US20180000775A1 - Treatment for non-alcoholic fatty liver diseases - Google Patents
Treatment for non-alcoholic fatty liver diseases Download PDFInfo
- Publication number
- US20180000775A1 US20180000775A1 US15/536,252 US201515536252A US2018000775A1 US 20180000775 A1 US20180000775 A1 US 20180000775A1 US 201515536252 A US201515536252 A US 201515536252A US 2018000775 A1 US2018000775 A1 US 2018000775A1
- Authority
- US
- United States
- Prior art keywords
- vitamin
- tocopherol
- acid
- treatment
- liver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 title claims abstract description 34
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims abstract description 89
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 claims abstract description 53
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229930003427 Vitamin E Natural products 0.000 claims abstract description 43
- 235000019165 vitamin E Nutrition 0.000 claims abstract description 43
- 239000011709 vitamin E Substances 0.000 claims abstract description 43
- 229940046009 vitamin E Drugs 0.000 claims abstract description 42
- 210000004185 liver Anatomy 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 230000002265 prevention Effects 0.000 claims abstract description 22
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 claims abstract description 15
- 238000009825 accumulation Methods 0.000 claims abstract description 12
- 230000001476 alcoholic effect Effects 0.000 claims abstract description 5
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 41
- 235000020660 omega-3 fatty acid Nutrition 0.000 claims description 23
- 229940087168 alpha tocopherol Drugs 0.000 claims description 20
- 229960000984 tocofersolan Drugs 0.000 claims description 20
- 235000004835 α-tocopherol Nutrition 0.000 claims description 20
- 239000002076 α-tocopherol Substances 0.000 claims description 20
- 235000020673 eicosapentaenoic acid Nutrition 0.000 claims description 12
- 235000019197 fats Nutrition 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 claims description 7
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims description 6
- 239000007903 gelatin capsule Substances 0.000 claims description 6
- 230000002443 hepatoprotective effect Effects 0.000 claims description 6
- WGVKWNUPNGFDFJ-DQCZWYHMSA-N β-tocopherol Chemical compound OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C WGVKWNUPNGFDFJ-DQCZWYHMSA-N 0.000 claims description 6
- GZIFEOYASATJEH-VHFRWLAGSA-N δ-tocopherol Chemical compound OC1=CC(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-VHFRWLAGSA-N 0.000 claims description 6
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 claims description 5
- 235000010382 gamma-tocopherol Nutrition 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 5
- 235000014214 soft drink Nutrition 0.000 claims description 5
- 239000002478 γ-tocopherol Substances 0.000 claims description 5
- QUEDXNHFTDJVIY-DQCZWYHMSA-N γ-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-DQCZWYHMSA-N 0.000 claims description 5
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 claims description 4
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 claims description 4
- 235000020664 gamma-linolenic acid Nutrition 0.000 claims description 4
- 235000020665 omega-6 fatty acid Nutrition 0.000 claims description 4
- YUFFSWGQGVEMMI-JLNKQSITSA-N (7Z,10Z,13Z,16Z,19Z)-docosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCCCC(O)=O YUFFSWGQGVEMMI-JLNKQSITSA-N 0.000 claims description 3
- GZIFEOYASATJEH-UHFFFAOYSA-N D-delta tocopherol Natural products OC1=CC(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 GZIFEOYASATJEH-UHFFFAOYSA-N 0.000 claims description 3
- 235000021294 Docosapentaenoic acid Nutrition 0.000 claims description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 claims description 3
- 229940066595 beta tocopherol Drugs 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 235000010389 delta-tocopherol Nutrition 0.000 claims description 3
- 229960005135 eicosapentaenoic acid Drugs 0.000 claims description 3
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 claims description 3
- 229960002733 gamolenic acid Drugs 0.000 claims description 3
- 229920000159 gelatin Polymers 0.000 claims description 3
- 235000019322 gelatine Nutrition 0.000 claims description 3
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 claims description 3
- 229960004488 linolenic acid Drugs 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 239000011590 β-tocopherol Substances 0.000 claims description 3
- 235000007680 β-tocopherol Nutrition 0.000 claims description 3
- 239000002446 δ-tocopherol Substances 0.000 claims description 3
- FPRKGXIOSIUDSE-SYACGTDESA-N (2z,4z,6z,8z)-docosa-2,4,6,8-tetraenoic acid Chemical compound CCCCCCCCCCCCC\C=C/C=C\C=C/C=C\C(O)=O FPRKGXIOSIUDSE-SYACGTDESA-N 0.000 claims description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 claims description 2
- JBYXPOFIGCOSSB-GOJKSUSPSA-N 9-cis,11-trans-octadecadienoic acid Chemical compound CCCCCC\C=C\C=C/CCCCCCCC(O)=O JBYXPOFIGCOSSB-GOJKSUSPSA-N 0.000 claims description 2
- 235000021292 Docosatetraenoic acid Nutrition 0.000 claims description 2
- 235000021342 arachidonic acid Nutrition 0.000 claims description 2
- 229940114079 arachidonic acid Drugs 0.000 claims description 2
- 229940108924 conjugated linoleic acid Drugs 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 108010010803 Gelatin Proteins 0.000 claims 1
- 230000006806 disease prevention Effects 0.000 claims 1
- 239000008273 gelatin Substances 0.000 claims 1
- 235000011852 gelatine desserts Nutrition 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 24
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 239000003814 drug Substances 0.000 abstract description 6
- 208000007848 Alcoholism Diseases 0.000 abstract description 5
- 206010001584 alcohol abuse Diseases 0.000 abstract description 5
- 208000025746 alcohol use disease Diseases 0.000 abstract description 5
- 231100000240 steatosis hepatitis Toxicity 0.000 abstract description 5
- 239000004480 active ingredient Substances 0.000 abstract description 3
- 230000007863 steatosis Effects 0.000 abstract description 3
- 239000002158 endotoxin Substances 0.000 description 52
- 229920006008 lipopolysaccharide Polymers 0.000 description 50
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 41
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 38
- 230000002757 inflammatory effect Effects 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 16
- 102000004127 Cytokines Human genes 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 13
- 239000003921 oil Substances 0.000 description 13
- 235000019198 oils Nutrition 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 210000001865 kupffer cell Anatomy 0.000 description 12
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 10
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 10
- 230000002195 synergetic effect Effects 0.000 description 10
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- 239000011732 tocopherol Substances 0.000 description 9
- -1 e.g. Substances 0.000 description 8
- 230000028709 inflammatory response Effects 0.000 description 8
- 210000002540 macrophage Anatomy 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 230000000770 proinflammatory effect Effects 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 7
- 235000021588 free fatty acids Nutrition 0.000 description 7
- 229930003799 tocopherol Natural products 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 230000036542 oxidative stress Effects 0.000 description 5
- 229960001295 tocopherol Drugs 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 235000013361 beverage Nutrition 0.000 description 4
- 208000019425 cirrhosis of liver Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 208000010706 fatty liver disease Diseases 0.000 description 4
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000003859 lipid peroxidation Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000002417 nutraceutical Substances 0.000 description 4
- 235000021436 nutraceutical agent Nutrition 0.000 description 4
- 238000012261 overproduction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 235000019149 tocopherols Nutrition 0.000 description 4
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 208000004930 Fatty Liver Diseases 0.000 description 3
- 108090001007 Interleukin-8 Proteins 0.000 description 3
- 102000004890 Interleukin-8 Human genes 0.000 description 3
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 3
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 3
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 3
- 239000011648 beta-carotene Substances 0.000 description 3
- 235000013734 beta-carotene Nutrition 0.000 description 3
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 3
- 229960002747 betacarotene Drugs 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- ITNKVODZACVXDS-YNUSHXQLSA-N ethyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate Chemical compound CCOC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC ITNKVODZACVXDS-YNUSHXQLSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 208000015707 frontal fibrosing alopecia Diseases 0.000 description 3
- 210000003494 hepatocyte Anatomy 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229940047122 interleukins Drugs 0.000 description 3
- 235000021579 juice concentrates Nutrition 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000003642 reactive oxygen metabolite Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 3
- 235000010384 tocopherol Nutrition 0.000 description 3
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 3
- HOBAELRKJCKHQD-UHFFFAOYSA-N (8Z,11Z,14Z)-8,11,14-eicosatrienoic acid Natural products CCCCCC=CCC=CCC=CCCCCCCC(O)=O HOBAELRKJCKHQD-UHFFFAOYSA-N 0.000 description 2
- JVJFIQYAHPMBBX-UHFFFAOYSA-N 4-hydroxynonenal Chemical compound CCCCCC(O)C=CC=O JVJFIQYAHPMBBX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000001326 Chemokine CCL4 Human genes 0.000 description 2
- 108010055165 Chemokine CCL4 Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 108010001202 Cytochrome P-450 CYP2E1 Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 239000001828 Gelatine Substances 0.000 description 2
- 206010019708 Hepatic steatosis Diseases 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- HOBAELRKJCKHQD-QNEBEIHSSA-N dihomo-γ-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCCCC(O)=O HOBAELRKJCKHQD-QNEBEIHSSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 235000020978 long-chain polyunsaturated fatty acids Nutrition 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229940118019 malondialdehyde Drugs 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000020374 simple syrup Nutrition 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- SUVMJBTUFCVSAD-UHFFFAOYSA-N sulforaphane Chemical compound CS(=O)CCCCN=C=S SUVMJBTUFCVSAD-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 125000001020 α-tocopherol group Chemical group 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- VFTRKSBEFQDZKX-UHFFFAOYSA-N 3,3'-diindolylmethane Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4NC=3)=CNC2=C1 VFTRKSBEFQDZKX-UHFFFAOYSA-N 0.000 description 1
- SUVMJBTUFCVSAD-JTQLQIEISA-N 4-Methylsulfinylbutyl isothiocyanate Natural products C[S@](=O)CCCCN=C=S SUVMJBTUFCVSAD-JTQLQIEISA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010063075 Cryptogenic cirrhosis Diseases 0.000 description 1
- 102000010907 Cyclooxygenase 2 Human genes 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- 102100024889 Cytochrome P450 2E1 Human genes 0.000 description 1
- 101710119265 DNA topoisomerase 1 Proteins 0.000 description 1
- 235000021298 Dihomo-γ-linolenic acid Nutrition 0.000 description 1
- 208000032928 Dyslipidaemia Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- 108700035965 MEG3 Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 1
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102100023075 Protein Niban 2 Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 0 [1*]C1=C2CCC(C)(CCCC(C)CCCC(C)CCCC(C)C)OC2=C([4*])C([3*])=C1O Chemical compound [1*]C1=C2CCC(C)(CCCC(C)CCCC(C)CCCC(C)C)OC2=C([4*])C([3*])=C1O 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000037319 collagen production Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229940090568 combinations of vitamin Drugs 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 235000007882 dietary composition Nutrition 0.000 description 1
- TWJAXIHBWPVMIR-UHFFFAOYSA-N diindolylmethane Natural products C1=CC=C2NC(CC=3NC4=CC=CC=C4C=3)=CC2=C1 TWJAXIHBWPVMIR-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000003816 familial cirrhosis Diseases 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000004024 hepatic stellate cell Anatomy 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000008798 inflammatory stress Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012317 liver biopsy Methods 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 229940099262 marinol Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010208 microarray analysis Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000007837 multiplex assay Methods 0.000 description 1
- 125000006502 nitrobenzyl group Chemical group 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 235000021315 omega 9 monounsaturated fatty acids Nutrition 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 235000021578 orange juice drink Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- MBZCHPQOTIAYJU-UHFFFAOYSA-N pent-2-enoic acid Chemical compound CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O.CCC=CC(O)=O MBZCHPQOTIAYJU-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 230000000858 peroxisomal effect Effects 0.000 description 1
- 230000002399 phagocytotic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000004500 stellate cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 229960005559 sulforaphane Drugs 0.000 description 1
- 235000015487 sulforaphane Nutrition 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000006000 trichloroethyl group Chemical group 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
- A61K31/355—Tocopherols, e.g. vitamin E
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2200/00—Function of food ingredients
- A23V2200/30—Foods, ingredients or supplements having a functional effect on health
- A23V2200/32—Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2250/00—Food ingredients
- A23V2250/18—Lipids
- A23V2250/186—Fatty acids
- A23V2250/1882—Polyunsaturated fatty acids
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2250/00—Food ingredients
- A23V2250/70—Vitamins
- A23V2250/712—Vitamin E
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- the present invention relates to the use of mixtures of vitamin E and polyunsaturated fatty acids (PUFAs) as agents for the prevention, control and/or treatment of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse.
- PUFAs polyunsaturated fatty acids
- NAFLD non-alcoholic fatty liver disease
- NASH non-alcoholic steatohepatitis
- the present invention relates to the use of such compounds comprising vitamin E and PUFAs as active ingredients in the manufacture of medicaments for the prevention, control and/or treatment of conditions related to NAFLD.
- the pathophysiology of fatty liver has not yet been fully clarified, a generally accepted mechanism is the “two-hit” theory (Day and James, 1998 Gastroenterology 114:842-845).
- the first hit corresponds to the accumulation of free fatty acids (FFA) in the liver, which can be related to obesity, or more generally to metabolic syndrome (including diabetes, hypertension and dyslipidemia).
- the second hit refers to the peroxidation of these fatty acids due to the oxidative stress produced by different factors (Angulo and Lindor, 2001 Gastroenterology 120:1281-1285).
- the final result of the first hit is an excessive FFA balance, from oversupply and/or failure in lipid beta oxidation, leading to fatty acid accumulation in the liver which gives rise to the first lesions (Charlton et al., 2002 Hepatology 35:898-904). These initial impacts make the liver more vulnerable to aggressive factors of the second hit, which is mediated by oxidative stress and pro-inflammatory cytokines (TNF- ⁇ , TGF- ⁇ , IL-6, IL-8).
- FFAs increase the expression of cytochrome P450 2E1 (CYP 2E1), a microsomal enzyme which takes part in the ⁇ -oxidation of several FFAs, causing the release of reactive oxygen metabolites (Weltman et al., 1998 Hepatology 27:128-133). Also some FFAs are metabolized by peroxisomal ⁇ -oxidation, generating additional reactive oxygen metabolites (hydrogen peroxide, hydroxyl radicals) (Rao and Reddy, 2001 Semin Liver Dis 21:43-55).
- CYP 2E1 cytochrome P450 2E1
- NF- ⁇ B nuclear factor ⁇ B
- NF- ⁇ B nuclear factor ⁇ B
- cytokines TGF- ⁇ , TGF- ⁇ , IL-8
- MDA malondialdehyde
- 4-hydroxynonenal show chemotactic properties and activate pro-inflammatory cytokines (TNF- ⁇ , TGF- ⁇ , IL-6, IL-8), and stimulate hepatic collagen-producing stellate cells (Pessayre, 2007 J Gastroenterol Hepatol 22 (Suppl 1):S20-S27).
- the liver-specific Kupffer cells seem to play an important role in the pathogenesis of fatty liver diseases such as, e.g. NASH.
- Kupffer cells are liver-resident macrophages providing significant protection against endotoxins and harmful exogenous particles from the portal vein.
- the pathogenesis of NASH may encompass hyperendotoxemia (Creely et al., 2007 Am J Physiol Endocrinol Metab. 292:E740-E747) as a consequence of impaired phagocytotic function of Kupffer cells (Loffreda et al., 1998 FASEB J. 12:57-65). Damaged clearance of bacterial metabolites, endotoxins, lipopolysaccharides etc. might speed up the pathogenesis of liver diseases.
- Kupffer cells Activation of Kupffer cells leads to additional stress stimuli and may determine the fate of hepatocytes from survival toward apoptosis.
- overproduction of cytokines e.g. TNF- ⁇ and IL-1 ⁇ occurs.
- Kupffer cells become more sensitive to these molecules (Diehl, 2002 Am J Physiol Gastrointest Liver Physiol. 282:G1-G5).
- Inflammatory mediators produced by activated Kupffer cells trigger hepatic stellate cells to synthesize collagen which might result in liver fibrosis and cirrhosis.
- mediators which are involved in NAFLD or related malfunction of the liver
- mediators include e.g. eicosanoids (prostaglandins, leukotrienes), cytokines, chemokines, nuclear factors and/or nitric oxide.
- vitamin E and PUFAs exhibit hepatoprotective effects and are able to synergistically modulate the biosynthesis/overproduction of some pro-inflammatory mediators such as, e.g., cytokines. Therefore, such compounds are useful for the prevention, control and/or treatment of conditions associated with excessive accumulation of fat in the liver, preferably for prevention, control and/or treatment of NAFLD.
- the present invention relates to the use of a mixture comprising vitamin E and PUFAs for the treatment, control and/or prevention of hepatic inflammation and cell injury in the liver, more preferably prevention, control and/or treatment of NAFLD and related diseases.
- the present invention relates to the use of vitamin E and PUFAs in the manufacture of a medicament for the prevention, control and/or treatment of conditions requiring modulation of inflammatory responses in liver cells, in particular the treatment and prevention of NAFLD.
- Mixtures according to the present invention comprising vitamin E and PUFAs may be used as nutraceutical compositions, i.e. as supplement to dietary compositions, i.e., (fortified) food/feed or beverages, or as compositions in dosage unit form such as pharmaceutical compositions, e.g., tablets, granules, pastes or effervescent formulations which may further comprise pharmaceutically acceptable carriers, excipients or diluents, including, but not limited to, lubricants, colorants, wetting agents, fillers, disintegrants and flavorants.
- the pastes may be filled into hard or soft gelatine capsules.
- vitamin E includes both natural and synthetic mixtures of tocopherols, including ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and ⁇ -tocopherol.
- Tocopherol which is liquid at room temperature, is a group of methylated phenolic compounds of the general formula (I),
- R1, R3 and R4 are independently from each other hydrogen or methyl groups; and wherein each * represents an individual chiral center.
- At least one of the substituents R1 and R3 in formula (I) is CH3, more preferably is the use of ⁇ -tocopherol and/or ⁇ -tocopherol.
- the tocopherols of formula (I) have chiral carbon centers which are indicated by the asterisk (*) in the formula.
- the configuration at these chiral centers is defined to be either R or S, a concept which is known to the person skilled in the art.
- the respective tocopherols according to formula (I) exist in 8 different isomers due to these chiral centers (i.e. (2R,4′R,8′R)-, (2R,4′S,8′R)-, (2R,4′R,8′S)-, (2R,4′S,8′S)-, (2S,4′R,8′R)-, (2S,4′S,8′R)-, (2R,4′R,8′S)- and (2S,4′S,8′S)-tocopherol).
- the tocopherols are either present in the form of mixture of said chiral isomers or isomerically pure.
- the (2RS, 4′RS, 8′RS) tocopherol is also known as (all-rac)-tocopherol.
- vitamin E is ⁇ -tocopherol which is used in a mixture with PUFA.
- PUFAs are classified according to the position of the double bonds in the carbon chain of the molecule as n-9, n-6 or n-3 PUFAs.
- n-6 PUFAs are linoleic acid (C18:2), arachidonic acid (C20:4), ⁇ -linolenic acid (GLA, C18:13) and dihomo- ⁇ -linolenic acid (DGLA, C20:3).
- n-3 PUFAs are ⁇ -linolenic acid (C18:13), eicosapentaenoic acid (EPA, C20:5), and docosahexaenoic acid (DHA, C22:6). Especially EPA and DHA have attracted interest of the food industry in recent years. The most available sources of these two fatty acids are fish and the marine oils extracted from them or microalgae.
- PUFAs refers to a fatty acid having a backbone comprising 16 or more carbon atoms, (for example, 16, 18, 20 or 22 carbon atoms (C16, C18, C20, or C22, respectively), and two or more carbon-carbon double bonds in the backbone.
- a “long-chain PUFA” refers to a fatty acid having a backbone comprising 18 or more carbon atoms, and two or more carbon-carbon double bonds in the backbone, for example, C18:3n-3 (alpha-linolenic acid or ALA).
- CA:Bn-X When the notation CA:Bn-X is used for a methylene-interrupted PUFA, the “CA” is the number of carbons (for example C18, C20 or C22), B is the number of double bonds and X is the position of the first double bond counted from the methyl end of the fatty acid chain.
- PUFAs encompass the free acid forms thereof, as well as salts and esters thereof.
- ester refers to the replacement of the hydrogen in the carboxylic acid group of a PUFA molecule with another substituent. Examples of common esters include methyl, ethyl, trichloroethyl, propyl, butyl, pentyl, tert butyl, benzyl, nitrobenzyl, methoxybenzyl and benzhydryl. Other esters of PUFAs are described in US 2010-0130608 A1, which is incorporated herein by reference.
- PUFAs for use with the present invention include omega-3, omega-6, and omega 9 polyunsaturated fatty acids, and oxylipins derived therefrom.
- Exemplary omega-3 PUFAs for use with the present invention include, but are not limited to, ⁇ -linolenic acid (C18:3n-3), C18:4n-4, ⁇ -3 eicosapentaenoic acid (20:5n-3) (eicosapentaenoic acid), ⁇ -3 docosapentaenoic acid (docosapentaenoic acid), ⁇ -3 docosahexaenoic acid (22:6n-3), docosatetraenoic acid (22:4n-6), and combinations thereof.
- Exemplary omega-6 PUFAs for use with the present invention include, but are not limited to, ⁇ linolenic acid, linoleic acid, conjugated linoleic acid, arachidonic acid (20:4n-6), ⁇ -6 docosapentaenoic acid, and combinations thereof.
- a PUFA oil for use with the present invention is all-cis.
- the PUFA comprises DHA, also known by its chemical name (all-Z)-4,7,10,13,16,19-docosahexaenoic acid, as well as any salts or derivatives thereof.
- DHA encompasses DHA ethyl ester (DHA-EE) as well as DHA free fatty acids, phospholipids, other esters, monoglycerides, diglycerides, and triglycerides containing DHA.
- DHA is an ⁇ -3 PUFA.
- the PUFA comprises EPA, known by its chemical name (all-Z)-5,8,11,14,17-eicosapentaenoic acid, as well as any salts or derivatives thereof.
- EPA encompasses the free acid EPA as well as EPA alkyl esters and triglycerides containing EPA.
- EPA is an ⁇ -3 PUFA.
- the PUFA oil that is used to make the thermally stable emulsion is substantially free of one or more specific fatty acids.
- a PUFA oil that contains DHA-EE can be substantially free of EPA.
- a PUFA oil that contains EPA-EE can be substantially free of DHA.
- PUFAs suitable for use with the present invention include, but are not limited to, Martek DHATM S Oil (Martek Biosciences Corp., Columbia, Md.), Rosemary-Free Martek DHATM S Oil (Martek Biosciences Corp., Columbia, Md.), Microalgae DHATM Oil (Martek Biosciences Corp., Columbia, Md.), OMEGAPURE® oils (Omega Protein Corp., Houston, Tex.), MARINOL® Oils (Lipid Nutrition, Wormerveer, NL), MEG-3 oils and powders (Ocean Nutrition Corp., Dartmouth, Calif.), Evogel (Symrise AG, Holzminden, Del.), Marine Oil (Arista Industries, Wilton, Conn.), and OMEGASOURCE® oils (Source Food Technology, Inc., Raleigh, N.C.).
- a particularly useful form of PUFA is ⁇ -3 PUFA which is used in a mixture with vitamin E, in particular ⁇ -tocopherol in accordance with the present invention, i.e. for the treatment, control and/or prevention of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse.
- PUFA's are preferably used in a concentration so that the daily consumption by a human adult (weighing about 70 kg) is in the range of from 10 mg/day to 4000 mg/day, preferably from 200 mg/day to 600 mg/day, more preferably about 400 mg/day.
- a food or beverage suitably contains about 5 mg to about 1000 mg of a PUFA per serving.
- the nutraceutical composition is a pharmaceutical formulation such formulation may contain a PUFA in an amount from about 10 mg to about 1000 mg per dosage unit, e.g., per capsule or tablet, or from about 10 mg per daily dose to about 4000 mg per daily dose of a liquid formulation.
- Vitamin E or its derivative is preferably used in a concentration so that the daily consumption by a human adult (weighing about 70 kg) is in the range of from 5 mg/day to 2000 mg/day, preferably 15 to 50 IU/day, more preferably 30 IU/day.
- a food or beverage suitably contains about 2 mg to about 500 mg of vitamin E per serving.
- the nutraceutical composition is a pharmaceutical formulation such formulation may contain vitamin E in an amount from about 5 mg to about 1000 mg per dosage unit, e.g., per capsule or tablet, or from about 5 mg per daily dose to about 2000 mg per daily dose of a liquid formulation.
- subject as used herein includes, all higher animals wherein inflammatory events are known.
- a subject is a mammal, including animals or humans.
- a “fatty liver” or “excessive fat accumulation” associated with NAFDL or NASH means that the liver contains more than about 5 to about 10 wt % of fat.
- the compounds according to the present invention have hepatoprotective properties and are useful for the prevention, control and/or treatment of conditions involved in NAFLD or related malfunction of the liver. They can also be used as an adjunct to the treatment of a variety of diseases or disorders caused by excessive non-alcoholic fat accumulation in the liver via modulation of biosynthesis/overproduction of inflammatory mediators in the liver cells.
- the compounds of the present invention are used for the prevention, control and/or treatment of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse, preferably prevention, control and/or treatment of NAFLD and NASH.
- the present invention is particularly directed to the use of a combination of vitamin E and PUFAs as defined above (in the manufacture of a medicament/composition) for the prevention, control and/or treatment of conditions requiring modulation of inflammatory response associated with accumulation of fat in the liver which is not caused by consumption/abuse of alcohol, especially of those conditions mentioned above.
- compounds/mixtures of the present invention may be used in combination with other nutraceutical compositions or therapeutic agents known to those skilled in the art for treatment, control and/or prevention of inflammatory disorders in the liver by administration prior to, simultaneously with or following the administration of the compound(s) as disclosed herein.
- compounds/mixtures according to the present invention consist substantially of vitamin E and PUFA—i.e. being the main active ingredients—with furthermore addition of binders, fillers, carriers, excipients including water, glycerol, etc. known to the skilled person.
- the ratio of vitamin E and polyunsaturated fatty acids which is administered might be in the range of about 1:1 to about 1:5, such as e.g., 1:2, or in the range of about 4:1 or about 5:1 to about 20:1, calculated as weight ratio.
- the vitamin E is calculated as ⁇ -tocopherol.
- Useful ratios might be In an embodiment, the polyunsaturated fatty acid and vitamin E calculated as a weight ratio of 0.2:1, 0.4:1, 0.6:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 8:1, 10:1, 12:1, 14:1, 16:1, 18:1, 20:1, 25:1 or 30:1, wherein the vitamin E is calculated as ⁇ -tocopherol.
- the anti-inflammatory effect of a combined therapy with vitamin E and PUFAs can be demonstrated in stimulated macrophages including Kupffer cells by determining the inhibition of the synthesis of cytokines that reflect the inflammatory response.
- Kupffer cells i.e. liver-resident macrophages
- a test substance such as mixtures of vitamin E and PUFA according to the present invention.
- murine macrophages RAW264.7 or even monocyte/macrophages present in peripheral blood cells can be used appropriate surrogate models (Raptis et al. J Hepatology 60, 625-632, 2014).
- LPS lipopolysaccharide
- DMSO fetal sulfate
- Culture supernatants may be harvested after appropriate periods of time (e.g. 24 hours).
- Cytokines and interleukins can be measured by appropriate ELISA-based multiplex assays. The percentage of inhibition of the mentioned inflammatory mediators present in the liver-specific cells at a given concentration of the test substances (compared to maximal production by LPS-stimulated cells) is calculated and the putative synergistic effect of the test substance computed (see below).
- Leukocytes are obtained from healthy donors. Mononuclear cells (MNC) are purified by Ficoll-Isopaque gradient centrifugation. Cells (at 3-8 ⁇ 106 cells/mL) are cultured in phenol-red free RPMI 1640, supplemented with 0.25% FBS, 0.1 mM NEAA, 50 U/mL penicillin, 50 ⁇ g/mL streptomycin and 5 ⁇ 10-5 M 2-mercaptoethanol. Cells are stimulated with LPS (100 ng/mL) and IFN- ⁇ (20 U/mL) for 2-24 h.
- MNC Mononuclear cells
- Multiparametric kits for determination of cytokines and chemokines are purchased from BIO-RAD Laboratories (Hercules, Calif.) and used in the LiquiChip Workstation IS 200 (Qiagen, Hilden, Germany). The data are evaluated with the LiquiChip Analyser software (Qiagen).
- LPS lipoprotein sulfate suppression protein
- cytokines interleukins and chemokines
- cytokines interleukins and chemokines
- LPS induces a massive increase of the secretion of inflammatory mediators such as TNF-alpha.
- inflammatory mediators are secreted.
- These parameters are modulated by pre-incubating cells with ⁇ -tocopherol or ⁇ -3 PUFA prior to the stimulation with LPS.
- the pro-inflammatory cytokine TNF- ⁇ is reduced by 29% and 64%, respectively (Table 1a).
- IL-1beta and CCL4/MIP-1b are also significantly reduced by the two substances (Tables 1b, 1c).
- the substances reduces the extent of the inflammatory stress in cells that respond to inflammatory stimuli.
- Soft gelatin capsules are prepared by conventional procedures providing a dose of vitamin E of 5 to 1000 mg (e.g. ⁇ -tocopherol), such as e.g. 50 mg, and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), such as e.g. 200 mg, wherein the amounts are the recommended daily doses.
- vitamin E e.g. ⁇ -tocopherol
- DHA e.g. 200 mg
- Other ingredients to be added glycerol. Water, gelatine, vegetable oil.
- Hard gelatin capsules are prepared by conventional procedures providing a dose of vitamin E of 5 to 1000 mg (e.g. ⁇ -tocopherol) and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), wherein the amounts are the recommended daily doses.
- Other ingredients to be added fillers, such as, e.g., lactose or cellulose or cellulose derivatives q.s.; lubricant, such as, e.g., magnesium stearate if necessary (0.5%).
- Tablets are prepared by conventional procedures providing as active ingredient 5 to 1000 mg of vitamin E (e.g. ⁇ -tocopherol), such as e.g. 20 mg, per tablet and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), and as excipients microcrystalline cellulose, silicone dioxide (SiO2), magnesium stearate, crospovidone NF (which is a disintegratent agent) ad 500 mg.
- vitamin E e.g. ⁇ -tocopherol
- PUFAs as defined above of 10 to 1000 mg
- An orange juice drink colored with beta-Carotene 10% CWS and with vitamin E (e.g. ⁇ -tocopherol) and at least one compound selected from the group of PUFAs as defined above (e.g. DHA) may be prepared according to Table 2 and 3.
- sodium benzoate is dissolved in water whilst stirring. Stirring is continued and sugar syrup, ascorbic acid, citric acid, pectin solution and juice compound are added one after the other. Do not use a high speed mixer.
- the bottling syrup is diluted with (carbonated) water to one liter of beverage.
- deionized water is first added to the juice concentrates with gently stirring to allow the juice concentrates to hydrate. Then, the oily flavor and beta-carotene 10% CWS stock solution are added and pre-emulsified in a rotor-stator-homogenizer. Homogenization is performed in a high-pressure homogenizer at 200 bar.
- Typical serving of a soft drink can be 240 ml, with an amount in Vitamin E (e.g. ⁇ -tocopherol) which is about 5-100 mg/serving and an amount in PUFA (e.g. DHA) which is about 5-500 mg/serving
- Vitamin E e.g. ⁇ -tocopherol
- PUFA e.g. DHA
- Adherent cells i.e. Kupffer cells
- liver tissue i.e., Immonological Letters 158, 52-56, 2014 or according to any method known in the art.
- These cells are treated with compounds as described above (see Example 1).
- These cells will be activated with an inflammatory stimulus and the effect of substances and combination thereof on the reduction of the inflammatory response is determined. With this set-up, identical effects as those described for blood cell derived macrophages (see Ex. 1) are obtained.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention relates to the use of mixtures of vitamin E and polyunsaturated fatty acids (PUFAs) as agents for the prevention, control and/or treatment of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse. This includes prevention, control and/or treatment of non-alcoholic steatosis in the liver—known as non-alcoholic fatty liver disease (NAFLD)—and/or non-alcoholic steatohepatitis (NASH) in a subject in need thereof. In particular, the present invention relates to the use of such compounds comprising vitamin E and PUFAs as active ingredients in the manufacture of medicaments for the prevention, control and/or treatment of conditions related to NAFLD.
Description
- The present invention relates to the use of mixtures of vitamin E and polyunsaturated fatty acids (PUFAs) as agents for the prevention, control and/or treatment of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse. This includes prevention, control and/or treatment of non-alcoholic steatosis in the liver—known as non-alcoholic fatty liver disease (NAFLD)—and/or non-alcoholic steatohepatitis (NASH) in a subject in need thereof. In particular, the present invention relates to the use of such compounds comprising vitamin E and PUFAs as active ingredients in the manufacture of medicaments for the prevention, control and/or treatment of conditions related to NAFLD.
- Although the pathophysiology of fatty liver has not yet been fully clarified, a generally accepted mechanism is the “two-hit” theory (Day and James, 1998 Gastroenterology 114:842-845). The first hit corresponds to the accumulation of free fatty acids (FFA) in the liver, which can be related to obesity, or more generally to metabolic syndrome (including diabetes, hypertension and dyslipidemia). The second hit refers to the peroxidation of these fatty acids due to the oxidative stress produced by different factors (Angulo and Lindor, 2001 Gastroenterology 120:1281-1285).
- The final result of the first hit is an excessive FFA balance, from oversupply and/or failure in lipid beta oxidation, leading to fatty acid accumulation in the liver which gives rise to the first lesions (Charlton et al., 2002 Hepatology 35:898-904). These initial impacts make the liver more vulnerable to aggressive factors of the second hit, which is mediated by oxidative stress and pro-inflammatory cytokines (TNF-α, TGF-β, IL-6, IL-8). FFAs increase the expression of cytochrome P450 2E1 (CYP 2E1), a microsomal enzyme which takes part in the β-oxidation of several FFAs, causing the release of reactive oxygen metabolites (Weltman et al., 1998 Hepatology 27:128-133). Also some FFAs are metabolized by peroxisomal β-oxidation, generating additional reactive oxygen metabolites (hydrogen peroxide, hydroxyl radicals) (Rao and Reddy, 2001 Semin Liver Dis 21:43-55). An excess of these molecules depletes natural antioxidants such as glutathione and vitamin E in the liver, causing oxidative stress which results in lipid peroxidation (Neuschwander-Tetri and Caldwell, 2003 Hepatology 37:1202-1219). Consequently damage in the hepatocyte organelles and membranes occurs, leading to hepatocellular degeneration and ultimately necrosis (Garcia-Monzon et al., 2000 J Hepatol 33:716-724). Lipid peroxidation in mitochondria results in extra production of reactive oxygen metabolites, causing more oxidative stress (Solis Herruzo et al., 2006 Rev Esp Enferm Dig 98:844-874). Under these circumstances nuclear factor κB (NF-κB) will be activated, which stimulates the synthesis of inflammatory mediators such as pro-inflammatory cytokines (TNF-α, TGF-β, IL-8) (Angulo, 2002 N Engl J Med 346:1221-1231). Besides this, final aldehyde by-products of lipid peroxidation, such as malondialdehyde (MDA), and 4-hydroxynonenal show chemotactic properties and activate pro-inflammatory cytokines (TNF-α, TGF-β, IL-6, IL-8), and stimulate hepatic collagen-producing stellate cells (Pessayre, 2007 J Gastroenterol Hepatol 22 (Suppl 1):S20-S27). Patients with NAFLD had an increased expression of TNF-α in the liver (Crespo et al., 2001 Hepatology 34(6): 1158-1163). The final result, a mixed lesion is known as steatohepatitis, characterized by steatosis, inflammatory infiltration and fibrotic degeneration of the liver tissue, and finally hepatocyte necrosis. Ongoing oxidative stress and lipid peroxidation induce continuous collagen production which leads to fibrosis reaching the stage of hepatic cirrhosis (Chitturi and Farrell, 2001 Hepatology 36:403-409).
- The liver-specific Kupffer cells seem to play an important role in the pathogenesis of fatty liver diseases such as, e.g. NASH. Kupffer cells are liver-resident macrophages providing significant protection against endotoxins and harmful exogenous particles from the portal vein. The pathogenesis of NASH may encompass hyperendotoxemia (Creely et al., 2007 Am J Physiol Endocrinol Metab. 292:E740-E747) as a consequence of impaired phagocytotic function of Kupffer cells (Loffreda et al., 1998 FASEB J. 12:57-65). Damaged clearance of bacterial metabolites, endotoxins, lipopolysaccharides etc. might speed up the pathogenesis of liver diseases. Activation of Kupffer cells leads to additional stress stimuli and may determine the fate of hepatocytes from survival toward apoptosis. In Kupffer cells overproduction of cytokines, e.g. TNF-α and IL-1β occurs. Simultaneously, Kupffer cells become more sensitive to these molecules (Diehl, 2002 Am J Physiol Gastrointest Liver Physiol. 282:G1-G5). Inflammatory mediators produced by activated Kupffer cells trigger hepatic stellate cells to synthesize collagen which might result in liver fibrosis and cirrhosis. Aggregates of hypertrophic Kupffer cells can be observed in perivenular areas of the livers of NASH patients compared with the diffuse distribution seen in case of simple steatotic liver (Park et al., 2007 J Gastroenterol Hepatol. 22:491-497).
- With regards to the inflammatory events in the liver, such as associated with NAFLD or NASH, the effect of vitamin E has been examined in various human clinical studies (Pacana et al. Curr Opin Clin Nutr Metab Care 2012; 15:641-648). Through the intake of vitamin E, liver enzymes could be improved with a decrease of the plasma cytokine level. With a daily dose of 800 IU/day liver histology in non-diabetic adults with biopsy-proven NASH could be improved. However, the use of vitamin E is not recommended in diabetic patients as treatment of NASH, NAFLD without liver biopsy, NASH cirrhosis or cryptogenic cirrhosis (Chalasani et al. Hepatology, vol. 55, no. 6, 2012).
- Therefore, there is a need for new agents with hepatoprotective effects but with weak or no side effects. These agents could be used for prevention, control and/or treatment of fatty liver diseases which are not caused by alcohol abuse.
- In accordance with the present invention it has been found that certain compounds can modulate the biosynthesis/overproduction of inflammatory mediators which are involved in NAFLD or related malfunction of the liver, said mediators include e.g. eicosanoids (prostaglandins, leukotrienes), cytokines, chemokines, nuclear factors and/or nitric oxide.
- Surprisingly, it has been found out that combinations of vitamin E and PUFAs exhibit hepatoprotective effects and are able to synergistically modulate the biosynthesis/overproduction of some pro-inflammatory mediators such as, e.g., cytokines. Therefore, such compounds are useful for the prevention, control and/or treatment of conditions associated with excessive accumulation of fat in the liver, preferably for prevention, control and/or treatment of NAFLD.
- Thus, the present invention relates to the use of a mixture comprising vitamin E and PUFAs for the treatment, control and/or prevention of hepatic inflammation and cell injury in the liver, more preferably prevention, control and/or treatment of NAFLD and related diseases. Thus, in one aspect, the present invention relates to the use of vitamin E and PUFAs in the manufacture of a medicament for the prevention, control and/or treatment of conditions requiring modulation of inflammatory responses in liver cells, in particular the treatment and prevention of NAFLD.
- Mixtures according to the present invention comprising vitamin E and PUFAs may be used as nutraceutical compositions, i.e. as supplement to dietary compositions, i.e., (fortified) food/feed or beverages, or as compositions in dosage unit form such as pharmaceutical compositions, e.g., tablets, granules, pastes or effervescent formulations which may further comprise pharmaceutically acceptable carriers, excipients or diluents, including, but not limited to, lubricants, colorants, wetting agents, fillers, disintegrants and flavorants. The pastes may be filled into hard or soft gelatine capsules.
- As used herein, the term “vitamin E” includes both natural and synthetic mixtures of tocopherols, including α-tocopherol, β-tocopherol, γ-tocopherol and δ-tocopherol. Tocopherol, which is liquid at room temperature, is a group of methylated phenolic compounds of the general formula (I),
- wherein R1, R3 and R4 are independently from each other hydrogen or methyl groups; and wherein each * represents an individual chiral center. With regards to the tocopherol isoforms, R1, R3 and R4 are as follows: α-tocopherol (R1=R3=R4=CH3); β-tocopherol (R1=R4=CH3, R3=H); γ-tocopherol (R1=H, R3=R4=CH3); δ-tocopherol (R1=R3=H, R4=CH3).
- It is preferred that at least one of the substituents R1 and R3 in formula (I) is CH3, more preferably is the use of α-tocopherol and/or γ-tocopherol.
- The tocopherols of formula (I) have chiral carbon centers which are indicated by the asterisk (*) in the formula. The configuration at these chiral centers is defined to be either R or S, a concept which is known to the person skilled in the art.
- For a given definition of residues R1, R3 and R4, the respective tocopherols according to formula (I) exist in 8 different isomers due to these chiral centers (i.e. (2R,4′R,8′R)-, (2R,4′S,8′R)-, (2R,4′R,8′S)-, (2R,4′S,8′S)-, (2S,4′R,8′R)-, (2S,4′S,8′R)-, (2R,4′R,8′S)- and (2S,4′S,8′S)-tocopherol). As used herein, the tocopherols are either present in the form of mixture of said chiral isomers or isomerically pure. The (2RS, 4′RS, 8′RS) tocopherol is also known as (all-rac)-tocopherol.
- A particularly useful form of vitamin E is α-tocopherol which is used in a mixture with PUFA.
- PUFAs are classified according to the position of the double bonds in the carbon chain of the molecule as n-9, n-6 or n-3 PUFAs. Examples of n-6 PUFAs are linoleic acid (C18:2), arachidonic acid (C20:4), γ-linolenic acid (GLA, C18:13) and dihomo-γ-linolenic acid (DGLA, C20:3). Examples of n-3 PUFAs are α-linolenic acid (C18:13), eicosapentaenoic acid (EPA, C20:5), and docosahexaenoic acid (DHA, C22:6). Especially EPA and DHA have attracted interest of the food industry in recent years. The most available sources of these two fatty acids are fish and the marine oils extracted from them or microalgae.
- As used herein, the term “PUFAs” or “PUFA” refers to a fatty acid having a backbone comprising 16 or more carbon atoms, (for example, 16, 18, 20 or 22 carbon atoms (C16, C18, C20, or C22, respectively), and two or more carbon-carbon double bonds in the backbone. As used herein, a “long-chain PUFA” (LC-PUFA) refers to a fatty acid having a backbone comprising 18 or more carbon atoms, and two or more carbon-carbon double bonds in the backbone, for example, C18:3n-3 (alpha-linolenic acid or ALA). When the notation CA:Bn-X is used for a methylene-interrupted PUFA, the “CA” is the number of carbons (for example C18, C20 or C22), B is the number of double bonds and X is the position of the first double bond counted from the methyl end of the fatty acid chain.
- As used herein, PUFAs encompass the free acid forms thereof, as well as salts and esters thereof. As used herein, the term ester refers to the replacement of the hydrogen in the carboxylic acid group of a PUFA molecule with another substituent. Examples of common esters include methyl, ethyl, trichloroethyl, propyl, butyl, pentyl, tert butyl, benzyl, nitrobenzyl, methoxybenzyl and benzhydryl. Other esters of PUFAs are described in US 2010-0130608 A1, which is incorporated herein by reference.
- PUFAs for use with the present invention include omega-3, omega-6, and omega 9 polyunsaturated fatty acids, and oxylipins derived therefrom. Exemplary omega-3 PUFAs for use with the present invention include, but are not limited to, α-linolenic acid (C18:3n-3), C18:4n-4, ω-3 eicosapentaenoic acid (20:5n-3) (eicosapentaenoic acid), ω-3 docosapentaenoic acid (docosapentaenoic acid), ω-3 docosahexaenoic acid (22:6n-3), docosatetraenoic acid (22:4n-6), and combinations thereof. Exemplary omega-6 PUFAs for use with the present invention include, but are not limited to, γ linolenic acid, linoleic acid, conjugated linoleic acid, arachidonic acid (20:4n-6), ω-6 docosapentaenoic acid, and combinations thereof. In some embodiments, a PUFA oil for use with the present invention is all-cis.
- In some embodiments, the PUFA comprises DHA, also known by its chemical name (all-Z)-4,7,10,13,16,19-docosahexaenoic acid, as well as any salts or derivatives thereof. Thus, the term DHA encompasses DHA ethyl ester (DHA-EE) as well as DHA free fatty acids, phospholipids, other esters, monoglycerides, diglycerides, and triglycerides containing DHA. DHA is an ω-3 PUFA.
- In further embodiments, the PUFA comprises EPA, known by its chemical name (all-Z)-5,8,11,14,17-eicosapentaenoic acid, as well as any salts or derivatives thereof. Thus, the term EPA encompasses the free acid EPA as well as EPA alkyl esters and triglycerides containing EPA. EPA is an ω-3 PUFA.
- In some embodiments, the PUFA oil that is used to make the thermally stable emulsion, is substantially free of one or more specific fatty acids. For example, a PUFA oil that contains DHA-EE can be substantially free of EPA. On the other hand, a PUFA oil that contains EPA-EE can be substantially free of DHA.
- Commercially available PUFAs suitable for use with the present invention include, but are not limited to, Martek DHA™ S Oil (Martek Biosciences Corp., Columbia, Md.), Rosemary-Free Martek DHA™ S Oil (Martek Biosciences Corp., Columbia, Md.), Microalgae DHA™ Oil (Martek Biosciences Corp., Columbia, Md.), OMEGAPURE® oils (Omega Protein Corp., Houston, Tex.), MARINOL® Oils (Lipid Nutrition, Wormerveer, NL), MEG-3 oils and powders (Ocean Nutrition Corp., Dartmouth, Calif.), Evogel (Symrise AG, Holzminden, Del.), Marine Oil (Arista Industries, Wilton, Conn.), and OMEGASOURCE® oils (Source Food Technology, Inc., Raleigh, N.C.).
- A particularly useful form of PUFA is ω-3 PUFA which is used in a mixture with vitamin E, in particular α-tocopherol in accordance with the present invention, i.e. for the treatment, control and/or prevention of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse.
- PUFA's are preferably used in a concentration so that the daily consumption by a human adult (weighing about 70 kg) is in the range of from 10 mg/day to 4000 mg/day, preferably from 200 mg/day to 600 mg/day, more preferably about 400 mg/day. A food or beverage suitably contains about 5 mg to about 1000 mg of a PUFA per serving. If the nutraceutical composition is a pharmaceutical formulation such formulation may contain a PUFA in an amount from about 10 mg to about 1000 mg per dosage unit, e.g., per capsule or tablet, or from about 10 mg per daily dose to about 4000 mg per daily dose of a liquid formulation.
- Vitamin E or its derivative is preferably used in a concentration so that the daily consumption by a human adult (weighing about 70 kg) is in the range of from 5 mg/day to 2000 mg/day, preferably 15 to 50 IU/day, more preferably 30 IU/day. A food or beverage suitably contains about 2 mg to about 500 mg of vitamin E per serving. If the nutraceutical composition is a pharmaceutical formulation such formulation may contain vitamin E in an amount from about 5 mg to about 1000 mg per dosage unit, e.g., per capsule or tablet, or from about 5 mg per daily dose to about 2000 mg per daily dose of a liquid formulation.
- The term “subject” as used herein includes, all higher animals wherein inflammatory events are known. In particular, a subject is a mammal, including animals or humans.
- As used herein, a “fatty liver” or “excessive fat accumulation” associated with NAFDL or NASH means that the liver contains more than about 5 to about 10 wt % of fat.
- As stated above, the compounds according to the present invention have hepatoprotective properties and are useful for the prevention, control and/or treatment of conditions involved in NAFLD or related malfunction of the liver. They can also be used as an adjunct to the treatment of a variety of diseases or disorders caused by excessive non-alcoholic fat accumulation in the liver via modulation of biosynthesis/overproduction of inflammatory mediators in the liver cells.
- In a particular embodiment, the compounds of the present invention are used for the prevention, control and/or treatment of conditions associated with excessive fat accumulation in the liver which is not caused by alcohol abuse, preferably prevention, control and/or treatment of NAFLD and NASH.
- Thus, the present invention is particularly directed to the use of a combination of vitamin E and PUFAs as defined above (in the manufacture of a medicament/composition) for the prevention, control and/or treatment of conditions requiring modulation of inflammatory response associated with accumulation of fat in the liver which is not caused by consumption/abuse of alcohol, especially of those conditions mentioned above.
- In a further embodiment, compounds/mixtures of the present invention may be used in combination with other nutraceutical compositions or therapeutic agents known to those skilled in the art for treatment, control and/or prevention of inflammatory disorders in the liver by administration prior to, simultaneously with or following the administration of the compound(s) as disclosed herein.
- Depending on the mode of administration, compounds/mixtures according to the present invention consist substantially of vitamin E and PUFA—i.e. being the main active ingredients—with furthermore addition of binders, fillers, carriers, excipients including water, glycerol, etc. known to the skilled person.
- According to the present invention, the ratio of vitamin E and polyunsaturated fatty acids which is administered might be in the range of about 1:1 to about 1:5, such as e.g., 1:2, or in the range of about 4:1 or about 5:1 to about 20:1, calculated as weight ratio. Particularly, the vitamin E is calculated as α-tocopherol. Useful ratios might be In an embodiment, the polyunsaturated fatty acid and vitamin E calculated as a weight ratio of 0.2:1, 0.4:1, 0.6:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 8:1, 10:1, 12:1, 14:1, 16:1, 18:1, 20:1, 25:1 or 30:1, wherein the vitamin E is calculated as α-tocopherol.
- In order to determine anti-inflammatory properties of compounds or combinations thereof, appropriate cells or cell lines (i.e. whole blood, macrophages, leukocytes) will be activated with inflammatory stimuli in vitro in the presence of the compounds. This leads to the secretion of pro-inflammatory prostaglandin E2 (i.e. the product of cyclooxygenase-2), nitric oxide (synthesized by inducible nitric oxide synthase) and various cytokines and interleukins. Due to their anti-inflammatory effects, compounds will reduce the level of the two metabolites. Similarly, the expression of genes of inflammatory pathways will be monitored by quantitative PCR or by micro-array analysis. Anti-inflammatory compounds reduce their expression levels. Additive and/or synergistic effects of compounds will be identified both at the level of specific inflammatory parameters and more generally in the gene expression profile related to the cellular inflammatory response.
- The anti-inflammatory effect of a combined therapy with vitamin E and PUFAs can be demonstrated in stimulated macrophages including Kupffer cells by determining the inhibition of the synthesis of cytokines that reflect the inflammatory response.
- In order to induce an in vitro ‘inflammatory response’ related to NAFLD, Kupffer cells, i.e. liver-resident macrophages, are an ideal cell type to study the hepatoprotective effects of a test substance, such as mixtures of vitamin E and PUFA according to the present invention. Alternatively, murine macrophages RAW264.7 or even monocyte/macrophages present in peripheral blood cells can be used appropriate surrogate models (Raptis et al. J Hepatology 60, 625-632, 2014). For in vitro experiments, cells may be seeded into microtiter plates or 12-well plates and stimulated with lipopolysaccharide (LPS) without or with graded amounts of the test substances. Vehicle concentrations (i.e. DMSO) are kept constant. Culture supernatants may be harvested after appropriate periods of time (e.g. 24 hours). Cytokines and interleukins can be measured by appropriate ELISA-based multiplex assays. The percentage of inhibition of the mentioned inflammatory mediators present in the liver-specific cells at a given concentration of the test substances (compared to maximal production by LPS-stimulated cells) is calculated and the putative synergistic effect of the test substance computed (see below).
- The following examples are illustrative only and are not intended to limit the scope of the invention in any way. The contents of all references, patent applications, patents and published patent applications, cited throughout this application are hereby incorporated by reference.
- Leukocytes are obtained from healthy donors. Mononuclear cells (MNC) are purified by Ficoll-Isopaque gradient centrifugation. Cells (at 3-8×106 cells/mL) are cultured in phenol-red free RPMI 1640, supplemented with 0.25% FBS, 0.1 mM NEAA, 50 U/mL penicillin, 50 μg/mL streptomycin and 5×10-5 M 2-mercaptoethanol. Cells are stimulated with LPS (100 ng/mL) and IFN-γ (20 U/mL) for 2-24 h. Multiparametric kits for determination of cytokines and chemokines are purchased from BIO-RAD Laboratories (Hercules, Calif.) and used in the LiquiChip Workstation IS 200 (Qiagen, Hilden, Germany). The data are evaluated with the LiquiChip Analyser software (Qiagen).
- The algorithm developed by Chou and Talalay is used to calculate synergistic effects (Chou, T-C. & Talalay, P. A simple Biol.Chem. 252, 6438-6442, 1977; Chou, T-C.& Talalay, P. Analysis of combined drug effects—A new look at a very old problem. Trends in Biological Sciences. November 1983, p 450-454, 1983). Interactions are quantified by the Combination Index (CI). Briefly, the % of inhibition of the concentration of each single substance alone or the mixture of both are determined. The affected fraction (fa) (values between 0 and 1) and unaffected fraction (fu) (1−fa), respectively, is calculated. For median-effect plots, log (fa/fu) is plotted against log (D), where D represents the concentration of each single compound alone or the mixture of both. Using CalcuSyn software (Biosoft, Ferguson, Mo.), which is based upon the method by Chou & Talalay, a CI is computed for every fraction affected: a CI<1 reflects synergistic inhibition of the respective inflammatory parameter; if CI=1 the substances have additive interactions; when CI>1 the interaction of substances reflects antagonism. It has also been observed that substances can have synergistic or antagonistic interactions at given concentrations or ratios, respectively (see e.g. Pappa et al. Quantitative combination effects between sulforaphane and 3,3′-generalized equation for the analysis of multiple inhibitions in Michaelis-Menten kinetic systems. J. diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28, 1471-77, 2007).
- Cells are stimulated with LPS, an pathogen-derived component that induces inflammatory response, which is reflected in the expression of inflammatory genes and the secretion of cytokines, interleukins and chemokines (Table 1). LPS induces a massive increase of the secretion of inflammatory mediators such as TNF-alpha. Concomitantly, inflammatory mediators are secreted. These parameters are modulated by pre-incubating cells with α-tocopherol or ω-3 PUFA prior to the stimulation with LPS. For instance, the pro-inflammatory cytokine TNF-γ is reduced by 29% and 64%, respectively (Table 1a). IL-1beta and CCL4/MIP-1b are also significantly reduced by the two substances (Tables 1b, 1c). Thus, the substances reduces the extent of the inflammatory stress in cells that respond to inflammatory stimuli.
- When α-tocopherol and ω-3 PUFA s are combined at different concentrations and ratios, significant synergistic effects are observed in the inhibition of the production of the pro-inflammatory cytokine TNF-alpha, but also of the pro-inflammatory interleukin IL-1beta, as well as the chemokine CCL4 (see Tables 1a-c, right column). The synergistic effects are most prominent for TNF-alpha.
-
TABLE 1 Synergistic effects of α-tocopherol and ω-3 PUFA in the inflammatory response of leukocytes. 1a: synergism between AT and ω-3 PUFA in inhibiting TNF-alpha % p Com- pg/mL ± SD inhibition (vs bined Treatment TNF-alpha (vs LPS) LPS) index LPS 5290 ± 240 — — — AT 10 μM + LPS 5505 ± 177 −4 0.415 AT 50 μM + LPS 3755 ± 21 29 0.012 AT 200 μM + LPS − α 3870 ± 14 27 0.014 — DHA 10 μM + LPS 3190 ± 14 60 0.007 — DHA 20 μM + LPS 3400 ± 523 64 0.043 — DHA 50 μM + LPS 3105 ± 163 59 0.009 — (AT 10 + DHA 1810 ± 269 34 0.005 0.04 10) + LPS (AT 10 + DHA 2845 ± 516 54 0.026 0.06 20) + LPS (AT 10 + DHA 3025 ± 417 57 0.022 0.16 50) + LPS (AT 50 + DHA 1800 ± 14 34 0.002 0.18 10) + LPS (AT 200 + DHA 1705 ± 431 32 0.009 0.70 10) + LPS 1b: synergism between AT and ω-3 PUFA in inhibiting CCL4/MIP-1beta % p Com- pg/mL ± SD inhibition (vs bined Treatment CCL4 (vs LPS) LPS) index LPS 99000 ± 11341 — — — AT 10 μM + LPS 91400 ± 5657 7 0.485 AT 50 μM + LPS 83900 ± 3111 15 0.210 AT 200 μM + LPS − α 87950 ± 3165 11 0.315 — DHA 10 μM + LPS 79995 ± 3465 32 0.151 — DHA 20 μM + LPS 67000 ± 7523 62 0.079 — DHA 50 μM + LPS 37600 ± 778 62 0.024 — (AT 10 + DHA 61700 ± 6930 38 0.058 0.44 10) + LPS (AT 50 + DHA 67800 ± 283 32 0.062 0.56 10) + LPS (AT 200 + DHA 75359 ± 495 24 0.098 0.77 10) + LPS 1c: synergism between AT and ω-3 PUFA in inhibiting IL-1beta % p Com- pg/mL ± SD inhibition (vs bined Treatment IL-1beta (vs LPS) LPS) index LPS 6310 ± 170 — — — AT 10 μM + LPS 6770 ± 438 −7 0.301 AT 50 μM + LPS 5735 ± 134 9 0.064 AT 200 μM + LPS − α 5430 ± 113 14 0.026 — DHA 10 μM + LPS 5405 ± 742 14 0.235 — DHA 20 μM + LPS 4865 ± 1633 23 0.339 — DHA 50 μM + LPS 1440 ± 71 77 0.001 — (AT 10 + DHA 10) + LPS 3520 ± 71 44 0.002 0.41 (AT 10 + DHA 20) + LPS 3645 ± 884 42 0.053 0.83 (AT 10 + DHA 50) + LPS 796 ± 41 87 0.001 0.63 (AT 50 + DHA 10) + LPS 3570 ± 113 43 0.003 0.54 (AT 50 + DHA 50) + LPS 1013 ± 95 83 0.001 0.77 (AT 200 + DHA 10) + LPS 3455 ± 106 45 0.002 0.95 (AT 200 + DHA 50) + LPS 1080 ± 28 83 0.001 0.95 AT = α-tocopherol; for more details see text. - Soft gelatin capsules are prepared by conventional procedures providing a dose of vitamin E of 5 to 1000 mg (e.g. α-tocopherol), such as e.g. 50 mg, and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), such as e.g. 200 mg, wherein the amounts are the recommended daily doses. Other ingredients to be added: glycerol. Water, gelatine, vegetable oil.
- Hard gelatin capsules are prepared by conventional procedures providing a dose of vitamin E of 5 to 1000 mg (e.g. α-tocopherol) and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), wherein the amounts are the recommended daily doses. Other ingredients to be added: fillers, such as, e.g., lactose or cellulose or cellulose derivatives q.s.; lubricant, such as, e.g., magnesium stearate if necessary (0.5%).
- Tablets are prepared by conventional procedures providing as active ingredient 5 to 1000 mg of vitamin E (e.g. α-tocopherol), such as e.g. 20 mg, per tablet and at least one compound selected from the group of PUFAs as defined above of 10 to 1000 mg (e.g. DHA), and as excipients microcrystalline cellulose, silicone dioxide (SiO2), magnesium stearate, crospovidone NF (which is a disintegratent agent) ad 500 mg.
- An orange juice drink colored with beta-Carotene 10% CWS and with vitamin E (e.g. α-tocopherol) and at least one compound selected from the group of PUFAs as defined above (e.g. DHA) may be prepared according to Table 2 and 3.
-
TABLE 2 Soft drink ingredients Sugar syrup 64° Brix 156.2 g Sodium benzoate 0.2 g Ascorbic acid, fine powder 0.2 g Citric acid 50% w/w 5.0 g Pectin solution 2% w/w 10.0 g Vitamin E 2-500 mg PUFA 5-1000 mg Juice compound (see Table 3) 30.0 g Water to 250.0 g - First, sodium benzoate is dissolved in water whilst stirring. Stirring is continued and sugar syrup, ascorbic acid, citric acid, pectin solution and juice compound are added one after the other. Do not use a high speed mixer. The bottling syrup is diluted with (carbonated) water to one liter of beverage.
-
TABLE 3 Ingredients Juice compound Orange juice concentrate 65° Brix 483.3 g Lemon juice concentrate 45° Brix 173.3 g Oily orange flavor 5.0 g Beta-carotene 10% CWS as 10% stock solution 10.0 g Deionized water 328.4 g - For preparation of the juice compound, deionized water is first added to the juice concentrates with gently stirring to allow the juice concentrates to hydrate. Then, the oily flavor and beta-carotene 10% CWS stock solution are added and pre-emulsified in a rotor-stator-homogenizer. Homogenization is performed in a high-pressure homogenizer at 200 bar.
- Typical serving of a soft drink can be 240 ml, with an amount in Vitamin E (e.g. α-tocopherol) which is about 5-100 mg/serving and an amount in PUFA (e.g. DHA) which is about 5-500 mg/serving
- The present study is extended to macrophages isolated from murine or human liver: Adherent cells (i.e. Kupffer cells) are obtained from liver tissue. Isolation and cultivation is done according to the method described by Li et al., Immonological Letters 158, 52-56, 2014 or according to any method known in the art. These cells are treated with compounds as described above (see Example 1). These cells will be activated with an inflammatory stimulus and the effect of substances and combination thereof on the reduction of the inflammatory response is determined. With this set-up, identical effects as those described for blood cell derived macrophages (see Ex. 1) are obtained.
Claims (9)
1. Combination of vitamin E and polyunsaturated fatty acid (PUFA) in the use of prevention, control or treatment of non-alcoholic fat accumulation in the liver in a subject in need thereof, preferably for prevention, control or treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis, wherein the ratio of vitamin E and polyunsaturated fatty acids is administered in the range of about 1:1 to about 1:5, or in the range of about 4:1 to about 20:1, wherein the vitamin E is calculated as α-tocopherol and the ratio is calculated as weight ratio.
2. Combination according to claim 1 , wherein the vitamin E is selected from the group consisting of α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol and mixtures thereof, preferably α-tocopherol and/or γ-tocopherol.
3. Combination according to claim 1 , wherein the polyunsaturated fatty acid is selected from the group consisting of ω-3, ω-6, ω-9 polyunsaturated fatty acids and oxylipins derived therefrom, preferably ω-6 or ω-3 PUFAs, more preferably selected from ω-3 α-linolenic acid, ω-3 eicosapentaenoic acid, ω-3 docosapentaenoic acid, ω-3 docosahexaenoic, ω-3 docosatetraenoic acid, ω-6 γ linolenic acid, ω-6 linoleic acid, ω-6 conjugated linoleic acid, ω-6 arachidonic acid, ω-6 docosapentaenoic acid, and combinations thereof.
4. Combination according to claim 1 , wherein the ratio of vitamin E and polyunsaturated fatty acids is administered in the range of about 1:1 to about 1:5, or in the range of about 4:1 to about 20:1, wherein the vitamin E is calculated as α-tocopherol and the ratio is calculated as weight ratio.
5. Combination according to claim 1 , wherein the amount of vitamin E is from about 5 to about 2000 mg per day and the amount of PUFA is from about 10 mg to about 4000 mg per day.
6. A composition substantially consisting of vitamin E and PUFA for prevention, control or treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis, wherein a combination according to claim 1 is used.
7. A composition with hepatoprotective effect in the form of a tablet, soft drink or gelatin capsule comprising a combination according to claim 1 .
8. A process for the preparation of a tablet, soft drink or gelatin capsule having hepatoprotective effect, said process comprising the step of mixing a combination according to claim 1 with one or more of the following ingredients selected from water, vegetable oils, gelatin, lubricants, and/or cellulose.
9. A method for the treatment or prevention of diseases associated with non-alcoholic fat accumulation in the liver, which comprises administering to the subject in need thereof an effective amount of PUFA and vitamin E according to claim 1 .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH19392014 | 2014-12-15 | ||
CH01939/14 | 2014-12-15 | ||
PCT/EP2015/079526 WO2016096685A1 (en) | 2014-12-15 | 2015-12-14 | Treatment for non-alcoholic fatty liver diseases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/079526 A-371-Of-International WO2016096685A1 (en) | 2014-12-15 | 2015-12-14 | Treatment for non-alcoholic fatty liver diseases |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/166,357 Continuation-In-Part US10682334B2 (en) | 2014-12-15 | 2018-10-22 | Treatment for non-alcoholic fatty liver diseases |
US16/453,934 Division US11026916B2 (en) | 2014-12-15 | 2019-06-26 | Treatment for non-alcoholic fatty liver diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180000775A1 true US20180000775A1 (en) | 2018-01-04 |
Family
ID=54884019
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/536,252 Abandoned US20180000775A1 (en) | 2014-12-15 | 2015-12-14 | Treatment for non-alcoholic fatty liver diseases |
US16/166,357 Expired - Fee Related US10682334B2 (en) | 2014-12-15 | 2018-10-22 | Treatment for non-alcoholic fatty liver diseases |
US16/453,934 Active US11026916B2 (en) | 2014-12-15 | 2019-06-26 | Treatment for non-alcoholic fatty liver diseases |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/166,357 Expired - Fee Related US10682334B2 (en) | 2014-12-15 | 2018-10-22 | Treatment for non-alcoholic fatty liver diseases |
US16/453,934 Active US11026916B2 (en) | 2014-12-15 | 2019-06-26 | Treatment for non-alcoholic fatty liver diseases |
Country Status (9)
Country | Link |
---|---|
US (3) | US20180000775A1 (en) |
EP (1) | EP3233074B1 (en) |
JP (1) | JP6750831B2 (en) |
KR (1) | KR20170093966A (en) |
CN (2) | CN115192568A (en) |
BR (1) | BR112017012811A2 (en) |
ES (1) | ES2934132T3 (en) |
PL (1) | PL3233074T3 (en) |
WO (1) | WO2016096685A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017012811A2 (en) | 2014-12-15 | 2018-04-10 | Dsm Ip Assets B.V. | new treatment for non-alcoholic fatty liver disease |
US20210369668A1 (en) | 2018-10-22 | 2021-12-02 | Dsm Ip Assets B.V. | Composition exhibiting enhanced oxidative stability |
WO2022049168A1 (en) * | 2020-09-04 | 2022-03-10 | Dsm Ip Assets B.V. | 17(s)-hdpa for metabolic-syndrome related disorders |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3719097C1 (en) * | 1987-06-06 | 1988-06-09 | Fratzer Uwe | Medicament containing eicosapentaenoic acid and docosahexaenoic acid as unsaturated fatty acids as well as vitamin E. |
IT1274734B (en) * | 1994-08-25 | 1997-07-24 | Prospa Bv | PHARMACEUTICAL COMPOSITIONS CONTAINING POLYUNSATURATED FATTY ACIDS, THEIR ESTERS OR SALTS, WITH VITAMINS OR ANTIOXIDANT PROVITAMINS |
WO2008053331A1 (en) * | 2006-11-01 | 2008-05-08 | Pronova Biopharma Norge A/S | Alpha-substituted omega-3 lipids that are activators or modulators of the peroxisome proliferators-activated receptor (ppar). |
ES2732293T3 (en) | 2007-02-22 | 2019-11-21 | Childrens Hospital & Res Center At Oakland | Fatty acid formulations and methods for using them |
JPWO2009028457A1 (en) * | 2007-08-29 | 2010-12-02 | 国立大学法人信州大学 | Non-alcoholic steatohepatitis drug |
US20100130608A1 (en) | 2008-10-01 | 2010-05-27 | Martek Biosciences Corporation | Compositions and methods for reducing triglyceride levels |
WO2011097273A1 (en) * | 2010-02-02 | 2011-08-11 | Martek Biosciences Corporation | Methods and compositions for treating non-alcoholic fatty liver disease with docosahexaenoic acid and n-acetyl lcystenine |
CA2790914A1 (en) * | 2010-03-24 | 2011-09-29 | Dong-A Pharm. Co., Ltd. | Pharmaceutical composition comprising dipeptidyl peptibase-iv inhibitor for the prevention or the treatment of non-alcoholic fatty liver disease and the method for prevention or treatment of non-alcoholic fatty liver disease using the same |
ITMI20122088A1 (en) * | 2012-12-06 | 2014-06-07 | D M F Dietetic Metabolic Food S R L | COMPOSITION FOR THE PREVENTION AND TREATMENT OF HEPATICAL AND / OR CYSTIC FIBROSIS |
WO2014158256A1 (en) * | 2013-03-13 | 2014-10-02 | Matinas Biopharma Inc. | Omega-3 pentaenoic acid compositions and methods of use |
BR112017012811A2 (en) | 2014-12-15 | 2018-04-10 | Dsm Ip Assets B.V. | new treatment for non-alcoholic fatty liver disease |
-
2015
- 2015-12-14 BR BR112017012811-0A patent/BR112017012811A2/en not_active Application Discontinuation
- 2015-12-14 JP JP2017531898A patent/JP6750831B2/en not_active Expired - Fee Related
- 2015-12-14 WO PCT/EP2015/079526 patent/WO2016096685A1/en active Application Filing
- 2015-12-14 CN CN202210818384.2A patent/CN115192568A/en active Pending
- 2015-12-14 ES ES15813009T patent/ES2934132T3/en active Active
- 2015-12-14 US US15/536,252 patent/US20180000775A1/en not_active Abandoned
- 2015-12-14 KR KR1020177019245A patent/KR20170093966A/en not_active Application Discontinuation
- 2015-12-14 EP EP15813009.6A patent/EP3233074B1/en active Active
- 2015-12-14 PL PL15813009.6T patent/PL3233074T3/en unknown
- 2015-12-14 CN CN201580073513.8A patent/CN107205983A/en active Pending
-
2018
- 2018-10-22 US US16/166,357 patent/US10682334B2/en not_active Expired - Fee Related
-
2019
- 2019-06-26 US US16/453,934 patent/US11026916B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3233074B1 (en) | 2022-09-28 |
ES2934132T3 (en) | 2023-02-17 |
US20190054063A1 (en) | 2019-02-21 |
JP6750831B2 (en) | 2020-09-02 |
PL3233074T3 (en) | 2023-02-06 |
JP2018500318A (en) | 2018-01-11 |
WO2016096685A1 (en) | 2016-06-23 |
US20190314328A1 (en) | 2019-10-17 |
CN107205983A (en) | 2017-09-26 |
EP3233074A1 (en) | 2017-10-25 |
KR20170093966A (en) | 2017-08-16 |
US10682334B2 (en) | 2020-06-16 |
US11026916B2 (en) | 2021-06-08 |
CN115192568A (en) | 2022-10-18 |
BR112017012811A2 (en) | 2018-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moss et al. | Nutraceutical therapies for atherosclerosis | |
Mischoulon et al. | Docosahexanoic acid and ω-3 fatty acids in depression | |
Stuchlík et al. | Vegetable lipids as components of functional foods | |
US11026916B2 (en) | Treatment for non-alcoholic fatty liver diseases | |
Mazzocchi et al. | Bioactive compounds in edible oils and their role in oxidative stress and inflammation | |
EP1237545B1 (en) | Use of stearidonic acid in the manufacture of a medicament for the treatment or prevention of cancer | |
US20060052446A1 (en) | Fatty acid-containing compositions and methods for the treatment of cytokine mediated disorders | |
Carlson et al. | The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice | |
Auvin | Fatty acid oxidation and epilepsy | |
US20230102251A1 (en) | Compositions comprising thymoquinone and omega-3 fatty acids | |
JP2014512351A (en) | Composition for the treatment of neurological disorders | |
Davanso et al. | Impact of dietary fatty acids on macrophage lipid metabolism, signaling and function | |
Pizato et al. | Ratio of n6 to n-3 fatty acids in the diet affects tumor growth and cachexia in Walker 256 tumor-bearing rats | |
Aluko et al. | Bioactive lipids | |
Nienaber et al. | Beneficial effect of long-chain n-3 polyunsaturated fatty acid supplementation on tuberculosis in mice | |
JP2016533716A (en) | Edible lipid composition comprising stearidonic acid and olive oil | |
Andjic et al. | Flaxseed and evening primrose oil slightly affect systolic and diastolic function of isolated heart in male but not in female rats | |
Nienaber et al. | n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status | |
Bayram et al. | The Role of Omega-3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review | |
EP4129405A1 (en) | Composition for improving friendliness and/or empathetic capacity | |
Calder | Lipids and the critically ill patient | |
Méndez | Polyphenols and omega-3 as nutriceuticals | |
Martynowicz et al. | A closer look at polyunsaturated fatty acids and hypertension | |
Garg | Vitamin and mineral supplements: A balancing act: the relative roles of omega-3 and omega-6 polyunsaturated fatty acids | |
Roychoudhury | Multifaceted Clinical and Therapeutic Potential of Omega-3 Fatty Acids in Humans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: DSM IP ASSETS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PETER, SZABOLCS;SCHWAGER, JOSEPH;SIGNING DATES FROM 20181002 TO 20181016;REEL/FRAME:047907/0936 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |