US20170360485A1 - Spinal implants and methods - Google Patents

Spinal implants and methods Download PDF

Info

Publication number
US20170360485A1
US20170360485A1 US15/690,926 US201715690926A US2017360485A1 US 20170360485 A1 US20170360485 A1 US 20170360485A1 US 201715690926 A US201715690926 A US 201715690926A US 2017360485 A1 US2017360485 A1 US 2017360485A1
Authority
US
United States
Prior art keywords
spinal implant
spacer
retention members
deployable retention
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/690,926
Inventor
Andrew Lamborne
Lawrence Binder
Terry Ziemek
Michael Fulton
Jeffrey J. Thramann
Robert E. LINS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Biomet Spine Inc
Original Assignee
Zimmer Biomet Spine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/257,647 external-priority patent/US8007517B2/en
Priority claimed from US11/293,438 external-priority patent/US7918875B2/en
Priority claimed from US11/934,604 external-priority patent/US8241330B2/en
Application filed by Zimmer Biomet Spine Inc filed Critical Zimmer Biomet Spine Inc
Priority to US15/690,926 priority Critical patent/US20170360485A1/en
Publication of US20170360485A1 publication Critical patent/US20170360485A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7067Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7065Devices with changeable shape, e.g. collapsible or having retractable arms to aid implantation; Tools therefor

Definitions

  • the present invention relates to spinal implants and associated methods.
  • the vertebrae of the human spine are arranged in a column with one vertebra on top of the next.
  • An intervertebral disc lies between adjacent vertebrae to transmit force between the adjacent vertebrae and provide a cushion between them.
  • the discs allow the spine to flex and twist. With age, spinal discs begin to break down, or degenerate resulting in the loss of fluid in the discs and consequently resulting in them becoming less flexible. Likewise, the disks become thinner allowing the vertebrae to move closer together. Degeneration may also result in tears or cracks in the outer layer, or annulus, of the disc. The disc may begin to bulge outwardly. In more severe cases, the inner material of the disc, or nucleus, may actually extrude out of the disc.
  • the spine may undergo changes due to trauma from automobile accidents, falls, heavy lifting, and other activities.
  • spinal stenosis the spinal canal narrows due to excessive bone growth, thickening of tissue in the canal (such as ligament), or both.
  • tissue in the canal such as ligament
  • the spaces through which the spinal cord and the spinal nerve roots pass may become narrowed leading to pressure on the nerve tissue which can cause pain, numbness, weakness, or even paralysis in various parts of the body.
  • the facet joints between adjacent vertebrae may degenerate and cause localized and/or radiating pain. All of the above conditions are collectively referred to herein as spine disease.
  • surgeons treat spine disease by attempting to restore the normal spacing between adjacent vertebrae. This may be sufficient to relieve pressure from affected nerve tissue.
  • the restoration of vertebral spacing is accomplished by inserting a rigid spacer made of bone, metal, or plastic into the disc space between the adjacent vertebrae and allowing the vertebrae to grow together, or fuse, into a single piece of bone.
  • the vertebrae are typically stabilized during this fusion process with the use of bone plates and/or pedicle screws fastened to the adjacent vertebrae.
  • the artificial disc implant typically include either a flexible material or a two-piece articulating joint inserted in the disc space.
  • the spinous process spacer which is inserted between the posteriorly extending spinous processes of adjacent vertebrae to act as an extension stop and to maintain a minimum spacing between the spinous processes when the spine is in extension. The spinous process spacer allows the adjacent spinous processes to move apart as the spine is flexed.
  • FIG. 1 is a perspective view of a spinal implant according to the present invention
  • FIG. 2 is a cross sectional view of the spinal implant of FIG. 1 showing the implant in a first position
  • FIG. 3 is a cross sectional view of the spinal implant of FIG. 1 showing the implant in a second position;
  • FIG. 4 is an elevation view of a spinal implant according to the present invention showing the implant in a first position
  • FIG. 5 is an elevation view of the spinal implant of FIG. 4 showing the implant in a second position
  • FIG. 6 is a perspective view of a spinal implant according to the present invention.
  • FIG. 7 is a cross sectional view of the implant of FIG. 6 ;
  • FIG. 8 is a perspective view of a spinal implant according to the present invention.
  • FIG. 9 is a perspective view of a spacer component of the spinal implant of FIG. 8 in a first position
  • FIG. 10 is a perspective view of a spacer component of the spinal implant of FIG. 8 in a second position
  • FIG. 11 is an elevation view of a core component of the spinal implant of FIG. 8 in a first position
  • FIG. 12 is a perspective view of a spinal implant according to the present invention.
  • FIG. 13 is a perspective view of the spinal implant of FIG. 12 illustrating one method of insertion
  • FIG. 14 is a perspective view of the spinal implant of FIG. 12 illustrating another method of insertion
  • FIG. 15 is a perspective view of an alternative configuration for the retention members of the spinal implant of FIG. 12 ;
  • FIG. 16 is a perspective view of a spinal implant according to the present invention.
  • FIG. 17 is an elevation view of a spinal implant according to the present invention in a first position
  • FIG. 18 is an elevation view of the spinal implant of FIG. 17 in a second position
  • FIG. 19 is a perspective detail view of one end of the spinal implant of FIG. 17 showing the first and second positions superimposed on one another
  • FIG. 20 is a perspective view of a spinal implant according to the present invention.
  • FIG. 21 is a perspective view of the spinal implant of FIG. 20 shown implanted in a first position
  • FIG. 22 is a perspective view of the spinal implant of FIG. 20 shown implanted in a second position
  • FIG. 23 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 24 is a perspective view of the spinal implant of FIG. 23 in a second position
  • FIG. 25 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 26 is a perspective view of the spinal implant of FIG. 24 in a second position
  • FIG. 27 is a perspective view of the spinal implant of FIG. 26 in a third position
  • FIG. 28 is a cross sectional view of a spinal implant according to the present invention in a first position
  • FIG. 29 is a cross sectional view of the spinal implant of FIG. 28 in a second position
  • FIG. 30 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 31 is a side elevation view of the spinal implant of FIG. 30 in the first position
  • FIG. 32 is a front elevation view of the spinal implant of FIG. 30 in the first position
  • FIG. 33 is a perspective view of the spinal-implant of FIG. 30 in a second position
  • FIG. 34 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 35 is a perspective view of the spinal implant of FIG. 34 in a second position
  • FIG. 36 is a perspective view of the spinal implant of FIG. 34 in a third position
  • FIG. 37 is a perspective view of the spinal implant of FIG. 34 implanted in a spine
  • FIG. 38 is a perspective view of a spinal implant according to the present invention.
  • FIG. 39 is a front elevation view of the spinal implant of FIG. 38 implanted in a spine
  • FIG. 40 is a cross sectional view of a spinal implant according to the present invention implanted in a spine
  • FIG. 41 is a cross sectional view of a spinal implant according to the present invention implanted in a spine
  • FIG. 42 is a front elevation view of a component of a spinal implant according to the present invention being implanted in a spine;
  • FIG. 43 is a front elevation view of the fully assembled implant of FIG. 42 implanted in a spine
  • FIG. 44 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 45 is a perspective view of the spinal implant of FIG. 44 in a second position
  • FIG. 46 is a perspective view of the spinal implant of FIG. 44 in a third position
  • FIG. 47 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 48 is a perspective view of the spinal implant of FIG. 47 in a second position
  • FIG. 49 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 50 is a side elevation view of the spinal implant of FIG. 49 in a second position
  • FIG. 51 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 52 is a perspective view of the spinal implant of FIG. 51 in a second position
  • FIG. 53 is a perspective view of a spinal implant according to the present invention in a first position
  • FIG. 54 is a perspective view of the spinal implant of FIG. 53 in a second position
  • FIG. 55 is an exploded perspective view of a spinal implant according to the present invention.
  • FIG. 56 is a front elevation view of the spinal implant of FIG. 55 in a first position
  • FIG. 57 is a front elevation view of the spinal implant of FIG. 55 in a second position
  • FIG. 58 is an exploded perspective view of a spinal implant according to the present invention.
  • FIG. 59 is an exploded perspective view of a spinal implant according to the present invention.
  • FIG. 60 is a right perspective view of a spinal implant according to the present invention.
  • FIG. 61 is a left perspective view of the spinal implant of FIG. 60 ;
  • FIG. 62 is a left perspective view of a spinal implant according to the present invention.
  • FIG. 63 is a right perspective view of the spinal implant of FIG. 62 ;
  • FIG. 64 is a perspective view of a spinal implant according to the present invention.
  • FIG. 65 is a perspective view of a spinal implant according to the present invention.
  • FIG. 66 is a front elevation view of the spinal implant of FIG. 65 ;
  • FIG. 67 is a front elevation view of a spinal implant according to the present invention.
  • FIG. 68 is a flow diagram of a method of inserting a spinal implant according to the present invention.
  • FIG. 69 is a front elevation view of a spinal implant according to the present invention.
  • FIG. 70 is a perspective view of an alternative embodiment of the spinal implant of FIG. 69 .
  • Embodiments of spinal implants according to the present invention include a spacer and one or more retention members.
  • the spinal implant will be referred to in the context of a spinous process implant.
  • the spinal implant may be configured for insertion into the cervical, thoracic, and/or lumbar spine between adjacent spinous processes, transverse processes, and/or other vertebral structures.
  • the spacer may be provided in a variety of sizes to accommodate anatomical variation amongst patients and varying degrees of space correction.
  • the spacer may include openings to facilitate tissue in-growth to anchor the spacer to the vertebral bodies such as tissue in-growth from the spine.
  • the spacer may be configured for tissue in-growth from superior and inferior spinous processes to cause fusion of the adjacent spinous processes.
  • the openings may be relatively large and/or communicate to a hollow interior of the spacer.
  • a hollow interior may be configured to receive bone growth promoting substances such as by packing the substances into the hollow interior.
  • the openings may be relatively small and/or comprise pores or interconnecting pores over at least a portion of the spacer surface.
  • the openings may be filled with bone growth promoting substances.
  • the spacer may have any suitable cross-sectional shape.
  • it may be cylindrical, wedge shaped, D-shaped, C-shaped, H-shaped, include separated cantilevered beams, and/or any other suitable shape.
  • the shape may include chamfers, fillets, flats, relief cuts, and/or other features to accommodate anatomical features such as for example the laminae and/or facets.
  • the spacer may be incompressible, moderately compressible, highly compressible, convertible from compressible to incompressible, and/or any other configuration.
  • the spacer may be compressible into a compact configuration for insertion between adjacent bones and then expandable to space the bones apart.
  • the spacer may be allowed to flex to provide a resilient cushion between the bones.
  • the spacer may be locked in the expanded condition to prevent it from returning to the compact configuration.
  • the retention member may extend transversely from the spacer relative to a spacer longitudinal axis to maintain the spacer between adjacent spinous processes.
  • a single retention member may extend in one or more directions or multiple extensions may be provided that extend in multiple directions.
  • One or more retention members may be fixed relative to the spacer longitudinally and/or radially.
  • One or more retention members may be adjustable relative to the spacer and/or other retention members longitudinally and/or radially to allow the retention members to be positioned relative to the spinous processes.
  • the retention members may be deployable through and/or from within the spacer to allow the spacer to be placed and the retention members deployed in a minimally invasive manner.
  • the retention members may include one or more screws, pins, nails, bolts, staples, hooks, plates, wings, bars, extensions, filaments, wires, loops, bands, straps, cables, cords, sutures, and/or other suitable retention member.
  • the retention members may be made of metals, metal alloys, polymers, and/or other suitable materials.
  • the retention members may grip bone and/or soft tissue, abut bone and/or soft tissue, facilitate tissue ingrowth and/or ongrowth, and/or otherwise retain the implant.
  • the retention members may cooperate with fasteners engageable with the spinous processes and/or soft tissue.
  • Such fasteners may include one or more screws, pins, nails, rivets, bolts, staples, hooks, sutures, wires, straps, clamps, spikes, teeth, adhesives, and/or other suitable fasteners.
  • the fasteners may be integrated into the retention members or they may be modular.
  • the retention members and/or fasteners may be adjustable, replaceable, and/or removable and may be employed in one direction and/or on one side of the implant or in multiple directions and/or on multiple sides of the implant to allow tailoring of the kind and quality of fixation of adjacent bones.
  • the implant may be placed such that it acts only as a spacer between adjacent bones, as an elastic restraint between adjacent bones, or as a rigid fixation between adjacent bones.
  • the spacer, retention members, and/or fasteners may advantageously be made of different materials.
  • Cerclage may be used to stabilize the spinal implant and/or to provide other benefits.
  • wires, straps, bands, cables, cords, and/or other elongated members may encircle the pedicles, laminae, spinous processes, transverse processes, and/or other spinal structures.
  • the cerclage may be relatively inextensible to provide a hard check to spine flexion or the cerclage may be relatively extensible to provide increasing resistance to flexion.
  • the cerclage may be relatively flexible and drapeable such as a woven fabric or it may be relatively rigid such as a metal band.
  • the cerclage may have shape memory properties that cause it to resume a prior set shape after implantation.
  • the cerclage may be independent of the spinous process implant or may engage it. For example, the cerclage may pass through a hollow interior of the spinous process implant and/or engage the extension.
  • the implant may be supplemented with bone growth promoting substances to facilitate fusion of adjacent vertebrae between spinous processes, laminae, transverse processes, facets, and/or other spinal structures.
  • the bone growth promoting substances may be spaced from the implant, placed adjacent the implant, sandwiched between the implant and underlying bone, placed inside the implant, coated onto the implant, and/or otherwise placed relative to the implant. If it is coated onto the implant it may cover the entire implant or only selected portions of the implant such as the spacer, retention members, fasteners, and/or other portions.
  • bone growth promoting substances may include bone paste, bone chips, bone strips, structural bone grafts, platelet derived growth factors, bone marrow aspirate, stem cells, bone growth proteins, bone growth peptides, bone attachment proteins, bone attachment peptides, hydroxylapatite, calcium phosphate, statins, and/or other suitable bone growth promoting substances.
  • the spinal implant and any associated cerclage or other components may be made of any suitable biocompatible material including among others metals, resorbable ceramics, non-resorbable ceramics, resorbable polymers, and non-resorbable polymers.
  • suitable biocompatible material including among others metals, resorbable ceramics, non-resorbable ceramics, resorbable polymers, and non-resorbable polymers.
  • Some specific examples include stainless steel, titanium and its alloys including nickel-titanium alloys, tantalum, hydroxylapatite, calcium phosphate, bone, zirconia, alumina, carbon, bioglass, polyesters, polylactic acid, polyglycolic acid, polyolefins, polyamides, polyimides, polyacrylates, polyketones, fluropolymers, and/or other suitable biocompatible materials and combinations thereof.
  • the spinal implant may be used to treat spine disease in a variety of surgical techniques including superspinous ligament sacrificing posterior approaches, superspinous ligament preserving posterior approaches, lateral approaches, and/or other suitable approaches.
  • the spinal implant may be used to treat spine disease by fusing adjacent vertebrae or by preserving motion between adjacent vertebrae. It may include only an extension stop such as a spacer, only a flexion stop such as flexible cerclage elements, or both a flexion and extension stop.
  • the spinous process implant may be used to reduce loads on the facet joints, increase spinous process spacing, reduce loads on the disc, increase disc spacing, and/or otherwise treat spine disease. Techniques for the spinal implant may include leaving the tissues at the surgical site unmodified or modifying tissues such as trimming, rasping, roughening, and/or otherwise modifying tissues at the implant site.
  • FIGS. 1-3 illustrate a spinal implant 100 including a spacer 102 and a plurality of retention members in the form of first and second plate extensions 104 , 105 and deployable retention members 106 , 108 , and 110 .
  • the spacer 102 has a generally cylindrical body 112 having a proximal end 114 , a distal end 116 , and a longitudinal spacer axis 118 extending therebetween.
  • the distal end 116 tapers to an edge to facilitate inserting the spacer 102 between two bones, e.g. adjacent spinous processes.
  • the distal end is defined by a superior facet 120 , an inferior facet 122 , and lateral facets 124 (one shown).
  • the first plate extension 104 projects radially outwardly from the spacer 102 adjacent the proximal end and the second plate extension 105 projects radially outwardly from the spacer 102 opposite the first plate extension 104 .
  • the plate extensions 104 , 105 may be integral with the spacer 102 as shown in FIGS. 1-3 or modular and separable from the spacer 102 .
  • the plate extensions 104 , 105 provide an insertion stop by abutting the spinous processes 126 , 128 .
  • the deployable retention members 106 , 108 , 110 may be pre-installed within the spacer 102 or inserted into the spacer 102 intraoperatively. Preferably they are pre-installed and retracted within the spacer 102 as shown in FIG. 2 .
  • Each deployable retention member 106 , 108 , 110 is directed into a channel 130 , 132 , 134 that communicates from the interior of the spacer 102 out through the distal end 116 to the exterior of the spacer 102 .
  • the deployable retention members 106 , 108 , 110 are joined at their proximal ends 136 so that they move together.
  • the interior of the spacer includes a cavity 137 that houses the deployable retention members 106 , 108 , 110 in the un-deployed position.
  • the cavity 137 is threaded and receive an actuator screw 138 in axial translating relationship.
  • the spinal implant 100 is inserted between adjacent spinous processes 126 , 128 as shown.
  • the actuator screw 138 is then rotated so that it translates along the spacer axis 118 and pushes the deployable retention members 106 , 108 , 110 distally through the channels 130 , 132 , 134 .
  • the spacer 102 includes a pair of sockets 139 at its proximal end 114 for receiving a tool for applying a counter torque to the spacer 102 while the actuator screw 138 is rotated.
  • the channels 130 , 132 , 134 may be curved to cause the deployable retention members 106 , 108 , 110 to bend away from the spacer axis 118 and grip the spinous processes 126 , 128 and/or surrounding soft tissue.
  • the deployable retention members 106 , 108 , 110 may also be pre-bent and then elastically straightened as they are loaded into the un-deployed position of FIG. 2 . Upon being deployed, they may then return to their pre-bent shape.
  • the deployable retention members 106 , 108 , 110 may advantageously be made of a superelastic material such as Nitinol. They may also respond to the patient's body temperature to change shape from the straight configuration of FIG. 2 to the curved configuration of FIG. 3 .
  • Soft tissue may also grow around, adhere to, scar around, and/or otherwise grip the deployable retention members 106 , 108 , 110 over time.
  • Deployable retention member 110 is split at its distal-end to form a loop 140 that opens upon being deployed from the spacer 102 to facilitate tissue growth into and around the loop 140 for increased retention strength.
  • a plurality of holes 142 are formed through the plate extensions 104 , 105 for receiving fasteners for attaching the plate extensions 104 , 105 to the surrounding bone and/or soft tissue. Such fasteners may include any of the fasteners listed above.
  • a pin 144 is shown in one of the holes 142 in FIG. 3 .
  • FIGS. 4-5 illustrate a spinal implant 200 similar in form and function to that of FIGS. 1-3 .
  • the spinal implant 200 includes a spacer 202 , deployable retention members 204 , and spacer end pieces 206 .
  • the spacer 202 and end pieces 206 are generally cylindrical and are aligned along a spacer axis 208 and connected by a threaded shaft 210 that threadably engages the end pieces 206 .
  • the threaded shaft 210 is mounted to the spacer 202 for axial rotation and includes a driver engaging end 212 .
  • the deployable retention members 204 are fixed in the spacer 202 and are slidably received in channels 214 in the end pieces 206 .
  • the spinal implant 200 is inserted between adjacent bones such as spinous processes 220 , 222 .
  • a driver (not shown) is engaged with the driver engaging end 212 of the threaded shaft 210 and rotated to move the end pieces 206 toward the spacer 202 causing the retention members 204 to extend out of the channels 214 away from the spacer axis 208 as shown in FIG. 5 .
  • a tool (not shown) may be engaged with one or more sockets 224 in one of the end pieces 206 or notches 226 in the spacer 202 to apply a counter torque while the threaded shaft 210 is rotated.
  • FIGS. 6-7 illustrate a spinal implant 300 similar in form and function to that of FIGS. 1-3 .
  • the spinal implant 300 includes a spacer 302 , a core 304 , and deployable retention members 306 extending from the core 304 .
  • the deployable retention members 306 include a plurality of wires projecting in a radial array from a core/spacer axis 308 at each end of the core 304 . In the illustrative example, which have been designed for interspinous placement, there are no wires projecting anteriorly to avoid impingement with the facets and/or other spinal structures.
  • the core 304 and deployable retention members 306 are received in a passageway 309 through the spacer 302 parallel to the spacer axis 308 .
  • the spacer 302 is positioned between adjacent bones such as spinous processes 310 , 312 .
  • the core 304 and deployable retention members 306 may be partially pre-inserted as shown in FIG. 7 such that after the spacer 302 is positioned the core is advanced to deploy the deployable retention members 306 .
  • the core and deployable retention members 306 may be separate from the spacer 302 and inserted after the spacer is placed.
  • a tube 314 may optionally be used to hold the deployable retention members 306 and/or core 304 prior to deployment. As shown in FIG.
  • the tube 314 may be engaged with the spacer 302 in alignment with the passageway 309 and the core 304 and deployable retention members 306 pushed from the tube 314 into the passageway 309 until the deployable retention members 306 deploy from the opposite end of the passageway 309 .
  • the tube 314 may be withdrawn to permit the remaining deployable retention members 306 to deploy.
  • FIGS. 8-11 illustrate a spinal implant 400 similar in form and function to that of FIGS. 1-3 .
  • the spinal implant 400 includes a generally cylindrical hollow spacer 402 having a first end 404 , a second end 406 , and a spacer axis 408 extending from the first end 404 to the second end 406 .
  • a core 410 is positionable within the spacer 402 along the spacer axis 408 .
  • a plurality of deployable retention members 412 project radially away from the spacer axis 408 at each end of the core 410 .
  • the spacer 402 is made of a compressible material such as a superelastic metal or polymer such that it can be compressed to facilitate insertion. For example, as shown in FIG.
  • the prongs 420 of a tool may be inserted into the spacer 402 and spread apart to stretch the spacer 402 into a flattened elliptical shape.
  • the spacer 402 may then be inserted and the prongs removed to allow the spacer 402 to recover to its original shape.
  • the core 410 may then be inserted to maintain the spacer 402 at its recovered height.
  • the core 410 may be sized to press into the spacer 402 and thereby prevent any compression of the spacer 402 post-insertion or the core may be sized to allow a predetermined amount of compression of the spacer 402 to provide a resilient spacer.
  • the optional deployable retention members 412 may be omitted and the spinal implant 400 used in the condition shown in FIG. 10 .
  • the core 410 includes deployable retention members 412 in the form of filaments that can be deployed as an array of loops projecting radially outwardly from the spacer axis 408 at each end of the core 410 .
  • the retention members 412 may retain the space 402 in place by physically blocking withdrawal.
  • the retention members 412 may also retain the spacer 402 due to tissue growth around the retaining members 412 .
  • FIG. 11 illustrates one way of arranging the deployable retention members 412 .
  • a plurality of rings 422 are mounted on the core 410 with at least one of the rings 422 being axially translatable along the core 410 .
  • the rings are connected by a plurality of filaments 424 spiraling around the core 410 .
  • the spacer 402 is inserted between adjacent bones such as adjacent spinous processes and the core 410 is inserted into the spacer 402 .
  • At least one ring 422 is moved toward another ring 422 causing the filaments 424 to bend away from the core and form the array of loops as shown in FIG. 8 .
  • the retaining members 412 may be folded down parallel to the spacer axis 408 similar to the embodiment of FIG. 7 .
  • FIGS. 12-14 illustrate a spinal implant 500 similar in form and function to that of FIGS. 1-3 .
  • the spinal implant 500 includes a spacer 502 having a generally cylindrical hollow body 504 including a first end 506 , a second end 508 , and a spacer axis 510 extending from the first end 506 to the second end 508 .
  • the ends of the spacer 502 are tapered to facilitate insertion between adjacent bones.
  • a plurality of channels 512 extend through the body 504 from the first end 506 to the second end 508 generally parallel to the spacer axis 510 .
  • Deployable retention members 514 are engageable with channels 512 in axially slidable relationship. In the illustrative example of FIGS. 12-14 , the channels 512 and deployable retention members 514 have complimentary rectangular cross sectional shapes.
  • the deployable retention members 514 are curved to extend radially away from the spacer axis 510 and grip the spinous processes.
  • the deployable retention members 514 are straightened and/or retracted to allow the spinal implant 500 to be inserted between the spinous processes. This may be accomplished in a variety of ways. As shown in FIG. 13 , the deployable retention members 514 may be withdrawn partway through the channels 512 forcing them to straighten. They may include a stop to prevent them from being withdrawn completely. After the spacer 502 is inserted between the spinous processes, the deployable retention members 514 may be fed through the channels 512 and allowed to resume their curved configuration. Alternatively the deployable retention members 514 may be separated from the spacer 502 completely and not introduced until after the spacer 502 has been inserted. As shown in FIG.
  • the deployable retention members 514 may be straightened and the spinal implant 500 inserted through a tube 520 and into the space between the spinous processes.
  • FIG. 12 illustrates the spinal implant 500 post-insertion with the deployable retention members 514 fully deployed.
  • FIG. 15 illustrates a spinal implant 600 similar to that of FIGS. 12-14 .
  • Spinal implant 600 has deployable retention members 602 in the form of wires rather than the rectangular ribbon-like deployable retention members 514 of FIGS. 12-14 .
  • FIG. 16 illustrates a spinal implant 700 similar to that of FIGS. 12-14 .
  • Spinal implant 700 includes a spacer 702 having a passageway 704 through the spacer 702 parallel to a spacer axis 706 .
  • a preformed deployable retention member 708 in the form of a wire is inserted through the passageway 704 from a first end to a second end of the passageway so that it emerges from the second end and returns to its preformed shape to extend transverse to the spacer axis 706 beyond the outer surface of the spacer 702 .
  • the end of the deployable retention member may also extend transverse to spacer axis 706 at the first end of the spacer axis so that the deployable retention member may extend on both sides of a process to capture the process.
  • a set screw or other mechanism may be provided to fix the deployable retention member 708 in the passageway 704 after the deployable retention member 708 has been deployed.
  • the deployable retention member 708 is preformed into a coil.
  • FIGS. 17-19 illustrate a spinal implant 800 similar to the previous embodiments.
  • the spinal implant 800 includes a spacer 802 having first and second ends 804 , 806 and a spacer axis 808 extending therebetween.
  • the spacer 802 may be wedge shaped, cylindrical, elliptical, rectangular, and/or any other suitable shape. The shape may be based on anatomical considerations.
  • Deployable retention members are provided in the form of a terminal portion 810 , 812 extending from each end 804 , 806 of the spacer 802 .
  • the terminal portions 810 , 812 have a compact position or shape closer to the spacer axis 808 as shown in FIG. 17 and an expanded position or shape further from the spacer axis 808 as shown in FIG.
  • FIG. 19 illustrates the compact and expanded positions superimposed for comparison.
  • the terminal portions 810 , 812 are provided as coils such as a conventional helical spring coil and the compact position corresponds to a coil being tightly wound and the expanded position corresponds to the coil being loosely wound.
  • the terminal portions 810 , 812 may be shaped as a flange, solid disc, protrusion, bar, or the like as a matter of design choice.
  • the spinal implant 800 is implanted with at least one of the terminal portions 810 , 812 in the compact position. Once placed, one or both terminal portions are allowed to expand. For example, the coils may unwind due to their own spring tension. Alternatively, the coils may be activated, such as e.g. by heat, to expand.
  • the spacer 802 separates adjacent spinous processes and the expanded terminal portions 810 , 812 maintain the spacer 802 between the spinous processes.
  • terminal portions 810 , 812 may be separate devices, in the illustrative embodiment of FIGS. 17-19 , the terminal portions 810 , 812 are connected through a passageway 814 formed through the spacer 802 along the spacer axis 808 .
  • the terminal portions 810 , 812 are the ends of a continuous coil placed within the passageway 814 .
  • the coil may be designed to be in tension such that the terminal portions tend to seat against the spinous processes to hold the spacer 802 firmly in place.
  • the termination portions 810 , 812 may be formed of any number of materials, but superelastic materials such as shape memory metal alloys or polymers are advantageous.
  • shape memory materials can be designed having a first small shape to allow less traumatic implantation of the device. Once implanted, activation of the shape memory material would cause the terminal portions 810 , 812 to move from the compact position to the expanded position.
  • the coil may be configured to retract and thereby seat the terminal portions against the spinous process.
  • the spacer 802 may be provided with one or more surface grooves 816 to receive, e.g., the prongs of a surgical distraction tool so that the spacer may be placed along the prongs after the spinous processes have been distracted.
  • FIGS. 20-22 illustrate an alternative arrangement to that of FIGS. 17-19 in which a spinal implant 900 includes a spacer 902 and a coil 904 wrapped around the outside of the spacer 902 .
  • the coil 904 may have shape memory properties allowing it to be transformed from a compact position to an expanded position or it may always be biased toward the expanded position. In the case where it is always biased toward the expanded position, the coil 904 may be maintained in the compact position by a sleeve 906 or other surrounding structure.
  • the spinal implant 900 is placed between adjacent bones, e.g. spinous processes 910 , 912 , in the compact position ( FIG. 21 ) and allowed, or activated, to transition to the expanded position ( FIG. 22 ) to maintain the spacer 902 between the bones.
  • the spacer 902 may be removed after the spinal implant is implanted or the spacer 902 may be omitted entirely such that just the coil 904 serves as both a spacer and retention member.
  • FIGS. 23-24 illustrate a spinal implant 1000 including a spacer 1002 having a proximal end 1004 , a distal end 1006 , and a spacer axis 1008 extending therebetween.
  • the distal end 1006 may be tapered as shown to facilitate insertion between adjacent bones.
  • the spinal implant 1000 includes one or more deployable retention members mounted for rotation to the spacer 1002 for rotation between a compact or stowed position ( FIG. 23 ) and an expanded or deployed position ( FIG. 24 ).
  • the deployable retention members are in the form of wires 1010 mounted to brackets 1012 extending radially away from the spacer axis 1008 .
  • the wires 1010 extend between the brackets 1012 generally parallel to the spacer axis 1008 and then bend transverse to the spacer axis 1008 at the proximal and distal ends 1004 , 1006 .
  • the spacer 1002 includes an annular groove 1014 adjacent the distal end and the wires 1010 are curved distally to engage the groove 1014 in the compact or stowed position. As shown in FIG. 23 , the groove 1014 may receive the wires 1010 so that their curved portions are completely recessed to ease implantation.
  • the proximal ends of the wires 1010 are positioned behind the proximal end 1004 of the spacer 1002 in the compact or stowed position to ease implantation.
  • the wires 1010 are rotated from the stowed position to the deployed position to maintain the spacer 1002 between the bones.
  • the proximal ends of the wires can be accessed after implantation to rotate the wires 1010 .
  • the wires may maintain their position due to friction with the brackets 1012 or an additional locking mechanism may be provided.
  • detents 1016 may be provided to receive the wires and help maintain them in position, e.g. in the deployed position.
  • FIGS. 25-27 illustrate a spinal implant 1100 including a spacer 1102 having a first end 1104 , a second end 1106 , and a spacer axis 1108 extending therebetween.
  • One or more deployable retention members in the form of end pieces are mounted to the spacer 1102 for rotation between a stowed position nearer the spacer axis 1108 and a deployed position further from the spacer axis.
  • the spinal implant may include a pair of outer end pieces 1110 and a pair of inner end pieces 1112 with one outer and one inner end piece at each end of the spacer.
  • the outer end pieces 1110 are mounted for rotation about an axis 1114 offset from the spacer axis 1108 so that they move nearer to or further from the spacer axis 1108 as they rotate.
  • the outer end pieces 1110 may be mounted on a common shaft 1116 so that they rotate together.
  • the inner end pieces 1112 may be similarly mounted for rotation about an offset axis 1118 on a common shaft 1120 .
  • the inner pieces 1112 are mounted on a shaft 1120 that is offset from both the spacer axis 1108 and the shaft 1116 that the outer end pieces 1110 are mounted on so that the inner and outer end pieces 1112 , 1110 move away from the spacer axis 1108 in different directions.
  • the inner end pieces 1112 have been relieve; e.g. to include notches 1122 ( FIG. 27 ); to clear the shaft of the outer end pieces 1110 so that they may be rotated to a stowed position that is coaxial with the spacer 1102 as shown in FIG. 25 .
  • the spinal implant 1100 is inserted between adjacent bones, e.g. spinous processes, in the stowed position of FIG. 25 .
  • the spacer 1102 is in the desired location one or more of the outer and inner end pieces 1110 , 1112 may be rotated to the deployed position to maintain the spacer 1102 in position.
  • Driver engaging sockets 1124 are provided to facilitate rotating the end pieces.
  • any number of end pieces may be provided up to and including an implant 1100 in which the entire spacer is made up of a series of end pieces.
  • the end pieces may be selectively rotated to achieve the desired fit with the adjacent bones.
  • the end pieces may be mounted to separate shafts or otherwise mounted for independent rotation.
  • the end pieces may be mounted to a shaft so that they slip when a torque threshold is met.
  • the end pieces may be mounted for predetermined slipping such that if a plurality of end pieces are being rotated together on a common shaft and one abuts a bone, the abutting end piece may slip on the shaft and thereby permit the other end pieces to be rotated fully into the deployed position.
  • FIGS. 28-29 illustrate a spinal implant 1200 similar to that of FIGS. 25-27 .
  • the spinal implant 1200 includes a spacer 1202 , a proximal end 1204 , a distal end 1206 , and a spacer axis 1208 extending therebetween.
  • a fixed retention member in the form of a plate or bar shaped extension 1210 extends radially away from the spacer axis 1208 adjacent the proximal end 1204 .
  • a deployable retention member in the form of an end piece 1212 is mounted at the distal end 1206 ;
  • the end piece. 1212 is preferably tapered as shown to facilitate insertion between adjacent bones.
  • the end piece 1212 is mounted to the spacer 1202 for rotation about an end piece rotation axis 1214 transverse to the spacer axis 1208 .
  • the distal end 1206 of the spacer may include a distal face 1216 transverse to the spacer axis 1208 and a trunnion 1218 projecting outwardly normal to the distal face 1216 .
  • the end piece 1212 includes a complimentary proximal face 1220 with a socket 1222 for receiving the trunnion 1218 .
  • the end piece 1212 is rotatable about the rotation axis 1214 from a compact or stowed position as shown in FIG.
  • a shaft 1224 extends from the end piece 1212 through a passageway 1226 in the spacer 1202 to the proximal end 1204 .
  • the shaft 1224 may extend parallel to the rotation axis 1214 or it may bend as shown.
  • a bent shaft may include a flexible portion, a universal joint, a bevel gear, and/or some other arrangement to permit transmitting torque through the bend.
  • a driver engaging socket 1228 is provided at the end of the shaft to engage a tool for rotating the end piece.
  • FIGS. 30-33 illustrate a spinal implant 1300 similar to that of FIGS. 28-29 .
  • the spinal implant 1300 includes a spacer 1302 having a proximal end 1304 , a distal end 1306 , and a spacer axis 1308 extending therebetween.
  • a plurality of deployable retention members are provided at each end in the form end pieces 1310 , 1312 mounted for rotation about axes transverse to the spacer axis 1308 .
  • the end pieces are mounted to gears 1314 that engage additional gears 1316 on a drive shaft 1318 .
  • the end pieces 1310 , 1312 rotate away from the spacer axis 1308 from the stowed position of FIGS. 30-32 to the deployed position of FIG. 33 .
  • FIGS. 34-37 illustrate another spinal implant 1400 including a spacer 1402 having a first end 1404 , a second end 1406 , and a spacer axis 1408 extending therebetween.
  • the spacer 1402 is in the form of a cylinder, rectangle, wedge, cone, and/or some other suitable shape and is compressible transverse to the spacer axis 1408 .
  • the spacer is hollow and made of an elastic material, preferably a superelastic and/or shape memory material.
  • the spinal implant 1400 includes one or more arms 1410 extending away from the ends 1404 , 1406 of the spacer 1402 .
  • the arms are also preferably made of an elastic material such as a superelastic and/or shape memory material.
  • a compact or stowed position FIG. 34
  • the spacer 1402 In a compact or stowed position ( FIG. 34 ), the spacer 1402 is compressed radially toward the spacer axis 1408 and the arms 1410 extend outwardly generally parallel to the spacer axis 1408 .
  • an expanded or deployed position FIG. 36
  • the spinal implant 1400 is inserted between adjacent bones; e.g. spinous processes 1420 , 1422 ; in the compact position and then allowed or activated to transition to the expanded position ( FIG. 37 ).
  • the arms 1410 have a pre-formed shape in which they arch or curve back over the spacer 1402 to grip the spinous processes.
  • the arms 1410 also have holes 1424 to receive fasteners similar to the embodiment of FIGS. 1-3 .
  • the spacer 1402 may also receive a core (not shown) to maintain a minimum expanded height similar to the embodiment of FIGS. 9-12 .
  • FIGS. 38-39 illustrate a spinal implant 1500 including a spacer 1502 having one or more holes 1504 to receive fasteners similar to the embodiment of FIGS. 1-3 .
  • the spacer 1502 is a hollow cylinder with the holes 1504 extending through the wall of the cylinder and being arrayed around the ends of the spacer 1502 .
  • the spacer 1502 may be secured by placing fasteners through the holes 1504 and into one or more adjacent bones and/or into surrounding soft tissue.
  • the spacer 1502 may be secured at one end, at both ends, to tissue associated with one adjacent bone, to tissue associated with multiple adjacent bones, and/or any combination of securing arrangements.
  • the spacer 1502 is placed between adjacent spinous processes and sutured to the surrounding soft tissue 1506 at both ends.
  • FIG. 40 illustrates a spinal implant 1600 similar to that of FIGS. 38-39 .
  • the spinal implant 1600 includes a generally solid spacer 1602 and includes one or more transverse passageways 1604 for receiving one or more fasteners 1606 .
  • the passageways 1604 communicate from the end of the spacer to the outer surface of the spacer transverse to the spacer axis as shown.
  • the spacer 1602 may be attached to one adjacent bone, both adjacent bones, from one side or from two sides.
  • a fastener may be placed into only one bone to maintain the spacer 1602 in position.
  • a fastener may be placed into each of the adjacent bones to maintain the spacer 1602 in position and also to hold the adjacent bones in position relative to one another.
  • screws are placed from each side of the spacer 1602 into adjacent spinous processes 1610 , 1612 .
  • FIG. 41 illustrates a spinal implant 1700 similar to that of FIG. 40 .
  • Spinal implant 1700 includes a spacer 1702 , a retention member in the form of a flange 1704 , and holes 1706 through the flange for receiving fasteners 1708 .
  • the holes 1706 may be parallel to the spacer axis (as shown) or transverse to the spacer axis.
  • FIGS. 42-43 illustrate a spinal implant 1800 including a base 1802 having a base axis 1804 and a hook 1806 having a portion 1808 extending generally transversely away from the base axis 1804 and a portion 1810 extending generally parallel to the base axis 1804 .
  • the spinal implant 1800 further includes a spacer 1812 engageable with the base 1802 .
  • the spacer 1812 may be cylindrical, rectangular, conical, and/or any other suitable shape.
  • the spacer 1812 is generally conical and threadably engages the base 1802 in axial translating relationship.
  • the hook 1806 is placed around a portion of one or more adjacent bones, e.g.
  • the spinal implant 1800 allows unilateral and minimally invasive placement like the previous examples and adjustable spacing determined by the axial position of the conical spacer 1812 .
  • FIGS. 44-46 illustrate a spinal implant 1900 including a spacer 1902 and deployable retention members 1904 .
  • the spacer 1902 includes a split body 1906 having a superior surface 1908 and an inferior surface 1910 .
  • the superior surface 1908 and inferior surface 1910 are movably connected to a driver 1912 .
  • the driver 1912 has a screw 1914 attached to it and extending from the driver 1912 between the superior surface 1908 and inferior surface 1910 into a threaded bore 1916 in a wedge 1918 . In operation, turning the driver 1912 causes the screw 1914 to thread into the bore 1916 , which causes the wedge 1918 to move between the superior surface 1908 and the inferior surface 1910 .
  • the surfaces 1908 , 1910 separate to increase the height of the spacer 1902 .
  • Combinations of channels 1920 and ribs 1922 provide stabilization for movement of the wedge 1918 relative to the surfaces 1908 , 1910 .
  • Retention of the spacer 1902 may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above.
  • deployable retention members 1904 in the of form elastic wires that may be folded parallel to the spacer axis 1924 for insertion may provide lateral retention of the spacer 1902 .
  • FIGS. 47-48 illustrate a spinal implant 2000 including a spacer 2002 .
  • the spacer 2002 is generally shaped as a cylinder or sleeve having a bore 2004 .
  • a gap 2006 extends the length of spacer 2002 .
  • Bore 2004 may be a complete through bore or bore 2004 may allow for a central wall or plug (not shown) for stability.
  • Spinal implant 2000 further comprises end caps 2010 having a generally conical shape or wedge shape. As end caps 2010 are pressed or threaded into bore 2004 , the shape of caps 2010 causes the diameter of spacer 2002 to expand, which is allowed because of gap 2006 .
  • Gap 2006 could be filled with a suitable elastic material.
  • caps 2010 could be made of an expandable material, such as shape memory alloys, spring steel, resins, polymers or the like to achieve the same result. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 49-50 illustrate a spinal implant 2100 similar to that of FIGS. 47-48 .
  • the spinal implant 2100 has a spacer 2102 in the form of a coiled sheet.
  • the spacer 2102 is moveable from a compact position ( FIG. 49 ) in which the coil winds around itself multiple times and is closer to a spacer axis 2104 to an expanded position ( FIG. 50 ) by uncoiling the spacer such that it winds around itself fewer times and is further from the spacer axis 2104 , e.g. such that it forms a single continuous ring.
  • the spacer has inner and outer hook shaped edges 2106 , 2108 that can engage as shown in FIG. 50 to limit the amount of expansion of the spacer 2102 .
  • the spinal implant 2100 may also include plugs or cores as shown in prior examples to support the spacer 2102 against collapse. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 51-52 illustrate a spinal implant 2200 similar to that of FIGS. 49-50 .
  • the spinal implant 2200 includes a coiled sheet-like spacer 2202 having tabs 2204 projecting away from the sheet to engage slots 2206 to limit the amount of expansion of the spacer 2202 .
  • the tabs 2204 and/or slots 2206 may be positioned at the inner and outer edges of the coiled spacer 2202 or they may be positioned at one or more positions intermediate the edges.
  • the spacer may have tabs 2204 at one end and slots placed at multiple locations to allow the spacer to be fixed at different sizes.
  • the spinal implant 2200 may also include plugs or cores as shown in prior examples to support the spacer 2202 against collapse. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 53-54 illustrate a spinal implant 2300 including a spacer 2302 , having a spacer axis 2303 , formed of an elastic material, such as a polymer or resin material.
  • the spacer 2302 may be a hydrogel or other composite or polymer material such as a silicone material.
  • a bore 2304 extends through the spacer 2302 into a base 2306 .
  • the base 2306 is shown with a wedge or conical shape to facilitate insertion but which could be any shape including rounded or blunt.
  • Deployable retention members in the form of elastic arms 2308 are attached to the base 2306 . In use, the base 2306 is inserted between adjacent bones, e.g. spinous processes, parallel to the spacer axis 2303 .
  • the spinal implant 2300 further includes a plate 2310 having a projection 2312 , such as a threaded shaft, extendable through the bore 2304 and threadably engaging the base 2306 .
  • Threading for example, the screw into the base 2306 compresses the spacer 2302 causing the diameter of the spacer 2302 to increase, providing distracting forces on the spinous process. Lateral stability is provided by the plate 2310 and the arms 2308 which extend away from the spacer axis 2303 on either side of the spinous process.
  • a bolt may be attached to the base and the plate 2310 and spacer 2302 compressed with a nut 2314 .
  • Other mechanisms could also be used to compress the spacer 2302 including ratchets, press fits, rivets, and/or any other suitable mechanism.
  • FIGS. 55-57 illustrate a spinal implant 2400 including a base plate 2402 and a wedge plate 2404 .
  • the base plate 2402 is shown as having a rectangular shape, but any shape is possible including, circular, elliptical, square, semi-circular, triangular, trapezoidal, random or the like.
  • the base plate 2402 has a through hole 2406 (square in the example shown) and two attachment tabs 2408 .
  • the attachment tabs have bores 2410 .
  • the wedge plate 2404 is shown as having a rectangular shape similar to the base plate 2402 , but the base plate 2402 and wedge plate 2404 do not necessarily have the same shape. Moreover, the wedge plate 2404 may have numerous possible shapes as explained with reference to the base plate 2402 .
  • a wedge protrusion 2414 extends from a first side of the wedge plate 2404 .
  • the wedge protrusion 2414 is shown with a generally triangular shape having a straight side, but other shapes are possible including sides that are rounded, beveled, curved, arched, convex, concave, or the like.
  • the wedge protrusion 2414 has a superior surface 2416 and an inferior surface 2418 that generally converge as they travel away from the wedge plate 2404 .
  • the wedge protrusion 2414 has a channel bore 2420 extending through a portion of the wedge protrusion 2414 . While not necessary and depending on anatomical factors, the channel bore 2420 may be located halfway between the superior surface 2416 and the inferior surface 2418 .
  • the wedge protrusion 2414 and through hole 2406 are sized such that the base plate 2402 and wedge plate 2404 can abut, although in the typical implanted configuration, the base plate 2402 and wedge plate 2404 would not in fact abut as the bone, e.g. spinous process, would intervene between the base plate 2402 and wedge plate 2404 as shown in FIG. 57 .
  • the bores 2410 on attachment the tabs 2408 generally align with the channel bore 2420 when the wedge protrusion 2414 resides in the through hole 2406 such that a connector 2422 can extend through the bores 2410 and channel bore 2420 to connect the base plate 2402 and wedge plate 2404 during use.
  • the connector 2422 comprises a screw and nut, but any conventional connector may be used.
  • the base plate 2402 and wedge plate 2404 are aligned about a superior spinous process 2450 and an inferior spinous process 2452 .
  • the connector 2422 connects the attachment tabs 2408 and the wedge protrusion 2414 .
  • the connector 2422 is not tightened and the base plate 2402 and wedge plate 2404 may move with respect to each other, although in the initial condition they can only move closer together. Once the plates are aligned with the proper distraction, the connector 2422 may be tightened to lock the spinal implant 2400 in place. Ideally, but not necessarily, the supraspinous ligament remains intact to inhibit the spinal implant 2400 from moving posteriorly out of the interspinous process space.
  • base plate 2402 and wedge plate 2404 may comprise suture bores 2424 ( FIG. 57 ). A suture 2426 may be connected to the suture bores 2424 and traverse superior the spinous process 2450 and the inferior spinous process 2452 .
  • suture 2426 should be construed generically to refer to cables, wires, bands, or other flexible biocompatible connectors. Such sutures may be tied or locked using a tie, cable lock, or crimp.
  • FIG. 58 illustrates an alternative spinal implant 2500 similar in form and function to that of FIGS. 55-57 .
  • the spinal implant 2500 includes a base plate 2502 and a wedge plate 2504 .
  • the base plate 2502 includes an attachment tab 2506 and a bore 2508 .
  • the wedge plate 2504 has at least one wedge prong 2510 , but two wedge prongs 2510 are provided for improved device stability.
  • the two wedge prongs 2510 form a prong channel 2512 to receive the attachment tab 2506 and provide some additional stability.
  • the wedge prongs 2510 have channel bores 2514 . While both the attachment tab 2506 and the wedge prongs 2510 are shown as wedge shaped, both are not necessarily wedge shaped.
  • the bore 2508 and channel bores 2514 align such that a connector 2516 can be fitted between them to couple the base plate 2502 and wedge plate 2504 together.
  • the bore 2508 may be formed as a channel bore and the channel bores 2514 may be formed as a bore or they may all be channel bores to allow for lateral adjustment of the plates.
  • FIG. 59 illustrates an alternative spinal implant 2600 similar to that of FIG. 58 but instead of bores and connectors, protrusions 2602 are formed inside the prong channel 2604 and on the attachment tab 2606 .
  • the protrusions 2602 may be ribs, pins, shoulders, barbs, flanges, divots, detents, channels, grooves, teeth and/or other suitable protrusions.
  • the protrusions 2602 may operate similar to a ratchet mechanism and may be configured so that the base plate and wedge plate can move towards each other and distract adjacent bones, e.g. spinous processes.
  • the protrusions 2602 engage such that the plates do not move apart after they are pressed together.
  • the prong channel 2604 may be widened, e.g. by prying it open, to disengage the protrusions 2602 and allow the plates to be separated.
  • FIGS. 60-61 illustrate a spinal implant 2700 .
  • the spinal implant 2700 includes a spacer having a spacer axis 2701 , a first part 2702 , and a second part 2704 .
  • the first part 2702 has a main body 2706 with a first end 2708 and a second end 2710 .
  • One or more lateral walls 2712 extend out from the first part 2702 transverse to the spacer axis 2701 at the first end 2708 .
  • the walls 2712 are adapted to extend along a superior and inferior spinous process on a first side.
  • the second end 2710 is adapted to reside in a space between the superior and inferior spinous process.
  • the second part 2704 includes a main body 2714 and has a first end 2716 and a second end 2718 .
  • One or more lateral walls 2720 extend out from the second part 2704 transverse to the spacer axis 2701 at the first end 2716 .
  • the walls 2720 are adapted to extend along a superior and inferior spinous process on a second side.
  • the second end 2718 is adapted to reside in a space between the superior and inferior spinous process.
  • the lateral wall 2712 , 2720 may be shaped to accommodate anatomy.
  • the second end 2710 of the first part 2702 and second end 2718 of second part 2704 abut or engage. A variety of features may be provided to enhance this engagement.
  • the second ends may include one or more channels and/or one or more protrusions that fit in the channels.
  • a set screw or the like may threadably engage a bore extending through the first and second parts to maintain them in alignment.
  • a set screw and bore are optional.
  • Interlocking channels and protrusions are optional as the ends may just abut or have interfering surfaces.
  • the ends may be sloped transverse to the spacer axis 2701 , as shown, to facilitate insertion and/or to increase the abutment area.
  • one or more through channels or bores 2722 extend through the first and second parts 2702 , 2704 .
  • a guidewire 2732 extends through the channels 2722 generally parallel to the spacer axis 2701 .
  • the guidewire 2732 may be formed of wire, braided or twisted cable (made of metallic or polymer strands), suture material, a flat metallic or polymer band (either braided or solid) and/or other suitable materials and configurations. Multiple through channels may allow the guidewire 2732 to form a loop about the first end 2702 as shown in FIG. 61 .
  • the guidewire 2732 ends may be connected around the second end such as with a tie, crimp, knot, twist lock, cable lock, and/or other suitable connections.
  • the guidewire 2732 When the guidewire 2732 is not looped, the guidewire 2732 may be locked against both the first and second ends using a locking device such as a cable lock, crimp, knot, and/or any other suitable locking device.
  • a locking device such as a cable lock, crimp, knot, and/or any other suitable locking device.
  • the guidewire 2732 maintains the first and second parts locked together.
  • FIGS. 62-63 illustrate a spinal implant 2800 similar to that of FIGS. 60-61 except that it includes a protrusion 2804 extending from the second part 2704 to engage a slot 2802 extending from the first part 2702 to stabilize the first and second parts relative to one another.
  • FIG. 64 illustrates a spinal implant 2900 similar to that of FIGS. 60-61 except that the first part 2702 defines slot 2902 and the second part 2704 tapers to a blade-like nose 2904 that engages the slot 2902 .
  • FIGS. 65-66 illustrate a spinal implant 3000 similar to that of FIGS. 60-6.1 except that the first part 2702 defines tapering side cutouts 3002 separated by a central wedge shaped wall 3004 and the second part 2704 tapers to a wedge shaped second end 3006 .
  • the wedge shaped second end is divided by a groove 3008 .
  • the wall 3004 engages the groove 3008 and the wedge shaped second end 3006 engages the side cutouts 3002 .
  • the first and second parts 2702 , 2704 have one or more bores 3010 , 3012 transverse to the spacer axis 2701 for receiving a fastener to lock the parts together.
  • FIG. 67 illustrates a spinal implant 3100 similar to that of FIGS. 60-66 and shown in the implanted condition.
  • the first and second parts 2702 , 2704 are secured together with a single guide wire 3102 secured at each end by a crimp 3104 .
  • Passageways 3106 are provided through the lateral walls 2712 , 2720 .
  • Sutures, wires, cables, bands, or other flexible biocompatible material 3108 may extend through the passageways 3106 and over and/or through a spinous process.
  • the flexible biocompatible material 3108 may loop under or over a single process (as shown on the superior process 3110 ), may loop around a single process (as shown on the inferior process 3112 ), or may loop around both processes, or a combination thereof.
  • the flexible biocompatible material 3108 may be locked using a locking device similar to those explained above.
  • the flexible biocompatible material 3108 and guidewire 3102 may optionally be the same element.
  • FIG. 68 is a flowchart describing one exemplary methodology for implanting the spinal implants of FIGS. 60-67 .
  • the patient is prepared for implanting the spinal implant, step 3202 .
  • Preparing the patient may include, for example, making one or more incisions providing access to the spinal segment, placing the guidewire, etc.
  • the surgical site is distracted (or measured as distraction may be caused by the spacer itself) using conventional distraction tools, step 3204 .
  • the interspinous process space is prepared to receive the spinal implant, step 3206 .
  • the first part of the spinal implant is inserted, over or with the guidewire, to the surgical site through the incision or the like, step 3208 . Once at the site, the first part of the spinal implant is positioned or aligned such that the lateral walls are loosely abutting a first side of the superior and inferior spinous processes and the second end extends into the interspinous space, step 3210 . Generally, this means that the first part is implanted through the interspinous process space.
  • the guidewire which is attached to the first part of the spinal implant as explained above extends from the second end of the first part and is attached to the second part of the spinal implant.
  • the surgeon inserts the second part along the guidewire, step 3212 .
  • the first part and second part may be positioned using tools or the surgeon may place the parts using hands and fingers.
  • the protrusions (if any) on the second part are inserted into the channels of the first part (if any) to align the first part and second part of the spinal implant, step 3214 .
  • Compressive force is applied to mate the first part and the second part, step 3216 .
  • the compressive force may be applied by crimping the guidewire, threading a cable lock, a separate clamp, or the like.
  • step 3218 the first part and second part are locked together.
  • excess guidewire may be cut and removed or looped around the adjacent superior and inferior spinous process to provide secured seating, step 3220 .
  • the distraction of the spinal segment may be released, step 3222 , and the patient's surgical site may be closed, step 3224 .
  • FIG. 69 illustrates a spinal implant 3300 .
  • the spinal implant 3300 includes a superior spinous process seat 3302 and an inferior spinous process seat 3304 .
  • seats 3302 and 3304 form a U and inverted U shape, but other shapes are possible including a square channel shape for each seat, a C-shape, and/or any other suitable shape, although it is believed the saddle shape as shown would work well.
  • Seat 3302 includes a surface 3306 which contacts the superior spinous process and walls 3308 traversing each side of the superior spinous process to capture superior spinous process in seat 3302 .
  • Walls 3308 may be convergent, divergent or relatively parallel. Walls 3308 may be more akin to bumps, ribs, or shoulders to traverse only a minor portion of the spinous process or may be longer to traverse a major portion of the spinous process.
  • Surface 3306 and walls 3308 may be discrete or shaped like a saddle forming a smooth surface in which spinous process can rest.
  • Attached to one wall 3308 is a vertical distraction post 3310 extending towards inferior seat 3304 . While only one vertical distraction post 3310 is shown, multiple posts are possible. Moreover, if multiple posts are used, vertical distraction posts 3310 may reside on opposite sides of superior spinous process seat 3302 . While shown as a straight post, vertical distraction post 3310 may be curved or straight depending on anatomical considerations or the like.
  • seat 3304 includes a surface 3306 which contacts the inferior spinous process and walls 3308 traversing each side of the inferior spinous process to capture inferior spinous process in seat 3304 .
  • Attached to one wall 3308 , on the side corresponding to vertical distraction post 3310 is an attachment tab 3312 .
  • Attachment tab 3312 has a vertical bore 3314 through which vertical distraction post 3310 extends.
  • Seat 3304 can be moved closer to or further from seat 3302 along vertical distraction post 3310 .
  • Attachment tab 3312 also comprises a horizontal bore 3316 .
  • Horizontal bore 3316 intersects vertical bore 3314 .
  • a seating device 3318 is insertable into horizontal bore 3316 . As shown horizontal bore 3316 is threaded to accept a set screw or the like.
  • a surgeon would distract superior and inferior spinous processes and implant spinal implant 3300 .
  • Seats 3302 and 3304 would be set at a desired distraction and, for example, set screw 3318 would be threaded into horizontal bore 3316 to apply seating force to seat vertical distraction post 3310 in vertical bore 3314 locking seats 3302 and 3304 at the set distraction distance.
  • Vertical distraction post 3310 and/or vertical bore 3314 may be arranged with a protrusion 3319 or detent to inhibit the ability of withdrawing vertical distraction post 3310 from vertical bore 3314 .
  • FIG. 70 illustrates alternative seats 3400 and 3402 .
  • Seats 3400 and 3402 are designed to nest or interlock.
  • seat 3400 has one or more first blades 3404 or multiple surfaces spaced apart so first gaps 3406 separate first blades 3404 .
  • Seat 3402 would similarly have one or more second blades 3408 or multiple surfaces.
  • Seat 3402 is shown with a single second blade for convenience.
  • Second plate 3408 is aligned with first gaps 3406 such that seats 3400 and 3402 may nest or interlock.
  • first blades 3404 could align with second gaps, not shown. Either first blades 3404 (as shown) or second blade 3408 may attach to a vertical distraction post 3410 and second blade 3408 (as shown) or first blades 3404 may attach to attachment tab 3412 .
  • a spinal implant and its use have been described and illustrated in detail, it is to be understood that the same is intended by way of illustration and example only and is not to be taken by way of limitation.
  • the invention has been illustrated in the form of a spinal implant for use in spacing adjacent spinous processes of the human spine.
  • the spinal implant may be configured for spacing other portions of the spine or other bones. Accordingly, variations in and modifications to the spinal implant and its use will be apparent to those of ordinary skill in the art.
  • the various illustrative embodiments illustrate alternative configurations of various component parts such as spacers, retention members, additional fasteners, and the like.
  • the alternative configuration of a component part in one embodiment may be substituted for a similar component part in another embodiment.
  • the differently shaped or expandable spacers in one example may be substituted for a spacer in another example.
  • the various mechanisms for deploying a retention member or for providing additional fasteners may be interchanged.
  • the gender of the component parts may be reversed as is known in the art within the scope of the invention. The following claims are intended to cover all such modifications and equivalents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a spinal implant for placement between adjacent processes of the human spine. In some embodiments the spinal implant includes a spacer and one or more retention members. In some embodiments, the retention members are fixed relative to the spacer and in other embodiments the retention members are deployable from a first or compact or stowed position to a second or expanded or deployed position. In some embodiments the spacer is expandable from a first size to a second size. In some embodiments the spacer has a tapered body.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 12/013,351, entitled “SPINAL IMPLANTS AND METHODS” and filed on Jan. 11, 2008 which is a continuation-in-part of U.S. patent application Ser. No. 11/293,438, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION” and filed on Dec. 2, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/257,647, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION” and filed on Oct. 25, 2005, each of which is incorporated in full by reference herein.
  • The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/934,604, entitled “SPINOUS PROCESS IMPLANTS AND ASSOCIATED METHODS” and filed Nov. 2, 2007 which is incorporated in full by reference herein.
  • The present application further claims the benefit of U.S. Provisional Patent Application No. 60/884,581, entitled “SPINAL STABILIZATION” and filed Jan. 11, 2007, U.S. Provisional Patent Application No. 60/621,712, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on Oct. 25, 2004; U.S. Provisional Patent Application No. 60/633,112, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on Dec. 3, 2004; U.S. Provisional Patent Application No. 60/639,938, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on Dec. 29, 2004; U.S. Provisional Patent Application No. 60/654,483, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on Feb. 21, 2005; U.S. Provisional Patent Application No. 60/671,301, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on Apr. 14, 2005; U.S. Provisional Patent Application No. 60/678,360, entitled “INTERSPINOUS DISTRACTION DEVICES AND ASSOCIATED METHODS OF INSERTION,” and filed on May 6, 2005; and U.S. Provisional Application No. 60/912,273; entitled “FUSION PLATE WITH REMOVABLE OR ADJUSTABLE SPIKES” and filed Apr. 17, 2007, each of which is incorporated in full by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to spinal implants and associated methods.
  • BACKGROUND
  • The vertebrae of the human spine are arranged in a column with one vertebra on top of the next. An intervertebral disc lies between adjacent vertebrae to transmit force between the adjacent vertebrae and provide a cushion between them. The discs allow the spine to flex and twist. With age, spinal discs begin to break down, or degenerate resulting in the loss of fluid in the discs and consequently resulting in them becoming less flexible. Likewise, the disks become thinner allowing the vertebrae to move closer together. Degeneration may also result in tears or cracks in the outer layer, or annulus, of the disc. The disc may begin to bulge outwardly. In more severe cases, the inner material of the disc, or nucleus, may actually extrude out of the disc. In addition to degenerative changes in the disc, the spine may undergo changes due to trauma from automobile accidents, falls, heavy lifting, and other activities. Furthermore, in a process known as spinal stenosis, the spinal canal narrows due to excessive bone growth, thickening of tissue in the canal (such as ligament), or both. In all of these conditions, the spaces through which the spinal cord and the spinal nerve roots pass may become narrowed leading to pressure on the nerve tissue which can cause pain, numbness, weakness, or even paralysis in various parts of the body. Finally, the facet joints between adjacent vertebrae may degenerate and cause localized and/or radiating pain. All of the above conditions are collectively referred to herein as spine disease.
  • Conventionally, surgeons treat spine disease by attempting to restore the normal spacing between adjacent vertebrae. This may be sufficient to relieve pressure from affected nerve tissue. However, it is often necessary to also surgically remove disc material, bone, or other tissues that impinge on the nerve tissue and/or to debride the facet joints. Most often, the restoration of vertebral spacing is accomplished by inserting a rigid spacer made of bone, metal, or plastic into the disc space between the adjacent vertebrae and allowing the vertebrae to grow together, or fuse, into a single piece of bone. The vertebrae are typically stabilized during this fusion process with the use of bone plates and/or pedicle screws fastened to the adjacent vertebrae.
  • Although techniques for placing intervertebral spacers, plates, and pedicle screw fixation systems have become less invasive in recent years, they still require the placement of hardware deep within the surgical site adjacent to the spine. Recovery from such surgery can require several days of hospitalization and long, slow rehabilitation to normal activity levels.
  • More recently, investigators have promoted the use of motion preservation implants and techniques in which adjacent vertebrae are permitted to move relative to one another. One such implant that has met with only limited success is the artificial disc implant. These typically include either a flexible material or a two-piece articulating joint inserted in the disc space. Another such implant is the spinous process spacer which is inserted between the posteriorly extending spinous processes of adjacent vertebrae to act as an extension stop and to maintain a minimum spacing between the spinous processes when the spine is in extension. The spinous process spacer allows the adjacent spinous processes to move apart as the spine is flexed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various examples of the present invention will be discussed with reference to the appended drawings. These drawings depict only illustrative examples of the invention and are not to be considered limiting of its scope.
  • FIG. 1 is a perspective view of a spinal implant according to the present invention;
  • FIG. 2 is a cross sectional view of the spinal implant of FIG. 1 showing the implant in a first position;
  • FIG. 3 is a cross sectional view of the spinal implant of FIG. 1 showing the implant in a second position;
  • FIG. 4 is an elevation view of a spinal implant according to the present invention showing the implant in a first position;
  • FIG. 5 is an elevation view of the spinal implant of FIG. 4 showing the implant in a second position;
  • FIG. 6 is a perspective view of a spinal implant according to the present invention;
  • FIG. 7 is a cross sectional view of the implant of FIG. 6;
  • FIG. 8 is a perspective view of a spinal implant according to the present invention;
  • FIG. 9 is a perspective view of a spacer component of the spinal implant of FIG. 8 in a first position;
  • FIG. 10 is a perspective view of a spacer component of the spinal implant of FIG. 8 in a second position;
  • FIG. 11 is an elevation view of a core component of the spinal implant of FIG. 8 in a first position;
  • FIG. 12 is a perspective view of a spinal implant according to the present invention;
  • FIG. 13 is a perspective view of the spinal implant of FIG. 12 illustrating one method of insertion;
  • FIG. 14 is a perspective view of the spinal implant of FIG. 12 illustrating another method of insertion;
  • FIG. 15 is a perspective view of an alternative configuration for the retention members of the spinal implant of FIG. 12;
  • FIG. 16 is a perspective view of a spinal implant according to the present invention;
  • FIG. 17 is an elevation view of a spinal implant according to the present invention in a first position;
  • FIG. 18 is an elevation view of the spinal implant of FIG. 17 in a second position;
  • FIG. 19 is a perspective detail view of one end of the spinal implant of FIG. 17 showing the first and second positions superimposed on one another
  • FIG. 20 is a perspective view of a spinal implant according to the present invention;
  • FIG. 21 is a perspective view of the spinal implant of FIG. 20 shown implanted in a first position;
  • FIG. 22 is a perspective view of the spinal implant of FIG. 20 shown implanted in a second position;
  • FIG. 23 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 24 is a perspective view of the spinal implant of FIG. 23 in a second position;
  • FIG. 25 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 26 is a perspective view of the spinal implant of FIG. 24 in a second position;
  • FIG. 27 is a perspective view of the spinal implant of FIG. 26 in a third position;
  • FIG. 28 is a cross sectional view of a spinal implant according to the present invention in a first position;
  • FIG. 29 is a cross sectional view of the spinal implant of FIG. 28 in a second position;
  • FIG. 30 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 31 is a side elevation view of the spinal implant of FIG. 30 in the first position;
  • FIG. 32 is a front elevation view of the spinal implant of FIG. 30 in the first position;
  • FIG. 33 is a perspective view of the spinal-implant of FIG. 30 in a second position;
  • FIG. 34 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 35 is a perspective view of the spinal implant of FIG. 34 in a second position;
  • FIG. 36 is a perspective view of the spinal implant of FIG. 34 in a third position;
  • FIG. 37 is a perspective view of the spinal implant of FIG. 34 implanted in a spine;
  • FIG. 38 is a perspective view of a spinal implant according to the present invention;
  • FIG. 39 is a front elevation view of the spinal implant of FIG. 38 implanted in a spine;
  • FIG. 40 is a cross sectional view of a spinal implant according to the present invention implanted in a spine;
  • FIG. 41 is a cross sectional view of a spinal implant according to the present invention implanted in a spine;
  • FIG. 42 is a front elevation view of a component of a spinal implant according to the present invention being implanted in a spine;
  • FIG. 43 is a front elevation view of the fully assembled implant of FIG. 42 implanted in a spine;
  • FIG. 44 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 45 is a perspective view of the spinal implant of FIG. 44 in a second position;
  • FIG. 46 is a perspective view of the spinal implant of FIG. 44 in a third position;
  • FIG. 47 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 48 is a perspective view of the spinal implant of FIG. 47 in a second position;
  • FIG. 49 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 50 is a side elevation view of the spinal implant of FIG. 49 in a second position;
  • FIG. 51 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 52 is a perspective view of the spinal implant of FIG. 51 in a second position;
  • FIG. 53 is a perspective view of a spinal implant according to the present invention in a first position;
  • FIG. 54 is a perspective view of the spinal implant of FIG. 53 in a second position;
  • FIG. 55 is an exploded perspective view of a spinal implant according to the present invention;
  • FIG. 56 is a front elevation view of the spinal implant of FIG. 55 in a first position;
  • FIG. 57 is a front elevation view of the spinal implant of FIG. 55 in a second position
  • FIG. 58 is an exploded perspective view of a spinal implant according to the present invention;
  • FIG. 59 is an exploded perspective view of a spinal implant according to the present invention;
  • FIG. 60 is a right perspective view of a spinal implant according to the present invention;
  • FIG. 61 is a left perspective view of the spinal implant of FIG. 60;
  • FIG. 62 is a left perspective view of a spinal implant according to the present invention;
  • FIG. 63 is a right perspective view of the spinal implant of FIG. 62;
  • FIG. 64 is a perspective view of a spinal implant according to the present invention;
  • FIG. 65 is a perspective view of a spinal implant according to the present invention;
  • FIG. 66 is a front elevation view of the spinal implant of FIG. 65;
  • FIG. 67 is a front elevation view of a spinal implant according to the present invention;
  • FIG. 68 is a flow diagram of a method of inserting a spinal implant according to the present invention;
  • FIG. 69 is a front elevation view of a spinal implant according to the present invention; and
  • FIG. 70 is a perspective view of an alternative embodiment of the spinal implant of FIG. 69.
  • DESCRIPTION OF THE ILLUSTRATIVE EXAMPLES
  • Embodiments of spinal implants according to the present invention include a spacer and one or more retention members. Throughout this specification, the spinal implant will be referred to in the context of a spinous process implant. However, it is to be understood that the spinal implant may be configured for insertion into the cervical, thoracic, and/or lumbar spine between adjacent spinous processes, transverse processes, and/or other vertebral structures. The spacer may be provided in a variety of sizes to accommodate anatomical variation amongst patients and varying degrees of space correction. The spacer may include openings to facilitate tissue in-growth to anchor the spacer to the vertebral bodies such as tissue in-growth from the spine. For example, the spacer may be configured for tissue in-growth from superior and inferior spinous processes to cause fusion of the adjacent spinous processes. The openings may be relatively large and/or communicate to a hollow interior of the spacer. A hollow interior may be configured to receive bone growth promoting substances such as by packing the substances into the hollow interior. The openings may be relatively small and/or comprise pores or interconnecting pores over at least a portion of the spacer surface. The openings may be filled with bone growth promoting substances.
  • The spacer may have any suitable cross-sectional shape. For example, it may be cylindrical, wedge shaped, D-shaped, C-shaped, H-shaped, include separated cantilevered beams, and/or any other suitable shape. The shape may include chamfers, fillets, flats, relief cuts, and/or other features to accommodate anatomical features such as for example the laminae and/or facets.
  • The spacer may be incompressible, moderately compressible, highly compressible, convertible from compressible to incompressible, and/or any other configuration. For example, the spacer may be compressible into a compact configuration for insertion between adjacent bones and then expandable to space the bones apart. The spacer may be allowed to flex to provide a resilient cushion between the bones. The spacer may be locked in the expanded condition to prevent it from returning to the compact configuration.
  • The retention member may extend transversely from the spacer relative to a spacer longitudinal axis to maintain the spacer between adjacent spinous processes. A single retention member may extend in one or more directions or multiple extensions may be provided that extend in multiple directions. One or more retention members may be fixed relative to the spacer longitudinally and/or radially. One or more retention members may be adjustable relative to the spacer and/or other retention members longitudinally and/or radially to allow the retention members to be positioned relative to the spinous processes. The retention members may be deployable through and/or from within the spacer to allow the spacer to be placed and the retention members deployed in a minimally invasive manner. The retention members may include one or more screws, pins, nails, bolts, staples, hooks, plates, wings, bars, extensions, filaments, wires, loops, bands, straps, cables, cords, sutures, and/or other suitable retention member. The retention members may be made of metals, metal alloys, polymers, and/or other suitable materials. The retention members may grip bone and/or soft tissue, abut bone and/or soft tissue, facilitate tissue ingrowth and/or ongrowth, and/or otherwise retain the implant.
  • The retention members may cooperate with fasteners engageable with the spinous processes and/or soft tissue. Such fasteners may include one or more screws, pins, nails, rivets, bolts, staples, hooks, sutures, wires, straps, clamps, spikes, teeth, adhesives, and/or other suitable fasteners. The fasteners may be integrated into the retention members or they may be modular. The retention members and/or fasteners may be adjustable, replaceable, and/or removable and may be employed in one direction and/or on one side of the implant or in multiple directions and/or on multiple sides of the implant to allow tailoring of the kind and quality of fixation of adjacent bones. For example, the implant may be placed such that it acts only as a spacer between adjacent bones, as an elastic restraint between adjacent bones, or as a rigid fixation between adjacent bones. The spacer, retention members, and/or fasteners may advantageously be made of different materials.
  • Cerclage may be used to stabilize the spinal implant and/or to provide other benefits. For example, wires, straps, bands, cables, cords, and/or other elongated members may encircle the pedicles, laminae, spinous processes, transverse processes, and/or other spinal structures. The cerclage may be relatively inextensible to provide a hard check to spine flexion or the cerclage may be relatively extensible to provide increasing resistance to flexion. The cerclage may be relatively flexible and drapeable such as a woven fabric or it may be relatively rigid such as a metal band. The cerclage may have shape memory properties that cause it to resume a prior set shape after implantation. The cerclage may be independent of the spinous process implant or may engage it. For example, the cerclage may pass through a hollow interior of the spinous process implant and/or engage the extension.
  • The implant may be supplemented with bone growth promoting substances to facilitate fusion of adjacent vertebrae between spinous processes, laminae, transverse processes, facets, and/or other spinal structures. The bone growth promoting substances may be spaced from the implant, placed adjacent the implant, sandwiched between the implant and underlying bone, placed inside the implant, coated onto the implant, and/or otherwise placed relative to the implant. If it is coated onto the implant it may cover the entire implant or only selected portions of the implant such as the spacer, retention members, fasteners, and/or other portions.
  • As used herein, bone growth promoting substances may include bone paste, bone chips, bone strips, structural bone grafts, platelet derived growth factors, bone marrow aspirate, stem cells, bone growth proteins, bone growth peptides, bone attachment proteins, bone attachment peptides, hydroxylapatite, calcium phosphate, statins, and/or other suitable bone growth promoting substances.
  • The spinal implant and any associated cerclage or other components may be made of any suitable biocompatible material including among others metals, resorbable ceramics, non-resorbable ceramics, resorbable polymers, and non-resorbable polymers. Some specific examples include stainless steel, titanium and its alloys including nickel-titanium alloys, tantalum, hydroxylapatite, calcium phosphate, bone, zirconia, alumina, carbon, bioglass, polyesters, polylactic acid, polyglycolic acid, polyolefins, polyamides, polyimides, polyacrylates, polyketones, fluropolymers, and/or other suitable biocompatible materials and combinations thereof.
  • The spinal implant may be used to treat spine disease in a variety of surgical techniques including superspinous ligament sacrificing posterior approaches, superspinous ligament preserving posterior approaches, lateral approaches, and/or other suitable approaches. The spinal implant may be used to treat spine disease by fusing adjacent vertebrae or by preserving motion between adjacent vertebrae. It may include only an extension stop such as a spacer, only a flexion stop such as flexible cerclage elements, or both a flexion and extension stop. The spinous process implant may be used to reduce loads on the facet joints, increase spinous process spacing, reduce loads on the disc, increase disc spacing, and/or otherwise treat spine disease. Techniques for the spinal implant may include leaving the tissues at the surgical site unmodified or modifying tissues such as trimming, rasping, roughening, and/or otherwise modifying tissues at the implant site.
  • For example, FIGS. 1-3 illustrate a spinal implant 100 including a spacer 102 and a plurality of retention members in the form of first and second plate extensions 104, 105 and deployable retention members 106, 108, and 110. The spacer 102 has a generally cylindrical body 112 having a proximal end 114, a distal end 116, and a longitudinal spacer axis 118 extending therebetween. The distal end 116 tapers to an edge to facilitate inserting the spacer 102 between two bones, e.g. adjacent spinous processes. The distal end is defined by a superior facet 120, an inferior facet 122, and lateral facets 124 (one shown).
  • The first plate extension 104 projects radially outwardly from the spacer 102 adjacent the proximal end and the second plate extension 105 projects radially outwardly from the spacer 102 opposite the first plate extension 104. The plate extensions 104, 105 may be integral with the spacer 102 as shown in FIGS. 1-3 or modular and separable from the spacer 102. The plate extensions 104, 105 provide an insertion stop by abutting the spinous processes 126, 128.
  • The deployable retention members 106, 108, 110 may be pre-installed within the spacer 102 or inserted into the spacer 102 intraoperatively. Preferably they are pre-installed and retracted within the spacer 102 as shown in FIG. 2. Each deployable retention member 106, 108, 110 is directed into a channel 130, 132, 134 that communicates from the interior of the spacer 102 out through the distal end 116 to the exterior of the spacer 102. The deployable retention members 106, 108, 110 are joined at their proximal ends 136 so that they move together. The interior of the spacer includes a cavity 137 that houses the deployable retention members 106, 108, 110 in the un-deployed position. The cavity 137 is threaded and receive an actuator screw 138 in axial translating relationship.
  • In use, the spinal implant 100 is inserted between adjacent spinous processes 126, 128 as shown. The actuator screw 138 is then rotated so that it translates along the spacer axis 118 and pushes the deployable retention members 106, 108, 110 distally through the channels 130, 132, 134. The spacer 102 includes a pair of sockets 139 at its proximal end 114 for receiving a tool for applying a counter torque to the spacer 102 while the actuator screw 138 is rotated. The channels 130, 132, 134 may be curved to cause the deployable retention members 106, 108, 110 to bend away from the spacer axis 118 and grip the spinous processes 126, 128 and/or surrounding soft tissue. The deployable retention members 106, 108, 110 may also be pre-bent and then elastically straightened as they are loaded into the un-deployed position of FIG. 2. Upon being deployed, they may then return to their pre-bent shape. The deployable retention members 106, 108, 110 may advantageously be made of a superelastic material such as Nitinol. They may also respond to the patient's body temperature to change shape from the straight configuration of FIG. 2 to the curved configuration of FIG. 3. Soft tissue may also grow around, adhere to, scar around, and/or otherwise grip the deployable retention members 106, 108, 110 over time. Deployable retention member 110 is split at its distal-end to form a loop 140 that opens upon being deployed from the spacer 102 to facilitate tissue growth into and around the loop 140 for increased retention strength. A plurality of holes 142 are formed through the plate extensions 104, 105 for receiving fasteners for attaching the plate extensions 104, 105 to the surrounding bone and/or soft tissue. Such fasteners may include any of the fasteners listed above. A pin 144 is shown in one of the holes 142 in FIG. 3.
  • FIGS. 4-5 illustrate a spinal implant 200 similar in form and function to that of FIGS. 1-3. The spinal implant 200 includes a spacer 202, deployable retention members 204, and spacer end pieces 206. The spacer 202 and end pieces 206 are generally cylindrical and are aligned along a spacer axis 208 and connected by a threaded shaft 210 that threadably engages the end pieces 206. The threaded shaft 210 is mounted to the spacer 202 for axial rotation and includes a driver engaging end 212. The deployable retention members 204 are fixed in the spacer 202 and are slidably received in channels 214 in the end pieces 206.
  • In use, the spinal implant 200 is inserted between adjacent bones such as spinous processes 220, 222. A driver (not shown) is engaged with the driver engaging end 212 of the threaded shaft 210 and rotated to move the end pieces 206 toward the spacer 202 causing the retention members 204 to extend out of the channels 214 away from the spacer axis 208 as shown in FIG. 5. A tool (not shown) may be engaged with one or more sockets 224 in one of the end pieces 206 or notches 226 in the spacer 202 to apply a counter torque while the threaded shaft 210 is rotated.
  • FIGS. 6-7 illustrate a spinal implant 300 similar in form and function to that of FIGS. 1-3. The spinal implant 300 includes a spacer 302, a core 304, and deployable retention members 306 extending from the core 304. The deployable retention members 306 include a plurality of wires projecting in a radial array from a core/spacer axis 308 at each end of the core 304. In the illustrative example, which have been designed for interspinous placement, there are no wires projecting anteriorly to avoid impingement with the facets and/or other spinal structures. The core 304 and deployable retention members 306 are received in a passageway 309 through the spacer 302 parallel to the spacer axis 308.
  • In use, the spacer 302 is positioned between adjacent bones such as spinous processes 310, 312. The core 304 and deployable retention members 306 may be partially pre-inserted as shown in FIG. 7 such that after the spacer 302 is positioned the core is advanced to deploy the deployable retention members 306. Alternatively, the core and deployable retention members 306 may be separate from the spacer 302 and inserted after the spacer is placed. In either case, a tube 314 may optionally be used to hold the deployable retention members 306 and/or core 304 prior to deployment. As shown in FIG. 7, the tube 314 may be engaged with the spacer 302 in alignment with the passageway 309 and the core 304 and deployable retention members 306 pushed from the tube 314 into the passageway 309 until the deployable retention members 306 deploy from the opposite end of the passageway 309. The tube 314 may be withdrawn to permit the remaining deployable retention members 306 to deploy.
  • FIGS. 8-11 illustrate a spinal implant 400 similar in form and function to that of FIGS. 1-3. The spinal implant 400 includes a generally cylindrical hollow spacer 402 having a first end 404, a second end 406, and a spacer axis 408 extending from the first end 404 to the second end 406. A core 410 is positionable within the spacer 402 along the spacer axis 408. Optionally, a plurality of deployable retention members 412 project radially away from the spacer axis 408 at each end of the core 410. The spacer 402 is made of a compressible material such as a superelastic metal or polymer such that it can be compressed to facilitate insertion. For example, as shown in FIG. 9, the prongs 420 of a tool (not shown) may be inserted into the spacer 402 and spread apart to stretch the spacer 402 into a flattened elliptical shape. The spacer 402 may then be inserted and the prongs removed to allow the spacer 402 to recover to its original shape. Depending on the modulus of the spacer 402 and the loads exerted on it by the surrounding bones, it may recover to its full pre-insertion height and distract the bones or it may only recover partially. The core 410 may then be inserted to maintain the spacer 402 at its recovered height. The core 410 may be sized to press into the spacer 402 and thereby prevent any compression of the spacer 402 post-insertion or the core may be sized to allow a predetermined amount of compression of the spacer 402 to provide a resilient spacer. The optional deployable retention members 412 may be omitted and the spinal implant 400 used in the condition shown in FIG. 10. Preferably, the core 410 includes deployable retention members 412 in the form of filaments that can be deployed as an array of loops projecting radially outwardly from the spacer axis 408 at each end of the core 410. The retention members 412 may retain the space 402 in place by physically blocking withdrawal. The retention members 412 may also retain the spacer 402 due to tissue growth around the retaining members 412.
  • FIG. 11 illustrates one way of arranging the deployable retention members 412. A plurality of rings 422 are mounted on the core 410 with at least one of the rings 422 being axially translatable along the core 410. The rings are connected by a plurality of filaments 424 spiraling around the core 410.
  • In use, the spacer 402 is inserted between adjacent bones such as adjacent spinous processes and the core 410 is inserted into the spacer 402. At least one ring 422 is moved toward another ring 422 causing the filaments 424 to bend away from the core and form the array of loops as shown in FIG. 8. Alternatively, the retaining members 412 may be folded down parallel to the spacer axis 408 similar to the embodiment of FIG. 7.
  • FIGS. 12-14 illustrate a spinal implant 500 similar in form and function to that of FIGS. 1-3. The spinal implant 500 includes a spacer 502 having a generally cylindrical hollow body 504 including a first end 506, a second end 508, and a spacer axis 510 extending from the first end 506 to the second end 508. The ends of the spacer 502 are tapered to facilitate insertion between adjacent bones. A plurality of channels 512 extend through the body 504 from the first end 506 to the second end 508 generally parallel to the spacer axis 510. Deployable retention members 514 are engageable with channels 512 in axially slidable relationship. In the illustrative example of FIGS. 12-14, the channels 512 and deployable retention members 514 have complimentary rectangular cross sectional shapes. The deployable retention members 514 are curved to extend radially away from the spacer axis 510 and grip the spinous processes.
  • In use, the deployable retention members 514 are straightened and/or retracted to allow the spinal implant 500 to be inserted between the spinous processes. This may be accomplished in a variety of ways. As shown in FIG. 13, the deployable retention members 514 may be withdrawn partway through the channels 512 forcing them to straighten. They may include a stop to prevent them from being withdrawn completely. After the spacer 502 is inserted between the spinous processes, the deployable retention members 514 may be fed through the channels 512 and allowed to resume their curved configuration. Alternatively the deployable retention members 514 may be separated from the spacer 502 completely and not introduced until after the spacer 502 has been inserted. As shown in FIG. 14, the deployable retention members 514 may be straightened and the spinal implant 500 inserted through a tube 520 and into the space between the spinous processes. FIG. 12 illustrates the spinal implant 500 post-insertion with the deployable retention members 514 fully deployed. FIG. 15 illustrates a spinal implant 600 similar to that of FIGS. 12-14. Spinal implant 600 has deployable retention members 602 in the form of wires rather than the rectangular ribbon-like deployable retention members 514 of FIGS. 12-14.
  • FIG. 16 illustrates a spinal implant 700 similar to that of FIGS. 12-14. Spinal implant 700 includes a spacer 702 having a passageway 704 through the spacer 702 parallel to a spacer axis 706. After the spacer 702 is inserted between adjacent spinous processes, a preformed deployable retention member 708 in the form of a wire is inserted through the passageway 704 from a first end to a second end of the passageway so that it emerges from the second end and returns to its preformed shape to extend transverse to the spacer axis 706 beyond the outer surface of the spacer 702. The end of the deployable retention member may also extend transverse to spacer axis 706 at the first end of the spacer axis so that the deployable retention member may extend on both sides of a process to capture the process. Alternatively, a set screw or other mechanism may be provided to fix the deployable retention member 708 in the passageway 704 after the deployable retention member 708 has been deployed. In the illustrative embodiment the deployable retention member 708 is preformed into a coil.
  • FIGS. 17-19 illustrate a spinal implant 800 similar to the previous embodiments. The spinal implant 800 includes a spacer 802 having first and second ends 804, 806 and a spacer axis 808 extending therebetween. The spacer 802 may be wedge shaped, cylindrical, elliptical, rectangular, and/or any other suitable shape. The shape may be based on anatomical considerations. Deployable retention members are provided in the form of a terminal portion 810, 812 extending from each end 804, 806 of the spacer 802. The terminal portions 810, 812 have a compact position or shape closer to the spacer axis 808 as shown in FIG. 17 and an expanded position or shape further from the spacer axis 808 as shown in FIG. 18. FIG. 19 illustrates the compact and expanded positions superimposed for comparison. In the illustrative embodiment of FIGS. 17-19 the terminal portions 810, 812 are provided as coils such as a conventional helical spring coil and the compact position corresponds to a coil being tightly wound and the expanded position corresponds to the coil being loosely wound. However, the terminal portions 810, 812 may be shaped as a flange, solid disc, protrusion, bar, or the like as a matter of design choice. The spinal implant 800 is implanted with at least one of the terminal portions 810, 812 in the compact position. Once placed, one or both terminal portions are allowed to expand. For example, the coils may unwind due to their own spring tension. Alternatively, the coils may be activated, such as e.g. by heat, to expand. The spacer 802 separates adjacent spinous processes and the expanded terminal portions 810, 812 maintain the spacer 802 between the spinous processes.
  • While the terminal portions 810, 812 may be separate devices, in the illustrative embodiment of FIGS. 17-19, the terminal portions 810, 812 are connected through a passageway 814 formed through the spacer 802 along the spacer axis 808. In this embodiment, the terminal portions 810, 812 are the ends of a continuous coil placed within the passageway 814. The coil may be designed to be in tension such that the terminal portions tend to seat against the spinous processes to hold the spacer 802 firmly in place.
  • The termination portions 810, 812 may be formed of any number of materials, but superelastic materials such as shape memory metal alloys or polymers are advantageous. In particular, shape memory materials can be designed having a first small shape to allow less traumatic implantation of the device. Once implanted, activation of the shape memory material would cause the terminal portions 810, 812 to move from the compact position to the expanded position. Moreover, for a continuous coil embodiment, the coil may be configured to retract and thereby seat the terminal portions against the spinous process.
  • The spacer 802 may be provided with one or more surface grooves 816 to receive, e.g., the prongs of a surgical distraction tool so that the spacer may be placed along the prongs after the spinous processes have been distracted.
  • FIGS. 20-22 illustrate an alternative arrangement to that of FIGS. 17-19 in which a spinal implant 900 includes a spacer 902 and a coil 904 wrapped around the outside of the spacer 902. The coil 904 may have shape memory properties allowing it to be transformed from a compact position to an expanded position or it may always be biased toward the expanded position. In the case where it is always biased toward the expanded position, the coil 904 may be maintained in the compact position by a sleeve 906 or other surrounding structure. The spinal implant 900 is placed between adjacent bones, e.g. spinous processes 910, 912, in the compact position (FIG. 21) and allowed, or activated, to transition to the expanded position (FIG. 22) to maintain the spacer 902 between the bones. Alternatively, the spacer 902 may be removed after the spinal implant is implanted or the spacer 902 may be omitted entirely such that just the coil 904 serves as both a spacer and retention member.
  • FIGS. 23-24 illustrate a spinal implant 1000 including a spacer 1002 having a proximal end 1004, a distal end 1006, and a spacer axis 1008 extending therebetween. Optionally, the distal end 1006 may be tapered as shown to facilitate insertion between adjacent bones. The spinal implant 1000 includes one or more deployable retention members mounted for rotation to the spacer 1002 for rotation between a compact or stowed position (FIG. 23) and an expanded or deployed position (FIG. 24). In the illustrative embodiment of FIGS. 23-24, the deployable retention members are in the form of wires 1010 mounted to brackets 1012 extending radially away from the spacer axis 1008. The wires 1010 extend between the brackets 1012 generally parallel to the spacer axis 1008 and then bend transverse to the spacer axis 1008 at the proximal and distal ends 1004, 1006. The spacer 1002 includes an annular groove 1014 adjacent the distal end and the wires 1010 are curved distally to engage the groove 1014 in the compact or stowed position. As shown in FIG. 23, the groove 1014 may receive the wires 1010 so that their curved portions are completely recessed to ease implantation. The proximal ends of the wires 1010 are positioned behind the proximal end 1004 of the spacer 1002 in the compact or stowed position to ease implantation. After the spinal implant 1000 is inserted between adjacent bones, e.g. spinous processes, the wires 1010 are rotated from the stowed position to the deployed position to maintain the spacer 1002 between the bones. In the illustrative embodiment of FIGS. 23-24 the proximal ends of the wires can be accessed after implantation to rotate the wires 1010. The wires may maintain their position due to friction with the brackets 1012 or an additional locking mechanism may be provided. For example, detents 1016 may be provided to receive the wires and help maintain them in position, e.g. in the deployed position.
  • FIGS. 25-27 illustrate a spinal implant 1100 including a spacer 1102 having a first end 1104, a second end 1106, and a spacer axis 1108 extending therebetween. One or more deployable retention members in the form of end pieces are mounted to the spacer 1102 for rotation between a stowed position nearer the spacer axis 1108 and a deployed position further from the spacer axis. For example, the spinal implant may include a pair of outer end pieces 1110 and a pair of inner end pieces 1112 with one outer and one inner end piece at each end of the spacer. The outer end pieces 1110 are mounted for rotation about an axis 1114 offset from the spacer axis 1108 so that they move nearer to or further from the spacer axis 1108 as they rotate. For example, the outer end pieces 1110 may be mounted on a common shaft 1116 so that they rotate together. The inner end pieces 1112 may be similarly mounted for rotation about an offset axis 1118 on a common shaft 1120. Preferably the inner pieces 1112 are mounted on a shaft 1120 that is offset from both the spacer axis 1108 and the shaft 1116 that the outer end pieces 1110 are mounted on so that the inner and outer end pieces 1112, 1110 move away from the spacer axis 1108 in different directions. In the example of FIGS. 25-27, the inner end pieces 1112 have been relieve; e.g. to include notches 1122 (FIG. 27); to clear the shaft of the outer end pieces 1110 so that they may be rotated to a stowed position that is coaxial with the spacer 1102 as shown in FIG. 25. In use, the spinal implant 1100 is inserted between adjacent bones, e.g. spinous processes, in the stowed position of FIG. 25. Once the spacer 1102 is in the desired location one or more of the outer and inner end pieces 1110, 1112 may be rotated to the deployed position to maintain the spacer 1102 in position. Driver engaging sockets 1124 are provided to facilitate rotating the end pieces. Any number of end pieces may be provided up to and including an implant 1100 in which the entire spacer is made up of a series of end pieces. The end pieces may be selectively rotated to achieve the desired fit with the adjacent bones. The end pieces may be mounted to separate shafts or otherwise mounted for independent rotation. The end pieces may be mounted to a shaft so that they slip when a torque threshold is met. For example, the end pieces may be mounted for predetermined slipping such that if a plurality of end pieces are being rotated together on a common shaft and one abuts a bone, the abutting end piece may slip on the shaft and thereby permit the other end pieces to be rotated fully into the deployed position.
  • FIGS. 28-29 illustrate a spinal implant 1200 similar to that of FIGS. 25-27. The spinal implant 1200 includes a spacer 1202, a proximal end 1204, a distal end 1206, and a spacer axis 1208 extending therebetween. A fixed retention member in the form of a plate or bar shaped extension 1210 extends radially away from the spacer axis 1208 adjacent the proximal end 1204. A deployable retention member in the form of an end piece 1212 is mounted at the distal end 1206; The end piece. 1212 is preferably tapered as shown to facilitate insertion between adjacent bones. The end piece 1212 is mounted to the spacer 1202 for rotation about an end piece rotation axis 1214 transverse to the spacer axis 1208. For example, the distal end 1206 of the spacer may include a distal face 1216 transverse to the spacer axis 1208 and a trunnion 1218 projecting outwardly normal to the distal face 1216. The end piece 1212 includes a complimentary proximal face 1220 with a socket 1222 for receiving the trunnion 1218. The end piece 1212 is rotatable about the rotation axis 1214 from a compact or stowed position as shown in FIG. 28 in which the end piece 1212 extends generally parallel to the spacer axis 1288 to an expanded or deployed position as shown in FIG. 29 in which the end piece 212 extends generally transverse to the spacer axis 1208. To facilitate rotation of the end piece 1212, a shaft 1224 extends from the end piece 1212 through a passageway 1226 in the spacer 1202 to the proximal end 1204. The shaft 1224 may extend parallel to the rotation axis 1214 or it may bend as shown. A bent shaft may include a flexible portion, a universal joint, a bevel gear, and/or some other arrangement to permit transmitting torque through the bend. A driver engaging socket 1228 is provided at the end of the shaft to engage a tool for rotating the end piece.
  • FIGS. 30-33 illustrate a spinal implant 1300 similar to that of FIGS. 28-29. The spinal implant 1300 includes a spacer 1302 having a proximal end 1304, a distal end 1306, and a spacer axis 1308 extending therebetween. A plurality of deployable retention members are provided at each end in the form end pieces 1310, 1312 mounted for rotation about axes transverse to the spacer axis 1308. As revealed through the broken away portion of the spacer 1302 in FIG. 30, the end pieces are mounted to gears 1314 that engage additional gears 1316 on a drive shaft 1318. As the drive shaft 1318 is rotated, the end pieces 1310, 1312 rotate away from the spacer axis 1308 from the stowed position of FIGS. 30-32 to the deployed position of FIG. 33.
  • FIGS. 34-37 illustrate another spinal implant 1400 including a spacer 1402 having a first end 1404, a second end 1406, and a spacer axis 1408 extending therebetween. The spacer 1402 is in the form of a cylinder, rectangle, wedge, cone, and/or some other suitable shape and is compressible transverse to the spacer axis 1408. In the illustrative example of FIGS. 34-37 the spacer is hollow and made of an elastic material, preferably a superelastic and/or shape memory material. The spinal implant 1400 includes one or more arms 1410 extending away from the ends 1404, 1406 of the spacer 1402. The arms are also preferably made of an elastic material such as a superelastic and/or shape memory material. In a compact or stowed position (FIG. 34), the spacer 1402 is compressed radially toward the spacer axis 1408 and the arms 1410 extend outwardly generally parallel to the spacer axis 1408. In an expanded or deployed position (FIG. 36) the spacer 1402 is expanded away from the spacer axis 1408 and the arms 1410 extend transverse to the spacer axis 1408. In use, the spinal implant 1400 is inserted between adjacent bones; e.g. spinous processes 1420, 1422; in the compact position and then allowed or activated to transition to the expanded position (FIG. 37). In the illustrative example of FIGS. 34-37, the arms 1410 have a pre-formed shape in which they arch or curve back over the spacer 1402 to grip the spinous processes. In the illustrative example, the arms 1410 also have holes 1424 to receive fasteners similar to the embodiment of FIGS. 1-3. The spacer 1402 may also receive a core (not shown) to maintain a minimum expanded height similar to the embodiment of FIGS. 9-12.
  • FIGS. 38-39 illustrate a spinal implant 1500 including a spacer 1502 having one or more holes 1504 to receive fasteners similar to the embodiment of FIGS. 1-3. In the illustrative example of FIGS. 38-39, the spacer 1502 is a hollow cylinder with the holes 1504 extending through the wall of the cylinder and being arrayed around the ends of the spacer 1502. The spacer 1502 may be secured by placing fasteners through the holes 1504 and into one or more adjacent bones and/or into surrounding soft tissue. The spacer 1502 may be secured at one end, at both ends, to tissue associated with one adjacent bone, to tissue associated with multiple adjacent bones, and/or any combination of securing arrangements. In the example of FIG. 39, the spacer 1502 is placed between adjacent spinous processes and sutured to the surrounding soft tissue 1506 at both ends.
  • FIG. 40 illustrates a spinal implant 1600 similar to that of FIGS. 38-39. The spinal implant 1600 includes a generally solid spacer 1602 and includes one or more transverse passageways 1604 for receiving one or more fasteners 1606. Preferably the passageways 1604 communicate from the end of the spacer to the outer surface of the spacer transverse to the spacer axis as shown. The spacer 1602 may be attached to one adjacent bone, both adjacent bones, from one side or from two sides. For example, in a unilateral procedure a fastener may be placed into only one bone to maintain the spacer 1602 in position. Alternatively a fastener may be placed into each of the adjacent bones to maintain the spacer 1602 in position and also to hold the adjacent bones in position relative to one another. In the example of FIG. 40, screws are placed from each side of the spacer 1602 into adjacent spinous processes 1610, 1612.
  • FIG. 41 illustrates a spinal implant 1700 similar to that of FIG. 40. Spinal implant 1700 includes a spacer 1702, a retention member in the form of a flange 1704, and holes 1706 through the flange for receiving fasteners 1708. The holes 1706 may be parallel to the spacer axis (as shown) or transverse to the spacer axis.
  • FIGS. 42-43 illustrate a spinal implant 1800 including a base 1802 having a base axis 1804 and a hook 1806 having a portion 1808 extending generally transversely away from the base axis 1804 and a portion 1810 extending generally parallel to the base axis 1804. The spinal implant 1800 further includes a spacer 1812 engageable with the base 1802. The spacer 1812 may be cylindrical, rectangular, conical, and/or any other suitable shape. In the illustrative example of FIGS. 42-43, the spacer 1812 is generally conical and threadably engages the base 1802 in axial translating relationship. In use, the hook 1806 is placed around a portion of one or more adjacent bones, e.g. it may be inserted between adjacent spinous processes to catch on one of the spinous processes as shown in FIG. 42. The spacer spaces them apart a desired distance as shown in FIG. 43. The spinal implant 1800 allows unilateral and minimally invasive placement like the previous examples and adjustable spacing determined by the axial position of the conical spacer 1812.
  • FIGS. 44-46 illustrate a spinal implant 1900 including a spacer 1902 and deployable retention members 1904. The spacer 1902 includes a split body 1906 having a superior surface 1908 and an inferior surface 1910. The superior surface 1908 and inferior surface 1910 are movably connected to a driver 1912. The driver 1912 has a screw 1914 attached to it and extending from the driver 1912 between the superior surface 1908 and inferior surface 1910 into a threaded bore 1916 in a wedge 1918. In operation, turning the driver 1912 causes the screw 1914 to thread into the bore 1916, which causes the wedge 1918 to move between the superior surface 1908 and the inferior surface 1910. As the wedge 1918 moves further between the surfaces 1908, 1910, the surfaces 1908, 1910 separate to increase the height of the spacer 1902. Combinations of channels 1920 and ribs 1922 provide stabilization for movement of the wedge 1918 relative to the surfaces 1908, 1910. Retention of the spacer 1902 may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above. For example, deployable retention members 1904 in the of form elastic wires that may be folded parallel to the spacer axis 1924 for insertion may provide lateral retention of the spacer 1902.
  • FIGS. 47-48 illustrate a spinal implant 2000 including a spacer 2002. The spacer 2002 is generally shaped as a cylinder or sleeve having a bore 2004. A gap 2006, or slot, extends the length of spacer 2002. Bore 2004 may be a complete through bore or bore 2004 may allow for a central wall or plug (not shown) for stability. Spinal implant 2000 further comprises end caps 2010 having a generally conical shape or wedge shape. As end caps 2010 are pressed or threaded into bore 2004, the shape of caps 2010 causes the diameter of spacer 2002 to expand, which is allowed because of gap 2006. Gap 2006 could be filled with a suitable elastic material. Alternatively to shaped caps 2010, caps 2010 could be made of an expandable material, such as shape memory alloys, spring steel, resins, polymers or the like to achieve the same result. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 49-50 illustrate a spinal implant 2100 similar to that of FIGS. 47-48. The spinal implant 2100 has a spacer 2102 in the form of a coiled sheet. The spacer 2102 is moveable from a compact position (FIG. 49) in which the coil winds around itself multiple times and is closer to a spacer axis 2104 to an expanded position (FIG. 50) by uncoiling the spacer such that it winds around itself fewer times and is further from the spacer axis 2104, e.g. such that it forms a single continuous ring. The spacer has inner and outer hook shaped edges 2106, 2108 that can engage as shown in FIG. 50 to limit the amount of expansion of the spacer 2102. The spinal implant 2100 may also include plugs or cores as shown in prior examples to support the spacer 2102 against collapse. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 51-52 illustrate a spinal implant 2200 similar to that of FIGS. 49-50. The spinal implant 2200 includes a coiled sheet-like spacer 2202 having tabs 2204 projecting away from the sheet to engage slots 2206 to limit the amount of expansion of the spacer 2202. The tabs 2204 and/or slots 2206 may be positioned at the inner and outer edges of the coiled spacer 2202 or they may be positioned at one or more positions intermediate the edges. For example, the spacer may have tabs 2204 at one end and slots placed at multiple locations to allow the spacer to be fixed at different sizes. The spinal implant 2200 may also include plugs or cores as shown in prior examples to support the spacer 2202 against collapse. Lateral retention of the spacer may be accomplished using the coils, flanges, discs, wires and/or other protrusions described above and below and will not be re-described relative to this embodiment.
  • FIGS. 53-54 illustrate a spinal implant 2300 including a spacer 2302, having a spacer axis 2303, formed of an elastic material, such as a polymer or resin material. For example, the spacer 2302 may be a hydrogel or other composite or polymer material such as a silicone material. A bore 2304 extends through the spacer 2302 into a base 2306. The base 2306 is shown with a wedge or conical shape to facilitate insertion but which could be any shape including rounded or blunt. Deployable retention members in the form of elastic arms 2308 are attached to the base 2306. In use, the base 2306 is inserted between adjacent bones, e.g. spinous processes, parallel to the spacer axis 2303. As the arms 2308 pass the spinous process, they fold into a compact or stowed insertion position in which they are nearer the spacer axis 2303 and lie along the sides of the spacer 2302 generally parallel to the spacer axis (FIG. 53). Once the arms 2308 pass the spinous process, they return to an expanded or deployed retention position in which they project outwardly transverse to the spacer axis 2303 (FIG. 54). Preferably, the arms 2308 only fold in one direction to provide increased retention once inserted. The spinal implant 2300 further includes a plate 2310 having a projection 2312, such as a threaded shaft, extendable through the bore 2304 and threadably engaging the base 2306. Threading, for example, the screw into the base 2306 compresses the spacer 2302 causing the diameter of the spacer 2302 to increase, providing distracting forces on the spinous process. Lateral stability is provided by the plate 2310 and the arms 2308 which extend away from the spacer axis 2303 on either side of the spinous process.
  • Alternatively to screw threading into the base 2306, a bolt may be attached to the base and the plate 2310 and spacer 2302 compressed with a nut 2314. Other mechanisms could also be used to compress the spacer 2302 including ratchets, press fits, rivets, and/or any other suitable mechanism.
  • FIGS. 55-57 illustrate a spinal implant 2400 including a base plate 2402 and a wedge plate 2404. The base plate 2402 is shown as having a rectangular shape, but any shape is possible including, circular, elliptical, square, semi-circular, triangular, trapezoidal, random or the like. The base plate 2402 has a through hole 2406 (square in the example shown) and two attachment tabs 2408. The attachment tabs have bores 2410.
  • The wedge plate 2404 is shown as having a rectangular shape similar to the base plate 2402, but the base plate 2402 and wedge plate 2404 do not necessarily have the same shape. Moreover, the wedge plate 2404 may have numerous possible shapes as explained with reference to the base plate 2402. A wedge protrusion 2414 extends from a first side of the wedge plate 2404. The wedge protrusion 2414 is shown with a generally triangular shape having a straight side, but other shapes are possible including sides that are rounded, beveled, curved, arched, convex, concave, or the like. The wedge protrusion 2414 has a superior surface 2416 and an inferior surface 2418 that generally converge as they travel away from the wedge plate 2404. The wedge protrusion 2414 has a channel bore 2420 extending through a portion of the wedge protrusion 2414. While not necessary and depending on anatomical factors, the channel bore 2420 may be located halfway between the superior surface 2416 and the inferior surface 2418. The wedge protrusion 2414 and through hole 2406 are sized such that the base plate 2402 and wedge plate 2404 can abut, although in the typical implanted configuration, the base plate 2402 and wedge plate 2404 would not in fact abut as the bone, e.g. spinous process, would intervene between the base plate 2402 and wedge plate 2404 as shown in FIG. 57.
  • As best seen in FIGS. 56 and 57, the bores 2410 on attachment the tabs 2408 generally align with the channel bore 2420 when the wedge protrusion 2414 resides in the through hole 2406 such that a connector 2422 can extend through the bores 2410 and channel bore 2420 to connect the base plate 2402 and wedge plate 2404 during use. Typically, the connector 2422 comprises a screw and nut, but any conventional connector may be used. When first implanted, the base plate 2402 and wedge plate 2404 are aligned about a superior spinous process 2450 and an inferior spinous process 2452. The connector 2422 connects the attachment tabs 2408 and the wedge protrusion 2414. Ideally, but not necessarily, the connector 2422 is not tightened and the base plate 2402 and wedge plate 2404 may move with respect to each other, although in the initial condition they can only move closer together. Once the plates are aligned with the proper distraction, the connector 2422 may be tightened to lock the spinal implant 2400 in place. Ideally, but not necessarily, the supraspinous ligament remains intact to inhibit the spinal implant 2400 from moving posteriorly out of the interspinous process space. Alternatively, and optionally, base plate 2402 and wedge plate 2404 may comprise suture bores 2424 (FIG. 57). A suture 2426 may be connected to the suture bores 2424 and traverse superior the spinous process 2450 and the inferior spinous process 2452. Moreover, while only a pair of bores is shown with a pair of sutures, more may be provided. Moreover, the suture 2426 should be construed generically to refer to cables, wires, bands, or other flexible biocompatible connectors. Such sutures may be tied or locked using a tie, cable lock, or crimp.
  • FIG. 58 illustrates an alternative spinal implant 2500 similar in form and function to that of FIGS. 55-57. The spinal implant 2500 includes a base plate 2502 and a wedge plate 2504. The base plate 2502 includes an attachment tab 2506 and a bore 2508. The wedge plate 2504 has at least one wedge prong 2510, but two wedge prongs 2510 are provided for improved device stability. The two wedge prongs 2510 form a prong channel 2512 to receive the attachment tab 2506 and provide some additional stability. The wedge prongs 2510 have channel bores 2514. While both the attachment tab 2506 and the wedge prongs 2510 are shown as wedge shaped, both are not necessarily wedge shaped. The bore 2508 and channel bores 2514 align such that a connector 2516 can be fitted between them to couple the base plate 2502 and wedge plate 2504 together. Alternatively, the bore 2508 may be formed as a channel bore and the channel bores 2514 may be formed as a bore or they may all be channel bores to allow for lateral adjustment of the plates.
  • FIG. 59 illustrates an alternative spinal implant 2600 similar to that of FIG. 58 but instead of bores and connectors, protrusions 2602 are formed inside the prong channel 2604 and on the attachment tab 2606. The protrusions 2602 may be ribs, pins, shoulders, barbs, flanges, divots, detents, channels, grooves, teeth and/or other suitable protrusions. The protrusions 2602 may operate similar to a ratchet mechanism and may be configured so that the base plate and wedge plate can move towards each other and distract adjacent bones, e.g. spinous processes. The protrusions 2602 engage such that the plates do not move apart after they are pressed together. The prong channel 2604 may be widened, e.g. by prying it open, to disengage the protrusions 2602 and allow the plates to be separated.
  • FIGS. 60-61 illustrate a spinal implant 2700. The spinal implant 2700 includes a spacer having a spacer axis 2701, a first part 2702, and a second part 2704. The first part 2702 has a main body 2706 with a first end 2708 and a second end 2710. One or more lateral walls 2712 extend out from the first part 2702 transverse to the spacer axis 2701 at the first end 2708. The walls 2712 are adapted to extend along a superior and inferior spinous process on a first side. The second end 2710 is adapted to reside in a space between the superior and inferior spinous process. The second part 2704 includes a main body 2714 and has a first end 2716 and a second end 2718. One or more lateral walls 2720 extend out from the second part 2704 transverse to the spacer axis 2701 at the first end 2716. The walls 2720 are adapted to extend along a superior and inferior spinous process on a second side. The second end 2718 is adapted to reside in a space between the superior and inferior spinous process. The lateral wall 2712, 2720 may be shaped to accommodate anatomy. The second end 2710 of the first part 2702 and second end 2718 of second part 2704 abut or engage. A variety of features may be provided to enhance this engagement. For example, the second ends may include one or more channels and/or one or more protrusions that fit in the channels. A set screw or the like may threadably engage a bore extending through the first and second parts to maintain them in alignment. However, as explained below, a set screw and bore are optional. Interlocking channels and protrusions are optional as the ends may just abut or have interfering surfaces. The ends may be sloped transverse to the spacer axis 2701, as shown, to facilitate insertion and/or to increase the abutment area. Some alternate examples will be described below relative to FIGS. 62-67.
  • Continuing with FIGS. 60-61, one or more through channels or bores 2722 extend through the first and second parts 2702, 2704. A guidewire 2732 extends through the channels 2722 generally parallel to the spacer axis 2701. The guidewire 2732 may be formed of wire, braided or twisted cable (made of metallic or polymer strands), suture material, a flat metallic or polymer band (either braided or solid) and/or other suitable materials and configurations. Multiple through channels may allow the guidewire 2732 to form a loop about the first end 2702 as shown in FIG. 61. The guidewire 2732 ends may be connected around the second end such as with a tie, crimp, knot, twist lock, cable lock, and/or other suitable connections. When the guidewire 2732 is not looped, the guidewire 2732 may be locked against both the first and second ends using a locking device such as a cable lock, crimp, knot, and/or any other suitable locking device. The guidewire 2732 maintains the first and second parts locked together.
  • FIGS. 62-63 illustrate a spinal implant 2800 similar to that of FIGS. 60-61 except that it includes a protrusion 2804 extending from the second part 2704 to engage a slot 2802 extending from the first part 2702 to stabilize the first and second parts relative to one another.
  • FIG. 64 illustrates a spinal implant 2900 similar to that of FIGS. 60-61 except that the first part 2702 defines slot 2902 and the second part 2704 tapers to a blade-like nose 2904 that engages the slot 2902.
  • FIGS. 65-66 illustrate a spinal implant 3000 similar to that of FIGS. 60-6.1 except that the first part 2702 defines tapering side cutouts 3002 separated by a central wedge shaped wall 3004 and the second part 2704 tapers to a wedge shaped second end 3006. The wedge shaped second end is divided by a groove 3008. When the first and second parts are pressed together, the wall 3004 engages the groove 3008 and the wedge shaped second end 3006 engages the side cutouts 3002. Also, in the embodiment of FIGS. 65-66, the first and second parts 2702, 2704 have one or more bores 3010, 3012 transverse to the spacer axis 2701 for receiving a fastener to lock the parts together.
  • FIG. 67 illustrates a spinal implant 3100 similar to that of FIGS. 60-66 and shown in the implanted condition. The first and second parts 2702, 2704 are secured together with a single guide wire 3102 secured at each end by a crimp 3104. Passageways 3106 are provided through the lateral walls 2712, 2720. Sutures, wires, cables, bands, or other flexible biocompatible material 3108 may extend through the passageways 3106 and over and/or through a spinous process. The flexible biocompatible material 3108 may loop under or over a single process (as shown on the superior process 3110), may loop around a single process (as shown on the inferior process 3112), or may loop around both processes, or a combination thereof. The flexible biocompatible material 3108 may be locked using a locking device similar to those explained above. The flexible biocompatible material 3108 and guidewire 3102 may optionally be the same element.
  • FIG. 68 is a flowchart describing one exemplary methodology for implanting the spinal implants of FIGS. 60-67. First, the patient is prepared for implanting the spinal implant, step 3202. Preparing the patient may include, for example, making one or more incisions providing access to the spinal segment, placing the guidewire, etc. The surgical site is distracted (or measured as distraction may be caused by the spacer itself) using conventional distraction tools, step 3204. Once exposed, the interspinous process space is prepared to receive the spinal implant, step 3206. This typically includes preparing the spinous processes to accept the spinal implant, which may include removing some portion of the spinous process, and removing muscle, tendons, and ligaments that may interfere with implanting the spinal implant and/or may provide force tending to unseat the spinal implant. The first part of the spinal implant is inserted, over or with the guidewire, to the surgical site through the incision or the like, step 3208. Once at the site, the first part of the spinal implant is positioned or aligned such that the lateral walls are loosely abutting a first side of the superior and inferior spinous processes and the second end extends into the interspinous space, step 3210. Generally, this means that the first part is implanted through the interspinous process space. The guidewire, which is attached to the first part of the spinal implant as explained above extends from the second end of the first part and is attached to the second part of the spinal implant. Thus, the surgeon inserts the second part along the guidewire, step 3212. Note, the first part and second part may be positioned using tools or the surgeon may place the parts using hands and fingers. Using the guidewire, the protrusions (if any) on the second part are inserted into the channels of the first part (if any) to align the first part and second part of the spinal implant, step 3214. Compressive force is applied to mate the first part and the second part, step 3216. The compressive force may be applied by crimping the guidewire, threading a cable lock, a separate clamp, or the like. Once sufficiently compressed, the first part and second part are locked together, step 3218. Optionally, excess guidewire may be cut and removed or looped around the adjacent superior and inferior spinous process to provide secured seating, step 3220. Once mated in the interspinous space, the distraction of the spinal segment may be released, step 3222, and the patient's surgical site may be closed, step 3224.
  • FIG. 69 illustrates a spinal implant 3300. The spinal implant 3300, includes a superior spinous process seat 3302 and an inferior spinous process seat 3304. As shown, seats 3302 and 3304 form a U and inverted U shape, but other shapes are possible including a square channel shape for each seat, a C-shape, and/or any other suitable shape, although it is believed the saddle shape as shown would work well.
  • Seat 3302 includes a surface 3306 which contacts the superior spinous process and walls 3308 traversing each side of the superior spinous process to capture superior spinous process in seat 3302. Walls 3308 may be convergent, divergent or relatively parallel. Walls 3308 may be more akin to bumps, ribs, or shoulders to traverse only a minor portion of the spinous process or may be longer to traverse a major portion of the spinous process. Surface 3306 and walls 3308 may be discrete or shaped like a saddle forming a smooth surface in which spinous process can rest. Attached to one wall 3308 is a vertical distraction post 3310 extending towards inferior seat 3304. While only one vertical distraction post 3310 is shown, multiple posts are possible. Moreover, if multiple posts are used, vertical distraction posts 3310 may reside on opposite sides of superior spinous process seat 3302. While shown as a straight post, vertical distraction post 3310 may be curved or straight depending on anatomical considerations or the like.
  • Similar to seat 3302, seat 3304 includes a surface 3306 which contacts the inferior spinous process and walls 3308 traversing each side of the inferior spinous process to capture inferior spinous process in seat 3304. Attached to one wall 3308, on the side corresponding to vertical distraction post 3310 is an attachment tab 3312. Attachment tab 3312 has a vertical bore 3314 through which vertical distraction post 3310 extends. Seat 3304 can be moved closer to or further from seat 3302 along vertical distraction post 3310. Attachment tab 3312 also comprises a horizontal bore 3316. Horizontal bore 3316 intersects vertical bore 3314. A seating device 3318 is insertable into horizontal bore 3316. As shown horizontal bore 3316 is threaded to accept a set screw or the like.
  • In use, a surgeon would distract superior and inferior spinous processes and implant spinal implant 3300. Seats 3302 and 3304 would be set at a desired distraction and, for example, set screw 3318 would be threaded into horizontal bore 3316 to apply seating force to seat vertical distraction post 3310 in vertical bore 3314 locking seats 3302 and 3304 at the set distraction distance.
  • Vertical distraction post 3310 and/or vertical bore 3314 may be arranged with a protrusion 3319 or detent to inhibit the ability of withdrawing vertical distraction post 3310 from vertical bore 3314.
  • FIG. 70 illustrates alternative seats 3400 and 3402. Seats 3400 and 3402 are designed to nest or interlock. In that regard, seat 3400 has one or more first blades 3404 or multiple surfaces spaced apart so first gaps 3406 separate first blades 3404. Seat 3402 would similarly have one or more second blades 3408 or multiple surfaces. Seat 3402 is shown with a single second blade for convenience. Second plate 3408 is aligned with first gaps 3406 such that seats 3400 and 3402 may nest or interlock. Similarly, first blades 3404 could align with second gaps, not shown. Either first blades 3404 (as shown) or second blade 3408 may attach to a vertical distraction post 3410 and second blade 3408 (as shown) or first blades 3404 may attach to attachment tab 3412.
  • Although examples of a spinal implant and its use have been described and illustrated in detail, it is to be understood that the same is intended by way of illustration and example only and is not to be taken by way of limitation. The invention has been illustrated in the form of a spinal implant for use in spacing adjacent spinous processes of the human spine. However, the spinal implant may be configured for spacing other portions of the spine or other bones. Accordingly, variations in and modifications to the spinal implant and its use will be apparent to those of ordinary skill in the art. The various illustrative embodiments illustrate alternative configurations of various component parts such as spacers, retention members, additional fasteners, and the like. In most cases, and as will be readily understood by one skilled in the art, the alternative configuration of a component part in one embodiment may be substituted for a similar component part in another embodiment. For example, the differently shaped or expandable spacers in one example may be substituted for a spacer in another example. Likewise the various mechanisms for deploying a retention member or for providing additional fasteners may be interchanged. Furthermore, throughout the exemplary embodiments, where component part mating relationships are illustrated, the gender of the component parts may be reversed as is known in the art within the scope of the invention. The following claims are intended to cover all such modifications and equivalents.

Claims (21)

1-72. (canceled)
73. A spinal implant for placement between adjacent processes of a human spine, the spinal implant comprising:
a spacer including a first end, a second end, a plurality of channels, and a spacer axis extending between the first end and the second end, the plurality of channels extending through the spacer parallel to the spacer axis; and
a plurality of deployable retention members extendable through the plurality of channels.
74. The spinal implant of claim 73, wherein each deployable retention member of the plurality of deployable retention members is adapted to grip one of the adjacent processes when deployed through a channel of the plurality of channels.
75. The spinal implant of claim 74, wherein each deployable retention member is curved to extend radially away from the spacer axis when deployed through a channel of the plurality of channels.
76. The spinal implant of claim 73, wherein the plurality of deployable retention members are axially slidable through the plurality of channels.
77. The spinal implant of claim 73, wherein the plurality of deployable retention members are retractable during implantation of the spinal implant between adjacent processes.
78. The spinal implant of claim 73, wherein the plurality of deployable retention members are straightenable for implantation of the spinal implant between adjacent processes.
79. The spinal implant of claim 78, wherein each deployable retention member of the plurality of deployable retention members includes a stop to prevent complete withdrawal from a channel of the plurality of channels.
80. The spinal implant of claim 73, wherein each deployable retention member of the plurality of deployable retention members and each channel of the plurality of channels include complimentary rectangular cross sectional shapes.
81. The spinal implant of claim 73, wherein the spacer is hollow resulting in the spacer having an outer surface spaced from the spacer axis.
82. The spinal implant of claim 73, wherein the first end and the second end are tapered to facilitate implantation between adjacent processes.
83. A spinal implant system for implanting a spinal implant between adjacent spinous processes, the system comprising:
the spinal implant including:
a hollow body including a first end, a second end, and a longitudinal axis extending between the first end and the second end, the first end and the second end including a plurality of channels; and
a plurality of deployable retention members extendable through the plurality of channels and extending through the hollow body parallel to the longitudinal axis*; and a implantation tube configured to contain at least a portion of the spinal implant for positioning between the adjacent spinous processes.
84. The spinal implant system of claim 83, wherein the implantation tube contains straightened portions of the plurality of deployable retention members for implantation between the adjacent spinous processes.
85. A spinal implant comprising:
a hollow body adapted for implantation between adjacent spinous processes, the hollow body including a first end, a second end, and a longitudinal axis extending therebetween; and
a plurality of deployable retention members extendable through the hollow body and when deployed the plurality of deployable retention members extending radially away from the longitudinal axis to grip at least a portion of each of the adjacent spinous processes.
86. The spinal implant of claim 85, wherein the first end and the second end each include a plurality of channels, each channel of the plurality of channels adapted to hold a portion of a deployable retention member of the plurality of deployable retention members.
87. The spinal implant of claim 86, wherein the plurality of channels operate to hold a portion of each deployable retention member of the plurality of deployable retention members parallel to the longitudinal axis as each deployable retention member extends through the hollow body.
88. The spinal implant of claim 87, wherein the plurality of deployable retention members are axially slidable through the plurality of channels.
89. The spinal implant of claim 87, wherein the plurality of deployable retention members are retractable during implantation of the spinal implant between adjacent spinous processes.
90. The spinal implant of claim 87, wherein the plurality of deployable retention members are straightenable for implantation of the spinal implant between adjacent spinous processes.
91. The spinal implant of claim 87, wherein each deployable retention member of the plurality of deployable retention members and each channel of the plurality of channels include complimentary rectangular cross sectional shapes.
92. The spinal implant of claim 87, wherein the first end and the second end are tapered to facilitate implantation of the hollow body between adjacent spinous processes.
US15/690,926 2005-10-25 2017-08-30 Spinal implants and methods Abandoned US20170360485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/690,926 US20170360485A1 (en) 2005-10-25 2017-08-30 Spinal implants and methods

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11/257,647 US8007517B2 (en) 2004-10-25 2005-10-25 Interspinous distraction devices and associated methods of insertion
US11/293,438 US7918875B2 (en) 2004-10-25 2005-12-02 Interspinous distraction devices and associated methods of insertion
US88458107P 2007-01-11 2007-01-11
US91227307P 2007-04-17 2007-04-17
US11/934,604 US8241330B2 (en) 2007-01-11 2007-11-02 Spinous process implants and associated methods
US1335108A 2008-01-11 2008-01-11
US12/020,282 US9055981B2 (en) 2004-10-25 2008-01-25 Spinal implants and methods
US14/739,170 US9770271B2 (en) 2005-10-25 2015-06-15 Spinal implants and methods
US15/690,926 US20170360485A1 (en) 2005-10-25 2017-08-30 Spinal implants and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/739,170 Continuation US9770271B2 (en) 2005-10-25 2015-06-15 Spinal implants and methods

Publications (1)

Publication Number Publication Date
US20170360485A1 true US20170360485A1 (en) 2017-12-21

Family

ID=40591397

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/020,282 Expired - Fee Related US9055981B2 (en) 2004-10-25 2008-01-25 Spinal implants and methods
US14/739,170 Expired - Fee Related US9770271B2 (en) 2005-10-25 2015-06-15 Spinal implants and methods
US15/690,926 Abandoned US20170360485A1 (en) 2005-10-25 2017-08-30 Spinal implants and methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/020,282 Expired - Fee Related US9055981B2 (en) 2004-10-25 2008-01-25 Spinal implants and methods
US14/739,170 Expired - Fee Related US9770271B2 (en) 2005-10-25 2015-06-15 Spinal implants and methods

Country Status (8)

Country Link
US (3) US9055981B2 (en)
EP (1) EP2214597A4 (en)
JP (1) JP2011502573A (en)
CN (1) CN101909550B (en)
AU (1) AU2008319176A1 (en)
BR (1) BRPI0818725A2 (en)
CA (1) CA2704192A1 (en)
WO (1) WO2009058439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170348028A1 (en) * 2014-12-04 2017-12-07 Giuseppe Calvosa Intervertebral distractor

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US20080215058A1 (en) 1997-01-02 2008-09-04 Zucherman James F Spine distraction implant and method
US7959652B2 (en) * 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
FR2897259B1 (en) 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
BRPI0407142A (en) 2003-02-14 2006-01-10 Depuy Spine Inc In situ intervertebral fusion device
ES2363154T3 (en) 2004-02-04 2011-07-22 Ldr Medical INTERVERTEBRAL DISK PROSTHESIS.
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US8292922B2 (en) 2004-10-20 2012-10-23 Vertiflex, Inc. Interspinous spacer
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
EP1814474B1 (en) 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
WO2009086010A2 (en) 2004-12-06 2009-07-09 Vertiflex, Inc. Spacer insertion instrument
US8100943B2 (en) * 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) * 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
CN101237827A (en) * 2005-06-06 2008-08-06 新特斯有限责任公司 Implant for spinal stabilization and its method of use
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
EP2705809B1 (en) 2005-08-16 2016-03-23 Benvenue Medical, Inc. Spinal tissue distraction devices
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
FR2908035B1 (en) 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US8568453B2 (en) * 2007-01-29 2013-10-29 Samy Abdou Spinal stabilization systems and methods of use
CA2678006C (en) * 2007-02-21 2014-10-14 Benvenue Medical, Inc. Devices for treating the spine
US9545267B2 (en) * 2007-03-26 2017-01-17 Globus Medical, Inc. Lateral spinous process spacer
EP2142146A4 (en) * 2007-05-01 2010-12-01 Spinal Simplicity Llc Interspinous implants and methods for implanting same
CN101854887B (en) * 2007-05-01 2013-09-25 斯百诺辛普利斯提有限责任公司 Interspinous implants and methods for implanting same
US8142479B2 (en) * 2007-05-01 2012-03-27 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US9775718B2 (en) 2007-11-02 2017-10-03 Zimmer Biomet Spine, Inc. Interspinous implants
WO2009091922A2 (en) 2008-01-15 2009-07-23 Vertiflex, Inc. Interspinous spacer
EP2237748B1 (en) 2008-01-17 2012-09-05 Synthes GmbH An expandable intervertebral implant
US8105358B2 (en) 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
TW200938157A (en) * 2008-03-11 2009-09-16 Fong-Ying Chuang Interspinous spine fixing device
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US8114131B2 (en) * 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
IT1392200B1 (en) * 2008-12-17 2012-02-22 N B R New Biotechnology Res MODULAR VERTEBRAL STABILIZER.
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
CH700268A2 (en) * 2009-01-21 2010-07-30 Med Titan Spine Gmbh Lumbar support relief.
US9861399B2 (en) 2009-03-13 2018-01-09 Spinal Simplicity, Llc Interspinous process implant having a body with a removable end portion
US8945184B2 (en) * 2009-03-13 2015-02-03 Spinal Simplicity Llc. Interspinous process implant and fusion cage spacer
US9757164B2 (en) 2013-01-07 2017-09-12 Spinal Simplicity Llc Interspinous process implant having deployable anchor blades
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
KR20120013327A (en) 2009-03-31 2012-02-14 란스, 아이엔씨. Spinous process implants and associated methods
AU2010237054B2 (en) 2009-04-13 2014-07-24 Warsaw Orthopedic, Inc. Interspinous spacer and facet joint fixation device
US8641766B2 (en) 2009-04-15 2014-02-04 DePuy Synthes Products, LLC Arcuate fixation member
US9408715B2 (en) 2009-04-15 2016-08-09 DePuy Synthes Products, Inc. Arcuate fixation member
AR073636A1 (en) * 2009-05-04 2010-11-24 Pixis S A INTERESPINOUS DISTRACTOR IMPLANT
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) * 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
JP5699353B2 (en) 2009-09-17 2015-04-08 エルディーアール ホールディング コーポレイション Intervertebral implant with expandable bone fixation member
US8062375B2 (en) * 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8771317B2 (en) * 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
RU2012123393A (en) 2009-11-06 2013-12-20 Зинтес Гмбх MINIMALLY INVASIVE INTERBED SPACERS (IMPLANTS) AND METHODS
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
RU2573945C2 (en) 2009-12-31 2016-01-27 Лдр Медикал Fastening device, intervertebral implant and device for implantation
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8262697B2 (en) * 2010-01-14 2012-09-11 X-Spine Systems, Inc. Modular interspinous fixation system and method
US8388656B2 (en) * 2010-02-04 2013-03-05 Ebi, Llc Interspinous spacer with deployable members and related method
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8591547B2 (en) 2010-03-12 2013-11-26 Southern Spine, Llc Interspinous process spacing device
US8409287B2 (en) * 2010-05-21 2013-04-02 Warsaw Orthopedic, Inc. Intervertebral prosthetic systems, devices, and associated methods
US9282979B2 (en) 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
JP5850930B2 (en) 2010-06-29 2016-02-03 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Isolated intervertebral implant
CN103188990B (en) * 2010-08-27 2016-10-19 密尔沃基电动工具公司 Hot detecting system, method and apparatus
WO2012040001A1 (en) 2010-09-20 2012-03-29 Pachyderm Medical, L.L.C. Integrated ipd devices, methods, and systems
US8702756B2 (en) * 2010-09-23 2014-04-22 Alphatec Spine, Inc. Clamping interspinous spacer apparatus and methods of use
US9402732B2 (en) * 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8545563B2 (en) 2011-02-02 2013-10-01 DePuy Synthes Product, LLC Intervertebral implant having extendable bone fixation members
US8496689B2 (en) * 2011-02-23 2013-07-30 Farzad Massoudi Spinal implant device with fusion cage and fixation plates and method of implanting
US8425560B2 (en) 2011-03-09 2013-04-23 Farzad Massoudi Spinal implant device with fixation plates and lag screws and method of implanting
US9149306B2 (en) 2011-06-21 2015-10-06 Seaspine, Inc. Spinous process device
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
FR2977139B1 (en) 2011-06-30 2014-08-22 Ldr Medical INTER-SPINAL IMPLANT AND IMPLANTATION INSTRUMENT
US9668783B2 (en) * 2011-09-06 2017-06-06 Atul Goel Devices and method for treatment of spondylotic disease
EP2755605A4 (en) * 2011-09-16 2015-10-28 Lanx Inc Segmental spinous process anchor system and methods of use
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
AU2012318811B2 (en) * 2011-10-03 2017-05-18 In Queue Innovations, Llc Interspinous process fusion device and method of use
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
AU2012340180B2 (en) * 2011-11-17 2017-06-08 Howmedica Osteonics Corp. Interspinous spacers and associated methods of use and manufacture
KR102174538B1 (en) * 2011-12-14 2020-11-05 디퍼이 신테스 프로덕츠, 인코포레이티드 Device for compression across fractures
CN104220017B (en) 2012-01-05 2017-04-12 兰克斯公司 Telescoping interspinous fixation device and methods of use
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
JP5913727B2 (en) 2012-03-19 2016-04-27 アミカス デザイン グループ、エルエルシー Interbody spine prosthetic orthopedic fixation device using self-expanding anchors
WO2013141150A1 (en) * 2012-03-23 2013-09-26 テルモ株式会社 Interspinous implant
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
EP2716261A1 (en) * 2012-10-02 2014-04-09 Titan Spine, LLC Implants with self-deploying anchors
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
WO2014074853A1 (en) * 2012-11-12 2014-05-15 DePuy Synthes Products, LLC Interbody interference implant and instrumentation
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
FR3005569B1 (en) 2013-05-16 2021-09-03 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANTATION INSTRUMENTATION
MY165689A (en) * 2013-09-12 2018-04-20 Khay Yong Saw Dr Osteotomy below the tibial tuberosity by multiple drilling
US9259249B2 (en) * 2013-11-26 2016-02-16 Globus Medical, Inc. Spinous process fixation system and methods thereof
FR3020756B1 (en) 2014-05-06 2022-03-11 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANT INSTRUMENTATION
AU2015256024B2 (en) 2014-05-07 2020-03-05 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US10064670B2 (en) 2014-05-12 2018-09-04 DePuy Synthes Products, Inc. Sacral fixation system
CN106456217B (en) 2014-05-12 2020-03-03 德普伊新特斯产品公司 Sacral fixation system
BR112017005408B1 (en) 2014-09-19 2022-05-10 Duet Spine Holdings, Llc Single-level fusion system and assembly method thereof
US9987052B2 (en) 2015-02-24 2018-06-05 X-Spine Systems, Inc. Modular interspinous fixation system with threaded component
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
JP6995789B2 (en) 2016-06-28 2022-01-17 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage
CN109688980B (en) 2016-06-28 2022-06-10 Eit 新兴移植技术股份有限公司 Expandable and angularly adjustable intervertebral cage with articulation joint
CN109788960B (en) * 2016-08-15 2022-03-08 因奎创新有限责任公司 Bone fusion devices, systems and methods
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US10835294B2 (en) * 2019-02-20 2020-11-17 Solco Biomedical Co., Ltd. Spacer apparatus between spinous processes
US11020154B2 (en) * 2019-04-26 2021-06-01 Warsaw Orthopedic, Inc. Surgical instrument and methods of use
US10881531B2 (en) * 2019-05-10 2021-01-05 Bret Michael Berry Dual expandable spinal implant
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
WO2021257484A1 (en) 2020-06-15 2021-12-23 Nofusco Corporation Intravertebral implant system and methods of use
US11883300B2 (en) 2020-06-15 2024-01-30 Nofusco Corporation Orthopedic implant system and methods of use
US11723778B1 (en) 2021-09-23 2023-08-15 Nofusco Corporation Vertebral implant system and methods of use
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US12102542B2 (en) 2022-02-15 2024-10-01 Boston Scientific Neuromodulation Corporation Interspinous spacer and methods and systems utilizing the interspinous spacer
US12090064B2 (en) 2022-03-01 2024-09-17 Medos International Sarl Stabilization members for expandable intervertebral implants, and related systems and methods
WO2024184357A1 (en) * 2023-03-07 2024-09-12 Moving Spine Ag Intervertebral disc nucleus pulposus implant
CN116492117B (en) * 2023-06-27 2023-09-22 北京爱康宜诚医疗器材有限公司 Self-locking type interbody fusion cage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114357A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity

Family Cites Families (465)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US242443A (en) 1881-06-07 Edward b
US84815A (en) 1868-12-08 Improved instrument for treating fistula
US465161A (en) 1891-12-15 Surgical instrument
US765879A (en) 1904-05-13 1904-07-26 Wilber A K Campbell Dilator.
US832201A (en) 1904-12-12 1906-10-02 Samuel L Kistler Dilator.
US1137585A (en) 1915-02-05 1915-04-27 Thornton Craig Jr Dental appliance.
US1331737A (en) 1918-03-30 1920-02-24 Ylisto Emil Dilator
US1400648A (en) 1920-06-04 1921-12-20 Robert H Whitney Dilator
US1725670A (en) 1925-09-07 1929-08-20 Novack William Douche-nozzle detail
US1737488A (en) 1928-12-06 1929-11-26 John P Zohlen Dilator
US2137121A (en) 1936-04-18 1938-11-15 Greenwald Company Inc I Surgical instrument
US2677389A (en) * 1950-02-07 1954-05-04 Mission Mfg Co Pumping system for washing machines
US2677369A (en) 1952-03-26 1954-05-04 Fred L Knowles Apparatus for treatment of the spinal column
US2689568A (en) 1952-08-14 1954-09-21 Charlie E Wakefield Dilator
US2774350A (en) 1952-09-08 1956-12-18 Jr Carl S Cleveland Spinal clamp or splint
US2789860A (en) 1956-02-14 1957-04-23 Fred L Knowles Manually operated surgical instrument
US3025853A (en) 1958-07-07 1962-03-20 Christopher A Mason Fixation device for fractured femur
US3039468A (en) 1959-01-07 1962-06-19 Joseph L Price Trocar and method of treating bloat
US3242922A (en) 1963-06-25 1966-03-29 Charles B Thomas Internal spinal fixation means
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3648691A (en) 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US3648961A (en) 1970-04-30 1972-03-14 William H Farrow Wall tie for concrete forms
US3788318A (en) 1972-06-12 1974-01-29 S Kim Expandable cannular, especially for medical purposes
US3789852A (en) 1972-06-12 1974-02-05 S Kim Expandable trochar, especially for medical purposes
US4092788A (en) 1977-06-23 1978-06-06 St. Francis Hospital, Inc. Cardiopulmonary resuscitation teaching aid
US4274401A (en) 1978-12-08 1981-06-23 Miskew Don B W Apparatus for correcting spinal deformities and method for using
US4269178A (en) 1979-06-04 1981-05-26 Keene James S Hook assembly for engaging a spinal column
US4409968A (en) 1980-02-04 1983-10-18 Drummond Denis S Method and apparatus for engaging a hook assembly to a spinal column
US4369769A (en) 1980-06-13 1983-01-25 Edwards Charles C Spinal fixation device and method
PL127121B1 (en) 1980-07-30 1983-09-30 Wyzsza Szkola Inzynierska Surgical strut for treating spinal affections
US4448191A (en) 1981-07-07 1984-05-15 Rodnyansky Lazar I Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
US4554914A (en) 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
FR2553993B1 (en) 1983-10-28 1986-02-07 Peze William METHOD AND APPARATUS FOR DYNAMIC CORRECTION OF SPINAL DEFORMATIONS
US4570618A (en) 1983-11-23 1986-02-18 Henry Ford Hospital Intervertebral body wire stabilization
US4573454A (en) 1984-05-17 1986-03-04 Hoffman Gregory A Spinal fixation apparatus
US4636217A (en) 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
US4599086A (en) 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
US4773402A (en) 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant
US5007909A (en) 1986-11-05 1991-04-16 Chaim Rogozinski Apparatus for internally fixing the spine
FR2623085B1 (en) 1987-11-16 1992-08-14 Breard Francis SURGICAL IMPLANT TO LIMIT THE RELATIVE MOVEMENT OF VERTEBRES
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US4892545A (en) 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
JPH0620466B2 (en) 1989-03-31 1994-03-23 有限会社田中医科器械製作所 Spinal column correction device
US5062850A (en) 1990-01-16 1991-11-05 University Of Florida Axially-fixed vertebral body prosthesis and method of fixation
US5030220A (en) 1990-03-29 1991-07-09 Advanced Spine Fixation Systems Incorporated Spine fixation system
US5390683A (en) * 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5269797A (en) 1991-09-12 1993-12-14 Meditron Devices, Inc. Cervical discectomy instruments
FR2692471B1 (en) 1992-06-19 1998-07-17 Pierre Roussouly RACHIS TREATMENT APPARATUS.
FR2693364B1 (en) 1992-07-07 1995-06-30 Erpios Snc INTERVERTEBRAL PROSTHESIS FOR STABILIZING ROTATORY AND FLEXIBLE-EXTENSION CONSTRAINTS.
GB9217578D0 (en) 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5306275A (en) 1992-12-31 1994-04-26 Bryan Donald W Lumbar spine fixation apparatus and method
US5540703A (en) 1993-01-06 1996-07-30 Smith & Nephew Richards Inc. Knotted cable attachment apparatus formed of braided polymeric fibers
US5496318A (en) 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5413576A (en) 1993-02-10 1995-05-09 Rivard; Charles-Hilaire Apparatus for treating spinal disorder
JP2606035Y2 (en) 1993-12-24 2000-09-11 京セラ株式会社 Spine correction plate device
CA2191089C (en) 1994-05-23 2003-05-06 Douglas W. Kohrs Intervertebral fusion implant
FR2721501B1 (en) 1994-06-24 1996-08-23 Fairant Paulette Prostheses of the vertebral articular facets.
US5503617A (en) 1994-07-19 1996-04-02 Jako; Geza J. Retractor and method for direct access endoscopic surgery
FR2722980B1 (en) 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
US5527312A (en) 1994-08-19 1996-06-18 Salut, Ltd. Facet screw anchor
DE69526113D1 (en) 1994-11-16 2002-05-02 Advanced Spine Fixation Syst GRAPPING HOOKS FOR FIXING THE SPINE SEGMENTS
US5716358A (en) 1994-12-02 1998-02-10 Johnson & Johnson Professional, Inc. Directional bone fixation device
JP3732228B2 (en) 1994-12-09 2006-01-05 ソファモーア・デインク・グループ・インコーポレーテッド Adjustable vertebral body replacement
FR2729556B1 (en) 1995-01-23 1998-10-16 Sofamor SPINAL OSTEOSYNTHESIS DEVICE WITH MEDIAN HOOK AND VERTEBRAL ANCHOR SUPPORT
US5658335A (en) 1995-03-09 1997-08-19 Cohort Medical Products Group, Inc. Spinal fixator
US6780186B2 (en) 1995-04-13 2004-08-24 Third Millennium Engineering Llc Anterior cervical plate having polyaxial locking screws and sliding coupling elements
US5800550A (en) * 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5653763A (en) * 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
FR2747034B1 (en) 1996-04-03 1998-06-19 Scient X INTERSOMATIC CONTAINMENT AND MERGER SYSTEM
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US20080071378A1 (en) 1997-01-02 2008-03-20 Zucherman James F Spine distraction implant and method
US5860977A (en) 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US20020143331A1 (en) 1998-10-20 2002-10-03 Zucherman James F. Inter-spinous process implant and method with deformable spacer
US7201751B2 (en) 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US6712819B2 (en) 1998-10-20 2004-03-30 St. Francis Medical Technologies, Inc. Mating insertion instruments for spinal implants and methods of use
US7101375B2 (en) 1997-01-02 2006-09-05 St. Francis Medical Technologies, Inc. Spine distraction implant
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US6902566B2 (en) 1997-01-02 2005-06-07 St. Francis Medical Technologies, Inc. Spinal implants, insertion instruments, and methods of use
US6451019B1 (en) 1998-10-20 2002-09-17 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US20080027552A1 (en) 1997-01-02 2008-01-31 Zucherman James F Spine distraction implant and method
US8128661B2 (en) 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US6514256B2 (en) 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6156038A (en) 1997-01-02 2000-12-05 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US6695842B2 (en) 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US20050245937A1 (en) 2004-04-28 2005-11-03 St. Francis Medical Technologies, Inc. System and method for insertion of an interspinous process implant that is rotatable in order to retain the implant relative to the spinous processes
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
US6796983B1 (en) 1997-01-02 2004-09-28 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US20080215058A1 (en) 1997-01-02 2008-09-04 Zucherman James F Spine distraction implant and method
US20070282443A1 (en) 1997-03-07 2007-12-06 Disc-O-Tech Medical Technologies Ltd. Expandable element
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
US5976146A (en) 1997-07-11 1999-11-02 Olympus Optical Co., Ltd. Surgical operation system and method of securing working space for surgical operation in body
KR100779258B1 (en) 1997-10-27 2007-11-27 세인트 프랜시스 메디컬 테크놀로지스, 인코포레이티드 Spine distraction implant
DE19802229C2 (en) 1998-01-22 2000-05-04 Impag Gmbh Medizintechnik Plate-shaped latch to immobilize a pelvic fracture
FR2774581B1 (en) 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
DE19807236C2 (en) * 1998-02-20 2000-06-21 Biedermann Motech Gmbh Intervertebral implant
FR2775183B1 (en) 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
US6045552A (en) 1998-03-18 2000-04-04 St. Francis Medical Technologies, Inc. Spine fixation plate system
US6099527A (en) 1998-04-30 2000-08-08 Spinal Concepts, Inc. Bone protector and method
US6067390A (en) 1998-06-01 2000-05-23 Prc Inc. Ambient load waveguide switch
DE19832513A1 (en) 1998-07-20 2000-02-17 Impag Gmbh Medizintechnik Fastening arrangement
WO2000007528A1 (en) 1998-08-06 2000-02-17 Sdgi Holdings, Inc. Composited intervertebral bone spacers
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
FR2783411B1 (en) 1998-09-18 2000-12-01 Eurosurgical POSTERIOR SPINAL OSTEOSYNTHESIS DEVICE
US7029473B2 (en) 1998-10-20 2006-04-18 St. Francis Medical Technologies, Inc. Deflectable spacer for use as an interspinous process implant and method
US6652527B2 (en) 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US6652534B2 (en) 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Apparatus and method for determining implant size
US7189234B2 (en) 1998-10-20 2007-03-13 St. Francis Medical Technologies, Inc. Interspinous process implant sizer and distractor with a split head and size indicator and method
US6045442A (en) 1998-11-18 2000-04-04 Bounds; Richard W Non-rotating, heavy duty game hoist
US6321764B1 (en) 1998-12-21 2001-11-27 Iit Research Institute Collapsible isolation apparatus
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US5989256A (en) 1999-01-19 1999-11-23 Spineology, Inc. Bone fixation cable ferrule
US6547823B2 (en) 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
DE19903762C1 (en) 1999-01-30 2000-11-16 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
US6746485B1 (en) 1999-02-18 2004-06-08 St. Francis Medical Technologies, Inc. Hair used as a biologic disk, replacement, and/or structure and method
US6416776B1 (en) 1999-02-18 2002-07-09 St. Francis Medical Technologies, Inc. Biological disk replacement, bone morphogenic protein (BMP) carriers, and anti-adhesion materials
US20010007070A1 (en) 1999-04-05 2001-07-05 Medtronic, Inc. Ablation catheter assembly and method for isolating a pulmonary vein
US6277094B1 (en) 1999-04-28 2001-08-21 Medtronic, Inc. Apparatus and method for dilating ligaments and tissue by the alternating insertion of expandable tubes
US6200322B1 (en) 1999-08-13 2001-03-13 Sdgi Holdings, Inc. Minimal exposure posterior spinal interbody instrumentation and technique
US6231610B1 (en) 1999-08-25 2001-05-15 Allegiance Corporation Anterior cervical column support device
FR2799640B1 (en) 1999-10-15 2002-01-25 Spine Next Sa IMPLANT INTERVETEBRAL
US6790210B1 (en) 2000-02-16 2004-09-14 Trans1, Inc. Methods and apparatus for forming curved axial bores through spinal vertebrae
US6514255B1 (en) 2000-02-25 2003-02-04 Bret Ferree Sublaminar spinal fixation apparatus
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6312431B1 (en) 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
EP1294297B1 (en) 2000-06-30 2010-08-11 Warsaw Orthopedic, Inc. Intervertebral linking device
FR2811540B1 (en) 2000-07-12 2003-04-25 Spine Next Sa IMPORTING INTERVERTEBRAL IMPLANT
US20030120274A1 (en) 2000-10-20 2003-06-26 Morris John W. Implant retaining device
KR20030038556A (en) 2000-10-24 2003-05-16 스파인올로지 그룹, 엘엘씨 Tension band clip
US6419703B1 (en) 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
US6746404B2 (en) 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
FR2818530B1 (en) 2000-12-22 2003-10-31 Spine Next Sa INTERVERTEBRAL IMPLANT WITH DEFORMABLE SHIM
US6451021B1 (en) 2001-02-15 2002-09-17 Third Millennium Engineering, Llc Polyaxial pedicle screw having a rotating locking element
US6364883B1 (en) 2001-02-23 2002-04-02 Albert N. Santilli Spinous process clamp for spinal fusion and method of operation
US20030045935A1 (en) 2001-02-28 2003-03-06 Angelucci Christopher M. Laminoplasty implants and methods of use
FR2822051B1 (en) 2001-03-13 2004-02-27 Spine Next Sa INTERVERTEBRAL IMPLANT WITH SELF-LOCKING ATTACHMENT
US6582433B2 (en) 2001-04-09 2003-06-24 St. Francis Medical Technologies, Inc. Spine fixation device and method
NL1017932C2 (en) 2001-04-24 2002-10-29 Paul De Windt Fixing device for fixing swirl parts.
US6926728B2 (en) 2001-07-18 2005-08-09 St. Francis Medical Technologies, Inc. Curved dilator and method
EP1427341A1 (en) 2001-07-20 2004-06-16 Spinal Concepts Inc. Spinal stabilization system and method
CA2684439C (en) 2001-08-01 2013-03-26 Tyco Healthcare Group Lp Radially dilatable percutaneous access apparatus with introducer seal in handle
US6375682B1 (en) 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
FR2828398B1 (en) 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
CA2495119C (en) 2001-08-20 2010-02-02 Synthes (U.S.A.) Interspinal prosthesis
FR2829919B1 (en) 2001-09-26 2003-12-19 Spine Next Sa VERTEBRAL FIXATION DEVICE
US7008431B2 (en) 2001-10-30 2006-03-07 Depuy Spine, Inc. Configured and sized cannula
US20030139812A1 (en) 2001-11-09 2003-07-24 Javier Garcia Spinal implant
FR2832917B1 (en) 2001-11-30 2004-09-24 Spine Next Sa ELASTICALLY DEFORMABLE INTERVERTEBRAL IMPLANT
US6733534B2 (en) 2002-01-29 2004-05-11 Sdgi Holdings, Inc. System and method for spine spacing
JP2003220071A (en) 2002-01-31 2003-08-05 Kanai Hiroaki Fixation device for osteosynthesis
JP3708883B2 (en) 2002-02-08 2005-10-19 昭和医科工業株式会社 Vertebral space retainer
US6682563B2 (en) 2002-03-04 2004-01-27 Michael S. Scharf Spinal fixation device
US6669729B2 (en) 2002-03-08 2003-12-30 Kingsley Richard Chin Apparatus and method for the replacement of posterior vertebral elements
US7048736B2 (en) 2002-05-17 2006-05-23 Sdgi Holdings, Inc. Device for fixation of spinous processes
US20030220643A1 (en) 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US20060122606A1 (en) 2002-07-01 2006-06-08 Philippe Wolgen Radial osteogenic distractor device
FR2844179B1 (en) 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US7074226B2 (en) 2002-09-19 2006-07-11 Sdgi Holdings, Inc. Oval dilator and retractor set and method
JP3743513B2 (en) 2002-09-26 2006-02-08 セイコーエプソン株式会社 Manufacturing method of semiconductor device
US6849064B2 (en) 2002-10-25 2005-02-01 James S. Hamada Minimal access lumbar diskectomy instrumentation and method
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US7549999B2 (en) * 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US20080221692A1 (en) 2002-10-29 2008-09-11 Zucherman James F Interspinous process implants and methods of use
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US20080021468A1 (en) 2002-10-29 2008-01-24 Zucherman James F Interspinous process implants and methods of use
US20060271194A1 (en) 2005-03-22 2006-11-30 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wing as an adjunct to spinal fusion and method of implantation
US20050075634A1 (en) 2002-10-29 2005-04-07 Zucherman James F. Interspinous process implant with radiolucent spacer and lead-in tissue expander
US7909853B2 (en) 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US6966929B2 (en) 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US7273496B2 (en) 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US20060264939A1 (en) 2003-05-22 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant with slide-in distraction piece and method of implantation
US20060064165A1 (en) 2004-09-23 2006-03-23 St. Francis Medical Technologies, Inc. Interspinous process implant including a binder and method of implantation
US7083649B2 (en) 2002-10-29 2006-08-01 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with translating pivot point
US7497859B2 (en) 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
WO2004041100A1 (en) 2002-10-30 2004-05-21 Spinal Concepts, Inc. Spinal stabilization system insertion and methods
US20040086698A1 (en) 2002-10-31 2004-05-06 Collins Robert H. Method and apparatus for the application and control of a continuous or intermittent tail seal
US7887539B2 (en) 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7335203B2 (en) 2003-02-12 2008-02-26 Kyphon Inc. System and method for immobilizing adjacent spinous processes
FR2851154B1 (en) 2003-02-19 2006-07-07 Sdgi Holding Inc INTER-SPINOUS DEVICE FOR BRAKING THE MOVEMENTS OF TWO SUCCESSIVE VERTEBRATES, AND METHOD FOR MANUFACTURING THE SAME THEREOF
US7326216B2 (en) 2003-04-02 2008-02-05 Warsaw Orthopedic, Inc. Methods and instrumentation for positioning implants in spinal disc space in an anterior lateral approach
WO2004100840A1 (en) 2003-05-16 2004-11-25 Pentax Corporation Interspinal spacer
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
JP4579827B2 (en) 2003-05-27 2010-11-10 Hoya株式会社 Surgical instruments
KR100582768B1 (en) 2003-07-24 2006-05-23 최병관 Insert complement for vertebra
FR2858929B1 (en) 2003-08-21 2005-09-30 Spine Next Sa "INTERVERTEBRAL IMPLANT FOR LOMBO-SACRED JOINT"
EP1658015A1 (en) 2003-08-26 2006-05-24 Synthes GmbH Bone plate
US8007514B2 (en) 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
CA2544288A1 (en) 2003-10-30 2005-05-12 Synthes Gmbh Intervertebral implant
US7320707B2 (en) 2003-11-05 2008-01-22 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer
ATE363250T1 (en) 2003-11-07 2007-06-15 Impliant Ltd SPINAL PROSTHESIS
US20050149192A1 (en) 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7837732B2 (en) 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US20050283237A1 (en) 2003-11-24 2005-12-22 St. Francis Medical Technologies, Inc. Artificial spinal disk replacement device with staggered vertebral body attachments
US7503935B2 (en) 2003-12-02 2009-03-17 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement with translating pivot point
US20050209603A1 (en) 2003-12-02 2005-09-22 St. Francis Medical Technologies, Inc. Method for remediation of intervertebral disks
US20050143826A1 (en) 2003-12-11 2005-06-30 St. Francis Medical Technologies, Inc. Disk repair structures with anchors
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US20050216087A1 (en) 2004-01-05 2005-09-29 St. Francis Medical Technologies, Inc. Disk repair structures for positioning disk repair material
US20050149196A1 (en) 2004-01-07 2005-07-07 St. Francis Medical Technologies, Inc. Artificial spinal disk replacement device with rotation limiter and lateral approach implantation method
US20050165398A1 (en) 2004-01-26 2005-07-28 Reiley Mark A. Percutaneous spine distraction implant systems and methods
US7850733B2 (en) * 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
EP1761177B1 (en) 2004-02-10 2019-05-15 Spinal Elements, Inc. System for protecting neurovascular structures
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US7763073B2 (en) 2004-03-09 2010-07-27 Depuy Spine, Inc. Posterior process dynamic spacer
US7524323B2 (en) 2004-04-16 2009-04-28 Kyphon Sarl Subcutaneous support
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US7524324B2 (en) 2004-04-28 2009-04-28 Kyphon Sarl System and method for an interspinous process implant as a supplement to a spine stabilization implant
FR2870107B1 (en) 2004-05-11 2007-07-27 Spine Next Sa SELF-LOCKING DEVICE FOR FIXING AN INTERVERTEBRAL IMPLANT
JP4382092B2 (en) 2004-05-17 2009-12-09 ウリドル スパイン ヘルス インスティチュート シーオー. Intervertebral insert
US7585316B2 (en) 2004-05-21 2009-09-08 Warsaw Orthopedic, Inc. Interspinous spacer
FR2870719B1 (en) 2004-05-27 2007-09-21 Spine Next Sa SPINAL ARTHROPLASTY SYSTEM
US20060036258A1 (en) 2004-06-08 2006-02-16 St. Francis Medical Technologies, Inc. Sizing distractor and method for implanting an interspinous implant between adjacent spinous processes
US7776091B2 (en) 2004-06-30 2010-08-17 Depuy Spine, Inc. Adjustable posterior spinal column positioner
US7485133B2 (en) 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
US20060015181A1 (en) 2004-07-19 2006-01-19 Biomet Merck France (50% Interest) Interspinous vertebral implant
US20060036324A1 (en) 2004-08-03 2006-02-16 Dan Sachs Adjustable spinal implant device and method
US20060036259A1 (en) 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
WO2006017641A2 (en) 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US8012209B2 (en) 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8012207B2 (en) * 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8292922B2 (en) 2004-10-20 2012-10-23 Vertiflex, Inc. Interspinous spacer
US8317864B2 (en) * 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US8945183B2 (en) 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US7918875B2 (en) 2004-10-25 2011-04-05 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
EP1807012B1 (en) 2004-10-25 2016-07-06 Lanx, LLC Nterspinous distraction devices
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
US20060106381A1 (en) 2004-11-18 2006-05-18 Ferree Bret A Methods and apparatus for treating spinal stenosis
US8597331B2 (en) 2004-12-10 2013-12-03 Life Spine, Inc. Prosthetic spinous process and method
US8403959B2 (en) 2004-12-16 2013-03-26 Med-Titan Spine Gmbh Implant for the treatment of lumbar spinal canal stenosis
US8043335B2 (en) 2005-02-17 2011-10-25 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US7988709B2 (en) 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US20070276372A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US20060195102A1 (en) 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7927354B2 (en) 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US8568461B2 (en) 2005-02-17 2013-10-29 Warsaw Orothpedic, Inc. Percutaneous spinal implants and methods
US20060184248A1 (en) 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8096995B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US20070276373A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US20080039944A1 (en) 2005-02-17 2008-02-14 Malandain Hugues F Percutaneous Spinal Implants and Methods
US20080288078A1 (en) 2005-02-17 2008-11-20 Kohm Andrew C Percutaneous spinal implants and methods
US8092459B2 (en) 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US7998208B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US8496691B2 (en) 2005-03-17 2013-07-30 Spinal Elements, Inc. Side-biased orthopedic fastener retention
US20060241757A1 (en) 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8066742B2 (en) 2005-03-31 2011-11-29 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
MX2007012493A (en) 2005-04-08 2008-03-14 Paradigm Spine Llc Interspinous vertebral and lumbosacral stabilization devices and methods of use.
US7862590B2 (en) 2005-04-08 2011-01-04 Warsaw Orthopedic, Inc. Interspinous process spacer
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US7789898B2 (en) 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
WO2006111174A1 (en) 2005-04-16 2006-10-26 Aesculap Ag & Co. Kg Implant for alleviating pressure on intervertebral disks and method for the adjustment and pressure alleviation of an intervertebral space
US7727233B2 (en) 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20060247623A1 (en) 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Local delivery of an active agent from an orthopedic implant
US20060247634A1 (en) 2005-05-02 2006-11-02 Warner Kenneth D Spinous Process Spacer Implant and Technique
US20060271055A1 (en) 2005-05-12 2006-11-30 Jeffery Thramann Spinal stabilization
KR20060124851A (en) 2005-05-26 2006-12-06 메딕스얼라인 주식회사 Rod type fixture for spinal stenosis treatment
CN101237827A (en) 2005-06-06 2008-08-06 新特斯有限责任公司 Implant for spinal stabilization and its method of use
US7763051B2 (en) 2005-06-10 2010-07-27 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US7837688B2 (en) 2005-06-13 2010-11-23 Globus Medical Spinous process spacer
US20070005064A1 (en) 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
ATE541528T1 (en) 2005-07-11 2012-02-15 Kyphon Sarl SYSTEM FOR INTRODUCING BIOCOMPATIBLE FILLING MATERIALS INTO INTERNAL BODY REGIONS
FR2888744B1 (en) 2005-07-21 2007-08-24 Charles Khalife ROTARY INTERINEABLE DEVICE
ITPD20050231A1 (en) 2005-07-28 2007-01-29 2B1 Srl APPARATUS FOR THE NEUROCURGURGICAL-ORTHOPEDIC TREATMENT OF PATHOLOGIES OF THE HUMAN VERTEBRAL COLUMN
FR2889438B1 (en) 2005-08-04 2008-06-06 Scient X Sa DOUBLE-SHAPED INTERVERTEBRAL IMPLANT
US7753938B2 (en) 2005-08-05 2010-07-13 Synthes Usa, Llc Apparatus for treating spinal stenosis
US8870890B2 (en) 2005-08-05 2014-10-28 DePuy Synthes Products, LLC Pronged holder for treating spinal stenosis
US8277487B2 (en) 2005-08-11 2012-10-02 National University Corporation Kobe University Method of percutaneously enlarging processus spinosus interspace using minimally invasive implant
FR2889937B1 (en) 2005-08-26 2007-11-09 Abbott Spine Sa INTERVERTEBRAL IMPLANT FOR LOMBO-SACRED JOINT
PL377136A1 (en) 2005-09-19 2007-04-02 Lfc Spółka Z Ograniczoną Odpowiedzialnością Intervertebral space implant
US20090036925A1 (en) 2005-09-21 2009-02-05 Sintea Biotech S.P.A. Device, Kit and Method For Intervertebral Stabilization
WO2007038475A2 (en) 2005-09-27 2007-04-05 Paradigm Spine, Llc Interspinous vertebral stabilization devices
US8167915B2 (en) 2005-09-28 2012-05-01 Nuvasive, Inc. Methods and apparatus for treating spinal stenosis
US20070093823A1 (en) 2005-09-29 2007-04-26 Nuvasive, Inc. Spinal distraction device and methods of manufacture and use
US8870920B2 (en) 2005-10-07 2014-10-28 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7862591B2 (en) 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7998173B2 (en) 2005-11-22 2011-08-16 Richard Perkins Adjustable spinous process spacer device and method of treating spinal stenosis
US7699873B2 (en) 2005-11-23 2010-04-20 Warsaw Orthopedic, Inc. Spinous process anchoring systems and methods
JP2007167621A (en) 2005-11-24 2007-07-05 Olympus Biomaterial Corp Spinous process spacer
US7862592B2 (en) 2005-12-06 2011-01-04 Nuvasive, Inc. Methods and apparatus for treating spinal stenosis
US8430911B2 (en) 2005-12-14 2013-04-30 Spinefrontier Inc Spinous process fixation implant
US8002802B2 (en) 2005-12-19 2011-08-23 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US7585313B2 (en) 2005-12-22 2009-09-08 Depuy Spine, Inc. Rotatable interspinous spacer
JP2009522013A (en) 2005-12-28 2009-06-11 スタウト メディカル グループ,エル.ピー. Expandable support and method of use
KR100756472B1 (en) 2006-01-03 2007-09-07 주식회사 엘지화학 Fixing apparatus for cross bar
US7922745B2 (en) 2006-01-09 2011-04-12 Zimmer Spine, Inc. Posterior dynamic stabilization of the spine
US20070173821A1 (en) 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the posterior and spinous process regions
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7837711B2 (en) 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
US20070233088A1 (en) 2006-01-27 2007-10-04 Edmond Elizabeth W Pedicle and non-pedicle based interspinous and lateral spacers
US7691130B2 (en) 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7682376B2 (en) 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US20070191838A1 (en) 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Interspinous devices and methods of use
US20070185490A1 (en) 2006-01-31 2007-08-09 Dante Implicito Percutaneous interspinous distraction device and method
ATE548000T1 (en) 2006-02-01 2012-03-15 Synthes Gmbh INTERSPINAL INTERVENTION SPACER
US20070233096A1 (en) 2006-02-13 2007-10-04 Javier Garcia-Bengochea Dynamic inter-spinous device
WO2007098423A2 (en) 2006-02-17 2007-08-30 Paradigm Spine, L.L.C. Method and system for performing interspinous space preparation for receiving an implant
US20070233068A1 (en) 2006-02-22 2007-10-04 Sdgi Holdings, Inc. Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US8262698B2 (en) * 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US7871426B2 (en) 2006-03-21 2011-01-18 Spinefrontier, LLS Spinous process fixation device
GB2436292B (en) * 2006-03-24 2011-03-16 Galley Geoffrey H Expandable spacing means for insertion between spinous processes of adjacent vertebrae
US8361116B2 (en) 2006-03-24 2013-01-29 U.S. Spine, Inc. Non-pedicle based interspinous spacer
GB0605960D0 (en) * 2006-03-24 2006-05-03 Galley Geoffrey H Expandable spinal prosthesis
US20090043342A1 (en) 2006-03-28 2009-02-12 Yosef Freedland Flat Shaft Fasteners
US20070233077A1 (en) 2006-03-31 2007-10-04 Khalili Farid B Dynamic intervertebral spacer assembly
US7985246B2 (en) 2006-03-31 2011-07-26 Warsaw Orthopedic, Inc. Methods and instruments for delivering interspinous process spacers
TW200738209A (en) 2006-04-07 2007-10-16 Chung-Chun Yeh Apparatus for holding open the vertebral spinous process
FR2899788B1 (en) 2006-04-13 2008-07-04 Jean Taylor TREATMENT EQUIPMENT FOR VERTEBRATES, COMPRISING AN INTEREPINOUS IMPLANT
US7806911B2 (en) 2006-04-14 2010-10-05 Warsaw Orthopedic, Inc. Fixation plate and method of use
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8348978B2 (en) 2006-04-28 2013-01-08 Warsaw Orthopedic, Inc. Interosteotic implant
US7846185B2 (en) 2006-04-28 2010-12-07 Warsaw Orthopedic, Inc. Expandable interspinous process implant and method of installing same
US8105357B2 (en) 2006-04-28 2012-01-31 Warsaw Orthopedic, Inc. Interspinous process brace
US20070270824A1 (en) 2006-04-28 2007-11-22 Warsaw Orthopedic, Inc. Interspinous process brace
US20070270823A1 (en) 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Multi-chamber expandable interspinous process brace
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US8252031B2 (en) 2006-04-28 2012-08-28 Warsaw Orthopedic, Inc. Molding device for an expandable interspinous process implant
DE202006006898U1 (en) 2006-04-29 2006-07-27 Metz-Stavenhagen, Peter, Dr. Med. spinal implant
US8062337B2 (en) 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8021394B2 (en) 2006-05-09 2011-09-20 Life Spine, Inc. Stenotic device
US20070276496A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US20070276497A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings. Inc. Surgical spacer
US20070272259A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical procedure for inserting a device between anatomical structures
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US8048120B1 (en) 2006-05-31 2011-11-01 Medicine Lodge, Inc. System and method for segmentally modular spinal plating
US8172882B2 (en) 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US7857815B2 (en) 2006-06-22 2010-12-28 Kyphon Sarl System and method for strengthening a spinous process
US7862569B2 (en) 2006-06-22 2011-01-04 Kyphon Sarl System and method for strengthening a spinous process
AU2006345898A1 (en) 2006-07-03 2008-01-10 Sami Khalife Interspinous stabilization system
EP2037827B1 (en) 2006-07-07 2014-09-17 Swiss Pro Orthopedic SA Bone plate with complex, adjacent holes joined by a relief-space
US7860655B2 (en) 2006-07-14 2010-12-28 Westerngeco L.L.C. Electromagnetically detecting thin resistive bodies in shallow water and terrestrial environments
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
DE102006034756A1 (en) 2006-07-24 2008-01-31 Karl Storz Gmbh & Co. Kg Medical instrument for cutting tissue
US8303630B2 (en) * 2006-07-27 2012-11-06 Samy Abdou Devices and methods for the minimally invasive treatment of spinal stenosis
US8834526B2 (en) 2006-08-09 2014-09-16 Rolando Garcia Methods and apparatus for treating spinal stenosis
CN100539959C (en) 2006-08-21 2009-09-16 叶中权 Device for expanding pleurite vertebral column spinous process
US20080051896A1 (en) 2006-08-25 2008-02-28 Loubert Suddaby Expandable Spinous Process Distractor
FR2905848B1 (en) 2006-09-18 2008-12-05 Spineart Sa LUMBAR INTER-SPINOUS PROSTHESIS AND ITS APPLICATIONS
US20080071380A1 (en) 2006-09-19 2008-03-20 Thomas Sweeney Systems and Methods for Percutaneous Placement of Interspinous Process Spacers
US20080082172A1 (en) 2006-09-29 2008-04-03 Jackson Roger P Interspinous process spacer
US20080161856A1 (en) 2006-10-06 2008-07-03 Mingyan Liu Spinal stabilization system
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
US20080177298A1 (en) 2006-10-24 2008-07-24 St. Francis Medical Technologies, Inc. Tensioner Tool and Method for Implanting an Interspinous Process Implant Including a Binder
US20080108990A1 (en) * 2006-11-02 2008-05-08 St. Francis Medical Technologies, Inc. Interspinous process implant having a fixed wing and a deployable wing and method of implantation
US20080114358A1 (en) 2006-11-13 2008-05-15 Warsaw Orthopedic, Inc. Intervertebral Prosthetic Assembly for Spinal Stabilization and Method of Implanting Same
US20080114455A1 (en) 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Rotating Interspinous Process Devices and Methods of Use
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
AR064013A1 (en) 2006-11-30 2009-03-04 Paradigm Spine Llc VERTEBRAL, INTERLAMINAR, INTERESPINOUS STABILIZATION SYSTEM
WO2008070863A2 (en) * 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
DE102006059395A1 (en) 2006-12-08 2008-06-19 Aesculap Ag & Co. Kg Implant and implant system
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US20080177312A1 (en) 2006-12-28 2008-07-24 Mi4Spine, Llc Interspinous Process Spacer Device
US7879039B2 (en) 2006-12-28 2011-02-01 Mi4Spine, Llc Minimally invasive interspinous process spacer insertion device
US20080167657A1 (en) 2006-12-31 2008-07-10 Stout Medical Group, L.P. Expandable support device and method of use
US20080167655A1 (en) 2007-01-05 2008-07-10 Jeffrey Chun Wang Interspinous implant, tools and methods of implanting
US8974496B2 (en) 2007-08-30 2015-03-10 Jeffrey Chun Wang Interspinous implant, tools and methods of implanting
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US8382801B2 (en) 2007-01-11 2013-02-26 Lanx, Inc. Spinous process implants, instruments, and methods
EP2117450B1 (en) * 2007-01-11 2017-06-28 Lanx, Inc. Spinal implants
CN101594836A (en) 2007-01-23 2009-12-02 生物智慧株式会社 Employed partition in the surgical operation of spinal crest of Rauber
US8568453B2 (en) 2007-01-29 2013-10-29 Samy Abdou Spinal stabilization systems and methods of use
US20080183218A1 (en) 2007-01-31 2008-07-31 Nuvasive, Inc. System and Methods for Spinous Process Fusion
ES2968634T3 (en) 2007-02-06 2024-05-13 Pioneer Surgical Tech Inc Intervertebral implant devices
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US8252026B2 (en) 2007-02-21 2012-08-28 Zimmer Spine, Inc. Spinal implant for facet joint
WO2008106140A2 (en) 2007-02-26 2008-09-04 Abdou M Samy Spinal stabilization systems and methods of use
WO2008109872A2 (en) 2007-03-07 2008-09-12 Spinealign Medical, Inc. Systems, methods, and devices for soft tissue attachment to bone
US8828061B2 (en) 2007-03-19 2014-09-09 Us Spine, Inc. Vertebral stabilization devices and associated surgical methods
US9545267B2 (en) 2007-03-26 2017-01-17 Globus Medical, Inc. Lateral spinous process spacer
US20080249569A1 (en) 2007-04-03 2008-10-09 Warsaw Orthopedic, Inc. Implant Face Plates
US8163026B2 (en) 2007-04-05 2012-04-24 Zimmer Spine, Inc. Interbody implant
WO2008124831A2 (en) 2007-04-10 2008-10-16 Lee David M D Adjustable spine distraction implant
EP2134276A4 (en) 2007-04-10 2012-10-17 Medicinelodge Inc Interspinous process spacers
US20080262619A1 (en) 2007-04-18 2008-10-23 Ray Charles D Interspinous process cushioned spacer
US7799058B2 (en) * 2007-04-19 2010-09-21 Zimmer Gmbh Interspinous spacer
US8241362B2 (en) 2007-04-26 2012-08-14 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
EP2142146A4 (en) 2007-05-01 2010-12-01 Spinal Simplicity Llc Interspinous implants and methods for implanting same
US8142479B2 (en) 2007-05-01 2012-03-27 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
US20090012614A1 (en) 2007-05-08 2009-01-08 Dixon Robert A Device and method for tethering a spinal implant
US9173686B2 (en) 2007-05-09 2015-11-03 Ebi, Llc Interspinous implant
US8840646B2 (en) 2007-05-10 2014-09-23 Warsaw Orthopedic, Inc. Spinous process implants and methods
US20080281361A1 (en) 2007-05-10 2008-11-13 Shannon Marlece Vittur Posterior stabilization and spinous process systems and methods
EP1994900A1 (en) 2007-05-22 2008-11-26 Flexismed SA Interspinous vertebral implant
US20080294200A1 (en) 2007-05-25 2008-11-27 Andrew Kohm Spinous process implants and methods of using the same
TWM325094U (en) 2007-05-30 2008-01-11 Kwan-Ku Lin Implanting device for spine medical treatment
US8070779B2 (en) 2007-06-04 2011-12-06 K2M, Inc. Percutaneous interspinous process device and method
US20090005873A1 (en) 2007-06-29 2009-01-01 Michael Andrew Slivka Spinous Process Spacer Hammock
US8348976B2 (en) 2007-08-27 2013-01-08 Kyphon Sarl Spinous-process implants and methods of using the same
WO2009039464A1 (en) 2007-09-20 2009-03-26 Life Spine, Inc. Expandable spinal spacer
US8172852B2 (en) 2007-10-05 2012-05-08 Spartek Medical, Inc. Systems and methods for injecting bone filler into the spine
US20090093883A1 (en) 2007-10-05 2009-04-09 Mauricio Rodolfo Carrasco Interspinous implant
US20090093843A1 (en) 2007-10-05 2009-04-09 Lemoine Jeremy J Dynamic spine stabilization system
DK2923664T3 (en) 2007-10-17 2019-04-23 Aro Medical Aps Torsion stabilization systems and apparatus
US20090105773A1 (en) 2007-10-23 2009-04-23 Warsaw Orthopedic, Inc. Method and apparatus for insertion of an interspinous process device
US20090112266A1 (en) 2007-10-25 2009-04-30 Industrial Technology Research Institute Spinal dynamic stabilization device
DE102007052799A1 (en) 2007-11-02 2009-05-07 Taurus Gmbh & Co.Kg. implant
US20090118833A1 (en) 2007-11-05 2009-05-07 Zimmer Spine, Inc. In-situ curable interspinous process spacer
US8480680B2 (en) 2007-12-07 2013-07-09 Adam Lewis Spinal decompression system and method
US8202300B2 (en) 2007-12-10 2012-06-19 Custom Spine, Inc. Spinal flexion and extension motion damper
AU2008345132A1 (en) 2007-12-28 2009-07-09 Osteomed Spine, Inc. Bone tissue fixation device and method
WO2009091922A2 (en) 2008-01-15 2009-07-23 Vertiflex, Inc. Interspinous spacer
US20090198241A1 (en) 2008-02-04 2009-08-06 Phan Christopher U Spine distraction tools and methods of use
US8105358B2 (en) 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US8252029B2 (en) 2008-02-21 2012-08-28 Zimmer Gmbh Expandable interspinous process spacer with lateral support and method for implantation
TW200938157A (en) 2008-03-11 2009-09-16 Fong-Ying Chuang Interspinous spine fixing device
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8202299B2 (en) 2008-03-19 2012-06-19 Collabcom II, LLC Interspinous implant, tools and methods of implanting
US8025678B2 (en) 2008-03-26 2011-09-27 Depuy Spine, Inc. Interspinous process spacer having tight access offset hooks
US8313512B2 (en) 2008-03-26 2012-11-20 Depuy Spine, Inc. S-shaped interspinous process spacer having tight access offset hooks
US20090248081A1 (en) 2008-03-31 2009-10-01 Warsaw Orthopedic, Inc. Spinal Stabilization Devices and Methods
US20090259316A1 (en) 2008-04-15 2009-10-15 Ginn Richard S Spacer Devices and Systems for the Treatment of Spinal Stenosis and Methods for Using the Same
US8523910B2 (en) 2008-04-22 2013-09-03 Globus Medical, Inc. Lateral spinous process spacer
BRPI0801855A2 (en) 2008-04-25 2009-12-29 Gm Dos Reis Jr interspinous device
US8308769B2 (en) 2008-05-07 2012-11-13 Innovative Spine LLC. Implant device and method for interspinous distraction
EP2303163B1 (en) 2008-05-20 2011-11-23 Zimmer Spine System for stabilizing at least three vertebrae
US20090297603A1 (en) 2008-05-29 2009-12-03 Abhijeet Joshi Interspinous dynamic stabilization system with anisotropic hydrogels
DE102008032685B4 (en) 2008-07-04 2016-06-23 Aesculap Ag Implant for mutual support of spinous processes of vertebral bodies
US20100010546A1 (en) 2008-07-11 2010-01-14 Elias Humberto Hermida Ochoa Minimally Invasive Instruments and Methods for the Micro Endoscopic Application of Spine Stabilizers in the Interspinous Space
US20100010548A1 (en) 2008-07-11 2010-01-14 Elias Humberto Hermida Ochoa Instruments and Method of Use for Minimally Invasive Spine Surgery in Interspine Space Through Only One Side
ES2574302T3 (en) 2008-08-08 2016-06-16 Alphatec Spine, Inc. Device for spinous process
US9402655B2 (en) 2008-08-13 2016-08-02 DePuy Synthes Products, Inc. Interspinous spacer assembly
WO2010085809A1 (en) 2009-01-26 2010-07-29 Life Spine, Inc. Flexible and static interspinous/inter-laminar spinal spacers
KR20120013327A (en) 2009-03-31 2012-02-14 란스, 아이엔씨. Spinous process implants and associated methods
US8721686B2 (en) 2009-06-23 2014-05-13 Osteomed Llc Spinous process fusion implants and insertion, compression, and locking instrumentation
JP2013501582A (en) 2009-08-10 2013-01-17 ランクス インコーポレイテッド Interspinous implant and method
US9179944B2 (en) 2009-09-11 2015-11-10 Globus Medical, Inc. Spinous process fusion devices
US8262697B2 (en) 2010-01-14 2012-09-11 X-Spine Systems, Inc. Modular interspinous fixation system and method
US8388656B2 (en) 2010-02-04 2013-03-05 Ebi, Llc Interspinous spacer with deployable members and related method
US20110264221A1 (en) 2010-04-24 2011-10-27 Custom Spine, Inc. Interspinous Fusion Device and Method
US9072549B2 (en) 2010-06-16 2015-07-07 Life Spine, Inc. Spinal clips for interspinous decompression
US9913668B2 (en) 2010-07-15 2018-03-13 Spinefrontier, Inc Interspinous fixation implant
US9149306B2 (en) 2011-06-21 2015-10-06 Seaspine, Inc. Spinous process device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114357A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170348028A1 (en) * 2014-12-04 2017-12-07 Giuseppe Calvosa Intervertebral distractor
US10149704B2 (en) * 2014-12-04 2018-12-11 Giuseppe Calvosa Intervertebral distractor

Also Published As

Publication number Publication date
US20080177306A1 (en) 2008-07-24
EP2214597A1 (en) 2010-08-11
WO2009058439A1 (en) 2009-05-07
US9770271B2 (en) 2017-09-26
BRPI0818725A2 (en) 2018-05-29
CN101909550B (en) 2014-09-24
CN101909550A (en) 2010-12-08
US20150351813A1 (en) 2015-12-10
US9055981B2 (en) 2015-06-16
EP2214597A4 (en) 2012-04-11
CA2704192A1 (en) 2009-05-07
AU2008319176A2 (en) 2010-07-01
AU2008319176A1 (en) 2009-05-07
JP2011502573A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US9770271B2 (en) Spinal implants and methods
EP2117450B1 (en) Spinal implants
US11918258B2 (en) Device and method for reinforcement of a facet
US9743960B2 (en) Interspinous implants and methods
US20180193065A1 (en) Spinous process implants and associated methods
US8382801B2 (en) Spinous process implants, instruments, and methods
US20080167657A1 (en) Expandable support device and method of use
US20130103088A1 (en) Segmental Spinous Process Anchor System and Methods of Use
KR20120013327A (en) Spinous process implants and associated methods
KR20120062764A (en) Interspinous implants and methods
AU2007343630B2 (en) Spinous process implants and associated methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION