US20170312880A1 - Chemical mechanical polishing apparatus for polishing workpiece - Google Patents

Chemical mechanical polishing apparatus for polishing workpiece Download PDF

Info

Publication number
US20170312880A1
US20170312880A1 US15/520,515 US201515520515A US2017312880A1 US 20170312880 A1 US20170312880 A1 US 20170312880A1 US 201515520515 A US201515520515 A US 201515520515A US 2017312880 A1 US2017312880 A1 US 2017312880A1
Authority
US
United States
Prior art keywords
workpiece
polishing
annular
chemical mechanical
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/520,515
Inventor
Yu Ishii
Kenya Ito
Hitoshi Morinaga
Kazusei Tamai
Shingo OHTSUKI
Hiroshi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Fujimi Inc
Original Assignee
Ebara Corp
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Fujimi Inc filed Critical Ebara Corp
Assigned to EBARA CORPORATION, FUJIMI INCORPORATED reassignment EBARA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASANO, HIROSHI, ISHII, YU, ITO, KENYA, MORINAGA, HITOSHI, OHTSUKI, Shingo, TAMAI, KAZUSEI
Assigned to EBARA CORPORATION, FUJIMI INCORPORATED reassignment EBARA CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY CITY ADDRESS PREVIOUSLY RECORDED AT REEL: 042078 FRAME: 0462. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ASANO, HIROSHI, ISHII, YU, ITO, KENYA, MORINAGA, HITOSHI, OHTSUKI, Shingo, TAMAI, KAZUSEI
Publication of US20170312880A1 publication Critical patent/US20170312880A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/006Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally
    • B24B5/047Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally of workpieces turning about a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/363Single-purpose machines or devices for grinding surfaces of revolution in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • B24B9/107Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass for glass plates while they are turning

Definitions

  • the present invention relates to a chemical mechanical polishing (CMP) apparatus for polishing a workpiece, such as a metal body, to a mirror finish.
  • CMP chemical mechanical polishing
  • a workpiece having a three-dimensional surface constituted by a combination of a planar surface and a curved surface.
  • a workpiece include a metal body made of aluminum, stainless steel, or the like, and a resin body.
  • metal body and resin body may be used in, for example, a cellular phone, a smart phone, a multifunction mobile terminal, a portable game device, a camera, a watch, a music media player, a personal computer, an electronic device, car parts, ornaments, medical equipment, or the like.
  • a conventional lapping technique and a conventional polishing technique can polish the planar surface to a mirror finish.
  • a chemical mechanical polishing apparatus for polishing a workpiece having a polygonal shape, comprising: a polishing pad having an annular polishing surface which has a curved vertical cross-section; a rotatable polishing table supporting the polishing pad; a workpiece holder for holding the workpiece; a rotating device configured to rotate the workpiece holder about an axis of the workpiece; a pressing device configured to press a periphery of the workpiece against the annular polishing surface; a polishing-liquid supply nozzle configured to supply a polishing liquid onto the annular polishing surface; and an operation controller configured to change a speed at which the rotating device rotates the workpiece according to a rotation angle of the workpiece, wherein the pressing device is disposed more inwardly than the workpiece holder in a radial direction of the polishing table.
  • the chemical mechanical polishing apparatus further comprises a polished-state monitoring device configured to monitor a polished state of the periphery of the workpiece.
  • the polishing pad has an annular shape, and the polishing pad has an inner peripheral surface which constitutes the annular polishing surface.
  • the periphery of the workpiece is polished by the sliding contact with the annular polishing surface.
  • the annular polishing surface has a curved vertical cross-section. Therefore, a curved surface, constituting the periphery of the workpiece, uniformly contacts the annular polishing surface and is polished to a mirror finish.
  • FIG. 1 is a side view of a chemical mechanical polishing apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 1 ;
  • FIG. 3 is a diagram showing a rectangular workpiece at a rotation angle of 0 degrees
  • FIG. 4 is a diagram showing the rectangular workpiece at a rotation angle of 45 degrees
  • FIG. 5 is a graph showing a relationship between rotation angle of a workpiece and rotational speed of the workpiece
  • FIG. 6 is a plan view of a chemical mechanical polishing apparatus including a plurality of polishing heads
  • FIG. 7 is a side view of a chemical mechanical polishing apparatus including a surface-condition monitoring device for monitoring a surface condition of a periphery of a workpiece;
  • FIG. 8 is a side view of a chemical mechanical polishing apparatus including a motor ammeter for monitoring an electric current supplied to a table motor for rotating a polishing table;
  • FIG. 9 is a side view of a chemical mechanical polishing apparatus according to another embodiment.
  • FIG. 10 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 9 ;
  • FIG. 11 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment.
  • FIG. 12 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 11 ;
  • FIG. 13 is a plan view of an embodiment of a chemical mechanical polishing apparatus including a plurality of polishing heads shown in FIGS. 11 and 12 .
  • FIG. 1 is a side view of a chemical mechanical polishing apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view of the chemical mechanical polishing apparatus.
  • the chemical mechanical polishing apparatus includes a polishing pad 2 having an annular polishing surface 2 a , a rotatable polishing table 3 supporting the polishing pad 2 , a polishing-liquid supply nozzle 5 for supplying a polishing liquid onto the annular polishing surface 2 a , and a polishing head 1 for pressing a periphery of a workpiece W against the annular polishing surface 2 a of the polishing pad 2 to polish the periphery of the workpiece W.
  • the periphery, of the workpiece W is composed of a curved surface.
  • the annular polishing surface 2 a has an inwardly-curved vertical cross-section that follows a shape of a vertical cross-section of the periphery of the workpiece W.
  • the curvature of the curved vertical cross-section of the annular polishing surface 2 a is equal to or slightly larger than the curvature of the vertical cross-section of the periphery of the workpiece W.
  • the polishing head 1 includes a workpiece holder 11 for holding the workpiece W, a servomotor 15 as a rotating device for rotating the workpiece holder 11 about an axis of the workpiece W, and an air cylinder 14 as a pressing device for pushing the servomotor 15 toward the center of the polishing pad 2 to thereby press the periphery of the workpiece W, held by the workpiece holder 11 , against the annular polishing surface 2 a.
  • the polishing pad 2 of this embodiment has a disk shape, and the annular polishing surface 2 a constitutes at least a part of a circumferential surface of the polishing pad 2 .
  • the polishing pad 2 is attached to an upper surface of the polishing table 3 .
  • the polishing table 3 is configured to be rotated about its axis by a table motor 18 , so that the polishing pad 2 rotates about its axis together with the polishing table 3 .
  • the workpiece holder 11 is configured to be able to detachably hold the workpiece W by screwing, magnetic force, vacuum suction, freezing chuck, vacuum attraction chuck, or other technique.
  • the workpiece holder 11 is configured to hold the workpiece W in a horizontal position.
  • the workpiece holder 11 is coupled to the servomotor 15 .
  • the servomotor 15 is a rotating device for rotating the workpiece holder 11 and the workpiece W, held by the workpiece holder 11 , about their axis.
  • the servomotor 15 has a built-in rotary encoder (not shown) for measuring a rotation angle of the workpiece holder 11 and the workpiece W.
  • the servomotor 15 is held by a horizontally-extending linear guide 20 , and is horizontally movable along a longitudinal direction of the linear guide 20 .
  • the longitudinal direction of the linear guide 20 is parallel to a radial direction of the polishing pad 2 . Therefore, the servomotor 15 , the workpiece holder 11 , and the workpiece W are movable in the radial direction of the polishing pad 2 .
  • the servomotor 15 is coupled to the air cylinder 14 .
  • This air cylinder 14 is configured to move the servomotor 15 , the workpiece holder 11 , and the workpiece W together in a horizontal direction (i.e., in the radial direction of the polishing pad 2 ). More specifically, the air cylinder 14 is capable of moving the workpiece W in directions away from and closer to the annular polishing surface 2 a of the polishing pad 2 .
  • the air cylinder 14 pushes the servomotor 15 toward the center of the polishing pad 2 , the workpiece holder 11 and the workpiece W, together with the servomotor 15 , move toward the annular polishing surface 2 a , until the periphery of the workpiece W is pressed against the annular polishing surface 2 a .
  • the force with which the periphery of the workpiece W is pressed against the annular polishing surface 2 a is regulated by the air cylinder 14 .
  • An operation controller 25 is coupled to the air cylinder 14 and the servomotor 15 .
  • the operation controller 25 is configured to control operations of the air cylinder 14 and the servomotor 15 . More specifically, the operation controller 25 controls the force generated by the air cylinder 14 , i.e., the force with which the periphery of the workpiece W is pressed against the annular polishing surface 2 a , and also controls the speed at which the servomotor 15 rotates the workpiece W.
  • the linear guide 20 and the air cylinder 14 are secured to a base 27 .
  • the base 27 is coupled to a positioning mechanism 29 for adjusting a vertical position of the base 27 .
  • the vertical positions of the air cylinder 14 , the linear guide 20 , and the workpiece holder 11 are adjusted by the positioning mechanism 29 . Accordingly, the vertical position of the workpiece W, held by the workpiece holder 11 , relative to the annular polishing surface 2 a is also adjusted by the positioning mechanism 29 .
  • An outlet of the polishing-liquid supply nozzle 5 is directed to the annular polishing surface 2 a of the polishing pad 2 so that a polishing liquid, such as a slurry, is supplied onto the annular polishing surface 2 a .
  • the outlet of the polishing-liquid supply nozzle 5 is disposed upstream of the workpiece W in a direction of rotation of the polishing pad 2 and the polishing table 3 . Therefore, the polishing liquid, supplied from the polishing-liquid supply nozzle 5 , is carried by the rotating annular polishing surface 2 a to the periphery of the workpiece W, which is a portion to be polished.
  • polishing operation of the chemical mechanical polishing apparatus will now be described. While the polishing pad 2 and the polishing table 3 are being rotated as shown in FIGS. 1 and 2 , a polishing liquid (slurry) is supplied from the polishing-liquid supply nozzle 5 onto the annular polishing surface 2 a of the polishing pad 2 . Further, the workpiece holder 11 and the workpiece W are rotated by the servomotor 15 . The air cylinder 14 pushes the servomotor 15 , the workpiece holder 11 , and the workpiece W toward the center of the polishing pad 2 , thereby pressing the periphery of the workpiece W against the annular polishing surface 2 a .
  • a polishing liquid slurry
  • the periphery of the workpiece W is rubbed against the annular polishing surface 2 a in the presence of the polishing liquid.
  • the periphery of the workpiece W is polished to have a mirror surface by a chemical component of the polishing liquid and abrasive particles contained in the polishing liquid. Since the annular polishing surface 2 a has a vertical cross-section that follows the shape of the vertical cross-section of the periphery of the workpiece W, the curved surface, constituting the periphery of the workpiece W, uniformly contacts the annular polishing surface 2 a and is polished to a mirror finish.
  • the operation controller 25 is configured to change the rotational speed of the workpiece W according to the rotation angle of the workpiece W.
  • FIG. 3 is a diagram showing the rectangular workpiece W at a rotation angle of 0 degrees
  • FIG. 4 is a diagram showing the rectangular workpiece W at a rotation angle of 45 degrees.
  • FIG. 5 is a graph showing a relationship between the rotation angle of the workpiece W and the rotational speed of the workpiece W. A vertical axis of FIG. 5 represents the rotational speed [angular degrees/min] of the workpiece W, and a horizontal axis represents the rotation angle of the workpiece W.
  • the workpiece W is in the state shown in FIG. 3 when the rotation angle of the workpiece W is 0 degrees: a linear portion of the periphery of the workpiece W is in contact with the polishing pad 2 . As shown in FIG. 5 , the rotational speed of the workpiece W is lowered each time the workpiece W rotates 90 degrees, i.e., with a period of 90 degrees.
  • the rotation angle of the workpiece W is obtained by the above-described rotary encoder installed in the servomotor 15 .
  • a measured value of the rotation angle is sent from the rotary encoder to the operation controller 25 .
  • the operation controller 25 changes the rotational speed of the workpiece W based on the measured value of the rotation angle.
  • a time of contact between the workpiece W and the annular polishing surface 2 a can be uniform over the entire periphery of the workpiece W.
  • the polishing pad 2 can therefore uniformly polish the periphery of the workpiece W.
  • FIG. 6 is a plan view of a chemical mechanical polishing apparatus including a plurality of polishing heads 1 . As shown in FIG. 6 , a plurality of polishing heads 1 may be arranged along a circumferential direction of the polishing pad 2 . A plurality of polishing-liquid supply nozzles 5 are disposed adjacent to the polishing heads 1 , respectively.
  • the chemical mechanical polishing apparatus may include a polished-state monitoring device for monitoring a polished state of the periphery of the workpiece W.
  • the chemical mechanical polishing apparatus includes a surface-condition monitoring device 32 as the polished-state monitoring device, which monitors a surface condition of the periphery of the workpiece W held by the workpiece holder 11 .
  • Examples of such a surface-condition monitoring device 32 may include a camera (e.g., a digital camera equipped with an image sensor such as CCD) for imaging the periphery of the workpiece W, and a photometer for measuring an intensity of light reflected from the periphery of the workpiece W.
  • the surface-condition monitoring device 32 quantifies the surface condition of the periphery of the workpiece W, and sends a numerical value obtained to the operation controller 25 .
  • the surface-condition monitoring device 32 may obtain a numerical value of a color or irregularities of the peripheral surface of the workpiece W, or may obtain a numerical value of the intensity of light reflected from the peripheral surface.
  • paint may be applied to the peripheral surface of the workpiece W in advance.
  • the operation controller 25 determines a polishing end point of the workpiece W based on the numerical value (i.e., the surface condition of the periphery of the workpiece W) sent from the surface-condition monitoring device 32 .
  • the chemical mechanical polishing apparatus includes a motor ammeter 33 as the polished-state monitoring device, which monitors an electric current supplied to the table motor 18 that rotates the polishing table 3 .
  • a frictional force that acts between the workpiece W and the polishing pad 2 changes as the peripheral surface of the workpiece W becomes smoother as a result of polishing.
  • the change in the frictional force leads to a change in the electric current supplied to the table motor 18 .
  • the motor ammeter 33 measures the electric current that flows to the table motor 18 , and sends a measured value of the electric current to the operation controller 25 .
  • the operation controller 25 determines a polishing end point of the workpiece W based on the measured value of the electric current (i.e., the surface condition of the periphery of the workpiece W) sent from the motor ammeter 33 .
  • FIG. 9 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment
  • FIG. 10 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 9
  • An annular polishing pad 2 is used in this embodiment.
  • An inner peripheral surface of the annular polishing pad 2 constitutes an annular polishing surface 2 a .
  • the annular polishing surface 2 a has an outwardly curved vertical cross-section.
  • the polishing liquid is supplied onto an area located inside the annular polishing surface 2 a , and flows outwardly due to a centrifugal force until the polishing liquid reaches the annular polishing surface 2 a .
  • the annular polishing pad 2 can easily hold the polishing liquid on its annular polishing surface 2 a , and can therefore reduce an amount of the polishing liquid used.
  • FIG. 11 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment
  • FIG. 12 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 11 .
  • the air cylinder 14 is disposed more inwardly than the workpiece holder 11 (preferably along the radially inner side of the workpiece holder 11 ) in the radial direction of the polishing table 3 (and the polishing pad 2 ).
  • the air cylinder 14 is located above the polishing table 3 and the polishing pad 2 .
  • the air cylinder 14 may be located below the polishing table 3 and the polishing pad 2 .
  • the air cylinder 14 moves the servomotor 15 , the workpiece holder 11 , and the workpiece W toward the center of the polishing pad 2 , thereby pressing the periphery of the workpiece W against the annular polishing surface 2 a.
  • FIG. 13 is a plan view of an embodiment of a chemical mechanical polishing apparatus including a plurality of polishing heads 1 , each of which is shown in FIGS. 11 and 12 .
  • the air cylinders 14 of the polishing heads 1 are located inside the polishing table 3 and the polishing pad 2 . Therefore, as can be seen in FIG. 13 , the overall width of the chemical mechanical polishing apparatus can be small.
  • the surface-condition monitoring device 32 shown in FIG. 7 , and the motor ammeter 33 as another exemplary surface-condition monitoring device, shown in FIG. 8 , can be applied also to the embodiments shown in FIGS. 11 through 13 . Further, the annular polishing pad 2 shown in FIGS. 9 and 10 may be applied to the embodiments shown in FIGS. 11 through 13 .
  • the workpiece W in its entirety, has a rectangular shape, and its periphery has an outwardly curved vertical cross-section.
  • the chemical mechanical polishing apparatuses according to the above-described embodiments can be used not only for polishing of a workpiece having, in its entirety, a polygonal shape, but also for polishing of a workpiece having, in its entirety, a circular shape.
  • the present invention is applicable to a chemical mechanical polishing (CMP) apparatus for polishing a workpiece, such as a metal body, to a mirror finish.
  • CMP chemical mechanical polishing

Abstract

The present invention relates to a chemical mechanical polishing (CMP) apparatus for polishing a workpiece, such as a metal body, to a mirror finish. The chemical mechanical polishing apparatus includes: a polishing pad (2) having an annular polishing surface (2 a) which has a curved vertical cross-section; a workpiece holder (11) for holding a workpiece (W) having a polygonal shape; a rotating device (15) configured to rotate the workpiece holder (11) about an axis of the workpiece (W); a pressing device (14) configured to press a periphery of the workpiece (W) against the annular polishing surface (2 a); and an operation controller (25) configured to change a speed at which the rotating device (15) rotates the workpiece (W) according to a rotation angle of the workpiece (W). The pressing device (14) is disposed more inwardly than the workpiece holder (11) in a radial direction of the polishing table (3).

Description

    TECHNICAL FIELD
  • The present invention relates to a chemical mechanical polishing (CMP) apparatus for polishing a workpiece, such as a metal body, to a mirror finish.
  • BACKGROUND ART
  • From viewpoints of functionality and design, there has been a demand for mirror-polishing a workpiece having a three-dimensional surface constituted by a combination of a planar surface and a curved surface. Examples of such a workpiece include a metal body made of aluminum, stainless steel, or the like, and a resin body. Such metal body and resin body may be used in, for example, a cellular phone, a smart phone, a multifunction mobile terminal, a portable game device, a camera, a watch, a music media player, a personal computer, an electronic device, car parts, ornaments, medical equipment, or the like.
  • A conventional lapping technique and a conventional polishing technique can polish the planar surface to a mirror finish. However, it is very difficult for these techniques to polish the curved surface to a mirror finish.
  • SUMMARY OF INVENTION Technical Problem
  • It is an object of the present invention to provide a chemical mechanical polishing apparatus capable of polishing a workpiece, having a periphery constituted by a curved surface, to a mirror finish.
  • Solution to Problem
  • In an aspect of the present invention, there is provided a chemical mechanical polishing apparatus for polishing a workpiece having a polygonal shape, comprising: a polishing pad having an annular polishing surface which has a curved vertical cross-section; a rotatable polishing table supporting the polishing pad; a workpiece holder for holding the workpiece; a rotating device configured to rotate the workpiece holder about an axis of the workpiece; a pressing device configured to press a periphery of the workpiece against the annular polishing surface; a polishing-liquid supply nozzle configured to supply a polishing liquid onto the annular polishing surface; and an operation controller configured to change a speed at which the rotating device rotates the workpiece according to a rotation angle of the workpiece, wherein the pressing device is disposed more inwardly than the workpiece holder in a radial direction of the polishing table.
  • In a preferred aspect, the chemical mechanical polishing apparatus further comprises a polished-state monitoring device configured to monitor a polished state of the periphery of the workpiece.
  • In a preferred aspect, the polishing pad has an annular shape, and the polishing pad has an inner peripheral surface which constitutes the annular polishing surface.
  • Advantageous Effects of Invention
  • According to the present invention, the periphery of the workpiece is polished by the sliding contact with the annular polishing surface. The annular polishing surface has a curved vertical cross-section. Therefore, a curved surface, constituting the periphery of the workpiece, uniformly contacts the annular polishing surface and is polished to a mirror finish.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a side view of a chemical mechanical polishing apparatus according to an embodiment of the present invention;
  • FIG. 2 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 1;
  • FIG. 3 is a diagram showing a rectangular workpiece at a rotation angle of 0 degrees;
  • FIG. 4 is a diagram showing the rectangular workpiece at a rotation angle of 45 degrees;
  • FIG. 5 is a graph showing a relationship between rotation angle of a workpiece and rotational speed of the workpiece;
  • FIG. 6 is a plan view of a chemical mechanical polishing apparatus including a plurality of polishing heads;
  • FIG. 7 is a side view of a chemical mechanical polishing apparatus including a surface-condition monitoring device for monitoring a surface condition of a periphery of a workpiece;
  • FIG. 8 is a side view of a chemical mechanical polishing apparatus including a motor ammeter for monitoring an electric current supplied to a table motor for rotating a polishing table;
  • FIG. 9 is a side view of a chemical mechanical polishing apparatus according to another embodiment;
  • FIG. 10 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 9;
  • FIG. 11 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment;
  • FIG. 12 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 11; and
  • FIG. 13 is a plan view of an embodiment of a chemical mechanical polishing apparatus including a plurality of polishing heads shown in FIGS. 11 and 12.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a side view of a chemical mechanical polishing apparatus according to an embodiment of the present invention, and FIG. 2 is a plan view of the chemical mechanical polishing apparatus. The chemical mechanical polishing apparatus includes a polishing pad 2 having an annular polishing surface 2 a, a rotatable polishing table 3 supporting the polishing pad 2, a polishing-liquid supply nozzle 5 for supplying a polishing liquid onto the annular polishing surface 2 a, and a polishing head 1 for pressing a periphery of a workpiece W against the annular polishing surface 2 a of the polishing pad 2 to polish the periphery of the workpiece W.
  • The periphery, of the workpiece W is composed of a curved surface. The annular polishing surface 2 a has an inwardly-curved vertical cross-section that follows a shape of a vertical cross-section of the periphery of the workpiece W. The curvature of the curved vertical cross-section of the annular polishing surface 2 a is equal to or slightly larger than the curvature of the vertical cross-section of the periphery of the workpiece W.
  • The polishing head 1 includes a workpiece holder 11 for holding the workpiece W, a servomotor 15 as a rotating device for rotating the workpiece holder 11 about an axis of the workpiece W, and an air cylinder 14 as a pressing device for pushing the servomotor 15 toward the center of the polishing pad 2 to thereby press the periphery of the workpiece W, held by the workpiece holder 11, against the annular polishing surface 2 a.
  • The polishing pad 2 of this embodiment has a disk shape, and the annular polishing surface 2 a constitutes at least a part of a circumferential surface of the polishing pad 2. The polishing pad 2 is attached to an upper surface of the polishing table 3. The polishing table 3 is configured to be rotated about its axis by a table motor 18, so that the polishing pad 2 rotates about its axis together with the polishing table 3.
  • The workpiece holder 11 is configured to be able to detachably hold the workpiece W by screwing, magnetic force, vacuum suction, freezing chuck, vacuum attraction chuck, or other technique. The workpiece holder 11 is configured to hold the workpiece W in a horizontal position.
  • The workpiece holder 11 is coupled to the servomotor 15. The servomotor 15 is a rotating device for rotating the workpiece holder 11 and the workpiece W, held by the workpiece holder 11, about their axis. The servomotor 15 has a built-in rotary encoder (not shown) for measuring a rotation angle of the workpiece holder 11 and the workpiece W.
  • The servomotor 15 is held by a horizontally-extending linear guide 20, and is horizontally movable along a longitudinal direction of the linear guide 20. The longitudinal direction of the linear guide 20 is parallel to a radial direction of the polishing pad 2. Therefore, the servomotor 15, the workpiece holder 11, and the workpiece W are movable in the radial direction of the polishing pad 2.
  • The servomotor 15 is coupled to the air cylinder 14. This air cylinder 14 is configured to move the servomotor 15, the workpiece holder 11, and the workpiece W together in a horizontal direction (i.e., in the radial direction of the polishing pad 2). More specifically, the air cylinder 14 is capable of moving the workpiece W in directions away from and closer to the annular polishing surface 2 a of the polishing pad 2.
  • When the air cylinder 14 pushes the servomotor 15 toward the center of the polishing pad 2, the workpiece holder 11 and the workpiece W, together with the servomotor 15, move toward the annular polishing surface 2 a, until the periphery of the workpiece W is pressed against the annular polishing surface 2 a. The force with which the periphery of the workpiece W is pressed against the annular polishing surface 2 a is regulated by the air cylinder 14.
  • An operation controller 25 is coupled to the air cylinder 14 and the servomotor 15. The operation controller 25 is configured to control operations of the air cylinder 14 and the servomotor 15. More specifically, the operation controller 25 controls the force generated by the air cylinder 14, i.e., the force with which the periphery of the workpiece W is pressed against the annular polishing surface 2 a, and also controls the speed at which the servomotor 15 rotates the workpiece W.
  • The linear guide 20 and the air cylinder 14 are secured to a base 27. The base 27 is coupled to a positioning mechanism 29 for adjusting a vertical position of the base 27. The vertical positions of the air cylinder 14, the linear guide 20, and the workpiece holder 11 are adjusted by the positioning mechanism 29. Accordingly, the vertical position of the workpiece W, held by the workpiece holder 11, relative to the annular polishing surface 2 a is also adjusted by the positioning mechanism 29.
  • An outlet of the polishing-liquid supply nozzle 5 is directed to the annular polishing surface 2 a of the polishing pad 2 so that a polishing liquid, such as a slurry, is supplied onto the annular polishing surface 2 a. The outlet of the polishing-liquid supply nozzle 5 is disposed upstream of the workpiece W in a direction of rotation of the polishing pad 2 and the polishing table 3. Therefore, the polishing liquid, supplied from the polishing-liquid supply nozzle 5, is carried by the rotating annular polishing surface 2 a to the periphery of the workpiece W, which is a portion to be polished.
  • The polishing operation of the chemical mechanical polishing apparatus will now be described. While the polishing pad 2 and the polishing table 3 are being rotated as shown in FIGS. 1 and 2, a polishing liquid (slurry) is supplied from the polishing-liquid supply nozzle 5 onto the annular polishing surface 2 a of the polishing pad 2. Further, the workpiece holder 11 and the workpiece W are rotated by the servomotor 15. The air cylinder 14 pushes the servomotor 15, the workpiece holder 11, and the workpiece W toward the center of the polishing pad 2, thereby pressing the periphery of the workpiece W against the annular polishing surface 2 a. The periphery of the workpiece W is rubbed against the annular polishing surface 2 a in the presence of the polishing liquid. The periphery of the workpiece W is polished to have a mirror surface by a chemical component of the polishing liquid and abrasive particles contained in the polishing liquid. Since the annular polishing surface 2 a has a vertical cross-section that follows the shape of the vertical cross-section of the periphery of the workpiece W, the curved surface, constituting the periphery of the workpiece W, uniformly contacts the annular polishing surface 2 a and is polished to a mirror finish.
  • When the workpiece W has a rectangular shape, it is preferred that an entire periphery of the workpiece W be polished uniformly. In view of this, the operation controller 25 is configured to change the rotational speed of the workpiece W according to the rotation angle of the workpiece W. FIG. 3 is a diagram showing the rectangular workpiece W at a rotation angle of 0 degrees, and FIG. 4 is a diagram showing the rectangular workpiece W at a rotation angle of 45 degrees. FIG. 5 is a graph showing a relationship between the rotation angle of the workpiece W and the rotational speed of the workpiece W. A vertical axis of FIG. 5 represents the rotational speed [angular degrees/min] of the workpiece W, and a horizontal axis represents the rotation angle of the workpiece W. The workpiece W is in the state shown in FIG. 3 when the rotation angle of the workpiece W is 0 degrees: a linear portion of the periphery of the workpiece W is in contact with the polishing pad 2. As shown in FIG. 5, the rotational speed of the workpiece W is lowered each time the workpiece W rotates 90 degrees, i.e., with a period of 90 degrees.
  • The rotation angle of the workpiece W is obtained by the above-described rotary encoder installed in the servomotor 15. A measured value of the rotation angle is sent from the rotary encoder to the operation controller 25. The operation controller 25 changes the rotational speed of the workpiece W based on the measured value of the rotation angle.
  • According to the embodiment shown in FIG. 5, a time of contact between the workpiece W and the annular polishing surface 2 a can be uniform over the entire periphery of the workpiece W. The polishing pad 2 can therefore uniformly polish the periphery of the workpiece W.
  • FIG. 6 is a plan view of a chemical mechanical polishing apparatus including a plurality of polishing heads 1. As shown in FIG. 6, a plurality of polishing heads 1 may be arranged along a circumferential direction of the polishing pad 2. A plurality of polishing-liquid supply nozzles 5 are disposed adjacent to the polishing heads 1, respectively.
  • The chemical mechanical polishing apparatus may include a polished-state monitoring device for monitoring a polished state of the periphery of the workpiece W. In the embodiment shown in FIG. 7, the chemical mechanical polishing apparatus includes a surface-condition monitoring device 32 as the polished-state monitoring device, which monitors a surface condition of the periphery of the workpiece W held by the workpiece holder 11. Examples of such a surface-condition monitoring device 32 may include a camera (e.g., a digital camera equipped with an image sensor such as CCD) for imaging the periphery of the workpiece W, and a photometer for measuring an intensity of light reflected from the periphery of the workpiece W.
  • The surface-condition monitoring device 32 quantifies the surface condition of the periphery of the workpiece W, and sends a numerical value obtained to the operation controller 25. For example, the surface-condition monitoring device 32 may obtain a numerical value of a color or irregularities of the peripheral surface of the workpiece W, or may obtain a numerical value of the intensity of light reflected from the peripheral surface. In order to make it easy to detect a change in the color, paint may be applied to the peripheral surface of the workpiece W in advance. The operation controller 25 determines a polishing end point of the workpiece W based on the numerical value (i.e., the surface condition of the periphery of the workpiece W) sent from the surface-condition monitoring device 32.
  • In the embodiment shown in FIG. 8, the chemical mechanical polishing apparatus includes a motor ammeter 33 as the polished-state monitoring device, which monitors an electric current supplied to the table motor 18 that rotates the polishing table 3. A frictional force that acts between the workpiece W and the polishing pad 2 changes as the peripheral surface of the workpiece W becomes smoother as a result of polishing. The change in the frictional force leads to a change in the electric current supplied to the table motor 18. The motor ammeter 33 measures the electric current that flows to the table motor 18, and sends a measured value of the electric current to the operation controller 25. The operation controller 25 determines a polishing end point of the workpiece W based on the measured value of the electric current (i.e., the surface condition of the periphery of the workpiece W) sent from the motor ammeter 33.
  • FIG. 9 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment, and FIG. 10 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 9. An annular polishing pad 2 is used in this embodiment. An inner peripheral surface of the annular polishing pad 2 constitutes an annular polishing surface 2 a. The annular polishing surface 2 a has an outwardly curved vertical cross-section. The polishing liquid is supplied onto an area located inside the annular polishing surface 2 a, and flows outwardly due to a centrifugal force until the polishing liquid reaches the annular polishing surface 2 a. The annular polishing pad 2 can easily hold the polishing liquid on its annular polishing surface 2 a, and can therefore reduce an amount of the polishing liquid used.
  • FIG. 11 is a side view of a chemical mechanical polishing apparatus according to yet another embodiment, and FIG. 12 is a plan view of the chemical mechanical polishing apparatus shown in FIG. 11. The construction and the operation of this embodiment, not particularly described here, are the same as those of the embodiment shown in FIGS. 1 and 2, and duplicate descriptions thereof are omitted. In this embodiment, the air cylinder 14 is disposed more inwardly than the workpiece holder 11 (preferably along the radially inner side of the workpiece holder 11) in the radial direction of the polishing table 3 (and the polishing pad 2). In FIG. 11, the air cylinder 14 is located above the polishing table 3 and the polishing pad 2. The air cylinder 14 may be located below the polishing table 3 and the polishing pad 2. The air cylinder 14 moves the servomotor 15, the workpiece holder 11, and the workpiece W toward the center of the polishing pad 2, thereby pressing the periphery of the workpiece W against the annular polishing surface 2 a.
  • FIG. 13 is a plan view of an embodiment of a chemical mechanical polishing apparatus including a plurality of polishing heads 1, each of which is shown in FIGS. 11 and 12. The air cylinders 14 of the polishing heads 1 are located inside the polishing table 3 and the polishing pad 2. Therefore, as can be seen in FIG. 13, the overall width of the chemical mechanical polishing apparatus can be small.
  • The surface-condition monitoring device 32 shown in FIG. 7, and the motor ammeter 33 as another exemplary surface-condition monitoring device, shown in FIG. 8, can be applied also to the embodiments shown in FIGS. 11 through 13. Further, the annular polishing pad 2 shown in FIGS. 9 and 10 may be applied to the embodiments shown in FIGS. 11 through 13.
  • In the above-described embodiments, the workpiece W, in its entirety, has a rectangular shape, and its periphery has an outwardly curved vertical cross-section. The chemical mechanical polishing apparatuses according to the above-described embodiments can be used not only for polishing of a workpiece having, in its entirety, a polygonal shape, but also for polishing of a workpiece having, in its entirety, a circular shape.
  • The previous description of embodiments is provided to enable a person skilled in the art to make and use the present invention. Moreover, various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles and specific examples defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the embodiments described herein but is to be accorded the widest scope as defined by limitation of the claims.
  • INDUSTRIAL APPLICABILITY
  • The present invention is applicable to a chemical mechanical polishing (CMP) apparatus for polishing a workpiece, such as a metal body, to a mirror finish.
  • REFERENCE SIGNS LIST
      • 1 polishing head
      • 2 polishing pad
      • 2 a annular polishing surface
      • 3 polishing table
      • 5 polishing-liquid supply nozzle
      • 11 workpiece holder
      • 14 air cylinder
      • 15 servomotor
      • 18 table motor
      • 20 linear guide
      • 25 operation controller
      • 27 base
      • 29 positioning mechanism
      • 32 surface-condition monitoring device
      • 33 motor ammeter
      • W workpiece

Claims (3)

1. A chemical mechanical polishing apparatus for polishing a workpiece having a polygonal shape, comprising:
a polishing pad having an annular polishing surface which has a curved vertical cross-section;
a rotatable polishing table supporting the polishing pad;
a workpiece holder for holding the workpiece;
a rotating device configured to rotate the workpiece holder about an axis of the workpiece;
a pressing device configured to press a periphery of the workpiece against the annular polishing surface;
a polishing-liquid supply nozzle configured to supply a polishing liquid onto the annular polishing surface; and
an operation controller configured to change a speed at which the rotating device rotates the workpiece according to a rotation angle of the workpiece,
wherein the pressing device is disposed more inwardly than the workpiece holder in a radial direction of the polishing table.
2. The chemical mechanical polishing apparatus according to claim 1, further comprising:
a polished-state monitoring device configured to monitor a polished state of the periphery of the workpiece.
3. The chemical mechanical polishing apparatus according to claim 1, wherein the polishing pad has an annular shape, and the polishing pad has an inner peripheral surface which constitutes the annular polishing surface.
US15/520,515 2014-10-31 2015-10-30 Chemical mechanical polishing apparatus for polishing workpiece Abandoned US20170312880A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014223292 2014-10-31
JP2014-223292 2014-10-31
PCT/JP2015/080823 WO2016068327A1 (en) 2014-10-31 2015-10-30 Chemical mechanical polishing device for polishing work piece

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080823 A-371-Of-International WO2016068327A1 (en) 2014-10-31 2015-10-30 Chemical mechanical polishing device for polishing work piece

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/412,562 Continuation US11446784B2 (en) 2014-10-31 2019-05-15 Chemical mechanical polishing apparatus for polishing workpiece

Publications (1)

Publication Number Publication Date
US20170312880A1 true US20170312880A1 (en) 2017-11-02

Family

ID=55857660

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/520,515 Abandoned US20170312880A1 (en) 2014-10-31 2015-10-30 Chemical mechanical polishing apparatus for polishing workpiece
US16/412,562 Active 2037-10-23 US11446784B2 (en) 2014-10-31 2019-05-15 Chemical mechanical polishing apparatus for polishing workpiece

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/412,562 Active 2037-10-23 US11446784B2 (en) 2014-10-31 2019-05-15 Chemical mechanical polishing apparatus for polishing workpiece

Country Status (4)

Country Link
US (2) US20170312880A1 (en)
JP (1) JP6532884B2 (en)
CN (1) CN107073674B (en)
WO (1) WO2016068327A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200192055A1 (en) * 2017-08-28 2020-06-18 Canon Kabushiki Kaisha Driving apparatus
US11660723B2 (en) * 2018-04-13 2023-05-30 Taikisha Ltd. Automatic polishing system
FR3137857A1 (en) * 2022-07-18 2024-01-19 Safran Aircraft Engines Mexico Sa De C.V. System for electrode sharpening

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266373A (en) * 1978-10-30 1981-05-12 Goetze Ag Apparatus for deburring edges
US5403228A (en) * 1992-07-10 1995-04-04 Lsi Logic Corporation Techniques for assembling polishing pads for silicon wafer polishing
US5409417A (en) * 1990-07-09 1995-04-25 Bando Kiko Co., Ltd. Numerically controlled grinding machine for plate glass
US5658189A (en) * 1994-09-29 1997-08-19 Tokyo Seimitsu Co., Ltd. Grinding apparatus for wafer edge
US5733353A (en) * 1995-01-31 1998-03-31 Bando Kiko Co., Ltd. Glass-plate working apparatus
US6159081A (en) * 1997-09-09 2000-12-12 Hakomori; Shunji Method and apparatus for mirror-polishing of workpiece edges
US6250995B1 (en) * 1998-02-27 2001-06-26 Speedfam Co., Ltd. Apparatus for polishing outer periphery of workpiece
US20020182985A1 (en) * 2001-06-05 2002-12-05 Speedfam Co., Ltd. Polishing method for removing corner material from a semi-conductor wafer
US20030153251A1 (en) * 2000-07-10 2003-08-14 Kazutoshi Mizushima Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US6722964B2 (en) * 2000-04-04 2004-04-20 Ebara Corporation Polishing apparatus and method
US20060128281A1 (en) * 2002-10-11 2006-06-15 Kazuaki Bando Glass pane machining device
US7066792B2 (en) * 2004-08-06 2006-06-27 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associate system and methods
US20080070479A1 (en) * 2004-11-01 2008-03-20 Ebara Corporation Polishing Apparatus
US20080307829A1 (en) * 2006-09-20 2008-12-18 Konica Minolta Opto, Inc. Glass disk processing method
US20090124174A1 (en) * 2007-11-12 2009-05-14 Dai Fukushima Substrate treating method and substrate treating apparatus
US20090142992A1 (en) * 2007-12-03 2009-06-04 Ebara Corporation Polishing apparatus and polishing method
US8641480B2 (en) * 2010-03-02 2014-02-04 Ebara Corporation Polishing apparatus and polishing method
US20140087627A1 (en) * 2012-09-24 2014-03-27 Ebara Corporation Method of detecting abnormality in polishing of a substrate and polishing apparatus
US20150174724A1 (en) * 2012-06-13 2015-06-25 Nippon Electric Glass Co., Ltd. Glass sheet processing apparatus and glass sheet producing method
US20160167192A1 (en) * 2013-08-09 2016-06-16 Fujimi Incorporated Polishing tool and processing method for member

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596635A (en) * 1977-07-26 1981-08-26 Newall Eng Cam machining
JPH079322A (en) * 1993-06-30 1995-01-13 Fujikoshi Mach Corp Polishing device of wafer
JPH10100050A (en) * 1996-09-27 1998-04-21 Shin Etsu Handotai Co Ltd Method and device for working wafer chamfering part
US6857947B2 (en) * 2002-01-17 2005-02-22 Asm Nutool, Inc Advanced chemical mechanical polishing system with smart endpoint detection
JP2004154880A (en) * 2002-11-05 2004-06-03 Hitachi Zosen Corp Disk-like work periphery polishing device
JP4125148B2 (en) * 2003-02-03 2008-07-30 株式会社荏原製作所 Substrate processing equipment
TWI462169B (en) * 2005-04-19 2014-11-21 Ebara Corp Substrate processing apparatus
CN102490112B (en) * 2006-10-06 2015-03-25 株式会社荏原制作所 Processing end point detecting method, polishing method and polishing apparatus
JP5082621B2 (en) * 2007-06-28 2012-11-28 株式会社ジェイテクト Workpiece grinding method and processing apparatus
KR101236472B1 (en) * 2007-10-15 2013-02-22 삼성전자주식회사 Apparatus for polishing wafer bevel portion and method for detecting end point
JP5112007B2 (en) * 2007-10-31 2013-01-09 株式会社荏原製作所 Polishing apparatus and polishing method
JP5277692B2 (en) * 2008-03-31 2013-08-28 株式会社ジェイテクト Post-process sizing controller
JP5505099B2 (en) * 2010-06-04 2014-05-28 株式会社ジェイテクト Grinding method with compound grinder
JP5789634B2 (en) * 2012-05-14 2015-10-07 株式会社荏原製作所 Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus
TWI482935B (en) * 2012-11-30 2015-05-01 Hulk Energy Technology Co Ltd Solar cell module appearance processing device and method thereof

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266373A (en) * 1978-10-30 1981-05-12 Goetze Ag Apparatus for deburring edges
US5409417A (en) * 1990-07-09 1995-04-25 Bando Kiko Co., Ltd. Numerically controlled grinding machine for plate glass
US5403228A (en) * 1992-07-10 1995-04-04 Lsi Logic Corporation Techniques for assembling polishing pads for silicon wafer polishing
US5658189A (en) * 1994-09-29 1997-08-19 Tokyo Seimitsu Co., Ltd. Grinding apparatus for wafer edge
US5733353A (en) * 1995-01-31 1998-03-31 Bando Kiko Co., Ltd. Glass-plate working apparatus
US6159081A (en) * 1997-09-09 2000-12-12 Hakomori; Shunji Method and apparatus for mirror-polishing of workpiece edges
US6250995B1 (en) * 1998-02-27 2001-06-26 Speedfam Co., Ltd. Apparatus for polishing outer periphery of workpiece
US6722964B2 (en) * 2000-04-04 2004-04-20 Ebara Corporation Polishing apparatus and method
US20030153251A1 (en) * 2000-07-10 2003-08-14 Kazutoshi Mizushima Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US20020182985A1 (en) * 2001-06-05 2002-12-05 Speedfam Co., Ltd. Polishing method for removing corner material from a semi-conductor wafer
US20060128281A1 (en) * 2002-10-11 2006-06-15 Kazuaki Bando Glass pane machining device
US7066792B2 (en) * 2004-08-06 2006-06-27 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associate system and methods
US20080070479A1 (en) * 2004-11-01 2008-03-20 Ebara Corporation Polishing Apparatus
US20080307829A1 (en) * 2006-09-20 2008-12-18 Konica Minolta Opto, Inc. Glass disk processing method
US20090124174A1 (en) * 2007-11-12 2009-05-14 Dai Fukushima Substrate treating method and substrate treating apparatus
US20090142992A1 (en) * 2007-12-03 2009-06-04 Ebara Corporation Polishing apparatus and polishing method
US8641480B2 (en) * 2010-03-02 2014-02-04 Ebara Corporation Polishing apparatus and polishing method
US20150174724A1 (en) * 2012-06-13 2015-06-25 Nippon Electric Glass Co., Ltd. Glass sheet processing apparatus and glass sheet producing method
US20140087627A1 (en) * 2012-09-24 2014-03-27 Ebara Corporation Method of detecting abnormality in polishing of a substrate and polishing apparatus
US20160167192A1 (en) * 2013-08-09 2016-06-16 Fujimi Incorporated Polishing tool and processing method for member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200192055A1 (en) * 2017-08-28 2020-06-18 Canon Kabushiki Kaisha Driving apparatus
US11719906B2 (en) * 2017-08-28 2023-08-08 Canon Kabushiki Kaisha Driving apparatus
US11660723B2 (en) * 2018-04-13 2023-05-30 Taikisha Ltd. Automatic polishing system
FR3137857A1 (en) * 2022-07-18 2024-01-19 Safran Aircraft Engines Mexico Sa De C.V. System for electrode sharpening

Also Published As

Publication number Publication date
JPWO2016068327A1 (en) 2017-08-17
JP6532884B2 (en) 2019-06-19
CN107073674B (en) 2020-01-21
US11446784B2 (en) 2022-09-20
CN107073674A (en) 2017-08-18
WO2016068327A1 (en) 2016-05-06
US20190262968A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US11446784B2 (en) Chemical mechanical polishing apparatus for polishing workpiece
JP6914191B2 (en) Followable polishing pad and polishing module
KR101798700B1 (en) Polishing method and polishing apparatus
JP6923342B2 (en) Polishing equipment and polishing method
JP5964262B2 (en) Method for adjusting profile of polishing member used in polishing apparatus, and polishing apparatus
JP6129551B2 (en) Processing method of plate
US9630289B2 (en) Polishing method involving a polishing member polishing at angle tangent to the substrate rotational direction
US20150004886A1 (en) Polishing apparatus, polishing pad positioning method, and polishing pad
JP2017148931A (en) Polishing device and polishing method
TWI621167B (en) Polishing apparatus and polishing method
JP6348856B2 (en) Grinding equipment
JP2015033759A (en) Polishing apparatus
US8684791B2 (en) Linear, automated apparatus and method for clean, high purity, simultaneous lapping and polishing of optics, semiconductors and optoelectronic materials
JP2011093018A (en) Polishing wheel
JP2007038354A (en) Grinder
JP2011224697A (en) Method of adjusting polishing pad
KR20170058016A (en) Hand type chamfer device for glass
JP2009136979A (en) Polishing device and method of adjusting polishing device
KR102151282B1 (en) Grinding device
JP5484172B2 (en) Method for forming tapered surface of polishing pad
CN103056753A (en) Angular adjustment device for abrasive belt grinder
JP2001252861A (en) Polishing method, polishing device and polishing pad
TWI606891B (en) Lens edge polishing device and method
CN209007310U (en) A kind of mobile phone screen cover plate polishing machine
JP6456708B2 (en) Grinding equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: EBARA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHII, YU;ITO, KENYA;MORINAGA, HITOSHI;AND OTHERS;REEL/FRAME:042078/0462

Effective date: 20170406

Owner name: FUJIMI INCORPORATED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHII, YU;ITO, KENYA;MORINAGA, HITOSHI;AND OTHERS;REEL/FRAME:042078/0462

Effective date: 20170406

AS Assignment

Owner name: FUJIMI INCORPORATED, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY CITY ADDRESS PREVIOUSLY RECORDED AT REEL: 042078 FRAME: 0462. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:ISHII, YU;ITO, KENYA;MORINAGA, HITOSHI;AND OTHERS;REEL/FRAME:042389/0943

Effective date: 20170406

Owner name: EBARA CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY CITY ADDRESS PREVIOUSLY RECORDED AT REEL: 042078 FRAME: 0462. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:ISHII, YU;ITO, KENYA;MORINAGA, HITOSHI;AND OTHERS;REEL/FRAME:042389/0943

Effective date: 20170406

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION