US20170299604A1 - Srm methods in alzheimer's disease and neurological disease assays - Google Patents

Srm methods in alzheimer's disease and neurological disease assays Download PDF

Info

Publication number
US20170299604A1
US20170299604A1 US15/355,213 US201615355213A US2017299604A1 US 20170299604 A1 US20170299604 A1 US 20170299604A1 US 201615355213 A US201615355213 A US 201615355213A US 2017299604 A1 US2017299604 A1 US 2017299604A1
Authority
US
United States
Prior art keywords
human
peptides
transitions
peptide
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/355,213
Inventor
Paul Edward Kearney
Xiao-Jun Li
Clive Hayward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Diagnostics Inc
Original Assignee
Integrated Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Diagnostics Inc filed Critical Integrated Diagnostics Inc
Priority to US15/355,213 priority Critical patent/US20170299604A1/en
Assigned to INTEGRATED DIAGNOSTICS, INC. reassignment INTEGRATED DIAGNOSTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYWARD, CLIVE, KEARNEY, PAUL EDWARD, LI, Xiao-jun
Priority to US15/638,881 priority patent/US20170299605A1/en
Publication of US20170299604A1 publication Critical patent/US20170299604A1/en
Priority to US16/002,123 priority patent/US20180284128A1/en
Priority to US16/703,027 priority patent/US11467167B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer

Definitions

  • LC-SRM-MS Liquid Chromatography Selected Reaction Monitoring Mass Spectrometry
  • LC-SRM-MS methods are highly desirable because LC-SRM-MS methods provide both absolute structural specificity for the target protein and relative or absolute measurement of the target protein concentration when suitable internal standards are utilized.
  • LC-SRM-MS does not involve the manufacturing of biologics.
  • LC-SRM-MS protein assays can be rapidly and inexpensively developed in contrast to the development of immunoassays.
  • LC-SRM-MS are highly multiplexed, with simultaneous assays for hundreds of proteins performed in a single sample analysis.
  • the present disclosure provides a LC-SRM-MS assay for the measurement of at least 357 Alzheimer's disease associated proteins in a single sample and in a single LC-SRM-MS assay.
  • the assay was optimized for protein quantification and minimal interference among proteins in the assay.
  • This LC-SRM-MS assay is novel because measurement of a large number of proteins in a single sample specifically associated with Alzheimer's disease has not been accomplished.
  • the object of the present disclosure is to provide improved methods for the use of LC-SRM-MS in the development of assays. Accordingly, provided herein is a method for developing peptides and transitions for a plurality of at least 200 proteins for a single sample selected reaction monitoring mass spectrometry (LC-SRM-MS) assay, including the steps of providing a set of 200 or more proteins; generating transitions for each protein; determining the Mascot score for SRM-triggered tandem mass spectrometry (MS/MS) spectra; performing collision energy optimization on the transitions; selecting peptides with transitions showing the greatest peak areas of their transitions; selecting a set of transitions for each peptide, wherein the transitions for each peptide have one of the four most intense b or y transition ions; the transitions for each peptide have m/z values of at least 30 m/z above or below those of the precursor ion; the transitions for each peptide do not interfere with transitions from other peptides; and the transition
  • each selected peptide in the set of peptides has a monoisotopic mass of 700-5000 Da; and does not contain a cysteine or a methionine or does not contain cysteine or methionine. In other embodiments, each selected peptide contains cysteine or methionine.
  • the transitions for each peptide have one of the four most intense b or y transition ions; have m/z values of at least 30 m/z above or below those of a precursor ion; do not interfere with transitions from other peptides; and represent transitions due to breakage of peptide bond at different sites of the protein.
  • the peptides do not include any peptide that is bounded by KK, KR, RK or RR (either upstream or downstream) in the corresponding protein sequence. Specifically, the amino acid is charged at pH 7.0. In another embodiment, each peptide of said set of peptides is unique to the corresponding protein. In yet another embodiment, the peptides do not include peptides which were observed in post-translational modified forms.
  • each set of peptides is prioritized according to one or more of the following ordered set of criteria: unique peptides first, then non-unique; peptides with no observed post-translational modifications first, then those observed with post-translational modifications; peptides within the mass range 800-3500 Da first, then those outside of 800-3500 Da; and sorted by decreasing number of variant residues.
  • the peptides are unique in that they only appear once among the peptides run in a single assay.
  • each set of peptides is prioritized according to all of the ordered set of criteria. In another embodiment, each prioritized set of peptides contains 1-5 peptides.
  • the two best peptides per protein and the two best transitions per peptide are selected based on experimental data resulting from LC-SRM-MS analysis of one or more of the following experimental samples: a biological disease sample, a biological control sample, and a mixture of synthetic peptides of interest.
  • the biological disease and biological control samples are processed using an immunodepletion method prior to LC-SRM-MS analysis.
  • the experimental samples contain internal standard peptides.
  • the LC-SRM-MS analysis method specifies a maximum of 7000 transitions, including transitions of the internal standard peptides and transitions. In other embodiments the method specifies a maximum of between 1000-7000, 2000-6000, 3000-5000 and about 3500 transitions.
  • the top two transitions per peptide are selected according to one or more of the following criteria the transitions exhibit the largest peak areas measured in either of the two biological experimental samples; the transitions are not interfered with by other ions; the transitions do not exhibit an elution profile that visually differs from those of other transitions of the same peptide; or the transitions are not beyond the detection limit of both of the two biological experimental samples.
  • the top two peptides per protein are selected according to one or more of the following criteria: one or more peptides exhibit two transitions and represent the largest combined peak areas of the two transitions; or one or more peptides exhibit one transition and represent the largest combined peak areas of the two transitions.
  • an assay developed according to the foregoing method, and embodiments thereof In another aspect, provided herein is an assay developed according to the foregoing method, and embodiments thereof In yet another aspect provided herein is the use of an assay developed according to the foregoing method, and embodiments thereof, to detect a plurality of at least 200 proteins in a single biological sample.
  • an assay developed according to the foregoing method, and embodiments thereof.
  • the disclosure provides a use of a composition, as described above, for the development of an assay to detect a disease, disorder or condition in a mammal.
  • the disclosure provides a method comprising analyzing a composition, as described above, using mass spectrometry.
  • the method can use selected reaction monitoring mass spectrometry.
  • the present disclosure relates to methods for developing peptides and transitions for a single sample selected reaction monitoring mass spectrometry (LC-SRM-MS) assay, generally comprising the steps of providing a set of proteins; identifying representative proteolytic peptides for each protein according to a set of criteria; identifying representative transitions for each peptide according to another set of criteria; and selecting the optimum peptides per protein and the optimum transitions per peptide.
  • LC-SRM-MS reaction monitoring mass spectrometry
  • Selected reaction monitoring mass spectrometry is capable of highly sensitive and accurate protein quantification based on the quantification of proteolytic peptides.
  • mass spectrometry-based assays are often compared to immunoassays (e.g.,
  • Enzyme-Linked Immunosorbent Assay or ELISA
  • ELISA Enzyme-Linked Immunosorbent Assay
  • large sample sets e.g., 96 or 384 samples in parallel microtitre plate-based format.
  • mass spectrometry-based protein assays were not able to match these sample sizes or quantitative accuracy.
  • Considerable time and expense is required to generate and characterize antibodies required for immunoassays.
  • Increasingly efficient LC-SRM-MS assays therefore, may surpass immunoassays such as ELISA in the rapid development of clinically useful, multiplexed protein assays.
  • LC-SRM-MS is a highly selective method of tandem mass spectrometry which has the potential to effectively filter out all molecules and contaminants except the desired analyte(s). This is particularly beneficial if the analysis sample is a complex mixture which may comprise several isobaric species within a defined analytical window.
  • LC-SRM-MS methods may utilize a triple quadrupole mass spectrometer which, as is known in the art, includes three quadrupole rod sets. A first stage of mass selection is performed in the first quadrupole rod set, and the selectively transmitted ions are fragmented in the second quadrupole rod set. The resultant transition (product) ions are conveyed to the third quadrupole rod set, which performs a second stage of mass selection.
  • the product ions transmitted through the third quadrupole rod set are measured by a detector, which generates a signal representative of the numbers of selectively transmitted product ions.
  • the RF and DC potentials applied to the first and third quadrupoles are tuned to select (respectively) precursor and product ions that have m/z values lying within narrow specified ranges. By specifying the appropriate transitions (m/z values of precursor and product ions), a peptide corresponding to a targeted protein may be measured with high degrees of sensitivity and selectivity.
  • Signal-to-noise ratio in LC_SRM_MS is often superior to conventional tandem mass spectrometry (MS/MS) experiments, that do not selectively target (filter) particular analytes but rather aim to survey all analytes in the sample.
  • LC-SRM-MS reaction monitoring mass spectrometry
  • the assay involves the analysis of a single sample containing all analytes of interest (e.g., a proteolytic digest of plasma proteins).
  • trypsin which cleaves exclusively C-terminal to arginine and lysine residues, is a preferred choice to generate peptides because the masses of generated peptides are compatible with the detection ability of most mass spectrometers (up to 2000 m/z), the number and average length of generated peptides, and also the availability of efficient algorithms for the generation of databases of theoretical trypsin-generated peptides. High cleavage specificity, availability, and cost are other advantages of trypsin.
  • Other suitable proteases will be known to those of skill in the art. Miscleavage is a factor for failure or ambiguous protein identification.
  • a miscleavage can be defined as partial enzymatic protein cleavages generating peptides with internal missed cleavage sites reflecting the allowed number of sites (targeted amino acids) per peptide that were not cut.
  • PTMs post-translational modifications
  • LC-SRM-MS mass spectrometry involves the fragmentation of gas phase ions and occurs between the different stages of mass analysis. There are many methods used to fragment the ions and these can result in different types of fragmentation and thus different information about the structure and composition of the molecule.
  • the transition ions observed in an LC-SRM-MS spectrum result from several different factors, which include, but are not limited to, the primary sequence, the amount of internal energy, the means of introducing the energy, and charge state.
  • Transitions must carry at least one charge to be detected.
  • An ion is categorized as either a, b or c if the charge is on a transition comprising the original N terminus of the peptide, whereas the ion is categorized as either x, y or z if the charge is on a transition comprising the original C terminus of the peptide.
  • a subscript indicates the number of residues in the transition (e.g., one peptide residue in x 1 , two peptide residues in y 2 , and three peptide residues in z 3 , etc.).
  • an x ion and an a ion resulting from cleavage of the carbonyl-carbon bond i.e., C(O)—C
  • the x ion is an acylium ion
  • the a ion is an iminium ion
  • a y ion and a b ion result from cleavage of the carbonyl-nitrogen bond (i.e., C(O)—N, also known as the amide bond).
  • the y ion is an ammonium ion and the b ion is an acylium ion.
  • a z ion and a c ion result from cleavage of the nitrogen-carbon (i.e., C—N) bond.
  • the z ion is a carbocation and the c ion is an ammonium ion.
  • Internal transitions arise from double backbone cleavage. These may be formed by a combination of b-type and y-type cleavage (i.e., cleavage producing b and y ions). Internal cleavage ions may also be formed by a combination of a-type and y-type cleavage.
  • An internal transition with a single side chain formed by a combination of a-type and y-type cleavage is called an iminium ion (sometimes also referred to as an imonium or immonium ion). These ions are labeled with the one letter code for the corresponding amino acid.
  • Low energy CID i.e., collision induced dissociation in a triple quadrupole or an ion trap
  • CID collision induced dissociation in a triple quadrupole or an ion trap
  • LC-SRM-MS reaction monitoring mass spectrometry
  • transitions for each peptide have one of the four most intense b or y transition ions; (ii) the transitions for each peptide have m/z values of at least 30 m/z above or below those of the precursor ion; (iii) the transitions for each peptide do not interfere with transitions from other peptides; and (iv) the transitions represent transitions due to breakage of peptide bond at different sites of the protein; and (d) selecting the peptides for each protein that best fit the criteria of step (b) and the transitions per peptide that best fit the criteria of step (c); thereby developing peptides and transitions for a LC-SRM-MS assay.
  • plurality of proteins it is meant that at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 150, 200, 250, 300, 400, 450, 500 or more proteins.
  • the plurality of proteins can encompass between 2 and 10, 10 and 20, 20 and 50, 50 and 100, 100 and 200 or 200 and 500 proteins. In other embodiments, the plurality of proteins can encompass between 250 and 450; or 300 and 400 proteins.
  • Trypsin-like proteases cleave peptide bonds following a positively charged amino acid (e.g., lysine (K) or arginine (R)). This specificity is driven by the residue which lies at the base of the enzyme's 51 pocket (generally a negatively charged aspartic acid or glutamic acid). Accordingly, in one embodiment of the method, the peptides do not include any peptide that is bounded by KK, KR, RK or RR, either upstream of downstream in the corresponding protein sequence. In another embodiment, each peptide of said set of peptides is unique to the corresponding protein.
  • Post-translational modification is the chemical modification of a protein after its translation. It can include any modification following translation, including cleavage. It is one of the later steps in protein biosynthesis, and thus gene expression, for many proteins. It is desirable to avoid such peptides for the purpose of protein identification. Thus, in another embodiment, the peptides do not include peptides which were observed in post-translational modified forms.
  • each set of peptides is prioritized according to one or more of the following ordered set of criteria: (a) unique peptides first, then non-unique; (b) peptides with no observed post-translational modifications first, then those observed with post-translational modifications; (c) peptides within the mass range 800-3500 Da first, then those outside of 800-3500 Da; and (d) sorted by decreasing number of variant residues.
  • each set of peptides is prioritized according to all of the ordered set of criteria.
  • each prioritized set of peptides contains 1-5 peptides.
  • one or more liquid chromatography (LC) purification steps are performed prior to a subsequent LC-SRM-MS analysis step.
  • Traditional LC analysis relies on the chemical interactions between sample components and column packing materials, where laminar flow of the sample through the column is the basis for separation of the analyte of interest from the test sample. The skilled artisan will understand that separation in such columns is a diffusional process.
  • a variety of column packing materials are available for chromatographic separation of samples, and selection of an appropriate separation protocol is an empirical process that depends on the sample characteristics, the analyte of interest, the interfering substances present and their characteristics, etc.
  • Various packing chemistries can be used depending on the needs (e.g., structure, polarity, and solubility of compounds being purified).
  • the columns are polar, ion exchange (both cation and anion), hydrophobic interaction, phenyl, C-2, C-8, C-18 columns, polar coating on porous polymer, or others that are commercially available.
  • the separation of materials is effected by variables such as choice of eluant (also known as a “mobile phase”), choice of gradient elution and the gradient conditions, temperature, etc.
  • an analyte may be purified by applying a sample to a column under conditions where the analyte of interest is reversibly retained by the column packing material, while one or more other materials are not retained.
  • a first mobile phase condition can be employed where the analyte of interest is retained by the column, and a second mobile phase condition can subsequently be employed to remove retained material from the column, once the non-retained materials are washed through.
  • an analyte may be purified by applying a sample to a column under mobile phase conditions where the analyte of interest elutes at a differential rate in comparison to one or more other materials. As discussed above, such procedures may enrich the amount of one or more analytes of interest relative to one or more other components of the sample.
  • the following parameters are used to specify an LC-SRM-MS assay of a protein under a particular LC-SRM-MS system: (1) a tryptic peptide of the protein; (2) the retention time (RT) of the peptide; (3) the m/z value of the peptide precursor ion; (4) the declustering potential used to ionize the precursor ion; (5) m/z value of a fragment ion generated from the peptide precursor ion; and (6) the collision energy (CE) used to fragment the peptide precursor ion that is optimized for the particular peptide.
  • RT retention time
  • CE collision energy
  • the two best peptides per protein and the two best transitions per peptide are selected based on experimental data resulting from LC-SRM-MS analysis of one or more of the following experimental samples: a biological disease sample, a biological control sample, and a mixture of synthetic peptides of interest.
  • Biological samples include body fluids, tissue samples and cell samples.
  • Body fluid samples can include blood, serum, sputum, genital secretions, cerebrospinal fluid, sweat or excreta such as urine.
  • Body tissue samples can include lung, skin, brain, spine, bone, muscle, epithelial, liver, kidney, pancreas, gastrointestinal tract, cardiovascular tissue, heart or nervous tissue.
  • Biological disease samples can include cancer, benign tumors, infected tissue and tissue subject to trauma.
  • the biological disease and biological control samples are processed using an immunodepletion method prior to LC-SRM-MS analysis. Immunodepletion involves removal of one or more proteins through the use of antibodies. Numerous immunodepletion techniques are known to those of skill in the art.
  • the biological disease and biological control samples are processed using an immunocapture method prior to LC-SRM-MS analysis. Immunocapture involves selection of one or more proteins through the use of antibodies. Numerous immunocapture techniques are known to those of skill in the art.
  • a set of isotopically-labeled synthetic versions of the peptides of interest may be added in known amounts to the sample for use as internal standards. Since the isotopically-labeled peptides have physical and chemical properties identical to the corresponding surrogate peptide, they co-elute from the chromatographic column and are easily identifiable on the resultant mass spectrum. The addition of the labeled standards may occur before or after proteolytic digestion. Methods of synthesizing isotopically-labeled peptides will be known to those of skill in the art. Thus, in another embodiment, the experimental samples contain internal standard peptides. Other embodiments may utilize external standards or other expedients for peptide quantification.
  • the LC-SRM-MS analysis method specifies a maximum of 7000 transitions, including transitions of the internal standard peptides and transitions.
  • transition refers to the specific pair of m/z (mass-to-charge) values associated with the precursor and transition ions corresponding to a specific peptide and, therefore, to a specific protein.
  • the top two transitions per peptide are selected according to one or more of the following criteria (A): (1) the transitions exhibit the largest peak areas measured in either of the two biological experimental samples; (2) the transitions are not interfered with by other ions; (3) the transitions do not exhibit an elution profile that visually differs from those of other transitions of the same peptide; (4) the transitions are not beyond the detection limit of both of the two biological experimental samples; (5) the transitions do not exhibit interferences.
  • A the following criteria: (1) the transitions exhibit the largest peak areas measured in either of the two biological experimental samples; (2) the transitions are not interfered with by other ions; (3) the transitions do not exhibit an elution profile that visually differs from those of other transitions of the same peptide; (4) the transitions are not beyond the detection limit of both of the two biological experimental samples; (5) the transitions do not exhibit interferences.
  • the quantities of the peptide transitions in the sample may be determined by integration of the relevant mass spectral peak areas, as known in the prior art.
  • the quantities of the peptide transitions of interest are established via an empirically-derived or predicted relationship between peptide transition quantity (which may be expressed as concentration) and the area ratio of the peptide transition and internal standard peaks at specified transitions.
  • the top two peptides per protein are selected according to one or more of the following criteria (B): (1) one or more peptides exhibit two transitions according to criteria (A) and represent the largest combined peak areas of the two transitions according to criteria (A); and (2) one or more peptides exhibit one transition according to criteria (A) and represent the largest combined peak areas of the two transitions according to criteria (A).
  • the methods of the present disclosure allow the quantification of high abundance and low abundance plasma proteins that serve as detectable markers for various health states (including diseases and disorders), thus forming the basis for assays that can be used to determine the differences between normal levels of detectable markers and changes of such detectable markers that are indicative of changes in health status.
  • an assay developed according to the foregoing method, and embodiments thereof is provided herein.
  • transition refers to a pair of m/z values associated with a peptide.
  • labeled synthetic peptides are used as quality controls in SRM assays.
  • correlation techniques were used to confirm the identity of protein transitions with high confidence. The correlation between a pair of transitions is obtained from their expression profile over all samples in the training set study detailed below. As expected, transitions from the same peptide are highly correlated. Similarly, transitions from different peptide fragments of the same protein are also highly correlated. In contrast, transitions form different proteins are not highly correlated. This methodology enables a statistical analysis of the quality of the protein's SRM assay. For example, if the correlation of the transitions from the two peptides from the same protein is above 0.5 then there is less than a 5% probability that the assay is false
  • tryptic peptide refers to the peptide that is formed by the treatment of a protein with trypsin.
  • RT refers to “retention time”, the elapsed time between injection and elution of an analyte.
  • m/z indicates the mass-to-charge ratio of an ion.
  • DP refers to the “declustering potential”, a voltage potential to dissolvate and dissociate ion clusters. It is also known as “fragmentor voltage” or “ion transfer capillary offset voltage” depending upon the manufacturer.
  • CE collision energy
  • LC-SRM-MS is an acronym for “selected reaction monitoring” and may be used interchangeably with “LC-MRM-MS”.
  • MS/MS represents tandem mass spectrometry, which is a type of mass spectrometry involving multiple stages of mass analysis with some form of fragmentation occurring in between the stages.
  • ISP refers to “internal standard peptides”.
  • HGS refers to “human gold standard”, which is comprised of a pool of plasma from healthy individuals.
  • MEF refers to “Mascot generic file”.
  • Mascot is a search engine that uses mass spectrometry data to identify proteins from primary sequence databases.
  • a Mascot generic file is a plain text (ASCII) file containing peak list information and, optionally, search parameters.
  • Mascot is a tool for assessing mass spectrometry data against protein sequences. This data can be acquired from any mass spectrometry technique including MALDI-TOF and electrospray ionization MS (including LC-SRM-MS) data. Mascot uses a ‘probability-based MOWSE’ algorithm to estimate the significance of a match (i.e., that the observed transitions correspond to a particular protein). The total score is the absolute probability that the observed match is a random event. They are reported as ⁇ 10 ⁇ LOG10(P), where P is the absolute probability. Lower probabilities, therefore, are reported as higher scores. For example, if the absolute probability that an observed match is random is 1 ⁇ 10 ⁇ 12 , Mascot reports it as 120.
  • compositions can include any of the transition ions described in Table II. These transition ions exist while peptides derived from the proteins in Table II are undergoing analysis with LC-SRM-MS. In one embodiment, the composition includes any of the transition ions described in Table II. In another embodiment, the composition includes any two transition ions described in Table II.
  • the composition includes, any 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 or 331 transition ions described in Table II.
  • each of the transition ions in the composition corresponds and/or is derived from a different protein.
  • 90% of the transition ions in the composition correspond with and/or are derived from a protein that no other transition ion in the composition corresponds.
  • 80, 70, 60, 50, 40, 30, 20, 10 or 0% of the transition ions in the composition correspond and/or are derived from a protein that no other transition ion in the composition corresponds.
  • compositions described herein included synthetic peptides.
  • Synthetic peptides can be used as controls for the abundance of proteins they are derived from and/or correspond. In certain embodiments, the abundance of the synthetic peptides is defined and the results are compared to
  • LC-SRM-MS results from a peptide found in a sample to the LC-SRM-MS results in the corresponding synthetic peptide. This allows for the calculation of the abundance of the peptide in the sample. In certain embodiments, by knowing the abundance of a peptide in a sample, the abundance of the protein it corresponded to is determined.
  • Synthetic peptides can be generated using any method known in the art. These methods can include recombinant expression techniques such as expression in bacteria or in vitro expression in eukaryotic cell lysate. These methods can also include solid phase synthesis.
  • the composition includes synthetic peptides selected from any of the peptides described in Table II. In another embodiment, the composition included any two peptides described in Table II. In other embodiments, the composition included, any 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 331 or more peptides described in Table II.
  • each of the peptides in the composition each corresponds with a different protein.
  • 90% of the peptides in the composition correspond with a protein that no other peptide in the composition corresponds with.
  • 80, 70, 60, 50, 40, 30, 20, 10 or 0% of the peptides in the composition correspond with from a protein that no other peptide in the composition corresponds with.
  • the peptides can be isotopically labeled.
  • the isotopes with which they can be labeled include 13 C, 2 H, 15 N and 18 O.
  • the peptides can also include a polar solvent.
  • Polar solvents can include water and mixtures of ethanol and water.
  • the samples described herein are taken from mammals. These mammals include rats, mice, rabbits, dogs, non-human primates and humans. Samples can be isolated from any tissue or organ or from any bodily fluid. Organs from which samples can be taken include skin, heart, lung, brain, kidney, liver, pancreas, spleen, testes, ovaries, gall bladder, thymus, thyroid, eye, ear, nose, mouth, tongue, penis, vagina, bladder or larynx. Tissues include nervous tissue, vascular tissue, muscle, bone, gastrointestinal tract, epithelial tissue, fibroblastic tissue, mucous membranes, hair, skin, reproductive tissue and connective tissue.
  • Body fluids and excretions include, blood, serum, saliva, urine, semen, vaginal secretions, excrement, bile, tears, lymph, ear wax, mucous, shed skin, finger nails, toe nails, skin oils, sweat and dandruff.
  • the relative abundance of one or more of the proteins represented by the transition ions and synthetic peptides described above can be used to diagnose, determine likelihood of the presence of, develop prognoses for and/or stage various diseases and pathologies.
  • the organ, tissue or bodily fluid or excretion from which the sample is taken is distinct from the organ, tissue or bodily fluid or excretion involved with the disease or pathology.
  • the presence of Alzheimer's disease can be determined from a sample taken from blood. Any type of body fluid may be used in the assays.
  • Transition ions and/or synthetic peptides described herein include cancer, metabolic diseases, neurological disorders, infectious diseases and cardiovascular disorders.
  • Proteins known to be over-expressed or under-expressed in Alzheimer's disease patients were obtained (through literature searching, experimental data or proprietary databases) as shown in Table I.
  • the set of proteins was reduced to a set of 357 proteins (see Table II) by prioritizing those proteins that have been previously detected my LC-MS/MS in blood (serum or plasma).
  • the five best peptides per protein for LC-SRM-MS assay were selected for as follows. Fully tryptic peptides having a monoisotopic mass of 800-3500 mass units, without miscleavages, not containing a cysteine (C) or a methionine (M), without having high miscleavage probability were selected. Further, any peptide that was bounded by KK, KR, RK or RR (either upstream or downstream) in the corresponding protein sequence was not selected.
  • Peptides were selected that were unique to the protein of interest. Peptides were only selected that match only one protein or protein family including analogues of the one protein, when searched in protein databases. Further, peptides which were observed in post-translational modified forms were not selected. Databases were assessed that showed expression of the proteins from which the peptides were isolated in human blood. Also databases of good quality MS peptides were searched. Peptides that appeared in human blood and were good quality MS peptides were favored. If these methods did not result in a sufficient number of peptides, rules were relaxed in a step wise manner to allow a greater number of peptides until a sufficient number was reached. The purity of the synthesized peptides was >75% and the amount of material was ⁇ 25 ⁇ g. Peptides did not need to be desalted.
  • the four best transitions per peptide are then selected and optimized based on experimental results from a mixture of synthetic peptides.
  • LC-SRM-MS-triggered MS/MS spectra was acquired for each synthetic peptide, using a QTRAP 5500 instrument.
  • One spectrum or the doubly—and one for the triply—charged precursor ion was collected for each of the identified peptides (Mascot score ⁇ 15), retention time was recorded for the four most intense b or y transition ions.
  • the selected transition ions possessed m/z values were at least 30 m/z above or below those of the precursor ions; they did not interfere with other synthetic peptides; and they were transition ions due to breakage of peptide bond at different sites.
  • the abundance of the following proteins can be assessed substantially simultaneously using the MS-LC-SRM-MS system described herein. Transitions from these proteins can be used to diagnose diseases including Alzheimer's disease when their abundance is measured in a biological specimen from a subject to be diagnosed for Alzheimer's disease. In one embodiment, the abundances of these proteins are measure in the blood serum of the subject.
  • IPSP HUMAN

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided herein are methods for developing selected reaction monitoring mass spectrometry (LC-SRM-MS) assays.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 14/390,447, filed Oct. 3, 2014, which is a national stage application, filed under 35 U.S.C. §371, of International Application No. PCT/U.S.2013/031520, filed on Mar. 14, 2013, which claims priority and benefit of U.S. Provisional Application No. 61/620,770, filed Apr. 5, 2012, the contents of each of which are incorporated by reference in their entirety.
  • BACKGROUND
  • Liquid Chromatography Selected Reaction Monitoring Mass Spectrometry (LC-SRM-MS) has emerged as an alternative technology to immunoassays for quantification of target proteins in biological samples. LC-SRM-MS methods are highly desirable because LC-SRM-MS methods provide both absolute structural specificity for the target protein and relative or absolute measurement of the target protein concentration when suitable internal standards are utilized. In contrast to immunoassays, LC-SRM-MS does not involve the manufacturing of biologics. LC-SRM-MS protein assays can be rapidly and inexpensively developed in contrast to the development of immunoassays. LC-SRM-MS are highly multiplexed, with simultaneous assays for hundreds of proteins performed in a single sample analysis. Using LC-SRM-MS in contrast to other proteomic technologies allows for complex assays for the identification diagnostic proteins in complex diseases such as cancer, autoimmune, and metabolic disease. In particular, the development of a highly multiplexed LC-SRM-MS assay that reproducibly identifies a specific set of proteins relevant to a clinical disease presents diagnostic advantages and efficiencies. To date, proteomic techniques have not enabled such assays to exist where hundreds of proteins can be accurately quantified within a single sample. The present disclosure provides accurate measurement of hundreds of Alzheimer's disease associated proteins within a single sample using multiplexed techniques.
  • SUMMARY
  • The present disclosure provides a LC-SRM-MS assay for the measurement of at least 357 Alzheimer's disease associated proteins in a single sample and in a single LC-SRM-MS assay. The assay was optimized for protein quantification and minimal interference among proteins in the assay. This LC-SRM-MS assay is novel because measurement of a large number of proteins in a single sample specifically associated with Alzheimer's disease has not been accomplished.
  • Simultaneous measurement of such a large number of proteins without interference among the proteins requires specific techniques to distinguish among the proteins. The current disclosure provides clinical utility as this assay was used for development of Alzheimer's disease diagnostic tests for the early detection of Alzheimer's disease, managing disease treatment, as well as testing for disease recurrence.
  • The object of the present disclosure is to provide improved methods for the use of LC-SRM-MS in the development of assays. Accordingly, provided herein is a method for developing peptides and transitions for a plurality of at least 200 proteins for a single sample selected reaction monitoring mass spectrometry (LC-SRM-MS) assay, including the steps of providing a set of 200 or more proteins; generating transitions for each protein; determining the Mascot score for SRM-triggered tandem mass spectrometry (MS/MS) spectra; performing collision energy optimization on the transitions; selecting peptides with transitions showing the greatest peak areas of their transitions; selecting a set of transitions for each peptide, wherein the transitions for each peptide have one of the four most intense b or y transition ions; the transitions for each peptide have m/z values of at least 30 m/z above or below those of the precursor ion; the transitions for each peptide do not interfere with transitions from other peptides; and the transitions represent transitions due to breakage of peptide bond at different sites of the protein.
  • In one embodiment of the method, each selected peptide in the set of peptides has a monoisotopic mass of 700-5000 Da; and does not contain a cysteine or a methionine or does not contain cysteine or methionine. In other embodiments, each selected peptide contains cysteine or methionine. In another embodiment, the transitions for each peptide have one of the four most intense b or y transition ions; have m/z values of at least 30 m/z above or below those of a precursor ion; do not interfere with transitions from other peptides; and represent transitions due to breakage of peptide bond at different sites of the protein.
  • In another embodiment of the method, the peptides do not include any peptide that is bounded by KK, KR, RK or RR (either upstream or downstream) in the corresponding protein sequence. Specifically, the amino acid is charged at pH 7.0. In another embodiment, each peptide of said set of peptides is unique to the corresponding protein. In yet another embodiment, the peptides do not include peptides which were observed in post-translational modified forms. In still another embodiment, each set of peptides is prioritized according to one or more of the following ordered set of criteria: unique peptides first, then non-unique; peptides with no observed post-translational modifications first, then those observed with post-translational modifications; peptides within the mass range 800-3500 Da first, then those outside of 800-3500 Da; and sorted by decreasing number of variant residues. In certain embodiments, the peptides are unique in that they only appear once among the peptides run in a single assay.
  • In one embodiment, each set of peptides is prioritized according to all of the ordered set of criteria. In another embodiment, each prioritized set of peptides contains 1-5 peptides.
  • In certain embodiments of the preceding methods, the two best peptides per protein and the two best transitions per peptide are selected based on experimental data resulting from LC-SRM-MS analysis of one or more of the following experimental samples: a biological disease sample, a biological control sample, and a mixture of synthetic peptides of interest. In a particular embodiment, the biological disease and biological control samples are processed using an immunodepletion method prior to LC-SRM-MS analysis. In another embodiment, the experimental samples contain internal standard peptides. In yet another embodiment, the LC-SRM-MS analysis method specifies a maximum of 7000 transitions, including transitions of the internal standard peptides and transitions. In other embodiments the method specifies a maximum of between 1000-7000, 2000-6000, 3000-5000 and about 3500 transitions.
  • In one embodiment of the method, the top two transitions per peptide are selected according to one or more of the following criteria the transitions exhibit the largest peak areas measured in either of the two biological experimental samples; the transitions are not interfered with by other ions; the transitions do not exhibit an elution profile that visually differs from those of other transitions of the same peptide; or the transitions are not beyond the detection limit of both of the two biological experimental samples.
  • In another embodiment of the method, the top two peptides per protein are selected according to one or more of the following criteria: one or more peptides exhibit two transitions and represent the largest combined peak areas of the two transitions; or one or more peptides exhibit one transition and represent the largest combined peak areas of the two transitions.
  • In another aspect, provided herein is an assay developed according to the foregoing method, and embodiments thereof In yet another aspect provided herein is the use of an assay developed according to the foregoing method, and embodiments thereof, to detect a plurality of at least 200 proteins in a single biological sample.
  • In another aspect, provided herein is an assay developed according to the foregoing method, and embodiments thereof. The disclosure provides a use of a composition, as described above, for the development of an assay to detect a disease, disorder or condition in a mammal.
  • The disclosure provides a method comprising analyzing a composition, as described above, using mass spectrometry. The method can use selected reaction monitoring mass spectrometry.
  • DETAILED DESCRIPTION
  • The present disclosure relates to methods for developing peptides and transitions for a single sample selected reaction monitoring mass spectrometry (LC-SRM-MS) assay, generally comprising the steps of providing a set of proteins; identifying representative proteolytic peptides for each protein according to a set of criteria; identifying representative transitions for each peptide according to another set of criteria; and selecting the optimum peptides per protein and the optimum transitions per peptide.
  • Selected reaction monitoring mass spectrometry is capable of highly sensitive and accurate protein quantification based on the quantification of proteolytic peptides. In terms of clinical utility, mass spectrometry-based assays are often compared to immunoassays (e.g.,
  • Enzyme-Linked Immunosorbent Assay, or ELISA), which have the ability to quantify specific analytes in large sample sets (e.g., 96 or 384 samples in parallel microtitre plate-based format). Until recently, mass spectrometry-based protein assays were not able to match these sample sizes or quantitative accuracy. Considerable time and expense is required to generate and characterize antibodies required for immunoassays. Increasingly efficient LC-SRM-MS assays, therefore, may surpass immunoassays such as ELISA in the rapid development of clinically useful, multiplexed protein assays.
  • LC-SRM-MS is a highly selective method of tandem mass spectrometry which has the potential to effectively filter out all molecules and contaminants except the desired analyte(s). This is particularly beneficial if the analysis sample is a complex mixture which may comprise several isobaric species within a defined analytical window. LC-SRM-MS methods may utilize a triple quadrupole mass spectrometer which, as is known in the art, includes three quadrupole rod sets. A first stage of mass selection is performed in the first quadrupole rod set, and the selectively transmitted ions are fragmented in the second quadrupole rod set. The resultant transition (product) ions are conveyed to the third quadrupole rod set, which performs a second stage of mass selection. The product ions transmitted through the third quadrupole rod set are measured by a detector, which generates a signal representative of the numbers of selectively transmitted product ions. The RF and DC potentials applied to the first and third quadrupoles are tuned to select (respectively) precursor and product ions that have m/z values lying within narrow specified ranges. By specifying the appropriate transitions (m/z values of precursor and product ions), a peptide corresponding to a targeted protein may be measured with high degrees of sensitivity and selectivity. Signal-to-noise ratio in LC_SRM_MS is often superior to conventional tandem mass spectrometry (MS/MS) experiments, that do not selectively target (filter) particular analytes but rather aim to survey all analytes in the sample.
  • Accordingly, provided herein is a method for developing peptides and transitions for a plurality of proteins for use in selected reaction monitoring mass spectrometry (LC-SRM-MS) assay. In a preferred embodiment, the assay involves the analysis of a single sample containing all analytes of interest (e.g., a proteolytic digest of plasma proteins). As to the selection of the protease(s) used, trypsin, which cleaves exclusively C-terminal to arginine and lysine residues, is a preferred choice to generate peptides because the masses of generated peptides are compatible with the detection ability of most mass spectrometers (up to 2000 m/z), the number and average length of generated peptides, and also the availability of efficient algorithms for the generation of databases of theoretical trypsin-generated peptides. High cleavage specificity, availability, and cost are other advantages of trypsin. Other suitable proteases will be known to those of skill in the art. Miscleavage is a factor for failure or ambiguous protein identification. A miscleavage can be defined as partial enzymatic protein cleavages generating peptides with internal missed cleavage sites reflecting the allowed number of sites (targeted amino acids) per peptide that were not cut. The presence of post-translational modifications (PTMs) is also a potential contributor to the problem of miscleavages.
  • LC-SRM-MS mass spectrometry involves the fragmentation of gas phase ions and occurs between the different stages of mass analysis. There are many methods used to fragment the ions and these can result in different types of fragmentation and thus different information about the structure and composition of the molecule. The transition ions observed in an LC-SRM-MS spectrum result from several different factors, which include, but are not limited to, the primary sequence, the amount of internal energy, the means of introducing the energy, and charge state.
  • Transitions must carry at least one charge to be detected. An ion is categorized as either a, b or c if the charge is on a transition comprising the original N terminus of the peptide, whereas the ion is categorized as either x, y or z if the charge is on a transition comprising the original C terminus of the peptide. A subscript indicates the number of residues in the transition (e.g., one peptide residue in x1, two peptide residues in y2, and three peptide residues in z3, etc.).
  • In a generic peptide repeat unit represented —N—C(O)—C—, an x ion and an a ion resulting from cleavage of the carbonyl-carbon bond (i.e., C(O)—C). The x ion is an acylium ion, and the a ion is an iminium ion. A y ion and a b ion result from cleavage of the carbonyl-nitrogen bond (i.e., C(O)—N, also known as the amide bond). In this case, the y ion is an ammonium ion and the b ion is an acylium ion. Finally, a z ion and a c ion result from cleavage of the nitrogen-carbon (i.e., C—N) bond. The z ion is a carbocation and the c ion is an ammonium ion.
  • Superscripts are sometimes used to indicate neutral losses in addition to the backbone fragmentation, for example, * for loss of ammonia and ° for loss of water. In addition to protons, c ions and y ions may abstract an additional proton from the precursor peptide. In electrospray ionization, tryptic peptides may carry more than one charge.
  • Internal transitions arise from double backbone cleavage. These may be formed by a combination of b-type and y-type cleavage (i.e., cleavage producing b and y ions). Internal cleavage ions may also be formed by a combination of a-type and y-type cleavage. An internal transition with a single side chain formed by a combination of a-type and y-type cleavage is called an iminium ion (sometimes also referred to as an imonium or immonium ion). These ions are labeled with the one letter code for the corresponding amino acid.
  • Low energy CID (i.e., collision induced dissociation in a triple quadrupole or an ion trap) involves the fragmentation of a peptide carrying a positive charge, primarily along its backbone, to generate primarily a, b and y ions.
  • In one aspect, provided herein is a method for developing peptides and transitions for a plurality of proteins for a single sample selected reaction monitoring mass spectrometry (LC-SRM-MS) assay: (a) providing a panel or plurality of proteins; (b) identifying a set of peptides for each protein, wherein (i) each peptide in the set of peptides corresponds to a transition of said protein; (ii) the peptides have a monoisotopic mass of 700-5000 Da; and (iii) the peptides do not contain cysteine or does not contain cysteine or methionine. In other embodiments, each selected peptide contains cysteine or methionine. ; and; (c) identifying a set of transitions for each peptide, wherein (i) the transitions for each peptide have one of the four most intense b or y transition ions; (ii) the transitions for each peptide have m/z values of at least 30 m/z above or below those of the precursor ion; (iii) the transitions for each peptide do not interfere with transitions from other peptides; and (iv) the transitions represent transitions due to breakage of peptide bond at different sites of the protein; and (d) selecting the peptides for each protein that best fit the criteria of step (b) and the transitions per peptide that best fit the criteria of step (c); thereby developing peptides and transitions for a LC-SRM-MS assay.
  • By plurality of proteins it is meant that at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 150, 200, 250, 300, 400, 450, 500 or more proteins. In certain embodiments, the plurality of proteins can encompass between 2 and 10, 10 and 20, 20 and 50, 50 and 100, 100 and 200 or 200 and 500 proteins. In other embodiments, the plurality of proteins can encompass between 250 and 450; or 300 and 400 proteins.
  • Trypsin-like proteases cleave peptide bonds following a positively charged amino acid (e.g., lysine (K) or arginine (R)). This specificity is driven by the residue which lies at the base of the enzyme's 51 pocket (generally a negatively charged aspartic acid or glutamic acid). Accordingly, in one embodiment of the method, the peptides do not include any peptide that is bounded by KK, KR, RK or RR, either upstream of downstream in the corresponding protein sequence. In another embodiment, each peptide of said set of peptides is unique to the corresponding protein.
  • Post-translational modification (PTM) is the chemical modification of a protein after its translation. It can include any modification following translation, including cleavage. It is one of the later steps in protein biosynthesis, and thus gene expression, for many proteins. It is desirable to avoid such peptides for the purpose of protein identification. Thus, in another embodiment, the peptides do not include peptides which were observed in post-translational modified forms.
  • In still another embodiment, each set of peptides is prioritized according to one or more of the following ordered set of criteria: (a) unique peptides first, then non-unique; (b) peptides with no observed post-translational modifications first, then those observed with post-translational modifications; (c) peptides within the mass range 800-3500 Da first, then those outside of 800-3500 Da; and (d) sorted by decreasing number of variant residues. In one embodiment, each set of peptides is prioritized according to all of the ordered set of criteria. In another embodiment, each prioritized set of peptides contains 1-5 peptides.
  • In certain embodiments, one or more liquid chromatography (LC) purification steps are performed prior to a subsequent LC-SRM-MS analysis step. Traditional LC analysis relies on the chemical interactions between sample components and column packing materials, where laminar flow of the sample through the column is the basis for separation of the analyte of interest from the test sample. The skilled artisan will understand that separation in such columns is a diffusional process. A variety of column packing materials are available for chromatographic separation of samples, and selection of an appropriate separation protocol is an empirical process that depends on the sample characteristics, the analyte of interest, the interfering substances present and their characteristics, etc. Various packing chemistries can be used depending on the needs (e.g., structure, polarity, and solubility of compounds being purified). In various embodiments the columns are polar, ion exchange (both cation and anion), hydrophobic interaction, phenyl, C-2, C-8, C-18 columns, polar coating on porous polymer, or others that are commercially available. During chromatography, the separation of materials is effected by variables such as choice of eluant (also known as a “mobile phase”), choice of gradient elution and the gradient conditions, temperature, etc. In certain embodiments, an analyte may be purified by applying a sample to a column under conditions where the analyte of interest is reversibly retained by the column packing material, while one or more other materials are not retained. In these embodiments, a first mobile phase condition can be employed where the analyte of interest is retained by the column, and a second mobile phase condition can subsequently be employed to remove retained material from the column, once the non-retained materials are washed through. Alternatively, an analyte may be purified by applying a sample to a column under mobile phase conditions where the analyte of interest elutes at a differential rate in comparison to one or more other materials. As discussed above, such procedures may enrich the amount of one or more analytes of interest relative to one or more other components of the sample.
  • The following parameters are used to specify an LC-SRM-MS assay of a protein under a particular LC-SRM-MS system: (1) a tryptic peptide of the protein; (2) the retention time (RT) of the peptide; (3) the m/z value of the peptide precursor ion; (4) the declustering potential used to ionize the precursor ion; (5) m/z value of a fragment ion generated from the peptide precursor ion; and (6) the collision energy (CE) used to fragment the peptide precursor ion that is optimized for the particular peptide.
  • In certain embodiments of the preceding methods, the two best peptides per protein and the two best transitions per peptide are selected based on experimental data resulting from LC-SRM-MS analysis of one or more of the following experimental samples: a biological disease sample, a biological control sample, and a mixture of synthetic peptides of interest. Biological samples include body fluids, tissue samples and cell samples. Body fluid samples can include blood, serum, sputum, genital secretions, cerebrospinal fluid, sweat or excreta such as urine. Body tissue samples can include lung, skin, brain, spine, bone, muscle, epithelial, liver, kidney, pancreas, gastrointestinal tract, cardiovascular tissue, heart or nervous tissue. Biological disease samples can include cancer, benign tumors, infected tissue and tissue subject to trauma. In a particular embodiment, the biological disease and biological control samples are processed using an immunodepletion method prior to LC-SRM-MS analysis. Immunodepletion involves removal of one or more proteins through the use of antibodies. Numerous immunodepletion techniques are known to those of skill in the art. In another embodiment, the biological disease and biological control samples are processed using an immunocapture method prior to LC-SRM-MS analysis. Immunocapture involves selection of one or more proteins through the use of antibodies. Numerous immunocapture techniques are known to those of skill in the art.
  • To facilitate accurate quantification of the peptide transitions by the methods disclosed herein, a set of isotopically-labeled synthetic versions of the peptides of interest may be added in known amounts to the sample for use as internal standards. Since the isotopically-labeled peptides have physical and chemical properties identical to the corresponding surrogate peptide, they co-elute from the chromatographic column and are easily identifiable on the resultant mass spectrum. The addition of the labeled standards may occur before or after proteolytic digestion. Methods of synthesizing isotopically-labeled peptides will be known to those of skill in the art. Thus, in another embodiment, the experimental samples contain internal standard peptides. Other embodiments may utilize external standards or other expedients for peptide quantification.
  • In yet another embodiment, the LC-SRM-MS analysis method specifies a maximum of 7000 transitions, including transitions of the internal standard peptides and transitions. As used herein, the term “transition” refers to the specific pair of m/z (mass-to-charge) values associated with the precursor and transition ions corresponding to a specific peptide and, therefore, to a specific protein.
  • In one embodiment of the method, the top two transitions per peptide are selected according to one or more of the following criteria (A): (1) the transitions exhibit the largest peak areas measured in either of the two biological experimental samples; (2) the transitions are not interfered with by other ions; (3) the transitions do not exhibit an elution profile that visually differs from those of other transitions of the same peptide; (4) the transitions are not beyond the detection limit of both of the two biological experimental samples; (5) the transitions do not exhibit interferences.
  • For the mass spectrometric analysis of a particular peptide, the quantities of the peptide transitions in the sample may be determined by integration of the relevant mass spectral peak areas, as known in the prior art. When isotopically-labeled internal standards are used, as described above, the quantities of the peptide transitions of interest are established via an empirically-derived or predicted relationship between peptide transition quantity (which may be expressed as concentration) and the area ratio of the peptide transition and internal standard peaks at specified transitions.
  • In another embodiment of the method, the top two peptides per protein are selected according to one or more of the following criteria (B): (1) one or more peptides exhibit two transitions according to criteria (A) and represent the largest combined peak areas of the two transitions according to criteria (A); and (2) one or more peptides exhibit one transition according to criteria (A) and represent the largest combined peak areas of the two transitions according to criteria (A).
  • Assays
  • The methods of the present disclosure allow the quantification of high abundance and low abundance plasma proteins that serve as detectable markers for various health states (including diseases and disorders), thus forming the basis for assays that can be used to determine the differences between normal levels of detectable markers and changes of such detectable markers that are indicative of changes in health status. In one aspect of the disclosure, provided herein is an assay developed according to the foregoing method, and embodiments thereof. In another aspect, provided herein is the use of an assay developed according to the foregoing method, and embodiments thereof, to detect a plurality of at least 200, 300 or more proteins in a single sample.
  • Definitions
  • As used herein, “transition” refers to a pair of m/z values associated with a peptide. Normally, labeled synthetic peptides are used as quality controls in SRM assays. However, for very large SRM assays, labeled peptides are not feasible. However, correlation techniques (Keary, Butler et al. 2008) were used to confirm the identity of protein transitions with high confidence. The correlation between a pair of transitions is obtained from their expression profile over all samples in the training set study detailed below. As expected, transitions from the same peptide are highly correlated. Similarly, transitions from different peptide fragments of the same protein are also highly correlated. In contrast, transitions form different proteins are not highly correlated. This methodology enables a statistical analysis of the quality of the protein's SRM assay. For example, if the correlation of the transitions from the two peptides from the same protein is above 0.5 then there is less than a 5% probability that the assay is false
  • As used herein, a “tryptic peptide” refers to the peptide that is formed by the treatment of a protein with trypsin.
  • As used herein, “RT” refers to “retention time”, the elapsed time between injection and elution of an analyte.
  • As used herein, “m/z” indicates the mass-to-charge ratio of an ion.
  • As used herein “DP” refers to the “declustering potential”, a voltage potential to dissolvate and dissociate ion clusters. It is also known as “fragmentor voltage” or “ion transfer capillary offset voltage” depending upon the manufacturer.
  • As used herein, “CE” refers to “collision energy”, the amount of energy precursor ions receive as they are accelerated into the collision cell.
  • As used herein, “LC-SRM-MS” is an acronym for “selected reaction monitoring” and may be used interchangeably with “LC-MRM-MS”.
  • As used herein, “MS/MS” represents tandem mass spectrometry, which is a type of mass spectrometry involving multiple stages of mass analysis with some form of fragmentation occurring in between the stages.
  • As used herein, “ISP” refers to “internal standard peptides”.
  • As used herein, “HGS” refers to “human gold standard”, which is comprised of a pool of plasma from healthy individuals.
  • As used herein, “MGF” refers to “Mascot generic file”. Mascot is a search engine that uses mass spectrometry data to identify proteins from primary sequence databases. A Mascot generic file is a plain text (ASCII) file containing peak list information and, optionally, search parameters.
  • Mascot is a tool for assessing mass spectrometry data against protein sequences. This data can be acquired from any mass spectrometry technique including MALDI-TOF and electrospray ionization MS (including LC-SRM-MS) data. Mascot uses a ‘probability-based MOWSE’ algorithm to estimate the significance of a match (i.e., that the observed transitions correspond to a particular protein). The total score is the absolute probability that the observed match is a random event. They are reported as −10×LOG10(P), where P is the absolute probability. Lower probabilities, therefore, are reported as higher scores. For example, if the absolute probability that an observed match is random is 1×10−12, Mascot reports it as 120.
  • The disclosure also provides compositions. These compositions can include any of the transition ions described in Table II. These transition ions exist while peptides derived from the proteins in Table II are undergoing analysis with LC-SRM-MS. In one embodiment, the composition includes any of the transition ions described in Table II. In another embodiment, the composition includes any two transition ions described in Table II. In other embodiments, the composition includes, any 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 or 331 transition ions described in Table II.
  • In another embodiment, each of the transition ions in the composition corresponds and/or is derived from a different protein. In another embodiment, 90% of the transition ions in the composition correspond with and/or are derived from a protein that no other transition ion in the composition corresponds. In other embodiments, 80, 70, 60, 50, 40, 30, 20, 10 or 0% of the transition ions in the composition correspond and/or are derived from a protein that no other transition ion in the composition corresponds.
  • The compositions described herein included synthetic peptides. Synthetic peptides can be used as controls for the abundance of proteins they are derived from and/or correspond. In certain embodiments, the abundance of the synthetic peptides is defined and the results are compared to
  • LC-SRM-MS results from a peptide found in a sample to the LC-SRM-MS results in the corresponding synthetic peptide. This allows for the calculation of the abundance of the peptide in the sample. In certain embodiments, by knowing the abundance of a peptide in a sample, the abundance of the protein it corresponded to is determined.
  • Synthetic peptides can be generated using any method known in the art. These methods can include recombinant expression techniques such as expression in bacteria or in vitro expression in eukaryotic cell lysate. These methods can also include solid phase synthesis.
  • In one embodiment, the composition includes synthetic peptides selected from any of the peptides described in Table II. In another embodiment, the composition included any two peptides described in Table II. In other embodiments, the composition included, any 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 331 or more peptides described in Table II.
  • In another embodiment, each of the peptides in the composition each corresponds with a different protein. In another embodiment, 90% of the peptides in the composition correspond with a protein that no other peptide in the composition corresponds with. In other embodiments, 80, 70, 60, 50, 40, 30, 20, 10 or 0% of the peptides in the composition correspond with from a protein that no other peptide in the composition corresponds with.
  • The peptides can be isotopically labeled. The isotopes with which they can be labeled include 13C, 2H, 15N and 18O. The peptides can also include a polar solvent. Polar solvents can include water and mixtures of ethanol and water.
  • In certain embodiments, the samples described herein are taken from mammals. These mammals include rats, mice, rabbits, dogs, non-human primates and humans. Samples can be isolated from any tissue or organ or from any bodily fluid. Organs from which samples can be taken include skin, heart, lung, brain, kidney, liver, pancreas, spleen, testes, ovaries, gall bladder, thymus, thyroid, eye, ear, nose, mouth, tongue, penis, vagina, bladder or larynx. Tissues include nervous tissue, vascular tissue, muscle, bone, gastrointestinal tract, epithelial tissue, fibroblastic tissue, mucous membranes, hair, skin, reproductive tissue and connective tissue. Body fluids and excretions include, blood, serum, saliva, urine, semen, vaginal secretions, excrement, bile, tears, lymph, ear wax, mucous, shed skin, finger nails, toe nails, skin oils, sweat and dandruff.
  • The relative abundance of one or more of the proteins represented by the transition ions and synthetic peptides described above can be used to diagnose, determine likelihood of the presence of, develop prognoses for and/or stage various diseases and pathologies. Often the organ, tissue or bodily fluid or excretion from which the sample is taken is distinct from the organ, tissue or bodily fluid or excretion involved with the disease or pathology. For example, the presence of Alzheimer's disease can be determined from a sample taken from blood. Any type of body fluid may be used in the assays.
  • Diseases and pathologies that status, diagnosis, presence or prognosis can be found using the transition ions and/or synthetic peptides described herein include cancer, metabolic diseases, neurological disorders, infectious diseases and cardiovascular disorders.
  • EXAMPLES I. Exemplary Standard Operating Procedure Protein Selection
  • Proteins known to be over-expressed or under-expressed in Alzheimer's disease patients were obtained (through literature searching, experimental data or proprietary databases) as shown in Table I. The set of proteins was reduced to a set of 357 proteins (see Table II) by prioritizing those proteins that have been previously detected my LC-MS/MS in blood (serum or plasma).
  • Selected proteins were then identified by their UniProt protein name and accession, their Entrez gene symbol and gene name, the isoform accession and their amino acid sequence. The canonical isoform in UniProt was selected if a protein has more than one isoform.
  • Peptide Selection for Synthesis
  • The five best peptides per protein for LC-SRM-MS assay were selected for as follows. Fully tryptic peptides having a monoisotopic mass of 800-3500 mass units, without miscleavages, not containing a cysteine (C) or a methionine (M), without having high miscleavage probability were selected. Further, any peptide that was bounded by KK, KR, RK or RR (either upstream or downstream) in the corresponding protein sequence was not selected.
  • Peptides were selected that were unique to the protein of interest. Peptides were only selected that match only one protein or protein family including analogues of the one protein, when searched in protein databases. Further, peptides which were observed in post-translational modified forms were not selected. Databases were assessed that showed expression of the proteins from which the peptides were isolated in human blood. Also databases of good quality MS peptides were searched. Peptides that appeared in human blood and were good quality MS peptides were favored. If these methods did not result in a sufficient number of peptides, rules were relaxed in a step wise manner to allow a greater number of peptides until a sufficient number was reached. The purity of the synthesized peptides was >75% and the amount of material was ≧25 μg. Peptides did not need to be desalted.
  • The four best transitions per peptide are then selected and optimized based on experimental results from a mixture of synthetic peptides. LC-SRM-MS-triggered MS/MS spectra was acquired for each synthetic peptide, using a QTRAP 5500 instrument. One spectrum or the doubly—and one for the triply—charged precursor ion was collected for each of the identified peptides (Mascot score ≧15), retention time was recorded for the four most intense b or y transition ions. The selected transition ions possessed m/z values were at least 30 m/z above or below those of the precursor ions; they did not interfere with other synthetic peptides; and they were transition ions due to breakage of peptide bond at different sites.
  • If an insufficient percentage of the synthetic peptides were acquired, the steps were repeated. In some cases, the second transition with first with theoretical y+ ions with m/z values at least 30 m/z above those of the doubly charged precursor ion was selected if an insufficient percentage was acquired. Peptides that failed to trigger the acquisition of MS/MS spectrum were discarded.
  • II. Exemplary Protein List
  • The abundance of the following proteins can be assessed substantially simultaneously using the MS-LC-SRM-MS system described herein. Transitions from these proteins can be used to diagnose diseases including Alzheimer's disease when their abundance is measured in a biological specimen from a subject to be diagnosed for Alzheimer's disease. In one embodiment, the abundances of these proteins are measure in the blood serum of the subject.
  • III. Exemplary LC-SIM-MS-Triggered MS/MS Results (Table I)
  • Retention Declustering Collision
    Protein Peptide Transition Q1 Q3 Time Potential Energy
    ITIH1_HUMAN GSLVQASEANLQAAQDFV GSLVQASEANLQAAQDFVR_ 1002.5 1232.6 23.1 130.3 49.6
    R 1002.5_1232.6
    PEDF_HUMAN TSLEDFYLDEER TSLEDFYLDEER_758.8_1215.4 758.8 1215.4 20.3 98.9 38.9
    PON1_HUMAN LIALTLLGMGLALFR LIALTLLGMGLALFR_801.5_ 801.5 1191.6 23.7 104.4 37.8
    1191.6
    GELS_HUMAN EVQGFESATFLGYFK EVQGFESATFLGYFK_861.9_ 861.9 1162.5 23.3 112.2 40.4
    1162.5
    HEMO_HUMAN LYLVQGTQVYVFLTK LYLVQGTQVYVFLTK_886.5_ 886.5 1155.7 23.2 115.4 41.5
    1155.7
    PEDF_HUMAN LQSLFDSPDFSK LQSLFDSPDFSK_692.3_1142.5 692.3 1142.5 20.4 90.3 33
    ARSA_HUMAN QSLFFYPSYPDEVR QSLFFYPSYPDEVR_874.4_ 874.4 1125.6 23.1 113.8 44
    1125.6
    VTNC_HUMAN IYISGMAPRPSLAK IYISGMAPRPSLAK_501.9_ 501.9 1114.5 22.5 65.8 26.1
    1114.5
    PEDF_HUMAN TSLEDFYLDEER TSLEDFYLDEER_758.8_10864 758.8 1086.4 20.3 98.9 38.9
    F13A_HUMAN LIASMSSDSLR LIASMSSDSLR_590.3_1066.3 590.3 1066.3 14 77.1 28.5
    MTOR_HUMAN LIHQLLTDIGR LIHQLLTDIGR_639.9_1052.6 639.9 1052.6 19.8 83.5 36.7
    CBPN_HUMAN EALIQFLEQVHQGIK EALIQFLEQVHQGIK_585_ 585 1051.7 23.1 76.5 30.4
    1051.7
    CLUS_HUMAN ELDESLQVAER ELDESLQVAER_644.8_1046.4 644.8 1046.4 13.4 84.2 36.9
    APOA4_HUMAN ALVQQMEQLR ALVQQMEQLR_608.3_1031.6 608.3 1031.6 17.4 79.5 29.3
    ITIH2_HUMAN FYNQVSTPLLR FYNQVSTPLLR_669.4_1027.6 669.4 1027.6 18.3 87.3 35
    NMDE1_HUMAN FTYDLYLVTNGK FTYDLYLVTNGK_717.4_ 717.4 1022.5 22 93.5 37.1
    1022.5
    KCC1G_HUMAN DIYPSVSLQIQK DIYPSVSLQIQK_695.88_999.6 695.88 999.6 17.14 90.8 33.1
    P4K2A_HUMAN AYPFYWAWLPQAK AYPFYWAWLPQAK_820.92_ 820.92 999.5 25.1 106.9 38.6
    999.5
    TRFR_HUMAN ESDHFSTELDDITVTDTYLS ESDHFSTELDDITVTDTYLS 863.4 999.5 20.37 112.4 38.6
    ATK ATK_863.4_999.5
    A1BG_HUMAN TPGAAANLELIFVGPQHAG TPGAAANLELIFVGPQHAG 766.07 999.5 21.76 99.8 42.6
    NYR NYR_766.07_999.5
    HCN2_HUMAN AEALPPEAADEGGPR AEALPPEAADEGGPR_740.36_ 740.36 998.5 10.48 96.5 41.1
    998.5
    CSF1R_HUMAN VIPGPPALTLVPAELVR VIPGPPALTLVPAELVR_871.5_ 871.5 997.6 23.3 113.4 46.8
    997.6
    TNF6B_HUMAN LLQALEAPEGWGPTPR LLQALEAPEGWGPTPR_867.96_ 867.96 996.5 19.64 113 40.7
    996.5
    A1BG_HUMAN LETPDFQLFK LETPDFQLFK_619.3_995.6 619.3 995.6 23.1 80.9 29.7
    TADBP_HUMAN FGGNPGGFGNQGGFGNSR FGGNPGGFGNQGGFGNSR_ 863.89 993.5 14.09 112.4 46.5
    863.89_993.5
    PVRL1_HUMAN VEFLRPSFTDGTIR VEFLRPSFTDGTIR_546.63_ 546.63 993.5 18.3 71.5 31.4
    993.5
    LCN8_HUMAN IVGSEIDSTGK IVGSEIDSTGK_553.29_992.5 553.29 992.5 9.21 72.4 26.8
    SLIK1_HUMAN DIDPGAFQDLNK DIDPGAFQDLNK_666.83_ 666.83 989.5 15.66 87 31.8
    989.5
    NDF6_HUMAN NYIWALSEILR NYIWALSEILR_689.38_987.6 689.38 987.6 25.16 89.9 32.8
    ANGT_HUMAN ADSQAQLLLSTVVGVFTAP ADSQAQLLLSTVVGVFTAP 822.46 983.6 25.25 107.1 39.5
    GLHLK GLHLK_822.46_983.6
    SCN2A_HUMAN FDPDATQFIEFAK FDPDATQFIEFAK_764.87_ 764.87 983.5 20.36 99.7 36.2
    983.5
    AT12A_HUMAN TPEIYSVELSGTK TPEIYSVELSGTK_712.37_ 712.37 983.5 15.53 92.9 36.8
    983.5
    DIRA2_HUMAN ESYIPTVEDTYR ESYIPTVEDTYR_736.85_980.5 736.85 980.5 15.41 96.1 31.9
    FINC_HUMAN SYTITGLQPGTDYK SYTITGLQPGTDYK_772.39_ 772.39 978.5 15.02 100.6 36.5
    978.5
    PON1_HUMAN LIALTLLGMGLALFR LIALTLLGMGLALFR_801.5_ 801.5 977.5 23.7 104.4 37.8
    977.5
    MMP17_HUMAN VLDGELEVAPGYPQSTAR VLDGELEVAPGYPQSTAR_ 951.48 976.5 15.62 123.7 44.4
    951.48_976.5
    MAP4_HUMAN VALSSETEVALAR VALSSETEVALAR_673.37_ 673.37 975.5 14.63 87.9 41.1
    975.5
    AGAP2_HUMAN YEQLLFLAPLSTSEEPLGR YEQLLFLAPLSTSEEPLGR_ 721.72 975.5 24.92 94.1 37.4
    721.72_975.5
    CHAD_HUMAN NNFPVLAANSFR NNFPVLAANSFR_675.35_ 675.35 974.5 18.58 88.1 32.2
    974.5
    LCK_HUMAN AQSLTTGQEGFIPFNFVAK AQSLTTGQEGFIPFNFVAK_ 685.69 973.5 23.14 89.5 32.5
    685.69973.5
    PSMG1_HUMAN TSESTGSLPSPFLR TSESTGSLPSPFLR_739.88_ 739.88 973.5 17.54 96.4 44.1
    973.5
    ITIH4_HUMAN LPEGSVSLIILLTDGDPTVG LPEGSVSLIILLTDGDPTVGE 865.13 970.5 25.08 112.6 38.7
    ETNPR TNPR_865.13_970.5
    ATS1_HUMAN GAFYLLGEAYFIQPLPAAS GAFYLLGEAYFIQPLPAASE 1157.1 968.5 25.09 150.3 50.4
    ER R_1157.1968.5
    CADH7_HUMAN VVYSILQGQPYFSVEPK VVYSILQGQPYFSVEPK_652.02_ 652.02 966.5 21.48 85.1 30.8
    966.5
    GRIA2_HUMAN GYHYIIANLGFTDGDLLK GYHYIIANLGFTDGDLLK_ 670.68 965.5 23.39 87.5 28.8
    670.68_965.5
    CAD22_HUMAN LLEPESEFIIK LLEPESEFIIK_659.37_962.5 659.37 962.5 19.62 86.1 31.5
    ARSA_HUMAN QSLFFYPSYPDEVR QSLFFYPSYPDEVR_874.42_ 874.42 962.5 21.26 113.8 41
    962.5
    ANO3_HUMAN AEQVNIEENK AEQVNIEENK_581.27_961.5 581.27 961.5 6.06 76 28.1
    GAS6_HUMAN IAVAGDLFQPER IAVAGDLFQPER_658.35_ 658.35 961.5 17.91 85.9 31.5
    961.5
    PTPRT_HUMAN AVGSLDPSADLSSQR AVGSLDPSADLSSQR_751.88_ 751.88 960.5 13.34 98 35.6
    960.5
    PAQR6_HUMAN FLELESPGLSK FLELESPGLSK_610.33_959.5 610.33 959.5 17.4 79.7 29.4
    HEMO_HUMAN NFPSPVDAAFR NFPSPVDAAFR_610.81_959.5 610.81 959.5 17.76 79.8 29.4
    CB085_HUMAN GSLALPFPADVQGK GSLALPFPADVQGK_700.38_ 700.38 958.5 19.32 91.3 33.3
    958.5
    CO4A_HUMAN VTASDPLDTLGSEGALSPG VTASDPLDTLGSEGALSPG  828.44 956.6 24.54 107.9 39.8
    GVASLLR GVASLLR_828.44_956.6
    HS3S5_HUMAN LITEPLPELQLVEK LITEPLPELQLVEK_811.47_ 811.47 955.5 21.7 105.7 41.2
    955.5
    F13A_HUMAN LIASMSSDSLR LIASMSSDSLR_590.3_953.2 590.3 953.2 14 77.1 28.5
    MMP9_HUMAN SLGPALLLLQK SLGPALLLLQK_576.87_952.6 576.87 952.6 22.28 75.4 27.9
    ITAM_HUMAN LFTALFPFEK LFTALFPFEK_606.84_952.5 606.84 952.5 24.87 79.3 29.2
    KCC2A_HUMAN FYFENLWSR FYFENLWSR_631.3_951.5 631.3 951.5 23.34 82.4 30.3
    AGAL_HUMAN NFADIDDSWK NFADIDDSWK_605.77_949.4 605.77 949.4 17.18 79.1 29.2
    CAD19_HUMAN AVEPESEFVIK AVEPESEFVIK_624.33_948.5 624.33 948.5 15.88 81.5 30
    SEPP1_HUMAN LVYHLGLPFSFLTFPYVEE LVYHLGLPFSFLTFPYVEEAIK_ 861.8 948.5 25.31 112.2 41.5
    AIK 861.8_948.5
    PCDA5_HUMAN LNASDADEGINK LNASDADEGINK_623.8_948.4 623.8 948.4 9.07 81.5 29.9
    ADA12_HUMAN FGFGGSTDSGPIR FGFGGSTDSGPIR_649.31_ 649.31 946.5 15.66 84.8 34.1
    946.5
    CHAD_HUMAN YLETLWLDNTNLEK YLETLWLDNTNLEK_876.45_ 876.45 946.5 21.97 114.1 41.1
    946.5
    PDIA2_HUMAN ADFPVDEELGLDLGDLSR ADFPVDEELGLDLGDLSR_ 980.98 945.5 23.42 127.5 45.7
    980.98_945.5
    41_HUMAN NFMESVPEPR NFMESVPEPR_603.3_944.4 603.3 944.4 16 78.8 32
    PON1_HUMAN IQNILTEEPK IQNILTEEPK_592.83_943.5 592.83 943.5 14.3 77.5 28.6
    KLK3_HUMAN LSEPAELTDAVK LSEPAELTDAVK_636.84_ 636.84 943.5 14.48 83.2 30.5
    943.5
    LAMB2_HUMAN SLADVDAILAR SLADVDAILAR_572.32_ 572.32 943.5 19.32 74.8 27.7
    943.5
    NFL_HUMAN VLEAELLVLR VLEAELLVLR_577.86_942.6 577.86 942.6 21.86 75.5 27.9
    IPSP_HUMAN AAAATGTIFTFR AAAATGTIFTFR_613.83_ 613.83 942.5 18.99 80.2 29.5
    942.5
    PEDF_HUMAN LQSLFDSPDFSK LQSLFDSPDFSK_692.3_942.4 692.3 942.4 20.4 90.3 33
    F123A_HUMAN APAAPDPASVDPPSDPSAD APAAPDPASVDPPSDPSAD 966.95 941.4 11.35 125.7 51
    R R_966.95_941.4
    GALR3_HUMAN FLWAAVGPAGAAAAEAR FLWAAVGPAGAAAAEAR_ 814.9 941.2 20.2 106.1 41.4
    814.9_941.2
    SIG12_HUMAN NIPVATNNPAR NIPVATNNPAR_583.82_ 583.82 939.5 9.32 76.3 28.2
    939.5
    FCGRN_HUMAN SGLPAPWISLR SGLPAPWISLR_598.84_939.5 598.84 939.5 21.69 78.3 28.8
    CBPN_HUMAN EALIQFLEQVHQGIK EALIQFLEQVHQGIK_585_ 585 938.6 23.1 76.5 30.4
    938.6
    LAT2_HUMAN DIFGGLAGFLR DIFGGLAGFLR_583.32_ 583.32 937.5 25.16 76.2 28.2
    937.5
    MMP9_HUMAN AFALWSAVTPLTFTR AFALWSAVTPLTFTR_840.96_ 840.96 934.5 25.11 109.5 36.5
    934.5
    APOL4_HUMAN NLTPYVAIEDK NLTPYVAIEDK_631.84_ 631.84 934.5 15.55 82.5 27.3
    934.5
    TRFR_HUMAN ESDHFSTELDDITVTDTYLS ESDHFSTELDDITVTDTYLS 863.4 933.4 20.37 112.4 47.6
    ATK ATK_863.4_933.4
    APOA4_HUMAN ALVQQMEQLR ALVQQMEQLR_608.3_932.5 608.3 932.5 17.4 79.5 29.3
    HEMO_HUMAN SGAQATWIELPWPHEK SGAQATWTELPWPHEK_613.3_ 613.3 932.4 19.54 80.1 25.8
    932.4
    MAP4_HUMAN TDYIPLLDVDEK TDYIPLLDVDEK_710.86_ 710.86 928.5 20.87 92.7 33.8
    928.5
    F13A_HUMAN STVLTIPEIIIK STVLTIPEIIIK_663.9_926.6 663.9 926.6 23.2 86.6 31.7
    LIPE_HUMAN DDFSLGNVHLIGYSLGAHV DDFSLGNVHLIGYSLGAHV 974.49 926.5 24.54 126.7 47.2
    AGYAGNFVK AGYAGNFVK_974.49_926.5
    PKDRE_HUMAN GAQAAVSGAPGGLLR GAQAAVSGAPGGLLR_662.87_ 662.87 926.5 14.12 86.5 40.7
    926.5
    GALR3_HUMAN LLAGGGQGPEPR LLAGGGQGPEPR_576.31_92 576.31 925.4 9.45 75.3 27.9
    5.4
    ITIH2_HUMAN SSALDMENFR SSALDMENFR_585.3_924.3 585.3 924.3 16.3 76.5 34.3
    CLUS_HUMAN ASSIIDELFQDR ASSIIDELFQDR_697.35_922. 697.35 922.4 23.8 91 33.2
    4
    TYRO_HUMAN LTGDENFTIPYWDWR LTGDENFTIPYWDWR_956.9 956.95 922.4 23.81 124.4 44.6
    5_922.4
    NTRK2_HUMAN ITNISSDDSGK ITNISSDDSGK_568.8_922.2 568.8 922.2 5.6 74.4 27.5
    WNK4_HUMAN VSVSDQNDR VTSVSDQNDR_560.77_920.4 560.77 920.4 6.17 73.3 27.2
    CAR14_HUMAN TASDQESGDEELNR TASDQESGDEELNR_775.83 775.83 919.4 7.6 101.1 36.6
    _919.4
    ODP2_HUMAN LSEGDLLAEIETDK LSEGDLLAEIETDK_766.89_ 766.89 918.5 20.65 99.9 36.2
    918.5
    RGS20_HUMAN LFGLLSSPLSSLAR LFGLLSSPLSSLAR_730.93_9 730.93 917.5 25.08 95.3 34.7
    17.5
    AGAP2_HUMAN SLDLDDWPR SLDLDDWPR_558.77_916.4 558.77 916.4 18.55 73.1 27.1
    RELN_HUMAN IISVELPGDAK IISVELPGDAK_571.33_915.5 571.33 915.5 16.13 74.7 27.6
    LTBPl_HUMAN TSTDLDVDVDQPK TSTDLDVDVDQPK_716.84_ 716.84 915.4 12.25 93.5 34
    915.4
    SYTL4_HUMAN YEIPESLLAQR YEIPESLLAQR_659.85_913.5 659.85 913.5 17.79 86.1 31.5
    C1QT4_HUMAN SLVGSDAGPGPR SLVGSDAGPGPR_556.79_91 556.79 912.5 9.81 72.8 30
    2.5
    IC1_HUMAN FQPTLLTLPR FQPTLLTLPR_593.35_910.6 593.35 910.6 20.26 77.5 28.6
    CK041_HUMAN GTSSSPLAVASGPAK GTSSSPLAVASGPAK_665.35 665.35 910.5 11.51 86.8 31.8
    _910.5
    LAMB2_HUMAN AMDYDLLLR AMDYDLLLR_555.3_907.5 555.3 907.5 22 72.6 29.9
    EMIL2_HUMAN LIVPEPDVDFDAK LIVPEPDVDFDAK_729.38_9 729.38 906.4 18.52 95.1 40.6
    06.4
    GRN_HUMAN EVVSAQPATFLAR EVVSAQPATFLAR_694.88_9 694.88 903.5 16.12 90.6 33.1
    03.5
    ARSA_HUMAN DPGENYNLLGGVAGATPE DPGENYNLLGGVAGATPEV 809.42 903.4 24.24 105.4 44.8
    VLQALK LQALK_809.42_903.4
    ITIH3_HUMAN DYIFGNYIER DYIFGNYIER_645.31_898.4 645.31 898.4 19.24 84.2 30.9
    ARSA_HUMAN DPGENYNLLGGVAGATPE DPGENYNLLGGVAGATPEV 809.42 897.5 24.24 105.4 38.8
    VLQALK LQALK_809.42_897.5
    NCAN_HUMAN VEAHGEATATAPPSPAAET VEAHGEATATAPPSPAAET 645.65 897.5 8.33 84.3 30.5
    K K_645.65_897.5
    ITIH4_HUMAN LPEGSVSLIILLTDGDPTVG LPEGSVSLIILLTDGDPTVGE 865.13 896.5 25.08 112.6 41.7
    ETNPR TNPR_865.13_896.5
    NEUM_HUMAN EEEPEADQEHA EEEPEADQEHA_642.26_896. 642.26 896.4 6.66 83.9 30.8
    4
    TADBP_HUMAN FIEYETQVK FIlEYETQVK_572.78_896.4 572.78 896.4 10.48 74.9 27.7
    DCBD1_HUMAN HEYALPLAPPEPEYATPIVE HEYALPLAPPEPEYATPIVE 798.08 895.5 19.34 104 38.3
    R R_798.08_895.5
    A1BG_HUMAN LETPDFQLFK LETPDFQLFK_619.33_894.5 619.33 894.5 21.25 80.9 29.8
    MMP16_HUMAN ILLTFSTGR ILLTFSTGR_504.3_894.4 504.3 894.4 18.9 66.1 27.7
    HPCA_HUMAN LSLEEFIR LSLEEFIR_503.78_893.5 503.78 893.5 21.7 66 27.7
    LCN8_HUMAN IVGSEIDSTGK IVGSEIDSTGK_553.29_893.4 553.29 893.4 9.21 72.4 26.8
    ANO3_HUMAN IAYLLTNLEYPR IAYLLTNLEYPR_733.41_892 733.41 892.5 21.46 95.6 34.8
    .5
    VGFR3_HUMAN SGVDLADSNQK SGVDLADSNQK_567.28_890 567.28 890.4 8.61 74.2 27.5
    .4
    TERA_HUMAN GILLYGPPGTGK GILLYGPPGTGK_586.84_889 586.84 889.5 16.52 76.7 28.3
    .5
    HCN1_HUMAN GVPPAPPPPAAALPR GVPPAPPPPAAALPR_704.41 704.41 889.5 13.39 91.9 42.5
    _889.5
    AACT_HUMAN ITLLSALVETR ITLLSALVETR_608.4_888.4 608.4 888.4 23.3 79.5 32.3
    SEPP1_HUMAN LPTDSELAPR LPTDSELAPR_549.79_888.4 549.79 888.4 11.86 71.9 29.7
    CSF1_HUMAN ISSLRPQGLSNPSTLSAQPQ ISSLRPQGLSNPSTLSAQPQL 813.11 886.5 15.09 105.9 48
    LSR SR_813.11_886.5
    S12A5_HUMAN DGIVPFLQVFGHGK DGIVPFLQVFGHGK_505.28_ 505.28 885.5 24.51 66.2 26.3
    885.5
    SEMG1_HUMAN DVSQSSIYSQILEK DVSQSSIYSQTEEK_800.87_ 800.87 884.4 10.52 104.3 37.7
    884.4
    GALR3_HUMAN FLWAAVGPAGAAAAEAR FLWAAVGPAGAAAAEAR_ 814.9 884.2 20.2 106.1 41.4
    814.9_884.2
    AMPB_HUMAN ETFASTASQLHSNVVNYV ETFASTASQLHSNVVNYVQ 911.14 882.5 24.72 118.5 41
    QQIVAPK QIVAPK_911.14_882.5
    AGAL_HUMAN SILDWTSFNQER SILDWTSFNQER_748.36_881 748.36 881.4 21.18 97.5 35.4
    .4
    CSF1R_HUMAN ALTFELTLR ALTFELTLR_532.3_879.4 532.3 879.4 23.2 69.7 28.9
    OLIG1_HUMAN FPHLVPASLGLAAVQAQFS FPHLVPASLGLAAVQAQFS 694.39 878.5 24.11 90.6 30
    K K_694.39_878.5
    SPB5_HUMAN DVEDESTGLEK DVEDESTGLEK_611.28_878. 611.28 878.4 9.19 79.9 29.4
    4
    PCDAA_HUMAN LNASDSDEGINK LNASDSDEGINK_631.8_877. 631.8 877.4 7.92 82.5 30.3
    4
    GP2_HUMAN NTLSLVNDFIIR NTLSLVNDFIIR_702.9_876.5 702.9 876.5 24.08 91.7 33.4
    NMDE3_HUMAN SVEDALTSLK SVEDALTSLK_531.79_876.5 531.79 876.5 16.02 69.6 25.9
    MTOR_HUMAN VLGLLGALDPYK VLGLLGALDPYK_629.87_87 629.87 876.5 24.65 82.3 30.2
    6.5
    NRG3_HUMAN EYVPTDLVDSK EYVPTDLVDSK_633.32_874. 633.32 874.5 14.42 82.7 30.4
    5
    NMDE1_HUMAN GVEDALVSLK GVEDALVSLK_515.79_874.5 515.79 874.5 16.75 67.5 25.2
    EPHA8_HUMAN WTAPEAIAFR WTAPEATAFR_581.31_874.5 581.31 874.5 18.23 76 25.1
    P4K2A_HUMAN IYQGSSGSYFVK IYQGSSGSYFVK_668.33_874 668.33 874.4 13.39 87.2 31.9
    .4
    CLC4M_HUMAN AAVGELPDQSK AAVGELPDQSK_557.79_873 557.79 873.4 9.74 73 27
    .4
    HRG_HUMAN ADLFYDVEALDLESPK ADLFYDVEALDLESPK_912. 912.95 872.5 23.8 118.8 45.7
    95_872.5
    SHSA7_HUMAN LVSQEHLLLSSPEALR LVSQEHLLLSSPEALR_598_ 598 872.5 17.69 78.1 37
    872.5
    LAMB2_HUMAN SLADVDAILAR SLADVDAILAR_572.3_872.4 572.3 872.4 20.9 74.8 27.7
    CADll_HUMAN VLDVNDNAPK VLDVNDNAPK_542.79_872. 542.79 872.4 9.67 71 26.4
    4
    PAR6B_HUMAN AVSTANPLLR AVSTANPLLR_521.31_871.5 521.31 871.5 13.55 68.2 25.4
    S39A4_HUMAN AGLWASHADHLLALLESP AGLWASHADHLLALLESPK 677.03 870.5 24.55 88.3 35.1
    K _677.03_870.5
    CERU_HUMAN GAYPLSIEPIGVR GAYPLSIEPIGVR_686.39_87 686.39 870.5 19.06 89.5 41.7
    0.5
    ARHG7_HUMAN SYYNVVLQNILE1ENEYSK SYYNVVLQNILETENEYSK_ 1153.56 870.4 24.95 149.8 50.3
    1153.56_870.4
    PTPRO_HUMAN LIGLDIPHFAADLPLNR LIGLDIPHFAADLPLNR_625. 625.69 869.5 24.19 81.7 35.5
    69_869.5
    CO4A_HUMAN VTASDPLDTLGSEGALSPG VTASDPLDTLGSEGALSPG 828.44 869.5 24.54 107.9 39.8
    GVASLLR GVASLLR_828.44_869.5
    CF072_HUMAN VFFPVSEYK VFFPVSEYK_558.29_869.4 558.29 869.4 17.92 73 27.1
    FEZ1_HUMAN VPTLLTDYILK VPTLLTDYILK_638.38_865.5 638.38 865.5 23.17 83.4 33.6
    LRTM2_HUMAN LDLSNNFLDR LDLSNNFLDR_603.81_865.4 603.81 865.4 18.13 78.9 29.1
    CATD_HUMAN LSPEDYTLK LSPEDYTLK_533.28_865.4 533.28 865.4 13.66 69.8 26
    APOC2_HUMAN TAAQNLYEK TAAQNLYEK_519.27_865.4 519.27 865.4 8.89 68 25.3
    CO2_HUMAN HAFILQDTK HAFILQDTK_536.79_864.5 536.79 864.5 12.44 70.2 29.1
    SPB5_HUMAN DVPFGFQTVTSDVNK DVPFGFQTVTSDVNK_827.4 827.41 863.4 18.74 107.7 41.9
    1_863.4
    GOLMl_HUMAN DLSENNDQR DLSENNDQR_545.74_862.4 545.74 862.4 6.25 71.4 26.5
    APOA4_HUMAN ISASAEELR ISASAEELR_488.26_862.4 488.26 862.4 10.18 64 24
    NTRK2_HUMAN SNEIPSTDVTDK SNEIPSTDVTDK_653.31_862 653.31 862.4 10.04 85.3 31.2
    .4
    ITIH1_HUMAN EVAFDLEIPK EVAFDLEIPK_580.8_861.5 580.8 861.5 21.7 75.9 28.1
    PGCB_HUMAN ELEAPSEDNSGR ELEAPSEDNSGR_652.29_86 652.29 861.4 8.33 85.1 31.2
    1.4
    A2MG_HUMAN LLIYAVLPTGDVIGDSAK LLIYAVLPTGDVIGDSAK_6 615.68 861.4 23.29 80.4 28.9
    15.68_861.4
    PCDA5_HUMAN LNASDADEGINK LNASDADEGINK_623.8_861 623.8 861.4 9.07 81.5 29.9
    .4
    TRPV5_HUMAN ASLALPTSSLSR ASLALPTSSLSR_601.84_860. 601.84 860.5 15.54 78.6 38
    5
    NETR_HUMAN VSAFVPWIK VSAFVPWIK_523.81_860.5 523.81 860.5 21.34 68.6 25.5
    CERU_HUMAN GPEEEHLGILGPVIWAEVG GPEEEHLGILGPVIWAEVG 829.77 860.4 25.08 108 39.9
    DTIR DTIR_829.77_860.4
    TM9S1_HUMAN SLSLGEVLDGDR SLSLGEVLDGDR_630.83_86 630.83 860.4 19.62 82.4 30.3
    0.4
    GP125_HUMAN WDFDLLNGQGGWK WDFDLLNGQGGWK_768.37 768.37 859.4 23.77 100.1 36.3
    _859.4
    APC2_HUMAN LAAQEGPLSLSR LAAQEGPLSLSR_621.35_85 621.35 858.5 14.4 81.2 32.8
    8.5
    OTOAN_HUMAN GSSGSFLQPDIIER GSSGSFLQPDIIER_747.37_8 747.37 858.4 15.66 97.4 35.4
    58.4
    ARSE_HUMAN LAGGEVPQDR LAGGEVPQDR_521.27_857.4 521.27 857.4 7.99 68.2 25.4
    EDNRB_HUMAN LTLYNQNDPNR LTLYNQNDPNR_674.34_857 674.34 857.4 11.47 88 35.2
    .4
    PTN5_HUMAN VLQAEELHEK VLQAEELHEK_598.32_855.4 598.32 855.4 9.59 78.2 31.8
    AFAM_HUMAN HELTDEELQSLFTNFANVV HELTDEELQSLFTNFANVV 817.07 854.4 25.08 106.4 42.2
    DK DK_817.07_854.4
    KALRN_HUMAN DFFLAELEK DFFLAELEK_556.29_849.5 556.29 849.5 22.36 72.8 27
    LIPE_HUMAN DDFSLGNVHLIGYSLGAHV DDFSLGNVHLIGYSLGAHV 974.49 848.4 24.54 126.7 44.2
    AGYAGNFVK AGYAGNFVK_974.49_848.4
    NETO1_HUMAN DGPFGFSPIIGR DGPFGFSPIIGR_631.83_846. 631.83 846.5 21.4 82.5 36.3
    5
    CSF1R_HUMAN VIPGPPALTLVPAELVR VIPGPPALTLVPAELVR_581. 581.36 846.5 24.37 76 24.2
    36_846.5
    ATS1_HUMAN GPEVTSNAALTLR GPEVTSNAALTLR_664.86_8 664.86 845.5 14.03 86.8 40.8
    45.5
    APOB_HUMAN IEGNLIFDPNNYLPK IEGNLIFDPNNYLPK_873.96 873.96 845.5 22.93 113.7 44
    _845.5
    MTOR_HUMAN TLDQSPELR TLDQSPELR_529.78_844.4 529.78 844.4 10.35 69.3 25.8
    ITA3_HUMAN TVEDVGSPLK TVEDVGSPLK_522.78_844.4 522.78 844.4 11.35 68.4 25.5
    BTNL8_HUMAN VQIGDTFFEPISWHLATK VQIGDTFFEPISWHLATK_69 697.03 842.5 24.32 90.9 39.1
    7.03_842.5
    IPSP_HUMAN AAAATGTIFTFR AAAATGTIFTFR_613.83_841 613.83 841.5 18.99 80.2 29.5
    .5
    DBC1_HUMAN ISDVQVFGYSLR ISDVQVFGYSLR_692.37_841 692.37 841.5 19.96 90.3 33
    .5
    KLKB1_HUMAN YSPGGTPTAIK YSPGGTPTAIK_546.29_841.5 546.29 841.5 9.73 71.5 26.5
    VTDB_HUMAN VPTADLEDVLPLAEDITNIL VPTADLEDVLPLAEDITNIL 789.43 841.4 25.27 102.8 46.8
    SK SK_789.43_841.4
    ADA12_HUMAN NHPEVLNIR NHPEVLNIR_546.3_840.5 546.3 840.5 12.38 71.5 29.5
    GP125_HUMAN SYGLNLAIQNGPIK SYGLNLAIQNGPIK_744.41_ 744.41 840.5 18.45 97 35.3
    840.5
    CAD22_HUMAN LWAAGTPSPSAPGAR LWAAGTPSPSAPGAR_719.8 719.88 839.4 12.93 93.9 37.2
    8_839.4
    MMP1_HUMAN SQNPVQPIGPQTPK SQNPVQPIGPQTPK_745.9_8 745.9 837.5 10.67 97.2 35.3
    37.5
    SYTL4_HUMAN ISAESPTGLPSHK ISAESPTGLPSHK_441.9_836. 441.9 836.5 9.66 58 23.1
    5
    A1AG1_HUMAN YVGGQEHFAHLLILR YVGGQEHFAHLLILR_584.9 584.99 835.6 19.31 76.5 36.4
    9_835.6
    PICAL_HUMAN ITAAQHSVTGSAVSK ITAAQHSVTGSAVSK_486.2 486.26 835.5 7.72 63.7 28.3
    6_835.5
    CSF1R_HUMAN HTFTLSLPR HTFTLSLPR_536.3_833.5 536.3 833.5 16.88 70.2 29.1
    CHAD_HUMAN YLETLWLDNTNLEK YLETLWLDNTNLEK_876.45 876.45 833.4 21.97 114.1 41.1
    _833.4
    NTRK2_HUMAN NLTIVDSGLK NLTIVDSGLK_530.31_832.5 530.31 832.5 15.17 69.4 25.8
    ABCA1_HUMAN FVSPLSWDLVGR FVSPLSWDLVGR_688.37_83 688.37 832.4 23.76 89.8 38.8
    2.4
    CAR14_HUMAN TASDQESGDEELNR TASDQESGDEELNR_775.83 775.83 832.4 7.6 101.1 39.6
    _832.4
    XLRS1_HUMAN VISGILTQGR VISGILTQGR_522.31_831.5 522.31 831.5 14.23 68.4 25.5
    GRM5_HUMAN DSLISSEEEEGLVR DSLISSEEEEGLVR_781.88_8 781.88 831.4 16 101.9 36.9
    31.4
    LAT2_HUMAN SGGDYSYVK SGGDYSYVK_488.22_831.4 488.22 831.4 9.01 64 24
    KCNA5_HUMAN NRPSFDGILYYYQSGGR NRPSFDGILYYYQSGGR_66 664.99 830.4 20.98 86.8 31.5
    4.99_830.4
    KCTD4_HUMAN YPDTFLEGIVNGK YPDTFLEGIVNGK_726.87_8 726.87 829.5 21.72 94.8 37.5
    29.5
    KCNA5_HUMAN EEQGTQSQGPGLDR EEQGTQSQGPGLDR_751.35 751.35 829.4 7.7 97.9 44.6
    _829.4
    PON1_HUMAN IQNILTEEPK IQNILTEEPK_592.8_829.4 592.8 829.4 14.9 77.5 28.6
    NKX62_HUMAN LAGPAPAGGVLDK LAGPAPAGGVLDK_583.33_ 583.33 827.5 12.29 76.2 31.2
    827.5
    A1AG1_HUMAN WFYIASAFR WFYIASAFR_580.8_827.4 580.8 827.4 23.48 75.9 25.1
    AFAM_HUMAN DADPDTFFAK DADPDTFFAK_563.76_825.4 563.76 825.4 15.58 73.7 27.3
    PARD3_HUMAN ESVSTASDQPSHSLER ESVSTASDQPSHSLER_577.2 577.27 825.4 8.68 75.5 33
    7_825.4
    PEDF_HUMAN LSYEGEVTK LSYEGEVTK_513.26_825.4 513.26 825.4 10.07 67.2 25.1
    MOT2_HUMAN LVDLTGEYK LVDLTGEYK_519.28_825.4 519.28 825.4 13.84 68 25.3
    MMP17_HUMAN ESVSPTAQPEEPPLLPEPPD ESVSPTAQPEEPPLLPEPPD 800.4 824.4 16.38 104.3 38.4
    NR NR_800.4_824.4
    APOD_HUMAN IPTTFENGR IPTTFENGR_517.77_824.4 517.77 824.4 11.08 67.8 31.3
    SYN2_HUMAN VLLVVDEPHADWAK VLLVVDEPHADWAK_531.2 531.29 824.4 17.62 69.5 27.6
    9_824.4
    LTBP1_HUMAN EEPVEALTFSR EEPVEALTFSR_639.32_823.4 639.32 823.4 16.79 83.5 39.6
    LCK_HUMAN AQSLTTGQEGFIPFNFVAK AQSLTTGQEGFIPFNFVAK_ 685.69 822.5 23.14 89.5 32.5
    685.69_822.5
    CEL3A_HUMAN EGPEQVIPINSEELFVHPLW EGPEQVIPINSEELFVHPLW 868.45 822.4 24.05 113 44.8
    NR NR_868.45_822.4
    AACT_HUMAN EIGELYLPK EIGELYLPK_531.3_819.5 531.3 819.5 18.4 69.5 25.9
    FGFR3_HUMAN VGPDGTPYVTVLK VGPDGTPYVTVLK_673.37_ 673.37 819.5 15.91 87.9 35.1
    819.5
    CK041_HUMAN DVAQDGSTIK DVAQDGSTIK_517.26_819.4 517.26 819.4 7.48 67.7 25.3
    A4_HUMAN LVFFAEDVGSNK LVFFAEDVGSNK_663.34_81 663.34 819.4 19.15 86.6 31.7
    9.4
    PCDAA_HUMAN ALDETDSPR ALDETDSPR_502.24_819.3 502.24 819.3 7.31 65.8 27.6
    ACHAS_HUMAN GLSEPSSIAK GLSEPSSIAK_494.77_818.4 494.77 818.4 10.19 64.8 24.3
    KIF5A_HUMAN LYLVDLAGSEK LYLVDLAGSEK_604.33_818. 604.33 818.4 18.66 79 29.1
    4
    LRTM2_HUMAN LSALPSWAFANLSSLQR LSALPSWAFANLSSLQR_62 621 817.5 24.55 81.1 26.2
    1_817.5
    PCSK1_HUMAN AEAQEAEDQQAR AEAQEAEDQQAR_673.3_81 673.3 817.4 6.08 87.9 35.1
    7.4
    CD3D_HUMAN LSGAADTQALLR LSGAADTQALLR_608.34_81 608.34 816.5 14.11 79.5 29.3
    6.5
    ARP21_HUMAN TASFGGITVLTR TASFGGITVLTR_611.84_816 611.84 816.5 18.32 79.9 29.4
    .5
    MPDZ_HUMAN HVLEDSPAGK HVLEDSPAGK_526.77_816.4 526.77 816.4 7.15 69 28.7
    KCC1G_HUMAN DIYPSVSLQIQK DIYPSVSLQIQK_695.88_815. 695.88 815.5 17.14 90.8 42.1
    5
    CSF1_HUMAN FNSVPLTDTGHER FNSVPLTDTGHER_491.58_8 491.58 815.4 11.74 64.4 28.6
    15.4
    CADH5_HUMAN YTFVVPEDTR YTFVVPEDTR_613.8_815.4 613.8 815.4 16.3 80.2 32.5
    PCDA5_HUMAN LLENAPSGTLVIK LLENAPSGTLVIK_677.9_814 677.9 814.5 15.78 88.4 32.3
    .5
    TRPV5_HUMAN AEGPGSQLQK AEGPGSQLQK_507.76_814.4 507.76 814.4 7.63 66.5 24.8
    APOA1_HUMAN AKPALEDLR AKPALEDLR_506.79_813.4 506.79 813.4 11.56 66.4 24.8
    TYRO_HUMAN DLGYDYSYLQDSDPDSFQ DLGYDYSYLQDSDPDSFQD 883.05 813.4 21.17 114.9 45.6
    DYIK YIK_883.05_813.4
    41_HUMAN NFMESVPEPR NFMESVPEPR_603.3_813.4 603.3 813.4 16 78.8 32
    C1QT4_HUMAN SLVGSDAGPGPR SLVGSDAGPGPR_556.79_81 556.79 813.4 9.81 72.8 30
    3.4
    ITAM_HUMAN VQSLVLGAPR VQSLVLGAPR_520.32_812.5 520.32 812.5 13.93 68.1 25.4
    GRM5_HUMAN IYSNAGEQSFDK IYSNAGEQSFDK_679.82_81 679.82 810.4 10.33 88.7 32.4
    0.4
    T151A_HUMAN LFGASSPPPGAVPSGPPLSR LFGASSPPPGAVPSGPPLSR_ 946.01 810.4 16.44 123 44.1
    946.01810.4
    PKDRE_HUMAN VIVIPNPVDLR VIVIPNPVDLR_617.88_810.4 617.88 810.4 20.18 80.7 29.7
    SEPT3_HUMAN YINEQYEK YINEQYEK_543.76_810.4 543.76 810.4 8.49 71.1 26.4
    HAS1_HUMAN ILNPLDSWVSFLSSLR ILNPLDSWVSFLSSLR_924.0 924.01 809.5 25.49 120.2 49.2
    1809.5
    SNTB1_HUMAN GSPQAGVDLSFATR GSPQAGVDLSFATR_703.36 703.36 809.4 15.9 91.7 36.4
    809.4
    SLIK1_HUMAN SLPVDVFAGVSLSK SLPVDVFAGVSLSK_709.9_8 709.9 808.5 22.04 92.6 36.7
    08.5
    RRAGC_HUMAN AFLFDVVSK AFLFDVVSK_513.29_807.5 513.29 807.5 21 67.2 25.1
    OLIG1_HUMAN FPHLVPASLGLAAVQAQFS FPHLVPASLGLAAVQAQFS 694.39 807.4 24.11 90.6 33
    K K_694.39_807.4
    TLR7_HUMAN LQELDLSQNFLAK LQELDLSQNFLAK_759.91_8 759.91 807.4 19.89 99 35.9
    07.4
    CEL3A_HUMAN VVHGEDAVPYSWPWQVS VVHGEDAVPYSWPWQVSL 873.1 807.4 23.3 113.6 45.1
    LQYEK QYEK_873.1_807.4
    LGI1_HUMAN WGGSSFQDIQR WGGSSFQDIQR_640.8_806.4 640.8 806.4 14.47 83.7 30.7
    SCN2A_HUMAN ALIESNQTAR ALIESNQTAR_551.8_805.4 551.8 805.4 8.92 72.2 26.8
    ODP2_HUMAN LSEGDLLAEIETDK LSEGDLLAEIETDK_766.89_ 766.89 805.4 20.65 99.9 36.2
    805.4
    FGFR2_HUMAN DAAVISWTK DAAVISWTK_495.77_804.5 495.77 804.5 14.9 65 24.3
    KCC1G_HUMAN DLKPENLLYLTPEENSK DLKPENLLYLTPEENSK_66 668.35 804.4 19.4 87.2 31.6
    8.35_804.4
    KCC2A_HUMAN FYFENLWSR FYFENLWSR_631.3_804.4 631.3 804.4 23.34 82.4 30.3
    41_HUMAN SLDGAAAVDSADR SLDGAAAVDSADR_624.3_8 624.3 804.4 10.15 81.5 30
    04.4
    KAIN_HUMAN WADLSGITK WADLSGITK_495.77_804.4 495.77 804.4 15.63 65 24.3
    JPH3_HUMAN WDLTFSPPQK WDLTFSPPQK_609.81_804.4 609.81 804.4 19.12 79.7 29.3
    LSHR_HUMAN LSLAYLPVK LSLAYLPVK_502.31_803.5 502.31 803.5 18.88 65.8 24.6
    KIRR2_HUMAN FLVETFPAPESR FLVETFPAPESR_696.86_803. 696.86 803.4 17.78 90.9 33.2
    4
    EPHA8_HUMAN WTAPEAIAFR WTAPEATAFR_581.31_803.4 581.31 803.4 18.23 76 28.1
    S39A4_HUMAN ALTPGLSWLLQR ALTPGLSWLLQR_677.9_802 677.9 802.5 24.56 88.4 38.3
    .5
    CLUS_HUMAN ELDESLQVAER ELDESLQVAER_644.8_802.4 644.8 802.4 13.4 84.2 36.9
    KIF5A_HUMAN TGAEGAVLDEAK TGAEGAVLDEAK_580.79_8 580.79 802.4 10.99 75.9 28.1
    02.4
    CP46A_HUMAN AEQLVEILEAK AEQLVEILEAK_621.85_801. 621.85 801.5 20.05 81.2 29.9
    5
    NMDE1_HUMAN DEAVLILSEAR DEAVLILSEAR_608.33_801. 608.33 801.5 17.94 79.5 29.3
    5
    NCAN_HUMAN VEAHGEATATAPPSPAAET VEAHGEATATAPPSPAAET 645.65 800.4 8.33 84.3 33.5
    K K_645.65_800.4
    ITIH2_HUMAN AHVSFKPTVAQQR AHVSFKPTVAQQR_490.27_ 490.27 799.4 9.87 64.2 25.6
    799.4
    ITB5_HUMAN LGFGSFVDK LGFGSFVDK_485.26_799.4 485.26 799.4 17.93 63.6 23.9
    C1QL2_HUMAN IAFYVGLK IAFYVGLK_455.77_797.5 455.77 797.5 18.6 59.8 22.6
    LRP8_HUMAN LYWVDSK LYWVDSK_455.7_797.4 455.7 797.4 15.9 59.8 22.6
    ITB2_HUMAN VFLDHNALPDTLK VFLDHNALPDTLK_494.94_7 494.94 797.4 16.62 64.8 22.8
    97.4
    CACB2_HUMAN ATHPPSSSLPNPLLSR ATHPPSSSLPNPLLSR_558.6 558.64 796.5 15.74 73.1 26
    4_796.5
    RES18_HUMAN GFSGPLPTVGR GFSGPLPTVGRj44.3_796.5 544.3 796.5 15.06 71.2 26.4
    SEPP1_HUMAN LVYHLGLPFSFLTFPYVEE LVYHLGLPFSFLTFPYVEEA
    AIK IK_861.8_796.5 861.8 796.5 25.31 112.2 44.5
    A4_HUMAN WYFDVTEGK WYFDVTEGK_572.77_795.4 572.77 795.4 18.68 74.9 27.7
    MMP16_HUMAN YGYLPPTDPR YGYLPPTDPR_589.8_795.4 589.8 795.4 12.72 77.1 28.5
    EMIL2_HUMAN LDNEFDR LDNEFDR_454.71_795.3 454.71 795.3 10.18 59.7 22.5
    NMDE1_HUMAN FTYDLYLVTNGK FTYDLYLVTNGK_717.4_794 717.4 794.4 22 93.5 37.1
    .4
    TR11B_HUMAN HIGHANLTFEQLR HIGHANLTFEQLR_512.61_7 512.61 793.4 14.55 67.1 23.7
    93.4
    AP1B1_HUMAN LHDINAQLVEDQGFLDTLK LHDINAQLVEDQGFLDTLK 723.71 793.4 21.38 94.4 34.5
    _723.71_793.4
    SCG3_HUMAN LNVEDVDSTK LNVEDVDSTK_560.28_793.4 560.28 793.4 11 73.3 27.2
    FGFR2_HUMAN EIEVLYIR EIEVLYIR_517.8_792.5 517.8 792.5 18.55 67.8 25.3
    AP1B1_HUMAN LHDINAQLVEDQGFLDTLK LHDINAQLVEDQGFLDTLK 723.71 792.4 21.38 94.4 34.5
    _723.71_792.4
    APOE_HUMAN LQAEAFQAR LQAEAFQAR_517.28_792.4 517.28 792.4 11.18 67.7 25.3
    NMDZ1_HUMAN VLQFDPGTK VLQFDPGTK_502.77_792.4 502.77 792.4 13.24 65.9 24.6
    CO4B_HUMAN YIYGKPVQGVAYVR YIYGKPVQGVAYVR_538.3_ 538.3 792.4 13.9 70.4 34
    792.4
    PAK3_HUMAN LLQTSNITK LLQTSNITK_509.3_791.4 509.3 791.4 10.64 66.7 24.9
    SCG3_HUMAN ELSAERPLNEQIAEAEEDK ELSAERPLNEQIAEAEEDK_ 724.35 791.3 15.56 94.4 34.5
    724.35_791.3
    LAT2_HUMAN DIFGGLAGFLR DIFGGLAGFLR_583.32_790. 583.32 790.5 25.16 76.2 28.2
    5
    UGGG2_HUMAN INEENTAISR INEENTAISR_573.79_790.4 573.79 790.4 8.3 75 36.7
    PLCB1_HUMAN ISEDSNHGSAPLSLSSDPGK ISEDSNHGSAPLSLSSDPGK 666.65 790.4 11.82 87 31.5
    _666.65_790.4
    NETR_HUMAN VSAFVPWIK VSAFVPWIK_523.81_789.5 523.81 789.5 21.34 68.6 25.5
    CERU_HUMAN GPEEEHLGILGPVIWAEVG GPEEEHLGILGPVIWAEVG 829.77 789.4 25.08 108 39.9
    DTIR DTIR_829.77_789.4
    PVRL1_HUMAN ITQVTWQK ITQVTWQK_502.28_789.4 502.28 789.4 11.81 65.8 24.6
    AP1B1_HUMAN LLSTDPVAAK LLSTDPVAAK_507.8_788.4 507.8 788.4 11.18 66.5 24.8
    APOA2_HUMAN SPELQAEAK SPELQAEAK_486.75_788.4 486.75 788.4 7.93 63.8 26.9
    MTOR_HUMAN LIHQLLTDIGR LIHQLLTDIGR_639.9_787.4 639.9 787.4 19.8 83.5 36.7
    SEPP1_HUMAN LPTDSELAPR LPTDSELAPR_549.79_787.4 549.79 787.4 11.86 71.9 35.7
    E41L3_HUMAN TETISFGSVSPGGVK TETISFGSVSPGGVK_733.38 733.38 787.4 16.02 95.6 34.8
    _787.4
    FGL1_HUMAN HGEYWLGNK HGEYWLGNK_552.27_786.4 552.27 786.4 12.65 72.2 29.8
    ITIH2_HUMAN FYNQVSTPLLR FYNQVSTPLLR_669.4_785.5 669.4 785.5 18.3 87.3 35
    CO3_HUMAN LSINTHPSQKPLSITVR LSINTHPSQKPLSITVR_631. 631.03 785.5 14.39 82.4 32.7
    03_785.5
    ABCA1_HUMAN EGAFVELFHEIDDR EGAFVELFHEIDDR_559.6_7 559.6 784.4 23.86 73.2 35.1
    84.4
    AT2B3_HUMAN ILDLLVHAISINSAYTTK ILDLLVHAISINSAYTTK_65 658.04 784.4 24.28 85.9 31.1
    8.04_784.4
    T151A_HUMAN LVLGPEAALAR LVLGPEAALAR_555.34_784. 555.34 784.4 16.86 72.6 29.9
    4
    APOA4_HUMAN LVPFAIELHER LVPFAIELHER_437.9_784.3 437.9 784.3 17.2 57.5 25.9
    E41L3_HUMAN IRPGEFEQFESTIGFK IRPGEFEQFESTIGFK_628.99 628.99 781.4 20.89 82.1 29.6
    _781.4
    GP158_HUMAN LLGFATVYGTVTLK LLGFATVYGTVTLK_741.93 741.93 781.4 23.26 96.7 35.1
    _781.4
    GELS_HUMAN TASDFITK TASDFITK_441.73_781.4 441.73 781.4 10.75 58 21.9
    NMS_HUMAN TQEATHPVK TQEATHPVK_505.77_781.4 505.77 781.4 5.87 66.2 27.8
    MMP16_HUMAN ILLTFSTGR ILLTFSTGR_504.3_781.3 504.3 781.3 18.9 66.1 27.7
    ITAM_HUMAN LFTALFPFEK LFTALFPFEK_606.84_780.4 606.84 780.4 24.87 79.3 29.2
    GPC6_HUMAN SAPENFNTR SAPENFNTR_518.25_780.4 518.25 780.4 8.44 67.9 31.3
    AGAL_HUMAN SILDWTSFNQER SILDWTSFNQER_748.36_780 748.36 780.4 21.18 97.5 38.4
    .4
    CO1A2_HUMAN GEAGAAGPAGPAGPR GEAGAAGPAGPAGPR_618. 618.31 779.4 7.34 80.8 35.7
    31_779.4
    TAU_HUMAN TDHGAEIVYK TDHGAEIVYK_566.79_779.4 566.79 779.4 9.06 74.1 30.4
    LRTM2_HUMAN LDLSNNFLDR LDLSNNFLDR_603.81_778.4 603.81 778.4 18.13 78.9 29.1
    GP113_HUMAN WNLYEVVR WNLYEVVR_539.79_778.4 539.79 778.4 20.42 70.6 26.3
    RUN3A_HUMAN FTQSYDYLTDEEER FTQSYDYLTDEEER_898.39_ 898.39 778.3 15.16 116.9 42
    778.3
    TBB2B_HUMAN YLTVAAIFR YLTVAAIFR_527.31_777.5 527.31 777.5 22.63 69 25.7
    GP2_HUMAN NTLSLVNDFIIR NTLSLVNDFIIR_702.9_777.4 702.9 777.4 24.08 91.7 33.4
    ITIH4_HUMAN GPDVLTATVSGK GPDVLTATVSGK_572.81_77 572.81 776.5 13.31 74.9 27.7
    6.5
    INHBA_HUMAN GHSPFANLK GHSPFANLK_485.76_776.4 485.76 776.4 12.42 63.7 23.9
    TERA_HUMAN GILLYGPPGTGK GILLYGPPGTGK_586.84_776 586.84 776.4 16.52 76.7 28.3
    .4
    TNR19_HUMAN IASTASSPR IASTASSPR_445.24_776.4 445.24 776.4 6.17 58.4 25.1
    TR11B_HUMAN NGDQDTLK NGDQDTLK_445.71_776.4 445.71 776.4 6.5 58.5 22.1
    PDIA2_HUMAN ADFPVDEELGLDLGDLSR ADFPVDEELGLDLGDLSR_9 980.98 775.4 23.42 127.5 42.7
    80.98_775.4
    GRN_HUMAN EVVSAQPATFLAR EVVSAQPATFLAR_694.88_7 694.88 775.4 16.12 90.6 33.1
    75.4
    ITIHl_HUMAN FAHYVVTSQVVNTANEAR FAHYVVTSQVVNTANEAR_ 669.34 775.4 14.4 87.3 31.7
    669.34_775.4
    APOA4_HUMAN ISASAEELR ISASAEELR_488.26_775.4 488.26 775.4 10.18 64 24
    AACT_HUMAN ITLLSALVETR ITLLSALVETR_608.37_775.4 608.37 775.4 23.62 79.5 29.3
    HEMO_HUMAN NFPSPVDAAFR NFPSPVDAAFR_610.81_775. 610.81 775.4 17.76 79.8 35.4
    4
    LGMN_HUMAN QLIEEIQR QLTEEIQR_508.77_775.4 508.77 775.4 9.87 66.6 33.9
    TERA_HUMAN GGNIGDGGGAADR GGNIGDGGGAADR_558.76_ 558.76 775.3 6.49 73.1 27.1
    775.3
    MICA_HUMAN AKPQGQWAEDVLGNK AKPQGQWAEDVLGNK_547 547.62 774.4 15.39 71.6 25.5
    .62_774.4
    KCNA5_HUMAN NRPSFDGILYYYQSGGR NRPSFDGILYYYQSGGR_66 664.99 774.4 20.98 86.8 34.5
    4.99_774.4
    CNTN2_HUMAN VISDTEADIGSNLR VISDTEADIGSNLR_745.38_7 745.38 774.4 13.74 97.2 35.3
    74.4
    JPH3_HUMAN AEAALTAAQK AEAALTAAQK_487.27_773. 487.27 773.5 7.79 63.9 23.9
    5
    KCNA1_HUMAN VVINISGLR VVINISGLR_485.81_772.5 485.81 772.5 17.1 63.7 23.9
    SCNNA_HUMAN DNNPQVDWK DNNPQVDWK_558.26_772.4 558.26 772.4 11.27 73 27.1
    CO4A_HUMAN GSFEFPVGDAVSK GSFEFPVGDAVSK_670.33_7 670.33 772.4 17.53 87.5 32
    72.4
    APOD_HUMAN VLNQELR VLNQELR_436.2_772.4 436.2 772.4 8.4 57.3 24.7
    FCGRN_HUMAN SGLPAPWISLR SGLPAPWISLR_598.84_771.5 598.84 771.5 21.69 78.3 31.8
    FCGRN_HUMAN GDDTGVLLPTPGEAQDAD GDDTGVLLPTPGEAQDADL 1006.49 771.4 16.76 130.8 43.8
    LK K_1006.49_771.4
    APOC2_HUMAN TYLPAVDEK TYLPAVDEK_518.27_771.4 518.27 771.4 12.36 67.9 25.3
    RRAGC_HUMAN VDGLSDDHK VDGLSDDHK_493.23_771.4 493.23 771.4 6.78 64.6 27.2
    ACHB_HUMAN VPETSLSVPIIIK VPETSLSVPIIIK_698.43_769. 698.43 769.5 19.99 91.1 36.2
    5
    NRG3_HUMAN DLVGYSSTR DLVGYSSTR_499.25_769.4 499.25 769.4 10.78 65.4 24.5
    VTNC_HUMAN IYISGMAPRPSLAK IYISGMAPRPSLAK_501.9_7 501.9 768.5 22.5 65.8 26.1
    68.5
    GRIA2_HUMAN FAYLYDSDR FAYLYDSDR_575.26_768.4 575.26 768.4 14.83 75.2 27.8
    TADBP_HUMAN FIEYETQVK FIEYETQVK_572.78_767.4 572.78 767.4 10.48 74.9 27.7
    SO1B3_HUMAN GIGETPIVPLGISYIDDFAK GIGETPIVPLGISYIDDFAK_ 1053.06 767.4 25.06 136.8 45.8
    1053.06_767.4
    PCDGE_HUMAN VTDANDNPPVFSQDVYR VTDANDNPPVFSQDVYR_6 646.31 767.4 15.33 84.4 30.5
    46.31_767.4
    PERL_HUMAN FWWENPGVFTNEQK FWWENPGVFTNEQK_891.4 891.42 766.4 22.67 116 38.7
    2_766.4
    I12R1_HUMAN AGVAYTVQVR AGVAYTVQVR_532.3_765.4 532.3 765.4 12.09 69.7 25.9
    APOA4_HUMAN LEPYADQLR LEPYADQLR_552.79_765.4 552.79 765.4 12.59 72.3 32.8
    IL1AP_HUMAN LYIEYGIQR LYIEYGIQR_577.81_765.4 577.81 765.4 15.79 75.5 27.9
    PGCP_HUMAN AIINLAVYGK AIINLAVYGK_531.32_764.4 531.32 764.4 17.88 69.5 22.9
    PGCB_HUMAN ELEAPSEDNSGR ELEAPSEDNSGR_652.29_76 652.29 764.3 8.33 85.1 37.2
    4.3
    MTOR_HUMAN VLGLLGALDPYK VLGLLGALDPYK_629.87_76 629.87 763.4 24.65 82.3 30.2
    3.4
    DBC1_HUMAN VNHALDLYNTEILK VNHALDLYNTEILK_548.3_ 548.3 763.4 17.87 71.7 25.5
    763.4
    ACHAS_HUMAN EETESGSGPK EEIESGSGPK_510.73_762.4 510.73 762.4 5.83 66.9 28
    PTPRO_HUMAN IANLLPAWYYNFR IANLLPAWYYNFR_547.62_7 547.62 762.4 24.56 71.6 25.5
    62.4
    ICAM3_HUMAN WEEELSR WEEELSR_474.72_762.4 474.72 762.4 11.56 62.2 32.4
    KCNV2_HUMAN FSDYYSK FSDYYSK_455.2_762.3 455.2 762.3 9.95 59.7 22.5
    PAR6B_HUMAN FEEFYGLLQHVHK FEEFYGLLQHVHK_549.62_7 549.62 761.4 19.68 71.9 31.6
    61.4
    GRIA2_HUMAN GYHYIIANLGFTDGDLLK GYHYIIANLGFTDGDLLK_6 670.68 761.4 23.39 87.5 31.8
    70.68_761.4
    ZIC2_HUMAN LGLPGEVFGR LGLPGEVFGR_522.8_761.4 522.8 761.4 18.49 68.4 25.5
    PCDBC_HUMAN VGATDHGSPALSSEALVR VGATDHGSPALSSEALVR_5 589.64 761.4 13.35 77.1 27.6
    89.64_761.4
    WNT8B_HUMAN VDLLQGAGNSAAGR VDLLQGAGNSAAGR_664.8 664.85 760.4 13.4 86.8 31.8
    5_760.4
    DDR2_HUMAN NLYSGDYYR NLYSGDYYR_575.76_760.3 575.76 760.3 12.58 75.3 27.8
    NMDZ1_HUMAN IPVLGLTTR IPVLGLTTR_485.31_759.5 485.31 759.5 17.9 63.6 23.9
    CETP_HUMAN ASYPDITGEK ASYPDITGEK_540.76_759.4 540.76 759.4 11.23 70.8 26.3
    SHSA7_HUMAN LVSQEHLLLSSPEALR LVSQEHLLLSSPEALR_598_ 598 759.4 17.69 78.1 34
    759.4
    PTPRB_HUMAN SLVVSWSPPAGDWEQYR SLVVSWSPPAGDWEQYR_9 988.98 759.4 21.21 128.6 43
    88.98_759.4
    KSYK_HUMAN YLEESNFVHR YLEESNFVHR_431.88_759.4 431.88 759.4 12.59 56.7 22.6
    MPDZ_HUMAN SLGISIVGGR SLGISIVGGR_479.79_758.5 479.79 758.5 15.92 62.9 23.6
    NETR_HUMAN WAEVPPFLER WAEVPPFLER_622.33_758.4 622.33 758.4 20.93 81.3 29.9
    KSYK_HUMAN LIATTAHEK LIATTAHEK_492.28_757.4 492.28 757.4 6.84 64.5 24.2
    NKX62_HUMAN LAGPAPAGGVLDK LAGPAPAGGVLDK_583.33_ 583.33 756.4 12.29 76.2 31.2
    756.4
    OTOAN_HUMAN THSWQDAPASAGPTR THSWQDAPASAGPTR_527.9 527.92 756.4 9.56 69.1 24.5
    2_756.4
    MOT2_HUMAN YLDFSLFK YLDFSLFK_516.77_756.4 516.77 756.4 23.12 67.7 25.2
    HCN2_HUMAN QFGALLQPGVNK QFGALLQPGVNK_636.36_75 636.36 755.4 16.27 83.1 30.5
    5.4
    KALRN_HUMAN LTLSDFLIKPIQR LTLSDFLIKPIQR_515.31_754 515.31 754.5 23.26 67.5 32.8
    .5
    GABR2_HUMAN TVPSDNAVNPAILK TVPSDNAVNPAILK_719.9_7 719.9 754.5 14.05 93.9 40.2
    54.5
    IGF1R_HUMAN AENGPGPGVLVLR AENGPGPGVLVLR_639.86_ 639.86 753.5 16.44 83.5 39.7
    753.5
    CEL3B_HUMAN EGPEQVIPINSGDLFVHPL EGPEQVIPINSGDLFVHPLW 839.77 753.4 23.81 109.3 37.4
    WNR NR_839.77_753.4
    TRFR_HUMAN ILFLNPIPSDPK ILFLNPIPSDPK_677.39_753.4 677.39 753.4 21.23 88.4 32.3
    SHSA7_HUMAN SPALPPDPTAR SPALPPDPTAR_561.3_753.4 561.3 753.4 10.3 73.4 27.2
    YQ051_HUMAN GGVDLPATPGGPR GGVDLPATPGGPR_597.32_7 597.32 752.4 12.41 78.1 28.8
    52.4
    FEZ1_HUMAN VPTLLTDYILK VPTLLTDYILK_638.38_752.4 638.38 752.4 23.17 83.4 33.6
    ITIH3_HUMAN DYIFGNYIER DYIFGNYIER_645.31_751.4 645.31 751.4 19.24 84.2 30.9
    PRIO_HUMAN QHTVTTTTK QHTVTTTTK_508.77_751.4 508.77 751.4 5.87 66.6 24.9
    CETP_HUMAN VIQTAFQR VIQTAFQR_481.77_750.4 481.77 750.4 10.75 63.1 26.7
    PTPRT_HUMAN VTLIETEPLAEYVIR VTLIETEPLAEYVIR_582.66_ 582.66 750.4 23 76.2 27.3
    750.4
    ARSE_HUMAN VVHHDPPLLFDLSR VVHHDPPLLFDLSR_548.97_ 548.97 750.4 19.49 71.8 25.5
    750.4
    TRPV5_HUMAN ASLALPTSSLSR ASLALPTSSLSR_601.84_747. 601.84 747.4 15.54 78.6 29
    4
    BDNF_HUMAN GLTSLADTFEHVIEELLDE GLTSLADTFEHVIEELLDED 834.75 747.4 25.61 108.7 37.1
    DQK QK_834.75_747.4
    PACN1_HUMAN NNLLNEDLEK NNLLNEDLEK_601.31_747.4 601.31 747.4 14.37 78.6 29
    CADH3_HUMAN STGTISVISSGLDR STGTISVISSGLDR_696.87_7 696.87 747.4 16.02 90.9 33.2
    47.4
    CACB2_HUMAN TLATSSLPLSPTLASNSQGS TLATSSLPLSPTLASNSQGS 839.42 747.3 16.73 109.3 37.4
    QGDQR QGDQR_839.42_747.3
    NPTX1_HUMAN FQLTFPLR FQLTFPLR_511.3_746.5 511.3 746.5 21.84 67 25
    GP125_HUMAN WDFDLLNGQGGWK WDFDLLNGQGGWK_768.37 768.37 746.4 23.77 100.1 36.3
    _746.4
    PCSK1_HUMAN AEAQEAEDQQAR AEAQEAEDQQAR_673.3_74 673.3 746.3 6.08 87.9 35.1
    6.3
    SREC_HUMAN GTQGSELDPK GTQGSELDPK_516.25_745.4 516.25 745.4 7.72 67.6 25.2
    NMDE1_HUMAN GVEDALVSLK GVEDALVSLK_515.79_745.4 515.79 745.4 16.75 67.5 25.2
    ODP2_HUMAN ILVAEGTR ILVAEGTR_429.76_745.4 429.76 745.4 9.62 56.4 24.4
    GNAQ_HUMAN YYLNDLDR YYLNDLDR_536.26_745.4 536.26 745.4 14.39 70.2 26.1
    APLP1_HUMAN DELAPAGTGVSR DELAPAGTGVSR_586.8_744 586.8 744.4 9.53 76.7 28.3
    .4
    GABR2_HUMAN NVSIPALNDSK NVSIPALNDSK_579.31_744. 579.31 744.4 14.46 75.7 28
    4
    TMPS2_HUMAN TSEVLNAAK TSEVLNAAK_466.76_744.4 466.76 744.4 8.64 61.2 23
    KLKB1_HUMAN YSPGGTPTAIK YSPGGTPTAIK_546.29_744.4 546.29 744.4 9.73 71.5 32.5
    IGF1R_HUMAN TTINNEYNYR TTINNEYNYR_644.3_744.3 644.3 744.3 9.54 84.1 30.8
    PGCP_HUMAN LALLVDTVGPR LALLVDTVGPR_577.35_743. 577.35 743.4 18.84 75.5 27.9
    4
    SIG12_HUMAN NIPVATNNPAR NIPVATNNPAR_583.82_743. 583.82 743.4 9.32 76.3 37.2
    4
    DBC1_HUMAN ISDVQVFGYSLR ISDVQVFGYSLR_692.37_742 692.37 742.4 19.96 90.3 33
    .4
    CFAB_HUMAN YGLVTYATYPK YGLVTYATYPK_638.33_742 638.33 742.4 15.87 83.3 30.6
    .4
    CO4A4_HUMAN ADLQFSSAPAPDTLK ADLQFSSAPAPDTLK_780.9 780.9 741.4 15.27 101.7 36.9
    _741.4
    ACBD7_HUMAN ARPDDGELK ARPDDGELK_500.76_741.3 500.76 741.3 6.72 65.6 30.5
    GOPC_HUMAN EHGVPILISEIHPGQPADR EHGVPILISEIHPGQPADR_6 689.03 740.4 17.44 89.9 41.7
    89.03_740.4
    PKDRE_HUMAN GAQAAVSGAPGGLLR GAQAAVSGAPGGLLR_662. 662.87 740.4 14.12 86.5 31.7
    87_740.4
    RCN1_HUMAN HLVYESDK HLVYESDK_495.75_740.3 495.75 740.3 7.73 65 27.3
    PZP_HUMAN AVGYLITGYQR AVGYLITGYQR_620.84_737. 620.84 737.4 15.85 81.1 32.8
    4
    MMP20_HUMAN LAQAYLDK LAQAYLDK_461.26_737.4 461.26 737.4 10.6 60.5 22.8
    P2RX1_HUMAN NLSPGFNFR NLSPGFNFR_526.27_737.4 526.27 737.4 16.65 68.9 25.7
    SCRT1_HUMAN SDLGAPLHDK SDLGAPLHDK_526.77_737.4 526.77 737.4 9.54 69 31.7
    CO9A2_HUMAN GEQGPPGIPGPQGLPGVK GEQGPPGIPGPQGLPGVK_8 842.95 736.4 16.02 109.7 39.6
    42.95_736.4
    IL1R2_HUMAN QEYSENNENYIEVPLIFDPV QEYSENNENYIEVPLIFDPV 890.43 734.4 24.62 115.9 40
    TR TR_890.43_734.4
    ANO3_HUMAN AEQVNIEENK AEQVNIEENK_581.27_734.3 581.27 734.3 6.06 76 28.1
    WNK4_HUMAN VTSVSDQNDR VTSVSDQNDR_560.77_734.3 560.77 734.3 6.17 73.3 27.2
    FGFR2_HUMAN DAAVISWTK DAAVISWTK_495.77_733.4 495.77 733.4 14.9 65 24.3
    ACE2_HUMAN SGENPYASIDISK SGENPYASIDISK_690.84_73 690.84 733.4 13.96 90.1 38.9
    3.4
    41_HUMAN SLDGAAAVDSADR SLDGAAAVDSADR_624.3_7 624.3 733.3 10.15 81.5 30
    33.3
    PCSK1_HUMAN ALAHLLEAER ALAHLLEAER_374.88_730.4 374.88 730.4 14.09 49.4 19.7
    SYN2_HUMAN TPALSPQRPLTTQQPQSGT TPALSPQRPLTTQQPQSGTL 750.41 730.4 12.34 97.8 44.8
    LK K_750.41_730.4
    A1BG_HUMAN ATWSGAVLAGR ATWSGAVLAGR_544.8_730. 544.8 730.3 15.9 71.3 32.5
    3
    PCDGE_HUMAN VTDANDNPPVFSQDVYR VTDANDNPPVFSQDVYR_6 646.31 730.3 15.33 84.4 30.5
    46.31_730.3
    APC2_HUMAN LAAQEGPLSLSR LAAQEGPLSLSR_621.35_72 621.35 729.4 14.4 81.2 32.8
    9.4
    SNTB1_HUMAN SGLLEVLVR SGLLEVLVR_493.31_728.5 493.31 728.5 21.74 64.6 24.2
    SEM4A_HUMAN TLGSQPVLK TLGSQPVLK_471.78_728.4 471.78 728.4 10.96 61.9 23.3
    FRS2_HUMAN FVLGPTPVQK FVLGPTPVQK_543.32_726.4 543.32 726.4 14.71 71.1 26.4
    PZP_HUMAN LEAGINQLSFPLSSEPIQGS LEAGINQLSFPLSSEPIQGSY 1203.62 726.4 21.13 156.3 64.5
    YR R_1203.62_726.4
    SO1A2_HUMAN IYDSTTFR IYDSTTFR_501.75_726.3 501.75 726.3 11.46 65.7 24.6
    CO8A_HUMAN LYYGDDEK LYYGDDEK_501.72_726.3 501.72 726.3 9.1 65.7 24.6
    PAK3_HUMAN LAKPLSSLTPLIIAAK LAKPLSSLTPLIIAAK_818.52 818.52 725.5 21.28 106.6 47.5
    _725.5
    ANGT_HUMAN DPTFIPAPIQAK DPTFIPAPIQAK_649.36_724. 649.36 724.4 16.67 84.8 31.1
    4
    FIBA_HUMAN TVIGPDGHK TVIGPDGHK_462.25_723.4 462.25 723.4 6.93 60.6 22.8
    TMPS2_HUMAN VISHPNYDSK VISHPNYDSK_580.29_723.3 580.29 723.3 7.45 75.9 34
    MMPP24_HUMAN AAPGPPPPPPPPGQAPR AAPGPPPPPPPPGQAPR_534. 534.29 722.4 9.77 69.9 24.8
    29_722.4
    CAD19_HUMAN AVEPESEFVIK AVEPESEFVIK_624.33_722.4 624.33 722.4 15.88 81.5 39
    PIN1_HUMAN EEALELINGYIQK EEALELINGYIQK_507.27_72 507.27 722.4 20.61 66.4 23.4
    2.4
    CO1A2_HUMAN GEAGAAGPAGPAGPR GEAGAAGPAGPAGPR_618. 618.31 722.4 7.34 80.8 29.7
    31_722.4
    FGL1_HUMAN IDLADFEK IDLADFEK_475.75_722.4 475.75 722.4 17.24 62.4 23.4
    CF072_HUMAN VFFPVSEYK VFFPVSEYK_558.29_722.4 558.29 722.4 17.92 73 27.1
    CO1A1_HUMAN AVGLAGTFR AVGLAGTFR_446.26_721.4 446.26 721.4 14.22 58.6 22.1
    SEPT3_HUMAN STLVNTLFK STLVNTLFK_511.8_721.4 511.8 721.4 19.5 67 25
    SEMG1_HUMAN DVSQSSIYSQIEEK DVSQSSIYSQTEEK_800.87_ 800.87 721.3 10.52 104.3 37.7
    721.3
    ACHA2_HUMAN SEDADSSVK SEDADSSVK_469.21_721.3 469.21 721.3 6 61.5 23.1
    ALBU_HUMAN TYETTLEK TYETTLEK_492.75_720.4 492.75 720.4 9.43 64.6 24.2
    KNG1_HUMAN YFIDFVAR YFIDFVAR_515.8_720.4 515.8 720.4 22.5 67.5 28.2
    OLFL3_HUMAN TEADTISGR IEADTISGR_475.23_719.4 475.23 719.4 7.26 62.3 23.4
    APOA1_HUMAN LAEYHAK LAEYHAK_416.22J18.4 416.22 718.4 6.59 54.7 20.8
    KCTD4_HUMAN NGELLLPEGFR NGELLLPEGFR_622.84_718. 622.84 718.4 19.68 81.3 29.9
    4
    INADL_HUMAN SLVADGVAER SLVADGVAER_508.77_717.4 508.77 717.4 10.85 66.6 24.9
    NCKX2_HUMAN TLLDLNDK TLLDLNDK_466.26_717.4 466.26 717.4 15.03 61.1 23
    CRLF1_HUMAN VGGLEDQLSVR VGGLEDQLSVR_586.82_717 586.82 717.4 14.23 76.7 31.3
    .4
    DBC1_HUMAN VNHALDLYNTEILK VNHALDLYNTEILK_548.3_ 548.3 717.4 17.87 71.7 25.5
    717.4
    PSMG1_HUMAN TSESTGSLPSPFLR TSESTGSLPSPFLR_739.88_7 739.88 716.4 17.54 96.4 35.1
    16.4
    CADH5_HUMAN YTFVVPEDTR YTFVVPEDTR_613.81_716.4 613.81 716.4 15.34 80.2 29.5
    IL1AP_HUMAN QIQVFEDEPAR QIQVFEDEPAR_666.33_716. 666.33 716.3 14.23 87 37.8
    3
    CAD19_HUMAN VSDINDNEPK VSDINDNEPK_565.77_716.3 565.77 716.3 7.2 74 27.4
    ITIH2_HUMAN IQPSGGTNINEALLR IQPSGGTNINEALLR_791.93 791.93 715.4 15.42 103.2 46.3
    715.4
    ERMIN_HUMAN ITEQPLK ITEQPLK_414.75_715.4 414.75 715.4 8.64 54.5 20.7
    C06_HUMAN ENPAVIDFELAPIVDLVR ENPAVIDFELAPIVDLVR_10 1005.55 714.5 25.18 130.7 49.7
    05.55714.5
    ITIH1_HUMAN EVAFDLEIPK EVAFDLEIPK_580.81_714.4 580.81 714.4 19.77 75.9 28.1
    CAMKV_HUMAN LENLVYYNR LENLVYYNR_592.31_714.4 592.31 714.4 14.32 77.4 31.6
    CSF1_HUMAN FNSVPLTDTGHER FNSVPLTDTGHER_491.58_7 491.58 714.3 11.74 64.4 31.6
    14.3
    FIBA_HUMAN NSLFEYQK NSLFEYQK_514.76_714.3 514.76 714.3 14.01 67.4 25.1
    PON1_HUMAN SFNPNSPGK SFNPNSPGK_474.23_713.4 474.23 713.4 7.72 62.2 23.4
    F13A_HUMAN STVLTIPEIIIK STVLTIPEIIIK_663.9_712.5 663.9 712.5 23.2 86.6 31.7
    41_HUMAN APIAAPEPELK APIAAPEPELK_568.32_712.4 568.32 712.4 12.69 74.3 27.5
    HEP2_HUMAN FAFNLYR FAFNLYR_465.75_712.4 465.75 712.4 19.02 61.1 23
    AT2B3_HUMAN NVYDSISK NVYDSISK_463.24_712.4 463.24 712.4 10.5 60.8 22.9
    S15A2_HUMAN FVNTLHK FVNTLHK_429.75_711.4 429.75 711.4 8.42 56.4 21.4
    TRIM9_HUMAN NILVQTPESESPQSHR NILVQTPESESPQSHR_607.9 607.97 711.4 11.95 79.4 37.6
    7_711.4
    EDNRB_HUMAN SLAPAEVPK SLAPAEVPK_456.26_711.4 456.26 711.4 10.48 59.9 22.6
    KAIN_HUMAN VGSALFLSHNLK VGSALFLSHNLK_429.2_711. 429.2 711.4 17.1 56.4 25.4
    4
    XLRS1_HUMAN VFYGNSDR VFYGNSDR_479.23_711.3 479.23 711.3 8.8 62.8 23.6
    CP46A_HUMAN ALQTVFGER ALQTVFGER_510.78708.4 510.78 708.4 14.69 66.9 25
    CO4B_HUMAN LQETSNWLLSQQQADGSF LQETSNWLLSQQQADGSFQ 1033.18 708.4 21.19 134.3 50.2
    QDLSPVIHR DLSPVIHR_1033.18_708.4
    CEL3A_HUMAN VVHGEDAVPYSWPWQVS VVHGEDAVPYSWPWQVSL 873.1 708.3 23.3 113.6 51.1
    LQYEK QYEK_873.1708.3
    UNC5C_HUMAN DFESDIIDSSALNGGFQPVN DFESDIIDSSALNGGFQPVNI 789.39 707.3 22.67 102.8 37.8
    IK K_789.39_707.3
    HEP2_HUMAN IAIDLFK IAIDLFK_410.25_706.4 410.25 706.4 19.9 53.9 20.6
    CADH7_HUMAN VVYSILQGQPYFSVEPK VVYSILQGQPYFSVEPK_652 652.02 706.4 21.48 85.1 30.8
    .02706.4
    CRUM1_HUMAN EPEFLNISIQDSR EPEFLNISIQDSR_774.39_705 774.39 705.4 19.34 100.9 36.6
    .4
    TNR19_HUMAN IASTASSPR IASTASSPR_445.24_705.4 445.24 705.4 6.17 58.4 22.1
    RGS4_HUMAN LGFLLQK LGFLLQK_409.76_705.4 409.76 705.4 18.02 53.9 20.5
    NOE3_HUMAN SIADFVSGAESR SIADFVSGAESR_619.8_705. 619.8 705.4 16.43 81 29.8
    4
    ANT3_HUMAN DDLYVSDAFHK DDLYVSDAFHK_655.31_704 655.31 704.3 14.4 85.5 34.3
    .3
    A1AG2_HUMAN NWGLSFYADKPETTK NWGLSFYADKPETTK_586.2 586.29 703.4 18.43 76.6 36.5
    9703.4
    KCC1G_HUMAN DLKPENLLYLTPEENSK DLKPENLLYLTPEENSK_66 668.35 703.3 19.4 87.2 31.6
    8.35703.3
    INADL_HUMAN DVQPGSVADR DVQPGSVADR_522.26_701.4 522.26 701.4 7.7 68.4 25.5
    CACB2_HUMAN GVGVVDQALR GVGVVDQALR_507.3_701.4 507.3 701.4 11.8 66.4 27.8
    NOE3_HUMAN ITGPVTVK ITGPVTVK_407.76_701.4 407.76 701.4 10.07 53.6 20.4
    S12A6_HUMAN LNEVIVNK LNEVIVNK_464.78_701.4 464.78 701.4 10.4 61 23
    CD3D_HUMAN LSGAADTQALLR LSGAADTQALLR_608.34_70 608.34 701.4 14.11 79.5 38.3
    1.4
    CLUS_HUMAN EIQNAVNGVK EIQNAVNGVK_536.3_701.3 536.3 701.3 7.9 70.2 32.1
    VTDB_HUMAN VLEPTLK VLEPTLK_400.25_700.4 400.25 700.4 11.66 52.6 20.1
    AMFR2_HUMAN VPLDLSPR VPLDLSPR_448.76_700.4 448.76 700.4 13.3 58.9 22.2
    NCKX2_HUMAN VTAPEAQAKPSAAR VTAPEAQAKPSAAR_466.26 466.26 700.4 6.95 61.1 30.3
    700.4
    RELN_HUMAN FVYLELPAAAK FVYLELPAAAK_611.35_699. 611.35 699.4 19.69 79.9 29.4
    4
    PARD3_HUMAN TPIIWFHVVPAANK TPIIWFHVVPAANK_531.64 531.64 698.4 21.26 69.6 24.7
    698.4
    SO1A2_HUMAN YIYLGLPAALR YIYLGLPAALR_625.37_697. 625.37 697.4 22.53 81.7 30
    4
    CNTN1_HUMAN AHSDGGDGVVSQVK AHSDGGDGVVSQVK_452.5 452.56 697.3 8.14 59.4 20.6
    6697.3
    GALR3_HUMAN EGPVHGGEAAR EGPVHGGEAAR_540.27_697 540.27 697.3 6.1 70.7 35.3
    .3
    Id_HUMAN TLYSSSPR TLYSSSPR_455.74_696.3 455.74 696.3 8.24 59.8 22.6
    SEPT3_HUMAN YINEQYEK YINEQYEK_543.76_696.3 543.76 696.3 8.49 71.1 26.4
    ITIH2_HUMAN SSALDMENFR SSALDMENFR_585.3_696.2 585.3 696.2 16.3 76.5 34.3
    RRAGC_HUMAN AFLFDVVSK AFLFDVVSK_513.29_694.4 513.29 694.4 21 67.2 25.1
    TADBP_HUMAN FGGNPGGFGNQGGFGNSR FGGNPGGFGNQGGFGNSR_ 863.89 694.3 14.09 112.4 46.5
    863.89694.3
    GT253_HUMAN NLGVDLLPGYQDPYSGR NLGVDLLPGYQDPYSGR_6 621.98 694.3 20.39 81.2 29.3
    21.98694.3
    HPCA_HUMAN LSLEEFIR LSLEEFIR_503.78_693.4 503.78 693.4 21.7 66 24.7
    TFR2_HUMAN VGVISFAQK VGVISFAQK_474.78_693.4 474.78 693.4 14.8 62.2 23.4
    DIRA2_HUMAN VAVFGAGGVGK VAVFGAGGVGK_481.28_69 481.28 692.4 13.16 63.1 23.7
    2.4
    GRN_HUMAN ENATTDLLTK ENATTDLLTK_553.29_690.4 553.29 690.4 12.44 72.4 26.8
    NECP2_HUMAN AAEWQLDQPSWSGR AAEWQLDQPSWSGR_815.8 815.88 689.3 17.32 106.2 38.4
    8689.3
    SAA4_HUMAN GPGGVWAAK GPGGVWAAK_421.73_688.4 421.73 688.4 11.21 55.4 24.1
    AACT_HUMAN ITLLSALVETR ITLLSALVETR_608.37_688.4 608.37 688.4 23.62 79.5 26.3
    TRIM9_HUMAN VLEGVIDR VLEGVIDR_450.76_688.4 450.76 688.4 12.51 59.1 22.3
    CLC4M_HUMAN AAVGELPDQSK AAVGELPDQSK_557.79_687 557.79 687.4 9.74 73 27
    .4
    OLIG1_HUMAN IATLLLAR IATLLLAR_435.79_686.5 435.79 686.5 17.19 57.2 21.7
    ELAV3_HUMAN GLNGQKPLGAAEPITVK GLNGQKPLGAAEPITVK_56 564.99 686.4 13.41 73.9 26.4
    4.99686.4
    PSMG1_HUMAN LDLITVEAFKPILSTR LDLITVEAFKPILSTR_606.02 606.02 686.4 23.92 79.2 34.5
    686.4
    CADH5_HUMAN YEIVVEAR YEIVVEAR_489.8j86.4 489.8 686.4 14 64.2 27
    KSYK_HUMAN LIATTAHEK LIATTAHEK_492.28_686.3 492.28 686.3 6.84 64.5 24.2
    CBPN_HUMAN SIPQVSPVR SIPQVSPVR_491.8j85.5 491.8 685.5 11.6 64.4 27.1
    CEL3A_HUMAN EGPEQVIPINSEELFVHPLW EGPEQVIPINSEELFVHPLW 868.45 685.4 24.05 113 50.8
    NR NR_868.45_685.4
    CEL3B_HUMAN EGPEQVIPINSGDLFVHPL EGPEQVIPINSGDLFVHPLW 839.77 685.4 23.81 109.3 49.4
    WNR NR_839.77_685.4
    KCC2A_HUMAN ITQYLDAGGIPR ITQYLDAGGIPR_652.35_685 652.35 685.4 14.93 85.2 31.2
    .4
    PCDBC_HUMAN ALDYEERPELSFILTALDG ALDYEERPELSFILTALDGG 882.79 685.3 25.09 114.9 42.6
    GSPPR SPPR_882.79_685.3
    PCDBF_HUMAN LTLTAVDGGSPPR LTLTAVDGGSPPR_428.57_6 428.57 685.3 13.73 56.3 28.4
    85.3
    PCDB6_HUMAN SLDYEALQSFEFR SLDYEALQSFEFR_802.88_6 802.88 685.3 21.86 104.6 37.8
    85.3
    LGI1_HUMAN FQELNVQAPR FQELNVQAP_601.32_684.4 601.32 684.4 13.58 78.6 32
    CSF1R_HUMAN VIPGPPALTLVPAELVR VIPGPPALTLVPAELVR_581. 581.36 684.4 24.37 76 24.2
    36_684.4
    PTN5_HUMAN QLSHQSPE QLSHQSPE_463.22_684.3 463.22 684.3 6.3 60.8 22.9
    PERL_HUMAN IHGFDLAAINTQR IHGFDLAAINTQR_485.93_6 485.93 683.4 17.09 63.7 22.3
    83.4
    IL12B_HUMAN DIIKPDPPK DIIKPDPPK_511.8_682.4 511.8 682.4 9.7 67 25
    NPTX1_HUMAN LENLEQYSR LENLEQYSR_576.29_682.3 576.29 682.3 12.21 75.3 27.9
    PCDB6_HUMAN DLDAGSFGK DLDAGSFGK_455.22_681.3 455.22 681.3 11.75 59.7 22.5
    PTN5_HUMAN QLSHQSPE QLSHQSPE_463.22_681.3 463.22 681.3 6.3 60.8 22.9
    ALBU_HUMAN AEFAEVSK AEFAEVSK_440.72_680.4 440.72 680.4 9.69 57.9 21.9
    FINC_HUMAN SYTITGLQPGTDYK SYTITGLQPGTDYK_772.39_ 772.39 680.3 15.02 100.6 36.5
    680.3
    FEZ1_HUMAN GLSLQSSR GLSLQSSR_424.24_677.4 424.24 677.4 9.94 55.7 21.2
    IL1R2_HUMAN TISASLGSR TISASLGSR_446.25_677.4 446.25 677.4 10.01 58.6 22.1
    CD72_HUMAN VLEVTNSSLR VLEVTNSSLR_559.31_677.4 559.31 677.4 12.4 73.2 27.1
    CD3D_HUMAN NDQVYQPLR NDQVYQPLR_566.79_676.4 566.79 676.4 11.59 74.1 27.4
    SCN2A_HUMAN ALIESNQTAR ALIESNQTAR_551.8_676.3 551.8 676.3 8.92 72.2 29.8
    RCN1_HUMAN TFDQLTPDESK TFDQLTPDESK_640.8_676.3 640.8 676.3 12.13 83.7 30.7
    OLFL3_HUMAN DPLGQTEK DPLGQIEK_444.23_675.4 444.23 675.4 7.6 58.3 22
    5HT2C_HUMAN VAATALSGR VAATALSGR_423.25_675.4 423.25 675.4 8.46 55.6 21.1
    VTDB_HUMAN VPTADLEDVLPLAEDITNIL VPTADLEDVLPLAEDITNIL 789.43 675.4 25.27 102.8 34.8
    SK SK_789.43_675.4
    CB080_HUMAN FSDTQPK FSDTQPK_411.7j75.3 411.7 675.3 6.65 54.1 20.6
    KCNV2_HUMAN FSDYYSK FSDYYSK_455.2_675.3 455.2 675.3 9.95 59.7 22.5
    OPCM_HUMAN NTGVSVGQK NTGVSVGQK_445.24_674.4 445.24 674.4 6.78 58.4 22.1
    KIRR2_HUMAN AEAGLSGLR AEAGLSGLR_437.24_673.4 437.24 673.4 11.57 57.4 21.7
    A2MG_HUMAN LLIYAVLPTGDVIGDSAK LLIYAVLPTGDVIGDSAK_6 615.68 673.4 23.29 80.4 25.9
    15.68673.4
    CO9A2_HUMAN VGDPGVAGLPGEK VGDPGVAGLPGEK_598.32_ 598.32 671.4 12.25 78.2 37.8
    671.4
    APC2_HUMAN APATASATLLE APATASATLLE_522.78_671. 522.78 671.3 14.37 68.4 25.5
    3
    KCNA1_HUMAN DFTGTVHR DFTGTVHR_466.73_670.4 466.73 670.4 8.37 61.2 29
    CO1A2_HUMAN GPAGPSGPAGK GPAGPSGPAGK_448.24_70. 448.24 670.4 6.21 58.8 25.2
    4
    NRG3_HUMAN DLVGYSSTR DLVGYSSTR_499.25_670.3 499.25 670.3 10.78 65.4 24.5
    NEUM_HUMAN EEEPEADQEHA EEEPEADQEHA_642.26_670. 642.26 670.3 6.66 83.9 39.8
    3
    BEST1_HUMAN WWNQYENLPWPDR WWNQYENLPWPDR_902.42 902.42 670.3 21.96 117.4 42.2
    670.3
    TAU_HUMAN TPSLPTPPTR TPSLPTPPTR_533.8_668.4 533.8 668.4 12.13 69.9 29
    YQ051_HUMAN SLADPPSSSQALHSPAR SLADPPSSSQALHSPA_574 574.29 668.3 10.78 75.1 26.8
    .29668.3
    SYUB_HUMAN EGVLYVGSK EGVLYVGSK_476.2_666.4 476.2 666.4 11.9 62.4 23.5
    FETUA_HUMAN FSVVYAK FSVVYAK_407.23_666.4 407.23 666.4 12.73 53.5 20.4
    DCBD2_HUMAN NNFLPPIIAR NNFLPPIIAR_577.84_666.4 577.84 666.4 19.88 75.5 27.9
    PARK7_HUMAN VTTHPLAK VTTHPLAK_433.76_666.4 433.76 666.4 6.73 57 21.6
    CADH3_HUMAN FTQDTFR FTQDTFR_457.72_666.3 457.72 666.3 10.91 60 22.6
    ANGT_HUMAN ADSQAQLLLSTVVGVFTAP ADSQAQLLLSTVVGVFTAP 822.46 664.4 25.25 107.1 48.5
    GLHLK GLHLK_822.46_664.4
    ICAM3_HUMAN IALETSLSK IALETSLSK_481.28_664.4 481.28 664.4 13.28 63.1 23.7
    FGFR2_HUMAN EIEVLYIR EIEVLYIR_517.8_663.4 517.8 663.4 18.55 67.8 25.3
    CAR14_HUMAN EQTLLQFQK EQTLLQFQK_567.81_663.4 567.81 663.4 15.65 74.2 27.5
    PAK3_HUMAN LLQTSNITK LLQTSNITK_509.3_663.4 509.3 663.4 10.64 66.7 24.9
    PLCB1_HUMAN NDSIPQEDFTPEVYR NDSIPQEDFTPEVYR_905.42 905.42 663.3 16.36 117.8 51.3
    663.3
    MICA_HUMAN ASGFYPWNITLSWR ASGFYPWNITLSWR_849.43 849.43 662.4 25.08 110.6 36.9
    662.4
    MAMC2_HUMAN FTSQPGYIGR FTSQPGYIGR_563.29_662.4 563.29 662.4 11.01 73.7 27.3
    PACN1_HUMAN AGDELTK AGDELTK_367.19_662.3 367.19 662.3 6.7 48.4 18.7
    VGFR3_HUMAN SGVDLADSNQK SGVDLADSNQK_567.28j62 567.28 662.3 8.61 74.2 27.5
    .3
    AACT_HUMAN ADLSGITGAR ADLSGITGAR_480.76_661.4 480.76 661.4 11.68 63 23.7
    A1AG2_HUMAN EHVAHLLFLR EHVAHLLFLR_412.24_661.4 412.24 661.4 17.82 54.2 24.6
    SLIK1_HUMAN SLPVDVFAGVSLSK SLPVDVFAGVSLSK_709.9_6 709.9 661.4 22.04 92.6 39.7
    61.4
    HPT_HUMAN VGYVSGWGR VGYVSGWGR_490.75_661.3 490.75 661.3 13.84 64.3 24.1
    TRPV5_HUMAN AEGPGSQLQK AEGPGSQLQK_507.76_660.4 507.76 660.4 7.63 66.5 33.8
    ALS_HUMAN SLALGTFAHTPALASLGLS SLALGTFAHTPALASLGLSN 737.73 660.3 21.95 96.2 32.2
    NNR NR_737.73_660.3
    F13A_HUMAN LSIQSSPK LSIQSSPK_430.25_659.4 430.25 659.4 9.07 56.5 21.4
    ITB2_HUMAN LGAILTPNDGR LGAILTPNDGR_563.81_659. 563.81 659.3 13.18 73.7 27.3
    3
    LAT2_HUMAN SGGDYSYVK SGGDYSYVK_488.22_659.3 488.22 659.3 9.01 64 27
    CNTN2_HUMAN VIASNILGTGEPSGPSSK VIASNILGTGEPSGPSSK_85 857.45 659.3 14.84 111.6 43.2
    7.45659.3
    MMP17_HUMAN VLDGELEVAPGYPQSTAR VLDGELEVAPGYPQSTAR_ 951.48 659.3 15.62 123.7 47.4
    951.48659.3
    APOD_HUMAN VLNQELR VLNQELR_436.25_659.3 436.25 659.3 9.77 57.3 21.7
    PCDGF_HUMAN DLGFGVGDLPTR DLGFGVGDLPTR_623.83_65 623.83 658.4 18.4 81.5 29.9
    8.4
    LAMB2_HUMAN SLADVDAILAR SLADVDAILAR_572.32_658. 572.32 658.4 19.32 74.8 27.7
    4
    GELS_HUMAN TGAQELLR TGAQELLR_444.2_658.4 444.2 658.4 11.1 58.3 25
    TFR2_HUMAN YGDVVLR YGDVVLR_411.23_658.4 411.23 658.4 11.84 54 23.6
    FCGRN_HUMAN GDDTGVLLPTPGEAQDAD GDDTGVLLPTPGEAQDADL 1006.49 658.3 16.76 130.8 46.8
    LK K_1006.49_658.3
    CAD11_HUMAN DPDAANSPIR DPDAANSPIR_528.26_657.4 528.26 657.4 8.63 69.1 28.7
    S15A2_HUMAN IEDIPANK IEDIPANK_450.25_657.4 450.25 657.4 8.5 59.1 22.3
    FINC_HUMAN SSPVVIDASTAIDAPSNLR SSPVVIDASTAIDAPSNLR_9 957 657.4 17.46 124.5 53.6
    57657.4
    KIRR2_HUMAN FLVETFPAPESR FLVETFPAPESR_696.86_656. 696.86 656.3 17.78 90.9 33.2
    3
    GRIA2_HUMAN FAYLYDSDR FAYLYDSDR_575.26_655.3 575.26 655.3 14.83 75.2 27.8
    MMP1_HUMAN SQNPVQPIGPQTPK SQNPVQPIGPQTPK_745.9_6 745.9 654.3 10.67 97.2 32.3
    54.3
    VTNC_HUMAN NGSLFAFR NGSLFAFR_456.2_653.4 456.2 653.4 19.7 59.9 25.6
    ITB5_HUMAN LGFGSFVDK LGFGSFVDK_485.26_652.3 485.26 652.3 17.93 63.6 23.9
    GPC6_HUMAN SAPENFNTR SAPENFNTR_518.25_651.3 518.25 651.3 8.44 67.9 34.3
    PTPRB_HUMAN TVVLQTDPLPPAR TVVLQTDPLPPAR_703.9_65 703.9 650.4 14.83 91.8 42.5
    0.4
    NECP2_HUMAN VRPASTGGLSLLPPPPGGK VRPASTGGLSLLPPPPGGK_ 601.02 649.4 16.62 78.5 28.2
    601.02649.4
    CRLF1_HUMAN LAGLKPGTVYFVQVR LAGLKPGTVYFVQVR_549.9 549.99 648.4 18.54 71.9 25.6
    9648.4
    RGS4_HUMAN LGFLLQK LGFLLQK_409.76_648.4 409.76 648.4 18.02 53.9 20.5
    VTNC_HUMAN FEDGVLDPDYPR FEDGVLDPDYPR_711.83_64 711.83 647.3 16.02 92.8 42.8
    7.3
    APOA1_HUMAN LAEYHAK LAEYHAK_416.22647.3 416.22 647.3 6.59 54.7 20.8
    CALL3_HUMAN DGNGFVSAAELR DGNGFVSAAELR_618.3_646 618.3 646.4 15.13 80.8 29.7
    .4
    TNR19_HUMAN VLLEQEK VLLEQEK_429.75_646.3 429.75 646.3 9.97 56.4 21.4
    GPR88_HUMAN SVLPGVGDAAAAAVAATA SVLPGVGDAAAAAVAATA 907.16 645.4 22.31 118 40.8
    VPAVSQAQLGTR VPAVSQAQLGTR_907.16_64
    5.4
    GPC5_HUMAN LLEQVNR LLEQVNR_436.25_645.3 436.25 645.3 9.5 57.3 21.7
    ACHA4_HUMAN APPPHLPLSPALTR APPPHLPLSPALTR_489.62_6 489.62 644.4 16.02 64.2 28.5
    44.4
    S12A5_HUMAN ETTAGHLALLVTK ETTAGHLALLVTK_451.93_6 451.93 644.4 15.98 59.3 23.6
    44.4
    HS3S5_HUMAN IHPEVDPSVITK IHPEVDPSVITK_445.58_644. 445.58 644.4 12.75 58.5 20.3
    4
    RGS20_HUMAN IIYEDYISILSPK IIYEDYISILSPK_777.43_644. 777.43 644.4 22.75 101.3 33.7
    4
    FIBB_HUMAN SILENLR SILENLR_422.75_644.4 422.75 644.4 15.36 55.5 21.1
    A1BG_HUMAN ATWSGAVLAGR ATWSGAVLAGR_544.8643. 544.8 643.3 15.9 71.3 32.5
    3
    BEST1_HUMAN FLGLQSHDHHPPR FLGLQSHDHHPPR_514.26_6 514.26 643.3 11.25 67.3 32.8
    43.3
    KALRN_HUMAN LTLSDFLIKPIQR LTLSDFLIKPIQR_515.31_641 515.31 641.4 23.26 67.5 32.8
    .4
    PARD3_HUMAN ESVSTASDQPSHSLER ESVSTASDQPSHSLER577.2 577.27 641.3 8.68 75.5 36
    7641.3
    COIA1_HUMAN ADDILASPPR ADDILASPPR_527.78_640.4 527.78 640.4 12.5 69.1 22.7
    EDNRB_HUMAN SLAPAEVPK SLAPAEVPK_456.26_640.4 456.26 640.4 10.48 59.9 22.6
    LIPE_HUMAN VVGHSIAR VVGHSIAR_419.75_640.4 419.75 640.4 6.61 55.1 27
    SIX3_HUMAN DLYHILENHK DLYHILENHK_427.89_640.3 427.89 640.3 16.71 56.2 25.4
    CATD_HUMAN LSPEDYTLK LSPEDYTLK_533.28_639.3 533.28 639.3 13.66 69.8 35
    PDYN_HUMAN LSGSFLK LSGSFLK_376.22_638.4 376.22 638.4 13.45 49.5 19.1
    TM9S1_HUMAN IIHTDVFR IIHTDVFR_334.19_637.3 334.19 637.3 12.94 44.1 17.6
    ARSE_HUMAN VVHHDPPLLFDLSR VVHHDPPLLFDLSR_548.97_ 548.97 637.3 19.49 71.8 25.5
    637.3
    PAQR6_HUMAN LPQLLQVHQVPR LPQLLQVHQVPR_476.62_63 476.62 636.4 16.86 62.5 27.9
    6.4
    IL1AP_HUMAN LYIEYGIQR LYIEYGIQR_577.81_636.3 577.81 636.3 15.79 75.5 27.9
    HEP2_HUMAN IAIDLFK IAIDLFK_410.25_635.4 410.25 635.4 19.9 53.9 20.6
    C1QT4_HUMAN VPGAYFFSFTAGK VPGAYFFSFTAGK_464.57_6 464.57 635.3 22.38 60.9 21.2
    35.3
    LRP8_HUMAN LYWVDSK LYWVDSK_455.7_634.3 455.7 634.3 15.9 59.8 22.6
    CADH3_HUMAN STGTISVISSGLDR STGTISVISSGLDR_696.87_6 696.87 634.3 16.02 90.9 33.2
    34.3
    AACT_HUMAN EIGELYLPK EIGELYLPK_531.3_633.5 531.3 633.5 18.4 69.5 25.9
    PCDB7_HUMAN ILVLDVNDNAPDFVR ILVLDVNDNAPDFVR_850.4 850.45 633.3 20.44 110.7 36.9
    5_633.3
    ICAM3_HUMAN WEEELSR WEEELSR_474.72_633.3 474.72 633.3 11.56 62.2 26.4
    PDYN_HUMAN FLPSISTK FLPSISTK_446.76_632.4 446.76 632.4 13.97 58.6 22.2
    ODP2_HUMAN ILVAEGTR ILVAEGTR_429.76_632.3 429.76 632.3 9.62 56.4 21.4
    CBPN_HUMAN IVQLIQDTR IVQLIQDTR_543.32_632.3 543.32 632.3 14.84 71.1 35.4
    WNT8B_HUMAN TLGLLGTEGR TLGLLGTEGR_508.79_632.3 508.79 632.3 15.38 66.6 24.9
    CSF1R_HUMAN ALTFELTLR ALTFELTLR_532.3_631.3 532.3 631.3 23.2 69.7 28.9
    ITB5_HUMAN DDLDNIR DDLDNIR_430.71_630.4 430.71 630.4 10.48 56.6 21.5
    MMP20_HUMAN EDVVSVVK EDVVSVVK_437.75_630.4 437.75 630.4 11.29 57.5 21.8
    ATS1_HUMAN GAFYLLGEAYFIQPLPAAS GAFYLLGEAYFIQPLPAASE 1157.1 630.3 25.09 150.3 50.4
    ER R_1157.1_630.3
    AT2A2_HUMAN WGSNELPAEEGK WGSNELPAEEGK_658.81_63 658.81 630.3 12.28 86 34.5
    0.3
    PRIO_HUMAN ESQAYYQR ESQAYYQR_522.74_629.3 522.74 629.3 7.39 68.4 28.5
    ACHA4_HUMAN SPSDQLPPQQPLEAEK SPSDQLPPQQPLEAEK_882.4 882.44 628.3 11.76 114.8 41.3
    4628.3
    KLKB1_HUMAN TGAVSGHSLK TGAVSGHSLK_478.76_628.3 478.76 628.3 6.61 62.8 29.6
    ACHB_HUMAN AVALLPELR AVALLPELR_491.31_627.4 491.31 627.4 19.41 64.4 24.1
    IPSP_HUMAN GFQQLLQELNQPR GFQQLLQELNQPR_524.28_6 524.28 627.4 23.15 68.6 24.3
    27.4
    ARHG7_HUMAN SYYNVVLQNILE1ENEYSK SYYNVVLQNILETENEYSK_ 1153.56 627.3 24.95 149.8 50.3
    1153.56627.3
    F123A_HUMAN DPAGEPAVGEEVPAPADR DPAGEPAVGEEVPAPADR_ 888.92 626.3 11.94 115.7 44.6
    888.92626.3
    NPT4_HUMAN WGPPQER WGPPQER_435.22j26.3 435.22 626.3 10.39 57.1 24.6
    KCNA3_HUMAN SPPPPSAR SPPPPSAR_404.72_624.3 404.72 624.3 6.02 53.2 20.3
    FGFR3_HUMAN VGPDGTPYVTVLK VGPDGTPYVTVLK_673.37_ 673.37 624.3 15.91 87.9 32.1
    624.3
    MYP2_HUMAN NTEISFK NTEISFK_419.72_623.3 419.72 623.3 11.93 55.1 21
    SEPT3_HUMAN STLVNTLFK STLVNTLFK_511.8_622.4 511.8 622.4 19.5 67 25
    PICAL_HUMAN ITAAQHSVTGSAVSK ITAAQHSVTGSAVSK_486.2 486.26 622.3 7.72 63.7 22.3
    6622.3
    CETP_HUMAN VIQTAFQR VIQTAFQR_481.77_622.3 481.77 622.3 10.75 63.1 23.7
    CK041_HUMAN DVAQDGSTIK DVAQDGSTIK_517.26_620.3 517.26 620.3 7.48 67.7 25.3
    FIBG_HUMAN IHLISTQSAIPYALR IHLISTQSAIPYALR_561.66_ 561.66 619.4 18.84 73.5 26.2
    619.4
    SGCZ_HUMAN LEGISEFLLPLYVK LEGISEFLLPLYVK_810.97_6 810.97 619.4 25.2 105.6 47.2
    19.4
    ACHA2_HUMAN LSPSYHWLESNVDAEER LSPSYHWLESNVDAEER_67 677.99 619.3 17.4 88.5 32.1
    7.99_619.3
    CD72_HUMAN NWQESQK NWQESQK_460.22_619.3 460.22 619.3 7.02 60.4 22.7
    KCNQ1_HUMAN GQVFATSAIR GQVFATSAIR_525.29_618.4 525.29 618.4 13.2 68.8 25.6
    TMPS2_HUMAN TSEVLNAAK TSEVLNAAK_466.76_615.4 466.76 615.4 8.64 61.2 26
    DCBD1_HUMAN ASSSWQSVNESGDQVHWS ASSSWQSVNESGDQVHWS 834.05 615.3 14.41 108.6 49.1
    PGQAR PGQAR_834.05_615.3
    CAMKV_HUMAN LENLVYYNR LENLVYYNR_592.31_615.3 592.31 615.3 14.32 77.4 28.6
    UNC5C_HUMAN NEDIIDPVEDR NEDIIDPVEDR_657.81_615.3 657.81 615.3 13.99 85.9 40.4
    MMP9_HUMAN SLGPALLLLQK SLGPALLLLQK_576.87_614. 576.87 614.4 22.28 75.4 30.9
    4
    KCNA5_HUMAN EEQGTQSQGPGLDR EEQGTQSQGPGLDR_751.35 751.35 614.3 7.7 97.9 38.6
    _614.3
    DCBD1_HUMAN HEYALPLAPPEPEYATPIVE HEYALPLAPPEPEYATPIVE 798.08 614.3 19.34 104 38.3
    R R_798.08_614.3
    ARSE_HUMAN LAGGEVPQDR LAGGEVPQDR_521.27_614.3 521.27 614.3 7.99 68.2 25.4
    LCN8_HUMAN FAFPGHR FAFPGHR_416.22_613.3 416.22 613.3 12.58 54.7 23.8
    HPT_HUMAN FTDHLK FTDHLK_380.7_613.3 380.7 613.3 8.41 50.1 22.3
    CO1A2_HUMAN GPAGPSGPAGK GPAGPSGPAGK_448.24_613. 448.24 613.3 6.21 58.8 25.2
    3
    RGS11_HUMAN WGFSFR WGFSFR_400.2_613.3 400.2 613.3 20.25 52.6 23.1
    ACHB2_HUMAN IVPPTSLDVPLVGK IVPPTSLDVPLVGK_717.93_ 717.93 612.4 19.09 93.6 34.1
    612.4
    SYNPR_HUMAN ETGWHSSGQR ETGWHSSGQR_572.76_611.3 572.76 611.3 7.62 74.9 36.7
    GPC6_HUMAN GFSLADIPYQEIAGEHLR GFSLADIPYQEIAGEHLR_67 672.68 611.3 22.21 87.8 34.9
    2.68_611.3
    SO1A2_HUMAN IYDSTTFR IYDSTTFR_501.75_611.3 501.75 611.3 11.46 65.7 33.6
    FIBA_HUMAN TVIGPDGHK TVIGPDGHK_462.25_610.3 462.25 610.3 6.93 60.6 25.8
    CALL3_HUMAN EAFSLFDK EAFSLFDK_478.74_609.3 478.74 609.3 18.7 62.8 23.6
    FGL1_HUMAN IDLADFEK IDLADFEK_475.75_609.3 475.75 609.3 17.24 62.4 23.4
    MMP20_HUMAN LAQAYLDK LAQAYLDK_461.26_609.3 461.26 609.3 10.6 60.5 22.8
    SCRT1_HUMAN SDLGAPLHDK SDLGAPLHDK_526.77_609.3 526.77 609.3 9.54 69 28.7
    DCBD2_HUMAN YSSSEVNHLSPR YSSSEVNHLSPR_459.23_609 459.23 609.3 9.61 60.2 27
    .3
    PIN1_HUMAN EEALELINGYIQK EEALELINGYIQK_507.27_60 507.27 608.3 20.61 66.4 23.4
    8.3
    NEUG_HUMAN IQASFR IQASFR_361.2_608.3 361.2 608.3 9.77 47.6 21.4
    LAMB2_HUMAN IQGTLQPHAR IQGTLQPHAR_374.21_608.3 374.21 608.3 7.74 49.3 22.6
    CFAH_HUMAN NGFYPATR NGFYPATR_463.23_607.3 463.23 607.3 11.09 60.8 22.9
    KNG1_HUMAN YFIDFVAR YFIDFVAR_515.8_607.3 515.8 607.3 22.5 67.5 28.2
    FA20A_HUMAN HFPTISADYSQDEK HFPTISADYSQDEK_546.59_ 546.59 606.3 13.78 71.5 25.4
    606.3
    CB080_HUMAN NATSISAK NATSISAK_396.22_606.3 396.22 606.3 6.49 52.1 19.9
    ACHA2_HUMAN SEDADSSVK SEDADSSVK_469.21_606.3 469.21 606.3 6 61.5 26.1
    ZIC1_HUMAN HHSAGDVAER HHSAGDVAER_360.17_605. 360.17 605.2 5.9 47.5 18.9
    2
    GBRB2_HUMAN GDDNAVTGVTK GDDNAVTGVTK_538.76_60 538.76 604.4 7.83 70.5 26.2
    4.4
    TR11B_HUMAN NGDQDTLK NGDQDTLK_445.71_604.3 445.71 604.3 6.5 58.5 25.1
    NCKX2_HUMAN TLLDLNDK TLLDLNDK_466.26_604.3 466.26 604.3 15.03 61.1 23
    TERA_HUMAN GGNIGDGGGAADR GGNIGDGGGAADR_558.76_ 558.76 603.3 6.49 73.1 36.1
    603.3
    ALS_HUMAN SLALGTFAHTPALASLGLS SLALGTFAHTPALASLGLSN 737.73 603.3 21.95 96.2 32.2
    NNR NR_737.73_603.3
    KIRR2_HUMAN AEAGLSGLR AEAGLSGLR_437.24_602.4 437.24 602.4 11.57 57.4 21.7
    I12R1_HUMAN AGVAYTVQVR AGVAYTVQVR_532.3_602.4 532.3 602.4 12.09 69.7 25.9
    ACHAS_HUMAN GLSEPSSIAK GLSEPSSIAK_494.77_602.4 494.77 602.4 10.19 64.8 24.3
    CACB2_HUMAN GVGVVDQALR GVGVVDQALR_507.3_602.3 507.3 602.3 11.8 66.4 27.8
    AP0A4_HUMAN LEPYADQLR LEPYADQLR_552.79_602.3 552.79 602.3 12.59 72.3 32.8
    ITIH3_HUMAN NHQLIVTR NHQLIVTR_490.79_601.4 490.79 601.4 9.24 64.3 33.1
    TLR7_HUMAN NLETLDLSHNQLTTVPER NLETLDLSHNQLTTVPER_6 694.03 601.3 16.88 90.5 32.9
    94.03_601.3
    BDNF_HUMAN THGTLESVNGPK THGTLESVNGPK_413.88_60 413.88 601.3 8.23 54.4 18.7
    1.3
    MTOR_HUMAN TLDQSPELR TLDQSPELR_529.78_601.3 529.78 601.3 10.35 69.3 28.8
    RRAGC_HUMAN VDGLSDDHK VDGLSDDHK_493.23_601.3 493.23 601.3 6.78 64.6 27.2
    NOE3_HUMAN ITGPVTVK ITGPVTVK_407.76_600.4 407.76 600.4 10.07 53.6 20.4
    GFRA2_HUMAN LASIFSGTGADPVVSAK LASIFSGTGADPVVSAK_810 810.44 600.4 17.97 105.5 47.2
    .44_600.4
    TNF6B_HUMAN LLQALR LLQALR_357.24_600.4 357.24 600.4 12.48 47.1 21.2
    SO1B3_HUMAN LSLVGIAK LSLVGIAK_400.77_600.4 400.77 600.4 15.8 52.7 20.1
    CSF1_HUMAN ISSLRPQGLSNPSTLSAQPQ ISSLRPQGLSNPSTLSAQPQL 813.11 600.3 15.09 105.9 39
    LSR SR_813.11_600.3
    CO8A_HUMAN SLLQPNK SLLQPNK_400.24_599.4 400.24 599.4 10.77 52.6 20.1
    PTPRO_HUMAN IANLLPAWYYNFR IANLLPAWYYNFR_547.62_5 547.62 599.3 24.56 71.6
    99.3 22.5
    PON1_HUMAN SFNPNSPGK SFNPNSPGK_474.23_599.3 474.23 599.3 7.72 62.2 23.4
    CNTN2_HUMAN VIASNILGTGEPSGPSSK VIASNILGTGEPSGPSSK_85 857.45 598.4 14.84 111.6 40.2
    7.45_598.4
    MMP17_HUMAN ESVSPTAQPEEPPLLPEPPD ESVSPTAQPEEPPLLPEPPD 800.4 598.3 16.38 104.3 41.4
    NR NR_800.4_598.3
    KAIN_HUMAN VGSALFLSHNLK VGSALFLSHNLK_429.2_598. 429.2 598.3 17.1 56.4 25.4
    3
    ANGP1_HUMAN LEIQLLENSLSTYK LEIQLLENSLSTYK_825.95_5 825.95 597.4 22.62 107.5 38.8
    97.4
    LRP8_HUMAN EPEDPAPALK EPEDPAPALK_533.77_596.4 533.77 596.4 10.24 69.9 26
    ANGP1_HUMAN DAPHVEPDFSSQK DAPHVEPDFSSQK_486.23_5 486.23 596.3 11 63.7 25.3
    96.3
    SIX3_HUMAN AVVAFHTGNFR AVVAFHTGNFR_406.88_594 406.88 594.3 13.85 53.5 27.3
    .3
    PEDF_HUMAN LQSLFDSPDFSK LQSLFDSPDFSK_692.34_593 692.34 593.3 18.9 90.3 42
    .3
    APOE_HUMAN LQAEAFQAR LQAEAFQAR_517.28_592.3 517.28 592.3 11.18 67.7 31.3
    SCG3_HUMAN ELSAERPLNEQIAEAEEDK ELSAERPLNEQIAEAEEDK_ 724.35 591.3 15.56 94.4 43.5
    724.35_591.3
    AMNLS_HUMAN ILDTFLGLPQYHGLQVAVS ILDTFLGLPQYHGLQVAVS 733.74 590.3 22.88 95.7 32
    K K_733.74_590.3
    LRTM2_HUMAN LSALPSWAFANLSSLQR LSALPSWAFANLSSLQR_62 621 590.3 24.55 81.1 29.2
    1_590.3
    SYN2_HUMAN VLLVVDEPHADWAK VLLVVDEPHADWAK_531.2 531.29 590.3 17.62 69.5 33.6
    9_590.3
    PARK7_HUMAN DGLILTSR DGLILTSR_437.75_589.4 437.75 589.4 13.64 57.5 21.8
    GRN_HUMAN ENATTDLLTK ENATTDLLTK_553.29_589.4 553.29 589.4 12.44 72.4 26.8
    ARP21_HUMAN TASFGGITVLTR TASFGGITVLTR_611.84_589 611.84 589.4 18.32 79.9 29.4
    .4
    KALRN_HUMAN DFFLAELEK DFFLAELEK_556.29_589.3 556.29 589.3 22.36 72.8 27
    GBRA2_HUMAN LNQYDLLGQSIGK LNQYDLLGQSIGK_724.89_5 724.89 589.3 17.87 94.5 34.4
    89.3
    SYUA_HUMAN EGVVAAAEK EGVVAAAEK_437.24_588.3 437.24 588.3 7.7 57.4 24.7
    CB080_HUMAN FSDTQPK FSDTQPK_411.7_588.3 411.7 588.3 6.65 54.1 20.6
    APOE_HUMAN LGPLVEQGR LGPLVEQGR_484.78_588.3 484.78 588.3 11.76 63.5 29.8
    CLUS_HUMAN SGSGLVGR SGSGLVGR_366.7_588.3 366.7 588.3 7.52 48.3 21.6
    MPDZ_HUMAN SLGISIVGGR SLGISIVGGR_479.79_588.3 479.79 588.3 15.92 62.9 23.6
    OTOAN_HUMAN THSWQDAPASAGPTR THSWQDAPASAGPTR_527.9 527.92 588.3 9.56 69.1 33.5
    2_588.3
    PDIA2_HUMAN EDGILVLSR EDGILVLSR_501.29_587.4 501.29 587.4 16.44 65.7 24.6
    ACE2_HUMAN SEPWTLALENVVGAK SEPWTLALENVVGAK_38. 538.62 587.4 23.88 70.5 25
    62587.4
    FGFR3_HUMAN DGTGLVPSER DGTGLVPSER_5415.76_587.3 515.76 587.3 10.4 67.5 25.2
    VTDB_HUMAN VLEPTLK VLEPTLK_400.25_587.3 400.25 587.3 11.66 52.6 20.1
    AMFR2_HUMAN VPLDLSPR VPLDLSPR_448.76_587.3 448.76 587.3 13.3 58.9 25.2
    OPCM_HUMAN WSIDPR WSIDPR_387.2_587.3 387.2 587.3 13.74 50.9 19.5
    MMP24_HUMAN ADEAEAPFAGQNWLK ADEAEAPFAGQNWLK_823. 823.89 587.2 19.35 107.3 35.8
    89587.2
    GNAQ_HUMAN AHAQLVR AHAQLVR_397.74_586.4 397.74 586.4 6.97 52.3 23
    CAD11_HUMAN DPDAANSPIR DPDAANSPIR_528.26_586.3 528.26 586.3 8.63 69.1 28.7
    CRUM1_HUMAN GDVIYIGGLPDK GDVIYIGGLPDK_623.84_586 623.84 586.3 17.2 81.5 29.9
    .3
    CACB2_HUMAN ATHPPSSSLPNPLLSR ATHPPSSSLPNPLLSR_558.6 558.64 585.4 15.74 73.1 2
    4585.4 9
    SIA8C_HUMAN YASPGAPR YASPGAPR_409.71_584.3 409.71 584.3 7.03 53.9 20.5
    ACHB_HUMAN VPETSLSVPIIIK VPETSLSVPIIIK_698.4_583. 698.43 583.4 19.99 91.1 42.2
    4
    ACHB2_HUMAN EGAGALFFR EGAGALFFR_484.25_582.3 484.25 582.3 18.49 63.5 23.8
    FIBG_HUMAN LTIGEGQQHHLGGAK LTIGEGQQHHLGGAK_515.9 515.94 582.3 9.73 67.6 32.9
    4582.3
    IL12B_HUMAN YENYTSSFFIR YENYTSSFFIR_476.23_582.3 476.23 582.3 19.63 62.4 18.8
    CFAH_HUMAN NDFTWFK NDFTWFK_479.23_581.3 479.23 581.3 19.79 62.8 23.6
    TFR2_HUMAN VGVISFAQK VGVISFAQK_474.78_580.3 474.78 580.3 14.8 62.2 23.4
    FETUA_HUMAN FSVVYAK FSVVYAK_407.23_579.4 407.23 579.4 12.73 53.5 20.4
    GT253_HUMAN NLGVDLLPGYQDPYSGR NLGVDLLPGYQDPYSGR_6 621.98 579.3 20.39 81.2 38.3
    21.98579.3
    TBB2B_HUMAN YLTVAAIFR YLTVAAIFR_527.31_577.3 527.31 577.3 22.63 69 28.7
    CO3_HUMAN LSINTHPSQKPLSITVR LSINTHPSQKPLSITVR_631. 631.03 575.4 14.39 82.4 35.7
    03575.4
    PCDAA_HUMAN ALDETDSPR ALDETDSPR_502.24_575.3 502.24 575.3 7.31 65.8 27.6
    GOPC_HUMAN EAQLEAEVK EAQLEAEVK_508._575.3 508.77 575.3 10.15 66.6 24.9
    TM9S1_HUMAN SLSLGEVLDGDR SLSLGEVLDGD_630.83_57 630.83 575.3 19.62 82.4 30.3
    5.3
    RCN1_HUMAN TFDQLTPDESK TFDQLTPDESK_640.8_575.3 640.8 575.3 12.13 83.7 30.7
    AACT_HUMAN ADLSGITGAR ADLSGITGAR_480.76_574.3 480.76 574.3 11.68 63 23.7
    ANGT_HUMAN DPTFIPAPIQAK DPTFIPAPIQAK_649.36_574. 649.36 574.3 16.67 84.8 28.1
    3
    GP2_HUMAN FVGEGGVR FVGEGGVR_410.72_574.3 410.72 574.3 9.22 54 20.6
    XLRS1_HUMAN VISGILTQGR VISGILTQGR_522.31_574.3 522.31 574.3 14.23 68.4 25.5
    CO4A4_HUMAN ADLQFSSAPAPDTLK ADLQFSSAPAPDTLK_780.9 780.9 573.3 15.27 101.7 45.9
    573.3
    EAA2_HUMAN DLEVVAR DLEVVAR_401.23_573.3 401.23 573.3 10.94 52.8 20.2
    ITB2_HUMAN VFLDHNALPDTLK VFLDHNALPDTLK_494.94_5 494.94 573.3 16.62 64.8 22.8
    73.3
    EAA2_HUMAN VTLAANGK VTLAANGK_387.23_573.3 387.23 573.3 7.55 51 19.5
    CADH5_HUMAN YEIVVEAR YEIVVEAR_489.77_573.3 489.77 573.3 13.14 64.2 24
    S12A6_HUMAN LNEVIVNK LNEVIVNK_464.78_572.4 464.78 572.4 10.4 61 23
    WNK4_HUMAN AAEDSARPELPDSAVGPGS AAEDSARPELPDSAVGPGS 661.32 572.3 11.97 86.3 28.3
    R R_661.32_572.3
    LGMN_HUMAN DYTGEDVTPQNFLAVLR DYTGEDVTPQNFLAVLR_64 646.66 571.4 24.14 84.4 27.5
    6.66571.4
    UNC5C_HUMAN DFESDIIDSSALNGGFQPVN DFESDIIDSSALNGGFQPVNI 789.39 570.4 22.67 102.8 37.8
    IK K_789.39_570.4
    KNG1_HUMAN DFVQPPTK DFVQPPTK_466.25_570.3 466.25 570.3 10.45 61.1 23
    BTNL8_HUMAN VQIGDTFFEPISWHLATK VQIGDTFFEPISWHLATK_69 697.03 569.3 24.32 90.9 42.1
    7.03569.3
    CO4A_HUMAN GSFEFPVGDAVSK GSFEFPVGDAVSK_670.33_5 670.33 568.2 17.53 87.5 29
    68.2
    PCDB6_HUMAN DLDAGSFGK DLDAGSFGK_455.22_566.3 455.22 566.3 11.75 59.7 22.5
    SREC_HUMAN HFGSFQK HFGSFQK_425.71_566.3 425.71 566.3 9.6 55.9 21.2
    EMIL2_HUMAN LDNEFDR LDNEFDR_454.71_566.3 454.71 566.3 10.18 59.7 25.5
    SEMG1_HUMAN LPSEFSQFPHGQK LPSEFSQFPHGQK_501.25_5 501.25 566.3 14.66 65.7 26.1
    66.3
    NPT4_HUMAN WGPPQER WGPPQER_435.22_566.3 435.22 566.3 10.39 57.1 27.6
    APLP1_HUMAN HYQHVAAVDPEK HYQHVAAVDPEK_465.23_5 465.23 566.2 7.77 61 24.3
    66.2
    CLUS_HUMAN ASSIIDELFQDR ASSIIDELFQDR_697.35_565. 697.35 565.3 23.8 91 30.2
    3
    5HT2C_HUMAN ELNVNIYR ELNVNIYR_510.78_565.3 510.78 565.3 14.34 66.9 25
    HEP2_HUMAN FAFNLYR FAFNLYR_465.75_565.3 465.75 565.3 19.02 61.1 23
    EMIL3_HUMAN LQHTVGHFDQR LQHTVGHFDQR_446.56_565 446.56 565.3 8.57 58.6 26.3
    .3
    PARK_HUMAN VTTHPLAK VTTHPLAK_433.76_565.3 433.76 565.3 6.73 57 24.6
    T151A_HUMAN LFGASSPPPGAVPSGPPLSR LFGASSPPPGAVPSGPPLSR_ 946.01 563.3 16.44 123 44.1
    946.01563.3
    CALL3_HUMAN ELGTVMR ELGTVMR_403.2_563.2 403.2 563.2 9.7 53 20.2
    OLFL3_HUMAN DPLGQTEK DPLGQTEK_444.23_562.3 444.23 562.3 7.6 58.3 25
    PVRL1_HUMAN ITQVTWQK ITQVTWQK_502.28_562.3 502.28 562.3 11.81 65.8 27.6
    HPT_HUMAN VGYVSGWGR VGYVSGWGR_490.75_562.3 490.75 562.3 13.84 64.3 24.1
    RUN3A_HUMAN FTQSYDYLTDEEER FTQSYDYLTDEEER_898.39_ 898.39 562.2 15.16 116.9 51
    562.2
    PCD18_HUMAN LLGEGFSDLFLTDGR LLGEGFSDLFLTDGR_820.42 820.42 561.3 24.6 106.8 38.6
    561.3
    CNTN1_HUMAN AHSDGGDGVVSQVK AHSDGGDGVVSQVK_452.5 452.56 560.3 8.14 59.4 20.6
    6560.3
    GALR3_HUMAN EGPVHGGEAAR EGPVHGGEAAR_540.27_560 540.27 560.3 6.1 70.7 32.3
    .3
    ITIH1_HUMAN FAHYVVTSQVVNTANEAR FAHYVVTSQVVNTANEAR_ 669.34 560.3 14.4 87.3 28.7
    669.34560.3
    STH_HUMAN NGAEQGR NGAEQGR_366.18_560.3 366.18 560.3 5.65 48.2 21.6
    CO3_HUMAN IHWESASLLR IHWESASLLR_404.56_559.4 404.56 559.4 17.03 53.2 21.2
    PICAL_HUMAN VAEQVGIDR VAEQVGIDR_493.77_559.3 493.77 559.3 9.18 64.7 30.2
    TRIM9_HUMAN VLEGVIDR VLEGVIDR_450.76_559.3 450.76 559.3 12.51 59.1 25.3
    AT2A2_HUMAN EFDELNPSAQR EFDELNPSAQR_653.31_558. 653.31 558.3 12.74 85.3 31.2
    3
    HPCA_HUMAN FAEHVFR FAEHVFR_453.24_558.3 453.24 558.3 11.78 59.5 25.4
    KSYK_HUMAN YLEESNFVHR YLEESNFVHR_431.88_558.3 431.88 558.3 12.59 56.7 25.6
    DDR2_HUMAN YLSSLNFVHR YLSSLNFVHR_412.56_558.3 412.56 558.3 16.07 54.2 24.6
    CBPN_HUMAN SIPQVSPVR SIPQVSPVR_491.8_557.4 491.8 557.4 11.6 64.4 27.1
    ACHA4_HUMAN APPPHLPLSPALTR APPPHLPLSPALTR_489.62_5 489.62 557.3 16.02 64.2 25.5
    57.3
    RGS11_HUMAN WGFSFR WGFSFR_400.2_556.3 400.2 556.3 20.25 52.6 20.1
    NETO1_HUMAN DGPFGFSPIIGR DGPFGFSPIIGR_631.83_555. 631.83 555.4 21.4 82.5 33.3
    4
    MMP16_HUMAN LPNDDLQGIQK LPNDDLQGIQK_620.83_555. 620.83 555.2 12.2 81.1 38.8
    2
    APOA4_HUMAN LVPFATELHER LVPFATELHER_437.9_554.3 437.9 554.3 17.2 57.5 25.9
    SYUA_HUMAN EGVLYVGSK EGVLYVGSK_476.26_553.3 476.26 553.3 12.17 62.4 23.5
    E41L3_HUMAN IRPGEFEQFESTIGFK IRPGEFEQFESTIGFK_628.99 628.99 553.3 20.89 82.1 38.6
    553.3
    SCRT1_HUMAN LDAFSSADLESAYGR LDAFSSADLESAYGR_801.3 801.38 553.3 17.31 104.4 40.8
    8_553.3
    NPTX1_HUMAN LENLEQYSR LENLEQYSR_576.29_553.3 576.29 553.3 12.21 75.3 27.9
    GPR88_HUMAN SVLPGVGDAAAAAVAATA SVLPGVGDAAAAAVAATA 907.16 553.3 22.31 118 43.8
    VPAVSQAQLGTR VPAVSQAQLGTR_907.16_55
    3.3
    PDYN_HUMAN LSGSFLK LSGSFLK_376.22_551.3 376.22 551.3 13.45 49.5 19.1
    PRIO_HUMAN QHTVTTTTK QHTVTTTTK_508.77_551.3 508.77 551.3 5.87 66.6 33.9
    AlAG1_HUMAN WFYIASAFR WFYIASAFR_580.8_551.3 580.8 551.3 23.48 75.9 28.1
    COIA1_HUMAN AVGLAGTFR AVGLAGTFR_446.2_551.2 446.2 551.2 14.6 58.6 22.1
    PTPRT_HUMAN VTLIETEPLAEYVIR VTLIETEPLAEYVIR_582.66_ 582.66 550.3 23 76.2 27.3
    550.3
    PCDGF_HUMAN YGPQFTLQHVPDYR YGPQFTLQHVPDYR_574.29 574.29 550.3 16.79 75.1 35.8
    550.3
    C06_HUMAN ALNHLPLEYNSALYSR ALNHLPLEYNSALYSR_930. 930.98 549.3 17.62 121.1 46.5
    98549.3
    AT2B3_HUMAN NVYDSISK NVYDSISK_463.24_549.3 463.24 549.3 10.5 60.8 28.9
    CATD_HUMAN YSQAVPAVTEGPIPEVLK YSQAVPAVTEGPIPEVLK_9 949.52 549.3 19.28 123.5 41.3
    49.52549.3
    A1AG2_HUMAN EHVAHLLFLR EHVAHLLFLR_412.24_548.4 412.24 548.4 17.82 54.2 24.6
    XLRS1_HUMAN VFYGNSDR VFYGNSDR_479.23_548.2 479.23 548.2 8.8 62.8 26.6
    SAA4_HUMAN AEEWGR AEEWGR_374.17_547.3 374.17 547.3 8.8 49.3 19
    NPT4_HUMAN EYIISSLK EYIISSLK_476.77_547.3 476.77 547.3 15.53 62.5 23.5
    KCNQ1_HUMAN GQVFATSAIR GQVFATSAIR_525.29_547.3 525.29 547.3 13.2 68.8 25.6
    NMDZ1_HUMAN IPVLGLTTR IPVLGLTTR_485.31_547.3 485.31 547.3 17.9 63.6 32.9
    GP113_HUMAN NLLIATDK NLLIATDK_444.26_547.3 444.26 547.3 13.39 58.3 22
    F13A_HUMAN LSIQSSPK LSIQSSPK_430.25_546.3 430.25 546.3 9.07 56.5 21.4
    CPLX2_HUMAN QALGGATK QALGGATK_373.21_546.3 373.21 546.3 6.4 49.1 18.9
    APOA2_HUMAN SPELQAEAK SPELQAEAK_486.75_546.3 486.75 546.3 7.93 63.8 26.9
    CNTN2_HUMAN VISDTEADIGSNLR VISDTEADIGSNLR_745.38_5 745.38 546.3 13.74 97.2 35.3
    46.3
    F123A_HUMAN APAAPDPASVDPP SDPSADAPAAPDPASVDPPSDPSAD 966.95 545.3 11.35 125.7 54
    R R_966.95_545.3
    S12A5_HUMAN DGIVPFLQVFGHGK DGIVPFLQVFGHGK_505.28_ 505.28 545.3 24.51 66.2 29.3
    545.3
    TR11B_HUMAN HIGHANLTFEQLR HIGHANLTFEQLR_512.61_5 512.61 545.3 14.55 67.1 26.7
    45.3
    KLK3_HUMAN HSQPWQVLVASR HSQPWQVLVASR_469.92_5 469.92 545.3 17.51 61.6 21.5
    45.3
    IGF1R_HUMAN TTINNEYNYR TTINNEYNYR_644.3_544.3 644.3 544.3 9.54 84.1 39.8
    KNG1_HUMAN TVGSDTFYSFK TVGSDTFYSFK_626.3_544.3 626.3 544.3 16.46 81.8 39.1
    CAMKV_HUMAN YDLGQVIK YDLGQVIK_468.26_544.3 468.26 544.3 15.27 61.4 23.1
    PTPRT_HUMAN AVGSLDPSADLSSQR AVGSLDPSADLSSQR_751.8 751.88 543.3 13.34 98 35.6
    8_543.3
    RGS11_HUMAN ELLEDPVGR ELLEDPVGR_514.27_543.3 514.27 543.3 13.83 67.3 25.1
    TRFR_HUMAN ILFLNPIPSDPK ILFLNPIPSDPK_677.39_543.3 677.39 543.3 21.23 88.4 41.3
    APOOL_HUMAN LGSSSEIEVPAK LGSSSEIEVPAK_608.82_543. 608.82 543.3 11.43 79.5 29.3
    3
    GABR2_HUMAN TVPSDNAVNPAILK TVPSDNAVNPAILK_719.9_5 719.9 541.4 14.05 93.9 40.2
    41.4
    CERU_HUMAN GAYPLSIEPIGVR GAYPLSIEPIGVR_686.39_54 686.39 541.3 19.06 89.5 32.7
    1.3
    PCDA5_HUMAN LLENAPSGTLVIK LLENAPSGTLVIK_677.9_541 677.9 541.3 15.78 88.4 29.3
    .3
    KLKB1_HUMAN TGAVSGHSLK TGAVSGHSLK_478.76_541.3 478.76 541.3 6.61 62.8 26.6
    BCAS1_HUMAN DPTLLPPETGGAGGEAPSK DPTLLPPETGGAGGEAPSKP 673.68 540.3 12.9 87.9 28.9
    PK K_673.68_540.3
    FA20A_HUMAN HNAEIAAFHLDR HNAEIAAFHLDR_465.24_54 465.24 540.3 14.27 61 24.3
    0.3
    VTNC_HUMAN NGSLFAFR NGSLFAFR_456.2_540.3 456.2 540.3 19.7 59.9 25.6
    CO2_HUMAN TAVDHIR TAVDHIR_406.22_540.3 406.22 540.3 7.01 53.4 26.4
    ARTN_HUMAN ALGLGHR ALGLGHR_362.22_539.3 362.22 539.3 8.67 47.7 21.4
    CADH3_HUMAN FTQDTFR FTQDTFR_457.72_538.3 457.72 538.3 10.91 60 25.6
    GBRA2_HUMAN DPVLSTISK DPVLSTISK_480.27_535.3 480.27 535.3 12.44 63 26.6
    ICAM3_HUMAN IALETSLSK IALETSLSK_481.28_535.3 481.28 535.3 13.28 63.1 29.7
    KCNA3_HUMAN SNSTLSK SNSTLSK_368.7_535.3 368.7 535.3 6 48.6 18.7
    ANT3_HUMAN ANRPFLVFIR ANRPFLVFIR_411.5_534.3 411.58 534.3 20.79 54.1 21.5
    SYNPR_HUMAN ETGWHSSGQR ETGWHSSGQR_572.76_534.3 572.76 534.3 7.62 74.9 27.7
    APOOL_HUMAN HSVPLPTELSSEAK HSVPLPTELSSEAK_498.93_ 498.93 534.3 13.72 65.4 23
    534.3
    SLIT1_HUMAN QIPLQDVAFPDFR QIPLQDVAFPDFR_773.41_5 773.41 534.3 22.44 100.8 36.5
    34.3
    ALS_HUMAN SFEGLGQLEVLTLDHNQLQ SFEGLGQLEVLTLDHNQLQ 833.1 534.3 23.16 108.5 37
    EVK EVK_833.1_534.3
    ALBU_HUMAN AEFAEVSK AEFAEVSK_440.72_533.3 440.72 533.3 9.69 57.9 24.9
    KLK3_HUMAN LSEPAELTDAVK LSEPAELTDAVK_636.84_53 636.84 533.3 14.48 83.2 33.5
    3.3
    PEDF_HUMAN LSYEGEVTK LSYEGEVT_513.26_533.3 513.26 533.3 10.07 67.2 25.1
    SNP25_HUMAN NLTDLGK NLTDLGK_380.71_533.3 380.71 533.3 10.83 50.1 19.3
    OLFL3_HUMAN TEADTISGR TEADTISGR_475.23_533.3 475.23 533.3 7.26 62.3 32.4
    Id_HUMAN TLYSSSPR TLYSSSPR_455.74_533.3 455.74 533.3 8.24 59.8 28.6
    TNR19_HUMAN VLLEQEK VLLEQEK_429.75_533.3 429.75 533.3 9.97 56.4 24.4
    ACHAS_HUMAN EETESGSGPK EETESGSGPK_510.73_532.3 510.73 532.3 5.83 66.9 25
    MMP20_HUMAN EDVVSVVK EDVVSVVK_437.75_531.4 437.75 531.4 11.29 57.5 21.8
    KCNQ1_HUMAN DNGVTPGEK DNGVTPGEK_458.72_531.3 458.72 531.3 6.25 60.2 22.7
    P2RX1_HUMAN FDILVDGK FDILVDGK_453.75_531.3 453.75 531.3 16.55 59.5 22.5
    HRG_HUMAN HSHESQDLR HSHESQDLR_370.18_531.3 370.18 531.3 5.96 48.8 19.4
    FIBB_HUMAN SILENLR SILENLR_422.75_531.3 422.75 531.3 15.36 55.5 21.1
    INADL_HUMAN SLVADGVAER SLVADGVAER_508.77_631.3 508.77 531.3 10.85 66.6 33.9
    CK041_HUMAN GTSSSPLAVASGPAK GTSSSPLAVASGPAK_665.35 665.35 530.3 11.51 86.8 31.8
    530.3
    ERLN1_HUMAN LLIAAQK LLIAAQK_378.75_530.3 378.75 530.3 11.11 49.9 19.2
    GELS_HUMAN TGAQELLR TGAQELLR_444.2_530.3 444.2 530.3 11.1 58.3 25
    BAX_HUMAN VPELIR VPELIR_363.73_530.3 363.73 530.3 13.05 47.9 24.5
    FRS2_HUMAN DPQILLEPEGVK DPQILLEPEGVK_669.37_629 669.37 529.3 16.71 87.3 41
    .3
    ADA12_HUMAN FGFGGSTDSGPIR FGFGGSTDSGPIR_649.31_52 649.31 529.3 15.66 84.8 40.1
    9.3
    PIN1_HUMAN NGQGEPAR NGQGEPAR_414.7_629.3 414.7 529.3 5.8 54.5 23.7
    MAP4_HUMAN VALSSETEVALAR VALSSETEVALAR_673.37_5 673.37 529.3 14.63 87.9 38.1
    29.3
    DCBD1_HUMAN ASSSWQSVNESGDQVHWS ASSSWQSVNESGDQVHWS 834.05 528.3 14.41 108.6 49.1
    PGQAR PGQAR_834.05_528.3
    SIX3_HUMAN DLYHILENHK DLYHILENHK_427.89_527.3 427.89 527.3 16.71 56.2 19.4
    APOB_HUMAN IEGNLIFDPNNYLPK IEGNLIFDPNNYLPK_873.96 873.96 527.3 22.93 113.7 41
    527.3
    NCAN_HUMAN LSSAIIAAPR LSSAIIAAPR_499.8_527.3 499.8 527.3 13 65.5 24.5
    KCNA3_HUMAN SPPPPSAR SPPPPSAR_404.72_527.3 404.72 527.3 6.02 53.2 29.3
    SO1A2_HUMAN YIYLGLPAALR YIYLGLPAALR_625.37_527. 625.37 527.3 22.53 81.7 30
    3
    SEM4A_HUMAN EAILALDIQDPGVPR EAILALDIQDPGVPR_803.94 803.94 525.3 20.26 104.7 46.9
    525.3
    PZP_HUMAN AVGYLITGYQR AVGYLITGYQR_620.84_523. 620.84 523.3 15.85 81.1 29.8
    3
    NOE3_HUMAN SIADFVSGAESR SIADFVSGAESR_619.8_519. 619.8 519.3 16.43 81 26.8
    3
    IL1R2_HUMAN TISASLGSR TISASLGSR_446.25_519.3 446.25 519.3 10.01 58.6 25.1
    JPH3_HUMAN AEAALTAAQK AEAALTAAQK_487.27_518. 487.27 518.3 7.79 63.9 23.9
    3
    LYG2_HUMAN EHLSQATGILTER EHLSQATGILTER_485.59_51 485.59 518.3 13.74 63.6 22.3
    8.3
    OTOAN_HUMAN GSSGSFLQPDITER GSSGSFLQPDITER_747.37_5 747.37 518.3 15.66 97.4 44.4
    18.3
    PERL_HUMAN IHGFDLAAINTQR IHGFDLAAINTQR_485.93_5 485.93 518.3 17.09 63.7 22.3
    18.3
    OPCM_HUMAN NTGVSVGQK NTGVSVGQK_445.24_518.3 445.24 518.3 6.78 58.4 25.1
    ITB5_HUMAN DDLDNIR DDLDNIR_430.71_517.3 430.71 517.3 10.48 56.6 21.5
    GPC5_HUMAN LLEQVNR LLEQVNR_436.25_516.3 436.25 516.3 9.5 57.3 21.7
    ARTN_HUMAN SDELVR SDELVR_359.69_516.3 359.69 516.3 8.28 47.4 21.3
    GNAQ_HUMAN AHAQLVR AHAQLVR_397.74_515.3 397.74 515.3 6.97 52.3 26
    ERO1B_HUMAN SPAAQYVDLLLNPER SPAAQYVDLLLNPER_562.6 562.63 515.3 22.72 73.6 26.2
    3_515.3
    ACHA4_HUMAN SPSDQLPPQQPLEAEK SPSDQLPPQQPLEAEK_882.4 882.44 515.2 11.76 114.8 47.3
    4_515.2
    LAMB2_HUMAN AMDYDLLLR AMDYDLLLR_555.3_514.4 555.3 514.4 22 72.6 29.9
    AlAG1_HUMAN YVGGQEHFAHLLILR YVGGQEHFAHLLILR_584.9 584.99 514.4 19.31 76.5 33.4
    9_514.4
    ACHB_HUMAN AVALLPELR AVALLPELR_491.31_514.3 491.31 514.3 19.41 64.4 24.1
    HCN2_HUMAN QFGALLQPGVNK QFGALLQPGVNK_636.36_51 636.36 514.3 16.27 83.1 39.5
    4.3
    ACHB2_HUMAN IVPPTSLDVPLVGK IVPPTSLDVPLVGK_717.93_ 717.93 513.3 19.09 93.6 43.1
    513.3
    HPT_HUMAN FTDHLK FTDHLK_380.7_512.3 380.7 512.3 8.41 50.1 19.3
    C06_HUMAN ENPAVIDFELAPIVDLVR ENPAVIDFELAPIVDLVR_10 1005.55 511.3 25.18 130.7 43.7
    05.55_511.3
    LTBP1_HUMAN EEPVEALTFSR EEPVEALTFSR_639.32_510.3 639.32 510.3 16.79 83.5 27.6
    SLIT1_HUMAN NLYINNELQDFTK NLYINNELQDFTK_806.4_51 806.4 510.3 19.78 105 38
    0.3
    BDNF_HUMAN THGTLESVNGPK THGTLESVNGPK_413.88_51 413.88 510.3 8.23 54.4 18.7
    0.3
    GELS_HUMAN TASDFITK TASDFITK_441.73_508.3 441.73 508.3 10.75 58 27.9
    NETO1_HUMAN YNFTPDPDFK YNFTPDPDFK_622.29_506.3 622.29 506.3 16.1 81.3 35.9
    GBRB2_HUMAN GDDNAVTGVTK GDDNAVTGVTK_538.76_50 538.76 505.3 7.83 70.5 26.2
    5.3
    PSK1_HUMAN ALAHLLEAER ALAHLLEAER_374.88_504.2 374.88 504.2 14.09 49.4 19.7
    ACHA2_HUMAN LSPSYHWLESNVDAEER LSPSYHWLESNVDAEER_67 677.99 504.2 17.4 88.5 35.1
    7.99504.2
    HAS1_HUMAN VGAVGGDVR VGAVGGDVR_415.23_503.3 415.23 503.3 7.58 54.6 20.8
    CNTN1_HUMAN DGEYVVEVR DGEYVVEVR_533.26_502.3 533.26 502.3 12.46 69.8 26
    UGGG2_HUMAN FLGPLDEDFYAEDFYLLEK FLGPLDEDFYAEDFYLLEK_ 1162.55 502.3 25.15 151 56.7
    1162.55502.3
    GP113_HUMAN WNLYEVVR WNLYEVVR_539.79_502.3 539.79 502.3 20.42 70.6 29.3
    GPR88_HUMAN YLLITR YLLITR_389.74_502.3 389.74 502.3 14.87 51.3 19.6
    ELAV3_HUMAN DANLYVSGLPK DANLYVSGLPK_588.82_501 588.82 501.3 15.26 77 28.4
    .3
    PAQR6_HUMAN FLELESPGLSK FLELESPGLSK_610.33_501.3 610.33 501.3 17.4 79.7 38.4
    CRLF1_HUMAN LAGLKPGTVYFVQVR LAGLKPGTVYFVQVR_549.9 549.99 501.3 18.54 71.9 25.6
    9501.3
    T151A_HUMAN LVLGPEAALAR LVLGPEAALAR_555.34_501. 555.34 501.3 16.86 72.6 35.9
    3
    ITA3_HUMAN TVEDVGSPLK TVEDVGSPLK_522.78_501.3 522.78 501.3 11.35 68.4 25.5
    NCKX2_HUMAN VTAPEAQAKPSAAR VTAPEAQAKPSAAR_466.26 466.26 501.3 6.95 61.1 30.3
    501.3
    IGF1R_HUMAN AENGPGPGVLVLR AENGPGPGVLVLR_639.86_ 639.86 500.4 16.44 83.5 39.7
    500.4
    NFL_HUMAN VLEAELLVLR VLEAELLVLR_577.86_500.4 577.86 500.4 21.86 75.5 27.9
    PCD18_HUMAN GDITLVPTINGTLPIR GDITLVPTINGTLPIR_840.49 840.49 500.3 21.43 109.4 36.5
    500.3
    PARD3_HUMAN TPIIWFHVVPAANK TPIIWFHVVPAANK_531.64_ 531.64 500.3 21.26 69.6 27.7
    500.3
    PTPRO_HUMAN LIGLDIPHFAADLPLNR LIGLDIPHFAADLPLNR_625. 625.69 499.3 24.19 81.7 38.5
    69499.3
    BTNL8_HUMAN LNGEHLYFTLNPR LNGEHLYFTLNPR_525.28_4 525.28 499.3 18.04 68.8 24.3
    99.3
    PAQR6_HUMAN LPQLLQVHQVPR LPQLLQVHQVPR_476.62_49 476.62 499.3 16.86 62.5 30.9
    9.3
    KCNV2_HUMAN AQAQVEEAEELFR AQAQVEEAEELFR_760.37_4 760.37 498.3 18.64 99.1 36
    98.3
    PAR6B_HUMAN AVSTANPLLR AVSTANPLLR_521.31_498.3 521.31 498.3 13.55 68.2 31.4
    ANGP1_HUMAN LEIQLLENSLSTYK LEIQLLENSLSTYK_825._95_4 825.95 498.3 22.62 107.5 38.8
    98.3
    ADA23_HUMAN IGQLQGEIIPTSFYHQGR IGQLQGEIIPTSFYHQGR_68 682.03 497.3 18.63 89 38.3
    2.03497.3
    GT253_HUMAN LDLTGSSGHSLQPQPR LDLTGSSGHSLQPQPR_564. 564.96 497.3 12.28 73.9 35.4
    96_497.3
    SIA8C_HUMAN YASPGAPR YASPGAPR_409.71_497.3 409.71 497.3 7.03 53.9 20.5
    ERMIN_HUMAN LFIVHK LFIVHK_378.74_496.3 378.74 496.3 11.75 49.9 19.2
    CB085_HUMAN LNPGIYPQQV LNPGIYPQQV_564.81_495.3 564.81 495.3 15.23 73.9 24.4
    AMPB_HUMAN NDHQEDFWK NDHQEDFWK_609.76_495.2 609.76 495.2 13.22 79.7 29.3
    SCN2A_HUMAN FDPDATQFIEFAK FDPDATQFIEFAK_764.87_49 764.87 494.3 20.36 99.7 45.2
    4.3
    SIX3_HUMAN AVVAFHTGNFR AVVAFHTGNFR_406.88_493 406.88 493.3 13.85 53.5 24.3
    .3
    MYP2_HUMAN FLGTWK FLGTWK_376.21_491.3 376.21 491.3 15.38 49.5 19.1
    PACNl_HUMAN AGDELTK AGDELTK_367.19_490.3 367.19 490.3 6.7 48.4 21.7
    SYUA_HUMAN EGVVAAAEK EGVVAAAEK_437.24_489.3 437.24 489.3 7.7 57.4 21.7
    KCNA2_HUMAN FETQLK FETQLK_383.21_489.3 383.21 489.3 9.93 50.4 19.4
    STH_HUMAN NGAEQGR NGAEQGR_366.18_489.2 366.18 489.2 5.65 48.2 21.6
    APOL4_HUMAN LTATSTDQLEALR LTATSTDQLEALR_709.88_4 709.88 488.3 14.6 92.6 42.7
    88.3
    FGFR3_HUMAN DGTGLVPSER DGTGLVPSER_515.76_488.2 515.76 488.2 10.4 67.5 25.2
    NEUM_HUMAN IEQDGIKPEDK IEQDGIKPEDK_636.33_488.2 636.33 488.2 7.45 83.1 36.5
    RELN_HUMAN IISVELPGDAK IISVELPGDAK_571.33_487.3 571.33 487.3 16.13 74.7 36.6
    TNF6B_HUMAN LLQALR LLQALR_357.24_487.3 357.24 487.3 12.48 47.1 18.2
    S01B3_HUMAN LSLVGIAK LSLVGIAK_400.77_487.3 400.77 487.3 15.8 52.7 20.1
    FETUA_HUMAN AHYDLR AHYDLR_258.8_487.2 258.8 487.2 8.05 34.4 13.7
    PCDGF_HUMAN DLGFGVGDLPTR DLGFGVGDLPTR_623.83_48 623.83 486.3 18.4 81.5 38.9
    6.3
    PCDBF_HUMAN GFPALSSEALVR GFPALSSEALVR_623.84_486 623.84 486.3 18.44 81.5 38.9
    .3
    SIG12_HUMAN EGADIPWDIPVATNTPSGK EGADIPWDIPVATNTPSGK_ 984.49 486.2 19.61 128 42.8
    984.49_486.2
    AP1B1_HUMAN LLSTDPVAAK LLSTDPVAAK_507.8_485.3 507.8 485.3 11.18 66.5 30.8
    CLC4M_HUMAN LQEIYQELIELK LQEIYQELIELK_753.91_484 753.91 484.3 20.81 98.3 32.7
    .3
    NMDE3_HUMAN LLDVVTLELGPGGPR LLDVVTLELGPGGPR_768.4 768.44 483.3 21.92 100.1 33.3
    4_483.3
    ARTN_HUMAN ALGLGHR ALGLGHR_362.22_482.3 362.22 482.3 8.67 47.7 24.4
    LRMP_HUMAN EYSSLPLPR EYSSLPLPRj31.29_482.3 531.29 482.3 14.85 69.5 25.9
    PZP_HUMAN LEAGINQLSFPLSSEPIQGS LEAGINQLSFPLSSEPIQGSY 1203.62 482.2 21.13 156.3 52.5
    YR R_1203.62_482.2
    NDF6_HUMAN QEETLDYGK QEETLDYGK_541.75_482.2 541.75 482.2 9.34 70.9 26.3
    VTNC_HUMAN AVRPGYPK AVRPGYPK_296.51_481.3 296.51 481.3 7.09 39.2 15.7
    COIAl_HUMAN AVGLAGTFR AVGLAGTFR_446.26_480.3 446.26 480.3 14.22 58.6 22.1
    KCNA2_HUMAN EDEGYIK EDEGYIK_427.2_480.3 427.2 480.3 8.47 56.1 21.3
    ACBD7_HUMAN ELYGLYK ELYGLYK_443.24_480.3 443.24 480.3 14.58 58.2 22
    LAMB2_HUMAN IQGTLQPHAR IQGTLQPHAR_374.21_480.3 374.21 480.3 7.74 49.3 22.6
    AMPB_HUMAN NDHQEDFWK NDHQEDFWK_609.76_480.3 609.76 480.3 13.22 79.7 32.3
    CORT_HUMAN NFFWK NFFWK_371.19_480.3 371.19 480.3 18.71 48.9 18.8
    EMIL3_HUMAN VHGLALGHEAHLQR VHGLALGHEAHLQR_769.42 769.42 478.3 11.14 100.3 45.4
    _478.3
    FIBG_HUMAN IHLISTQSAIPYALR IHLISTQSAIPYALR_561.66_ 561.66 477.3 18.84 73.5 32.2
    477.3
    FEZl_HUMAN GLSLQSSR GLSLQSSR_424.24_477.2 424.24 477.2 9.94 55.7 21.2
    MMPl_HUMAN DIYSSFGFPR DIYSSFGFPR_396.86_476.3 396.86 476.3 20.37 52.2 17.8
    PCDGE_HUMAN EYFTVNPESGDLLVSDR EYFTVNPESGDLLVSDR_97 970.97 476.2 19.4 126.3 45.2
    0.97_476.2
    SAA4_HUMAN GPGGVWAAK GPGGVWAAK_421.73_475.3 421.73 475.3 11.21 55.4 21.1
    APOD_HUMAN IPTTFENGR IPTTFENGR_517.77_475.2 517.77 475.2 11.08 67.8 34.3
    LYG2_HUMAN AIKPYQTLIK AIKPYQTLIK_392.25_474.3 392.25 474.3 13.84 51.6 17.6
    PCDB7_HUMAN DLGLGVGELR DLGLGVGELR_514.79_474.3 514.79 474.3 17.2 67.4 25.2
    NFL_HUMAN YEEEVLSR YEEEVLSR_512.75_474.3 512.75 474.3 10.61 67.1 34.1
    WNK4_HUMAN AAEDSARPELPDSAVGPGS AAEDSARPELPDSAVGPGS 661.32 473.2 11.97 86.3 31.3
    R R_661.32_473.2
    VGFR3_HUMAN HATLSLSIPR HATLSLSIPR_365.55_472.3 365.55 472.3 15.55 48.2 16.2
    CBPN_HUMAN HLYVLEFSDHPGIHEPLEPE HLYVLEFSDHPGIHEPLEPE 862.44 472.3 19.33 112.3 47.5
    VK VK_862.44_472.3
    OLIGl_HUMAN IATLLLAR IATLLLAR_435.79_472.3 435.79 472.3 17.19 57.2 21.7
    ITIH2_HUMAN IQPSGGTNINEALLR IQPSGGTNINEALLR_791.93 791.93 472.3 15.42 103.2 46.3
    _472.3
    IL1R2_HUMAN QEYSENNENYIEVPLIFDPV QEYSENNENYIEVPLIFDPV 890.43 472.3 24.62 115.9 52
    TR TR_890.43_472.3
    IL1AP_HUMAN QIQVFEDEPAR QIQVFEDEPAR_666.33_472. 666.33 472.3 14.23 87 40.8
    3
    FRS2_HUMAN FVLGPTPVQK FVLGPTPVQK_543.32_471.3 543.32 471.3 14.71 71.1 35.4
    CB085_HUMAN LNPGIYPQQV LNPGIYPQQV_564.81_471.3 564.81 471.3 15.23 73.9 27.4
    FINC_HUMAN SSPVVIDASTAIDAPSNLR SSPVVIDASTAIDAPSNLR_9 957 470.3 17.46 124.5 47.6
    57_470.3
    F123A_HUMAN DPAGEPAVGEEVPAPADR DPAGEPAVGEEVPAPADR_ 888.92 470.2 11.94 115.7 41.6
    888.92_470.2
    CO2_HUMAN HAFILQDTK HAFILQDTK_536.79_469.3 536.79 469.3 12.44 70.2 32.1
    JPH3_HUMAN WDLTFSPPQK WDLTFSPPQK_609.81_469.3 609.81 469.3 19.12 79.7 38.3
    SYTL4_HUMAN ISAESPTGLPSHK ISAESPTGLPSHK_441.9_468. 441.9 468.3 9.66 58 23.1
    3
    ARHG7_HUMAN FNFQQTNEDELSFSK FNFQQTNEDELSFSK_917.42 917.42 468.2 17.52 119.3 51.9
    468.2
    LCN8_HUMAN FAFPGHR FAFPGHR_416.22_466.3 416.22 466.3 12.58 54.7 23.8
    PRIO_HUMAN ESQAYYQR ESQAYYQR_522.74_466.2 522.74 466.2 7.39 68.4 22.5
    MAMC2_HUMAN FTSQPGYIGR FTSQPGYIGR_563.29_464.2 563.29 464.2 11.01 73.7 24.3
    HCNl_HUMAN DDGNSVFPAK DDGNSVFPAK_525.25_462.3 525.25 462.3 10.92 68.8 25.6
    KIF5A_HUMAN TGAEGAVLDEAK TGAEGAVLDEAK_580.79_4 580.79 462.2 10.99 75.9 37.1
    62.2
    PICAL_HUMAN VAEQVGIDR VAEQVGIDR_493.77_460.3 493.77 460.3 9.18 64.7 24.2
    EAA2_HUMAN VTLAANGK VTLAANGK_387.23_460.3 387.23 460.3 7.55 51 19.5
    AMNLS_HUMAN SGDEAPGLFFVDAER SGDEAPGLFFVDAER_805.3 805.38 460.2 20.88 104.9 34.9
    8460.2
    MPDZ_HUMAN HVLEDSPAGK HVLEDSPAGK_526.77_459.3 526.77 459.3 7.15 69 31.7
    LGMN_HUMAN DYTGEDVTPQNFLAVLR DYTGEDVTPQNFLAVLR_64 646.66 458.3 24.14 84.4 30.5
    6.66458.3
    PCDBC_HUMAN VGATDHGSPALSSEALVR VGATDHGSPALSSEALVR_5 589.64 458.3 13.35 77.1 27.6
    89.64458.3
    PGCB_HUMAN ALHPEEDPEGR ALHPEEDPEGR_625.29_458. 625.29 458.2 7.71 81.7 39
    2
    S01B3_HUMAN GIGETPIVPLGISYIDDFAK GIGETPIVPLGISYIDDFAK_ 1053.06 458.2 25.06 136.8 45.8
    1053.06458.2
    RELN_HUMAN FVYLELPAAAK FVYLELPAAAK_611.35_457. 611.35 457.3 19.69 79.9 38.4
    3
    HS3S5_HUMAN LITEPLPELQLVEK LITEPLPELQLVEK_811.47_4 811.47 457.3 21.7 105.7 35.2
    57.3
    E41L3_HUMAN lETISFGSVSPGGVK 1ETISFGSVSPGGVK_733.38 733.38 457.3 16.02 95.6 43.8
    457.3
    S12A6_HUMAN IDDIPGLSDTSPDLSSR IDDIPGLSDTSPDLSSR_894.4 894.44 457.2 16.94 116.4 38.9
    4457.2
    COIAl_HUMAN ADDILASPPR ADDILASPPR_527.78_456.3 527.78 456.3 12.5 69.1 25.7
    GOLMl_HUMAN DQLVIPDGQEEEQEAAGEG DQLVIPDGQEEEQEAAGEG 1085.5 456.2 14.4 141 50.3
    R R_1085.5_456.2
    NECP2_HUMAN VRPASTGGLSLLPPPPGGK VRPASTGGLSLLPPPPGGK_ 601.02 455.3 16.62 78.5 37.2
    601.02455.3
    ASGR_HUMAN WVDGTDYETGFK WVDGTDYETGFK_709.32_4 709.32 452.3 15.35 92.5 42.7
    52.3
    LCK_HUMAN ERPEDRPTFDYLR ERPEDRPTFDYLR_565.28_4 565.28 451.3 14.43 73.9 35.4
    51.3
    CATD_HUMAN YSQAVPAVTEGPIPEVLK YSQAVPAVTEGPIPEVLK_9 949.52 450.2 19.28 123.5 47.3
    49.52_450.2
    ANGP1_HUMAN DAPHVEPDFSSQK DAPHVEPDFSSQK_486.23_4 486.23 449.2 11 63.7 22.3
    49.2
    NMDE3_HUMAN SVEDALTSLK SVEDALTSLK_531.79_448.3 531.79 448.3 16.02 69.6 34.9
    PCD18_HUMAN LLGEGFSDLFLTDGR LLGEGFSDLFLTDGR_820.42 820.42 448.2 24.6 106.8 38.6
    _448.2
    LRMP_HUMAN DDSEPSGEETVER DDSEPSGEETVER_725.3_44 725.3 447.1 7.41 94.6 31.4
    7.1
    SPB5_HUMAN DVEDESTGLEK DVEDESTGLEK_611.28_446. 611.28 446.3 9.19 79.9 38.4
    3
    GOPC_HUMAN EAQLEAEVK EAQLEAEVK_508.77_446.3 508.77 446.3 10.15 66.6 24.9
    PVRLl_HUMAN VEFLRPSFTDGTIR VEFLRPSFTDGTIR_546.63_4 546.63 446.3 18.3 71.5 34.4
    46.3
    LIPE_HUMAN VVGHSIAR VVGHSIAR_419.75_446.3 419.75 446.3 6.61 55.1 30
    GELS_HUMAN AQPVQVAEGSEPDGFWEA AQPVQVAEGSEPDGFWEAL 758.03 445.3 21.24 98.8 39.2
    LGGK GGK_758.03_445.3
    MMP16_HUMAN LPNDDLQGIQK LPNDDLQGIQK_620.83_445. 620.83 445.3 12.2 81.1 38.8
    3
    EAA2_HUMAN DLEVVAR DLEVVAR_401.23_444.3 401.23 444.3 10.94 52.8 20.2
    P4K2A_HUMAN AYPFYWAWLPQAK AYPFYWAWLPQAK_820.92 820.92 443.3 25.1 106.9 47.6
    _443.3
    ERLN1_HUMAN EALEPSGENVIQNK EALEPSGENVIQNK_764.39_ 764.39 443.2 11.75 99.6 33.1
    443.2
    KNG1_HUMAN DFVQPPTK DFVQPPTK_466.25_442.3 466.25 442.3 10.45 61.1 29
    AT12A_HUMAN DGPNSLTPPK DGPNSLTPPK_513.27_442.3 513.27 442.3 9.55 67.2 25.1
    LRP8_HUMAN NPLSELPVVK NPLSELPVVK_648.32_442.3 548.32 442.3 17.49 71.7 35.6
    AGAP2_HUMAN YEQLLFLAPLSTSEEPLGR YEQLLFLAPLSTSEEPLGR_7 721.72 442.3 24.92 94.1 43.4
    21.72_442.3
    YQ051_HUMAN GGVDLPATPGGPR GGVDLPATPGGPR_597.32_4 597.32 442.2 12.41 78.1 25.8
    42.2
    SNTB1_HUMAN GSPQAGVDLSFATR GSPQAGVDLSFATR_703.36 703.36 441.2 15.9 91.7 30.4
    _441.2
    PTPRB_HUMAN TVVLQTDPLPPAR TVVLQTDPLPPAR_703.9_44 703.9 440.3 14.83 91.8 30.5
    0.3
    APOC2_HUMAN TAAQNLYEK TAAQNLYEK_519.27_439.2 519.27 439.2 8.89 68 34.3
    TMPS2_HUMAN VISHPNYDSK VISHPNYDSK_580.29_437.3 580.29 437.3 7.45 75.9 31
    CO4B_HUMAN YIYGKPVQGVAYVR YIYGKPVQGVAYVR_538.3_ 538.3 437.3 13.9 70.4 25
    437.3
    C06_HUMAN ALNHLPLEYNSALYSR ALNHLPLEYNSALYSR_930. 930.98 436.2 17.62 121.1 52.5
    98_436.2
    ANT3_HUMAN ANRPFLVFIR ANRPFLVFIR_411.58_435.3 411.58 435.3 20.79 54.1 21.5
    IL12B_HUMAN YENYTSSFFIR YENYTSSFFIR_476.23_435.3 476.23 435.3 19.63 62.4 21.8
    GAS6_HUMAN EVFENDPETDYFYPR EVFENDPETDYFYPR_960.9 960.92 435.2 18.37 125 41.8
    2_435.2
    F13A_HUMAN GTYIPVPIVSELQSGK GTYIPVPIVSELQSGK_844.4 844.47 435.2 21.87 109.9 36.7
    7_435.2
    NPT4_HUMAN EYIISSLK EYIISSLK_476.77_434.3 476.77 434.3 15.53 62.5 20.5
    A4_HUMAN WYFDVTEGK WYFDVTEGK_572.77_434.2 572.77 434.2 18.68 74.9 36.7
    CPLX2_HUMAN QALGGATK QALGGATK_373.21_433.2 373.21 433.2 6.4 49.1 21.9
    ARP21_HUMAN VAAYFGLDHNVDQTGK VAAYFGLDHNVDQTGK_57 578.95 433.2 14.89 75.7 30.1
    8.95_433.2
    KLK3_HUMAN HSQPWQVLVASR HSQPWQVLVASR_469.92_4 469.92 432.3 17.51 61.6 21.5
    32.3
    KCNAl_HUMAN VVINISGLR VVINISGLR_485.81_432.3 485.81 432.3 17.1 63.7 23.9
    SNP25_HUMAN NLTDLGK NLTDLGK_380.71_432.2 380.71 432.2 10.83 50.1 22.3
    MICA_HUMAN AKPQGQWAEDVLGNK AKPQGQWAEDVLGNK_547 547.62 431.3 15.39 71.6 25.5
    .62_431.3
    KCNQl_HUMAN DNGVTPGEK DNGVTPGEK_458.72_430.2 458.72 430.2 6.25 60.2 31.7
    ERO1B_HUMAN SVYRPLNPLAPSR SVYRPLNPLAPSR_490.61_4 490.61 430.2 14.64 64.3 25.6
    30.2
    C09A2_HUMAN VGDPGVAGLPGEK VGDPGVAGLPGEK_598.32_ 598.32 430.2 12.25 78.2 37.8
    430.2
    S15A2_HUMAN IEDIPANK IEDIPANK_450.25_429.2 450.25 429.2 8.5 59.1 31.3
    AMFR2_HUMAN SVEITTDNILEGR SVEITTDNILEGR_723.88_42 723.88 429.2 17.05 94.4 31.4
    9.2
    RGS11_HUMAN ELLEDPVGR ELLEDPVGR_514.27_428.3 514.27 428.3 13.83 67.3 31.1
    LRP8_HUMAN EPEDPAPALK EPEDPAPALK_533.77_428.3 533.77 428.3 10.24 69.9 35
    RES18_HUMAN LQLLFPSETHSPLAK LQLLFPSETHSPLAK_560.98 560.98 428.3 19.65 73.4 35.2
    _428.3
    TNF6B_HUMAN LLQALEAPEGWGPTPR LLQALEAPEGWGPTPR_867. 867.96 426.3 19.64 113 40.7
    96_426.3
    LSHR_HUMAN LQALPSYGLESIQR LQALPSYGLESIQR_787.93_ 787.93 426.3 17.89 102.6 34.2
    426.3
    GPC5D_HUMAN LSPQQDAGGV LSPQQDAGGV_486.24_426.2 486.24 426.2 9.7 63.7 20.9
    CO4B_HUMAN LQETSNWLLSQQQADGSF LQETSNWLLSQQQADGSFQ 1033.18 425.3 21.19 134.3 53.2
    QDLSPVIHR DLSPVIHR_1033.18_425.3
    ZICl_HUMAN LVNHIR LVNHIR_251.16_425.3 251.16 425.3 7.04 33.4 16.4
    APOB_HUMAN SPAFTDLHLR SPAFTDLHLR_386.21_425.3 386.21 425.3 15.75 50.8 23.2
    C04A4_HUMAN GDPGPPGAEGPPGLPGK GDPGPPGAEGPPGLPGK_75 750.38 424.2 11.98 97.8 38.5
    0.38_424.2
    CAR14_HUMAN EQTLLQFQK EQTLLQFQK_567.81_422.2 567.81 422.2 15.65 74.2 27.5
    HCNl_HUMAN GVPPAPPPPAAALPR GVPPAPPPPAAALPR_704.41 704.41 422.2 13.39 91.9 33.5
    _422.2
    HPCA_HUMAN FAEHVFR FAEHVFR_453.24_421.3 453.24 421.3 11.78 59.5 31.4
    TM9S1_HUMAN IIHTDVFR IIHTDVFR_334.19_421.3 334.19 421.3 12.94 44.1 20.6
    ALS_HUMAN SFEGLGQLEVLTLDHNQLQ SFEGLGQLEVLTLDHNQLQ 833.1 421.2 23.16 108.5 40
    EVK EVK_833.1_421.2
    AGAL_HUMAN NFADIDDSWK NFADIDDSWK_605.77_420.2 605.77 420.2 17.18 79.1 38.2
    TBB2B_HUMAN INVYYNEATGNK INVYYNEATGNK_693.34_41 693.34 419.2 11.92 90.4 42
    9.2
    KAIN_HUMAN WADLSGITK WADLSGITK_495.77_418.3 495.77 418.3 15.63 65 33.3
    SAA4_HUMAN AEEWGR AEEWGR_374.17_418.2 374.17 418.2 8.8 49.3 22
    P2RX1_HUMAN FDILVDGK FDILVDGK_453.75_418.2 453.75 418.2 16.55 59.5 22.5
    GPC5D_HUMAN LSPQQDAGGV LSPQQDAGGV_486.24_418.2 486.24 418.2 9.7 63.7 20.9
    CLUS_HUMAN EIQNAVNGVK EIQNAVNGVK_536.3_417.2 536.3 417.2 7.9 70.2 32.1
    ERLNl_HUMAN LLIAAQK LLIAAQK_378.75_417.2 378.75 417.2 11.11 49.9 22.2
    C1QL2_HUMAN IAFYVGLK IAFYVGLK_455.77_416.3 455.77 416.3 18.6 59.8 31.6
    NKX62_HUMAN LNGLASSAGVYFGPAAAV LNGLASSAGVYFGPAAAVA 946.51 416.3 19.6 123.1 44.1
    AR R_946.51_416.3
    LGMN_HUMAN QLIEEIQR QLTEEIQR_508.77_416.3 508.77 416.3 9.87 66.6 24.9
    LGIl_HUMAN WGGSSFQDIQR WGGSSFQDIQR_640.8_416.3 640.8 416.3 14.47 83.7 39.7
    HEMO_HUMAN SGAQATWIELPWPHEK SGAQATWTELPWPHEK_61 613.3 415.2 19.54 80.1 25.8
    3.3_415.2
    NCAN_HUMAN LSSAIIAAPR LSSAIIAAPR_499.8_414.2 499.8 414.2 13 65.5 24.5
    PTN5_HUMAN VLQAEELHEK VLQAEELHEK_598.32_413.2 598.32 413.2 9.59 78.2 37.8
    KCNAl_HUMAN DFTGTVHR DFTGTVHR_466.73_411.2 466.73 411.2 8.37 61.2 29
    CALL3_HUMAN EAFSLFDK EAFSLFDK_478.74_409.2 478.74 409.2 18.7 62.8 23.6
    NEUG_HUMAN IQASFR IQASFR_361.2_409.2 361.2 409.2 9.77 47.6 21.4
    SYTL4_HUMAN YEIPESLLAQR YEIPESLLAQR_659.85_406.2 659.85 406.2 17.79 86.1 28.5
    LYG2_HUMAN EHLSQATGILTER EHLSQATGILTER_485.59_40 485.59 405.2 13.74 63.6 22.3
    5.2
    P4K2A_HUMAN IYQGSSGSYFVK IYQGSSGSYFVK_668.33_405 668.33 405.2 13.39 87.2 28.9
    .2
    A4_HUMAN LVFFAEDVGSNK LVFFAEDVGSNK_663.34_40 663.34 405.2 19.15 86.6 40.7
    5.2
    LTBPl_HUMAN TSTDLDVDVDQPK TSTDLDVDVDQPK_716.84_ 716.84 405.2 12.25 93.5 37
    405.2
    NTRK2_HUMAN NLTIVDSGLK NLTIVDSGLK_530.31_404.3 530.31 404.3 15.17 69.4 34.8
    FA20A_HUMAN HNAEIAAFHLDR HNAEIAAFHLDR_465.24_40 465.24 403.2 14.27 61 27.3
    3.2
    GNAQ_HUMAN YYLNDLDR YYLNDLDR_536.26_403.2 536.26 403.2 14.39 70.2 35.1
    NMDZl_HUMAN VLQFDPGTK VLQFDPGTK_502.77_402.2 502.77 402.2 13.24 65.9 30.6
    BAX_HUMAN VPELIR VPELIR_363.73_401.3 363.73 401.3 13.05 47.9 27.5
    GAS6_HUMAN IAVAGDLFQPER IAVAGDLFQPER_658.35_40 658.35 401.2 17.91 85.9 31.5
    1.2
    TLR7_HUMAN NLETLDLSHNQLTTVPER NLETLDLSHNQLTTVPER_6 694.03 401.2 16.88 90.5 38.9
    94.03_401.2
    ERO1B_HUMAN SPAAQYVDLLLNPER SPAAQYVDLLLNPER_662.6 562.63 401.2 22.72 73.6 26.2
    3_401.2
    C09A2_HUMAN GEQGPPGIPGPQGLPGVK GEQGPPGIPGPQGLPGVK_8 842.95 400.3 16.02 109.7 42.6
    42.95_400.3
    ITAM_HUMAN VQSLVLGAPR VQSLVLGAPR_520.32_400.2 520.32 400.2 13.93 68.1 25.4
    ITA3_HUMAN YLLLAGAPR YLLLAGAPR_487.3_400.2 487.3 400.2 17.15 63.9 20.9
    LAT3_HUMAN LSGLALDHK LSGLALDHK_318.52_399.2 318.52 399.2 11.36 42.1 19.8
    TAU_HUMAN TPSLPTPPTR TPSLPTPPTRj33.8_399.2 533.8 399.2 12.13 69.9 26
    SGCZ_HUMAN LGNLPTGSFSSSSPSSSSSR LGNLPTGSFSSSSPSSSSSR_ 971.46 398.2 13.75 126.3 45.2
    971.46_398.2
    RUN3A_HUMAN TPVVIDYTPYLK TPVVIDYTPYLK_704.89_397 704.89 397.2 18.83 91.9 33.5
    .2
    SLITl_HUMAN NLYINNELQDFTK NLYINNELQDFTK_806.4_39 806.4 391.2 19.78 105 38
    1.2
    DDR2_HUMAN NLYSGDYYR NLYSGDYYR_575.76_391.2 575.76 391.2 12.58 75.3 27.8
    NDF6_HUMAN NYIWALSEILR NYIWALSEILR_689.38_391.2 689.38 391.2 25.16 89.9 29.8
    SCGl_HUMAN NYLNYGEEGAPGK NYLNYGEEGAPGK_706.33_ 706.33 391.2 12.31 92.1 33.6
    391.2
    SYUA_HUMAN EGVLYVGSK EGVLYVGSK_476.26_390.2 476.26 390.2 12.17 62.4 23.5
    UGGG2_HUMAN FLGPLDEDFYAEDFYLLEK FLGPLDEDFYAEDFYLLEK_ 1162.55 389.2 25.15 151 56.7
    1162.55_389.2
    ASGRl_HUMAN SLESQLEK SLESQLEK_467.25_389.2 467.25 389.2 11.96 61.3 29.1
    GP2_HUMAN FVGEGGVR FVGEGGVR_410.72_388.2 410.72 388.2 9.22 54 29.6
    ACE2_HUMAN SGENPYASIDISK SGENPYASIDISK_690.84_38 690.84 388.1 13.96 90.1 32.9
    8.1
    ARTN_HUMAN SDELVR SDELVR_359.69_387.3 359.69 387.3 8.28 47.4 21.3
    TFR2_HUMAN YGDVVLR YGDVVLR_411.23_387.3 411.23 387.3 11.84 54 20.6
    PCD18_HUMAN GDITLVPTINGTLPIR GDITLVPTINGTLPIR_840.49 840.49 387.2 21.43 109.4 48.5
    387.2
    YQ051_HUMAN SLADPPSSSQALHSPAR SLADPPSSSQALHSPAR_674 574.29 387.2 10.78 75.1 23.8
    .29387.2
    NETR_HUMAN WAEVPPFLER WAEVPPFLER_622.33_87.2 622.33 387.2 20.93 81.3 29.9
    BESTl_HUMAN WWNQYENLPWPDR WWNQYENLPWPDR_902.42 902.42 387.2 21.96 117.4 39.2
    387.2
    SCGl_HUMAN GEAGAPGEEDIQGPTK GEAGAPGEEDIQGPTK_778. 778.37 386.2 9.56 101.4 33.7
    37386.2
    BTNL8_HUMAN LNGEHLYFTLNPR LNGEHLYFTLNPR_525.28_3 525.28 386.2 18.04 68.8 24.3
    86.2
    EDNRB_HUMAN LTLYNQNDPNR LTLYNQNDPNR_674.34_386 674.34 386.2 11.47 88 41.2
    .2
    KAIN_HUMAN FSISGSYVLDQILPR FSISGSYVLDQILPR_565.64_ 565.64 385.3 24.79 74 23.4
    385.3
    HCN2_HUMAN AEALPPEAADEGGPR AEALPPEAADEGGPR_740.3 740.36 385.2 10.48 96.5 32.1
    6385.2
    MMP16_HUMAN YGYLPPTDPR YGYLPPTDPR_689.8_684.2 589.8 384.2 12.72 77.1 28.5
    ATSl_HUMAN GPEVTSNAALTLR GPEVTSNAALTLR_664.86_3 664.86 383.2 14.03 86.8 31.8
    83.2
    ZIC2_HUMAN LGLPGEVFGR LGLPGEVFGR_522.8_681.3 522.8 381.3 18.49 68.4 25.5
    APOE_HUMAN LGPLVEQGR LGPLVEQGR_484.78_381.3 484.78 381.3 11.76 63.5 23.8
    MYP2_HUMAN NTEISFK NTEISFK_419.72_381.2 419.72 381.2 11.93 55.1 27
    KNGl_HUMAN TVGSDTFYSFK TVGSDTFYSFK_626.3_381.2 626.3 381.2 16.46 81.8 39.1
    DIRA2_HUMAN ESYIPTVEDTYR ESYIPTVEDTYR_736.85_380 736.85 380.1 15.41 96.1 34.9
    .1
    MAP4_HUMAN TDYIPLLDVDEK TDYIPLLDVDEK_710.86_38 710.86 380.1 20.87 92.7 33.8
    0.1
    PCDGE_HUMAN EYFTVNPESGDLLVSDR EYFTVNPESGDLLVSDR_97 970.97 377.2 19.4 126.3 42.2
    0.97377.2
    SIA8C_HUMAN FLDPSFVPITNSLTQELQEK FLDPSFVPITNSLTQELQEKP 873.46 376.2 23.48 113.7 39.1
    PSK SK_873.46_376.2
    DCBD2_HUMAN NNFLPPIIAR NNFLPPIIAR_577.84_376.2 577.84 376.2 19.88 75.5 27.9
    CHAD_HUMAN NNFPVLAANSFR NNFPVLAANSFR_675.35_37 675.35 376.2 18.58 88.1 29.2
    6.2
    C1QT4_HUMAN VPGAYFFSFTAGK VPGAYFFSFTAGK_464.57_3 464.57 376.2 22.38 60.9 21.2
    76.2
    PDIA2_HUMAN EDGILVLSR EDGILVLSR_501.29_375.2 501.29 375.2 16.44 65.7 24.6
    AT2A2_HUMAN EFDELNPSAQR EFDELNPSAQR_653.31_374. 653.31 374.2 12.74 85.3 37.2
    2
    A2MG_HUMAN IAQWQSFQLEGGLK IAQWQSFQLEGGLK_802.93 802.93 374.2 19.82 104.6 40.8
    374.2
    ACE2_HUMAN SEPWTLALENVVGAK SEPWTLALENVVGAK_538. 538.62 374.2 23.88 70.5 28
    62374.2
    SCNNA_HUMAN NGSDVPVENLYPSK NGSDVPVENLYPSK_759.88 759.88 374.1 14.27 99 38.9
    374.1
    PCDBF_HUMAN GFPALSSEALVR GFPALSSEALVR_623.84_373 623.84 373.2 18.44 81.5 29.9
    .2
    APLPl_HUMAN HYQHVAAVDPEK HYQHVAAVDPEK_465.23_3 465.23 373.2 7.77 61 27.3
    73.2
    SIG12_HUMAN EGADIPWDIPVATNTPSGK EGADIPWDIPVATNTPSGK_ 984.49 373.1 19.61 128 48.8
    984.49373.1
    FIBB_HUMAN IRPFFPQQ IRPFFPQQ_516.79_372.2 516.79 372.2 16.47 67.7 22.2
    BCASl_HUMAN VDEVPGLSGQSDDVPAGK VDEVPGLSGQSDDVPAGK_ 885.43 372.2 13.15 115.2 47.5
    885.43372.2
    CLC4M_HUMAN LQEIYQELIELK LQEIYQELIELK_753.91_371 753.91 371.2 20.81 98.3 38.7
    .2
    TLR7_HUMAN LQELDLSQNFLAK LQELDLSQNFLAK_759.91_3 759.91 371.2 19.89 99 35.9
    71.2
    PCDBC_HUMAN ALDYEERPELSFILTALDG ALDYEERPELSFILTALDGG 882.79 369.2 25.09 114.9 39.6
    GSPPR SPPR_882.79_369.2
    BESTl_HUMAN FLGLQSHDHHPPR FLGLQSHDHHPPR_514.26_3 514.26 369.2 11.25 67.3 32.8
    69.2
    ITIH4_HUMAN GPDVLTATVSGK GPDVLTATVSGK_572.81_36 572.81 369.2 13.31 74.9 27.7
    9.2
    PCDBF_HUMAN LTLTAVDGGSPPR LTLTAVDGGSPPR_428.57_3 428.57 369.2 13.73 56.3 19.4
    69.2
    PGCP_HUMAN AIINLAVYGK AIINLAVYGK_531.32_367.2 531.32 367.2 17.88 69.5 34.9
    NDF6_HUMAN QEETLDYGK QEETLDYGK_541.75_367.2 541.75 367.2 9.34 70.9 35.3
    MICA_HUMAN ASGFYPWNITLSWR ASGFYPWNITLSWR_849.43 849.43 363.2 25.08 110.6 39.9
    _363.2
    INHBA_HUMAN SELLLSEK SELLLSEK_459.76_363.2 459.76 363.2 13.55 60.3 31.7
    CP46A_HUMAN ALQTVFGER ALQTVFGER_510.78_361.2 510.78 361.2 14.69 66.9 25
    AFAM_HUMAN HELTDEELQSLFTNFANVV HELTDEELQSLFTNFANVV 817.07 361.2 25.08 106.4 36.2
    DK DK_817.07_361.2
    TYRO_HUMAN LTGDENFTIPYWDWR LTGDENFTIPYWDWR_956.9 956.95 361.2 23.81 124.4 53.6
    5361.2
    CRLFl_HUMAN VGGLEDQLSVR VGGLEDQLSVR_586.82_361 586.82 361.2 14.23 76.7 28.3
    .2
    CRUMl_HUMAN GDVIYIGGLPDK GDVIYIGGLPDK_623.84_359 623.84 359.2 17.2 81.5 38.9
    .2
    SREC_HUMAN GTQGSELDPK GTQGSELDPK_616.25_659.2 516.25 359.2 7.72 67.6 34.2
    APOL4_HUMAN LTATSTDQLEALR LTATSTDQLEALR_709.88_3 709.88 359.2 14.6 92.6 36.7
    59.2
    CEL3B_HUMAN LYTNGPLPDK LYTNGPLPDK_559.3_559.2 559.3 359.2 11.76 73.1 36.1
    ERO1B_HUMAN SVYRPLNPLAPSR SVYRPLNPLAPSR_490.61_3 490.61 359.2 14.64 64.3 22.6
    59.2
    DCBD2_HUMAN YSSSEVNHLSPR YSSSEVNHLSPR_459.23_359 459.23 359.2 9.61 60.2 27
    .2
    UNC5C_HUMAN NEDIIDPVEDR NEDIIDPVEDR_657.81_359.1 657.81 359.1 13.99 85.9 37.4
    APLPl_HUMAN DELAPAGTGVSR DELAPAGTGVSR_586.8_358 586.8 358.2 9.53 76.7 28.3
    .2
    CO8A_HUMAN SLLQPNK SLLQPNK_400.24_358.2 400.24 358.2 10.77 52.6 26.1
    CD3D_HUMAN NDQVYQPLR NDQVYQPLR_666.79_558.1 566.79 358.1 11.59 74.1 27.4
    ITIHl_HUMAN EVAFDLEIPK EVAFDLEIPK_580.81_357.3 580.81 357.3 19.77 75.9 25.1
    ERMIN_HUMAN ITEQPLK ITEQPLK_414.75_357.3 414.75 357.3 8.64 54.5 29.7
    EPHA8_HUMAN DLGASTQESQFLK DLGASTQESQFLK_712.36_3 712.36 357.2 14.58 92.9 30.8
    57.2
    GOLMl_HUMAN DQLVIPDGQEEEQEAAGEG DQLVIPDGQEEEQEAAGEG 1085.5 357.2 14.4 141 56.3
    R R_1085.5_357.2
    PONl_HUMAN IQNILTEEPK IQNILTEEPK_592.83_356.2 592.83 356.2 14.3 77.5 28.6
    CAD22_HUMAN LLEPESEFIIK LLEPESEFIIK_659.37_656.2 659.37 356.2 19.62 86.1 28.5
    GBRA2_HUMAN LNQYDLLGQSIGK LNQYDLLGQSIGK_724.89_3 724.89 356.2 17.87 94.5 34.4
    56.2
    ITB2_HUMAN LGAILTPNDGR LGAILTPNDGR_563.81_555. 563.81 355.2 13.18 73.7 27.3
    2
    RES18_HUMAN LQLLFPSETHSPLAK LQLLFPSETHSPLAK_560.98 560.98 355.2 19.65 73.4 26.2
    355.2
    41_HUMAN APIAAPEPELK APIAAPEPELK_568.32_353.2 568.32 353.2 12.69 74.3 30.5
    ASGRl_HUMAN WVDGTDYETGFK WVDGTDYETGFK_709.32_3 709.32 351.2 15.35 92.5 42.7
    51.2
    CADH7_HUMAN FLSLGPFSDTTTVK FLSLGPFSDTTTVK_756.9_3 756.9 348.2 21.28 98.6 35.8
    48.2
    AN03_HUMAN IAYLLTNLEYPR IAYLLTNLEYPR_733.41_348 733.41 348.2 21.46 95.6 37.8
    .2
    S12A5_HUMAN ETTAGHLALLVTK ETTAGHLALLVTK_451.93_3 451.93 347.2 15.98 59.3 26.6
    47.2
    ELAV3_HUMAN GLNGQKPLGAAEPITVK GLNGQKPLGAAEPITVK_56 564.99 347.2 13.41 73.9 35.4
    4.99347.2
    KCNA3_HUMAN SNSTLSK SNSTLSK_568.7_647.2 368.7 347.2 6 48.6 24.7
    AlBG_HUMAN LETPDFQLFK LETPDFQLFK_619.33_644.2 619.33 344.2 21.25 80.9 26.8
    ANT3_HUMAN DDLYVSDAFHK DDLYVSDAFHK_655.31_344 655.31 344.1 14.4 85.5 34.3
    .1
    SLIKl_HUMAN DIDPGAFQDLNK DIDPGAFQDLNK_666.83_34 666.83 344.1 15.66 87 28.8
    4.1
    S12A6_HUMAN IDDIPGLSDTSPDLSSR IDDIPGLSDTSPDLSSR_894.4 894.44 344.1 16.94 116.4 44.9
    4344.1
    BCASl_HUMAN VDEVPGLSGQSDDVPAGK VDEVPGLSGQSDDVPAGK_ 885.43 344.1 13.15 115.2 50.5
    885.43344.1
    INADL_HUMAN DVQPGSVADR DVQPGSVADR_522.26_343.2 522.26 343.2 7.7 68.4 22.5
    LGIl_HUMAN FQELNVQAPR FQELNVQAPR_601.32_543.2 601.32 343.2 13.58 78.6 29
    LSHR_HUMAN LSLAYLPVK LSLAYLPVK_502.31_343.2 502.31 343.2 18.88 65.8 33.6
    PINl_HUMAN NGQGEPAR NGQGEPAR_414.7_6j43.2 414.7 343.2 5.8 54.5 20.7
    CF072_HUMAN NVETTVDEDVLPGK NVETTVDEDVLPGK_758.38 758.38 343.2 14.91 98.8 35.9
    343.2
    NMS_HUMAN TQEATHPVK TQEATHPVK_505.77_343.2 505.77 343.2 5.87 66.2 30.8
    AT2B3_HUMAN ILDLLVHAISINSAYTTK ILDLLVHAISINSAYTTK_65 658.04 342.2 24.28 85.9 37.1
    8.04342.2
    AMNLS_HUMAN ILDTFLGLPQYHGLQVAVS ILDTFLGLPQYHGLQVAVS 733.74 342.2 22.88 95.7 32
    K K_733.74_342.2
    PSMGl_HUMAN LDLITVEAFKPILSTR LDLITVEAFKPILSTR_606.02 606.02 342.2 23.92 79.2 25.5
    342.2
    NMDE3_HUMAN LLDVVTLELGPGGPR LLDVVTLELGPGGPR_768.4 768.44 342.2 21.92 100.1 45.3
    4342.2
    PACNl_HUMAN NNLLNEDLEK NNLLNEDLEK_601.31_342.2 601.31 342.2 14.37 78.6 26
    CD72_HUMAN VLEVTNSSLR VLEVTNSSLR_559.31_342.2 559.31 342.2 12.4 73.2 27.1
    AT12A_HUMAN DGPNSLTPPK DGPNSLTPPK_513.27_341.2 513.27 341.2 9.55 67.2 28.1
    IL12B_HUMAN DIIKPDPPK DIIKPDPPK_511.8_341.2 511.8 341.2 9.7 67 28
    HASl_HUMAN ILNPLDSWVSFLSSLR ILNPLDSWVSFLSSLR_924.0 924.01 341.2 25.49 120.2 40.2
    1341.2
    TRIM9_HUMAN NILVQTPESESPQSHR NILVQTPESESPQSHR_607.9 607.97 341.2 11.95 79.4 28.6
    7341.2
    FRS2_HUMAN DPQILLEPEGVK DPQILLEPEGVK_669.37_341 669.37 341.1 16.71 87.3 32
    .1
    5HT2C_HUMAN ELNVNIYR ELNVNIYR_510.78_338.2 510.78 338.2 14.34 66.9 22
    PCDGF_HUMAN YGPQFTLQHVPDYR YGPQFTLQHVPDYR_574.29 574.29 338.2 16.79 75.1 35.8
    338.2
    SCG3_HUMAN LNVEDVDSTK LNVEDVDSTK_560.28_335.2 560.28 335.2 11 73.3 36.2
    ABCAl_HUMAN FVSPLSWDLVGR FVSPLSWDLVGR_688.37_33 688.37 334.2 23.76 89.8 29.8
    4.2
    PERL_HUMAN FWWENPGVFTNEQK FWWENPGVFTNEQK_891.4 891.42 334.2 22.67 116 41.7
    2_334.2
    CFAB_HUMAN YGLVTYATYPK YGLVTYATYPK_638.33_334 638.33 334.2 15.87 83.3 30.6
    .2
    CETP_HUMAN ASYPDITGEK ASYPDITGEK_540.76_333.2 540.76 333.2 11.23 70.8 35.3
    SCNNA_HUMAN DNNPQVDWK DNNPQVDWK_558.26_333.2 558.26 333.2 11.27 73 36.1
    MYP2_HUMAN FLGTWK FLGTWK_376.21_333.2 376.21 333.2 15.38 49.5 25.1
    CORT_HUMAN NFFWK NFFWK_671.19_633.2 371.19 333.2 18.71 48.9 18.8
    SEMGl_HUMAN LPSEFSQFPHGQK LPSEFSQFPHGQK_501.25_3 501.25 332.2 14.66 65.7 29.1
    32.2
    FIBG_HUMAN LTIGEGQQHHLGGAK LTIGEGQQHHLGGAK_515.9 515.94 332.2 9.73 67.6 32.9
    4332.2
    HRG_HUMAN ADLFYDVEALDLESPK ADLFYDVEALDLESPK_912. 912.95 331.2 23.8 118.8 42.7
    95331.2
    S39A4_HUMAN AGLWASHADHLLALLESP AGLWASHADHLLALLESPK 677.03 331.2 24.55 88.3 41.1
    K _677.03_331.2
    SIA8C_HUMAN FLDPSFVPITNSLTQELQEK FLDPSFVPITNSLTQELQEKP 873.46 331.2 23.48 113.7 51.1
    PSK SK_873.46_331.2
    RES18_HUMAN GFSGPLPTVGR GFSGPLPTVGR_544.3_331.2 544.3 331.2 15.06 71.2 26.4
    RGS20_HUMAN IIYEDYISILSPK IIYEDYISILSPK_777.43_331. 777.43 331.2 22.75 101.3 33.7
    2
    GFRA2_HUMAN NAIQAFGNGTDVNVSPK NAIQAFGNGTDVNVSPK_86 866.44 331.2 14.98 112.8 37.6
    6.44331.2
    SCNNA_HUMAN NGSDVPVENLYPSK NGSDVPVENLYPSK_759.88 759.88 331.2 14.27 99 32.9
    331.2
    CLUS_HUMAN SGSGLVGR SGSGLVGR_566.7_531.2 366.7 331.2 7.52 48.3 24.6
    NTRK2_HUMAN SNEIPSTDVTDK SNEIPSTDVTDK_653.31_331 653.31 331.1 10.04 85.3 34.2
    .1
    AT2A2_HUMAN WGSNELPAEEGK WGSNELPAEEGK_658.81_33 658.81 331.1 12.28 86 34.5
    1.1
    INHBA_HUMAN SELLLSEK SELLLSEK_459.76_330.2 459.76 330.2 13.55 60.3 22.7
    CB085_HUMAN GSLALPFPADVQGK GSLALPFPADVQGK_700.38 700.38 329.2 19.32 91.3 33.3
    329.2
    PGCP_HUMAN LALLVDTVGPR LALLVDTVGPR_577.35_329. 577.35 329.2 18.84 75.5 24.9
    2
    PEDF_HUMAN LQSLFDSPDFSK LQSLFDSPDFSK_692.34_329 692.34 329.2 18.9 90.3 33
    .2
    APOL4_HUMAN NLTPYVAIEDK NLTPYVAIEDK_631._84_329. 631.84 329.2 15.55 82.5 30.3
    2
    ARSA_HUMAN QSLFFYPSYPDEVR QSLFFYPSYPDEVR_874.42_ 874.42 329.2 21.26 113.8 47
    329.2
    CP46A_HUMAN AEQLVEILEAK AEQLVEILEAK_621.85_329. 621.85 329.1 20.05 81.2 29.9
    1
    MOT2_HUMAN LVDLTGEYK LVDLTGEYK519.28_328.2 519.28 328.2 13.84 68 25.3
    GPC5_HUMAN NAAAFQETLETLIK NAAAFQETLETLIK_774.92_ 774.92 328.2 24.18 101 33.6
    328.2
    AT12A_HUMAN TPEIYSVELSGTK TPEIYSVELSGTK_712.37_32 712.37 328.2 15.53 92.9 36.8
    8.2
    WNT8B_HUMAN VDLLQGAGNSAAGR VDLLQGAGNSAAGR_664.8 664.85 328.2 13.4 86.8 31.8
    5328.2
    CAD11_HUMAN VLDVNDNAPK VLDVNDNAPK_642.79_628. 542.79 328.2 9.67 71 26.4
    2
    VTNC_HUMAN AVRPGYPK AVRPGYPK_296.51_27.2 296.51 327.2 7.09 39.2 18.7
    TBB2B_HUMAN INVYYNEATGNK INVYYNEATGNK_693.34_32 693.34 327.2 11.92 90.4 33
    7.2
    AlBG_HUMAN TPGAAANLELIFVGPQHAG TPGAAANLELIFVGPQHAG 766.07 327.2 21.76 99.8 39.6
    NYR NYR_766.07_327.2
    PCDB7_HUMAN ILVLDVNDNAPDFVR ILVLDVNDNAPDFVR_850.4 850.45 326.2 20.44 110.7 39.9
    5326.2
    EMIL2_HUMAN LIVPEPDVDFDAK LIVPEPDVDFDAK_729.38_5 729.38 326.2 18.52 95.1 31.6
    26.2
    LRP8_HUMAN NPLSELPVVK NPLSELPVVK_548.32_325.2 548.32 325.2 17.49 71.7 26.6
    APOOL_HUMAN HSVPLPTELSSEAK HSVPLPTELSSEAK_498.93_ 498.93 324.2 13.72 65.4 32
    324.2
    GOPC_HUMAN EHGVPILISEIHPGQPADR EHGVPILISEIHPGQPADR_6 689.03 324.1 17.44 89.9 41.7
    89.03324.1
    PGCB_HUMAN ALHPEEDPEGR ALHPEEDPEGR_625.29_622. 625.29 322.2 7.71 81.7 36
    2
    ACHB2_HUMAN EGAGALFFR EGAGALFFR_484.25_322.2 484.25 322.2 18.49 63.5 20.8
    SLIT1_HUMAN QIPLQDVAFPDFR QIPLQDVAFPDFR_773.41_3 773.41 322.2 22.44 100.8 45.5
    22.2
    C1QL2_HUMAN SPHEGYEVLK SPHEGYEVLK_386.86_522.2 386.86 322.2 10.69 50.9 23.3
    F13A_HUMAN GTYIPVPIVSELQSGK GTYIPVPIVSELQSGK_844.4 844.47 322.1 21.87 109.9 36.7
    7322.1
    NECP2_HUMAN AAEWQLDQPSWSGR AAEWQLDQPSWSGR_815.8 815.88 319.2 17.32 106.2 35.4
    8319.2
    5HT2C_HUMAN VAATALSGR VAATALSGR_423.25_319.2 423.25 319.2 8.46 55.6 30.1
    CFAH_HUMAN NGFYPATR NGFYPATR_463.23_319.1 463.23 319.1 11.09 60.8 22.9
    FGLl_HUMAN HGEYWLGNK HGEYWLGNK_552.27_318.2 552.27 318.2 12.65 72.2 32.8
    RGS2O_HUMAN LFGLLSSPLSSLAR LFGLLSSPLSSLAR_730.93_3 730.93 318.2 25.08 95.3 40.7
    18.2
    KCTD4_HUMAN YPDTFLEGIVNGK YPDTFLEGIVNGK_726.87_3 726.87 318.2 21.72 94.8 43.5
    18.2
    LRMP_HUMAN DDSEPSGEETVER DDSEPSGEETVER_725.3_31 725.3 318.1 7.41 94.6 34.4
    8.1
    PLCBl_HUMAN NDSIPQEDFTPEVYR NDSIPQEDFTPEVYR_905.42 905.42 317.1 16.36 117.8 42.3
    317.1
    CFAB_HUMAN DISEVVTPR DISEVVTPR_539.19_516.2 339.19 316.2 12.19 44.8 17.8
    GRM5_HUMAN DSLISSEEEEGLVR DSLISSEEEEGLVR_781.88_6 781.88 316.2 16 101.9 33.9
    16.2
    AGAP2_HUMAN SLDLDDWPR SLDLDDWPR_558.77_316.2 558.77 316.2 18.55 73.1 27.1
    PCDB6_HUMAN SLDYEALQSFEFR SLDYEALQSFEFR_802.88_3 802.88 316.2 21.86 104.6 43.8
    16.2
    AMFR2_HUMAN SVEITTDNILEGR SVEITTDNILEGR_723.88_31 723.88 316.2 17.05 94.4 34.4
    6.2
    MMP24_HUMAN ADEAEAPFAGQNWLK ADEAEAPFAGQNWLK_823. 823.89 316.1 19.35 107.3 47.8
    89316.1
    NMDEl_HUMAN DEAVLILSEAR DEAVLILSEAR_608.33_316. 608.33 316.1 17.94 79.5 35.3
    1
    HCNl_HUMAN DDGNSVFPAK DDGNSVFPAK_525.25_315.2 525.25 315.2 10.92 68.8 28.6
    AMPB_HUMAN ETFASTASQLHSNVVNYV ETFASTASQLHSNVVNYVQ 911.14 315.2 24.72 118.5 41
    QQIVAPK QIVAPK_911.14_315.2
    APOOL_HUMAN LGSSSEIEVPAK LGSSSEIEVPAK_608.82_315. 608.82 315.2 11.43 79.5 35.3
    2
    P2RX1_HUMAN NLSPGFNFR NLSPGFNFR_526.27_315.2 526.27 315.2 16.65 68.9 22.7
    FIBA_HUMAN NSLFEYQK NSLFEYQK_514.76_315.2 514.76 315.2 14.01 67.4 22.1
    ADA23_HUMAN AWGAAAPSAPHWNETAE AWGAAAPSAPHWNETAEK 631.97 315.1 14.4 82.5 29.8
    K _631.97_315.1
    BCASl_HUMAN DPTLLPPETGGAGGEAPSK DPTLLPPETGGAGGEAPSKP 673.68 314.1 12.9 87.9 40.9
    PK K_673.68_314.1
    A2MG_HUMAN IAQWQSFQLEGGLK IAQWQSFQLEGGLK_802.93 802.93 313.2 19.82 104.6 37.8
    313.2
    PAK3_HUMAN LAKPLSSLTPLIIAAK LAKPLSSLTPLIIAAK_818.52 818.52 313.2 21.28 106.6 41.5
    313.2
    LSHR_HUMAN LQALPSYGLESIQR LQALPSYGLESIQR_787.93_ 787.93 313.2 17.89 102.6 40.2
    313.2
    GBRA2_HUMAN DPVLSTISK DPVLSTISK_480.27_312.2 480.27 312.2 12.44 63 23.6
    PKDRE_HUMAN VIVIPNPVDLR VIVIPNPVDLR_617.88_312.2 617.88 312.2 20.18 80.7 29.7
    DDR2_HUMAN YLSSLNFVHR YLSSLNFVHR_412.56_312.2 412.56 312.2 16.07 54.2 21.6
    ACBD7_HUMAN ELYGLYK ELYGLYK_443.24_310.2 443.24 310.2 14.58 58.2 19
    TAU_HUMAN TDHGAEIVYK TDHGAEIVYK_566.79_310.2 566.79 310.2 9.06 74.1 33.4
    ITIH2_HUMAN AHVSFKPTVAQQR AHVSFKPTVAQQR_490.27_ 490.27 308.2 9.87 64.2 28.6
    308.2
    GP125_HUMAN SYGLNLAIQNGPIK SYGLNLAIQNGPIK_744.41_ 744.41 308.1 18.45 97 38.3
    308.1
    CALL3_HUMAN ELGTVMR ELGTVMR_403.2_306.1 403.2 306.1 9.7 53 20.2
    CB080_HUMAN NATSISAK NATSISAK_596.22_605.2 396.22 305.2 6.49 52.1 28.9
    ARP21_HUMAN VAAYFGLDHNVDQTGK VAAYFGLDHNVDQTGK_57 578.95 305.2 14.89 75.7 36.1
    8.95305.2
    GOLMl_HUMAN DLSENNDQR DLSENNDQR_645.74_603.2 545.74 303.2 6.25 71.4 35.5
    EMIL3_HUMAN LQHTVGHFDQR LQHTVGHFDQR_446.56_303 446.56 303.2 8.57 58.6 29.3
    .2
    CACB2_HUMAN TLATSSLPLSPTLASNSQGS TLATSSLPLSPTLASNSQGS 839.42 303.2 16.73 109.3 49.4
    QGDQR QGDQR_839.42_303.2
    AFAM_HUMAN DADPDTFFAK DADPDTFFAK_663.76_602.1 563.76 302.1 15.58 73.7 24.3
    CNTNl_HUMAN DGEYVVEVR DGEYVVEVR_633.26_602.1 533.26 302.1 12.46 69.8 26
    CAD19_HUMAN VSDINDNEPK VSDINDNEPK_565.77_302.1 565.77 302.1 7.2 74 30.4
    C04A4_HUMAN GDPGPPGAEGPPGLPGK GDPGPPGAEGPPGLPGK_75 750.38 301.2 11.98 97.8 41.5
    0.38301.2
    PLCBl_HUMAN ISEDSNHGSAPLSLSSDPGK ISEDSNHGSAPLSLSSDPGK 666.65 301.2 11.82 87 40.5
    _666.65_301.2
    CF072_HUMAN NVETTVDEDVLPGK NVETTVDEDVLPGK_758.38 758.38 301.2 14.91 98.8 32.9
    301.2
    GABR2_HUMAN NVSIPALNDSK NVSIPALNDSK_679.31_601. 579.31 301.2 14.46 75.7 28
    2
    SCGl_HUMAN NYLNYGEEGAPGK NYLNYGEEGAPGK_706.33_ 706.33 301.2 12.31 92.1 42.6
    301.2
    GP158_HUMAN YELAGLPGK YELAGLPGK_474.26_301.2 474.26 301.2 14.14 62.2 32.4
    ELAV3_HUMAN DANLYVSGLPK DANLYVSGLPK_688.82_601 588.82 301.1 15.26 77 28.4
    .1
    KCTD4_HUMAN NGELLLPEGFR NGELLLPEGFR_622.84_301. 622.84 301.1 19.68 81.3 29.9
    1
    A1AG2_HUMAN NWGLSFYADKPETTK NWGLSFYADKPETTK_686.2 586.29 301.1 18.43 76.6 24.5
    9301.1
    CD72_HUMAN NWQESQK NWQESQK_460.22_301.1 460.22 301.1 7.02 60.4 19.7
    MAMC2_HUMAN IWSVLESPR IWSVLESPR_543.8_300.2 543.8 300.2 18.18 71.2 23.4
    SCRTl_HUMAN LDAFSSADLESAYGR LDAFSSADLESAYGR_801.3 801.38 300.2 17.31 104.4 40.8
    8_300.2
    SGCZ_HUMAN LEGISEFLLPLYVK LEGISEFLLPLYVK_810.97_3 810.97 300.2 25.2 105.6 41.2
    00.2
    CAD22_HUMAN LWAAGTPSPSAPGAR LWAAGTPSPSAPGAR_719.8 719.88 300.2 12.93 93.9 40.2
    8300.2
    PTPRB_HUMAN SLVVSWSPPAGDWEQYR SLVVSWSPPAGDWEQYR_9 988.98 300.2 21.21 128.6 46
    88.98300.2
    ADA23_HUMAN IGQLQGEIIPTSFYHQGR IGQLQGEIIPTSFYHQGR_68 682.03 299.2 18.63 89 32.3
    2.03299.2
    PCDAA_HUMAN LNASDSDEGINK LNASDSDEGINK_631.8_299.
    2 631.8 299.2 7.92 82.5 30.3
    GFRA2_HUMAN NAIQAFGNGTDVNVSPK NAIQAFGNGTDVNVSPK_86 866.44 299.2 14.98 112.8 40.6
    6.44299.2
    RUN3A_HUMAN TPVVIDYTPYLK TPVVIDYTPYLK_704.89_298 704.89 298.2 18.83 91.9 36.5
    .2
    CFAH_HUMAN NDFTWFK NDFTWFK_479.23_294.2 479.23 294.2 19.79 62.8 32.6
    EMIL3_HUMAN VHGLALGHEAHLQR VHGLALGHEAHLQR_769.42 769.42 294.2 11.14 100.3 45.4
    294.2
    MOT2_HUMAN YLDFSLFK YLDFSLFK_516.77_294.2 516.77 294.2 23.12 67.7 34.2
    NRG3_HUMAN EYVPTDLVDSK EYVPTDLVDSK_633.32_293. 633.32 293.1 14.42 82.7 30.4
    1
    NFL_HUMAN YEEEVLSR YEEEVLSR_512.75_293.1 512.75 293.1 10.61 67.1 25.1
    CADH5_HUMAN YEIVVEAR YEIVVEAR_489.77_293.1 489.77 293.1 13.14 64.2 24
    GP158_HUMAN YELAGLPGK YELAGLPGK_474.26_293.1 474.26 293.1 14.14 62.2 23.4
    I12Rl_HUMAN YEPPLGDIK YEPPLGDIK_516.27_293.1 516.27 293.1 14.41 67.6 22.2
    GPC6_HUMAN GFSLADIPYQEIAGEHLR GFSLADIPYQEIAGEHLR_67 672.68 292.1 22.21 87.8 28.9
    2.68292.1
    MMP9_HUMAN AFALWSAVTPLTFTR AFALWSAVTPLTFTR_840.9 840.96 290.2 25.11 109.5 42.5
    6290.2
    ABCA1_HUMAN EGAFVELFHEIDDR EGAFVELFHEIDDR_559.6_2 559.6 290.1 23.86 73.2 32.1
    90.1
    FETUA_HUMAN AHYDLR AHYDLR_258.8_288.2 258.8 288.2 8.05 34.4 13.7
    APOAl_HUMAN AKPALEDLR AKPALEDLR_506.79_288.2 506.79 288.2 11.56 66.4 33.8
    CALL3_HUMAN DGNGFVSAAELR DGNGFVSAAELR_618.3_288 618.3 288.2 15.13 80.8 35.7
    .2
    HRG_HUMAN HSHESQDLR HSHESQDLR_370.18_288.2 370.18 288.2 5.96 48.8 22.4
    ZICl_HUMAN LVNHIR LVNHIR_251.16_288.2 251.16 288.2 7.04 33.4 19.4
    APOB_HUMAN SPAFTDLHLR SPAFTDLHLR_386.21_288.2 386.21 288.2 15.75 50.8 26.2
    CO2_HUMAN TAVDHIR TAVDHIR_406.22_288.2 406.22 288.2 7.01 53.4 29.4
    APOD_HUMAN VLNQELR VLNQELR_436.25_288.2 436.25 288.2 9.77 57.3 30.7
    S39A4_HUMAN ALTPGLSWLLQR ALTPGLSWLLQR_677.9_286 677.9 286.2 24.56 88.4 29.3
    .2
    LCK_HUMAN ERPEDRPTFDYLR ERPEDRPTFDYLR_565.28_2 565.28 286.2 14.43 73.9 35.4
    86.2
    PARK7_HUMAN DGLILTSR DGLILTSR_437.75_286.1 437.75 286.1 13.64 57.5 21.8
    EPHA8_HUMAN DLGASTQESQFLK DLGASTQESQFLK_712.36_2 712.36 286.1 14.58 92.9 36.8
    86.1
    PCDB7_HUMAN DLGLGVGELR DLGLGVGELR_514.79_286.1 514.79 286.1 17.2 67.4 28.2
    TYRO_HUMAN DLGYDYSYLQDSDPDSFQ DLGYDYSYLQDSDPDSFQD 883.05 286.1 21.17 114.9 48.6
    DYIK YIK_883.05_286.1
    SGCZ_HUMAN LGNLPTGSFSSSSPSSSSSR LGNLPTGSFSSSSPSSSSSR_ 971.46 285.2 13.75 126.3 51.2
    971.46_285.2
    NKX62_HUMAN LNGLASSAGVYFGPAAAV LNGLASSAGVYFGPAAAVA 946.51 285.2 19.6 123.1 53.1
    AR R_946.51_285.2
    SREC_HUMAN HFGSFQK HFGSFQK_425.71_285.1 425.71 285.1 9.6 55.9 24.2
    FA20A_HUMAN HFPTISADYSQDEK HFPTISADYSQDEK_646.59_ 546.59 285.1 13.78 71.5 31.4
    285.1
    S15A2_HUMAN FVNTLHK FVNTLHK_429.75_284.2 429.75 284.2 8.42 56.4 30.4
    ERMIN_HUMAN LFIVHK LFIVHK_378.74_284.2 378.74 284.2 11.75 49.9 28.2
    GP158_HUMAN LLGFATVYGTVTLK LLGFATVYGTVTLK_741.93 741.93 284.2 23.26 96.7 38.1
    _284.2
    LAT3_HUMAN LSGLALDHK LSGLALDHK_318.52_284.2 318.52 284.2 11.36 42.1 22.8
    INHBA_HUMAN GHSPFANLK GHSPFANLK_485.76_282.1 485.76 282.1 12.42 63.7 23.9
    CAMKV_HUMAN YDLGQVIK YDLGQVIK_468.26_279.1 468.26 279.1 15.27 61.4 23.1
    NETOl_HUMAN YNFTPDPDFK YNFTPDPDFK_622.29_278.1 622.29 278.1 16.1 81.3 29.9
    GRM5_HUMAN IYSNAGEQSFDK IYSNAGEQSFDK_679.82_27 679.82 277.2 10.33 88.7 32.4
    7.2
    KIF5A_HUMAN LYLVDLAGSEK LYLVDLAGSEK_604.33_277. 604.33 277.2 18.66 79 29.1
    2
    CEL3B_HUMAN LYTNGPLPDK LYTNGPLPDK_559.3_277.2 559.3 277.2 11.76 73.1 24.1
    CO8A_HUMAN LYYGDDEK LYYGDDEK_501.72_277.2 501.72 277.2 9.1 65.7 21.6
    GPR88_HUMAN YLLITR YLLITR_389.74_277.2 389.74 277.2 14.87 51.3 19.6
    ITA3_HUMAN YLLLAGAPR YLLLAGAPR_487.3_277.2 487.3 277.2 17.15 63.9 23.9
    VTNC_HUMAN FEDGVLDPDYPR FEDGVLDPDYPR_711.83_27 711.83 277.1 16.02 92.8 33.8
    7.1
    PAR6B_HUMAN FEEFYGLLQHVHK FEEFYGLLQHVHK_549.62_2 549.62 277.1 19.68 71.9 25.6
    77.1
    KCNA2_HUMAN FETQLK FETQLK_383.21_277.1 383.21 277.1 9.93 50.4 19.4
    CBPN_HUMAN IVQLIQDTR IVQLIQDTR_543.32_276.2 543.32 276.2 14.84 71.1 26.4
    ASGRl_HUMAN SLESQLEK SLESQLEK_467.25_276.2 467.25 276.2 11.96 61.3 32.1
    ALBU_HUMAN TYETTLEK TYETTLEK_492.75_276.2 492.75 276.2 9.43 64.6 33.2
    CADH5_HUMAN YTFVVPEDTR YTFVVPEDTR_613.81_276.2 613.81 276.2 15.34 80.2 38.5
    NPTXl_HUMAN FQLTFPLR FQLTFPLR_511.3_276.1 511.3 276.1 21.84 67 25
    ICl_HUMAN FQPTLLTLPR FQPTLLTLPR_593.35_276.1 593.35 276.1 20.26 77.5 25.6
    ZICl_HUMAN HHSAGDVAER HHSAGDVAER_360.17_275. 360.17 275.1 5.9 47.5 24.9
    1
    HASl_HUMAN VGAVGGDVR VGAVGGDVR_415.23_274.2 415.23 274.2 7.58 54.6 29.8
    MMP24_HUMAN AAPGPPPPPPPPGQAPR AAPGPPPPPPPPGQAPR_634. 534.29 272.2 9.77 69.9 24.8
    29_272.2
    CFAB_HUMAN DISEVVTPR DISEVVTPR_339.19_272.2 339.19 272.2 12.19 44.8 17.8
    MMPl_HUMAN DIYSSFGFPR DIYSSFGFPR_396.86_272.2 396.86 272.2 20.37 52.2 17.8
    SEM4A_HUMAN EAILALDIQDPGVPR EAILALDIQDPGVPR_803.94 803.94 272.2 20.26 104.7 34.9
    _272.2
    GAS6_HUMAN EVFENDPETDYFYPR EVFENDPETDYFYPR_960.9 960.92 272.2 18.37 125 41.8
    2_272.2
    LRMP_HUMAN EYSSLPLPR EYSSLPLPR_631.29_272.2 531.29 272.2 14.85 69.5 25.9
    KAIN_HUMAN FSISGSYVLDQILPR FSISGSYVLDQILPR_565.64_ 565.64 272.2 24.79 74 23.4
    272.2
    IPSP_HUMAN GFQQLLQELNQPR GFQQLLQELNQPR_524.28_2 524.28 272.2 23.15 68.6 24.3
    72.2
    BDNF_HUMAN GLTSLADTFEHVIEELLDE GLTSLADTFEHVIEELLDED 834.75 272.2 25.61 108.7 37.1
    DQK QK_834.75_272.2
    VGFR3_HUMAN HATLSLSIPR HATLSLSIPR_365.55_272.2 365.55 272.2 15.55 48.2 16.2
    CSF1R_HUMAN HTFTLSLPR HTFTLSLPR_636.3_272.2 536.3 272.2 16.88 70.2 35.1
    KCC2A_HUMAN ITQYLDAGGIPR ITQYLDAGGIPR_652.35_272 652.35 272.2 14.93 85.2 28.2
    .2
    MAMC2_HUMAN IWSVLESPR IWSVLESPR_543.8_272.2 543.8 272.2 18.18 71.2 26.4
    GFRA2_HUMAN LASIFSGTGADPVVSAK LASIFSGTGADPVVSAK_810 810.44 272.2 17.97 105.5 41.2
    .44_272.2
    GT253_HUMAN LDLTGSSGHSLQPQPR LDLTGSSGHSLQPQPR_664. 564.96 272.2 12.28 73.9 35.4
    96_272.2
    GALR3_HUMAN LLAGGGQGPEPR LLAGGGQGPEPR_576.31_27 576.31 272.2 9.45 75.3 36.9
    2.2
    WNT8B_HUMAN TLGLLGTEGR TLGLLGTEGR_508.79_272.2 508.79 272.2 15.38 66.6 27.9
    OPCM_HUMAN WSIDPR WSIDPR_387.2_272.2 387.2 272.2 13.74 50.9 25.5
    KCNV2_HUMAN AQAQVEEAEELFR AQAQVEEAEELFR_760.37_2 760.37 271.1 18.64 99.1 36
    71.1
    FIBB_HUMAN IRPFFPQQ IRPFFPQQ_516.79_270.2 516.79 270.2 16.47 67.7 22.2
    DIRA2_HUMAN VAVFGAGGVGK VAVFGAGGVGK_481.28_27 481.28 270.2 13.16 63.1 23.7
    0.2
    SYN2_HUMAN TPALSPQRPLTTQQPQSGT TPALSPQRPLTTQQPQSGTL 750.41 270.1 12.34 97.8 38.8
    LK K_750.41_270.1
    APOC2_HUMAN TYLPAVDEK TYLPAVDEK_518.27_265.1 518.27 265.1 12.36 67.9 25.3
    CRUMl_HUMAN EPEFLNISIQDSR EPEFLNISIQDSR_774.39_262
    .2 774.39 262.2 19.34 100.9 42.6
    UGGG2_HUMAN INEENTAISR INEENTAISR_573.79_262.2 573.79 262.2 8.3 75 27.7
    ARHG7_HUMAN FNFQQTNEDELSFSK FNFQQTNEDELSFSK_917.42 917.42 262.1 17.52 119.3 48.9
    _262.1
    NEUM_HUMAN IEQDGIKPEDK IEQDGIKPEDK_636.33_262.1 636.33 262.1 7.45 83.1 36.5
    GP113_HUMAN NLLIATDK NLLIATDK_444.26_262.1 444.26 262.1 13.39 58.3 31
    GELS_HUMAN AQPVQVAEGSEPDGFWEA AQPVQVAEGSEPDGFWEAL 758.03 261.2 21.24 98.8 36.2
    LGGK GGK_758.03_261.2
    SPB5_HUMAN DVPFGFQTVTSDVNK DVPFGFQTVTSDVNK_827.4 827.41 261.2 18.74 107.7 47.9
    1_261.2
    ERLNl_HUMAN EALEPSGENVIQNK EALEPSGENVIQNK_764.39_ 764.39 261.2 11.75 99.6 36.1
    261.2
    PDYN_HUMAN FLPSISTK FLPSISTK_446.76_261.2 446.76 261.2 13.97 58.6 19.2
    CADH7_HUMAN FLSLGPFSDTTTVK FLSLGPFSDTTTVK_756.9_2 756.9 261.2 21.28 98.6 35.8
    61.2
    APC2_HUMAN APATASATLLE APATASATLLE_522.78_261. 522.78 261.1 14.37 68.4 22.5
    1
    LYG2_HUMAN AIKPYQTLIK AIKPYQTLIK_392.25_260.2 392.25 260.2 13.84 51.6 26.6
    ACBD7_HUMAN ARPDDGELK ARPDDGELK_500.76_260.2 500.76 260.2 6.72 65.6 27.5
    KCNA2_HUMAN EDEGYIK EDEGYIK_427.2_260.2 427.2 260.2 8.47 56.1 21.3
    C1QL2_HUMAN SPHEGYEVLK SPHEGYEVLK_386.86_260.2 386.86 260.2 10.69 50.9 23.3
    SEM4A_HUMAN TLGSQPVLK TLGSQPVLK_471.78_260.2 471.78 260.2 10.96 61.9 32.3
    I12Rl_HUMAN YEPPLGDIK YEPPLGDIK_516.27_260.2 516.27 260.2 14.41 67.6 28.2
    AMNLS_HUMAN SGDEAPGLFFVDAER SGDEAPGLFFVDAER_805.3 805.38 260.1 20.88 104.9 43.9
    8_260.1
    ADA23_HUMAN AWGAAAPSAPHWNETAE AWGAAAPSAPHWNETAEK 631.97 258.1 14.4 82.5 26.8
    K _631.97_258.1
    SCGl_HUMAN GEAGAPGEEDIQGPTK GEAGAPGEEDIQGPTK_778. 778.37 258.1 9.56 101.4 39.7
    37_258.1
    SNTBl_HUMAN SGLLEVLVR SGLLEVLVR_493.31_258.1 493.31 258.1 21.74 64.6 24.2
    GPC5_HUMAN NAAAFQETLETLIK NAAAFQETLETLIK_774.92_ 774.92 257.1 24.18 101 36.6
    257.1
    SHSA7_HUMAN SPALPPDPTAR SPALPPDPTAR_561.3_256.1 561.3 256.1 10.3 73.4 33.2
    ADA12_HUMAN NHPEVLNIR NHPEVLNIR_546.3_252.1 546.3 252.1 12.38 71.5 29.5
    ITIH3_HUMAN NHQLIVTR NHQLIVTR_490.79_252.1 490.79 252.1 9.24 64.3 30.1
    RCNl_HUMAN HLVYESDK HLVYESDK_495.75_251.2 495.75 251.2 7.73 65 30.3
    CBPN_HUMAN HLYVLEFSDHPGIHEPLEPE HLYVLEFSDHPGIHEPLEPE 862.44 251.2 19.33 112.3 44.5
    VK VK_862.44_251.2
    HS3S5_HUMAN IHPEVDPSVITK IHPEVDPSVITK_445.58_251. 445.58 251.2 12.75 58.5 29.3
    2
    CO3_HUMAN IHWESASLLR IHWESASLLR_404.56_251.2 404.56 251.2 17.03 53.2 27.2
  • IV. Reduced Set of Exemplary Protein Results (Table II)
  • Lengthy table referenced here
    US20170299604A1-20171019-T00001
    Please refer to the end of the specification for access instructions.
  • V. Exemplary Protein/Peptide Selection Results
  • Lengthy table referenced here
    US20170299604A1-20171019-T00002
    Please refer to the end of the specification for access instructions.
  • VI. Exemplary Assayed Protein
  • The expression of the following 357 proteins were assessed substantially simultaneously using the MS-LC-SRM-MS system described herein.
  • 41_HUMAN
  • 5HT2C_HUMAN
  • A1AG1_HUMAN
  • A1AG2_HUMAN
  • A1BG_HUMAN
  • A2MG_HUMAN
  • A4_HUMAN
  • AACT_HUMAN
  • ABCA1_HUMAN
  • ACBD7_HUMAN
  • ACE2_HUMAN
  • ACHA2_HUMAN
  • ACHA4_HUMAN
  • ACHA5_HUMAN
  • ACHE_HUMAN
  • ACHB2_HUMAN
  • ADA12_HUMAN
  • ADA23_HUMAN
  • AFAM_HUMAN
  • AGAL_HUMAN
  • AGAP2_HUMAN
  • ALBU_HUMAN
  • ALS_HUMAN
  • AMFR2_HUMAN
  • AMNLS_HUMAN
  • AMPB_HUMAN
  • ANGP1_HUMAN
  • ANGT_HUMAN
  • ANO3_HUMAN
  • ANT3_HUMAN
  • AP1B1_HUMAN
  • APC2_HUMAN
  • APLP1_HUMAN
  • APOA1_HUMAN
  • APOA2_HUMAN
  • APOA4_HUMAN
  • APOB_HUMAN
  • APOC2_HUMAN
  • APOD_HUMAN
  • APOE_HUMAN
  • APOL4_HUMAN
  • APOOL_HUMAN
  • ARHG7_HUMAN
  • ARP21_HUMAN
  • ARSA_HUMAN
  • ARSE_HUMAN
  • ARTN_HUMAN
  • ASGR1_HUMAN
  • AT12A_HUMAN
  • AT2A2_HUMAN
  • AT2B3_HUMAN
  • ATS1_HUMAN
  • BAX_HUMAN
  • BCAS1_HUMAN
  • BDNF_HUMAN
  • BEST1_HUMAN
  • BTNL8_HUMAN
  • C1QL2_HUMAN
  • C1QT4_HUMAN
  • CACB2_HUMAN
  • CAD11_HUMAN
  • CAD19_HUMAN
  • CAD22_HUMAN
  • CADH3_HUMAN
  • CADH5_HUMAN
  • CADH7_HUMAN
  • CALL3_HUMAN
  • CAMKV_HUMAN
  • CAR14_HUMAN
  • CATD_HUMAN
  • CB080_HUMAN
  • CB085_HUMAN
  • CBPN_HUMAN
  • CD3D_HUMAN
  • CD72_HUMAN
  • CEL3A_HUMAN
  • CEL3B_HUMAN
  • CERU_HUMAN
  • CETP_HUMAN
  • CF072_HUMAN
  • CFAB_HUMAN
  • CFAH_HUMAN
  • CHAD_HUMAN
  • CK041_HUMAN
  • CLC4M_HUMAN
  • CLUS_HUMAN
  • CNTN1_HUMAN
  • CNTN2_HUMAN
  • CO1A2_HUMAN
  • CO2_HUMAN
  • CO3_HUMAN
  • CO4A_HUMAN
  • CO4A4_HUMAN
  • CO4B_HUMAN
  • CO6_HUMAN
  • CO8A_HUMAN
  • CO9A2_HUMAN
  • COIA1_HUMAN
  • CORT_HUMAN
  • CP46A_HUMAN
  • CPLX2_HUMAN
  • CRLF1_HUMAN
  • CRUM1_HUMAN
  • CSF1_HUMAN
  • CSF1R_HUMAN
  • DBC1_HUMAN
  • DCBD_HUMAN
  • DCBD2_HUMAN
  • DDR2_HUMAN
  • DIRA2_HUMAN
  • E41L3_HUMAN
  • EAA2_HUMAN
  • EDNRB_HUMAN
  • ELAV3_HUMAN
  • EMIL2_HUMAN
  • EMIL3_HUMAN
  • EPHA8_HUMAN
  • ERLN1_HUMAN
  • ERMIN_HUMAN
  • ERO1B_HUMAN
  • F123A_HUMAN
  • F13A_HUMAN
  • FA20A_HUMAN
  • FCGRN_HUMAN
  • FETUA_HUMAN
  • FEZ1_HUMAN
  • FGFR2_HUMAN
  • FGFR3_HUMAN
  • FGL1_HUMAN
  • FIBA_HUMAN
  • FIBB_HUMAN
  • FIBG_HUMAN
  • FINC_HUMAN
  • FRS2_HUMAN
  • GABR2_HUMAN
  • GALR3_HUMAN
  • GAS6_HUMAN
  • GBRA2_HUMAN
  • GBRB2_HUMAN
  • GELS_HUMAN
  • GFRA2_HUMAN
  • GNAQ_HUMAN
  • GOLM1_HUMAN
  • GOPC_HUMAN
  • GP113_HUMAN
  • GP125_HUMAN
  • GP158_HUMAN
  • GP2_HUMAN
  • GPC5_HUMAN
  • GPC5D_HUMAN
  • GPC6_HUMAN
  • GPR88_HUMAN
  • GRIA2_HUMAN
  • GRMS_HUMAN
  • GRN_HUMAN
  • GT253_HUMAN
  • HAS1_HUMAN
  • HCN1_HUMAN
  • HCN2_HUMAN
  • HEMO_HUMAN
  • HEP2_HUMAN
  • HPCA_HUMAN
  • HPT_HUMAN
  • HRG_HUMAN
  • HS3 S5_HUMAN
  • I12R1_HUMAN
  • IC1_HUMAN
  • ICAM3_HUMAN
  • IGF1R_HUMAN
  • IL12B_HUMAN
  • IL1AP_HUMAN
  • IL1R2_HUMAN
  • INADL_HUMAN
  • INHBA_HUMAN
  • IPSP——HUMAN
  • ITA3_HUMAN
  • ITAM_HUMAN
  • ITB2_HUMAN
  • ITB5_HUMAN
  • ITIH1_HUMAN
  • ITIH2_HUMAN
  • ITIH3_HUMAN
  • ITIH4_HUMAN
  • JPH3_HUMAN
  • KAIN_HUMAN
  • KALRN_HUMAN
  • KCC1G_HUMAN
  • KCC2A_HUMAN
  • KCNA1_HUMAN
  • KCNA2_HUMAN
  • KCNA3_HUMAN
  • KCNA5_HUMAN
  • KCNQ1_HUMAN
  • KCNV2_HUMAN
  • KCTD4_HUMAN
  • KIF5A_HUMAN
  • KIRR2_HUMAN
  • KLK3_HUMAN
  • KLKB1_HUMAN
  • KNG1_HUMAN
  • KSYK_HUMAN
  • LAMB2_HUMAN
  • LAT2_HUMAN
  • LAT3_HUMAN
  • LCK_HUMAN
  • LCN8_HUMAN
  • LGI1_HUMAN
  • LGMN_HUMAN
  • LIPE_HUMAN
  • LRMP_HUMAN
  • LRP8_HUMAN
  • LRTM2_HUMAN
  • LSHR_HUMAN
  • LTBP1_HUMAN
  • LYG2_HUMAN
  • MAMC2_HUMAN
  • MAP4_HUMAN
  • MICA_HUMAN
  • MMP1_HUMAN
  • MMP16_HUMAN
  • MMP17_HUMAN
  • MMP20_HUMAN
  • MMP24_HUMAN
  • MMP9_HUMAN
  • MOT2_HUMAN
  • MPDZ_HUMAN
  • MTOR_HUMAN
  • MYP2_HUMAN
  • NCAN_HUMAN
  • NCKX2_HUMAN
  • NDF6_HUMAN
  • NECP2_HUMAN
  • NETO1_HUMAN
  • NETR_HUMAN
  • NEUG_HUMAN
  • NEUM_HUMAN
  • NFL_HUMAN
  • NKX62_HUMAN
  • NMDE1_HUMAN
  • NMDE3_HUMAN
  • NMDZ1_HUMAN
  • NMS_HUMAN
  • NOE3_HUMAN
  • NPT4_HUMAN
  • NPTX1_HUMAN
  • NRG3_HUMAN
  • NTRK2_HUMAN
  • ODP2_HUMAN
  • OLFL3_HUMAN
  • OLIG1_HUMAN
  • OPCM_HUMAN
  • OTOAN_HUMAN
  • P2RX1_HUMAN
  • P4K2A_HUMAN
  • PACN1_HUMAN
  • PAK3_HUMAN
  • PAQR6_HUMAN
  • PAR6B_HUMAN
  • PARD3_HUMAN
  • PARK7_HUMAN
  • PCD18_HUMAN
  • PCDA5_HUMAN
  • PCDAA_HUMAN
  • PCDB6_HUMAN
  • PCDB7_HUMAN
  • PCDBC_HUMAN
  • PCDBF_HUMAN
  • PCDGE_HUMAN
  • PCDGF_HUMAN
  • PCSK1_HUMAN
  • PDIA2_HUMAN
  • PDYN_HUMAN
  • PEDF_HUMAN
  • PERL_HUMAN
  • PGCB_HUMAN
  • PGCP_HUMAN
  • PICAL_HUMAN
  • PIN1_HUMAN
  • PKDRE_HUMAN
  • PLCB1_HUMAN
  • PON1_HUMAN
  • PRIO_HUMAN
  • PSMG1_HUMAN
  • PTN5_HUMAN
  • PTPRB_HUMAN
  • PTPRO_HUMAN
  • PTPRT_HUMAN
  • PVRL1_HUMAN
  • PZP_HUMAN
  • RCN1_HUMAN
  • RELN_HUMAN
  • RES18_HUMAN
  • RGS11_HUMAN
  • RGS20_HUMAN
  • RGS4_HUMAN
  • RRAGC_HUMAN
  • RUN3A_HUMAN
  • S12A5_HUMAN
  • S12A6_HUMAN
  • S15A2_HUMAN
  • S39A4_HUMAN
  • SAA4_HUMAN
  • SCG1_HUMAN
  • SCG3_HUMAN
  • SCN2A_HUMAN
  • SCNNA_HUMAN
  • SCRT1_HUMAN
  • SEM4A_HUMAN
  • SEMG1_HUMAN
  • SEPP1_HUMAN
  • SEPT3_HUMAN
  • SGCZ_HUMAN
  • SHSA7_HUMAN
  • SIA8C_HUMAN
  • SIG12_HUMAN
  • SIX3_HUMAN
  • SLIK1_HUMAN
  • SLIT1_HUMAN
  • SNP25_HUMAN
  • SNTB1_HUMAN
  • SO1A2_HUMAN
  • SO1B3_HUMAN
  • SPB5_HUMAN
  • SREC_HUMAN
  • STH_HUMAN
  • SYN2_HUMAN
  • SYNPR_HUMAN
  • SYTL4_HUMAN
  • SYUA_HUMAN
  • SYUB_HUMAN
  • T151A_HUMAN
  • TADBP_HUMAN
  • TAU_HUMAN
  • TBB2B_HUMAN
  • TERA_HUMAN
  • TFR2_HUMAN
  • TLR7_HUMAN
  • TM9S1_HUMAN
  • TMP S2_HUMAN
  • TNF6B_HUMAN
  • TNR19_HUMAN
  • TR11B_HUMAN
  • TRFR_HUMAN
  • TRIM9_HUMAN
  • TRPV5_HUMAN
  • TYRO_HUMAN
  • UGGG2_HUMAN
  • UNC5 C_HUMAN
  • VGFR3_HUMAN
  • VTDB_HUMAN
  • VTNC_HUMAN
  • WNK4_HUMAN
  • WNT8B_HUMAN
  • XLRS1_HUMAN
  • YQ051_HUMAN
  • ZIC1_HUMAN
  • ZIC2_HUMAN
  • LENGTHY TABLES
    The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US20170299604A1). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

Claims (2)

1. A multiplexed LC-SRM-MS assay for the measurement of a plurality of proteins in a single sample comprising:
a) generating a set of optimal peptides and corresponding transitions for each pro-tein monitored;
b) optimizing the collision energy for each transition such that interference among the transitions monitored is avoided;
c) selecting a set of transitions that have the greatest peak areas are monitored for each of the proteins, and wherein the selected transitions do not interfere with the ions in the sample;
d) monitoring the detected set of transitions for each protein in the sample, thereby measuring a plurality of proteins in the sample.
2-16. (canceled)
US15/355,213 2012-04-05 2016-11-18 Srm methods in alzheimer's disease and neurological disease assays Abandoned US20170299604A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/355,213 US20170299604A1 (en) 2012-04-05 2016-11-18 Srm methods in alzheimer's disease and neurological disease assays
US15/638,881 US20170299605A1 (en) 2012-04-05 2017-06-30 Srm methods in alzheimer's disease and neurological disease assays
US16/002,123 US20180284128A1 (en) 2012-04-05 2018-06-07 Srm methods in alzheimer's disease and neurological disease assays
US16/703,027 US11467167B2 (en) 2012-04-05 2019-12-04 SRM methods in Alzheimer's disease and neurological disease assays

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261620770P 2012-04-05 2012-04-05
PCT/US2013/031520 WO2013151726A1 (en) 2012-04-05 2013-03-14 Srm methods in alzheimer's disease and neurological disease assays
US201414390447A 2014-10-03 2014-10-03
US15/355,213 US20170299604A1 (en) 2012-04-05 2016-11-18 Srm methods in alzheimer's disease and neurological disease assays

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/031520 Continuation WO2013151726A1 (en) 2012-04-05 2013-03-14 Srm methods in alzheimer's disease and neurological disease assays
US14/390,447 Continuation US20150168421A1 (en) 2012-04-05 2013-03-14 Srm methods in alzheimer's disease and neurological disease assays

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/638,881 Continuation US20170299605A1 (en) 2012-04-05 2017-06-30 Srm methods in alzheimer's disease and neurological disease assays
US16/002,123 Continuation US20180284128A1 (en) 2012-04-05 2018-06-07 Srm methods in alzheimer's disease and neurological disease assays

Publications (1)

Publication Number Publication Date
US20170299604A1 true US20170299604A1 (en) 2017-10-19

Family

ID=48045730

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/390,447 Abandoned US20150168421A1 (en) 2012-04-05 2013-03-14 Srm methods in alzheimer's disease and neurological disease assays
US15/355,213 Abandoned US20170299604A1 (en) 2012-04-05 2016-11-18 Srm methods in alzheimer's disease and neurological disease assays
US15/638,881 Abandoned US20170299605A1 (en) 2012-04-05 2017-06-30 Srm methods in alzheimer's disease and neurological disease assays
US16/002,123 Abandoned US20180284128A1 (en) 2012-04-05 2018-06-07 Srm methods in alzheimer's disease and neurological disease assays
US16/703,027 Active US11467167B2 (en) 2012-04-05 2019-12-04 SRM methods in Alzheimer's disease and neurological disease assays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/390,447 Abandoned US20150168421A1 (en) 2012-04-05 2013-03-14 Srm methods in alzheimer's disease and neurological disease assays

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/638,881 Abandoned US20170299605A1 (en) 2012-04-05 2017-06-30 Srm methods in alzheimer's disease and neurological disease assays
US16/002,123 Abandoned US20180284128A1 (en) 2012-04-05 2018-06-07 Srm methods in alzheimer's disease and neurological disease assays
US16/703,027 Active US11467167B2 (en) 2012-04-05 2019-12-04 SRM methods in Alzheimer's disease and neurological disease assays

Country Status (2)

Country Link
US (5) US20150168421A1 (en)
WO (1) WO2013151726A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467167B2 (en) * 2012-04-05 2022-10-11 Biodesix, Inc. SRM methods in Alzheimer's disease and neurological disease assays
WO2024133743A1 (en) * 2022-12-21 2024-06-27 EM Scientific Limited Method for diagnosing and/or classifying the severity of a neurodegenerative disease

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181631A1 (en) * 2014-05-30 2015-12-03 Oslo Universitetssykehus Hf Serca2-pde3a interaction peptides and uses thereof
EP3164703B1 (en) * 2014-07-01 2020-10-28 Steven W. Graves Systems, assays, and methods for determining risk factors for alzheimer's disease
PL3554681T3 (en) * 2016-12-16 2022-05-16 The Brigham And Women's Hospital, Inc. Method for protein corona sensor array for early detection of diseases
CA3107631A1 (en) * 2018-08-08 2020-02-13 Regeneron Pharmaceuticals, Inc. Use of lc-ms/ms to quantitate protein biomarkers
CN112782291A (en) * 2020-09-23 2021-05-11 山东省食品药品检验研究院 Method for identifying donkey-derived components in donkey-hide gelatin and preparation thereof
GB202103219D0 (en) * 2021-03-08 2021-04-21 Em Scient Limited Method for assessing efficacy of treatment protocols for neurodegenerative diseases
WO2024051937A1 (en) * 2022-09-07 2024-03-14 EM Scientific Limited Method for assessing efficacy of treatment protocols for neurodegenerative diseases
CN118207313A (en) * 2022-12-16 2024-06-18 中国科学院深圳先进技术研究院 Molecular marker for diagnosing Alzheimer's disease and diagnostic kit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497078B2 (en) 2008-05-23 2013-07-30 The Johns Hopkins University Biomarkers for myocardial ischemia
US20090326828A1 (en) * 2008-06-27 2009-12-31 Amol Prakash Optimizing Selection of SRM Transitions for Analysis of Biomolecules by Tandem Mass Spectrometry
ES2453106T3 (en) * 2009-01-26 2014-04-04 Electrophoretics Limited Diagnostic and prognostic methods in relation to Alzheimer's disease
US20120238476A1 (en) * 2010-11-29 2012-09-20 Xiao-Jun Li Alzheimer's disease diagnostic panels and methods for their use
US8574860B2 (en) * 2011-05-09 2013-11-05 University Health Network Biomarkers for the detection and screening of down syndrome
US9091651B2 (en) * 2011-12-21 2015-07-28 Integrated Diagnostics, Inc. Selected reaction monitoring assays
US9201044B2 (en) * 2011-12-21 2015-12-01 Integrated Diagnostics, Inc. Compositions, methods and kits for diagnosis of lung cancer
US9304137B2 (en) * 2011-12-21 2016-04-05 Integrated Diagnostics, Inc. Compositions, methods and kits for diagnosis of lung cancer
WO2013151726A1 (en) * 2012-04-05 2013-10-10 Integrated Diagnostics, Inc. Srm methods in alzheimer's disease and neurological disease assays
WO2015124982A1 (en) 2014-02-20 2015-08-27 Dh Technologies Development Pte. Ltd. Rapid lc mapping of cov values for selexion technology using mrm-triggered mrm functionality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467167B2 (en) * 2012-04-05 2022-10-11 Biodesix, Inc. SRM methods in Alzheimer's disease and neurological disease assays
WO2024133743A1 (en) * 2022-12-21 2024-06-27 EM Scientific Limited Method for diagnosing and/or classifying the severity of a neurodegenerative disease

Also Published As

Publication number Publication date
US20180284128A1 (en) 2018-10-04
US11467167B2 (en) 2022-10-11
WO2013151726A1 (en) 2013-10-10
US20200348310A1 (en) 2020-11-05
US20170299605A1 (en) 2017-10-19
US20150168421A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US11467167B2 (en) SRM methods in Alzheimer's disease and neurological disease assays
JP7285215B2 (en) Biomarkers for detecting colorectal cancer
WO2009047526A1 (en) Use of aptamers in proteomics
EP2977760A1 (en) Biomarker for diagnosing liver cancer
JP2005510575A (en) IG heavy chain, IG kappa, and IG lambda biopolymer markers that predict Alzheimer's disease
CN110366559B (en) Detection and quantification of RAS-RAF-MAPK pathway proteins
KR101527283B1 (en) Method for screening cancer marker based on de-glycosylation of glycoproteins and marker for HCC
US20140051105A1 (en) Mutant Proteins as Cancer-Specific Biomarkers
JP6742034B2 (en) Quantification of proteins in multicellular tissue samples
JP2005510721A (en) IG lambda biopolymer marker predicts Alzheimer's disease
JP2005510728A (en) Protein biopolymer markers that predict insulin resistance
JP2005523422A (en) Protein biopolymer markers that predict insulin resistance
JP2005510718A (en) Complement C3 precursor biopolymer marker to predict type II diabetes
JP2005510731A (en) Fibrinogen biopolymer marker and its use for screening for type II diabetes
JP2005523420A (en) Complement C3 precursor biopolymer marker indicating Alzheimer's disease
RU2673551C2 (en) Proteotypic peptide q9y4w6-02 and method of spectrometric analysis of the content of afg3-like human protein on its basis
JP2005523419A (en) Fibronectin and fibrinogen biopolymer markers exhibiting insulin resistance
JP2005525535A (en) Macroglobulin biopolymer marker showing insulin resistance
JP2005510727A (en) HP and apolipoprotein biopolymer markers to predict Alzheimer's disease
WO2024133743A1 (en) Method for diagnosing and/or classifying the severity of a neurodegenerative disease
JP2005510725A (en) Fibronectin precursor biopolymer marker predicts Alzheimer's disease
JP2005523425A (en) Apolipoprotein biopolymer marker predicting Alzheimer's disease
JP2005510726A (en) Glycoprotein and apolipoprotein biopolymer markers to predict Alzheimer's disease
JP2005510717A (en) HP biopolymer marker predicting insulin resistance
JP2005510724A (en) Protein biopolymer markers showing age-matched controls

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEGRATED DIAGNOSTICS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEARNEY, PAUL EDWARD;LI, XIAO-JUN;HAYWARD, CLIVE;REEL/FRAME:042252/0805

Effective date: 20150317

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION