US20170354621A1 - Sulfonamide pharmaceutical composition - Google Patents

Sulfonamide pharmaceutical composition Download PDF

Info

Publication number
US20170354621A1
US20170354621A1 US15/541,776 US201615541776A US2017354621A1 US 20170354621 A1 US20170354621 A1 US 20170354621A1 US 201615541776 A US201615541776 A US 201615541776A US 2017354621 A1 US2017354621 A1 US 2017354621A1
Authority
US
United States
Prior art keywords
solution
sulfonamide
pharmaceutical composition
raw materials
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/541,776
Inventor
Yi Juang WU
Xiaoqing YAO
Changhai SUN
Li Tian
Xinying ZHAO
Zhidong Han
Chuangyu LIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Hongri Jian Da Kang Medical Technology Co Ltd
Original Assignee
Tianjin Hongri Jian Da Kang Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Hongri Jian Da Kang Medical Technology Co Ltd filed Critical Tianjin Hongri Jian Da Kang Medical Technology Co Ltd
Publication of US20170354621A1 publication Critical patent/US20170354621A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • This invention relates to a sulfonamide pharmaceutical composition, and their preparation and use in the pharmaceutical industry.
  • Cancer is a common disease in the world today. Most cancers are diagnosed at late stage and the cure rate is low. Most of the current anticancer drugs have toxic side effects including hair loss, vomiting, decrease of white blood cell count, bone marrow suppression, and decrease in immune system function. The major reason is that these drugs act on part of the cell metabolic cycle, and they do not selectively target cancer cells as opposed to healthy cells. When they kill cancer cells, they also damage healthy cells, especially those healthy cells that are undergoing rapid metabolism.
  • Sulfonamide compounds have been clinically used as an antimicrobial for decades. Today, they are still one of the most commonly used antimicrobials, second only to antibiotics because of their broad antibacterial spectrum, stability, ease of use, and low price. As more in-depth studies are conducted, researchers have found that sulfonamide compounds have a wider range of biological activities, including its diuretic effect, anti-thyroid effect, anti-diabetic effect, anti-hypoglycemic effect, and its ability to treat cataract. In recent years, a large number of sulfonamide compounds with anti-tumor activity have been reported, and many among them have entered clinical trials. These compounds act on different molecular targets and exhibit significant biological activity. Some compounds exhibit high selectivity and specificity for different targets.
  • the mechanisms for the actions of these sulfonamide compounds are diverse, including disrupting tubulin polymerization, blocking normal cell cycle, inhibiting carbonic anhydrase, inhibiting folic acid dependent enzymes, inhibiting methionine aminopeptidase and histone deacetylase, and inhibiting vascular endothelial cell growth factor and so on.
  • Chinese Patent ZL97108988.4 disclosed the formulation and method to prepare injections of sulfonamide compounds.
  • the compounds include:
  • sulfonamide compounds are selected from:
  • Said sulfonamide compound 10% ⁇ 80% PEG-400 10% ⁇ 60% 1,2-propanediol 5% ⁇ 30%
  • p-Toluenesulfonic acid 1% ⁇ 15% Dimethyl sulfoxide 0% ⁇ 20%
  • the present invention solves the problems of low solubility and ease of crystallization associated with known injection formulations by improving the formulation and method to prepare injections of sulfonamide compounds. Comparative toxicity test also shows that the present formulation is less toxic and safer for clinical use.
  • the goal of this invention is to provide an injection formulation comprising a sulfonamide compound, made with the following raw materials:
  • PEG-400 polyethylene glycol-400
  • 1,2-propanediol, sebacic acid, 2-ethyl-1,3-hexanediol, dimethyl sulfoxide and ethanol only dimethyl sulfoxide and ethanol are dispensable, others are required.
  • the sulfonamide compound is selected from one, or a mixture of two or more, at any ratio, of the following:
  • the sulfonamide compound is selected from:
  • the injection formulation of the present invention is prepared from the following raw materials:
  • injection formulation of this invention is prepared from the following raw materials:
  • the present invention improves upon the known injection formulations by removing suberic acid and adding the solubilizer 2-ethyl-1,3-hexanediol.
  • the combination of PEG-400, 2-ethyl-1,3-hexanediol, and 1,2-propanediol can decrease the amount of 1,2-propanediol in the injection formulation, thereby decreasing irritation at the injection site.
  • Another goal of this invention is to provide a method to prepare the injection.
  • the preparation of the injection of this invention comprises the following steps:
  • the present invention is an improvement on the basis of the prior art (CN1073415C). As shown in the above table, the formulation of the present invention made the following improvements as compared to the formulation disclosed in Example 2 of the Chinese patent CN1073415C:
  • this invention solved a range of issues associated with the known formulation such as low stability.
  • Example 1 Example 2 p-Toluenesulfonamide 30% 40% PEG-400 33.5% 40% 1,2-propanediol 16.4% 10% Suberic acid 8.2% 3% p-Toluenesulfonic acid 3.7% 2% Dimethyl sulfoxide 6.7% 3% Ethanol 1.5% 2% Stability Stored at Stored at 4° C. ⁇ 2° C. for 4° C. ⁇ 2° C. for 10 days, 10 days, crystals crystals precipitated precipitated LD50 12.54 mg/kg 11.30 mg/kg
  • Results show that, although all raw materials dissolved in Formula I and II, the time taken is relatively long while for Formula III-VI, raw materials dissolved faster and the final solution is clear and transparent.
  • the present invention is further compared with existing pharmaceutical injections.
  • Example 1 Three samples were taken from each of Example 1, Example 5, Example 6, and Example 7 (i.e., Formulation III-VI) of the present invention (Labelled as Samples A-D), and three samples were taken from self-prepared Example 2 from Patent CN1073415C (Labelled as Sample E). All samples were stored at 4° C. ⁇ 2° C. for 10 days and samples were observed at Day 0, Day 5, and Day 5 for crystal precipitation. Results are shown in Table 2:
  • Formulations III-VI of the present invention showed a significant increase in stability at 4° C. compared to self-prepared CN 1073415C Example 2.
  • the solution is clear and transparent after 10-day storage, and no crystal precipitated.
  • Example 1 Samples were taken from Example 1, Example 5, Example 6 and Example 7 (i.e., Formulation III-VI) of the present invention (Labelled as Samples A-D), and self-prepared CN 1073415 C Example 2 (Labelled as Sample E), and stored at 40° C.+2° C., 75% ⁇ 5% RH. Relevant properties were assessed and results are shown in the below table:
  • Formulations III-IV of the present invention were significantly more stable after storage at 40° C. ⁇ 2° C., 75% ⁇ 5% RH for 6 months compared to CH1073415C Example 2.
  • the growth rates of single largest impurity and total impurities were slower, and there were fewer impurities.
  • the degradation rates of the raw materials were also slower and there was less degradation for Formulations III-IV.
  • the purpose of adding anhydrous ethanol in this formulation is to control the total volume of the final solution, and further control the total drug content in the formulation. Therefore, the amount of anhydrous ethanol to be added in Step 4 should be slightly less than the prescription amount.
  • Example 1 of the p-toluenesulfonamide injection was compared with CN 1073415 C Example 2 by administering a single intravenous injection at the tail vein for comparative toxicity test. Results are shown below:
  • Example 1 Animal death rate is lower for Example 1.
  • LD50 of the drug was increased by 60% (P ⁇ 0.01), significantly reducing the toxicity of the injection.
  • Example 1 of the present invention was tested on animals.
  • Table 2 shows the effect of intramuscular injection of Example 1 on the development of lung cancer in mice.
  • Example 1 Effect of intramuscular injection of Example 1 on lung cancer development in mice No. of Body Average weight Dosage subjects weight of tumor Tumor-inhibiting Group Treatment (/kg/d ⁇ 10 d) Start End Start End (X ⁇ SD) (g) rate (%) P value* 1 NS(contnol) 2.0 ml 11 11 20.7 27.9 3.52 ⁇ 0.62 0.0 >0.05 Solvent 2.0 ml 11 11 20.5 25.1 2.91 ⁇ 0.58 17.3 ⁇ 0.01 (control) CTX 18.0 ml 11 11 20.8 25.0 1.82 ⁇ 0.41 48.3 ⁇ 0.01 Example 1 0.5 ml 11 11 21.9 25.4 1.81 ⁇ 0.25 48.6 ⁇ 0.01 Example 1 1.0 ml 11 11 21.3 25.2 1.46 ⁇ 0.74 58.5 ⁇ 0.01 Example 1 2.0 ml 11 11 20.2 24.0 1.25 ⁇ 0.72 64.5 ⁇ 0.01 2 NS(control) 2.0 ml 11 11 20.4 27.7 2.49 ⁇ 0.58 0.0 >0.05
  • Example 1 injection Single-arm clinical trial of Example 1 injection (PTS injection) for local intra-tumoral injection in patients with severe airway obstruction due to central type lung cancer.
  • Subject statistics based on their lung cancer stage 46 cases in IV phase, 22 cases in stage IIIb, 4 cases in stage IIIa. Subject statistics based on the location of tumor, 6 cases of airway, 28 cases of left main bronchus, 30 cases of right main bronchus, and 8 cases of right intermediate bronchus.
  • Major efficacy index objective response rate of intraluminal target lesion-according to RECIST: based on CT assessment, the objective response rate was 68.08% within 7 days from the last treatment, and 48.61% after 30 days from the exit period, respectively.
  • Major efficacy index objective response rate of intraluminal target lesion-according to WHO standard: based on CT assessment, the objective response rate of intraluminal target lesion was 77.78% within 7 days from the last treatment, and 54.17% after 30 days from the exit period.
  • Major efficacy index improvement rate on luminal tumor blockage, applying CT assessment, the improvement rate for obstruction due to luminal tumor is 70.45% within 7 days from the last treatment, and 70.47% after 30 days from the exit period.
  • Clinical benefit index Compared with the baseline, the pulmonary function index FEV1 showed statistically significant improvement within 7 days after the last administration, with a rate of improvement of 34.72% and 18.06% at 30 days after the exit period; the total re-expansion rate for patients with atelectasis across different lobes was 44.44% (20/45). Arranged by the location with a descending re-expansion rate is as follows: 50.00% for the right middle lobe, 43.75% for the left lung, 42.11% for the left lower lobe, 38.46% for the right lower lobe, 35.00% for the left tongue lobe, and 25.00% for the right upper lobe.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A sulfonamide pharmaceutical composition. The present invention relates to a sulfonamide compound injectable preparation comprising a sulfonamide compound or a derivative thereof. The injectable preparation is prepared from the sulfonamide compound and a pharmaceutically acceptable carrier through certain preparation technologies. The sulfonamide compound injectable preparation involved in the present invention is stable and controllable in quality and effective.

Description

    FIELD OF THE INVENTION
  • This invention relates to a sulfonamide pharmaceutical composition, and their preparation and use in the pharmaceutical industry.
  • BACKGROUND OF THE INVENTION
  • Cancer is a common disease in the world today. Most cancers are diagnosed at late stage and the cure rate is low. Most of the current anticancer drugs have toxic side effects including hair loss, vomiting, decrease of white blood cell count, bone marrow suppression, and decrease in immune system function. The major reason is that these drugs act on part of the cell metabolic cycle, and they do not selectively target cancer cells as opposed to healthy cells. When they kill cancer cells, they also damage healthy cells, especially those healthy cells that are undergoing rapid metabolism.
  • Sulfonamide compounds have been clinically used as an antimicrobial for decades. Today, they are still one of the most commonly used antimicrobials, second only to antibiotics because of their broad antibacterial spectrum, stability, ease of use, and low price. As more in-depth studies are conducted, researchers have found that sulfonamide compounds have a wider range of biological activities, including its diuretic effect, anti-thyroid effect, anti-diabetic effect, anti-hypoglycemic effect, and its ability to treat cataract. In recent years, a large number of sulfonamide compounds with anti-tumor activity have been reported, and many among them have entered clinical trials. These compounds act on different molecular targets and exhibit significant biological activity. Some compounds exhibit high selectivity and specificity for different targets.
  • The mechanisms for the actions of these sulfonamide compounds are diverse, including disrupting tubulin polymerization, blocking normal cell cycle, inhibiting carbonic anhydrase, inhibiting folic acid dependent enzymes, inhibiting methionine aminopeptidase and histone deacetylase, and inhibiting vascular endothelial cell growth factor and so on.
  • Chinese Patent ZL97108988.4 disclosed the formulation and method to prepare injections of sulfonamide compounds.
  • The compounds include:
  • Figure US20170354621A1-20171214-C00001
  • wherein R═H, C2H5, or
  • Figure US20170354621A1-20171214-C00002
  • Preferably, sulfonamide compounds are selected from:
  • Figure US20170354621A1-20171214-C00003
  • The formulation is as follows:
  • Said sulfonamide compound 10%~80% 
    PEG-400 10%~60% 
    1,2-propanediol 5%~30%
    Suberic acid 1%~20%
    p-Toluenesulfonic acid 1%~15%
    Dimethyl sulfoxide 0%~20%
    Ethanol  0%~20%.
  • When using the above formulation to prepare p-toluenesulfonamide injections, it was accidently discovered that the above formulation has low stability, tends to crystallize after long storage time, and it also causes severe irritation to the injection site.
  • Studies on the formulation and preparation method above showed that the problems are caused by suberic acid and p-toluenesulfonic acid. This invention effectively solved the problems by replacing suberic acid with sebacic acid, and replacing p-toluenesulfonic acid with 2-ethyl-1,3-hexanediol.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention solves the problems of low solubility and ease of crystallization associated with known injection formulations by improving the formulation and method to prepare injections of sulfonamide compounds. Comparative toxicity test also shows that the present formulation is less toxic and safer for clinical use.
  • The goal of this invention is to provide an injection formulation comprising a sulfonamide compound, made with the following raw materials:
  • Raw Materials Percentage by weight
    Sulfonamide compound 20%-40%
    PEG-400 20%-40%
    1,2-propanediol  5%-10%
    Sebacic acid 2%-5%
    2-ethyl-1,3-hexanediol 10%-20%
    Dimethyl sulfoxide   0-10%
    Anhydrous ethanol     0-10%.
  • Among polyethylene glycol-400 (PEG-400), 1,2-propanediol, sebacic acid, 2-ethyl-1,3-hexanediol, dimethyl sulfoxide and ethanol, only dimethyl sulfoxide and ethanol are dispensable, others are required.
  • The sulfonamide compound is selected from one, or a mixture of two or more, at any ratio, of the following:
  • Figure US20170354621A1-20171214-C00004
  • wherein R═H, C2H5, or
  • Figure US20170354621A1-20171214-C00005
  • Preferably, the sulfonamide compound is selected from:
  • Figure US20170354621A1-20171214-C00006
  • Preferably, the injection formulation of the present invention is prepared from the following raw materials:
  • Raw materials Percentage by weight
    P-Toluenesulfonamide 20-40%
    PEG-400 20-40%
    1,2-propanediol  5-10%
    Sebacic acid 2-5%
    2-ethyl-1,3-hexanediol 10-20%
    Dimethyl sulfoxide  0-10%
    Anhydrous ethanol  0-10%
  • Further preferred, the injection formulation of this invention is prepared from the following raw materials:
  • Raw materials Percentage by weight
    p-Toluenesulfonamide 30% 
    PEG-400 30% 
    1,2-propanediol 8%
    Sebacic acid 4%
    2-ethyl-1,3-hexanediol 15% 
    Dimethyl sulfoxide 5%
    Anhydrous ethanol  8%.
  • The present invention improves upon the known injection formulations by removing suberic acid and adding the solubilizer 2-ethyl-1,3-hexanediol. The combination of PEG-400, 2-ethyl-1,3-hexanediol, and 1,2-propanediol can decrease the amount of 1,2-propanediol in the injection formulation, thereby decreasing irritation at the injection site.
  • Another goal of this invention is to provide a method to prepare the injection.
  • The preparation of the injection of this invention comprises the following steps:
      • 1) Putting a prescription amount of sulfonamide compound, PEG-400, and 2-ethyl-1,3-hexanediol into a container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution A, for later use;
      • 2) Putting a prescription amount of sebacic acid and 1,2-propanediol, into a separate container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution B, for later use;
      • 3) Mixing Solution A and Solution B while maintaining the temperature at 85° C.-95° C., and stirring to obtain a homogenous solution for later use;
      • 4) Putting a prescription amount of dimethyl sulfoxide and a small amount of anhydrous ethanol into a container, stirring and mixing well to obtain a homogenous solution, Solution C, for later use;
      • 5) Cooling the mixture of Solution A and Solution B to 60° C., adding Solution C to the mixture, stirring and mixing well before cooling down to room temperature, adding the remaining amount of anhydrous ethanol and mixing well;
      • 6) Filtering with 0.45 um microporous membrane, aliquoting into 5 ml ampoules and sealing the ampoules; and
      • 7) Sterilizing at 121° C. for 30 minutes.
  • The beneficial effects of the present invention are further illustrated by the following experiments.
  • TABLE 1
    Comparison of the formulation of the present
    invention with that disclosed in CN1073415C
    The Present Invention Example 2 in CN1073415C
    p-Toluenesulfonamide 30%  p-Toluenesulfonamide  30%
    PEG-400 30%  PEG-400 33.5% 
    1,2-propanediol 8% 1,2-propanediol 16.4% 
    Sebacic acid 4% Suberic acid 8.2%
    2-ethyl-1,3-hexanediol 15%  p-Toluenesulfonic acid 3.7%
    Dimethyl sulfoxide 5% Dimethyl sulfoxide 6.7%
    Anhydrous ethanol 8% Ethanol 1.5%
  • The present invention is an improvement on the basis of the prior art (CN1073415C). As shown in the above table, the formulation of the present invention made the following improvements as compared to the formulation disclosed in Example 2 of the Chinese patent CN1073415C:
      • 1. Use of sebacic acid instead of suberic acid,
      • 2. Use of 2-ethyl-1,3-hexanediol instead of p-toluenesulfonic acid.
  • By making the above improvements, this invention solved a range of issues associated with the known formulation such as low stability.
  • The beneficial effects of the present invention are further illustrated by following studies.
  • Experiment 1. Study on the Chinese Patent CN1073415C
  • Comparative studies were conducted on injections prepared according to the examples disclosed in the CN1073415C patent.
  • Raw materials Example 1 Example 2
    p-Toluenesulfonamide  30% 40% 
    PEG-400 33.5%  40% 
    1,2-propanediol 16.4%  10% 
    Suberic acid 8.2% 3%
    p-Toluenesulfonic acid 3.7% 2%
    Dimethyl sulfoxide 6.7% 3%
    Ethanol 1.5% 2%
    Stability Stored at Stored at
    4° C. ± 2° C. for 4° C. ± 2° C. for
    10 days, 10 days,
    crystals crystals
    precipitated precipitated
    LD50 12.54 mg/kg 11.30 mg/kg
  • Results show that crystals precipitated when the injection was refrigerated for a period of time, and this seriously affects the stability of the injection. After discovering the above problems, the inventors of this invention conducted research on the formulation and have found that the decrease in stability is likely to be caused by the presence of suberic acid and p-Toluenesulfonic acid in the formulation, for the following reasons:
      • The effect of PEG-400 in the formulation is as follows: acting as a water-soluble solvent to increase the compatibility of the injection with the tissues in the body.
      • The effect of 1,2-propanediol in the formulation is as follow: acting as a water-soluble solvent, to increase the compatibility of the injection with the tissues in the body and inhibiting crystallization.
      • The effect of suberic acid in the formulation is as follows: it is a binary fatty acid and act as a fat-soluble solvent to increase the solubility of p-Toluenesulfonamide in the mixed solvent of the injection and to inhibit crystallization.
      • The effect of p-Toluenesulfonic acid in the formulation is as follows: it is an aromatic sulfonic acid compound, to increase the solubility of p-Toluenesulfonamide in the mixed solvent of the injection, and to inhibit crystallization.
      • The effect of dimethyl sulfoxide in the formulation is as follows: acting as an amphiphilic solvent to increase the solubility of p-Toluenesulfonamide in the mixed solvent of the injection, and to inhibit crystallization.
      • The effect of ethanol in the formulation is as follows: acting as an amphiphilic solvent to increase the solubility of p-Toluenesulfonamide in the mixed solvent of the injection, and to adjust the overall volume of the solution due to its good fluidity.
  • The inventors conducted the following experiments to further validate the above conclusions.
  • The above problems still exist when the inventor adjusted the amount of other raw materials while keeping the amount of suberic acid and p-Toluenesulfonic acid constant.
  • Raw materials Formula 1 Formula 2 Formula 3 Formula 4
    p-Toluenesulfonamide  30% 40%   30% 40% 
    PEG-400 33.5%  40%  / /
    PEG-200 / / 33.5%  40% 
    1,2-propanediol 16.4%  10%  / /
    Glycerin / / 16.4%  10% 
    Suberic acid 8.2% 3% 8.2% 3%
    p-Toluenesulfonic acid 3.7% 2% 3.7% 2%
    Dimethyl sulfoxide 6.7% 3% / /
    Dimethylformamide / / 6.7% 3%
    Anhydrous ethanol 1.5% 2%
    Water for injection / / 1.5% 2%
    Stability Stored at Stored at Stored at Stored at
    4° C. ± 4° C. ± 4° C. ± 4° C. ±
    2° C. for 2° C. for 2° C. for 2° C. for
    10 days, 10 days, 10 days, 10 days,
    crystals crystals crystals crystals
    precip- precip- precip- precip-
    itated itated itated itated
  • The results show that the problem still exists when the formulation is adjusted while maintaining the same amount of suberic acid and p-Toluenesulfonic acid. We further confirmed that suberic acid and p-Toluenesulfonic acid is the cause of the stability problem.
  • We then replaced suberic acid and p-toluenesulfonic acid.
  • Experiment 2. Screening Experiment
  • To replace suberic acid and p-Toluenesulfonic acid with a variety of substances while keeping other conditions unchanged, the screening process is as follows:
  • Screening Experiment
  • Raw materials Formula A Formula B Formula C Formula D Formula E Formula F
    p-toluenesulfonamide  30% 40%   30% 40%   30% 40% 
    PEG-400 33.5%  40%  33.5%  40%  33.5%  40% 
    1,2-propanediol 16.4%  10%  16.4%  10%  16.4%  10% 
    Sebacic acid / / 8.2% 3% / /
    Azelaic acid / / / / 8.2% 3%
    Suberic acid 8.2% 3% / / / /
    2-ethyl-1,3-hexanediol / / / / 3.7% 2%
    Hexanediol / / 3.7% 2% / /
    p-Toluenesulfonic acid 3.7% 2% / / / /
    Dimethyl sulfoxide 6.7% 3% 6.7% 3% 6.7% 3%
    Anhydrous ethanol 1.5% 2% 1.5% 2% 1.5% 2%
    Stability Stored Stored Stored Stored Stored Stored
    at 4° C. ± at 4° C. ± at 4° C. ± at 4° C. ± at 4° C. ± at 4° C. ±
    2° C. for 2° C. for 2° C. for 2° C. for 2° C. for 2° C. for
    10 days, 10 days, 10 days, 10 days, 10 days, 10 days,
    small small no no no no
    crystals crystals precipitates, precipitates, precipitates, precipitates,
    precipitated precipitated clear clear clear clear
    solution solution solution solution
  • The results show that the use of sebacic acid instead of suberic acid or the use of 2-ethyl-1,3-hexanediol instead of p-toluenesulfonic acid can solve the problems associated with the known method. However, as the dosage in the known formulation was unscientific, the preparation method involved an excessively long dissolving process, so the two formulations were combined and the amount of each raw material in the formula were determined.
  • Experiment 3. Screening Experiments for the Amount of Raw Materials.
  • Raw Materials Formula I Formula II Formula III Formula IV Formula V Formula VI
    p-Toluenesulfonamide 30% 40%  30%  25%  30%  40%
    PEG-400 33.5% 40%  40%  35%  30%  30%
    1,2-propanediol 16.4% 10%  5% 7% 8% 10%
    Sebacic acid   2% 2% 5% 4% 4%  2%
    2-ethyl-1,3-hexanediol   8% 3% 10%  15%  15%  18%
    Dimethyl sulfoxide  6.7% 3% 5% 7% 5% 0
    Anhydrous ethanol  1.5% 2% 5% 7% 8% 0
    Dissolution time 8 min 10 min 4 min 3 min 5 min 3.8 min
  • Results show that, although all raw materials dissolved in Formula I and II, the time taken is relatively long while for Formula III-VI, raw materials dissolved faster and the final solution is clear and transparent.
  • In addition, the present invention is further compared with existing pharmaceutical injections.
  • Three samples were taken from each of Example 1, Example 5, Example 6, and Example 7 (i.e., Formulation III-VI) of the present invention (Labelled as Samples A-D), and three samples were taken from self-prepared Example 2 from Patent CN1073415C (Labelled as Sample E). All samples were stored at 4° C.±2° C. for 10 days and samples were observed at Day 0, Day 5, and Day 5 for crystal precipitation. Results are shown in Table 2:
  • TABLE 2
    Comparison of crystal precipitation between Formulation
    III-VI of the present invention and CN1073415C Examples
    Sample 0 Day 5 Day 10 Day
    A1 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    A2 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    A3 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    B1 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    B2 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    B3 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    C1 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    C2 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    C3 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    D1 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    D2 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    D3 Clear and Clear and Clear and
    transparent solution transparent solution transparent solution
    E1 Clear and Precipitation of fine Precipitation of
    transparent solution crystals crystals
    E2 Clear and Precipitation of fine Precipitation of
    transparent solution crystals crystals
    E3 Clear and Clear and Precipitation of fine
    transparent solution transparent solution crystals
  • As shown in the above table, Formulations III-VI of the present invention showed a significant increase in stability at 4° C. compared to self-prepared CN 1073415C Example 2. The solution is clear and transparent after 10-day storage, and no crystal precipitated.
  • Accelerated Stability Experiment:
  • Samples were taken from Example 1, Example 5, Example 6 and Example 7 (i.e., Formulation III-VI) of the present invention (Labelled as Samples A-D), and self-prepared CN 1073415 C Example 2 (Labelled as Sample E), and stored at 40° C.+2° C., 75%±5% RH. Relevant properties were assessed and results are shown in the below table:
  • Sample Test items Day 0 Month 1 Month 2 Month 3 Month 6
    .A Visible foreign matter compliant compliant compliant compliant compliant
    Relevant Largest 0.058 0.031 0.074 0.078 0.096
    Substance Single
    Impurity
    (%)
    Total 0.136 0.269 0.294 0.346 0.401
    impurities
    (%)
    Content 99.77  99.57  99.17  98.08  98.05 
    B Visible foreign matter compliant compliant compliant compliant compliant
    Relevant Largest 0.058 0.078 0.079 0.086 0.097
    Substance single
    impurity
    (%)
    Total 0.136 0.155 0.217 0.263 0.415
    impurities
    (%)
    Content 99.77  99.61  99.56  98.70  98.57 
    C Visible foreign matter compliant compliant compliant compliant compliant
    Relevant Largest 0.058 0.042 0.050 0.070 0.088
    Substance single
    impurity
    (%)
    Total 0.136 0.137 0.315 0.391 0.436
    impurities
    (%)
    Content 99.77  99.67  99.49  99.18  98.87 
    D Visible foreign matter compliant compliant compliant compliant compliant
    Relevant Largest 0.058 0.046 0.074 0.082 0.085
    Substance single
    impurity
    (%)
    Total 0.136 0.253 0.319 0.326 0.421
    impurities
    (%)
    Content 99.77  99.27  99.10  98.88  98.81 
    E Visible foreign matter compliant compliant compliant compliant compliant
    Relevant Largest 0.058 0.067 0.119 0.131 0.168
    Substance single
    impurity
    (%)
    Total 0.136 0.253 0.571 0.644 0.850
    impurities
    (%)
    Content 99.77  99.46  99.06  98.59  97.36 
  • As shown in the table above, Formulations III-IV of the present invention were significantly more stable after storage at 40° C.±2° C., 75%±5% RH for 6 months compared to CH1073415C Example 2. The growth rates of single largest impurity and total impurities were slower, and there were fewer impurities. The degradation rates of the raw materials were also slower and there was less degradation for Formulations III-IV.
  • EXAMPLES
  • The following examples are included to further illustrate the present invention. It should not be regarded as a limitation on the present invention.
  • Example 1: Injection
  • Raw materials Percentage by weight
    p-Toluenesulfonamide 30% 
    PEG-400 30% 
    1,2-propanediol 8%
    Sebacic acid 4%
    2-ethyl-1,3-hexanediol 15% 
    Dimethyl sulfoxide 5%
    Anhydrous Ethanol 8%
  • Preparation Method:
      • 1) Putting a prescription amount of sulfonamide compound, PEG-400, and 2-ethyl-1,3-hexanediol into a container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution A, for later use;
      • 2) Putting a prescription amount of sebacic acid and 1,2-propanediol, into a separate container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution B, for later use;
      • 3) Mixing Solution A and Solution B while maintaining the temperature at 85° C.-95° C., and stirring to obtain a homogenous solution for later use;
      • 4) Putting a prescription amount of dimethyl sulfoxide and a small amount of anhydrous ethanol into a container, stirring and mixing well to obtain a homogenous solution, Solution C, for later use;
      • 5) Cooling the mixture of Solution A and Solution B to 60° C., adding Solution C to the mixture, stirring and mixing well before cooling down to room temperature, adding the remaining amount of anhydrous ethanol and mixing well;
      • 6) Filtering with 0.45 um microporous membrane, aliquoting into 5 ml ampoules and sealing the ampoules; and
      • 7) Sterilizing at 121° C. for 30 minutes.
  • The purpose of adding anhydrous ethanol in this formulation is to control the total volume of the final solution, and further control the total drug content in the formulation. Therefore, the amount of anhydrous ethanol to be added in Step 4 should be slightly less than the prescription amount.
  • Example 2. Comparative Safety Test
  • Using mice as animal model, Example 1 of the p-toluenesulfonamide injection was compared with CN 1073415 C Example 2 by administering a single intravenous injection at the tail vein for comparative toxicity test. Results are shown below:
  • Animal death rate is lower for Example 1. LD50 of CN 1073415C Example 2 is 11.30 mg/kg, (95% CI=9.47-13.13 mg/kg) LD50 of Example 1 of the present invention is 18.10 mg/kg (95% CI=15.2-21.0 mg/kg). After the improvement of the current invention, i.e. replacing p-toluenesulfonic acid with 2-ethyl-1,3-hexanediol, LD50 of the drug was increased by 60% (P<0.01), significantly reducing the toxicity of the injection.
  • Example 3. Efficacy Experiment
  • Example 1 of the present invention was tested on animals. Table 2 shows the effect of intramuscular injection of Example 1 on the development of lung cancer in mice.
  • TABLE 2
    Effect of intramuscular injection of Example 1 on lung cancer development in mice
    No. of Body Average weight
    Dosage subjects weight of tumor Tumor-inhibiting
    Group Treatment (/kg/d × 10 d) Start End Start End (X ± SD) (g) rate (%) P value*
    1 NS(contnol) 2.0 ml 11 11 20.7 27.9 3.52 ± 0.62 0.0 >0.05
    Solvent 2.0 ml 11 11 20.5 25.1 2.91 ± 0.58 17.3 <0.01
    (control)
    CTX 18.0 ml 11 11 20.8 25.0 1.82 ± 0.41 48.3 <0.01
    Example 1 0.5 ml 11 11 21.9 25.4 1.81 ± 0.25 48.6 <0.01
    Example 1 1.0 ml 11 11 21.3 25.2 1.46 ± 0.74 58.5 <0.01
    Example 1 2.0 ml 11 11 20.2 24.0 1.25 ± 0.72 64.5 <0.01
    2 NS(control) 2.0 ml 11 11 20.4 27.7 2.49 ± 0.58 0.0 >0.05
    Solvent 2.0 ml 11 11 21.5 28.9 2.69 ± 0.56 −8.0 <0.01
    (control)
    CTX 18.0 ml 11 11 21.6 28.8 1.54 ± 0.27 38.2 <0.01
    Example 1 0.5 ml 11 11 21.9 25.6 2.15 ± 0.87 13.7 <0.01
    Example 1 1.0 ml 11 11 21.0 25.8 2.00 ± 0.82 19.7 <0.01
    Example 1 2.0 ml 11 11 21.6 25.6 1.59 ± 0.64 36.1 <0.01
    3 NS(control) 2.0 ml 11 11 21.0 27.6 2.51 ± 0.46 0.0 >0.01
    Solvent 2.0 ml 11 11 21.4 28.5 1.82 ± 0.74 27.5 <0.01
    (control)
    CTX 18.0 ml 11 11 21.7 27.4 1.02 ± 0.35 59.4 <0.01
    Example 1 0.5 ml 11 11 21.8 25.9 1.67 ± 0.95 33.5 <0.01
    Example 1 1.0 ml 11 11 21.1 25.3 1.43 ± 0.74 43.0 <0.01
    Example 1 2.0 ml 11 11 20.3 25.6 1.02 ± 0.57 59.4 <0.01
  • The results of the experiments showed that:
      • 1) At 0.5 ml, 1.0 ml, 2 ml, and 2.0 ml/kg/d×10d, Example 1 has different levels of anti-tumor effect on mice transplanted lung tumor. Anti-tumor effect increases as dosage increases.
      • 2) At 2.0 ml/kg/d×10d dosage, Example 1 has no anti-tumor effect on mice liver cancer and mice sarcoma S-180.
      • 3) This demonstrates that the selected dosages of Example 1 have significant anti-tumor effect on mice lung cancer.
      • 4) Injection of Example 1 has a high therapeutic index for mice cancer.
    Example 4. Clinical Trials
  • Single-arm clinical trial of Example 1 injection (PTS injection) for local intra-tumoral injection in patients with severe airway obstruction due to central type lung cancer.
  • Clinical studies of PTS injection conducted by the Guangzhou Institute of Respiratory Diseases and 21 clinical research institutes approved by the Ministry of Health reached the following conclusions:
  • 89 patients were enrolled in the PTS clinical trial. Of these, 10 dropped out, 7 were excluded from analysis and used only for safety assessment (either because the subjects did not meet the inclusion criteria or the investigator had a violation of clinical protocols). A total of 72 patients were included in the efficacy analysis.
  • Among the 72 subjects aged between 23-79, 59 were males and 13 were females. Subject statistics based on their lung cancer stage: 46 cases in IV phase, 22 cases in stage IIIb, 4 cases in stage IIIa. Subject statistics based on the location of tumor, 6 cases of airway, 28 cases of left main bronchus, 30 cases of right main bronchus, and 8 cases of right intermediate bronchus.
  • Results on Efficacy,
  • 72 patients with central lung cancer after 2-4 weeks of treatment with PTS local target tumor injection:
  • Major efficacy index: objective response rate of intraluminal target lesion-according to RECIST: based on CT assessment, the objective response rate was 68.08% within 7 days from the last treatment, and 48.61% after 30 days from the exit period, respectively.
  • Major efficacy index: objective response rate of intraluminal target lesion-according to WHO standard: based on CT assessment, the objective response rate of intraluminal target lesion was 77.78% within 7 days from the last treatment, and 54.17% after 30 days from the exit period.
  • Major efficacy index: improvement rate on luminal tumor blockage, applying CT assessment, the improvement rate for obstruction due to luminal tumor is 70.45% within 7 days from the last treatment, and 70.47% after 30 days from the exit period.
  • Clinical benefit index: Compared with the baseline, the pulmonary function index FEV1 showed statistically significant improvement within 7 days after the last administration, with a rate of improvement of 34.72% and 18.06% at 30 days after the exit period; the total re-expansion rate for patients with atelectasis across different lobes was 44.44% (20/45). Arranged by the location with a descending re-expansion rate is as follows: 50.00% for the right middle lobe, 43.75% for the left lung, 42.11% for the left lower lobe, 38.46% for the right lower lobe, 35.00% for the left tongue lobe, and 25.00% for the right upper lobe.
  • Analysis of the overall efficacy showed that, the target lesions significantly shrink after intra-tumoral injection of PTS, with the objective response rate and luminal tumor obstruction improvement rate close to 70%; clinical benefit index FEV1 improved more than 30%, pulmonary re-expansion rate improved more than 40%. The indexes above directly showed that patients have reduced target lesions after PTS treatment, their airway obstruction improved, indicating that respiratory functions and life quality significantly improved after PTS treatment.
  • Results on Safety:
  • During the entire course of the clinical trial on the 89 subjects, none of them exhibited bone marrow suppression, gastrointestinal reactions or other commonly observed adverse reactions associated with systemic chemotherapy.
  • During the entire course of the clinical trial, vital signs, physical examination, blood examination, blood biochemical examination, immunology examination and electrocardiogram were monitored and showed no statistically significant changes.
  • This demonstrates that intra-tumoral injection of PTS had little systemic impact on the patients.
  • Example 5. Injection
  • Raw materials Percentage by weight
    p-Toluenesulfonamide 40%
    PEG-400 30%
    1,2-propanediol 10%
    Sebacic acid  2%
    2-ethyl-1,3-hexanediol 18%

    Same method of preparation as Example 1.
  • Example 6. Injection
  • Raw materials Percentage by weight
    p-Toluenesulfonamide 30% 
    PEG-400 40% 
    1,2-propanediol 5%
    Sebacic acid 5%
    2-ethyl-1,3-hexanediol 10% 
    Dimethyl sulfoxide 5%
    Anhydrous ethanol 5%
      • Same method of preparation as Example 1.
    Example 7. Injection
  • Raw materials Percentage by weight
    P-Toluenesulfonamide 25% 
    PEG-400 35% 
    1,2-propanediol 7%
    Sebacic acid 4%
    2-ethyl-1,3-hexanediol 15% 
    Dimethyl sulfoxide 7%
    Anhydrous ethanol 7%
      • Same method of preparation as Example 1.

Claims (11)

1. A sulfonamide pharmaceutical composition, prepared from the following raw materials:
Raw materials Percentage by weight sulfonamide compound 20%-40% PEG-400 20%-40% 1,2-propanediol  5%-10% Sebacic acid 2%-5% 2-ethyl-1,3-hexanediol 10%-20% Dimethyl sulfoxide   0-10% Anhydrous ethanol     0-10%.
2. The sulfonamide pharmaceutical composition of claim 1, wherein the sulfonamide compound is one, or a mixture of two or more, at any ratio, of the following:
Figure US20170354621A1-20171214-C00007
wherein R═H, C2H5, or
Figure US20170354621A1-20171214-C00008
3. The sulfonamide pharmaceutical composition of claim 1, wherein the sulfonamide compound is:
Figure US20170354621A1-20171214-C00009
4. The sulfonamide pharmaceutical composition of claim 1, prepared from the following raw materials:
Raw materials Percentage by weight p-Toluenesulfonamide 20%-40% PEG-400 20%-40% 1,2-propanediol  5%-10% Sebacic acid 2%-5% 2-ethyl-1,3-hexanediol 10%-20% Dimethyl sulfoxide   0-10% Anhydrous ethanol     0-10%.
5. The sulfonamide pharmaceutical composition of claim 1, prepared from the following raw materials:
Raw materials Percentage by weight p-Toluenesulfonamide 30%  PEG-400 30%  1,2-propanediol 8% Sabacic acid 4% 2-ethyl-1,3-hexanediol 15%  Dimethyl sulfoxide 5% Anhydrous ethanol  8%.
6. The sulfonamide pharmaceutical composition of claim 1, wherein said pharmaceutical composition is injectable.
7. A method to prepare the sulfonamide pharmaceutical composition of claim 1, comprising the steps of:
1) Putting a prescription amount of sulfonamide compound, PEG-400, and 2-ethyl-1,3-hexanediol into a container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution A, for later use;
2) Putting a prescription amount of sebacic acid and 1,2-propanediol, into a separate container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution B, for later use;
3) Mixing Solution A and Solution B while maintaining the temperature at 85° C.-95° C., and stirring to obtain a homogenous solution for later use;
4) Putting a prescription amount of dimethyl sulfoxide and a small amount of anhydrous ethanol into a container, stirring and mixing well to obtain a homogenous solution, Solution C, for later use;
5) Cooling the mixture of Solution A and Solution B to 60° C., adding Solution C to the mixture, stirring and mixing well before cooling down to room temperature, adding the remaining amount of anhydrous ethanol and mixing well;
6) Filtering with 0.45 um microporous membrane, aliquoting into 5 ml ampoules and sealing the ampoules; and
7) Sterilizing at 121° C. for 30 minutes.
8. A method to prepare the sulfonamide pharmaceutical composition of claim 1 from the following raw materials, comprising the steps of:
Raw materials Percentage by weight p-Toluenesulfonamide 30%  PEG-400 30%  1,2-propanediol 8% Sebacic acid 4% 2-ethyl-1,3-hexanediol 15%  Dimethyl sulfoxide 5% Anhydrous ethanol 8%
1) Putting a prescription amount of sulfonamide compound, PEG-400, and 2-ethyl-1,3-hexanediol into a container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution A, for later use;
2) Putting a prescription amount of sebacic acid and 1,2-propanediol, into a separate container, stirring slowly at 85° C.-95° C. to form a miscible solution, Solution B, for later use;
3) Mixing Solution A and Solution B while maintaining the temperature at 85° C.-95° C., and stirring well to obtain a homogenous solution for later use;
4) Putting a prescription amount of dimethyl sulfoxide and a small amount of anhydrous ethanol into a container, stirring and mixing well to obtain a homogenous solution, Solution C, for later use;
5) Cooling the mixture of Solution A and Solution B to 60° C., adding Solution C to the mixture, stirring and mixing well before cooling down to room temperature, adding the remaining amount of anhydrous ethanol and mixing well;
6) Filtering with 0.45 um microporous membrane, aliquoting into 5 ml ampoules and sealing the ampoules; and
7) Sterilizing at 121° C. for 30 minutes.
9-10. (canceled)
11. A method to treat cancer in a subject, comprising administering the sulfonamide pharmaceutical composition of claim 1 to said subject.
12. The method of claim 11, wherein the cancer is central type lung cancer.
US15/541,776 2015-01-06 2016-01-04 Sulfonamide pharmaceutical composition Abandoned US20170354621A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510005995.5A CN104473914B (en) 2015-01-06 2015-01-06 Sulfonamide drug combination
CN2015100059955 2015-01-06
PCT/CN2016/070015 WO2016110225A1 (en) 2015-01-06 2016-01-04 Sulfonamide pharmaceutical composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070015 A-371-Of-International WO2016110225A1 (en) 2015-01-06 2016-01-04 Sulfonamide pharmaceutical composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/377,428 Continuation US11040020B2 (en) 2015-01-06 2019-04-08 Sulfonamide pharmaceutical composition

Publications (1)

Publication Number Publication Date
US20170354621A1 true US20170354621A1 (en) 2017-12-14

Family

ID=52748619

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/541,776 Abandoned US20170354621A1 (en) 2015-01-06 2016-01-04 Sulfonamide pharmaceutical composition
US16/377,428 Active 2036-02-08 US11040020B2 (en) 2015-01-06 2019-04-08 Sulfonamide pharmaceutical composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/377,428 Active 2036-02-08 US11040020B2 (en) 2015-01-06 2019-04-08 Sulfonamide pharmaceutical composition

Country Status (11)

Country Link
US (2) US20170354621A1 (en)
EP (1) EP3243510B1 (en)
JP (1) JP6502507B2 (en)
KR (1) KR101949810B1 (en)
CN (2) CN104473914B (en)
AU (1) AU2016206154B2 (en)
CA (1) CA2972834C (en)
MX (1) MX2017008983A (en)
RU (1) RU2715700C2 (en)
SG (1) SG11201705543VA (en)
WO (1) WO2016110225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230098310A1 (en) * 2021-09-29 2023-03-30 Gongwin Biopharm Co., Ltd Methods for treating mast cell tumors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104473914B (en) * 2015-01-06 2017-01-11 天津红日药业股份有限公司 Sulfonamide drug combination
CN113368251A (en) * 2020-02-25 2021-09-10 上海和绎实业有限公司 Combined solvent and preparation method and application thereof
US11752160B2 (en) 2020-09-24 2023-09-12 Gongwin Biopharm Co., Ltd Method for reducing fat by administering benzenesulfonamide compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891454A (en) * 1997-03-28 1999-04-06 Alexander Wu Anti-cancer drug and special tumor necrotizing agent
US5783705A (en) * 1997-04-28 1998-07-21 Texas Biotechnology Corporation Process of preparing alkali metal salys of hydrophobic sulfonamides
CN1073415C (en) * 1997-07-03 2001-10-24 吴宜庄 Anticancer medicine and preparation technology thereof
WO1999044642A1 (en) * 1998-03-05 1999-09-10 Phares Pharmaceutical Research Nv Pharmaceutical compositions and their use
US6727287B2 (en) 2001-04-16 2004-04-27 Pts International, Inc. Toluene sulfonamide-containing anti-tumor composition and method of use thereof
CN102389410A (en) * 2011-11-03 2012-03-28 黄漫翔 Application of para-toluenesulfonamide in preparation of medicaments for treating cancers
CN104473914B (en) * 2015-01-06 2017-01-11 天津红日药业股份有限公司 Sulfonamide drug combination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230098310A1 (en) * 2021-09-29 2023-03-30 Gongwin Biopharm Co., Ltd Methods for treating mast cell tumors

Also Published As

Publication number Publication date
MX2017008983A (en) 2018-03-23
CA2972834A1 (en) 2016-07-14
RU2017126976A3 (en) 2019-08-22
EP3243510B1 (en) 2022-08-31
EP3243510A1 (en) 2017-11-15
KR101949810B1 (en) 2019-02-19
CN104473914A (en) 2015-04-01
US20190231721A1 (en) 2019-08-01
AU2016206154A1 (en) 2017-07-27
US11040020B2 (en) 2021-06-22
CN104473914B (en) 2017-01-11
KR20170095926A (en) 2017-08-23
JP6502507B2 (en) 2019-04-17
RU2715700C2 (en) 2020-03-03
EP3243510A4 (en) 2018-08-08
CA2972834C (en) 2020-07-14
RU2017126976A (en) 2019-02-08
CN107205974A (en) 2017-09-26
JP2018501291A (en) 2018-01-18
SG11201705543VA (en) 2017-08-30
AU2016206154B2 (en) 2018-11-01
WO2016110225A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
US11040020B2 (en) Sulfonamide pharmaceutical composition
US9572887B2 (en) Formulations of bendamustine
US20240108728A1 (en) Improved low-toxicity and high-efficiency orthoester mixture pharmaceutical adjuvant, preparation method thereof, and topical sustained release drug delivery formulation including same
EP2377529A1 (en) Use of racemates of pinocembrin in preparing medicaments for treating stroke
EP4216980B1 (en) C-phycocyanin for use in the treatment and/or prevention of peripheral neuropathy
KR20080111021A (en) Use of strobilurins for treating malfunctions of the iron metabolism
US20060222655A1 (en) Compositions and methods for preventing and treating endotoxin-related diseases and conditions
EP3782620B1 (en) Pharmaceutical composition comprising 1,2-naphthoquinone derivative for use in preventing or treating acute myeloid or lymphoblastic leukemia
US10653685B2 (en) Pharmaceutical compositions and methods for the treatment of hypoxia-related diseases
US7026338B2 (en) Pharmaceutical nitrones
US20230302042A1 (en) Methods for the prevention of cholesterol crystal embolization with cyclodextrins
US20230330133A1 (en) Methods for the treatment of cholesterol crystal embolization with cyclodextrins
US20230241218A1 (en) Formulations of bendamustine

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION