first pair of female portions.
  • the second wedging passage is arranged between the third female portion of the second pair of female portions and the fourth female portion of the second pair of female portions.
  • the implement retainer interface portion of the body portion of the mounting portion includes a first half and a second half.
  • the first wedging passage and the first pair of female portions are defined by the first half of the implement retainer interface portion of the body portion of the mounting portion.
  • the second wedging passage and the second pair of female portions are defined by the second half of the implement retainer interface portion of the body portion of the mounting portion.
  • the implement-retaining portion includes a mounting-portion-engaging surface.
  • the implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface.
  • the plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of registration portions including a first registration portion and a second registration portion.
  • the plurality of male portions of the implement-retaining portion are removably-interfaced with the plurality of male-receiving portions of the mounting portion.
  • the pair of registration portions is removably-interfaced with one of the first pair of female portions and the second pair of female portions.
  • the first wedging portion is removably-interfaced with one of the first wedging passage and the second wedging passage.
  • the second wedging portion is removably-interfaced with the other of the first wedging passage and the second wedging passage.
  • the implement retainer interface portion of the body portion of the mounting portion is defined by a neck-portion-engaging surface and an implement-retaining-portion-engaging surface.
  • the neck-portion-engaging surface is shaped for contacting the first wedging portion of the plurality of male portions of the implement-retaining portion.
  • the implement-retaining-portion-engaging surface that is shaped to contact or be arranged opposite the mounting-portion-engaging surface of the implement-retaining portion.
  • the first wedging portion is defined by a head portion and a neck portion.
  • the neck portion is connected to the head portion.
  • the neck portion extends away from the mounting-portion-engaging surface.
  • the neck portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface.
  • the first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface.
  • the first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • the implement-retaining portion includes a mounting-portion-engaging surface.
  • the implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface.
  • the plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of clamping portions including a first clamping portion and a second clamping portion.
  • the plurality of male portions of the implement-retaining portion are removably-interfaced with the plurality of male-receiving portions of the mounting portion.
  • the first wedging portion is removably-interfaced with one of the first wedging passage and the second wedging passage
  • the second wedging portion is removably-interfaced with the other of the first wedging passage and the second wedging passage.
  • a first mounting-portion-engaging-surface of each of the first clamping portion and the second clamping portion is sized for engaging the implement-retaining-portion-engaging surface.
  • a second mounting-portion-engaging surface of each of the first clamping portion and the second clamping portion is sized for engaging a side surface of the body portion of the mounting portion that connects the neck-portion-engaging surface to the implement-retaining-portion-engaging surface.
  • At least the substrate-engaging portion of the body portion of the mounting portion is bendably or flexibly connected to the implement retainer interface portion of the body portion of the mounting portion.
  • the substrate-penetrating portion may be formed from a rigid, non-flexible material.
  • the substrate-penetrating portion is threaded fastener having a shaft portion and a threaded portion extending away from the shaft portion.
  • a head portion of the substrate-penetrating portion is arranged within a passage formed by the substrate-engaging portion of the body portion of the mounting portion.
  • the substrate-engaging portion of the body portion of the mounting portion defines a substrate-mounting surface having a circumferential engagement lip including a plurality of protuberances.
  • the mounting portion includes a body portion and a substrate-penetrating portion.
  • the body portion is defined by a substrate-engaging portion and an implement retainer interface portion connected to the substrate-engaging portion.
  • Implementations of the disclosure may include one or more of the following optional features.
  • the implement retainer interface portion of the body portion of the mounting portion includes an implement-retaining-portion-engaging surface.
  • the implement-retaining-portion-engaging surface defines a plurality of male-receiving portions and a plurality of wedging passages.
  • the plurality of male-receiving portions includes a plurality of female portions.
  • the plurality of female portions includes a first pair of female portions defined by a first female portion and a second female portion.
  • the plurality of female portions also includes second pair of female portions defined by a third female portion and a fourth female portion.
  • the plurality of wedging passages includes a first wedging passage and a second wedging passage.
  • the first wedging passage is arranged between the first female portion of the first pair of female portions and the second female portion first pair of female portions.
  • the second wedging passage is arranged between the third female portion of the second pair of female portions and the fourth female portion of the second pair of female portions.
  • the implement retainer interface portion of the body portion of the mounting portion includes a first half and a second half.
  • the first wedging passage and the first pair of female portions are defined by the first half of the implement retainer interface portion of the body portion of the mounting portion.
  • the second wedging passage and the second pair of female portions are defined by the second half of the implement retainer interface portion of the body portion of the mounting portion.
  • the implement retainer interface portion of the body portion of the mounting portion is defined by a neck-portion-engaging surface and an implement-retaining-portion-engaging surface.
  • At least the substrate-engaging portion of the body portion of the mounting portion is bendably or flexibly connected to the implement retainer interface portion of the body portion of the mounting portion.
  • the substrate-penetrating portion may be formed from a rigid, non-flexible material.
  • the substrate-penetrating portion is threaded fastener having a shaft portion and a threaded portion extending away from the shaft portion.
  • a head portion of the substrate-penetrating portion is arranged within a passage formed by the substrate-engaging portion of the body portion of the mounting portion.
  • the substrate-engaging portion of the body portion of the mounting portion defines a substrate-mounting surface having a circumferential engagement lip including a plurality of protuberances.
  • an assembly including an implement-retaining portion.
  • the implement-retaining portion includes a mounting-portion-engaging surface and an opposite implement-engaging surface.
  • the implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface.
  • the plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of registration portions including a first registration portion and a second registration portion.
  • the first wedging portion is defined by a head portion and a neck portion.
  • the neck portion is connected to the head portion.
  • the neck portion extends away from the mounting-portion-engaging surface.
  • the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface.
  • the first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface.
  • the first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • the implement-engaging surface is defined by a substantially flat surface.
  • the implement-engaging surface is defined by a storage pocket.
  • the implement-engaging surface is defined by a storage pocket a hook.
  • the implement-engaging surface is defined by a storage pocket a frictional surface including a plurality of bumps.
  • the implement-engaging surface includes an adhesive.
  • an assembly including an implement-retaining portion.
  • the implement-retaining portion includes an implement-retaining portion including a mounting-portion-engaging surface and an opposite implement-engaging surface.
  • the implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface.
  • the plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of clamping portions including a first clamping portion and a second clamping portion.
  • FIG. 1 is a top view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 2 is a lateral side view of the assembly of FIG. 1 .
  • FIG. 3 is a front side view of the assembly of FIG. 1 .
  • FIG. 4 is a bottom view of the assembly of FIG. 1 .
  • FIG. 5 is a perspective view of the assembly of FIG. 1 .
  • FIG. 6 is another perspective view of the assembly of FIG. 1 .
  • FIG. 7 is a top view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 8 is a front side view of the assembly of FIG. 7 .
  • FIG. 9 is a lateral side view of the assembly of FIG. 7 .
  • FIG. 10 is a perspective view of the assembly of FIG. 7 .
  • FIG. 11A is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 11B is an assembled perspective view of the assembly of FIG. 11
  • FIG. 12 is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 13 is a side view of the assembly of FIG. 12 arranged in an assembled state.
  • FIGS. 14A-14I are cross-sectional views of the assembly of FIG. 12 referenced from line 14 - 14 of FIG. 11B .
  • FIGS. 14A ′- 14 I′ are cross-sectional views of the assembly of FIG. 12 referenced from line 14 ′- 14 ′ of FIG. 11B .
  • FIG. 15 is a perspective view of an exemplary mounting portion.
  • FIG. 16 is a front view of the mounting portion of FIG. 15 .
  • FIG. 17 is a side view of the mounting portion of FIG. 15 .
  • FIG. 18 is a perspective view of an exemplary implement-retaining portion.
  • FIG. 18 ′ is a perspective view of an exemplary implement-retaining portion.
  • FIG. 18 ′′ is a perspective view of an exemplary implement-retaining portion.
  • FIG. 19 is a front view of the implement-retaining portion of FIG. 18 .
  • FIG. 20 is a side view of the implement-retaining portion of FIG. 18 .
  • FIG. 21 is a rear perspective view of an exemplary implement-retaining portion.
  • FIG. 22 is a front perspective view of an exemplary implement-retaining portion.
  • FIG. 23 is a rear perspective view of an exemplary implement-retaining portion.
  • FIG. 24 is a front perspective view of an exemplary implement-retaining portion.
  • FIG. 25 is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 26 is an assembled perspective view of the assembly of FIG. 25 .
  • FIG. 27 is a perspective view of the mounting portion of the assembly of FIG. 25 .
  • FIG. 28 is a cross-sectional view according to line 28 - 28 of FIG. 25 .
  • FIGS. 29A-29E are cross-sectional views of the assembly of FIG. 25 referenced from line 29 of FIG. 28 .
  • an assembly including a rotatably-adjustable, self-boring mount for fixtures may include a hollow, deformable, dome-shaped base element 11 made of a thermoplastic material.
  • the base element 11 may be defined by a ratio in which the ratio of the width of the base element 11 to the height of the base element 11 can be between 4 inches and 8 inches. In another example, a diameter of the base element 11 may be between 1.5 inches and 2.5 inches.
  • a self-boring, screw element 12 may be attached to the underside of the base element 11 .
  • the base element 11 includes a convex, fixture-supporting topside portion 9 , a concave, substrate-facing, underside portion 3 opposite the topside portion 9 , a generally cylindrical or frustoconical hub 4 extending perpendicularly away from a center of the underside portion 3 , and a substrate-engaging portion defined by a circumferential edge 2 of the base element 11 .
  • a plurality of protuberances 1 (which may alternatively be referred to as a “detents” or “nubs”) extends away from the circumferential edge 2 .
  • Each detent 1 may be defined by a hemispherical shape and a base diameter that is less than or equal to a width of the circumferential edge 2 .
  • the protuberances 1 may be uniformly spaced-apart along the circumferential edge 2 .
  • the detents 1 provide additional friction between the circumferential edge 2 and an underlying substrate in order to prevent unintentional rotation of the base element 11 .
  • the generally cylindrical or frustoconical hub 4 may be defined by a flat lower surface. When arranged adjacent an underlying substrate, the lower surface of the generally cylindrical or frustoconical hub 4 prevent the screw element 12 to further penetration of the underlying substrate, which, in turn, prevents an excessive deformation of base element 11 .
  • the screw element 12 may include a non-circular head portion 5 (e.g., a hex head, a thumb-screw head or the like) that resists twisting when embedded in the base element 11 , a shaft with a threaded portion 8 , an optional non-threaded portion 10 , and a pointed substrate-engaging tip 6 with sharp threads to facilitate self-boring penetration of the underlying substrate and fixation to the underlying substrate with sufficient grip to compress the circumferential edge 2 against the underlying substrate in order to effectuate a counteracting elastic deformation of the dome-shaped base element 11 .
  • the non-circular head portion 5 is rigidly embedded in the generally cylindrical or frustoconical hub 4 .
  • the threaded portion 8 may have a thread density between approximately about 10-to-16 threads per inch.
  • the treaded portion 8 and the non-threaded portion 10 (which may be collectively referred to as the “shank” of the screw element) may be optionally tapered.
  • the top 6 of the screw element 12 may be optionally defined as a self-tapping tip and/or a self-drilling tip.
  • the length of the screw element 12 may be any desirable length between about, for example, 0.5 inches and 1.5 inches.
  • a fixture such as a conduit holder 7 may be attached to the topside portion 9 of the base element 11 .
  • the base element 11 may be rigidly attached to the screw element 12 , a force applied to the fixture 7 in a plane substantially perpendicular to an axis extending along the length of the screw element 12 is counteracted by a force exerted upon the underlying substrate by the circumferential edge 2 of the elastically deformable, spring-like base element 11 ; this spring-like quality imparts additional strength to the overall assembly while: (1) the screw element 12 still permits quick and easy installation, and (2) the spring-like quality of base element 11 permits 360° rotation of the assembly while maintaining uniform pressure against the underlying substrate, thereby preserving strength regardless of the rotational positioning of the assembly.
  • FIGS. 7-10 Another assembly including a rotatably-adjustable, self-boring mount for fixtures is shown at FIGS. 7-10 .
  • the assembly illustrated at FIGS. 7-10 is substantially similar to the assembly illustrated at FIGS. 1-6 with the exception that a self-boring, single screw (see e.g., screw element 12 of FIGS. 1-6 ) is not insert-molded into the base element (see e.g., screw element 11 of FIGS. 1-6 ). Rather, a countersunk hole 13 is provided into which a separate, self-boring, single screw may be inserted and seated. In some instances, the hole 13 may be bored through an axial center of the base element 11 and the generally cylindrical or frustoconical hub 4 .
  • the hole 13 may be defined by a wider, optionally conical and tapered upper portion 14 and a narrower lower portion 15 such that a screw (not shown and supplied separately) including a head portion and a narrower shaft portion can be inserted into the hole with the bottom of said head portion seated against the surface formed by the junction of the wider upper portion 14 and the narrower lower portion 15 of the hole 13 .
  • the head portion may be narrower than the diameter of the wider upper portion 14 of the hole 13 , but wider than the diameter of the narrower lower portion 15 of the hole 13 .
  • the upper portion of the hole 13 is conical and tapered.
  • the assembly may be affixed to an underlying substrate with a separately-supplied screw (not shown).
  • the assembly depicted in FIGS. 1-6 and the assembly depicted in FIGS. 7-10 may be interfaced with a conduit holder that is attached to the top portion 9 of the rotatable base element 11 .
  • a conduit holder that is attached to the top portion 9 of the rotatable base element 11 .
  • the implementations of the assemblies disclosed respectively at FIGS. 1-6 and FIGS. 7-10 are exemplary uses. Accordingly, other assemblies may include different holders, fixtures, hooks, anchors, or cleats (rather than a conduit holder).
  • the screw element 12 may be defined by a 1.5′′ steel screw element that is insert-molded with a 2′′ diameter base element 11 formed from polypropylene in an injection-molding machine.
  • the wall thickness of base element 11 i.e. the distance between the convex, fixture-supporting topside portion 9 and the concave, substrate-facing, underside portion 3
  • An exemplary wall thickness may be 0.093 inches.
  • the base element 11 may be made of any elastic material so long as the wall thickness of the base element 11 is adjusted correlatively to produce a similar modulus of flexibility. In the embodiment described above at FIGS.
  • the generally cylindrical or frustoconical hub 4 extends from the center of the underside portion 3 of the base element 11 in the direction of the underlying substrate along the axis of the screw element 12 at a distance less than the furthest extent of the nubs 1 on the circumferential edge 2 by 150% of the thread pitch of the screw element 12 ; this relationship between the lower extent of the base element 11 and the lower extent of the generally cylindrical or frustoconical hub 4 permits the base element 11 to rotate 360° while maintaining contact between the nubs 1 and the underlying substrate, yet avoids excessive deformation of the base element 11 by over-penetration of the screw element 12 into the underlying substrate.
  • FIGS. 11A-13, 14F and 14F ′ illustrate an exemplary assembly shown generally at 100 .
  • the assembly 100 includes a mounting portion 112 and an implement-retaining portion 114 .
  • the mounting portion 112 removably-secures the assembly 100 to an underlying substrate S (see, e.g., FIGS. 11A-11B ), such as, for example, a tree, drywall, a wall stud or the like.
  • the implement-retaining portion 114 removably-secures an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like—not shown) to the assembly 100 .
  • an implement e.g., an article of clothing such as a hat, a smart phone, a camera, or the like—not shown
  • the mounting portion 112 provides mating structure (e.g., a plurality of male-receiving portions 128 as seen in FIG. 12 ) that acts as a universal interface that permits attachment of a variety of different implement-retaining portions 114 (see e.g., FIGS. 21-24 ) each having a mating structure (e.g., a plurality of male portions 138 as seen in FIG. 12 ) that corresponds to the mating structure of the mounting portion 112 .
  • mating structure e.g., a plurality of male-receiving portions 128 as seen in FIG. 12
  • FIGS. 21-24 each having a mating structure (e.g., a plurality of male portions 138 as seen in FIG. 12 ) that corresponds to the mating structure of the mounting portion 112 .
  • the mounting portion 112 includes a body portion 112 a and a substrate-penetrating portion 112 b.
  • the body portion 112 a may be further defined by a substrate-engaging portion 112 a 1 and an implement retainer interface portion 112 a 2 .
  • the substrate-engaging portion 112 a 1 of the body portion 112 a may be disposed adjacent an exterior surface S S of the underlying substrate S. Furthermore, when the mounting portion 112 of the assembly 100 is removably-secured to the underlying substrate S, the substrate-penetrating portion 112 b may be at least partially extended into at least a portion of a thickness of the underlying substrate S.
  • At least the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be permitted to bend or flex relative to the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the bending or flexibility of the substrate-engaging portion 112 a 1 may result from one or both of, for example, a reduction in a thickness of the substrate-engaging portion 112 a 1 and a selection of a non-rigid, flexible material (e.g., polypropylene) utilized for forming the substrate-engaging portion 112 a 1 .
  • the implement retainer interface portion 112 a 2 may be defined by the same material (e.g., polypropylene) as the substrate-engaging portion 112 a 1 but formed to be defined by a comparatively greater thickness than that of the substrate-engaging portion 112 a 1 (in order to inhibit or resist bending or flexing of the implement retainer interface portion 112 a 2 ); alternatively, the implement retainer interface portion 112 a 2 may be formed from a rigid, non-flexible material such that the mounting portion 112 is formed in a multi-shot or two-shot injection molding process whereby the substrate-engaging portion 112 a 1 is formed from a first, flexible material and the implement retainer interface portion 112 a 2 is formed from a second, non-flexible material.
  • the implement retainer interface portion 112 a 2 may be defined by the same material (e.g., polypropylene) as the substrate-engaging portion 112 a 1 but formed to be defined by a comparatively greater thickness than that of the substrate-engaging portion
  • the substrate-penetrating portion 112 b may be formed from a rigid, non-flexible material (e.g., a metal such as, for example, steel). Furthermore, as seen, for example, in FIGS. 13 and 14A-14I ′, the substrate-penetrating portion 112 b may be, for example, a self-boring threaded fastener (e.g., a screw) defined by a shaft portion 112 b 1 having a sharp distal tip 112 b 2 and a threaded portion 112 b 3 extending away from the shaft portion 112 b 1 .
  • a self-boring threaded fastener e.g., a screw
  • the rigidity of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 and the substrate-penetrating portion 112 b may result in a more robust assembly 100 that permits heavier implements to be supported by the assembly 100 and be secured to the underlying substrate S
  • the relative flexibility of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 provides a beneficial functionality of the assembly 100 . For example, when an external force (see, e.g., arrow F in FIG.
  • the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may flex and partially distribute the externally-applied force F to the exterior surface S S of the underlying substrate S such that all of the externally-applied force F is not translated to and concentrated upon a head portion 112 b 4 (see, e.g., FIGS. 14A-14I ) of the substrate-penetrating portion 112 b.
  • the mounting portion 112 is less likely to be sheared off from the head portion 112 b 4 of the substrate-penetrating portion 112 b of the assembly 100 thereby mitigating damage to one or more of the assembly 100 and the underlying substrate S.
  • the substrate-penetrating portion 112 b may be joined to the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 by, for example, arranging the head portion 112 b 4 of the substrate-penetrating portion 112 b within a passage, recess or cavity 115 (see, e.g., FIGS. 14A-14I ) formed by the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 .
  • the substrate-penetrating portion 112 b may be arranged within a mold tool (not shown) such that when the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 is formed by material injected into the mold tool, the injected material defining the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be molded over the head portion 112 b 4 of the substrate-penetrating portion 112 b such that the head portion 112 b 4 forms the recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 .
  • the recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be pre-formed by a mold tool and the head portion 112 b 4 of the substrate-penetrating portion 112 b may be subsequently inserted into the pre-formed recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 .
  • the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 is shown including a plurality of male-receiving portions 128 defined by a plurality of female portions 130 and a plurality of wedging passages 132 .
  • the implement-retaining portion 114 is shown including a plurality of male portions 138 defined by a first wedging portion 140 , a second wedging portion 142 and a pair of registration portions 144 . As seen in FIG.
  • FIGS. 11B, 13, 14F and 14F ′ Exemplary steps for assembling the assembly 100 is shown and described at FIGS. 14A-14F ′; furthermore, steps for disassembling the assembly 100 is shown and described at FIGS. 14G-14I ′.
  • the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be defined by: (1) a substrate-mounting surface 116 that is shaped for contacting the exterior surface S S of the underlying substrate S and (2) an opposite, non-mounting surface 118 that is shaped to not contact the exterior surface S S of the underlying substrate S.
  • the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined by a neck-portion-engaging surface 120 that is shaped for contacting a surface (see, e.g., 140 a 2 in FIG. 20 ) of at least one male portion (see, e.g., 140 in FIG. 20 ) of the plurality of male portions 138 of the implement-retaining portion 114 .
  • the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be further defined by an opposite, implement-retaining-portion-engaging surface 122 that is shaped to contact and/or be arranged opposite a mounting-portion-engaging surface 134 (see, e.g., FIGS. 18-20 ) of the implement-retaining portion 114 .
  • each of the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 and the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined by a dome shape.
  • a peak or summit of the dome shape of each of the non-mounting surface 118 and the neck-portion-engaging surface 120 are disposed adjacent one another for joining the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 to the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the substrate-mounting surface 116 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be defined by a circumferential engagement lip 124 that is shaped for contacting the exterior surface S S of the underlying substrate S.
  • the circumferential engagement lip 124 may be further defined to include a plurality of detents, nubs or protuberances 126 .
  • the plurality of protuberances 126 may frictionally engage the exterior surface S S of the underlying substrate S, thereby resisting an over-rotation R (see, e.g., FIG. 11B ) of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 relative the underlying substrate S when the mounting portion 112 is joined to the underlying substrate S.
  • the implement-retaining-portion-engaging surface 122 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 defines a plurality of male-receiving portions 128 that are respectively sized for being interfaced with the plurality of male portions 138 extending from the mounting-portion-engaging surface 134 of the implement-retaining portion 114 .
  • the plurality of male-receiving portions 128 may be defined by a plurality of female portions 130 and a plurality of wedging passages 132 .
  • the plurality of female portions 130 may be defined by a first pair of female portions 130 a (including a first female portion 130 a 1 of the plurality of female portions 130 and a second female portion 130 a 2 of the plurality of female portions 130 ) and a second pair of female portions 130 b (including a third female portion 130 b 1 of the plurality of female portions 130 and a fourth female portion 130 b 2 of the plurality of female portions 130 ).
  • the plurality of wedging passages 132 may be defined by a first wedging passage 132 a and a second wedging passage 132 b.
  • the first wedging passage 132 a is associated with the first pair of female portions 130 a and is arranged between the first female portion 130 a 1 and the second female portion 130 a 2 .
  • the second wedging passage 132 b is associated with the second pair of female portions 130 b and is arranged between the third female portion 130 b 1 and the fourth female portion 130 b 2 .
  • the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be divided into a first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2 .
  • the first wedging passage 132 a and the first pair of female portions 130 a are defined by the implement-retaining-portion-engaging surface 122 and provided by the first half 112 a 2-1 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the second wedging passage 132 b and the second pair of female portions 130 b are defined by the implement-retaining-portion-engaging surface 122 and provided by the second half 112 a 2-2 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the implement-retaining portion 114 may be defined by: (1) a mounting-portion-engaging surface 134 that is shaped for being arranged opposite the implement-retaining-portion-engaging surface 122 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 and (2) an opposite, implement-engaging surface 136 that is shaped for being interfaceable with an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like).
  • an implement e.g., an article of clothing such as a hat, a smart phone, a camera, or the like.
  • the implement-engaging surface 136 may include any desirable geometry such as, for example, a flat surface (as seen in FIG. 20 ) with, for example, an adhesive, a storage pocket (see, e.g., FIGS. 21, 23 ), a hook (see e.g., FIGS. 11A-11B, 22 ), a frictional surface defined by bumps (see, e.g., FIG. 24 ) or the like for retaining an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like) thereto.
  • an implement e.g., an article of clothing such as a hat, a smart phone, a camera, or the like
  • the plurality of male portions 138 extend away from the mounting-portion-engaging surface 134 .
  • the plurality of male portions 138 may include a first wedging portion 140 , a second wedging portion 142 and a pair of registration portions 144 (defined by a first registration portion 144 a 1 and a second registration portion 144 a 2 ).
  • the first wedging portion 140 may be defined by a head portion 140 a and a neck portion 140 b.
  • the neck portion 140 b is connected to the head portion 140 a.
  • the neck portion 140 b extends away from the mounting-portion-engaging surface 134 .
  • the neck portion 140 b includes a first side surface 140 b 1 and an opposite second side surface 140 b 2 that are joined by an intermediate surface 140 b 3 .
  • the first side surface 140 b 1 and the second side surface 140 b 2 may be arranged in a non-parallel, converging relationship.
  • the first side surface 140 b 1 of the neck portion 140 b is sized for being disposed adjacent a first wall surface 132 a 1 defined by the first wedging passage 132 a or a first wall surface 132 b 1 defined by the second wedging passage 132 b .
  • the second side surface 140 b 2 of the neck portion 140 b is sized for being disposed adjacent a second wall surface 132 a 2 defined by the first wedging passage 132 a or a second wall surface 132 b 2 defined by the second wedging passage 132 b.
  • the head portion 140 a includes a first surface 140 a 1 and an opposite second surface 140 a 2 that are joined by an intermediate surface 140 a 3 .
  • the first surface 140 a 1 of the head portion 140 a is arranged in an opposing relationship with respect to the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 when the assembly 100 is arranged in an un-biased state; conversely, when an externally-applied force F is applied to the assembly 100 as described above, the first surface 140 a 1 of the head portion 140 a is sized for being disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 when an external force F is applied to the assembly 100 .
  • the second surface 140 a 2 of the head portion 140 a is sized for being arranged adjacent the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • second wedging portion 142 is shown extending away from the mounting-portion-engaging surface 134 .
  • second wedging portion 142 includes a first side surface 142 a 1 and an opposite second side surface 142 a 2 that are joined by an intermediate surface 142 a 3 .
  • the first side surface 142 a 1 and the second side surface 142 a 2 may be arranged in a non-parallel, converging relationship.
  • the first side surface 142 a 1 of the second wedging portion 142 is sized for being disposed adjacent the first wall surface 132 b 1 defined by the second wedging passage 132 b or the first wall surface 132 a 1 defined by the first wedging passage 132 a.
  • the second side surface 142 a 2 of the second wedging portion 142 is sized for being disposed adjacent the second wall surface 132 b 2 defined by the second wedging passage 132 b or the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • intermediate surface 142 a 3 of the second wedging portion 142 is sized for being disposed adjacent an intermediate wall surface 132 b 3 defined by the second wedging passage 132 b or an intermediate wall surface 132 a 3 defined by the first wedging passage 132 a.
  • first registration portion 144 a 1 of the pair of registration portions 144 is shown extending away from the mounting-portion-engaging surface 134 .
  • first registration portion 144 a 1 includes a first side surface 144 a 1-1 and an opposite second side surface 144 a 1-2 that are joined by an intermediate surface 144 a 1-3 .
  • the first side surface 144 a 1-1 and the second side surface 144 a 1-2 may be arranged in a non-parallel, converging relationship.
  • the first side surface 144 a 1-1 of the first registration portion 144 a 1 is sized for being disposed adjacent a first wall surface 13 ba 2-1 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or a first wall surface 130 a 1-1 defined by the first female portion 130 a 1 of the plurality of female portions 130 .
  • the second side surface 144 a 1-2 of the first registration portion 144 a 1 is sized for being disposed adjacent a second wall surface 130 b 2-2 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or a second wall surface 130 a 1-2 defined by the first female portion 130 a 1 of the plurality of female portions 130 .
  • the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 is sized for being disposed adjacent an intermediate wall surface 130 b 2-3 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or an intermediate wall surface 130 a 1-3 defined by the first female portion 130 a 1 of the plurality of female portions 130 .
  • second registration portion 144 a 2 of the pair of registration portions 144 is shown extending away from the mounting-portion-engaging surface 134 .
  • second registration portion 144 a 2 includes a first side surface 144 a 2-1 and an opposite second side surface 144 a 2-2 that are joined by an intermediate surface 144 a 2-3 .
  • the first side surface 144 a 2-1 and the second side surface 144 a 2-2 may be arranged in a non-parallel, converging relationship.
  • the first side surface 144 a 2-1 of the second registration portion 144 a 2 is sized for being disposed adjacent a first wall surface 130 b 1-1 defined by the third female portion 130 b 1 of the plurality of female portions 130 or a first wall surface 130 a 2-1 defined by the second female portion 130 a 2 of the plurality of female portions 130 .
  • the second side surface 144 a 2-2 of the second registration portion 144 a 2 is sized for being disposed adjacent a second wall surface 130 b 1-2 defined by the third female portion 130 b 1 of the plurality of female portions 130 or a second wall surface 130 a 2-2 defined by the second female portion 130 a 2 of the plurality of female portions 130 .
  • the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 is sized for being disposed adjacent an intermediate wall surface 130 b 1-3 defined by the third female portion 130 b 1 of the plurality of female portions 130 or an intermediate wall surface 130 a 2-3 defined by the second female portion 130 a 2 of the plurality of female portions 130 .
  • FIG. 18 ′ Another exemplary implementation of a plurality of male portions is shown generally at 138 ′ in FIG. 18 ′.
  • the plurality of male portions 138 ′ extend away from the mounting-portion-engaging surface 134 ′.
  • the plurality of male portions 138 ′ may include a first wedging portion 140 ′, a second wedging portion 142 ′ and a pair of registration portions 144 ′ (defined by a first registration portion 144 a 1 ′ and a second registration portion 144 a 2 ′).
  • the plurality of male portions 138 ′ may also include a third wedging portion 145 ′ that is aligned with the first wedging portion 140 ′ and the second wedging portion 142 ′. Furthermore, the second wedging portion 142 ′ is located between the first wedging portion 140 ′ and the third wedging portion 145 ′.
  • the third wedging portion 145 ′ may be defined by a substantially cylindrical post that is located within one of the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132 .
  • a distal tip 147 ′ of the third wedging portion 145 ′ may be disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 in order to provide further stability to the implement-retaining portion 114 ′ when the implement-retaining portion 114 ′ is joined to the mounting portion 112 .
  • a head portion 140 a ′ of the first wedging portion 140 ′ includes a first surface 140 a 1 ′ that may define a recess or groove 149 ′.
  • the recess or groove 149 ′ may be sized for receiving a projection 146 a, 146 b (see, e.g., FIGS. 16-17 ) extending from the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 .
  • Each projection 146 a, 146 b may be respectively aligned with the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132 formed by the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 . Registration of one of the projections 146 a, 146 b within the recess or groove 149 ′ provides further stability to the implement-retaining portion 114 ′ when the implement-retaining portion 114 ′ is joined to the mounting portion 112 .
  • FIG. 18 ′′ Another exemplary implementation of a plurality of male portions is shown generally at 138 ′′ in FIG. 18 ′′.
  • the plurality of male portions 138 ′′ extend away from the mounting-portion-engaging surface 134 ′′.
  • the plurality of male portions 138 ′′ may include a first wedging portion 140 ′′, a second wedging portion 142 ′′ and a pair of registration portions 144 ′′ (defined by a first registration portion 144 a 1 ′′ and a second registration portion 144 a 2′′).
  • the plurality of male portions 138 ′′ may also include a third wedging portion 145 ′′ that is aligned with the first wedging portion 140 ′′ and the second wedging portion 142 ′′. Furthermore, the second wedging portion 142 ′′ is located between the first wedging portion 140 ′′ and the third wedging portion 145 ′′.
  • the third wedging portion 145 ′′ may be defined by a substantially cylindrical post that is located within one of the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132 .
  • a distal tip 147 ′′ of the third wedging portion 145 ′′ may be defined by a substantially oval-shaped member having a front surface 147 1 ′′ and a rear surface 147 2 ′′.
  • the front surface 147 1 ′′ is disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 in order to provide further stability to the implement-retaining portion 114 ′′ when the implement-retaining portion 114 ′′ is joined to the mounting portion 112 .
  • the rear surface 147 2 ′′ is disposed adjacent and/or “hooked behind” the surface 120 of the of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • a head portion 140 a ′′ of the first wedging portion 140 ′′ includes a first surface 140 a 1 ′′ that may define a first recess, groove or channel 149 a ′′ and a second recess, groove or channel 149 b ′′.
  • the recess or groove 149 ′ may be sized for receiving first and second projections defined by the implement-retaining-portion-engaging surface 122 of the mounting portion 112 . Registration of the projections within the first and second recess, groove or channels 149 a ′′, 149 b ′′ provides further stability to the implement-retaining portion 114 ′′ when the implement-retaining portion 114 ′′ is joined to the mounting portion 112 .
  • FIGS. 14A-14F ′ exemplary steps for assembling the assembly 100 are shown. Furthermore, as seen in FIGS. 14G-14I ′, steps for disassembling the assembly 100 are also shown.
  • the mounting portion 112 and the implement-retaining portion 114 are shown in a separated, spaced-apart relationship. Assuming the mounting portion 112 is removably-secured to an underlying substrate S, the assembly 100 is firstly formed by moving the implement-retaining portion 114 toward the mounting portion 112 in the direction of the arrow A 1 . Although the mounting portion 112 may be removably-secured to the underlying substrate S, the mounting portion 112 does not have to be removably-secured to the underlying substrate S for connecting the implement-retaining portion 114 toward the mounting portion 112 . As seen in FIG. 14B (which also corresponds to another cross-section view shown in FIG.
  • the first wedging portion 140 is axially aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130 .
  • a reference axis extending along a length L 114 of the implement-retaining portion 114 is shown generally at A 114 -A 114 .
  • the reference axis A 114 -A 114 may be substantially parallel to the exterior surface S S of the underlying substrate S.
  • the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 (and away from the reference axis A 114 -A 114 ) in the direction of the arrow A 2 at an angle ⁇ (see, e.g., FIGS. 14C-14C ′).
  • the neck portion 140 b of the first wedging portion 140 is aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130 .
  • the implement-retaining portion 114 is then moved (with respect to, for example, a spatially fixed orientation of the mounting portion 112 as a result of, for example, the mounting portion 112 being removably-secured to the underlying substrate S) according to the direction of arrow A 3 .
  • Movement of the implement-retaining portion 114 according to the direction of the arrow A 3 results in the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 140 b 1 of the neck portion 140 b progressively coming into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 140 b 2 of the neck portion 140 b progressively coming into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • the implement-retaining portion 114 may be said to be partially secured-to or “hooked” about the mounting portion 112 . Furthermore, with reference to FIGS. 14E-14E ′, as a result of the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being progressively wedged within the first wedging passage 132 a, the implement-retaining portion 114 may be said to be partially secured-to or “hooked” about the mounting portion 112 . Furthermore, with reference to FIGS.
  • the intermediate surface 142 a 3 of the second wedging portion 142 is spatially arranged below a plane P 132b (extending across at least an upper-most portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b; furthermore, the plane P 132b may be substantially perpendicular with respect to the exterior surface S S of the underlying substrate S), (2) at least a portion of the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 is spatially arranged below a plane P 130b (extending across at least an upper-most portion of the intermediate wall surface 130 b 1-3 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 ; furthermore, the plane P 130b may be substantially perpendicular with respect to the exterior surface S S of the underlying substrate S) and (3) at least a portion of the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 is spatially arranged below the plane P 130b that also extends
  • movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A 2 ′ may also result in: the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being further progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 140 b 1 of the neck portion 140 b being further progressively brought into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 140 b 2 of the neck portion 140 b being further progressively brought into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A 2 ′ may also result in: (1) at least a portion of the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 being arranged below the plane P 130b and thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 130 b 2-3 defined by the fourth female portion 130 b 1 of the plurality of female portions 130 and (2) at least a portion of the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 being arranged below the plane P 130b and thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 130 b 1-3 defined by the third female portion 130 b 2 of the plurality of female portions 130 .
  • movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A 2 ′ may also result in: (1) at least a portion of the first side surface 144 a 1-1 and at least a portion of the second side surface 144 a 1-2 of the first registration portion 144 a 1 progressively coming into contact with and being disposed adjacent, respectively, at least a portion of the first wall surface 130 b 2-1 and at least a portion of the second wall surface 130 b 2-2 defined by the fourth female portion 130 b 2 and (2) at least a portion of the first side surface 144 a 2-1 and at least a portion of the second side surface 144 a 2-2 of the second registration portion 144 a 2 progressively coming into contact with and being disposed adjacent, respectively, at least a portion of the first wall surface 130 b 1-1 and at least a portion of the second wall surface 130 b 1-2 defined by the third female portion 130 b 1 .
  • the implement-retaining portion 114 is said to be connected to the mounting portion 112 for defining the assembly 100 being arranged in an assembled form.
  • the assembled assembly 100 may result from, for example, the arrangement of: (1) the first wedging portion 140 within the first wedging passage 132 a and (2) the second wedging portion 142 within the second wedging passage 132 b.
  • Such an arrangement of the first wedging portion 140 and the second wedging portion 142 within the first wedging passage 132 a and the second wedging passage 132 b results in the implement-retaining portion 114 being connected to the mounting portion 112 in a wedged, friction-fit configuration that resists the implement-retaining portion 114 from being disconnected from the mounting portion 112 .
  • the head portion 140 a of the first wedging portion 140 is arranged behind and “hooked” about the first wedging passage 132 such that the second surface 140 a 2 of the head portion 140 a is urged into and disposed adjacent the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the arrangement of the first registration portion 144 a 1 and the second registration portion 144 a 2 within, respectively, the fourth female portion 130 b 2 and third female portion 130 b 1 provides a four-point-connection (taking into account the arrangement of the first wedging portion 140 within the first wedging passage 132 a and the second wedging portion 142 within the second wedging passage 132 b as described above) that further resists rotation R (see, e.g., FIG. 11B ) of the implement-retaining portion 114 about an axis A 100 -A 100 (see, e.g., FIG. 11B ) extending the mounting portion 112 .
  • the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 (and away from the reference axis A 114 -A 114 ) in the direction of the arrow A 2 at the angle ⁇ (see, e.g., FIGS. 14G-14G ′). With the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 as seen in FIGS.
  • the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined as having a first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2 .
  • first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2 may be defined as having a first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2 .
  • the fourth female portion 130 b 2 and the third female portion 130 b 1 of the second (lower) half 112 a 2-2 of the mounting portion 112 are respectively interfaced with the first registration portion 144 a 1 and the second registration portion 144 a 2 while the first female portion 130 a 1 and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 are not interfaced with any of the a plurality of male portions 138 of the implement-retaining portion 114 .
  • first female portion 130 a 1 and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 are not interfaced with any of the a plurality of male portions 138 of the implement-retaining portion 114 , the provision of the first female portion 130 a, and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 still serves a purpose, as follows.
  • the mounting portion 112 may be connected to the underlying substrate S by directing the substrate-penetrating portion 112 b (which may be, for example, a self-boring threaded fastener) into the underlying substrate S by rotating R the mounting portion 112 about the axis A 100 -A 100 (see, e.g., FIG. 11A ) extending through the substrate-penetrating portion 112 b.
  • the substrate-penetrating portion 112 b which may be, for example, a self-boring threaded fastener
  • the first (upper) half 112 a 2-1 and the second (lower) half 112 a 2-2 are designed with symmetry such that either of the first pair of female portions 130 a (including the first female portion 130 a 1 and the second female portion 130 a 2 ) and the second pair of female portions 130 b (including the third female portion 130 b 1 and the fourth female portion 130 b 2 ) may be arranged for being interfaced with the first registration portion 144 a 1 and the second registration portion 144 a 2 .
  • the mounting portion 112 may be alternatively secured to the underlying substrate S such that the first registration portion 144 a 1 and the second registration portion 144 a 2 are interfaced, respectively, with the second female portion 130 a 2 and the first female portion 130 a 1 and not the fourth female portion 130 b 2 and the third female portion 130 b 1 , respectively; furthermore, if arranged in such an alternative orientation, the first wedging portion 140 is arranged within the second wedging passage 132 b and the second wedging portion 142 is arranged within the first wedging passage 132 a.
  • each of the implement-retaining portions 114 include the plurality of male portions 138 extending from the mounting-portion-engaging surface 134 as described above at FIGS. 12, 14A-14I ′ and 18 - 20 ; although the implement-engaging surface 136 of the implement-retaining portion 114 of FIGS. 12, 14A-14I ′ and 18 - 20 are shown being defined by a substantially flat surface, the implement-engaging surface 136 of the implement-retaining portion 114 may shaped or sized to include any desirable surface configuration such as, for example, a storage pocket (see, e.g., FIGS. 21, 23 ), a hook (see e.g., FIGS.
  • each of the implement-retaining portions 114 of FIGS. 12 and 21-24 include a similar configuration of the plurality of male portions 138 extending from the mounting-portion-engaging surface 134 , the mounting portion 112 may function as a universal mounting portion 112 that may permit any of the implement-retaining portions 114 of FIGS. 12 and 21-24 to be removably-secured to the mounting portion 112 .
  • the substantially flat surface may include, for example, an adhesive that permits, for example, an implement to be adhesively bonded in a permanent or selectively-removable fashion thereto.
  • the assembly 200 includes the mounting portion 112 and an implement-retaining portion 214 (see also, e.g., FIG. 27 ).
  • the mounting portion 112 removably-secures the assembly 200 to an underlying substrate S, such as, for example, a post, a tree, drywall, a wall stud or the like.
  • the mounting portion 112 provides mating structure (e.g., a plurality of male-receiving portions 128 ) that act as a universal interface that permits the potential for attachment of a variety of different implement-retaining portions (see, e.g., 114 in FIGS. 21-24 ) each having a mating structure (see, e.g., 138 in FIG. 12 ) that corresponds to the mating structure of the mounting portion 112 .
  • the implement-retaining portion 214 includes an implement portion 215 (e.g., a substantially planar member defining a sign having an octagonal shape that includes or defines alphanumeric text 217 saying “POSTED KEEP OUT!”).
  • the implement portion 215 may define the alphanumeric text 217 as a result the implement portion 215 being die-cut, punched, molded or otherwise formed with passages 219 that extend through a thickness T 215 of the implement portion 215 .
  • the implement portion 215 may also define one or more fastener-receiving passages 221 that are sized for receiving a fastener (not shown, such as, e.g., a screw).
  • the one or more fastener-receiving passages 221 extend through the thickness T 215 of the implement portion 215 ; accordingly, if optionally included, the fastener may assist in securing the implement portion 215 to the underlying substrate S.
  • the implement portion 215 may also define one or more attachment portions 223 .
  • the one or more attachment portions 223 may include one or more attachment flanges 223 a and one or more attachment passages 223 b that extend through the thickness T 215 of the implement portion 215 .
  • each attachment flange see, e.g., 223 a 1 , 223 a 2 , 223 a 3 ) of the one or more attachment flanges 223 a is arranged near each attachment passage (see, e.g., 223 b 1 , 223 b 2 , 223 b 3 ) of the one or more attachment passages 223 b.
  • the implement portion 215 may define three attachment flanges 223 a (see, e.g., 223 a 1 , 223 a 2 , 223 a 3 ) and three attachment passages 223 b (see, e.g., 223 b 1 , 223 b 2 , 223 b 3 ).
  • each attachment flange 223 a 1 , 223 a 2 , 223 a 3 includes an “L shape” body, and, in some instances, a first L-shaped attachment flange 223 a 1 and a third L-shaped attachment flange 223 a 3 are arranged in a “down” orientation while an intermediate/second L-shaped attachment flange 223 a 2 is arranged in an “up” orientation for cooperating to form a lateral attachment passage 225 (see, e.g., FIG. 28 ).
  • a plurality of male portions 238 extend away from a mounting-portion-engaging surface 234 .
  • the plurality of male portions 238 may be defined by a first wedging portion 240 and a second wedging portion 242 that is connected to the first wedging portion 240 by a bridge portion 241 .
  • the plurality of male portions 238 may also be defined by a pair of clamping portions 244 including a first clamping portion 244 a 1 and a second clamping portion 244 a 2 .
  • the first wedging portion 240 extends away from the mounting-portion-engaging surface 234 and includes a first side surface 240 a 1 and an opposite second side surface 240 a 2 that are joined by an upper intermediate surface 240 a 3 .
  • the first side surface 240 a 1 and the second side surface 240 a 2 may be arranged in a non-parallel, converging relationship. In an example, with reference to FIG.
  • the first side surface 240 a 1 of the first wedging portion 240 is sized for being disposed adjacent the first wall surface 132 b 1 defined by the second wedging passage 132 b of the mounting portion 112 or the first wall surface 132 a 1 defined by the first wedging passage 132 a of the mounting portion 112 .
  • the second side surface 240 a 2 of the first wedging portion 240 is sized for being disposed adjacent the second wall surface 132 b 2 defined by the second wedging passage 132 b of the mounting portion 112 or the second wall surface 132 a 2 defined by the first wedging passage 132 a of the mounting portion 112 .
  • the upper intermediate surface 240 a 3 of the first wedging portion 240 is sized for being disposed adjacent the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b of the mounting portion 112 or the intermediate wall surface 132 a 3 defined by the first wedging passage 132 a of the mounting portion 112 .
  • the bridge portion 241 extends from a lower intermediate surface 240 a 4 of the first wedging portion 240 .
  • the bridge portion 241 includes a first side surface 241 a 1 , a second side surface 241 a 2 , a front surface 241 a 3 , a rear surface 241 a 4 and a lower surface 241 a 5 .
  • the second wedging portion 242 extends away from the rear surface 240 a 4 of the bridge portion 241 .
  • the second wedging portion 242 includes a first side surface 242 a 1 and an opposite second side surface 242 a 2 that are joined by an upper intermediate surface 242 a 3 .
  • the first side surface 242 a 1 and the second side surface 242 a 2 may be arranged in a non-parallel, converging relationship. In an example, with reference to FIG.
  • the first side surface 242 a 1 of the second wedging portion 242 is sized for being disposed adjacent the first wall surface 132 a 1 defined by the second wedging passage 132 b of the mounting portion 112 or the first wall surface 132 b 1 defined by the first wedging passage 132 a of the mounting portion 112 .
  • the second side surface 242 a 2 of the second wedging portion 242 is sized for being disposed adjacent the second wall surface 132 a 2 defined by the second wedging passage 132 b of the mounting portion 112 or the second wall surface 132 b 2 defined by the first wedging passage 132 a of the mounting portion 112 .
  • the upper intermediate surface 242 a 3 of the second wedging portion 243 is sized for being disposed adjacent the intermediate wall surface 132 a 3 defined by the second wedging passage 132 b of the mounting portion 112 or the intermediate wall surface 132 b 3 defined by the first wedging passage 132 a of the mounting portion 112 .
  • each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 is generally defined by an “L shape” body having at least a first mounting-portion-engaging-surface 245 1 and a second mounting-portion-engaging surface 245 2 .
  • Each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 extend away from the mounting-portion-engaging surface 234 and are sized and spaced apart from one another for clamping opposite sides of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 .
  • the first mounting-portion-engaging-surface 245 1 is sized for engaging the implement-retaining-portion-engaging surface 122
  • the second mounting-portion-engaging surface 245 2 is sized for engaging a side surface 121 of the body portion 112 a of the mounting portion 112 that connects the neck-portion-engaging surface 120 to the implement-retaining-portion-engaging surface 122 .
  • FIGS. 29A-29E exemplary steps for assembling the assembly 200 are shown.
  • the mounting portion 112 and the implement-retaining portion 214 are shown in a separated, spaced-apart relationship.
  • the assembly 200 is firstly formed by moving the implement-retaining portion 214 toward the mounting portion 112 in the direction of the arrow A 1 .
  • the mounting portion 112 may be removably-secured to the underlying substrate S, the mounting portion 112 does not have to be removably-secured to the underlying substrate S for connecting the implement-retaining portion 214 toward the mounting portion 112 .
  • a reference axis extending along a length L 214 of the implement-retaining portion 214 is shown generally at A 214 -A 214 .
  • the reference axis A 214 -A 214 may be substantially parallel to the exterior surface S S of the underlying substrate S.
  • the implement-retaining portion 214 may then be pivoted away from the mounting portion 112 (and away from the reference axis A 214 -A 214 ) in the direction of the arrow A 2 at an angle ⁇ .
  • the first wedging portion 240 is aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130 .
  • the implement-retaining portion 214 is then moved (with respect to, for example, a spatially fixed orientation of the mounting portion 112 as a result of, for example, the mounting portion 112 being removably-secured to the underlying substrate S) according to the direction of arrow A 3 .
  • Movement of the implement-retaining portion 214 according to the direction of the arrow A 3 results in the first wedging portion 240 of the implement-retaining portion 214 being progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 240 a 1 of the first wedging portion 240 progressively coming into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 240 a 2 of the first wedging portion 240 progressively coming into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A 3 may also result in at least a portion of the first mounting-portion-engaging-surface 245 1 of each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 being disposed adjacent the implement-retaining-portion-engaging surface 122 of the body portion 112 a of the mounting potion 112 .
  • movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A 3 may also result in at least a portion of the second mounting-portion-engaging-surface 245 2 of each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 being disposed adjacent the side surface 121 of the body portion 112 a of the mounting portion 112 .
  • Arrangement of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 relative the body portion 112 a of the mounting portion 112 results in the first clamping portion 244 a, and the second clamping portion 244 a 2 laterally clamping the body portion 112 a of the mounting portion 112 .
  • the implement-retaining portion 214 may be said to be partially secured-to the mounting portion 112 .
  • at least a portion of the upper intermediate surface 242 a 3 of the second wedging portion 242 is spatially arranged below a plane P 132b (extending across at least an upper-most portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b; furthermore, the plane P 132b may be substantially perpendicular with respect to the exterior surface S S of the underlying substrate S).
  • the portion of the upper intermediate surface 242 a 3 of the second wedging portion 242 may thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b.
  • movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A 2 ′ may also result in: the first wedging portion 140 of the implement-retaining portion 214 being further progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 240 a, of the first wedging portion 240 being further progressively brought into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 240 a 2 of the first wedging portion 240 being further progressively brought into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • the implement-retaining portion 214 is said to be connected to the mounting portion 112 for defining the assembly 200 being arranged in an assembled form as seen in, for example, FIGS. 26 and 28 .
  • the assembled assembly 200 may result from, for example, the arrangement of: (1) the first wedging portion 240 within the first wedging passage 132 a and (2) the second wedging portion 242 within the second wedging passage 132 b.
  • Such an arrangement of the first wedging portion 240 and the second wedging portion 242 within the first wedging passage 132 a and the second wedging passage 132 b results in the implement-retaining portion 214 being connected to the mounting portion 112 in a wedged, friction-fit configuration that resists the implement-retaining portion 214 from being disconnected from the mounting portion 112 .
  • FIG. 1 For an example, as seen in FIG. 1
  • the upper intermediate surface 242 a 3 of the second wedging portion 242 would be urged toward the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b thereby preventing the implement-retaining portion 214 from disconnected from the mounting portion 112 in an upwardly direction.
  • the arrangement of the first wedging portion 240 within the first wedging passage 132 a and the second wedging portion 242 within the second wedging passage 132 b as described above provides a two-point connection that further resists rotation R (see, e.g., FIG. 26 ) of the implement-retaining portion 214 about a central axis A 200 -A 200 extending the mounting portion 112 that is substantially orthogonal to the exterior surface S S of the underlying substrate S.
  • the implement-retaining portion 214 may then be pivoted away from the mounting portion 112 (and away from the reference axis A 214 -A 214 ) in the direction of the arrow A 2 at the angle ⁇ . With the implement-retaining portion 214 pivoted away from the mounting portion 112 , the second wedging portion 242 is removed from the second wedging passage 132 b.
  • the implement-retaining portion 214 is moved away from the mounting portion 112 according to the direction of the arrow A 3 ′, which is opposite the direction of the arrow A 3 for removing the first wedging portion 240 from the first wedging passage 132 a and then subsequently arranging the implement-retaining portion 214 in a spatially separated state with respect to the mounting portion 112 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
  • Connection Of Plates (AREA)

Abstract

An assembly (100, 200) is disclosed. The assembly (100, 200) includes a mounting portion (112) and an implement-retaining portion (114, 214). The mounting portion (112) includes a body portion (112 a) and a substrate-penetrating portion (112 b). The body portion (112 a) is defined by a substrate-engaging portion (112 a 1) and an implement retainer interface portion (112 a 2). The implement-retaining portion (114, 214) is removably-connected to the implement retainer interface portion (112 a 2).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This U.S. patent application is a Continuation-In-Part claiming priority to U.S. Ser. No. 15/086,019 filed on Mar. 30, 2016 the disclosure of which is considered part of the disclosure of this application and is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The disclosure relates to an assembly including a mounting portion and an implement-retaining portion.
  • DESCRIPTION OF THE RELATED ART
  • Implement-retainers are known. While existing implement retainers perform adequately for their intended purpose, improvements to implement retainers are continuously being sought in order to advance the arts.
  • SUMMARY
  • One aspect of the disclosure provides an assembly including a mounting portion and an implement-retaining portion. The mounting portion includes a body portion and a substrate-penetrating portion. The body portion is defined by a substrate-engaging portion and an implement retainer interface portion connected to the substrate-engaging portion. The implement-retaining portion is removably-connected to the implement retainer interface portion of the body portion of the mounting portion.
  • Implementations of the disclosure may include one or more of the following optional features. For example, the implement retainer interface portion of the body portion of the mounting portion includes an implement-retaining-portion-engaging surface. The implement-retaining-portion-engaging surface defines a plurality of male-receiving portions and a plurality of wedging passages. The plurality of male-receiving portions includes a plurality of female portions. The plurality of female portions includes a first pair of female portions defined by a first female portion and a second female portion. The plurality of female portions also includes second pair of female portions defined by a third female portion and a fourth female portion. The plurality of wedging passages includes a first wedging passage and a second wedging passage.
  • In some implementations, the first wedging passage is arranged between the first female portion of the first pair of female portions and the second female portion first pair of female portions. The second wedging passage is arranged between the third female portion of the second pair of female portions and the fourth female portion of the second pair of female portions.
  • In some examples, the implement retainer interface portion of the body portion of the mounting portion includes a first half and a second half. The first wedging passage and the first pair of female portions are defined by the first half of the implement retainer interface portion of the body portion of the mounting portion. The second wedging passage and the second pair of female portions are defined by the second half of the implement retainer interface portion of the body portion of the mounting portion.
  • In some implementations, the implement-retaining portion includes a mounting-portion-engaging surface. The implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface. The plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of registration portions including a first registration portion and a second registration portion.
  • In some examples, the plurality of male portions of the implement-retaining portion are removably-interfaced with the plurality of male-receiving portions of the mounting portion. The pair of registration portions is removably-interfaced with one of the first pair of female portions and the second pair of female portions. The first wedging portion is removably-interfaced with one of the first wedging passage and the second wedging passage. The second wedging portion is removably-interfaced with the other of the first wedging passage and the second wedging passage.
  • In some implementations, the implement retainer interface portion of the body portion of the mounting portion is defined by a neck-portion-engaging surface and an implement-retaining-portion-engaging surface. The neck-portion-engaging surface is shaped for contacting the first wedging portion of the plurality of male portions of the implement-retaining portion. The implement-retaining-portion-engaging surface that is shaped to contact or be arranged opposite the mounting-portion-engaging surface of the implement-retaining portion.
  • In some examples, the first wedging portion is defined by a head portion and a neck portion. The neck portion is connected to the head portion. The neck portion extends away from the mounting-portion-engaging surface.
  • In some implementations, the neck portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface. The first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • In some examples, the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface. The first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • In some implementations, the implement-retaining portion includes a mounting-portion-engaging surface. The implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface. The plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of clamping portions including a first clamping portion and a second clamping portion.
  • In some instances, the plurality of male portions of the implement-retaining portion are removably-interfaced with the plurality of male-receiving portions of the mounting portion. The first wedging portion is removably-interfaced with one of the first wedging passage and the second wedging passage, and the second wedging portion is removably-interfaced with the other of the first wedging passage and the second wedging passage.
  • In some examples, a first mounting-portion-engaging-surface of each of the first clamping portion and the second clamping portion is sized for engaging the implement-retaining-portion-engaging surface. A second mounting-portion-engaging surface of each of the first clamping portion and the second clamping portion is sized for engaging a side surface of the body portion of the mounting portion that connects the neck-portion-engaging surface to the implement-retaining-portion-engaging surface.
  • In some implementations, at least the substrate-engaging portion of the body portion of the mounting portion is bendably or flexibly connected to the implement retainer interface portion of the body portion of the mounting portion.
  • In some examples, the substrate-penetrating portion may be formed from a rigid, non-flexible material. The substrate-penetrating portion is threaded fastener having a shaft portion and a threaded portion extending away from the shaft portion.
  • In some implementations, a head portion of the substrate-penetrating portion is arranged within a passage formed by the substrate-engaging portion of the body portion of the mounting portion.
  • In some examples, the substrate-engaging portion of the body portion of the mounting portion defines a substrate-mounting surface having a circumferential engagement lip including a plurality of protuberances.
  • Another aspect of the disclosure provides a portion of an assembly including a mounting portion. The mounting portion includes a body portion and a substrate-penetrating portion. The body portion is defined by a substrate-engaging portion and an implement retainer interface portion connected to the substrate-engaging portion.
  • Implementations of the disclosure may include one or more of the following optional features. For example, the implement retainer interface portion of the body portion of the mounting portion includes an implement-retaining-portion-engaging surface. The implement-retaining-portion-engaging surface defines a plurality of male-receiving portions and a plurality of wedging passages. The plurality of male-receiving portions includes a plurality of female portions. The plurality of female portions includes a first pair of female portions defined by a first female portion and a second female portion. The plurality of female portions also includes second pair of female portions defined by a third female portion and a fourth female portion. The plurality of wedging passages includes a first wedging passage and a second wedging passage.
  • In some implementations, the first wedging passage is arranged between the first female portion of the first pair of female portions and the second female portion first pair of female portions. The second wedging passage is arranged between the third female portion of the second pair of female portions and the fourth female portion of the second pair of female portions.
  • In some examples, the implement retainer interface portion of the body portion of the mounting portion includes a first half and a second half. The first wedging passage and the first pair of female portions are defined by the first half of the implement retainer interface portion of the body portion of the mounting portion. The second wedging passage and the second pair of female portions are defined by the second half of the implement retainer interface portion of the body portion of the mounting portion.
  • In some implementations, the implement retainer interface portion of the body portion of the mounting portion is defined by a neck-portion-engaging surface and an implement-retaining-portion-engaging surface.
  • In some examples, at least the substrate-engaging portion of the body portion of the mounting portion is bendably or flexibly connected to the implement retainer interface portion of the body portion of the mounting portion.
  • In some implementations, the substrate-penetrating portion may be formed from a rigid, non-flexible material. The substrate-penetrating portion is threaded fastener having a shaft portion and a threaded portion extending away from the shaft portion.
  • In some examples, a head portion of the substrate-penetrating portion is arranged within a passage formed by the substrate-engaging portion of the body portion of the mounting portion.
  • In some implementations, the substrate-engaging portion of the body portion of the mounting portion defines a substrate-mounting surface having a circumferential engagement lip including a plurality of protuberances.
  • In yet another aspect of the disclosure provides a portion of an assembly including an implement-retaining portion. The implement-retaining portion includes a mounting-portion-engaging surface and an opposite implement-engaging surface. The implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface. The plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of registration portions including a first registration portion and a second registration portion.
  • Implementations of the disclosure may include one or more of the following optional features. For example, the first wedging portion is defined by a head portion and a neck portion. The neck portion is connected to the head portion. The neck portion extends away from the mounting-portion-engaging surface.
  • In some examples, the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface. The first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • In some implementations, the second wedging portion includes a first side surface and an opposite second side surface that are joined by an intermediate surface. The first side surface and the second side surface are arranged in a non-parallel, converging relationship.
  • In some examples, the implement-engaging surface is defined by a substantially flat surface.
  • In some implementations, the implement-engaging surface is defined by a storage pocket.
  • In some examples, the implement-engaging surface is defined by a storage pocket a hook.
  • In some implementations, the implement-engaging surface is defined by a storage pocket a frictional surface including a plurality of bumps.
  • In some examples, the implement-engaging surface includes an adhesive.
  • In yet another aspect of the disclosure provides a portion of an assembly including an implement-retaining portion. The implement-retaining portion includes an implement-retaining portion including a mounting-portion-engaging surface and an opposite implement-engaging surface. The implement-retaining portion includes a plurality of male portions extending away from the mounting-portion-engaging surface. The plurality of male portions are defined by a first wedging portion, a second wedging portion and a pair of clamping portions including a first clamping portion and a second clamping portion.
  • The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosure will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 is a top view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 2 is a lateral side view of the assembly of FIG. 1.
  • FIG. 3 is a front side view of the assembly of FIG. 1.
  • FIG. 4 is a bottom view of the assembly of FIG. 1.
  • FIG. 5 is a perspective view of the assembly of FIG. 1.
  • FIG. 6 is another perspective view of the assembly of FIG. 1.
  • FIG. 7 is a top view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 8 is a front side view of the assembly of FIG. 7.
  • FIG. 9 is a lateral side view of the assembly of FIG. 7.
  • FIG. 10 is a perspective view of the assembly of FIG. 7.
  • FIG. 11A is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 11B is an assembled perspective view of the assembly of FIG. 11
  • FIG. 12 is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 13 is a side view of the assembly of FIG. 12 arranged in an assembled state.
  • FIGS. 14A-14I are cross-sectional views of the assembly of FIG. 12 referenced from line 14-14 of FIG. 11B.
  • FIGS. 14A′-14I′ are cross-sectional views of the assembly of FIG. 12 referenced from line 14′-14′ of FIG. 11B.
  • FIG. 15 is a perspective view of an exemplary mounting portion.
  • FIG. 16 is a front view of the mounting portion of FIG. 15.
  • FIG. 17 is a side view of the mounting portion of FIG. 15.
  • FIG. 18 is a perspective view of an exemplary implement-retaining portion.
  • FIG. 18′ is a perspective view of an exemplary implement-retaining portion.
  • FIG. 18″ is a perspective view of an exemplary implement-retaining portion.
  • FIG. 19 is a front view of the implement-retaining portion of FIG. 18.
  • FIG. 20 is a side view of the implement-retaining portion of FIG. 18.
  • FIG. 21 is a rear perspective view of an exemplary implement-retaining portion.
  • FIG. 22 is a front perspective view of an exemplary implement-retaining portion.
  • FIG. 23 is a rear perspective view of an exemplary implement-retaining portion.
  • FIG. 24 is a front perspective view of an exemplary implement-retaining portion.
  • FIG. 25 is an exploded perspective view of an exemplary assembly including a mounting portion and an implement-retaining portion.
  • FIG. 26 is an assembled perspective view of the assembly of FIG. 25.
  • FIG. 27 is a perspective view of the mounting portion of the assembly of FIG. 25.
  • FIG. 28 is a cross-sectional view according to line 28-28 of FIG. 25.
  • FIGS. 29A-29E are cross-sectional views of the assembly of FIG. 25 referenced from line 29 of FIG. 28.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The figures illustrate an exemplary implementation of an assembly including a mounting portion and an implement-retaining portion. Based on the foregoing, it is to be generally understood that the nomenclature used herein is simply for convenience and the terms used to describe the invention should be given the broadest meaning by one of ordinary skill in the art.
  • Referring to FIGS. 1-6, an assembly including a rotatably-adjustable, self-boring mount for fixtures may include a hollow, deformable, dome-shaped base element 11 made of a thermoplastic material. In some examples, the base element 11 may be defined by a ratio in which the ratio of the width of the base element 11 to the height of the base element 11 can be between 4 inches and 8 inches. In another example, a diameter of the base element 11 may be between 1.5 inches and 2.5 inches. A self-boring, screw element 12 may be attached to the underside of the base element 11. In some implementations, the base element 11 includes a convex, fixture-supporting topside portion 9, a concave, substrate-facing, underside portion 3 opposite the topside portion 9, a generally cylindrical or frustoconical hub 4 extending perpendicularly away from a center of the underside portion 3, and a substrate-engaging portion defined by a circumferential edge 2 of the base element 11. A plurality of protuberances 1 (which may alternatively be referred to as a “detents” or “nubs”) extends away from the circumferential edge 2. Each detent 1 may be defined by a hemispherical shape and a base diameter that is less than or equal to a width of the circumferential edge 2. The protuberances 1 may be uniformly spaced-apart along the circumferential edge 2. The detents 1 provide additional friction between the circumferential edge 2 and an underlying substrate in order to prevent unintentional rotation of the base element 11. The generally cylindrical or frustoconical hub 4 may be defined by a flat lower surface. When arranged adjacent an underlying substrate, the lower surface of the generally cylindrical or frustoconical hub 4 prevent the screw element 12 to further penetration of the underlying substrate, which, in turn, prevents an excessive deformation of base element 11. The screw element 12 may include a non-circular head portion 5 (e.g., a hex head, a thumb-screw head or the like) that resists twisting when embedded in the base element 11, a shaft with a threaded portion 8, an optional non-threaded portion 10, and a pointed substrate-engaging tip 6 with sharp threads to facilitate self-boring penetration of the underlying substrate and fixation to the underlying substrate with sufficient grip to compress the circumferential edge 2 against the underlying substrate in order to effectuate a counteracting elastic deformation of the dome-shaped base element 11. The non-circular head portion 5 is rigidly embedded in the generally cylindrical or frustoconical hub 4. The threaded portion 8 may have a thread density between approximately about 10-to-16 threads per inch. The treaded portion 8 and the non-threaded portion 10 (which may be collectively referred to as the “shank” of the screw element) may be optionally tapered. The top 6 of the screw element 12 may be optionally defined as a self-tapping tip and/or a self-drilling tip. The length of the screw element 12 may be any desirable length between about, for example, 0.5 inches and 1.5 inches. A fixture such as a conduit holder 7 may be attached to the topside portion 9 of the base element 11.
  • Because the base element 11 may be rigidly attached to the screw element 12, a force applied to the fixture 7 in a plane substantially perpendicular to an axis extending along the length of the screw element 12 is counteracted by a force exerted upon the underlying substrate by the circumferential edge 2 of the elastically deformable, spring-like base element 11; this spring-like quality imparts additional strength to the overall assembly while: (1) the screw element 12 still permits quick and easy installation, and (2) the spring-like quality of base element 11 permits 360° rotation of the assembly while maintaining uniform pressure against the underlying substrate, thereby preserving strength regardless of the rotational positioning of the assembly.
  • Another assembly including a rotatably-adjustable, self-boring mount for fixtures is shown at FIGS. 7-10. The assembly illustrated at FIGS. 7-10 is substantially similar to the assembly illustrated at FIGS. 1-6 with the exception that a self-boring, single screw (see e.g., screw element 12 of FIGS. 1-6) is not insert-molded into the base element (see e.g., screw element 11 of FIGS. 1-6). Rather, a countersunk hole 13 is provided into which a separate, self-boring, single screw may be inserted and seated. In some instances, the hole 13 may be bored through an axial center of the base element 11 and the generally cylindrical or frustoconical hub 4. The hole 13 may be defined by a wider, optionally conical and tapered upper portion 14 and a narrower lower portion 15 such that a screw (not shown and supplied separately) including a head portion and a narrower shaft portion can be inserted into the hole with the bottom of said head portion seated against the surface formed by the junction of the wider upper portion 14 and the narrower lower portion 15 of the hole 13. In some examples, the head portion may be narrower than the diameter of the wider upper portion 14 of the hole 13, but wider than the diameter of the narrower lower portion 15 of the hole 13. In other examples, the upper portion of the hole 13 is conical and tapered. The assembly may be affixed to an underlying substrate with a separately-supplied screw (not shown).
  • The assembly depicted in FIGS. 1-6 and the assembly depicted in FIGS. 7-10 may be interfaced with a conduit holder that is attached to the top portion 9 of the rotatable base element 11. However, the implementations of the assemblies disclosed respectively at FIGS. 1-6 and FIGS. 7-10 are exemplary uses. Accordingly, other assemblies may include different holders, fixtures, hooks, anchors, or cleats (rather than a conduit holder).
  • In some examples, the screw element 12 may be defined by a 1.5″ steel screw element that is insert-molded with a 2″ diameter base element 11 formed from polypropylene in an injection-molding machine. Typically, the wall thickness of base element 11 (i.e. the distance between the convex, fixture-supporting topside portion 9 and the concave, substrate-facing, underside portion 3) is uniform. An exemplary wall thickness (when, for example, the base element 11 is defined by a 2″ diameter and formed from polypropylene) may be 0.093 inches. In other examples, the base element 11 may be made of any elastic material so long as the wall thickness of the base element 11 is adjusted correlatively to produce a similar modulus of flexibility. In the embodiment described above at FIGS. 1-6, the generally cylindrical or frustoconical hub 4 extends from the center of the underside portion 3 of the base element 11 in the direction of the underlying substrate along the axis of the screw element 12 at a distance less than the furthest extent of the nubs 1 on the circumferential edge 2 by 150% of the thread pitch of the screw element 12; this relationship between the lower extent of the base element 11 and the lower extent of the generally cylindrical or frustoconical hub 4 permits the base element 11 to rotate 360° while maintaining contact between the nubs 1 and the underlying substrate, yet avoids excessive deformation of the base element 11 by over-penetration of the screw element 12 into the underlying substrate.
  • FIGS. 11A-13, 14F and 14F′ illustrate an exemplary assembly shown generally at 100. The assembly 100 includes a mounting portion 112 and an implement-retaining portion 114. The mounting portion 112 removably-secures the assembly 100 to an underlying substrate S (see, e.g., FIGS. 11A-11B), such as, for example, a tree, drywall, a wall stud or the like. The implement-retaining portion 114 removably-secures an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like—not shown) to the assembly 100. As will become apparent in the following disclosure, the mounting portion 112 provides mating structure (e.g., a plurality of male-receiving portions 128 as seen in FIG. 12) that acts as a universal interface that permits attachment of a variety of different implement-retaining portions 114 (see e.g., FIGS. 21-24) each having a mating structure (e.g., a plurality of male portions 138 as seen in FIG. 12) that corresponds to the mating structure of the mounting portion 112.
  • As seen in FIG. 11A, the mounting portion 112 includes a body portion 112 a and a substrate-penetrating portion 112 b. The body portion 112 a may be further defined by a substrate-engaging portion 112 a 1 and an implement retainer interface portion 112 a 2.
  • Referring to FIGS. 11A-11B, when the mounting portion 112 of the assembly 100 is removably-secured to the underlying substrate S, the substrate-engaging portion 112 a 1 of the body portion 112 a may be disposed adjacent an exterior surface SS of the underlying substrate S. Furthermore, when the mounting portion 112 of the assembly 100 is removably-secured to the underlying substrate S, the substrate-penetrating portion 112 b may be at least partially extended into at least a portion of a thickness of the underlying substrate S.
  • In some implementations, at least the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be permitted to bend or flex relative to the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112. The bending or flexibility of the substrate-engaging portion 112 a 1 may result from one or both of, for example, a reduction in a thickness of the substrate-engaging portion 112 a 1 and a selection of a non-rigid, flexible material (e.g., polypropylene) utilized for forming the substrate-engaging portion 112 a 1. Accordingly, in some examples, the implement retainer interface portion 112 a 2 may be defined by the same material (e.g., polypropylene) as the substrate-engaging portion 112 a 1 but formed to be defined by a comparatively greater thickness than that of the substrate-engaging portion 112 a 1 (in order to inhibit or resist bending or flexing of the implement retainer interface portion 112 a 2); alternatively, the implement retainer interface portion 112 a 2 may be formed from a rigid, non-flexible material such that the mounting portion 112 is formed in a multi-shot or two-shot injection molding process whereby the substrate-engaging portion 112 a 1 is formed from a first, flexible material and the implement retainer interface portion 112 a 2 is formed from a second, non-flexible material.
  • In some examples, the substrate-penetrating portion 112 b may be formed from a rigid, non-flexible material (e.g., a metal such as, for example, steel). Furthermore, as seen, for example, in FIGS. 13 and 14A-14I′, the substrate-penetrating portion 112 b may be, for example, a self-boring threaded fastener (e.g., a screw) defined by a shaft portion 112 b 1 having a sharp distal tip 112 b 2 and a threaded portion 112 b 3 extending away from the shaft portion 112 b 1.
  • While the rigidity of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 and the substrate-penetrating portion 112 b may result in a more robust assembly 100 that permits heavier implements to be supported by the assembly 100 and be secured to the underlying substrate S, the relative flexibility of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 provides a beneficial functionality of the assembly 100. For example, when an external force (see, e.g., arrow F in FIG. 11B) is directed to one or both of the implement-retaining portion 114 and the body portion 112 a of the mounting portion 112, the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may flex and partially distribute the externally-applied force F to the exterior surface SS of the underlying substrate S such that all of the externally-applied force F is not translated to and concentrated upon a head portion 112 b 4 (see, e.g., FIGS. 14A-14I) of the substrate-penetrating portion 112 b. As a result of the partial distribution of the externally-applied force F by the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112, the mounting portion 112 is less likely to be sheared off from the head portion 112 b 4 of the substrate-penetrating portion 112 b of the assembly 100 thereby mitigating damage to one or more of the assembly 100 and the underlying substrate S.
  • In some instances, the substrate-penetrating portion 112 b may be joined to the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 by, for example, arranging the head portion 112 b 4 of the substrate-penetrating portion 112 b within a passage, recess or cavity 115 (see, e.g., FIGS. 14A-14I) formed by the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112. In some examples, the substrate-penetrating portion 112 b may be arranged within a mold tool (not shown) such that when the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 is formed by material injected into the mold tool, the injected material defining the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be molded over the head portion 112 b 4 of the substrate-penetrating portion 112 b such that the head portion 112 b 4 forms the recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112. In other examples, the recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be pre-formed by a mold tool and the head portion 112 b 4 of the substrate-penetrating portion 112 b may be subsequently inserted into the pre-formed recess or cavity 115 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112.
  • Referring to FIG. 12, the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 is shown including a plurality of male-receiving portions 128 defined by a plurality of female portions 130 and a plurality of wedging passages 132. Furthermore, the implement-retaining portion 114 is shown including a plurality of male portions 138 defined by a first wedging portion 140, a second wedging portion 142 and a pair of registration portions 144. As seen in FIG. 12, a plurality of dashed lines are shown for the purpose of providing an exemplary illustration of the correspondence between the plurality of male-receiving portions 128 of the mounting portion 112 and the plurality of male portions 138 of the implement-retaining portion 114. When the plurality of male portions 138 of the implement-retaining portion 114 are interfaced with (some but not all of) the male-receiving portions 128 of the mounting portion 112, the assembly 100 is formed as seen, for example in FIGS. 11B, 13, 14F and 14F′. Exemplary steps for assembling the assembly 100 is shown and described at FIGS. 14A-14F′; furthermore, steps for disassembling the assembly 100 is shown and described at FIGS. 14G-14I′.
  • Referring to FIGS. 15-17, an implementation of the mounting portion 112 is described. With reference to FIG. 17, the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be defined by: (1) a substrate-mounting surface 116 that is shaped for contacting the exterior surface SS of the underlying substrate S and (2) an opposite, non-mounting surface 118 that is shaped to not contact the exterior surface SS of the underlying substrate S.
  • With reference to FIG. 17, the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined by a neck-portion-engaging surface 120 that is shaped for contacting a surface (see, e.g., 140 a 2 in FIG. 20) of at least one male portion (see, e.g., 140 in FIG. 20) of the plurality of male portions 138 of the implement-retaining portion 114. Furthermore, the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be further defined by an opposite, implement-retaining-portion-engaging surface 122 that is shaped to contact and/or be arranged opposite a mounting-portion-engaging surface 134 (see, e.g., FIGS. 18-20) of the implement-retaining portion 114.
  • As seen in FIG. 17, each of the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 and the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined by a dome shape. A peak or summit of the dome shape of each of the non-mounting surface 118 and the neck-portion-engaging surface 120 are disposed adjacent one another for joining the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 to the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112.
  • Furthermore, as seen in FIGS. 15 and 17, the substrate-mounting surface 116 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 may be defined by a circumferential engagement lip 124 that is shaped for contacting the exterior surface SS of the underlying substrate S. In some instances, the circumferential engagement lip 124 may be further defined to include a plurality of detents, nubs or protuberances 126. When arranged adjacent the exterior surface SS of the underlying substrate S, the plurality of protuberances 126 may frictionally engage the exterior surface SS of the underlying substrate S, thereby resisting an over-rotation R (see, e.g., FIG. 11B) of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 relative the underlying substrate S when the mounting portion 112 is joined to the underlying substrate S.
  • With reference to FIG. 15, the implement-retaining-portion-engaging surface 122 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 defines a plurality of male-receiving portions 128 that are respectively sized for being interfaced with the plurality of male portions 138 extending from the mounting-portion-engaging surface 134 of the implement-retaining portion 114. In an example, the plurality of male-receiving portions 128 may be defined by a plurality of female portions 130 and a plurality of wedging passages 132.
  • The plurality of female portions 130 may be defined by a first pair of female portions 130 a (including a first female portion 130 a 1 of the plurality of female portions 130 and a second female portion 130 a 2 of the plurality of female portions 130) and a second pair of female portions 130 b (including a third female portion 130 b 1 of the plurality of female portions 130 and a fourth female portion 130 b 2 of the plurality of female portions 130). The plurality of wedging passages 132 may be defined by a first wedging passage 132 a and a second wedging passage 132 b.
  • The first wedging passage 132 a is associated with the first pair of female portions 130 a and is arranged between the first female portion 130 a 1 and the second female portion 130 a 2. The second wedging passage 132 b is associated with the second pair of female portions 130 b and is arranged between the third female portion 130 b 1 and the fourth female portion 130 b 2.
  • As seen in FIGS. 15-16, the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be divided into a first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2. The first wedging passage 132 a and the first pair of female portions 130 a are defined by the implement-retaining-portion-engaging surface 122 and provided by the first half 112 a 2-1 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112. The second wedging passage 132 b and the second pair of female portions 130 b are defined by the implement-retaining-portion-engaging surface 122 and provided by the second half 112 a 2-2 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112.
  • Referring to FIGS. 18-20, an implementation of the implement-retaining portion 114 is described. With reference to FIG. 20, the implement-retaining portion 114 may be defined by: (1) a mounting-portion-engaging surface 134 that is shaped for being arranged opposite the implement-retaining-portion-engaging surface 122 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 and (2) an opposite, implement-engaging surface 136 that is shaped for being interfaceable with an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like). As will be described below in the following disclosure at FIGS. 21-24, the implement-engaging surface 136 may include any desirable geometry such as, for example, a flat surface (as seen in FIG. 20) with, for example, an adhesive, a storage pocket (see, e.g., FIGS. 21, 23), a hook (see e.g., FIGS. 11A-11B, 22), a frictional surface defined by bumps (see, e.g., FIG. 24) or the like for retaining an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like) thereto.
  • With reference to FIGS. 18-20, the plurality of male portions 138 extend away from the mounting-portion-engaging surface 134. The plurality of male portions 138 may include a first wedging portion 140, a second wedging portion 142 and a pair of registration portions 144 (defined by a first registration portion 144 a 1 and a second registration portion 144 a 2).
  • With reference to FIG. 20, the first wedging portion 140 may be defined by a head portion 140 a and a neck portion 140 b. The neck portion 140 b is connected to the head portion 140 a. The neck portion 140 b extends away from the mounting-portion-engaging surface 134.
  • As seen in FIG. 19, the neck portion 140 b includes a first side surface 140 b 1 and an opposite second side surface 140 b 2 that are joined by an intermediate surface 140 b 3. The first side surface 140 b 1 and the second side surface 140 b 2 may be arranged in a non-parallel, converging relationship. With reference to FIGS. 15 and 16, the first side surface 140 b 1 of the neck portion 140 b is sized for being disposed adjacent a first wall surface 132 a 1 defined by the first wedging passage 132 a or a first wall surface 132 b 1 defined by the second wedging passage 132 b. With continued reference to FIGS. 15 and 16, the second side surface 140 b 2 of the neck portion 140 b is sized for being disposed adjacent a second wall surface 132 a 2 defined by the first wedging passage 132 a or a second wall surface 132 b 2 defined by the second wedging passage 132 b.
  • Referring to FIG. 20, the head portion 140 a includes a first surface 140 a 1 and an opposite second surface 140 a 2 that are joined by an intermediate surface 140 a 3. As seen in FIG. 14F, the first surface 140 a 1 of the head portion 140 a is arranged in an opposing relationship with respect to the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 when the assembly 100 is arranged in an un-biased state; conversely, when an externally-applied force F is applied to the assembly 100 as described above, the first surface 140 a 1 of the head portion 140 a is sized for being disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 when an external force F is applied to the assembly 100. Furthermore, as seen in FIG. 14F, the second surface 140 a 2 of the head portion 140 a is sized for being arranged adjacent the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112.
  • With reference to FIGS. 18-20, the second wedging portion 142 is shown extending away from the mounting-portion-engaging surface 134. As seen in FIG. 19, second wedging portion 142 includes a first side surface 142 a 1 and an opposite second side surface 142 a 2 that are joined by an intermediate surface 142 a 3. The first side surface 142 a 1 and the second side surface 142 a 2 may be arranged in a non-parallel, converging relationship. With reference to FIGS. 15 and 16, the first side surface 142 a 1 of the second wedging portion 142 is sized for being disposed adjacent the first wall surface 132 b 1 defined by the second wedging passage 132 b or the first wall surface 132 a 1 defined by the first wedging passage 132 a. With continued reference to FIGS. 15 and 16, the second side surface 142 a 2 of the second wedging portion 142 is sized for being disposed adjacent the second wall surface 132 b 2 defined by the second wedging passage 132 b or the second wall surface 132 a 2 defined by the first wedging passage 132 a. Furthermore, the intermediate surface 142 a 3 of the second wedging portion 142 is sized for being disposed adjacent an intermediate wall surface 132 b 3 defined by the second wedging passage 132 b or an intermediate wall surface 132 a 3 defined by the first wedging passage 132 a.
  • With reference to FIGS. 18-20, the first registration portion 144 a 1 of the pair of registration portions 144 is shown extending away from the mounting-portion-engaging surface 134. As seen in FIG. 19, first registration portion 144 a 1 includes a first side surface 144 a 1-1 and an opposite second side surface 144 a 1-2 that are joined by an intermediate surface 144 a 1-3. The first side surface 144 a 1-1 and the second side surface 144 a 1-2 may be arranged in a non-parallel, converging relationship.
  • With reference to FIGS. 15 and 16, the first side surface 144 a 1-1 of the first registration portion 144 a 1 is sized for being disposed adjacent a first wall surface 13 ba 2-1 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or a first wall surface 130 a 1-1 defined by the first female portion 130 a 1 of the plurality of female portions 130. With continued reference to FIGS. 15 and 16, the second side surface 144 a 1-2 of the first registration portion 144 a 1 is sized for being disposed adjacent a second wall surface 130 b 2-2 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or a second wall surface 130 a 1-2 defined by the first female portion 130 a 1 of the plurality of female portions 130. Furthermore, the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 is sized for being disposed adjacent an intermediate wall surface 130 b 2-3 defined by the fourth female portion 130 b 2 of the plurality of female portions 130 or an intermediate wall surface 130 a 1-3 defined by the first female portion 130 a 1 of the plurality of female portions 130.
  • With reference to FIGS. 18-20, the second registration portion 144 a 2 of the pair of registration portions 144 is shown extending away from the mounting-portion-engaging surface 134. As seen in FIG. 19, second registration portion 144 a 2 includes a first side surface 144 a 2-1 and an opposite second side surface 144 a 2-2 that are joined by an intermediate surface 144 a 2-3. The first side surface 144 a 2-1 and the second side surface 144 a 2-2 may be arranged in a non-parallel, converging relationship.
  • With reference to FIGS. 15 and 16, the first side surface 144 a 2-1 of the second registration portion 144 a 2 is sized for being disposed adjacent a first wall surface 130 b 1-1 defined by the third female portion 130 b 1 of the plurality of female portions 130 or a first wall surface 130 a 2-1 defined by the second female portion 130 a 2 of the plurality of female portions 130. With continued reference to FIGS. 15 and 16, the second side surface 144 a 2-2 of the second registration portion 144 a 2 is sized for being disposed adjacent a second wall surface 130 b 1-2 defined by the third female portion 130 b 1 of the plurality of female portions 130 or a second wall surface 130 a 2-2 defined by the second female portion 130 a 2 of the plurality of female portions 130. Furthermore, the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 is sized for being disposed adjacent an intermediate wall surface 130 b 1-3 defined by the third female portion 130 b 1 of the plurality of female portions 130 or an intermediate wall surface 130 a 2-3 defined by the second female portion 130 a 2 of the plurality of female portions 130.
  • Another exemplary implementation of a plurality of male portions is shown generally at 138′ in FIG. 18′. The plurality of male portions 138′ extend away from the mounting-portion-engaging surface 134′. The plurality of male portions 138′ may include a first wedging portion 140′, a second wedging portion 142′ and a pair of registration portions 144′ (defined by a first registration portion 144 a 1′ and a second registration portion 144 a 2′).
  • The plurality of male portions 138′ may also include a third wedging portion 145′ that is aligned with the first wedging portion 140′ and the second wedging portion 142′. Furthermore, the second wedging portion 142′ is located between the first wedging portion 140′ and the third wedging portion 145′. The third wedging portion 145′ may be defined by a substantially cylindrical post that is located within one of the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132. Furthermore, a distal tip 147′ of the third wedging portion 145′ may be disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 in order to provide further stability to the implement-retaining portion 114′ when the implement-retaining portion 114′ is joined to the mounting portion 112.
  • Furthermore, a head portion 140 a′ of the first wedging portion 140′ includes a first surface 140 a 1′ that may define a recess or groove 149′. The recess or groove 149′ may be sized for receiving a projection 146 a, 146 b (see, e.g., FIGS. 16-17) extending from the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112. Each projection 146 a, 146 b may be respectively aligned with the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132 formed by the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112. Registration of one of the projections 146 a, 146 b within the recess or groove 149′ provides further stability to the implement-retaining portion 114′ when the implement-retaining portion 114′ is joined to the mounting portion 112.
  • Another exemplary implementation of a plurality of male portions is shown generally at 138″ in FIG. 18″. The plurality of male portions 138″ extend away from the mounting-portion-engaging surface 134″. The plurality of male portions 138″ may include a first wedging portion 140″, a second wedging portion 142″ and a pair of registration portions 144″ (defined by a first registration portion 144 a 1″ and a second registration portion 144 a 2″).
  • The plurality of male portions 138″ may also include a third wedging portion 145″ that is aligned with the first wedging portion 140″ and the second wedging portion 142″. Furthermore, the second wedging portion 142″ is located between the first wedging portion 140″ and the third wedging portion 145″. The third wedging portion 145″ may be defined by a substantially cylindrical post that is located within one of the first wedging passage 132 a and the second wedging passage 132 b of the plurality of wedging passages 132. Furthermore, a distal tip 147″ of the third wedging portion 145″ may be defined by a substantially oval-shaped member having a front surface 147 1″ and a rear surface 147 2″. The front surface 147 1″ is disposed adjacent the non-mounting surface 118 of the substrate-engaging portion 112 a 1 of the body portion 112 a of the mounting portion 112 in order to provide further stability to the implement-retaining portion 114″ when the implement-retaining portion 114″ is joined to the mounting portion 112. The rear surface 147 2″ is disposed adjacent and/or “hooked behind” the surface 120 of the of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112.
  • Furthermore, a head portion 140 a″ of the first wedging portion 140″ includes a first surface 140 a 1″ that may define a first recess, groove or channel 149 a″ and a second recess, groove or channel 149 b″. The recess or groove 149′ may be sized for receiving first and second projections defined by the implement-retaining-portion-engaging surface 122 of the mounting portion 112. Registration of the projections within the first and second recess, groove or channels 149 a″, 149 b″ provides further stability to the implement-retaining portion 114″ when the implement-retaining portion 114″ is joined to the mounting portion 112.
  • Referring to FIGS. 14A-14F′, exemplary steps for assembling the assembly 100 are shown. Furthermore, as seen in FIGS. 14G-14I′, steps for disassembling the assembly 100 are also shown.
  • With reference to FIGS. 14A-14A′, the mounting portion 112 and the implement-retaining portion 114 are shown in a separated, spaced-apart relationship. Assuming the mounting portion 112 is removably-secured to an underlying substrate S, the assembly 100 is firstly formed by moving the implement-retaining portion 114 toward the mounting portion 112 in the direction of the arrow A1. Although the mounting portion 112 may be removably-secured to the underlying substrate S, the mounting portion 112 does not have to be removably-secured to the underlying substrate S for connecting the implement-retaining portion 114 toward the mounting portion 112. As seen in FIG. 14B (which also corresponds to another cross-section view shown in FIG. 14B′), after the implement-retaining portion 114 is moved toward the mounting portion 112 in the direction of the arrow A1, the first wedging portion 140 is axially aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130.
  • Referring to FIGS. 14B-14B′, a reference axis extending along a length L114 of the implement-retaining portion 114 is shown generally at A114-A114. Although not required, for purposes of establishing an exemplary frame of reference, the reference axis A114-A114 may be substantially parallel to the exterior surface SS of the underlying substrate S. As comparatively seen in FIGS. 14B-14B′ and 14C-14C′, the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 (and away from the reference axis A114-A114) in the direction of the arrow A2 at an angle θ (see, e.g., FIGS. 14C-14C′).
  • As seen in FIG. 14C, while tilted at the angle θ away from the reference axis A114-A114 and while the implement-retaining portion 114 is still separated from the mounting portion 112, the neck portion 140 b of the first wedging portion 140 is aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130. As seen in FIGS. 14C-14C′ through 14E-14E′, the implement-retaining portion 114 is then moved (with respect to, for example, a spatially fixed orientation of the mounting portion 112 as a result of, for example, the mounting portion 112 being removably-secured to the underlying substrate S) according to the direction of arrow A3. Movement of the implement-retaining portion 114 according to the direction of the arrow A3 results in the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 140 b 1 of the neck portion 140 b progressively coming into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 140 b 2 of the neck portion 140 b progressively coming into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • Referring to FIGS. 14E-14E′, as a result of the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being progressively wedged within the first wedging passage 132 a, the implement-retaining portion 114 may be said to be partially secured-to or “hooked” about the mounting portion 112. Furthermore, with reference to FIGS. 14E-14E′, (1) at least a portion of the intermediate surface 142 a 3 of the second wedging portion 142 is spatially arranged below a plane P132b (extending across at least an upper-most portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b; furthermore, the plane P132b may be substantially perpendicular with respect to the exterior surface SS of the underlying substrate S), (2) at least a portion of the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 is spatially arranged below a plane P130b (extending across at least an upper-most portion of the intermediate wall surface 130 b 1-3 defined by the fourth female portion 130 b 2 of the plurality of female portions 130; furthermore, the plane P130b may be substantially perpendicular with respect to the exterior surface SS of the underlying substrate S) and (3) at least a portion of the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 is spatially arranged below the plane P130b that also extends across at least an upper-most portion of the intermediate wall surface 130 b 1-3 defined by the third female portion 130 b 1 of the plurality of female portions 130.
  • As seen in FIGS. 14E-14E′, once the implement-retaining portion 114 is arranged relative the mounting portion 112 as described above, the implement-retaining portion 114 is moved toward the mounting portion 112 (and toward the reference axis A114-A114) in the direction of the arrow A2′, which is opposite the direction of the arrow A2. Movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A2′, results in at least a portion of the intermediate surface 142 a 3 of the second wedging portion 142 being arranged below the plane P132b and thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b. Additionally, movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A2′, may also result in: the neck portion 140 b of the first wedging portion 140 of the implement-retaining portion 114 being further progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 140 b 1 of the neck portion 140 b being further progressively brought into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 140 b 2 of the neck portion 140 b being further progressively brought into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • Furthermore, in some instances, movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A2′, may also result in: (1) at least a portion of the intermediate surface 144 a 1-3 of the first registration portion 144 a 1 being arranged below the plane P130b and thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 130 b 2-3 defined by the fourth female portion 130 b 1 of the plurality of female portions 130 and (2) at least a portion of the intermediate surface 144 a 2-3 of the second registration portion 144 a 2 being arranged below the plane P130b and thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 130 b 1-3 defined by the third female portion 130 b 2 of the plurality of female portions 130. Yet even further, movement of the implement-retaining portion 114 relative the mounting portion 112 in the direction of the arrow A2′, may also result in: (1) at least a portion of the first side surface 144 a 1-1 and at least a portion of the second side surface 144 a 1-2 of the first registration portion 144 a 1 progressively coming into contact with and being disposed adjacent, respectively, at least a portion of the first wall surface 130 b 2-1 and at least a portion of the second wall surface 130 b 2-2 defined by the fourth female portion 130 b 2 and (2) at least a portion of the first side surface 144 a 2-1 and at least a portion of the second side surface 144 a 2-2 of the second registration portion 144 a 2 progressively coming into contact with and being disposed adjacent, respectively, at least a portion of the first wall surface 130 b 1-1 and at least a portion of the second wall surface 130 b 1-2 defined by the third female portion 130 b 1.
  • With reference to FIGS. 14F-14F′, as a result of the implement-retaining portion 114 being moved relative the mounting portion 112 in the direction of the arrow A2′, the implement-retaining portion 114 is said to be connected to the mounting portion 112 for defining the assembly 100 being arranged in an assembled form. In an example, the assembled assembly 100 may result from, for example, the arrangement of: (1) the first wedging portion 140 within the first wedging passage 132 a and (2) the second wedging portion 142 within the second wedging passage 132 b. Such an arrangement of the first wedging portion 140 and the second wedging portion 142 within the first wedging passage 132 a and the second wedging passage 132 b results in the implement-retaining portion 114 being connected to the mounting portion 112 in a wedged, friction-fit configuration that resists the implement-retaining portion 114 from being disconnected from the mounting portion 112. In an example, as seen in FIGS. 14F-14F′, if an external force F in the direction of arrow A3′, which is opposite the direction of the arrow A3, were to be applied to the implement-retaining portion 114, the intermediate surface 142 a 3 of the second wedging portion 142 would be urged toward the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b thereby preventing the implement-retaining portion 114 from disconnected from the mounting portion 112 in an upwardly direction. Further, if a pulling force F in the direction of arrow A4 is applied to the implement-retaining portion 114, (for pulling the implement-retaining portion 114 away from the exterior surface SS of the underlying substrate S), the head portion 140 a of the first wedging portion 140 is arranged behind and “hooked” about the first wedging passage 132 such that the second surface 140 a 2 of the head portion 140 a is urged into and disposed adjacent the neck-portion-engaging surface 120 of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112. Yet even further, the arrangement of the first registration portion 144 a 1 and the second registration portion 144 a 2 within, respectively, the fourth female portion 130 b 2 and third female portion 130 b 1, provides a four-point-connection (taking into account the arrangement of the first wedging portion 140 within the first wedging passage 132 a and the second wedging portion 142 within the second wedging passage 132 b as described above) that further resists rotation R (see, e.g., FIG. 11B) of the implement-retaining portion 114 about an axis A100-A100 (see, e.g., FIG. 11B) extending the mounting portion 112.
  • Referring to FIGS. 14F-14F′ and 14G-14G′, when it may be desired to arrange the assembly 100 back to a disassembled orientation (i.e., arranging the implement-retaining portion 114 in spatially separated orientation with respect to the mounting portion 112 as seen in, for example, FIGS. 14A-14A′), the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 (and away from the reference axis A114-A114) in the direction of the arrow A2 at the angle θ (see, e.g., FIGS. 14G-14G′). With the implement-retaining portion 114 may then be pivoted away from the mounting portion 112 as seen in FIGS. 14G-14G′: (1) the second wedging portion 142 is removed from the second wedging passage 132 b, (2) the first registration portion 144 a 1 is removed from the fourth female portion 130 b 2 of the plurality of female portions 130 and (3) the second registration portion 144 a 2 is removed from the third female portion 130 b 1 of the plurality of female portions 130. Thereafter, as seen in FIGS. 14H-14H′ and 141-141′, the implement-retaining portion 114 is moved away from the mounting portion 112 according to the direction of the arrow A3′, which is opposite the direction of the arrow A3 for removing the first wedging portion 140 from the first wedging passage 132 a (as seen in FIGS. 14H-14H′) and then subsequently arranging the implement-retaining portion 114 in a spatially separated state with respect to the mounting portion 112 (as seen in FIGS. 14I-14I′).
  • As described above at FIGS. 15-16, the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112 may be defined as having a first (upper) half 112 a 2-1 and a second (lower) half 112 a 2-2. In the above-described exemplary assembling and disassembling of the assembly 100 at FIGS. 14A-14I′, the fourth female portion 130 b 2 and the third female portion 130 b 1 of the second (lower) half 112 a 2-2 of the mounting portion 112 are respectively interfaced with the first registration portion 144 a 1 and the second registration portion 144 a 2 while the first female portion 130 a 1 and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 are not interfaced with any of the a plurality of male portions 138 of the implement-retaining portion 114. Although the first female portion 130 a 1 and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 are not interfaced with any of the a plurality of male portions 138 of the implement-retaining portion 114, the provision of the first female portion 130 a, and the second female portion 130 a 2 of the first (upper) half 112 a 2-1 of the mounting portion 112 still serves a purpose, as follows.
  • In an example, the mounting portion 112 may be connected to the underlying substrate S by directing the substrate-penetrating portion 112 b (which may be, for example, a self-boring threaded fastener) into the underlying substrate S by rotating R the mounting portion 112 about the axis A100-A100 (see, e.g., FIG. 11A) extending through the substrate-penetrating portion 112 b. In order to prevent an undesirable over-rotation R of the mounting portion 112 b, the first (upper) half 112 a 2-1 and the second (lower) half 112 a 2-2 are designed with symmetry such that either of the first pair of female portions 130 a (including the first female portion 130 a 1 and the second female portion 130 a 2) and the second pair of female portions 130 b (including the third female portion 130 b 1 and the fourth female portion 130 b 2) may be arranged for being interfaced with the first registration portion 144 a 1 and the second registration portion 144 a 2. Therefore, although the above-described steps for assembling and disassembling the assembly 100 discloses the first registration portion 144 a 1 and the second registration portion 144 a 2 being interfaced with the fourth female portion 130 b 2 and the third female portion 130 b 1, the mounting portion 112 may be alternatively secured to the underlying substrate S such that the first registration portion 144 a 1 and the second registration portion 144 a 2 are interfaced, respectively, with the second female portion 130 a 2 and the first female portion 130 a 1 and not the fourth female portion 130 b 2 and the third female portion 130 b 1, respectively; furthermore, if arranged in such an alternative orientation, the first wedging portion 140 is arranged within the second wedging passage 132 b and the second wedging portion 142 is arranged within the first wedging passage 132 a.
  • Referring to FIGS. 21-24, a plurality of implement-retaining portions 114 are shown. Each of the implement-retaining portions 114 include the plurality of male portions 138 extending from the mounting-portion-engaging surface 134 as described above at FIGS. 12, 14A-14I′ and 18-20; although the implement-engaging surface 136 of the implement-retaining portion 114 of FIGS. 12, 14A-14I′ and 18-20 are shown being defined by a substantially flat surface, the implement-engaging surface 136 of the implement-retaining portion 114 may shaped or sized to include any desirable surface configuration such as, for example, a storage pocket (see, e.g., FIGS. 21, 23), a hook (see e.g., FIGS. 11A-11B, 22), a frictional surface defined by bumps (see, e.g., FIG. 24) or the like for retaining an implement (e.g., an article of clothing such as a hat, a smart phone, a camera, or the like) to the implement-engaging surface 136 of the implement-retaining portion 114. Because each of the implement-retaining portions 114 of FIGS. 12 and 21-24 include a similar configuration of the plurality of male portions 138 extending from the mounting-portion-engaging surface 134, the mounting portion 112 may function as a universal mounting portion 112 that may permit any of the implement-retaining portions 114 of FIGS. 12 and 21-24 to be removably-secured to the mounting portion 112. Furthermore, even if the implement-engaging surface 136 of the implement-retaining portion 114 is defined to be a substantially flat surface as seen, for example at FIGS. 12, 14A-14I′ and 18-20, the substantially flat surface may include, for example, an adhesive that permits, for example, an implement to be adhesively bonded in a permanent or selectively-removable fashion thereto.
  • With reference to FIGS. 25-26, 28 and 29A-29E, an exemplary assembly shown generally at 200. The assembly 200 includes the mounting portion 112 and an implement-retaining portion 214 (see also, e.g., FIG. 27). As seen in FIG. 25, the mounting portion 112 removably-secures the assembly 200 to an underlying substrate S, such as, for example, a post, a tree, drywall, a wall stud or the like. As described above, the mounting portion 112 provides mating structure (e.g., a plurality of male-receiving portions 128) that act as a universal interface that permits the potential for attachment of a variety of different implement-retaining portions (see, e.g., 114 in FIGS. 21-24) each having a mating structure (see, e.g., 138 in FIG. 12) that corresponds to the mating structure of the mounting portion 112.
  • In an example, as seen in FIG. 27, the implement-retaining portion 214 includes an implement portion 215 (e.g., a substantially planar member defining a sign having an octagonal shape that includes or defines alphanumeric text 217 saying “POSTED KEEP OUT!”). In an example, the implement portion 215 may define the alphanumeric text 217 as a result the implement portion 215 being die-cut, punched, molded or otherwise formed with passages 219 that extend through a thickness T215 of the implement portion 215.
  • The implement portion 215 may also define one or more fastener-receiving passages 221 that are sized for receiving a fastener (not shown, such as, e.g., a screw). The one or more fastener-receiving passages 221 extend through the thickness T215 of the implement portion 215; accordingly, if optionally included, the fastener may assist in securing the implement portion 215 to the underlying substrate S.
  • The implement portion 215 may also define one or more attachment portions 223. The one or more attachment portions 223 may include one or more attachment flanges 223 a and one or more attachment passages 223 b that extend through the thickness T215 of the implement portion 215. In an example, each attachment flange (see, e.g., 223 a 1, 223 a 2, 223 a 3) of the one or more attachment flanges 223 a is arranged near each attachment passage (see, e.g., 223 b 1, 223 b 2, 223 b 3) of the one or more attachment passages 223 b. In an example, the implement portion 215 may define three attachment flanges 223 a (see, e.g., 223 a 1, 223 a 2, 223 a 3) and three attachment passages 223 b (see, e.g., 223 b 1, 223 b 2, 223 b 3). In an example, each attachment flange 223 a 1, 223 a 2, 223 a 3 includes an “L shape” body, and, in some instances, a first L-shaped attachment flange 223 a 1 and a third L-shaped attachment flange 223 a 3 are arranged in a “down” orientation while an intermediate/second L-shaped attachment flange 223 a 2 is arranged in an “up” orientation for cooperating to form a lateral attachment passage 225 (see, e.g., FIG. 28).
  • Referring to FIG. 25, a plurality of male portions 238 extend away from a mounting-portion-engaging surface 234. The plurality of male portions 238 may be defined by a first wedging portion 240 and a second wedging portion 242 that is connected to the first wedging portion 240 by a bridge portion 241. The plurality of male portions 238 may also be defined by a pair of clamping portions 244 including a first clamping portion 244 a 1 and a second clamping portion 244 a 2.
  • Referring to FIG. 27, the first wedging portion 240 extends away from the mounting-portion-engaging surface 234 and includes a first side surface 240 a 1 and an opposite second side surface 240 a 2 that are joined by an upper intermediate surface 240 a 3. The first side surface 240 a 1 and the second side surface 240 a 2 may be arranged in a non-parallel, converging relationship. In an example, with reference to FIG. 15, the first side surface 240 a 1 of the first wedging portion 240 is sized for being disposed adjacent the first wall surface 132 b 1 defined by the second wedging passage 132 b of the mounting portion 112 or the first wall surface 132 a 1 defined by the first wedging passage 132 a of the mounting portion 112. With continued reference to FIG. 15, the second side surface 240 a 2 of the first wedging portion 240 is sized for being disposed adjacent the second wall surface 132 b 2 defined by the second wedging passage 132 b of the mounting portion 112 or the second wall surface 132 a 2 defined by the first wedging passage 132 a of the mounting portion 112. Furthermore, the upper intermediate surface 240 a 3 of the first wedging portion 240 is sized for being disposed adjacent the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b of the mounting portion 112 or the intermediate wall surface 132 a 3 defined by the first wedging passage 132 a of the mounting portion 112.
  • The bridge portion 241 extends from a lower intermediate surface 240 a 4 of the first wedging portion 240. The bridge portion 241 includes a first side surface 241 a 1, a second side surface 241 a 2, a front surface 241 a 3, a rear surface 241 a 4 and a lower surface 241 a 5.
  • The second wedging portion 242 extends away from the rear surface 240 a 4 of the bridge portion 241. The second wedging portion 242 includes a first side surface 242 a 1 and an opposite second side surface 242 a 2 that are joined by an upper intermediate surface 242 a 3. The first side surface 242 a 1 and the second side surface 242 a 2 may be arranged in a non-parallel, converging relationship. In an example, with reference to FIG. 15, the first side surface 242 a 1 of the second wedging portion 242 is sized for being disposed adjacent the first wall surface 132 a 1 defined by the second wedging passage 132 b of the mounting portion 112 or the first wall surface 132 b 1 defined by the first wedging passage 132 a of the mounting portion 112. With continued reference to FIG. 15, the second side surface 242 a 2 of the second wedging portion 242 is sized for being disposed adjacent the second wall surface 132 a 2 defined by the second wedging passage 132 b of the mounting portion 112 or the second wall surface 132 b 2 defined by the first wedging passage 132 a of the mounting portion 112. Furthermore, the upper intermediate surface 242 a 3 of the second wedging portion 243 is sized for being disposed adjacent the intermediate wall surface 132 a 3 defined by the second wedging passage 132 b of the mounting portion 112 or the intermediate wall surface 132 b 3 defined by the first wedging passage 132 a of the mounting portion 112.
  • As seen in FIG. 27, each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 is generally defined by an “L shape” body having at least a first mounting-portion-engaging-surface 245 1 and a second mounting-portion-engaging surface 245 2. Each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 extend away from the mounting-portion-engaging surface 234 and are sized and spaced apart from one another for clamping opposite sides of the implement retainer interface portion 112 a 2 of the body portion 112 a of the mounting portion 112. In an example, with reference to FIGS. 15 and 27, the first mounting-portion-engaging-surface 245 1 is sized for engaging the implement-retaining-portion-engaging surface 122, and the second mounting-portion-engaging surface 245 2 is sized for engaging a side surface 121 of the body portion 112 a of the mounting portion 112 that connects the neck-portion-engaging surface 120 to the implement-retaining-portion-engaging surface 122.
  • Referring to FIGS. 29A-29E, exemplary steps for assembling the assembly 200 are shown. As seen in FIG. 29A, the mounting portion 112 and the implement-retaining portion 214 are shown in a separated, spaced-apart relationship. Assuming the mounting portion 112 is removably-secured to an underlying substrate S, the assembly 200 is firstly formed by moving the implement-retaining portion 214 toward the mounting portion 112 in the direction of the arrow A1. Although the mounting portion 112 may be removably-secured to the underlying substrate S, the mounting portion 112 does not have to be removably-secured to the underlying substrate S for connecting the implement-retaining portion 214 toward the mounting portion 112.
  • As seen in FIG. 29B, after the implement-retaining portion 214 is moved toward the mounting portion 112 in the direction of the arrow A1, the first wedging portion 240 is axially aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130. A reference axis extending along a length L214 of the implement-retaining portion 214 is shown generally at A214-A214. Although not required, for purposes of establishing an exemplary frame of reference, the reference axis A214-A214 may be substantially parallel to the exterior surface SS of the underlying substrate S. As comparatively seen in FIGS. 29B and 29C, the implement-retaining portion 214 may then be pivoted away from the mounting portion 112 (and away from the reference axis A214-A214) in the direction of the arrow A2 at an angle θ.
  • As seen in FIG. 29C, while tilted at the angle θ away from the reference axis A214-A214 and while the implement-retaining portion 214 is still separated from the mounting portion 112, the first wedging portion 240 is aligned with the first wedging passage 132 a of the plurality of wedging passages 132 of the plurality of female portions 130. As seen in FIGS. 29C-29D, the implement-retaining portion 214 is then moved (with respect to, for example, a spatially fixed orientation of the mounting portion 112 as a result of, for example, the mounting portion 112 being removably-secured to the underlying substrate S) according to the direction of arrow A3. Movement of the implement-retaining portion 214 according to the direction of the arrow A3 results in the first wedging portion 240 of the implement-retaining portion 214 being progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 240 a 1 of the first wedging portion 240 progressively coming into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 240 a 2 of the first wedging portion 240 progressively coming into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • Furthermore, in some instances, movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A3 (see, e.g., FIG. 29C), may also result in at least a portion of the first mounting-portion-engaging-surface 245 1 of each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 being disposed adjacent the implement-retaining-portion-engaging surface 122 of the body portion 112 a of the mounting potion 112. Yet even further, movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A3, may also result in at least a portion of the second mounting-portion-engaging-surface 245 2 of each of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 being disposed adjacent the side surface 121 of the body portion 112 a of the mounting portion 112. Arrangement of the first clamping portion 244 a 1 and the second clamping portion 244 a 2 relative the body portion 112 a of the mounting portion 112 results in the first clamping portion 244 a, and the second clamping portion 244 a 2 laterally clamping the body portion 112 a of the mounting portion 112.
  • As a result of the first wedging portion 240 of the implement-retaining portion 214 being progressively wedged within the first wedging passage 132 a, the implement-retaining portion 214 may be said to be partially secured-to the mounting portion 112. Furthermore, as seen in FIG. 29D, at least a portion of the upper intermediate surface 242 a 3 of the second wedging portion 242 is spatially arranged below a plane P132b (extending across at least an upper-most portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b; furthermore, the plane P132b may be substantially perpendicular with respect to the exterior surface SS of the underlying substrate S).
  • As seen in FIG. 29D, once the implement-retaining portion 214 is arranged relative the mounting portion 112 as described above, the implement-retaining portion 214 is moved toward the mounting portion 112 (and toward the reference axis A214-A214) in the direction of the arrow A2′, which is opposite the direction of the arrow A2. As seen in FIG. 29E, movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A2′, results in at least a portion of the upper intermediate surface 242 a 3 of the second wedging portion 242 being arranged below the plane P132b. In some examples, the portion of the upper intermediate surface 242 a 3 of the second wedging portion 242 may thereby progressively coming into contact with and being disposed adjacent at least a portion of the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b. Additionally, movement of the implement-retaining portion 214 relative the mounting portion 112 in the direction of the arrow A2′, may also result in: the first wedging portion 140 of the implement-retaining portion 214 being further progressively wedged within the first wedging passage 132 a as a result of: (1) the first side surface 240 a, of the first wedging portion 240 being further progressively brought into contact with and being disposed adjacent the first wall surface 132 a 1 defined by the first wedging passage 132 a and (2) the second side surface 240 a 2 of the first wedging portion 240 being further progressively brought into contact with and being disposed adjacent the second wall surface 132 a 2 defined by the first wedging passage 132 a.
  • With reference to FIG. 29E, as a result of the implement-retaining portion 214 being moved relative the mounting portion 112 in the direction of the arrow A2′, the implement-retaining portion 214 is said to be connected to the mounting portion 112 for defining the assembly 200 being arranged in an assembled form as seen in, for example, FIGS. 26 and 28. In an example, the assembled assembly 200 may result from, for example, the arrangement of: (1) the first wedging portion 240 within the first wedging passage 132 a and (2) the second wedging portion 242 within the second wedging passage 132 b. Such an arrangement of the first wedging portion 240 and the second wedging portion 242 within the first wedging passage 132 a and the second wedging passage 132 b results in the implement-retaining portion 214 being connected to the mounting portion 112 in a wedged, friction-fit configuration that resists the implement-retaining portion 214 from being disconnected from the mounting portion 112. In an example, as seen in FIG. 29E, if an external force in the direction of arrow A3′, which is opposite the direction of the arrow A3, were to be applied to the implement-retaining portion 214, the upper intermediate surface 242 a 3 of the second wedging portion 242 would be urged toward the intermediate wall surface 132 b 3 defined by the second wedging passage 132 b thereby preventing the implement-retaining portion 214 from disconnected from the mounting portion 112 in an upwardly direction. Yet even further, the arrangement of the first wedging portion 240 within the first wedging passage 132 a and the second wedging portion 242 within the second wedging passage 132 b as described above provides a two-point connection that further resists rotation R (see, e.g., FIG. 26) of the implement-retaining portion 214 about a central axis A200-A200 extending the mounting portion 112 that is substantially orthogonal to the exterior surface SS of the underlying substrate S.
  • When it may be desired to arrange the assembly 200 back to a disassembled orientation (i.e., arranging the implement-retaining portion 214 in spatially separated orientation with respect to the mounting portion 112 as seen in, for example, FIG. 29A), the implement-retaining portion 214 may then be pivoted away from the mounting portion 112 (and away from the reference axis A214-A214) in the direction of the arrow A2 at the angle θ. With the implement-retaining portion 214 pivoted away from the mounting portion 112, the second wedging portion 242 is removed from the second wedging passage 132 b. Thereafter, the implement-retaining portion 214 is moved away from the mounting portion 112 according to the direction of the arrow A3′, which is opposite the direction of the arrow A3 for removing the first wedging portion 240 from the first wedging passage 132 a and then subsequently arranging the implement-retaining portion 214 in a spatially separated state with respect to the mounting portion 112.
  • A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (36)

What is claimed is:
1. An assembly (100, 200), comprising:
a mounting portion (112), wherein the mounting portion (112) includes
a body portion (112 a), and
a substrate-penetrating portion (112 b), wherein the body portion (112 a) is defined by
a substrate-engaging portion (112 a 1), and
an implement retainer interface portion (112 a 2) connected to the substrate-engaging portion (112 a 1); and
an implement-retaining portion (114, 214) removably-connected to the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112).
2. The assembly (100, 200) of claim 1, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) includes an implement-retaining-portion-engaging surface (122), wherein the implement-retaining-portion-engaging surface (122) defines:
a plurality of male-receiving portions (128) defined by:
a plurality of female portions (130) including:
a first pair of female portions (130 a) including:
a first female portion (130 a 1), and
a second female portion (130 a 2),
a second pair of female portions (130 b) including:
a third female portion (130 b 1), and
a fourth female portion (130 b 2), and
a plurality of wedging passages (132) including:
a first wedging passage (132 a), and
a second wedging passage (132 b).
3. The assembly (100) of claim 2, wherein the first wedging passage (132 a) is arranged between the first female portion (130 a 1) of the first pair of female portions (130 a) and the second female portion (130 a 2) first pair of female portions (130 a), wherein the second wedging passage (132 b) is arranged between the third female portion (130 b 1) of the second pair of female portions (130 b) and the fourth female portion (130 b 2) of the second pair of female portions (130 a).
4. The assembly (100) of claim 3, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) includes:
a first half (112 a 2-1), and
a second half (112 a 2-2),
wherein the first wedging passage (132 a) and the first pair of female portions (130 a) are defined by the first half (112 a 2-1) of the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112),
wherein the second wedging passage (132 b) and the second pair of female portions (130 b) are defined by the second half (112 a 2-2) of the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112).
5. The assembly (100) of claim 2, wherein the implement-retaining portion (114) includes a mounting-portion-engaging surface (134), wherein the implement-retaining portion (114) includes:
a plurality of male portions (138) extending away from the mounting-portion-engaging surface (134), wherein the plurality of male portions (138) are defined by:
a first wedging portion (140),
a second wedging portion (142), and
a pair of registration portions (144) including:
a first registration portion (144 a 1), and
a second registration portion (144 a 2).
6. The assembly (100) of claim 5, wherein the plurality of male portions (138) of the implement-retaining portion (114) are removably-interfaced with the plurality of male-receiving portions (128) of the mounting portion (112), wherein:
the pair of registration portions (144) is removably-interfaced with one of the first pair of female portions (130 a) and the second pair of female portions (130 b),
the first wedging portion (140) is removably-interfaced with one of the first wedging passage (132 a) and the second wedging passage (132 b), and
the second wedging portion (142) is removably-interfaced with the other of the first wedging passage (132 a) and the second wedging passage (132 b).
7. The assembly (100) of claim 5, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) is defined by:
a neck-portion-engaging surface (120) that is shaped for contacting the first wedging portion (140) of the plurality of male portions (138) of the implement-retaining portion (114), and
an implement-retaining-portion-engaging surface (122) that is shaped to contact or be arranged opposite the mounting-portion-engaging surface (134) of the implement-retaining portion (114).
8. The assembly (100) of claim 5, wherein the first wedging portion (140) is defined by:
a head portion (140 a), and
a neck portion (140 b), wherein the neck portion (140 b) is connected to the head portion (140 a), wherein the neck portion (140 b) extends away from the mounting-portion-engaging surface (134).
9. The assembly (100) of claim 8, wherein the neck portion (140 b) includes:
a first side surface (140 b 1) and an opposite second side surface (140 b 2) that are joined by an intermediate surface (140 b 3), wherein the first side surface (140 b 1) and the second side surface (140 b 2) are arranged in a non-parallel, converging relationship.
10. The assembly (100) of claim 5, wherein the second wedging portion (142) includes a first side surface (142 a 1) and an opposite second side surface (142 a 2) that are joined by an intermediate surface (142 a 3), wherein the first side surface (142 a 1) and the second side surface (142 a 2) are arranged in a non-parallel, converging relationship.
11. The assembly (200) of claim 2, wherein the implement-retaining portion (214) includes a mounting-portion-engaging surface (234), wherein the implement-retaining portion (214) includes:
a plurality of male portions (238) extending away from the mounting-portion-engaging surface (234), wherein the plurality of male portions (238) are defined by:
a first wedging portion (240),
a second wedging portion (242), and
a pair of clamping portions (244) including:
a first clamping portion (244 a 1), and
a second clamping portion (244 a 2).
12. The assembly (200) of claim 11, wherein the plurality of male portions (238) of the implement-retaining portion (214) are removably-interfaced with the plurality of male-receiving portions (128) of the mounting portion (112), wherein:
the first wedging portion (240) is removably-interfaced with one of the first wedging passage (132 a) and the second wedging passage (132 b), and
the second wedging portion (242) is removably-interfaced with the other of the first wedging passage (132 a) and the second wedging passage (132 b).
13. The assembly (200) of claim 12, wherein a first mounting-portion-engaging-surface (245 1) of each of the first clamping portion (244 a 1) and the second clamping portion (244 a 2) is sized for engaging the implement-retaining-portion-engaging surface (122), wherein a second mounting-portion-engaging surface (245 2) of each of the first clamping portion (244 a 1) and the second clamping portion (244 a 2) is sized for engaging a side surface (121) of the body portion (112 a) of the mounting portion (112) that connects the neck-portion-engaging surface (120) to the implement-retaining-portion-engaging surface (122).
14. The assembly (100) of claim 1, wherein at least the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112) is bendably or flexibly connected to the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112).
15. The assembly (100) of claim 1, wherein the substrate-penetrating portion (112 b) may be formed from a rigid, non-flexible material, wherein the substrate-penetrating portion (112 b) is threaded fastener having a shaft portion (112 b 1) and a threaded portion (112 b 3) extending away from the shaft portion (112 b 1).
16. The assembly (100) of claim 1, wherein a head portion (112 b 4) of the substrate-penetrating portion (112 b) is arranged within a passage (115) formed by the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112).
17. The assembly (100) of claim 1, wherein the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112) defines:
a substrate-mounting surface (116) having a circumferential engagement lip (124) including a plurality of protuberances (126).
18. A portion of an assembly (100), comprising:
a mounting portion (112), wherein the mounting portion (112) includes
a body portion (112 a), and
a substrate-penetrating portion (112 b), wherein the body portion (112 a) is defined by
a substrate-engaging portion (112 a 1), and
an implement retainer interface portion (112 a 2) connected to the substrate-engaging portion (112 a 1).
19. The portion of the assembly (100) of claim 18, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) includes an implement-retaining-portion-engaging surface (122), wherein the implement-retaining-portion-engaging surface (122) defines:
a plurality of male-receiving portions (128) defined by:
a plurality of female portions (130) including:
a first pair of female portions (130 a) including:
a first female portion (130 a 1), and
a second female portion (130 a 2),
a second pair of female portions (130 b) including:
a third female portion (130 b 1), and
a fourth female portion (130 b 2), and
a plurality of wedging passages (132) including:
a first wedging passage (132 a), and
a second wedging passage (132 b).
20. The portion of the assembly (100) of claim 19, wherein the first wedging passage (132 a) is arranged between the first female portion (130 a 1) of the first pair of female portions (130 a) and the second female portion (130 a 2) first pair of female portions (130 a), wherein the second wedging passage (132 b) is arranged between the third female portion (130 b 1) of the second pair of female portions (130 b) and the fourth female portion (130 b 2) of the second pair of female portions (130 a).
21. The portion of the assembly (100) of claim 20, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) includes:
a first half (112 a 2-1), and
a second half (112 a 2-2),
wherein the first wedging passage (132 a) and the first pair of female portions (130 a) are defined by the first half (112 a 2-1) of the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112),
wherein the second wedging passage (132 b) and the second pair of female portions (130 b) are defined by the second half (112 a 2-2) of the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112).
22. The portion of the assembly (100) of claim 18, wherein the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112) is defined by:
a neck-portion-engaging surface (120), and
an implement-retaining-portion-engaging surface (122).
23. The portion of the assembly (100) of claim 18, wherein at least the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112) is bendably or flexibly connected to the implement retainer interface portion (112 a 2) of the body portion (112 a) of the mounting portion (112).
24. The portion of the assembly (100) of claim 18, wherein the substrate-penetrating portion (112 b) may be formed from a rigid, non-flexible material, wherein the substrate-penetrating portion (112 b) is threaded fastener having a shaft portion (112 b 1) and a threaded portion (112 b 3) extending away from the shaft portion (112 b 1).
25. The portion of the assembly (100) of claim 18, wherein a head portion (112 b 4) of the substrate-penetrating portion (112 b) is arranged within a passage (115) formed by the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112).
26. The portion of the assembly (100) of claim 18, wherein the substrate-engaging portion (112 a 1) of the body portion (112 a) of the mounting portion (112) defines:
a substrate-mounting surface (116) having a circumferential engagement lip (124) including a plurality of protuberances (126).
27. A portion of an assembly (100), comprising:
an implement-retaining portion (114) including a mounting-portion-engaging surface (134) and an opposite implement-engaging surface (136), wherein the implement-retaining portion (114) includes:
a plurality of male portions (138) extending away from the mounting-portion-engaging surface (134), wherein the plurality of male portions (138) are defined by:
a first wedging portion (140),
a second wedging portion (142), and
a pair of registration portions (144) including:
a first registration portion (144 a 1), and
a second registration portion (144 a 2).
28. The portion of the assembly (100) of claim 27, wherein the first wedging portion (140) is defined by:
a head portion (140 a), and
a neck portion (140 b), wherein the neck portion (140 b) is connected to the head portion (140 a), wherein the neck portion (140 b) extends away from the mounting-portion-engaging surface (134).
29. The portion of the assembly (100) of claim 28, wherein the neck portion (140 b) includes:
a first side surface (140 b 1) and an opposite second side surface (140 b 2) that are joined by an intermediate surface (140 b 3), wherein the first side surface (140 b 1) and the second side surface (140 b 2) are arranged in a non-parallel, converging relationship.
30. The portion of the assembly (100) of claim 27, wherein the second wedging portion (142) includes a first side surface (142 a 1) and an opposite second side surface (142 a 2) that are joined by an intermediate surface (142 a 3), wherein the first side surface (142 a 1) and the second side surface (142 a 2) are arranged in a non-parallel, converging relationship.
31. The portion of the assembly (100) of claim 27, wherein the implement-engaging surface (136) is defined by a substantially flat surface.
32. The portion of the assembly (100) of claim 27, wherein the implement-engaging surface (136) is defined by a storage pocket.
33. The portion of the assembly (100) of claim 27, wherein the implement-engaging surface (136) is defined by a storage pocket a hook.
34. The portion of the assembly (100) of claim 27, wherein the implement-engaging surface (136) is defined by a storage pocket a frictional surface including a plurality of bumps.
35. The portion of the assembly (100) of claim 27, wherein the implement-engaging surface (136) includes an adhesive.
36. A portion of an assembly (200), comprising:
an implement-retaining portion (214) including a mounting-portion-engaging surface (234) and an opposite implement-engaging surface (236), wherein the implement-retaining portion (114) includes:
a plurality of male portions (238) extending away from the mounting-portion-engaging surface (234), wherein the plurality of male portions (238) are defined by:
a first wedging portion (240),
a second wedging portion (242), and
a pair of clamping portions (244) including:
a first clamping portion (244 a 1), and
a second clamping portion (244 a 2).
US15/679,297 2016-03-30 2017-08-17 Assembly Including a Mounting Portion and an Implement-Retaining Portion Abandoned US20180023759A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/679,297 US20180023759A1 (en) 2016-03-30 2017-08-17 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/070,635 US20210270413A1 (en) 2016-03-30 2020-10-14 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/326,595 US20210278033A1 (en) 2016-03-30 2021-05-21 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/565,736 US20220120376A1 (en) 2016-03-30 2021-12-30 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/887,602 US20220390063A1 (en) 2016-03-30 2022-08-15 Assembly Including a Mounting Portion and an Implement-Retaining portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/086,019 US20170284592A1 (en) 2016-03-30 2016-03-30 Twist-base mount
US15/679,297 US20180023759A1 (en) 2016-03-30 2017-08-17 Assembly Including a Mounting Portion and an Implement-Retaining Portion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/086,019 Continuation-In-Part US20170284592A1 (en) 2016-03-30 2016-03-30 Twist-base mount

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/070,635 Continuation US20210270413A1 (en) 2016-03-30 2020-10-14 Assembly Including a Mounting Portion and an Implement-Retaining Portion

Publications (1)

Publication Number Publication Date
US20180023759A1 true US20180023759A1 (en) 2018-01-25

Family

ID=60988254

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/679,297 Abandoned US20180023759A1 (en) 2016-03-30 2017-08-17 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/070,635 Abandoned US20210270413A1 (en) 2016-03-30 2020-10-14 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/326,595 Abandoned US20210278033A1 (en) 2016-03-30 2021-05-21 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/565,736 Abandoned US20220120376A1 (en) 2016-03-30 2021-12-30 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/887,602 Pending US20220390063A1 (en) 2016-03-30 2022-08-15 Assembly Including a Mounting Portion and an Implement-Retaining portion

Family Applications After (4)

Application Number Title Priority Date Filing Date
US17/070,635 Abandoned US20210270413A1 (en) 2016-03-30 2020-10-14 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/326,595 Abandoned US20210278033A1 (en) 2016-03-30 2021-05-21 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/565,736 Abandoned US20220120376A1 (en) 2016-03-30 2021-12-30 Assembly Including a Mounting Portion and an Implement-Retaining Portion
US17/887,602 Pending US20220390063A1 (en) 2016-03-30 2022-08-15 Assembly Including a Mounting Portion and an Implement-Retaining portion

Country Status (1)

Country Link
US (5) US20180023759A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993094B1 (en) * 2017-09-06 2018-06-12 Allen Field Company, Inc. Rotary display hook
US10982698B2 (en) * 2018-02-08 2021-04-20 Fastmount Limited Surface panel connection system
USD974891S1 (en) * 2022-04-12 2023-01-10 Centresky Crafts (Shantou) Co., Ltd Display hook

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719136A (en) * 1923-10-24 1929-07-02 Rosenberg Heyman Anchorage device
US2528288A (en) * 1946-07-18 1950-10-31 Norman C Rublee Insulated nail
US2670914A (en) * 1949-12-28 1954-03-02 Goodrich Co B F Resilient mounting
GB967132A (en) * 1962-01-11 1964-08-19 Philip Walmsley Improvements in or relating to article-supporting pegs for a pegboard
US4340199A (en) * 1979-05-08 1982-07-20 Rita Brock Hanging device or catch
US4389759A (en) * 1979-09-11 1983-06-28 Nifco Inc. Radiator grille fixing structure
NL9001675A (en) * 1990-07-23 1992-02-17 Wit J H En Zonen De Installation clamp for cabling or conduit - has integral wall plug and nail with spring-loaded cable or conduit support
US5311649A (en) * 1992-01-27 1994-05-17 Suh Sam A Fastener with a fixing piece
US5651522A (en) * 1995-04-25 1997-07-29 S. C. Johnson & Son, Inc. Adjustable clip means for air fresheners and other devices
US5735024A (en) * 1996-05-09 1998-04-07 Ortiz; Kim A. Fastening mechanism for connecting articles and the like together
US5957421A (en) * 1998-01-14 1999-09-28 Barbour; Lee Retainer device
US20020023323A1 (en) * 2000-08-31 2002-02-28 The Swatch Group Management Services Ag Clasp for watch wristband
US6371424B1 (en) * 1999-09-10 2002-04-16 General Dynamics Canada Ltd. Mounting an article upon a support
US20050017144A1 (en) * 2003-06-06 2005-01-27 Emerald Innovations Llc Mounting devices
US20060186290A1 (en) * 2005-02-23 2006-08-24 Carnevali Jeffrey D Locking device support
US7267311B2 (en) * 2003-02-04 2007-09-11 Odin Ag Roller blind fittings
US7607621B2 (en) * 2005-06-24 2009-10-27 Innocom Technology (Shenzhen) Co., Ltd. Flat panel display with detachable base
US7690607B2 (en) * 2007-08-29 2010-04-06 Hunter Douglas Industries Bv Bracket for mounting a guiding rail
US8191844B2 (en) * 2009-01-09 2012-06-05 William Pennino Container holder for use on a bicycle
US20130094127A1 (en) * 2011-10-18 2013-04-18 Shixiong Lu Monitor fixing mechanism for fixing a monitor and display device therewith
US8465221B2 (en) * 2010-06-15 2013-06-18 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Server cabinet with guiding fixtures
US20130153723A1 (en) * 2009-04-01 2013-06-20 Cao Group, Inc. Holder for handpiece devices
US20140150313A1 (en) * 2012-12-03 2014-06-05 John Tucker Stevens Self-leveling mounting device for mountable objects
US20160053478A1 (en) * 2014-08-19 2016-02-25 Charles Porter Interlocking Clip System

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155189A (en) * 1935-11-18 1939-04-18 Kearney James R Corp Electrical wire bracket

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719136A (en) * 1923-10-24 1929-07-02 Rosenberg Heyman Anchorage device
US2528288A (en) * 1946-07-18 1950-10-31 Norman C Rublee Insulated nail
US2670914A (en) * 1949-12-28 1954-03-02 Goodrich Co B F Resilient mounting
GB967132A (en) * 1962-01-11 1964-08-19 Philip Walmsley Improvements in or relating to article-supporting pegs for a pegboard
US4340199A (en) * 1979-05-08 1982-07-20 Rita Brock Hanging device or catch
US4389759A (en) * 1979-09-11 1983-06-28 Nifco Inc. Radiator grille fixing structure
NL9001675A (en) * 1990-07-23 1992-02-17 Wit J H En Zonen De Installation clamp for cabling or conduit - has integral wall plug and nail with spring-loaded cable or conduit support
US5311649A (en) * 1992-01-27 1994-05-17 Suh Sam A Fastener with a fixing piece
US5651522A (en) * 1995-04-25 1997-07-29 S. C. Johnson & Son, Inc. Adjustable clip means for air fresheners and other devices
US5735024A (en) * 1996-05-09 1998-04-07 Ortiz; Kim A. Fastening mechanism for connecting articles and the like together
US5957421A (en) * 1998-01-14 1999-09-28 Barbour; Lee Retainer device
US6371424B1 (en) * 1999-09-10 2002-04-16 General Dynamics Canada Ltd. Mounting an article upon a support
US20020023323A1 (en) * 2000-08-31 2002-02-28 The Swatch Group Management Services Ag Clasp for watch wristband
US7267311B2 (en) * 2003-02-04 2007-09-11 Odin Ag Roller blind fittings
US20050017144A1 (en) * 2003-06-06 2005-01-27 Emerald Innovations Llc Mounting devices
US20060186290A1 (en) * 2005-02-23 2006-08-24 Carnevali Jeffrey D Locking device support
US7607621B2 (en) * 2005-06-24 2009-10-27 Innocom Technology (Shenzhen) Co., Ltd. Flat panel display with detachable base
US7690607B2 (en) * 2007-08-29 2010-04-06 Hunter Douglas Industries Bv Bracket for mounting a guiding rail
US8191844B2 (en) * 2009-01-09 2012-06-05 William Pennino Container holder for use on a bicycle
US20130153723A1 (en) * 2009-04-01 2013-06-20 Cao Group, Inc. Holder for handpiece devices
US8465221B2 (en) * 2010-06-15 2013-06-18 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Server cabinet with guiding fixtures
US20130094127A1 (en) * 2011-10-18 2013-04-18 Shixiong Lu Monitor fixing mechanism for fixing a monitor and display device therewith
US20140150313A1 (en) * 2012-12-03 2014-06-05 John Tucker Stevens Self-leveling mounting device for mountable objects
US20160053478A1 (en) * 2014-08-19 2016-02-25 Charles Porter Interlocking Clip System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
surfaces of 15, 18, 21, 17 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993094B1 (en) * 2017-09-06 2018-06-12 Allen Field Company, Inc. Rotary display hook
US10982698B2 (en) * 2018-02-08 2021-04-20 Fastmount Limited Surface panel connection system
US20210215179A1 (en) * 2018-02-08 2021-07-15 Fastmount Limited Surface panel connection system
US11946505B2 (en) * 2018-02-08 2024-04-02 Fastmount Limited Surface panel connection system
USD974891S1 (en) * 2022-04-12 2023-01-10 Centresky Crafts (Shantou) Co., Ltd Display hook
USD975528S1 (en) * 2022-04-12 2023-01-17 Centresky Crafts (Shantou) Co., Ltd Display hook

Also Published As

Publication number Publication date
US20210270413A1 (en) 2021-09-02
US20220120376A1 (en) 2022-04-21
US20220390063A1 (en) 2022-12-08
US20210278033A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US20210278033A1 (en) Assembly Including a Mounting Portion and an Implement-Retaining Portion
US8720016B2 (en) Snap mounting clip system
US8448910B2 (en) Wall mountable holder system
US10265108B2 (en) Bone plate
US7467442B2 (en) Hose clamp
US20170218962A1 (en) Ceiling fan
TW201305451A (en) Wall mounting fitting
US20170184142A1 (en) Tarp connector
US20170137080A1 (en) Adjustable magnetic bracket
EP2902643A1 (en) Clip
EP2777991B1 (en) Multifunctional adaptor
US10730443B2 (en) Fastener and substrate assemblies
EP2075477A1 (en) Internal thread hole closing plug
US8845255B2 (en) Guide apparatuses for use with fasteners
US8844882B2 (en) Fastener assisted hanger
JPWO2019035273A1 (en) clip
US20060006087A1 (en) Strip for holding fasteners
US20230313820A1 (en) Fastening Clip
US8609222B2 (en) Vehicle interior component
JP2019532230A (en) Fastener
US7736082B1 (en) Fastening system for assembling plastic units and rib clip therefor
US11867221B2 (en) Stud
JPS6222660Y2 (en)
JP2005090681A (en) Clip
US20080029582A1 (en) Positive hold tube weld stud assembly

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION