US20170290786A1 - Methods and compositions of stable phenylephrine formulations - Google Patents
Methods and compositions of stable phenylephrine formulations Download PDFInfo
- Publication number
- US20170290786A1 US20170290786A1 US15/625,624 US201715625624A US2017290786A1 US 20170290786 A1 US20170290786 A1 US 20170290786A1 US 201715625624 A US201715625624 A US 201715625624A US 2017290786 A1 US2017290786 A1 US 2017290786A1
- Authority
- US
- United States
- Prior art keywords
- phenylephrine hydrochloride
- composition
- chiral purity
- phenylephrine
- storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 90
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 46
- 229960001802 phenylephrine Drugs 0.000 title abstract description 20
- 238000009472 formulation Methods 0.000 title description 10
- 229960003733 phenylephrine hydrochloride Drugs 0.000 claims description 84
- 239000011521 glass Substances 0.000 claims description 12
- 239000004033 plastic Substances 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 12
- 239000012062 aqueous buffer Substances 0.000 claims description 4
- 230000010344 pupil dilation Effects 0.000 claims 2
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000005755 formation reaction Methods 0.000 abstract 1
- 230000036962 time dependent Effects 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 23
- OCYSGIYOVXAGKQ-FVGYRXGTSA-N phenylephrine hydrochloride Chemical compound [H+].[Cl-].CNC[C@H](O)C1=CC=CC(O)=C1 OCYSGIYOVXAGKQ-FVGYRXGTSA-N 0.000 description 21
- 239000002997 ophthalmic solution Substances 0.000 description 20
- 229940054534 ophthalmic solution Drugs 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 16
- 230000010339 dilation Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 14
- 238000001514 detection method Methods 0.000 description 13
- 210000001747 pupil Anatomy 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 10
- 238000005251 capillar electrophoresis Methods 0.000 description 9
- 238000002983 circular dichroism Methods 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 206010046851 Uveitis Diseases 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000003755 preservative agent Substances 0.000 description 7
- 230000002335 preservative effect Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 229920000858 Cyclodextrin Polymers 0.000 description 6
- 230000005526 G1 to G0 transition Effects 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010568 chiral column chromatography Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000002889 sympathetic effect Effects 0.000 description 5
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229960000686 benzalkonium chloride Drugs 0.000 description 4
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 4
- 239000000850 decongestant Substances 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- NGKZFDYBISXGGS-UHFFFAOYSA-N epinine Chemical compound CNCCC1=CC=C(O)C(O)=C1 NGKZFDYBISXGGS-UHFFFAOYSA-N 0.000 description 4
- 210000000554 iris Anatomy 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 210000001745 uvea Anatomy 0.000 description 4
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 3
- OCYSGIYOVXAGKQ-SBSPUUFOSA-N 3-[(1s)-1-hydroxy-2-(methylamino)ethyl]phenol;hydrochloride Chemical compound Cl.CNC[C@@H](O)C1=CC=CC(O)=C1 OCYSGIYOVXAGKQ-SBSPUUFOSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 206010022941 Iridocyclitis Diseases 0.000 description 3
- 208000003456 Juvenile Arthritis Diseases 0.000 description 3
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 201000004612 anterior uveitis Diseases 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 235000019800 disodium phosphate Nutrition 0.000 description 3
- 239000006196 drop Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 229960002748 norepinephrine Drugs 0.000 description 3
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- KBRZBBOTZJFKFH-UHFFFAOYSA-N (3,5-dichlorophenyl) carbamate Chemical compound NC(=O)OC1=CC(Cl)=CC(Cl)=C1 KBRZBBOTZJFKFH-UHFFFAOYSA-N 0.000 description 2
- SBTVLCPCSXMWIQ-UHFFFAOYSA-N (3,5-dimethylphenyl) carbamate Chemical compound CC1=CC(C)=CC(OC(N)=O)=C1 SBTVLCPCSXMWIQ-UHFFFAOYSA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- UCTWMZQNUQWSLP-SECBINFHSA-N (S)-adrenaline Chemical compound CNC[C@@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-SECBINFHSA-N 0.000 description 2
- SFLSHLFXELFNJZ-MRVPVSSYSA-N (S)-noradrenaline Chemical compound NC[C@@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-MRVPVSSYSA-N 0.000 description 2
- SONNWYBIRXJNDC-SECBINFHSA-N 3-[(1s)-1-hydroxy-2-(methylamino)ethyl]phenol Chemical compound CNC[C@@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-SECBINFHSA-N 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 201000002862 Angle-Closure Glaucoma Diseases 0.000 description 2
- 208000002691 Choroiditis Diseases 0.000 description 2
- DBQDZRNWPDEEQC-JTQLQIEISA-N Cl.[H][C@](O)(CCC)C1=CC=CC(O)=C1 Chemical compound Cl.[H][C@](O)(CCC)C1=CC=CC(O)=C1 DBQDZRNWPDEEQC-JTQLQIEISA-N 0.000 description 2
- 239000001116 FEMA 4028 Substances 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 206010033546 Pallor Diseases 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 208000003971 Posterior uveitis Diseases 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 2
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical group CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 2
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 2
- 229960004853 betadex Drugs 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000005515 capillary zone electrophoresis Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 210000004240 ciliary body Anatomy 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 230000000916 dilatatory effect Effects 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000030214 innervation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000001179 pupillary effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000002222 superior cervical ganglion Anatomy 0.000 description 2
- 210000000225 synapse Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229960004791 tropicamide Drugs 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000005526 vasoconstrictor agent Substances 0.000 description 2
- 238000001851 vibrational circular dichroism spectroscopy Methods 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 229930182836 (R)-noradrenaline Natural products 0.000 description 1
- 238000004293 19F NMR spectroscopy Methods 0.000 description 1
- MIVUDAUOXJDARR-UHFFFAOYSA-N 2-[(3,5-dinitrobenzoyl)amino]-2-phenylacetic acid Chemical compound C=1C=CC=CC=1C(C(=O)O)NC(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 MIVUDAUOXJDARR-UHFFFAOYSA-N 0.000 description 1
- 108060003345 Adrenergic Receptor Proteins 0.000 description 1
- 102000017910 Adrenergic receptor Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010011715 Cyclitis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010022557 Intermediate uveitis Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001090 Polyaminopropyl biguanide Polymers 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010043087 Tachyphylaxis Diseases 0.000 description 1
- 230000002350 accommodative effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000048 adrenergic agonist Substances 0.000 description 1
- 239000000533 adrenergic alpha-1 receptor agonist Substances 0.000 description 1
- 229940126157 adrenergic receptor agonist Drugs 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000003460 anti-nuclear Effects 0.000 description 1
- 229940124572 antihypotensive agent Drugs 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 229960001716 benzalkonium Drugs 0.000 description 1
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical compound CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- WVYBKVIVGZLWOS-UHFFFAOYSA-N benzyloxidanium;chloride Chemical compound Cl.OCC1=CC=CC=C1 WVYBKVIVGZLWOS-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 230000001886 ciliary effect Effects 0.000 description 1
- 238000000978 circular dichroism spectroscopy Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 201000000255 cycloplegia Diseases 0.000 description 1
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 1
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- JJYKJUXBWFATTE-UHFFFAOYSA-N mosher's acid Chemical compound COC(C(O)=O)(C(F)(F)F)C1=CC=CC=C1 JJYKJUXBWFATTE-UHFFFAOYSA-N 0.000 description 1
- 239000002637 mydriatic agent Substances 0.000 description 1
- 230000002911 mydriatic effect Effects 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000002577 ophthalmoscopy Methods 0.000 description 1
- 201000007407 panuveitis Diseases 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- ULSIYEODSMZIPX-UHFFFAOYSA-N phenylethanolamine Chemical group NCC(O)C1=CC=CC=C1 ULSIYEODSMZIPX-UHFFFAOYSA-N 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229940093424 polyaminopropyl biguanide Drugs 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- 229960003908 pseudoephedrine Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005233 quantum mechanics related processes and functions Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229940057981 stearalkonium chloride Drugs 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 238000003883 substance clean up Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002129 tachyphylactic effect Effects 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000003901 trigeminal nerve Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/08—Mydriatics or cycloplegics
Definitions
- Phenylephrine is a selective al-adrenergic receptor agonist used primarily as a decongestant, as an agent to dilate the pupil, and to increase blood pressure. Phenylephrine is marketed as a substitute for the decongestant pseudoephedrine, though clinical studies differ regarding phenylephrine's effectiveness in this role.
- the present invention provide a composition comprising at least 95% R-phenylephrine hydrochloride and an aqueous buffer, wherein the composition substantially maintains an initial chiral purity of R-phenylephrine hydrochloride for at least 6 months stored between ⁇ 10 to 10 degree Celsius.
- a phenylephrine hydrochloride composition comprising storing a solution of aqueous R-phenylephrine hydrochloride at less than 10 degree Celsius, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- provided herein are methods of assaying chiral purity of R-phenylephrine hydrochloride, wherein the chiral purity is determined by chiral column chromatography, optical rotation, capillary electrophoresis, circular dichroism, or Nuclear Magnetic Resonance.
- compositions comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- in another aspect provides methods of dilating the pupil comprising administering a composition comprising R-phenylephrine hydrochloride topically to a mammal, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- compositions comprising R-phenylephrine hydrochloride to said subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months
- in another aspect provides methods of performing certain ocular testing such as ultrasonography, provocative closed angle glaucoma test, Retinoscopy, compromised circulation (i.e., blanching test), Refraction, fundus examination comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- compositions comprising R-phenylephrine hydrochloride to a subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- FIG. 1 shows a HPLC chromatogram of racemic R-phenylephrine hydrochloride by a chiral column purification (OJ-RH (150 ⁇ 4.6) mm). Two peaks at the retention time 5.225 minutes and 6.444 minutes are shown.
- FIG. 2 shows a HPLC chromatogram of the exemplary R-Phenylephrine Hydrochloride Opthalmic Solution (10%) before storage.
- the chiral purity was determined to be 99.3% ee based on the peaks at 5.184 minutes (area: 9931.84) and at 6.425 minutes (area: 32.5748).
- FIG. 3 shows a HPLC chromatogram of the exemplary R-Phenylephrine Hydrochloride Opthalmic Solution (10%) stored at 2 to 8° C. after 6 months.
- the chiral purity was determined to be 99.3% ee based on the peaks at 5.089 minutes (area: 8454.34) and at 6.363 minutes (area: 30.7874).
- FIG. 4 shows a HPLC chromatogram of the purified “impurity” which is a S-Phenylephrine Hydrochloride.
- the chiral purity was determined to be 82.4% ee based on the peaks at 5.183 minutes (area: 255.971) and at 6.347 minutes (area: 2851.08).
- Phenylephrine differs chemically from epinephrine only in lacking one hydroxyl group (OH) in the four position on the benzene ring. It is a bitter-tasting crystalline material soluble in water and alcohols, with a melting point of 140° ⁇ 145° C. Chemically it is Benzenemethanol, 3-hydroxy- ⁇ -[(methylamino)methyl]-, hydrochloride or (R)-( ⁇ )-m-hydroxy- ⁇ -[methylamino)methyl]benzyl alcohol hydrochloride with the following chemical structure.
- Phenylephrine Hydrochloride solution should be stored protected from light.
- the benzylic hydrogen is acidic and can be deprotonated easily.
- the hydroxyl group may be oxidized to form a carbonyl moiety conjugated with phenyl group, especially with help of the adjacent basic amino group.
- a Phenylephrine Hydrochloride solution should be stored protected from light.
- an insert from a commercially available Phenylephrine Hydrochloride Ophthalmic Solution provides that the solution should be stored at 20° to 25° C. (USP controlled room temperature) and keep container tightly closed. Do not use if solution is brown or contains precipitate. (AKORN Package Insert)
- the present invention provides the improvement to overcome such instability problem.
- a composition comprising at least 95% R-phenylephrine hydrochloride and an aqueous buffer for substantially maintaining chiral purity of R-phenylephrine hydrochloride for at least 6 months, the improvement comprising storing the composition between ⁇ 10 to 10 degree Celsius. In certain embodiments, the composition is stored between 2 to 8 degree Celsius. In certain embodiments, the composition comprises at least 99% or 99.3%, R-phenylephrine hydrochloride. In certain embodiments, the chiral purity of R-phenylephrine hydrochloride is at least 95%, 97%, 99%, or 99.5% of the initial chiral purity after 6 months.
- the composition comprises 2.5% w/v or 10% w/v R-phenylephrine hydrochloride by weight.
- the composition further comprises a preservative such as benzalkonium chloride, stearalkonium chloride, polyaminopropyl biguanide, or the like.
- the composition is in a 1-15 ml plastic or glass bottle.
- the composition is in a glass or plastic bottle of about 2 ml, about 3 ml, about 5 ml, about 10 ml or about 15 ml.
- the plastic or glass bottle is opaque.
- a phenylephrine hydrochloride composition such as a solution of aqueous R-phenylephrine hydrochloride at less than 10 degree Celsius wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- compositions comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- the composition is stored at ⁇ 10 to 10 degree Celsius. In certain embodiments, the composition is stored at ⁇ 5 to 10 degree Celsius. In certain embodiments, the composition is stored at 0 to 10 degree Celsius. In certain embodiments, the composition is stored at 2 to 8 degree Celsius.
- the term “substantial” or “substantially maintains” described herein refers to not more than 15% deviation of the initial purity.
- the chiral purity of the composition is at least 85%, 90%, 95%, 97%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9% of the initial chiral purity.
- the chiral purity is determined by chiral column chromatography.
- Chiral column chromatography is a variant of column chromatography in which the stationary phase contains a single enantiomer of a chiral compound rather than being achiral.
- the two enantiomers of the same analyte compound differ in affinity to the single-enantiomer stationary phase and therefore they exit the column at different times.
- the chiral stationary phase can be prepared by attaching a suitable chiral compound to the surface of an achiral support such as silica gel, which creates a Chiral Stationary Phase (CSP).
- CSP Chiral Stationary Phase
- Many common chiral stationary phases are based on oligosaccharides such as cellulose or cyclodextrin (in particular with ⁇ -cyclodextrin, a seven sugar ring molecule). As with all chromatographic methods, various stationary phases are particularly suited to specific types of analytes.
- the packing material of the chiral column may be amylose tris(3,5-dimethylphenylcarbamate), ⁇ -cyclodextrin, cellobiohydrolase, selector R-( ⁇ )-N-(3,5-dinitrobenzoyl)-phenylglycine, cellulose tris(3,5-dimethylphenylcarbamate), cellulose tris(3,5-dichlorophenylcarbamate), or combinations thereof.
- the chiral column for analytical purpose is packed with amylose tris(3,5-dichlorophenylcarbamate).
- the column may have a packing particle of a size of about 3 ⁇ m to about 50 ⁇ m.
- the column has a packing particle a size of about 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, or 50 ⁇ m. In certain embodiments, the column has a packing particle a size of about 3 ⁇ m.
- the first mobile phase is non-polar solvent such as n-hexane, n-pentane, and the like
- the second mobile phase is polar solvent such as isopropanol, ethanol, methanol, or the like.
- the mobile phase comprises small amount of amine such as ethylenediamine.
- the first mobile phase may be present in an amount of about 75% to about 95% by volume and the second mobile phase is present in an amount of about 5% to about 25% by volume. In some embodiments, the first mobile phase is present in an amount of about 85% by volume and the second mobile phase is present in an amount of about 15% by volume with or without ethylenediamine.
- chiral purity can be determined by optical rotation.
- the chiral purity of R-phenylephrine hydrochloride in the stabilized compositions and methods thereof can be determined by comparison of optical rotation of pure R-phenylephrine hydrochloride.
- a non-racemic mixture of two enantiomers will have a net optical rotation. It is possible to determine the specific rotation of the mixture and, with knowledge of the specific rotation of the pure enantiomer, the optical purity can be determined.
- chiral purity of R-phenylephrine hydrochloride there are provided methods of assaying chiral purity of R-phenylephrine hydrochloride, wherein the chiral purity is determined by optical rotation.
- the optical rotation is determined by comparison of optical rotation of pure R-phenylephrine hydrochloride.
- Capillary electrophoresis also known as capillary zone electrophoresis (CZE)
- CE capillary electrophoresis
- CZE capillary zone electrophoresis
- Capillary electrophoresis in general offers highly efficient separations.
- the capillary is filled with a separation buffer containing a chiral additive.
- a separation buffer containing a chiral additive.
- many chiral selectors have been used successfully, the most comprehensive separation strategies have been achieved with highly sulfated cyclodextrins.
- the chiral purity of the compositions provided herein is determined by capillary electrophoresis.
- the capillary electrophoresis uses cyclodextrin or its derivatives (such as sulfated cyclodextrins).
- Circular dichroism refers to the differential absorption of left and right circularly polarized light. This phenomenon is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. For example, vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA. In general, this phenomenon will be exhibited in absorption bands of any optically active molecule. As a consequence, circular dichroism is exhibited by biological molecules, because of their dextrorotary and levorotary components. Even more important is that a secondary structure will also impart a distinct CD to its respective molecules.
- Optical rotation and circular dichroism stem from the same quantum mechanical phenomena and one can be derived mathematically from the other if all spectral information is provided.
- the chiral purity is determined by circular dichroism.
- the chiral purity is determined by Fourier transform infrared vibrational circular dichroism (FTIR-VCD).
- FTIR-VCD Fourier transform infrared vibrational circular dichroism
- NMR spectroscopy techniques can determine the absolute configuration of stereoisomers such as cis or trans alkenes, R or S enantiomers, and R,R or R,S diastereomers. In a mixture of enantiomers, these methods can help quantify the optical purity by integrating the area under the NMR peak corresponding to each stereoisomer. Accuracy of integration can be improved by inserting a chiral derivatizing agent with a nucleus other than hydrogen or carbon, then reading the heteronuclear NMR spectrum: for example fluorine-19 NMR or phosphorus-31 NMR.
- Mosher's acid contains a —CF3 group, so if the adduct has no other fluorine atoms, the 19F NMR of a racemic mixture shows just two peaks, one for each stereoisomer.
- the chiral purity of the compositions provided herein is determined by Nuclear Magnetic Resonance Spectroscopy (NMR).
- NMR Nuclear Magnetic Resonance Spectroscopy
- a chirally pure complexing reagent i.e., a chiral derivatizing agent
- a skilled person in the art can readily utilize NMR and any suitable chiral complexing agent to determine the chirality of the compositions provided herein.
- the stabilized compositions provided herein comprise a solution of 2.5% w/v or 10% w/v R-phenylephrine hydrochloride by weight.
- the compositions further comprise sodium phosphate monobasic, sodium phosphate dibasic, boric acid and benzalkonium chloride. The followings are non-limited exemplary compositions:
- Phenylephrine Hydrochloride Ophthalmic Solution 2.5% is a clear, colorless to yellowish, sterile topical ophthalmic solution containing phenylephrine hydrochloride 2.5%.
- Phenylephrine Hydrochloride Ophthalmic Solution 10% is a clear, colorless to yellowish, sterile topical ophthalmic solution containing phenylephrine hydrochloride 10%.
- Phenylephrine Hydrochloride Ophthalmic Solution is recommended as a vasoconstrictor, decongestant, and mydriatic in a variety of ophthalmic conditions and procedures. Some of its uses are for pupillary dilation in uveitis (to prevent or aid in the disruption of posterior synechia formation), for many ophthalmic surgical procedures and for refraction without cycloplegia. Phenylephrine Hydrochloride Ophthalmic Solution may also be used for funduscopy and other diagnostic procedures.
- R-Phenylephrine is used to dilate the iris through ⁇ -adrenergic stimulation of the iris dilator muscle.
- Sympathetic stimulation of the ciliary muscle is believed to be inhibitory, decreasing accommodative amplitude.
- R-Phenylephrine is formulated in an eye drop to dilate the pupil in order to facilitate visualization of the retina. It is often used in combination with tropicamide as a synergist when tropicamide alone is not sufficient.
- S-Phenylephrine dilated the eye only slightly more than that was untreated.
- an eye drop containing Phenylephrine Hydrochloride used for dilation of the pupil contains predominantly the R-isomer in order to maintain maximum efficacy of the ophthalmic solution.
- Sympathetic innervation leads to pupillary dilation. It is innervated by the sympathetic system, which acts by releasing noradrenaline, which acts on al-receptors causing dilation.
- the alpha-1 ( ⁇ 1 ) adrenergic receptor is a G protein-coupled receptor (GPCR) associated with the G q heterotrimeric G-protein. It consists of three highly homologous subtypes, including ⁇ 1A -, ⁇ 1B -, and ⁇ 1D -adrenergic. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the ⁇ 1 -adrenergic receptor in the central and peripheral nervous systems.
- GPCR G protein-coupled receptor
- Phenylephrine is a selective ⁇ 1 -adrenergic receptor agonist used primarily as a decongestant, as an agent to dilate the pupil, and to increase blood pressure. Dilation is controlled by the dilator pupillae, a group of muscles in the peripheral 2 ⁇ 3 of the iris.
- Sympathetic innervation begins at the cortex with the first synapse at the cilliospinal center (also known as Budge's center after German physiologist Julius Ludwig Budge).
- Post synaptic neurons travel down all the way through the brain stem and finally exit through the cervical sympathetic chain and the superior cervical ganglion. They synapse at the superior cervical ganglion where third-order neurons travel through the carotid plexus and enter into the orbit through the first division of the trigeminal nerve.
- kits for dilating the pupil comprising administering a composition comprising R-phenylephrine hydrochloride topically to a mammal, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months. It is evident from the literature that the pharmacological evaluation of both R & S-Phenylephrine hydrochloride is not same. R-Phenylephrine is referenced as useful synthetic adrenergic drug.
- Uveitis is, broadly, inflammation of the uvea.
- the uvea consists of the middle, pigmented, vascular structures of the eye and includes the iris, ciliary body, and choroid.
- Uveitis requires an urgent referral and thorough examination by an ophthalmologist or Optometrist and urgent treatment to control the inflammation.
- Anterior uveitis iritis
- intermediate uveitis cyclitis
- posterior uveitis choroiditis
- Diffuse uveitis affects all portions of the uvea.
- kits for treating Uveitis in a subject comprising administering a composition comprising R-phenylephrine hydrochloride to said subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- kits for performing certain ocular testing such as ultrasonography, provocative closed angle glaucoma test, Retinoscopy, compromised circulation (i.e., blanching test), Refraction, fundus examination comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- kits for aiding surgical procedures requiring visualization of the posterior chamber comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- liquid dispensers have been developed in which the formulation is supplied from a storage bottle through a dropper, for example (dropper bottles or EDO-Ophthiols).
- the aqueous formulation usually flows out of the dropper opening as a result of manual pressure being applied to the compressible storage bottle.
- the composition described herein is stored in a plastic or glass bottle.
- the plastic bottle is a low-density polyethylene bottle.
- the composition described herein is stored in a glass bottle with or without a liquid dispenser.
- the plastic or glass bottle is opaque.
- compositions described herein are either packaged for single use or for multiple uses with or without a preservative.
- carrier refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells or tissues.
- co-administration are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are administered by the same or different route of administration or at the same or different time.
- dilute refers to chemical compounds that are used to dilute the compound of interest prior to delivery. Diluents can also be used to stabilize compounds because they can provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in the art, including, but not limited to a phosphate buffered saline solution.
- an “effective amount” or “therapeutically effective amount,” as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system.
- an “effective amount” for therapeutic uses is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in disease symptoms.
- An appropriate “effective” amount in any individual case may be determined using techniques, such as a dose escalation study.
- an “enhance” or “enhancing,” as used herein, means to increase or prolong either in potency or duration a desired effect.
- the term “enhancing” refers to the ability to increase or prolong, either in potency or duration, the effect of other therapeutic agents on a system.
- An “enhancing-effective amount,” as used herein, refers to an amount adequate to enhance the effect of another therapeutic agent in a desired system.
- subject or “patient” encompasses mammals.
- mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.
- the mammal is a human.
- treat include alleviating, abating or ameliorating at least one symptom of a disease or condition, preventing additional symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition either prophylactically and/or therapeutically.
- R-Phenylephrine Hydrochloride Ophthalmic Solution USP 2.5% or 10%, is a sterile, clear, colorless to light yellow, topical mydriatic agent for ophthalmic use.
- the chemical name is (R)-3-hydroxy- ⁇ -[(methylamino)methyl]benzenemethanolhydrochloride.
- R-Phenylephrine hydrochloride is represented by the following structural formula:
- Phenylephrine hydrochloride has a molecular weight of 203.67 and an empirical formula of C 9 H 13 NO 2 —HCl.
- Each mL of R-Phenylephrine Hydrochloride Ophthalmic Solution contains: ACTIVE: phenylephrine hydrochloride 25 mg (2.5%); INACTIVES: sodium phosphate monobasic, sodium phosphate dibasic; boric acid, water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH (6.0 to 6.4). The solution has a tonicity of 500 mOsm/kg; PRESERVATIVE: benzalkonium chloride 0.01%.
- Each mL of R-Phenylephrine Hydrochloride Ophthalmic Solution, 10% contains: ACTIVE: R-phenylephrine hydrochloride 100 mg (10%); INACTIVES: sodium phosphate monobasic, sodium phosphate dibasic; water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH (6.3 to 6.7). The solution has a tonicity of 1000 mOsm/kg; PRESERVATIVE: benzalkonium chloride 0.01%.
- the initial assay averaged 100.4% of label claim (range 99.8%-101.6%), and after 12 months of storage at the labeled storage condition (2-8° C.) the average potency was 99.8% of label claim (range 98.8%-101.0%). All other parameters evaluated (appearance, preservative effectiveness, sterility) conformed to specifications.
- the “impurity” was purified and determined by the same method.
- the “impurity” i.e., S-Phenylephrine Hydrochloride
- the HPLC chromatogram is shown in FIG. 4 .
- Both R and S form solutions (10% solution prepared as in Example 1) were test for dilation on rabbits.
- the first test rabbit received 3 drops of the S form formulation and the second test rabbit received 3 drops of the R form solution.
- Test Rabbit No. 1 Minimal Dilation, within 15 minutes of dilation the pupil was only slightly more dilated than the untreated eye. The treated eye responded to light exposure and constricted slowly. The control eye constricted rapidly as was expected.
- Test Rabbit No 2 Maximal dilation within 15 minutes of dosing. The pupil did not respond to light exposure and remained fully dilated for 4 hours then regressed.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
Abstract
The invention is directed to methods and compositions of stabilizing phenylephrine formations. The composition has good time-dependent stability at low temperature and has no change in its outward appearance even after having been stored at least 6 months.
Description
- This application is a continuation of U.S. patent application Ser. No. 14/477,718, filed Sep. 4, 2014, which is a continuation of U.S. patent application Ser. No. 14/080,771, filed Nov. 14, 2013, now U.S. Pat. No. 8,859,623, issued Oct. 14, 2014, all of which are hereby incorporated by reference in their entirety.
- Phenylephrine is a selective al-adrenergic receptor agonist used primarily as a decongestant, as an agent to dilate the pupil, and to increase blood pressure. Phenylephrine is marketed as a substitute for the decongestant pseudoephedrine, though clinical studies differ regarding phenylephrine's effectiveness in this role.
- In accordance with the present invention, the present invention provide a composition comprising at least 95% R-phenylephrine hydrochloride and an aqueous buffer, wherein the composition substantially maintains an initial chiral purity of R-phenylephrine hydrochloride for at least 6 months stored between −10 to 10 degree Celsius.
- In another aspect, provided herein are methods of stabilizing a phenylephrine hydrochloride composition comprising storing a solution of aqueous R-phenylephrine hydrochloride at less than 10 degree Celsius, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In one aspect, provided herein are methods of assaying chiral purity of R-phenylephrine hydrochloride, wherein the chiral purity is determined by chiral column chromatography, optical rotation, capillary electrophoresis, circular dichroism, or Nuclear Magnetic Resonance.
- In another aspect provides compositions comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In another aspect provides methods of dilating the pupil comprising administering a composition comprising R-phenylephrine hydrochloride topically to a mammal, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In another aspect provides methods of treating Uveitis in a subject comprising administering a composition comprising R-phenylephrine hydrochloride to said subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months
- In another aspect provides methods of performing certain ocular testing such as ultrasonography, provocative closed angle glaucoma test, Retinoscopy, compromised circulation (i.e., blanching test), Refraction, fundus examination comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In another aspect provides methods of aiding surgical procedures requiring visualization of the posterior chamber comprising administering a composition comprising R-phenylephrine hydrochloride to a subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
- The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
-
FIG. 1 shows a HPLC chromatogram of racemic R-phenylephrine hydrochloride by a chiral column purification (OJ-RH (150×4.6) mm). Two peaks at the retention time 5.225 minutes and 6.444 minutes are shown. -
FIG. 2 shows a HPLC chromatogram of the exemplary R-Phenylephrine Hydrochloride Opthalmic Solution (10%) before storage. The chiral purity was determined to be 99.3% ee based on the peaks at 5.184 minutes (area: 9931.84) and at 6.425 minutes (area: 32.5748). -
FIG. 3 shows a HPLC chromatogram of the exemplary R-Phenylephrine Hydrochloride Opthalmic Solution (10%) stored at 2 to 8° C. after 6 months. The chiral purity was determined to be 99.3% ee based on the peaks at 5.089 minutes (area: 8454.34) and at 6.363 minutes (area: 30.7874). -
FIG. 4 shows a HPLC chromatogram of the purified “impurity” which is a S-Phenylephrine Hydrochloride. The chiral purity was determined to be 82.4% ee based on the peaks at 5.183 minutes (area: 255.971) and at 6.347 minutes (area: 2851.08). - Phenylephrine differs chemically from epinephrine only in lacking one hydroxyl group (OH) in the four position on the benzene ring. It is a bitter-tasting crystalline material soluble in water and alcohols, with a melting point of 140°−145° C. Chemically it is Benzenemethanol, 3-hydroxy-α-[(methylamino)methyl]-, hydrochloride or (R)-(−)-m-hydroxy-α-[methylamino)methyl]benzyl alcohol hydrochloride with the following chemical structure.
- It is known in the art that a Phenylephrine Hydrochloride solution should be stored protected from light. The benzylic hydrogen is acidic and can be deprotonated easily. The hydroxyl group may be oxidized to form a carbonyl moiety conjugated with phenyl group, especially with help of the adjacent basic amino group. Thus, it is known in the art that a Phenylephrine Hydrochloride solution should be stored protected from light. For example, an insert from a commercially available Phenylephrine Hydrochloride Ophthalmic Solution provides that the solution should be stored at 20° to 25° C. (USP controlled room temperature) and keep container tightly closed. Do not use if solution is brown or contains precipitate. (AKORN Package Insert)
- However, a solution under such condition often turns brown over time despite of carefully keeping container tightly closed at 20° to 25° C. (USP controlled room temperature). Those packages containing the brown solution cannot be used and thus create waste.
- The present invention provides the improvement to overcome such instability problem.
- In some embodiments, there are provided a composition comprising at least 95% R-phenylephrine hydrochloride and an aqueous buffer for substantially maintaining chiral purity of R-phenylephrine hydrochloride for at least 6 months, the improvement comprising storing the composition between −10 to 10 degree Celsius. In certain embodiments, the composition is stored between 2 to 8 degree Celsius. In certain embodiments, the composition comprises at least 99% or 99.3%, R-phenylephrine hydrochloride. In certain embodiments, the chiral purity of R-phenylephrine hydrochloride is at least 95%, 97%, 99%, or 99.5% of the initial chiral purity after 6 months. In certain embodiments, the composition comprises 2.5% w/v or 10% w/v R-phenylephrine hydrochloride by weight. In certain embodiments, the composition further comprises a preservative such as benzalkonium chloride, stearalkonium chloride, polyaminopropyl biguanide, or the like. In some embodiments, the composition is in a 1-15 ml plastic or glass bottle. In some embodiments, the composition is in a glass or plastic bottle of about 2 ml, about 3 ml, about 5 ml, about 10 ml or about 15 ml. In certain embodiments, the plastic or glass bottle is opaque.
- In some embodiments provide methods of stabilizing a phenylephrine hydrochloride composition such as a solution of aqueous R-phenylephrine hydrochloride at less than 10 degree Celsius wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In some embodiments provide herein compositions comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In some embodiments, the composition is stored at −10 to 10 degree Celsius. In certain embodiments, the composition is stored at −5 to 10 degree Celsius. In certain embodiments, the composition is stored at 0 to 10 degree Celsius. In certain embodiments, the composition is stored at 2 to 8 degree Celsius.
- The term “substantial” or “substantially maintains” described herein refers to not more than 15% deviation of the initial purity. In some embodiments, the chiral purity of the composition is at least 85%, 90%, 95%, 97%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9% of the initial chiral purity.
- In some embodiments provide herein methods of assaying chiral purity of R-phenylephrine hydrochloride, wherein the chiral purity is determined by chiral column chromatography, optical rotation, capillary electrophoresis, circular dichroism, or Nuclear Magnetic Resonance.
- In certain embodiments, the chiral purity is determined by chiral column chromatography.
- Chiral column chromatography is a variant of column chromatography in which the stationary phase contains a single enantiomer of a chiral compound rather than being achiral. The two enantiomers of the same analyte compound differ in affinity to the single-enantiomer stationary phase and therefore they exit the column at different times.
- The chiral stationary phase can be prepared by attaching a suitable chiral compound to the surface of an achiral support such as silica gel, which creates a Chiral Stationary Phase (CSP). Many common chiral stationary phases are based on oligosaccharides such as cellulose or cyclodextrin (in particular with β-cyclodextrin, a seven sugar ring molecule). As with all chromatographic methods, various stationary phases are particularly suited to specific types of analytes.
- The packing material of the chiral column may be amylose tris(3,5-dimethylphenylcarbamate), β-cyclodextrin, cellobiohydrolase, selector R-(−)-N-(3,5-dinitrobenzoyl)-phenylglycine, cellulose tris(3,5-dimethylphenylcarbamate), cellulose tris(3,5-dichlorophenylcarbamate), or combinations thereof. In some embodiments, the chiral column for analytical purpose is packed with amylose tris(3,5-dichlorophenylcarbamate). The column may have a packing particle of a size of about 3 μm to about 50 μm. In some embodiments, the column has a packing particle a size of about 3 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, or 50 μm. In certain embodiments, the column has a packing particle a size of about 3 μm. In some embodiments, when using a chiral column system, the first mobile phase is non-polar solvent such as n-hexane, n-pentane, and the like, and the second mobile phase is polar solvent such as isopropanol, ethanol, methanol, or the like. In certainly embodiments, the mobile phase comprises small amount of amine such as ethylenediamine. The first mobile phase may be present in an amount of about 75% to about 95% by volume and the second mobile phase is present in an amount of about 5% to about 25% by volume. In some embodiments, the first mobile phase is present in an amount of about 85% by volume and the second mobile phase is present in an amount of about 15% by volume with or without ethylenediamine.
- There are several chiral compound purification and analysis methods available besides chiral column chromatography. For example, it is known in the art chiral purity can be determined by optical rotation. In some embodiments, the chiral purity of R-phenylephrine hydrochloride in the stabilized compositions and methods thereof can be determined by comparison of optical rotation of pure R-phenylephrine hydrochloride.
- Molecules with chrial centers cause the rotation of plane polarised light and are said to be “optically active” (hence the term optical isomers). Enantiomeric molecules rotate the plane in opposite directions but with the same magnitude. This provides a means of measuring the “optical purity” or “enantiomeric excess (ee)” of a sample of a mixture of enantiomers.
- Specific rotation is a physical property like boiling point and can be looked up in references. It is defined according to the following equation based on the experimental measurements: Specific rotation [α]D=αobs/cl where “αobs” is the experimentally observed rotation, “c” is the concentration in g/ml and “l” is the path length of the cell used expressed in dm (10 cm).
- A non-racemic mixture of two enantiomers will have a net optical rotation. It is possible to determine the specific rotation of the mixture and, with knowledge of the specific rotation of the pure enantiomer, the optical purity can be determined.
-
% Optical purity of sample=100*(specific rotation of sample)/(specific rotation of a pure enantiomer) - In some embodiments, there are provided methods of assaying chiral purity of R-phenylephrine hydrochloride, wherein the chiral purity is determined by optical rotation. In certain embodiments, the optical rotation is determined by comparison of optical rotation of pure R-phenylephrine hydrochloride.
- Capillary electrophoresis (CE), also known as capillary zone electrophoresis (CZE), can be used to separate ionic species by their charge and frictional forces and hydrodynamic radius.
- Capillary electrophoresis (CE) in general offers highly efficient separations. To achieve chiral separation, the capillary is filled with a separation buffer containing a chiral additive. Although many chiral selectors have been used successfully, the most comprehensive separation strategies have been achieved with highly sulfated cyclodextrins. In some embodiments, the chiral purity of the compositions provided herein is determined by capillary electrophoresis. In certain embodiments, the capillary electrophoresis uses cyclodextrin or its derivatives (such as sulfated cyclodextrins).
- Circular dichroism (CD) refers to the differential absorption of left and right circularly polarized light. This phenomenon is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. For example, vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA. In general, this phenomenon will be exhibited in absorption bands of any optically active molecule. As a consequence, circular dichroism is exhibited by biological molecules, because of their dextrorotary and levorotary components. Even more important is that a secondary structure will also impart a distinct CD to its respective molecules.
- Optical rotation and circular dichroism stem from the same quantum mechanical phenomena and one can be derived mathematically from the other if all spectral information is provided. In some embodiments, the chiral purity is determined by circular dichroism. In certain embodiments, the chiral purity is determined by Fourier transform infrared vibrational circular dichroism (FTIR-VCD). A skilled person in the art can readily apply the general knowledge and procedure to determine chirality of the compositions provided herein.
- It is known in the art that NMR spectroscopy techniques can determine the absolute configuration of stereoisomers such as cis or trans alkenes, R or S enantiomers, and R,R or R,S diastereomers. In a mixture of enantiomers, these methods can help quantify the optical purity by integrating the area under the NMR peak corresponding to each stereoisomer. Accuracy of integration can be improved by inserting a chiral derivatizing agent with a nucleus other than hydrogen or carbon, then reading the heteronuclear NMR spectrum: for example fluorine-19 NMR or phosphorus-31 NMR. Mosher's acid contains a —CF3 group, so if the adduct has no other fluorine atoms, the 19F NMR of a racemic mixture shows just two peaks, one for each stereoisomer. In some embodiments, the chiral purity of the compositions provided herein is determined by Nuclear Magnetic Resonance Spectroscopy (NMR). In certain embodiments, a chirally pure complexing reagent (i.e., a chiral derivatizing agent) is used in measuring NMR. A skilled person in the art can readily utilize NMR and any suitable chiral complexing agent to determine the chirality of the compositions provided herein.
- In some embodiments, the stabilized compositions provided herein comprise a solution of 2.5% w/v or 10% w/v R-phenylephrine hydrochloride by weight. In certain embodiments, the compositions further comprise sodium phosphate monobasic, sodium phosphate dibasic, boric acid and benzalkonium chloride. The followings are non-limited exemplary compositions:
- Phenylephrine Hydrochloride Ophthalmic Solution, 2.5% is a clear, colorless to yellowish, sterile topical ophthalmic solution containing phenylephrine hydrochloride 2.5%.
- Phenylephrine Hydrochloride Ophthalmic Solution, 10% is a clear, colorless to yellowish, sterile topical ophthalmic solution containing phenylephrine hydrochloride 10%.
- It has been established that Phenylephrine Hydrochloride Ophthalmic Solution is recommended as a vasoconstrictor, decongestant, and mydriatic in a variety of ophthalmic conditions and procedures. Some of its uses are for pupillary dilation in uveitis (to prevent or aid in the disruption of posterior synechia formation), for many ophthalmic surgical procedures and for refraction without cycloplegia. Phenylephrine Hydrochloride Ophthalmic Solution may also be used for funduscopy and other diagnostic procedures.
- For example, R-Phenylephrine is used to dilate the iris through α-adrenergic stimulation of the iris dilator muscle. Sympathetic stimulation of the ciliary muscle is believed to be inhibitory, decreasing accommodative amplitude. R-Phenylephrine is formulated in an eye drop to dilate the pupil in order to facilitate visualization of the retina. It is often used in combination with tropicamide as a synergist when tropicamide alone is not sufficient. Surprisingly it was found that S-Phenylephrine dilated the eye only slightly more than that was untreated. Thus it is important that an eye drop containing Phenylephrine Hydrochloride used for dilation of the pupil contains predominantly the R-isomer in order to maintain maximum efficacy of the ophthalmic solution.
- Sympathetic innervation leads to pupillary dilation. It is innervated by the sympathetic system, which acts by releasing noradrenaline, which acts on al-receptors causing dilation.
- The alpha-1 (α1) adrenergic receptor is a G protein-coupled receptor (GPCR) associated with the Gq heterotrimeric G-protein. It consists of three highly homologous subtypes, including α1A-, α1B-, and α1D-adrenergic. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α1-adrenergic receptor in the central and peripheral nervous systems.
- Phenylephrine is a selective α1-adrenergic receptor agonist used primarily as a decongestant, as an agent to dilate the pupil, and to increase blood pressure. Dilation is controlled by the dilator pupillae, a group of muscles in the peripheral ⅔ of the iris. Sympathetic innervation begins at the cortex with the first synapse at the cilliospinal center (also known as Budge's center after German physiologist Julius Ludwig Budge). Post synaptic neurons travel down all the way through the brain stem and finally exit through the cervical sympathetic chain and the superior cervical ganglion. They synapse at the superior cervical ganglion where third-order neurons travel through the carotid plexus and enter into the orbit through the first division of the trigeminal nerve.
- In the anesthetized rats, infusion of large amount of (+)-epinephrine, (+)-norepinephrine, epinine, and (−)- or (+)-phenylephrine induces tachyphylaxis to vasopressor effect of (−)-epinephrine, (−)-norepinephrine, and tetraethylammonium. The tachyphylactic potency of the amines was (−)-phenylephrine (R-phenylephrine)>epinine>(+)-norepinephrine=(+)-epinephrine>(+)-phenylephrine.
- Two ophthalmic formulations, formulated 10% Phenylephrine hydrochloride (S-isomer) and the exemplary invention composition, 10% Phenylephrine hydrochloride (R-isomer) were tested for their ocular activity in NZW rabbits. It was observed that formulated S-isomer showed minimal dilation, responded to light exposure and constricted slightly more slowly than the untreated eye, where as the exemplary invention composition, 10% Phenylephrine hydrochloride showed maximal dilation with in 15 min of dosing and the pupil did not respond to light and remained dilated for 4 hrs.
- According to the above study it could be postulated that, when an ophthalmic solution of phenylephrine hydrochloride, (R-isomer) containing S-isomer as an impurity is used for dilation of pupil, the s-isomer may cause the saturation of the a-adrenergic receptors resulting in the decrease in the response of the drug after its administration (tachyphylasis). Furthermore, the presence of S-isomer in the ophthalmic solution may lead to poor/delayed dilation of the pupil.
- In some embodiments provide methods of dilating the pupil comprising administering a composition comprising R-phenylephrine hydrochloride topically to a mammal, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months. It is evident from the literature that the pharmacological evaluation of both R & S-Phenylephrine hydrochloride is not same. R-Phenylephrine is referenced as useful synthetic adrenergic drug.
- Uveitis is, broadly, inflammation of the uvea. The uvea consists of the middle, pigmented, vascular structures of the eye and includes the iris, ciliary body, and choroid. Uveitis requires an urgent referral and thorough examination by an ophthalmologist or Optometrist and urgent treatment to control the inflammation. Anterior uveitis (iritis) affects the front portion of the eye, intermediate uveitis (cyclitis) affects the ciliary body, and posterior uveitis (choroiditis) affects the back portion of the uvea. Diffuse uveitis affects all portions of the uvea. Anterior uveitis commonly occurs in conjunction with juvenile rheumatoid arthritis, but does not manifest in all juvenile arthritis patients. Uveitis is most likely to be present in juvenile arthritis patients with pauciarticular disease (fewer than five joints involved), a positive anti-nuclear antibody test, and a negative rheumatoid factor test. It has been demonstrated that after phenylephrine hydrochloride ophthalmic solution instillation, flare intensity and pain were significantly decreased only in eyes with iridocyclitis and without fibrinoid reaction (FR). The decreasing level of flare intensity, and paralysis of the pupil after phenylephrine instillation seem to alleviate pain in those eyes. See e.g., Zaczek, et. al., Acta Ophthalmol Scand. 2000 October; 78(5):516-8.
- In some embodiments provide methods of treating Uveitis in a subject comprising administering a composition comprising R-phenylephrine hydrochloride to said subject, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In some embodiments provide methods of performing certain ocular testing such as ultrasonography, provocative closed angle glaucoma test, Retinoscopy, compromised circulation (i.e., blanching test), Refraction, fundus examination comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- In some embodiments provide methods of aiding surgical procedures requiring visualization of the posterior chamber comprising administering a composition comprising R-phenylephrine hydrochloride, wherein the composition substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- After presentation of R-phenylephrine hydrochloride ophthalmic solution 2.5% or 10% to the ocular surface, a broad variation in the delay of onset of dilation is widely reported, varying between 20-to-30 minutes and as much as up to 60 minutes. While a number of contributors to this delay of onset have been theorized, the absence of phenylephrine hydrochloride's pharmacologic activity in the eye due to the presence of S-phenylephrine may in fact be the explanation for such delay.
- Conventional dropper bottles for administering ophthalmic fluid are well known in the prior art. The basic commercial design of such dropper bottles has remained fairly unchanged over the last several decades: a squeezable container is provided with a tapered dispenser that terminates in a discharge aperture. To administer ophthalmic fluid, the discharge aperture is aligned above a target eye and the bottle is squeezed to urge out a drop or dose of the fluid.
- Alternatively, liquid dispensers have been developed in which the formulation is supplied from a storage bottle through a dropper, for example (dropper bottles or EDO-Ophthiols). The aqueous formulation usually flows out of the dropper opening as a result of manual pressure being applied to the compressible storage bottle.
- In some embodiments, the composition described herein is stored in a plastic or glass bottle. In certain embodiments, the plastic bottle is a low-density polyethylene bottle. In certain embodiments, the composition described herein is stored in a glass bottle with or without a liquid dispenser. In certain embodiments, the plastic or glass bottle is opaque.
- Additionally, the compositions described herein are either packaged for single use or for multiple uses with or without a preservative.
- The term “acceptable” with respect to a formulation, composition or ingredient, as used herein, means having no persistent detrimental effect on the general health of the subject being treated.
- The term “carrier,” as used herein, refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells or tissues.
- The terms “co-administration” or the like, as used herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are administered by the same or different route of administration or at the same or different time.
- The term “diluent” refers to chemical compounds that are used to dilute the compound of interest prior to delivery. Diluents can also be used to stabilize compounds because they can provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in the art, including, but not limited to a phosphate buffered saline solution.
- The terms “effective amount” or “therapeutically effective amount,” as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an “effective amount” for therapeutic uses is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in disease symptoms. An appropriate “effective” amount in any individual case may be determined using techniques, such as a dose escalation study.
- The terms “enhance” or “enhancing,” as used herein, means to increase or prolong either in potency or duration a desired effect. Thus, in regard to enhancing the effect of therapeutic agents, the term “enhancing” refers to the ability to increase or prolong, either in potency or duration, the effect of other therapeutic agents on a system. An “enhancing-effective amount,” as used herein, refers to an amount adequate to enhance the effect of another therapeutic agent in a desired system.
- The term “subject” or “patient” encompasses mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. In one embodiment, the mammal is a human.
- The terms “treat,” “treating” or “treatment,” as used herein, include alleviating, abating or ameliorating at least one symptom of a disease or condition, preventing additional symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition either prophylactically and/or therapeutically.
- All of the various embodiments or options described herein can be combined in any and all variations. The following Examples serve only to illustrate the invention and are not to be construed in anyway to limit the invention.
- R-Phenylephrine Hydrochloride Ophthalmic Solution, USP 2.5% or 10%, is a sterile, clear, colorless to light yellow, topical mydriatic agent for ophthalmic use. The chemical name is (R)-3-hydroxy-α-[(methylamino)methyl]benzenemethanolhydrochloride. R-Phenylephrine hydrochloride is represented by the following structural formula:
- Phenylephrine hydrochloride has a molecular weight of 203.67 and an empirical formula of C9H13NO2—HCl.
- Each mL of R-Phenylephrine Hydrochloride Ophthalmic Solution, 2.5% contains: ACTIVE: phenylephrine hydrochloride 25 mg (2.5%); INACTIVES: sodium phosphate monobasic, sodium phosphate dibasic; boric acid, water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH (6.0 to 6.4). The solution has a tonicity of 500 mOsm/kg; PRESERVATIVE: benzalkonium chloride 0.01%.
- Each mL of R-Phenylephrine Hydrochloride Ophthalmic Solution, 10% contains: ACTIVE: R-
phenylephrine hydrochloride 100 mg (10%); INACTIVES: sodium phosphate monobasic, sodium phosphate dibasic; water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH (6.3 to 6.7). The solution has a tonicity of 1000 mOsm/kg; PRESERVATIVE: benzalkonium chloride 0.01%. - The composition of Phenylephrine HCl Ophthalmic Solution, 2.5% and 10% is listed in Table 1.
-
TABLE 1 Phenylephrine HCl Ophthalmic Solution, 2.5% and 10% Quantitative Composition 2.5% 10% Formulation Formulation Quantity Quantity Quality Component (% w/v) (% w/v) Function Standard R- 2.5% 10% Active USP Phenylephrine Ingredient HCl Sodium 0.5% 0.5% Buffer USP Phosphate Monobasic, Anhydrous Sodium 0.3% 0.3% Buffer USP Phosphate Dibasic, Anhydrous Boric Acid 1.0% Buffer USP Benzalkonium 0.01% 0.01% Antimicrobial USP Chloride preservative Sodium As needed As needed pH adjustment USP Hydroxide Hydrochloric As needed As needed pH adjustment USP Acid - Stability studies of 2.5% and 10% Phenylephrine HCL solutions prepared as in Example 2 were conducted at 2 to 8° C. for 12 months.
- While the testing performed during the historical stability analysis is limited, those parameters evaluated show excellent results. For the 3 batches of 2.5% formulation evaluated, the initial assay averaged 101.2% of label claim (range 99.8%-102.9%), and after 12 months of storage at the labeled storage condition (2-8° C.) the average potency was 99.7% of label claim (range 97.0%-103.4%). All other parameters evaluated (appearance, preservative effectiveness, sterility) conformed to specifications.
- For the 3 batches of 10% formulation evaluated, the initial assay averaged 100.4% of label claim (range 99.8%-101.6%), and after 12 months of storage at the labeled storage condition (2-8° C.) the average potency was 99.8% of label claim (range 98.8%-101.0%). All other parameters evaluated (appearance, preservative effectiveness, sterility) conformed to specifications.
- The following are non-limited exemplary chiral columns and relevant mobile phases in the methods for analyzing chiral purity of R-phenylephrine.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 mL min-1, Mobile Phase: Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 0.8 mL min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, Flow: 1 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: Ambient, Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 ml min-1, Mobile Phase: 0.05 Ethylenediamine in Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Water (05%):Methanol (95), Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 1 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 0.5 ml min-1, Mobile Phase: Acetonitrile: 0.05% Ethylenediamine in water (30:70) Column Temp.: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, 5 μm, Flow: 0.5 ml min-1; Mobile Phase: Acetonitrile: 0.05% Ethylenediamine in water (40:60) Column Temp.: 25, Detection wavelength: 270 nm.
- Column-Chiralpak IC-3 (150×4.6) mm, 3 μm, Flow: 1.0 ml min-1, Mobile Phase: 0.1% Ethylenediamine in n-Hexane (85%):Ethanol (15%), Column Temp: 25° C., Detection wavelength: 270 nm; ref 600 nm.
- Column-Chiralpak IC-3 (150×4.6) mm, 3 μm, Flow: 1.2 ml min-1, Mobile Phase: 0.1% Ethylenediamine in n-Hexane (50%):IPA (50%), Column Temp: 25° C., Detection wavelength: 270 nm.
- Column-OJ-RH (150×4.6) mm, Flow: 0.6 ml min-1, Mobile Phase: 0.05% Ethylenediamine in Methanol, Column Temp: 25° C.; Detection wavelength: 270 nm. 4.0 mg sample in 1 mL ethanol was analyzed. The injection volume to HPLC is 3.0 μL. The HPLC chromatogram is shown in
FIG. 1 . - The HPLC chromatogram clearly show separation of racemic sample. Chiral HPLC method was thus established to analyze Phenylephrine.
- R-Phenylephrine Hydrochloride Opthalmic Solution, 2.5% and 10% prepared as in Example 1 were stored at 2 to 8° C. The chiral purity of Sample 1 (10% solution) was assessed before low temperature stability test. The HPLC chromatogram is shown in
FIG. 2 . - The chiral purity of R-Phenylephrine Hydrochloride was determined by the method and conditions as shown in Example 3. The result showed 99.3% ee.
- After 6 months of low temperature storage (i.e., 2 to 8° C.), the chiral purity of R-Phenylephrine Hydrochloride in the solution was determined to be 99.3% ee. The HPLC chromatogram is shown in
FIG. 3 . - To confirm the “impurity” shown in the chromatogram, the “impurity” was purified and determined by the same method. The “impurity” (i.e., S-Phenylephrine Hydrochloride) was determined to possess 82.4% ee of S-form. The HPLC chromatogram is shown in
FIG. 4 . - Thus, it is clearly shown that the solution remain substantially maintains the initial chiral purity of R-phenylephrine hydrochloride for at least 6 months.
- Both R and S form solutions (10% solution prepared as in Example 1) were test for dilation on rabbits. The first test rabbit received 3 drops of the S form formulation and the second test rabbit received 3 drops of the R form solution.
- The results were as follows:
- Test Rabbit No. 1: Minimal Dilation, within 15 minutes of dilation the pupil was only slightly more dilated than the untreated eye. The treated eye responded to light exposure and constricted slowly. The control eye constricted rapidly as was expected.
- Test Rabbit No 2: Maximal dilation within 15 minutes of dosing. The pupil did not respond to light exposure and remained fully dilated for 4 hours then regressed.
- These results clearly show that an ophthalmic solution of phenylephrine containing S-isomer does not dilate the rabbit pupil as it is achieved with an ophthalmic solution of phenylephrine containing R isomer. Thus it is evident that maintaining the chiral purity of the ophthalmic solution is crucial to keep drug potency.
- While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (21)
1-14. (canceled)
15. A method of administering a composition for pupil dilation, comprising: storing the composition for at least 6 months between −10 and 10 degrees Celsius; administering the composition into an eye of an individual in need thereof after the storage; wherein the composition comprises R-phenylephrine hydrochloride and an aqueous buffer; and wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 95% of the chiral purity before the storage.
16. The method of claim 15 , wherein the composition is stored between 2 and 8 degrees Celsius.
17. The method of claim 15 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 97% of the chiral purity before the storage.
18. The method of claim 15 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 99% of the chiral purity before the storage.
19. The method of claim 15 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 99.5% of the chiral purity before the storage.
20. The method of claim 15 , wherein the composition is stored for at least 12 months.
21. The method of claim 15 , wherein the composition comprises 2.5% w/v or 10% w/v R-phenylephrine hydrochloride.
22. The method of claim 15 , wherein the composition is packaged in a 1-15 mL plastic or glass bottle.
23. The method of claim 22 , wherein the plastic or glass bottle is about 2 mL, about 3 mL, about 5 mL about 10 mL or about 15 mL.
24. The method of claim 22 , wherein the plastic or glass bottle is opaque.
25. A method of administering a composition for pupil dilation, comprising: administering the composition into an eye of an individual in need thereof; wherein the composition comprises R-phenylephrine hydrochloride and an aqueous buffer; and wherein the chiral purity of R-phenylephrine hydrochloride after 6 months of storage between −10 and 10 degrees Celsius is at least 95% of the chiral purity before the storage.
26. The method of claim 25 , wherein the composition is stored between 2 and 8 degrees Celsius.
27. The method of claim 25 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 97% of the chiral purity before the storage.
28. The method of claim 25 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 99% of the chiral purity before the storage.
29. The method of claim 25 , wherein the chiral purity of R-phenylephrine hydrochloride after the storage is at least 99.5% of the chiral purity before the storage.
30. The method of claim 25 , wherein the composition is stored for at least 12 months.
31. The method of claim 25 , wherein the composition comprises 2.5% w/v or 10% w/v R-phenylephrine hydrochloride.
32. The method of claim 25 , wherein the composition is packaged in a 1-15 mL plastic or glass bottle.
33. The method of claim 32 wherein the plastic or glass bottle is about 2 mL, about 3 mL, about 5 mL about 10 mL or about 15 mL.
34. The method of claim 32 , wherein the plastic or glass bottle is opaque.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/625,624 US20170290786A1 (en) | 2013-11-14 | 2017-06-16 | Methods and compositions of stable phenylephrine formulations |
US16/673,721 US11957646B2 (en) | 2013-11-14 | 2019-11-04 | Methods and compositions of stable phenylephrine formulations |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/080,771 US8859623B1 (en) | 2013-11-14 | 2013-11-14 | Methods and compositions of stable phenylephrine formulations |
US14/477,718 US20150133563A1 (en) | 2013-11-14 | 2014-09-04 | Methods and compositions of stable phenylephrine formulations |
US15/625,624 US20170290786A1 (en) | 2013-11-14 | 2017-06-16 | Methods and compositions of stable phenylephrine formulations |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/477,718 Continuation US20150133563A1 (en) | 2013-11-14 | 2014-09-04 | Methods and compositions of stable phenylephrine formulations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/673,721 Continuation US11957646B2 (en) | 2013-11-14 | 2019-11-04 | Methods and compositions of stable phenylephrine formulations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170290786A1 true US20170290786A1 (en) | 2017-10-12 |
Family
ID=51661075
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/080,771 Active US8859623B1 (en) | 2013-11-14 | 2013-11-14 | Methods and compositions of stable phenylephrine formulations |
US14/477,718 Abandoned US20150133563A1 (en) | 2013-11-14 | 2014-09-04 | Methods and compositions of stable phenylephrine formulations |
US15/625,624 Abandoned US20170290786A1 (en) | 2013-11-14 | 2017-06-16 | Methods and compositions of stable phenylephrine formulations |
US16/673,721 Active US11957646B2 (en) | 2013-11-14 | 2019-11-04 | Methods and compositions of stable phenylephrine formulations |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/080,771 Active US8859623B1 (en) | 2013-11-14 | 2013-11-14 | Methods and compositions of stable phenylephrine formulations |
US14/477,718 Abandoned US20150133563A1 (en) | 2013-11-14 | 2014-09-04 | Methods and compositions of stable phenylephrine formulations |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/673,721 Active US11957646B2 (en) | 2013-11-14 | 2019-11-04 | Methods and compositions of stable phenylephrine formulations |
Country Status (2)
Country | Link |
---|---|
US (4) | US8859623B1 (en) |
WO (1) | WO2015073696A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021150747A1 (en) * | 2020-01-22 | 2021-07-29 | Nevakar Inc. | Phenylephrine hydrochloride compositions and containers |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8859623B1 (en) | 2013-11-14 | 2014-10-14 | Paragon BioTeck, Inc. | Methods and compositions of stable phenylephrine formulations |
US11213480B1 (en) | 2015-08-06 | 2022-01-04 | Hikma Pharmaceuticals International Limited | Phenylephrine hydrochloride ready-to-use solution |
US10610518B2 (en) | 2018-04-24 | 2020-04-07 | Allergan, Inc. | Presbyopia treatments |
WO2020210723A1 (en) | 2019-04-11 | 2020-10-15 | R.P. Scherer Technologies, Llc | Formulation for oral delivery of proteins, peptides and small molecules with poor permeability |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260600A (en) * | 1979-10-22 | 1981-04-07 | Ronald Valle | Method of treating depression |
US20030119915A1 (en) * | 2001-04-16 | 2003-06-26 | Anthony Booth | (-)-Pseudoephedrine as a sympathomimetic drug |
RU2600863C2 (en) * | 2007-12-10 | 2016-10-27 | Сентисс Фарма Прайвит Лимитед | Ophthalmic composition, containing phenylephrine |
US9102959B2 (en) * | 2009-08-19 | 2015-08-11 | Codexis, Inc. | Ketoreductase polypeptides for the preparation of phenylephrine |
US20110104273A1 (en) * | 2009-11-05 | 2011-05-05 | Depomed, Inc. | Gastric retentive pharmaceutical compositions for immediate and extended release of phenylephrine |
US20140023569A1 (en) | 2012-07-23 | 2014-01-23 | Cybio Ag | Suction Device for a Matrix Array of Pipette Tips |
WO2014098092A1 (en) | 2012-12-18 | 2014-06-26 | オリザ油化株式会社 | Prophylactic/therapeutic agent for dry eye |
US8859623B1 (en) * | 2013-11-14 | 2014-10-14 | Paragon BioTeck, Inc. | Methods and compositions of stable phenylephrine formulations |
-
2013
- 2013-11-14 US US14/080,771 patent/US8859623B1/en active Active
-
2014
- 2014-09-04 US US14/477,718 patent/US20150133563A1/en not_active Abandoned
- 2014-11-13 WO PCT/US2014/065496 patent/WO2015073696A1/en active Application Filing
-
2017
- 2017-06-16 US US15/625,624 patent/US20170290786A1/en not_active Abandoned
-
2019
- 2019-11-04 US US16/673,721 patent/US11957646B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021150747A1 (en) * | 2020-01-22 | 2021-07-29 | Nevakar Inc. | Phenylephrine hydrochloride compositions and containers |
Also Published As
Publication number | Publication date |
---|---|
US11957646B2 (en) | 2024-04-16 |
US20150133563A1 (en) | 2015-05-14 |
US8859623B1 (en) | 2014-10-14 |
US20200085766A1 (en) | 2020-03-19 |
WO2015073696A1 (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11957646B2 (en) | Methods and compositions of stable phenylephrine formulations | |
US10213392B2 (en) | Pharmaceutical composition for use in medical and veterinary ophthalmology | |
KR920005810B1 (en) | Pharmaceutical composition for the treatment of psychosis | |
US11426381B2 (en) | Lipoic acid choline ester compositions and methods of use | |
US8741930B2 (en) | Treating xerophthalmia with norketotifen | |
CN103957887A (en) | Ophthtalmic compositions comprising prostaglandin f2 alpha derivatives and hyaluronic acid | |
ES2981130T3 (en) | Isoxazoline parasiticide formulations and their use to treat blepharitis | |
PT2821405E (en) | Choline esters for treating presbyopia and cataract | |
CA2780453A1 (en) | Treating xerophthalmia with compounds increasing meibomian gland secretion | |
US12070501B1 (en) | Topical ophthalmological compositions | |
CN116390714A (en) | Topical Ophthalmic Compositions | |
JPH07504915A (en) | Method for lowering intraocular pressure in mammalian eyes by administration of muscarinic antagonists | |
KR101312740B1 (en) | Aqueous eye drops with accelerated intraocular migration | |
WO2013163219A1 (en) | Prostaglandin and vasoconstrictor pharmaceutical compositions and methods of use | |
US20240182428A1 (en) | Prodrug of celecoxib, preparation method therefor and application thereof | |
WO2025131038A1 (en) | Compositions and methods for delivery of pharmaceutical actives | |
CN120093684A (en) | Topical ophthalmic compositions | |
WO2025034554A1 (en) | Compositions and methods for delivery of ophthalmological actives | |
JP2007509865A (en) | Use of selective opiate receptor modulators in the treatment of neurological disorders | |
HK40036019A (en) | Isoxazoline parasiticide formulations and methods for treating blepharitis | |
KR20160096184A (en) | Prophylactic and therapeutic agent for attention-deficit/hyperactivity disorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PARAGON BIOTECK, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WITHAM, PATRICK H.;MACHIRAJU, SAILAJA;BLUETT, LAUREN MACKENSIE-CLARK;SIGNING DATES FROM 20141110 TO 20141113;REEL/FRAME:042737/0803 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |