US20170290610A1 - Method and device for restabilization with axial rotation of the atlantoaxial junction - Google Patents

Method and device for restabilization with axial rotation of the atlantoaxial junction Download PDF

Info

Publication number
US20170290610A1
US20170290610A1 US15/499,739 US201715499739A US2017290610A1 US 20170290610 A1 US20170290610 A1 US 20170290610A1 US 201715499739 A US201715499739 A US 201715499739A US 2017290610 A1 US2017290610 A1 US 2017290610A1
Authority
US
United States
Prior art keywords
leg
guide rod
curved guide
connection portion
vertebrae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/499,739
Inventor
Rolando ROBERTO
Kristen E. Lipscomb
Enoch C. Leung
Roberto Isidro Barragan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cervical Soultions LLC
Original Assignee
Cervical Soultions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cervical Soultions LLC filed Critical Cervical Soultions LLC
Priority to US15/499,739 priority Critical patent/US20170290610A1/en
Assigned to CERVICAL SOLUTIONS, LLC reassignment CERVICAL SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBERTO, Rolando, BARRAGAN, Roberto, LIPSCOMB, KRISTEN, LEUNG, Enoch
Publication of US20170290610A1 publication Critical patent/US20170290610A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7043Screws or hooks combined with longitudinal elements which do not contact vertebrae with a longitudinal element fixed to one or more transverse elements which connect multiple screws or hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7023Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a pivot joint
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • A61B17/7034Screws or hooks with U-shaped head or back through which longitudinal rods pass characterised by a lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7055Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant connected to sacrum, pelvis or skull
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7067Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together

Definitions

  • Injuries to the atlanto-axial junction e.g. odontoid fractures, transverse ligament injuries
  • Surgical intervention is frequently necessary to prevent atlanto-axial subluxation with concomitant spinal cord injury.
  • spinal fusion arthrodesis
  • spinal fusion is performed to fuse the 1st and 2nd cervical vertebrae and thus stabilize the affected area.
  • fixation devices for stabilizing the atlantoaxial junction are configured to completely prevent relative motion.
  • arthrodesis limits rotation of the upper cervical spine and head, which can negatively impact an individual's participation in simple activities of daily living.
  • spinal arthrodesis has been found to increase loading stress at adjacent segments with a potential for acceleration of rates of degeneration.
  • Embodiments of the invention are related to a method for stabilization of the atlantoaxial junction while allowing for axial rotation in cases of acquired ligamentous injury or fracture of the dens.
  • an orthopedic device can be implanted using standard spine screws.
  • the orthopedic device includes a curved guide rod and a modular device.
  • the guide rod can be secured to the lateral masses of the 1 st cervical vertebra using polyaxial orthopedic bone screws.
  • the modular device has two angled longitudinal connectors, a spacer, and a connecting screw.
  • the longitudinal connectors capture the guide rod cranially, and are also fixed to polyaxial bone screws which are anchored into the pars/pedicles of the 2nd cervical vertebra.
  • the device will limit translational motion of the vertebrae in relation to one another in all planes, but will allow for rotation of the C1 vertebrae in relation to the C2 vertebrae.
  • the modular design and use of polyaxial screws for attachment accommodate variability in patient size.
  • the motion preservation device allows for significant rotation of the C1 vertebrae about the C2 dens compared to other orthopedic spine devices.
  • a circumferential rod is used as a guide for restored axial rotation.
  • a modular assembly of the stabilization mechanism allows for ease of implantation and adjustment. The device stabilizes the atlantoaxial junction to within physiological limits.
  • Embodiments of the invention are also related to an apparatus that includes a first leg having a first connection portion, a second leg having a second connection portion, and a curved guide rod slidable within the first and second connection portions.
  • the first leg comprises a first elongated shaft extending from the first connection portion along a first axis at an angle with respect to a vertical axis.
  • the first connection portion comprises a first block that vertically extends from the first elongated shaft along the vertical axis, wherein the block defines an ovalized passage sized to allow passage of the curved guide rod.
  • the second leg comprises an elongated shaft extending from the first connection portion along a second axis at an angle with respect to a vertical axis.
  • the second connection portion comprises a second block that vertically extends from the second elongated shaft along the vertical axis, wherein the second block defines a second ovalized passage sized to allow passage of the curved guide rod.
  • the curved guide rid is curved to mimic anatomic rotational motion of an average person.
  • the first connection portion includes a through hole for free passage of a screw and wherein the second connection portion includes a threaded hole for threadably receiving the screw and a spacer therebetween.
  • Embodiments of the invention are also related to a method.
  • a first leg having a first connection portion is fixedly attached to a first portion of a lower vertebrae.
  • a second leg having a second connection portion is fixedly attached to a second portion of a lower vertebrae.
  • a curved guide rod is arranged to be slidable within the first and second connection portions.
  • a first lateral portion of the curved guide rod is fixedly attached to a first portion of an upper vertebrae.
  • a second lateral portion of the curved guide rod is fixedly attached to a second portion of an upper vertebrae.
  • first and second connection portions of the first and second legs are fixedly attached to one another.
  • a spacer separates the first and second connection portions.
  • the first and second portions of the lower vertebrae comprise first and second lateral masses of the lower vertebrae.
  • the first and second legs are secured to the lower vertebrae using screws.
  • the first and second lateral portions of the curved guide rod are secured to the upper vertebrae using screws.
  • FIG. 1 shows various views of the Longitudinal Connector (Leg)—Close Fit Hole, according to some embodiments of the invention.
  • FIG. 2 shows various views of the Longitudinal Connector (Leg)—Tapped Hole, according to some embodiments of the invention.
  • FIG. 3 shows a spacer, according to some embodiments of the invention.
  • FIG. 4 shows various views of an assembled implant, according to some embodiments of the invention.
  • FIG. 5 shows various exploded views of the implant of FIG. 4 .
  • FIG. 6 shows the curved guide rod, according to some embodiments of the invention.
  • FIG. 7 illustrates a cut view of the device exposing the oval hole and screw hole, according to some embodiments of the invention.
  • FIG. 8 shows multiple views of the device of FIG. 4 implanted within the spine—not including polyaxial pedicle screws to hold the device in place, according to some embodiments of the invention.
  • FIG. 4 shows multiple perspective views of an assembled device 400 including a device base structure with additional attaching components for implantation.
  • the device base structure is shown in more detail in FIG. 5 , showing multiple exploded views of the device base structure 500 that includes five main components.
  • the device base structure 500 is comprised of a longitudinal connector (e.g., a first leg) 100 with a close fit hole 140 (shown in detail in FIG. 1 ), a second leg 200 with a tapped hole 240 (shown in detail in FIG. 2 ), a spacer 300 (shown in detail in FIG. 3 ), a curved guide rod 520 (shown in detail in FIG. 6 ) and a connecting screw 450 .
  • a longitudinal connector e.g., a first leg
  • close fit hole 140 shown in detail in FIG. 1
  • a second leg 200 with a tapped hole 240 shown in detail in FIG. 2
  • a spacer 300 shown in detail in FIG. 3
  • a curved guide rod 520 shown in detail in FIG
  • 500 (A) shows another perspective exploded view of the device base structure 500 , including the first 100 , the second leg 200 , the spacer 300 , the curved guide rod 520 , and the connecting screw 450 to connect the first leg 100 to the second leg 200 with the spacer 300 in between to create a fixed spacing between the first leg 100 and the second leg 200 .
  • the connecting screw 450 may be a standard screw threaded with a fixed thread pitch, or any other suitable screw to connect the first leg 100 with the second leg 200 spaced apart by the spacer 300 .
  • the connecting screw 450 may be a standard screw threaded with a fixed thread pitch, or any other suitable screw to connect the first leg 100 with the second leg 200 spaced apart by the spacer 300 .
  • FIG. 1 showing the first leg 100 and FIG. 2 showing the second leg
  • the two legs FIG. 1 and FIG. 2 are designed with two features.
  • the first feature shows the bottom of the leg starting as a shaft and the second feature is the top block which has an oval hole and a second hole.
  • the first leg 100 includes a shaft 160 and a top block 180 including a first hole 120 and a second hole 140 .
  • the top block 180 of the first leg can serve as a first connection portion of the first leg 100 .
  • the shaft 160 of the first leg may be elongated and extend from the top block 180 at an angle with respect to a vertical axis, the vertical axis being in line with the top block 180 of the first leg, as shown in the side view perspective 100 (B).
  • the top block 180 can extend vertically from the shaft 160 along the vertical axis.
  • the first hole 120 can be an oval hole and may be configured to allow slidable passage of a curved guide rod.
  • the second hole 140 can be a close fit hole to allow for free passage of a connecting screw 450 .
  • the first leg 100 (A) shows a front perspective view of the first leg 100 .
  • a side perspective view of the first leg 100 is shown in 100 (B), and a top perspective view is shown in 100 (C).
  • the oval hole 120 e.g., first hole, oval passage
  • the close fit hole 140 e.g., second hole
  • the second leg 200 can include a shaft 250 and a top block 280 having a tapped hole 240 and an oval hole 220 .
  • the top block 280 of the second leg 200 can serve as a second connection portion of the second leg.
  • the shaft 260 of the second leg may be elongated and extend from the top block 280 at an angle with respect to a vertical axis, the vertical axis being in line with the top block 280 of the second leg, as shown in the side view perspective 200 (B).
  • the top block 280 can extend vertically from the shaft 260 along the vertical axis.
  • the tapped hole 240 of the second leg 200 in FIG. 2 allows for placement of the connecting screw 450 (of FIGS. 4 and 5 ).
  • the tapped hole 240 can be threaded with a pitch corresponding to the thread pitch of the connecting screw 450 (of FIGS. 4 and 5 ), thus configured to threadably receive the connecting screw 450 with a spacer 300 in between the first leg 100 and the second leg 200 .
  • the oval hole 220 of the second leg 200 can include a vertical diameter and a horizontal diameter, with a specific ratio between the vertical diameter and the horizontal diameter, to accommodate a thickness and shape of the curved guide rod 520 (of FIGS. 4 and 5 ).
  • the oval hole 220 of the second leg 200 can be angled to provide slidable passage of the curved guide rod 520 .
  • a front perspective view of the second leg 200 is shown in 200 (A).
  • a side perspective view of the second leg 200 is shown in 200 (B), and a top perspective view is shown in 200 (C).
  • the spacer 300 is shown in FIG. 3 .
  • a front perspective view of the spacer 300 is shown in 300 (A), including an opening 320 with a diameter 322 .
  • 300 (B) shows a side perspective view of the spacer 300 .
  • the spacer 300 can have a thickness 340 and a width 342 , the width 342 being the distance the spacer 300 can maintain between the first leg 100 and the second leg 200 .
  • the width of the spacer 300 can be altered and customized depending on the size of the spinous process of a patient.
  • FIG. 6 shows an example of the curved guide rod 520 .
  • the curved guide rod can have a slightly larger width than height, thereby creating an oval cross-section, and can be slidable through the oval hole 120 of the first leg 100 and the oval hole 220 of the second leg 200 .
  • the curved guide rod 520 can have a radius of curvature.
  • the radius of curvature for the guide rod 520 can be determined based on measurements of the patient and/or configured to mimic the anatomic rotational motion of the average person (e.g., radius of curvature can be 36.25 mm, based off the measurements of 8 human anatomical specimens).
  • the curved guide rod 520 can be implanted and held fixed in place with the polyaxial screws 422 , 424 (of FIG. 4 ) placed in the lateral masses of C1 (shown in FIG. 8 ) to fixedly attach the device 400 .
  • the approximate location of the device and rod placement are shown in FIG. 8 , and can be determined based on
  • 700 (A) shows a cross section at line axis A of 700 , which shows a top perspective view of the device base structure 500 without the curved guide rod 520 .
  • the first leg 100 and the second leg 200 are joined by connecting screw 450 and spaced apart by spacer 300 , thus the legs 100 and 200 are fixedly attached to one another via the connecting screw 450 and spacer 300 .
  • the shafts 160 and 260 are at an angle can be fixed or customized depending on the size of the spinous process of the patient and placement on the patient. A length of the shafts 160 , 260 can also be fixed or in other embodiments, customized depending on the patient.
  • the connecting screw 450 joins the first leg 100 and the second leg 200 through the close fit hole 140 of the first leg 100 and the tapped hole 240 of the second leg 200 with the spacer 300 in between.
  • the oval hole 120 of the first leg 100 and the oval hole 220 of the second leg 220 can be parallel and also spaced by the width 342 of the spacer 300 .
  • the curved guide rod 520 may then be passed through the oval holes 120 220 , the oval holes 120 and 220 providing slidable passage for the curved guide rod 520 .
  • the curved guide rod 520 may be arranged to be slidable between the top portions 180 , 280 of the first leg 100 and the second leg 200 , respectively, such that it is rotatable within the oval holes 120 , 220 of the legs 100 , 200 , thus when fixedly attached to the lateral masses C1 and C2, allows the upper vertebrae to rotate freely with respect to the lower vertebrae while being vertically and horizontally stabilized.
  • FIG. 4 shows multiple exemplary views of an assembled device 400 , including the device base structure 500 of FIG. 5 with polyaxial screws.
  • a polyaxial screw can be used for connecting vertebrae to rods in spinal surgery.
  • the legs 100 , 200 start with cylindrical shafts 160 , 260 which can fit into market-approved and clinically used polyaxial screws 420 , and 426 .
  • Polyaxial screws 420 and 426 can be placed in the lateral masses of C2 (shown in FIG. 8 ).
  • the shafts 160 , 260 of the legs 100 , 200 can fasten to the polyaxial screws 420 and 426 via locking caps 434 and 436 .
  • Polyaxial screws can have a spherical head or locking cap, enclosed in a housing, which allows the screw a range of motion along several different axis relative to the housing.
  • a ball joint internal to the housing allows flexibility in placing the screws.
  • the top blocks 180 , 280 of the legs 100 , 200 can be connected via the curved guide rod 520 and attached to polyaxial screws 422 , 424 via locking caps 430 , 432 .
  • the locking caps 430 and 432 can include a housing 432 (a) to allow for the polyaxial screws 422 and 424 to engage into the lateral masses C1 during implanting and can also be configured to enclose the curved guide rod 520 .
  • the locking caps 434 and 436 may be configured to allow the polyaxial screws 420 and 426 to engage into the lateral masses C2 during implanting of the device 400 .
  • a diameter of the shaft 160 , 260 can be determined based on a level of stability created when the device encounters loading stresses and a size of the polyaxial screw heads for proper fitting.
  • Assembled device 400 is shown from a top perspective view in 400 (A).
  • a side perspective view from the side of the first leg 100 of the assembled device 400 is shown in 400 (B).
  • a front perspective view of the assembled device 400 when implanted is shown in 400 (C).
  • the oval holes 120 and 220 on the top blocks 180 , 280 of the legs 100 , 200 can serve to fit the curved guide rod 520 as the assembled device 400 undergoes normal head and neck motions when surgically implanted (as shown in FIG. 8 ).
  • the oval holes 120 and 220 can be sized according to the diameter, thickness, and cross-sectional shape of the curved guide rod 520 .
  • the oval shape allows for slidable passage of the curved guide rod 520 to follow a smooth rotation and can feature a slightly larger horizontal diameter (e.g., width) than vertical diameter (e.g., height).
  • the close fit hole 140 of the first leg 100 and tapped hole 240 of the second leg 200 can be secondary holes in the top block portions 180 , 280 of the legs 100 , 200 .
  • the secondary holes 140 , 240 can be utilized with the connecting screw 450 and spacer 300 , allowing the device 400 to be modular.
  • the width of the device 400 can be altered depending on the size of the spinous process of the patient by using different sized spacers 300 , and/or angle of the shafts 160 , 260 of the legs 100 , 200 .
  • the tapped hole 240 of the second leg 200 may allow the connecting screw 450 to tighten, holding the two legs 100 , 200 and the spacer 300 together.
  • the assembled device 400 in conjunction with the curved guide rod 520 , provides a unique approach to stabilize the atlantoaxial junction, while still allowing rotational motion of C1 and C2.
  • Translational motion is maintained within physiological limits in the anterior/posterior (AP) plane by fixing the shaft part of the legs to the lateral masses of C2 with polyaxial screws (e.g., pedicle screws).
  • the curved guide rod 520 is also held fixed, via the polyaxial screws 422 and 424 , to the lateral masses of C1.
  • Combining the fixed shaft portions 160 , 260 of the legs 100 , 200 and the fixed curved guide rod 520 that runs through the oval holes 120 , 220 , C1 and C2 can move as a unit in AP motion, thus creating stability.
  • the curved guide rod 520 and the oval holes 120 , 220 of the two legs 100 , 200 allow the device 400 to restore axial motion to the joint in a natural range of motion.
  • the device 400 provides a means for stabilizing the atlantoaxial junction while allowing for axial rotation in cases of acquired ligamentous injury or fracture of the dens.
  • Placement of the device is effected via a standard posterior approach to the upper cervical spine. After induction of general anesthesia, cranial tongs are applied in a standard fashion and the patient is carefully positioned prone on bolsters. A midline posterior approach is used with exposure of the C2,3 facet joint and posterior elements. Similarly, a wide exposure of the C1 posterior arch and C1 lateral mass is performed. Hemostasis is secured and maintained with the use of hemostatic materials and bipolar cautery per surgeon preference.
  • screws are inserted in the C2 pars with a start point on the dorsal inferior aspect of the C2 inferior facet.
  • a midsagittal trajectory is used for AP positioning and palpation and visualization of the medial and superior cortical aspects of the C2 pars may aid in screw orientation.
  • Lateral fluoroscopic images assist positioning of the C2 screw in the midsubstance of the pars on the lateral projection.
  • the C1 screw is positioned by drilling in an anatomic direction, generally straight ahead in the AP plane or with slight medial inclination. Unicortical drilling is typically recommended and the longest screw path possible without perforating the anterior cortex of C1 is desirable to maximize fixation in C1.
  • Screw lengths for the C1 screw range between 34 and 40 mm, while C2 screw lengths between 16 and 20 mm may be employed depending on the vertebral artery anatomy and patient size. 3.5-4.0 mm diameter screws are available and may be placed per surgeon discretion.
  • Screw heads are oriented to accept the angled connectors from the caudal ends of the C1-2 longitudinal connectors. Assembly of the device is completed by selecting an appropriate length spacer and connecting the screw to fasten together the left and right longitudinal connectors. The curved rod is seated in the polyaxial screw head affixed to C1 only after it is threaded though the opening in the cranial end of the longitudinal connectors. All locking caps are torqued to manufacturers' specifications after fine adjustment of the C1-2 device is completed. Intraoperative imaging is recommended to verify accurate reduction of the atlantoaxial joint prior to device placement and to ensure appropriate screw placement prior to installation of the motion preserving device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

An apparatus for stabilizing an atlantoaxial junction while allowing for axial rotation in cases of acquired ligamentous injury or fracture of the dens.

Description

  • This application is a continuation of International Patent Application No. PCT/US2013/042280, filed on May 22, 2013, which claims the benefit of U.S. Provisional Application No. 61/650,403, filed on May 22, 2012, which are all incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • Injuries to the atlanto-axial junction (e.g. odontoid fractures, transverse ligament injuries) are common occurrences, affecting approximately up to 50,000 individuals each year in the United States. Surgical intervention is frequently necessary to prevent atlanto-axial subluxation with concomitant spinal cord injury. To prevent post-injury displacement, spinal fusion (arthrodesis) is performed to fuse the 1st and 2nd cervical vertebrae and thus stabilize the affected area.
  • Many fixation devices for stabilizing the atlantoaxial junction are configured to completely prevent relative motion. However, arthrodesis limits rotation of the upper cervical spine and head, which can negatively impact an individual's participation in simple activities of daily living. In addition, spinal arthrodesis has been found to increase loading stress at adjacent segments with a potential for acceleration of rates of degeneration.
  • BRIEF SUMMARY OF THE INVENTION
  • Embodiments of the invention are related to a method for stabilization of the atlantoaxial junction while allowing for axial rotation in cases of acquired ligamentous injury or fracture of the dens. In the method, an orthopedic device can be implanted using standard spine screws. The orthopedic device includes a curved guide rod and a modular device. The guide rod can be secured to the lateral masses of the 1st cervical vertebra using polyaxial orthopedic bone screws. The modular device has two angled longitudinal connectors, a spacer, and a connecting screw. The longitudinal connectors capture the guide rod cranially, and are also fixed to polyaxial bone screws which are anchored into the pars/pedicles of the 2nd cervical vertebra. Once implanted, the device will limit translational motion of the vertebrae in relation to one another in all planes, but will allow for rotation of the C1 vertebrae in relation to the C2 vertebrae. The modular design and use of polyaxial screws for attachment accommodate variability in patient size.
  • The motion preservation device allows for significant rotation of the C1 vertebrae about the C2 dens compared to other orthopedic spine devices. A circumferential rod is used as a guide for restored axial rotation. A modular assembly of the stabilization mechanism allows for ease of implantation and adjustment. The device stabilizes the atlantoaxial junction to within physiological limits.
  • Embodiments of the invention are also related to an apparatus that includes a first leg having a first connection portion, a second leg having a second connection portion, and a curved guide rod slidable within the first and second connection portions.
  • In some embodiments, the first leg comprises a first elongated shaft extending from the first connection portion along a first axis at an angle with respect to a vertical axis.
  • In some embodiments, the first connection portion comprises a first block that vertically extends from the first elongated shaft along the vertical axis, wherein the block defines an ovalized passage sized to allow passage of the curved guide rod.
  • In some embodiments, the second leg comprises an elongated shaft extending from the first connection portion along a second axis at an angle with respect to a vertical axis.
  • In some embodiments, the second connection portion comprises a second block that vertically extends from the second elongated shaft along the vertical axis, wherein the second block defines a second ovalized passage sized to allow passage of the curved guide rod.
  • In some embodiments, the curved guide rid is curved to mimic anatomic rotational motion of an average person.
  • In some embodiments, the first connection portion includes a through hole for free passage of a screw and wherein the second connection portion includes a threaded hole for threadably receiving the screw and a spacer therebetween.
  • Embodiments of the invention are also related to a method. In this method, a first leg having a first connection portion is fixedly attached to a first portion of a lower vertebrae. A second leg having a second connection portion is fixedly attached to a second portion of a lower vertebrae. A curved guide rod is arranged to be slidable within the first and second connection portions. A first lateral portion of the curved guide rod is fixedly attached to a first portion of an upper vertebrae. A second lateral portion of the curved guide rod is fixedly attached to a second portion of an upper vertebrae. After fixedly attaching the first leg, second leg, and curved guide rod, the upper vertebrae is free to rotate with respect to lower vertebrae by way of the curved guide rod sliding within the first and second connection portions while being vertically and horiztontally stabilized.
  • In some embodiments, the first and second connection portions of the first and second legs are fixedly attached to one another.
  • In some embodiments, a spacer separates the first and second connection portions.
  • In some embodiments, the first and second portions of the lower vertebrae comprise first and second lateral masses of the lower vertebrae.
  • In some embodiments, the first and second legs are secured to the lower vertebrae using screws.
  • In some embodiments, the first and second lateral portions of the curved guide rod are secured to the upper vertebrae using screws.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows various views of the Longitudinal Connector (Leg)—Close Fit Hole, according to some embodiments of the invention.
  • FIG. 2 shows various views of the Longitudinal Connector (Leg)—Tapped Hole, according to some embodiments of the invention.
  • FIG. 3 shows a spacer, according to some embodiments of the invention.
  • FIG. 4 shows various views of an assembled implant, according to some embodiments of the invention.
  • FIG. 5 shows various exploded views of the implant of FIG. 4.
  • FIG. 6 shows the curved guide rod, according to some embodiments of the invention.
  • FIG. 7 illustrates a cut view of the device exposing the oval hole and screw hole, according to some embodiments of the invention.
  • FIG. 8 shows multiple views of the device of FIG. 4 implanted within the spine—not including polyaxial pedicle screws to hold the device in place, according to some embodiments of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the invention in more detail, FIG. 4 shows multiple perspective views of an assembled device 400 including a device base structure with additional attaching components for implantation. The device base structure is shown in more detail in FIG. 5, showing multiple exploded views of the device base structure 500 that includes five main components. The device base structure 500 is comprised of a longitudinal connector (e.g., a first leg) 100 with a close fit hole 140 (shown in detail in FIG. 1), a second leg 200 with a tapped hole 240 (shown in detail in FIG. 2), a spacer 300 (shown in detail in FIG. 3), a curved guide rod 520 (shown in detail in FIG. 6) and a connecting screw 450. 500(A) shows another perspective exploded view of the device base structure 500, including the first 100, the second leg 200, the spacer 300, the curved guide rod 520, and the connecting screw 450 to connect the first leg 100 to the second leg 200 with the spacer 300 in between to create a fixed spacing between the first leg 100 and the second leg 200.
  • The connecting screw 450 may be a standard screw threaded with a fixed thread pitch, or any other suitable screw to connect the first leg 100 with the second leg 200 spaced apart by the spacer 300. Each of the main components of the device base structure 500 will be described in more detail below with respect to their corresponding figures.
  • Referring to FIG. 1 showing the first leg 100 and FIG. 2 showing the second leg, multiple perspective views are shown. The two legs FIG. 1 and FIG. 2 are designed with two features. The first feature shows the bottom of the leg starting as a shaft and the second feature is the top block which has an oval hole and a second hole. In FIG. 1, the first leg 100 includes a shaft 160 and a top block 180 including a first hole 120 and a second hole 140. The top block 180 of the first leg can serve as a first connection portion of the first leg 100. The shaft 160 of the first leg may be elongated and extend from the top block 180 at an angle with respect to a vertical axis, the vertical axis being in line with the top block 180 of the first leg, as shown in the side view perspective 100(B). The top block 180 can extend vertically from the shaft 160 along the vertical axis.
  • The first hole 120 can be an oval hole and may be configured to allow slidable passage of a curved guide rod. The second hole 140 can be a close fit hole to allow for free passage of a connecting screw 450. The first leg 100(A) shows a front perspective view of the first leg 100. A side perspective view of the first leg 100 is shown in 100(B), and a top perspective view is shown in 100(C). The oval hole 120 (e.g., first hole, oval passage) can include a vertical diameter and a horizontal diameter, with a specific ratio between the vertical diameter and the horizontal diameter, to accommodate a thickness and shape of the curved guide rod 520 (of FIGS. 4 and 5). The close fit hole 140 (e.g., second hole) can include a fixed diameter to accommodate free passage of the connecting screw 450 (of FIGS. 4 and 5).
  • In FIG. 2, the second leg 200 can include a shaft 250 and a top block 280 having a tapped hole 240 and an oval hole 220. As in the first leg 100, the top block 280 of the second leg 200 can serve as a second connection portion of the second leg. The shaft 260 of the second leg may be elongated and extend from the top block 280 at an angle with respect to a vertical axis, the vertical axis being in line with the top block 280 of the second leg, as shown in the side view perspective 200(B). The top block 280 can extend vertically from the shaft 260 along the vertical axis.
  • The tapped hole 240 of the second leg 200 in FIG. 2 allows for placement of the connecting screw 450 (of FIGS. 4 and 5). The tapped hole 240 can be threaded with a pitch corresponding to the thread pitch of the connecting screw 450 (of FIGS. 4 and 5), thus configured to threadably receive the connecting screw 450 with a spacer 300 in between the first leg 100 and the second leg 200. Similar to the first leg 100, the oval hole 220 of the second leg 200 can include a vertical diameter and a horizontal diameter, with a specific ratio between the vertical diameter and the horizontal diameter, to accommodate a thickness and shape of the curved guide rod 520 (of FIGS. 4 and 5). The oval hole 220 of the second leg 200 can be angled to provide slidable passage of the curved guide rod 520. A front perspective view of the second leg 200 is shown in 200(A). A side perspective view of the second leg 200 is shown in 200(B), and a top perspective view is shown in 200(C).
  • The spacer 300 is shown in FIG. 3. A front perspective view of the spacer 300 is shown in 300(A), including an opening 320 with a diameter 322. 300(B) shows a side perspective view of the spacer 300. The spacer 300 can have a thickness 340 and a width 342, the width 342 being the distance the spacer 300 can maintain between the first leg 100 and the second leg 200. The width of the spacer 300 can be altered and customized depending on the size of the spinous process of a patient.
  • FIG. 6 shows an example of the curved guide rod 520. The curved guide rod can have a slightly larger width than height, thereby creating an oval cross-section, and can be slidable through the oval hole 120 of the first leg 100 and the oval hole 220 of the second leg 200. The curved guide rod 520 can have a radius of curvature. The radius of curvature for the guide rod 520 can be determined based on measurements of the patient and/or configured to mimic the anatomic rotational motion of the average person (e.g., radius of curvature can be 36.25 mm, based off the measurements of 8 human anatomical specimens). The curved guide rod 520 can be implanted and held fixed in place with the polyaxial screws 422, 424 (of FIG. 4) placed in the lateral masses of C1 (shown in FIG. 8) to fixedly attach the device 400. The approximate location of the device and rod placement are shown in FIG. 8, and can be determined based on measurements of the patient.
  • Referring to FIG. 7, the assembly of the device base structure 500 of FIG. 5 can be shown. 700(A) shows a cross section at line axis A of 700, which shows a top perspective view of the device base structure 500 without the curved guide rod 520. In the cross section 700(a), the first leg 100 and the second leg 200 are joined by connecting screw 450 and spaced apart by spacer 300, thus the legs 100 and 200 are fixedly attached to one another via the connecting screw 450 and spacer 300. The shafts 160 and 260 are at an angle can be fixed or customized depending on the size of the spinous process of the patient and placement on the patient. A length of the shafts 160, 260 can also be fixed or in other embodiments, customized depending on the patient. The connecting screw 450 joins the first leg 100 and the second leg 200 through the close fit hole 140 of the first leg 100 and the tapped hole 240 of the second leg 200 with the spacer 300 in between. Thus, the oval hole 120 of the first leg 100 and the oval hole 220 of the second leg 220 can be parallel and also spaced by the width 342 of the spacer 300.
  • The curved guide rod 520 may then be passed through the oval holes 120 220, the oval holes 120 and 220 providing slidable passage for the curved guide rod 520. The curved guide rod 520 may be arranged to be slidable between the top portions 180, 280 of the first leg 100 and the second leg 200, respectively, such that it is rotatable within the oval holes 120, 220 of the legs 100, 200, thus when fixedly attached to the lateral masses C1 and C2, allows the upper vertebrae to rotate freely with respect to the lower vertebrae while being vertically and horizontally stabilized.
  • FIG. 4 shows multiple exemplary views of an assembled device 400, including the device base structure 500 of FIG. 5 with polyaxial screws. A polyaxial screw can be used for connecting vertebrae to rods in spinal surgery. The legs 100, 200 start with cylindrical shafts 160, 260 which can fit into market-approved and clinically used polyaxial screws 420, and 426. Polyaxial screws 420 and 426 can be placed in the lateral masses of C2 (shown in FIG. 8). The shafts 160, 260 of the legs 100, 200 can fasten to the polyaxial screws 420 and 426 via locking caps 434 and 436. Polyaxial screws can have a spherical head or locking cap, enclosed in a housing, which allows the screw a range of motion along several different axis relative to the housing. A ball joint internal to the housing allows flexibility in placing the screws.
  • The top blocks 180, 280 of the legs 100, 200 can be connected via the curved guide rod 520 and attached to polyaxial screws 422, 424 via locking caps 430, 432. The locking caps 430 and 432 can include a housing 432(a) to allow for the polyaxial screws 422 and 424 to engage into the lateral masses C1 during implanting and can also be configured to enclose the curved guide rod 520. The locking caps 434 and 436 may be configured to allow the polyaxial screws 420 and 426 to engage into the lateral masses C2 during implanting of the device 400.
  • A diameter of the shaft 160, 260 can be determined based on a level of stability created when the device encounters loading stresses and a size of the polyaxial screw heads for proper fitting. Assembled device 400 is shown from a top perspective view in 400(A). A side perspective view from the side of the first leg 100 of the assembled device 400 is shown in 400(B). A front perspective view of the assembled device 400 when implanted is shown in 400(C).
  • The oval holes 120 and 220 on the top blocks 180, 280 of the legs 100, 200 (e.g., longitudinal connectors) can serve to fit the curved guide rod 520 as the assembled device 400 undergoes normal head and neck motions when surgically implanted (as shown in FIG. 8). The oval holes 120 and 220 can be sized according to the diameter, thickness, and cross-sectional shape of the curved guide rod 520. The oval shape allows for slidable passage of the curved guide rod 520 to follow a smooth rotation and can feature a slightly larger horizontal diameter (e.g., width) than vertical diameter (e.g., height).
  • The close fit hole 140 of the first leg 100 and tapped hole 240 of the second leg 200 can be secondary holes in the top block portions 180, 280 of the legs 100, 200. The secondary holes 140, 240 can be utilized with the connecting screw 450 and spacer 300, allowing the device 400 to be modular. The width of the device 400 can be altered depending on the size of the spinous process of the patient by using different sized spacers 300, and/or angle of the shafts 160, 260 of the legs 100, 200. The tapped hole 240 of the second leg 200 may allow the connecting screw 450 to tighten, holding the two legs 100, 200 and the spacer 300 together.
  • As shown in FIG. 8, the assembled device 400, in conjunction with the curved guide rod 520, provides a unique approach to stabilize the atlantoaxial junction, while still allowing rotational motion of C1 and C2. Translational motion is maintained within physiological limits in the anterior/posterior (AP) plane by fixing the shaft part of the legs to the lateral masses of C2 with polyaxial screws (e.g., pedicle screws). The curved guide rod 520 is also held fixed, via the polyaxial screws 422 and 424, to the lateral masses of C1. Combining the fixed shaft portions 160, 260 of the legs 100, 200 and the fixed curved guide rod 520 that runs through the oval holes 120, 220, C1 and C2 can move as a unit in AP motion, thus creating stability. In addition to reducing unnatural AP motion, the curved guide rod 520 and the oval holes 120, 220 of the two legs 100, 200 allow the device 400 to restore axial motion to the joint in a natural range of motion. The device 400 provides a means for stabilizing the atlantoaxial junction while allowing for axial rotation in cases of acquired ligamentous injury or fracture of the dens.
  • Surgical Technique
  • Placement of the device is effected via a standard posterior approach to the upper cervical spine. After induction of general anesthesia, cranial tongs are applied in a standard fashion and the patient is carefully positioned prone on bolsters. A midline posterior approach is used with exposure of the C2,3 facet joint and posterior elements. Similarly, a wide exposure of the C1 posterior arch and C1 lateral mass is performed. Hemostasis is secured and maintained with the use of hemostatic materials and bipolar cautery per surgeon preference.
  • After exposure of the posterior elements, screws are inserted in the C2 pars with a start point on the dorsal inferior aspect of the C2 inferior facet. A midsagittal trajectory is used for AP positioning and palpation and visualization of the medial and superior cortical aspects of the C2 pars may aid in screw orientation. Lateral fluoroscopic images assist positioning of the C2 screw in the midsubstance of the pars on the lateral projection.
  • Similarly, after exposure of the C1 lateral mass, the C1 screw is positioned by drilling in an anatomic direction, generally straight ahead in the AP plane or with slight medial inclination. Unicortical drilling is typically recommended and the longest screw path possible without perforating the anterior cortex of C1 is desirable to maximize fixation in C1.
  • Screw lengths for the C1 screw range between 34 and 40 mm, while C2 screw lengths between 16 and 20 mm may be employed depending on the vertebral artery anatomy and patient size. 3.5-4.0 mm diameter screws are available and may be placed per surgeon discretion.
  • Screw heads are oriented to accept the angled connectors from the caudal ends of the C1-2 longitudinal connectors. Assembly of the device is completed by selecting an appropriate length spacer and connecting the screw to fasten together the left and right longitudinal connectors. The curved rod is seated in the polyaxial screw head affixed to C1 only after it is threaded though the opening in the cranial end of the longitudinal connectors. All locking caps are torqued to manufacturers' specifications after fine adjustment of the C1-2 device is completed. Intraoperative imaging is recommended to verify accurate reduction of the atlantoaxial joint prior to device placement and to ensure appropriate screw placement prior to installation of the motion preserving device.
  • The wound is then closed in layers. Perioperative antibiotic prophylaxis is recommended. Postoperative immobilization with a cervical orthosis is also recommended for a period of six weeks to allow soft tissue healing. Postoperative plain radiographs should be obtained to verify accurate device placement. Interval radiographs postoperatively are recommended at 1, 3, 6, 12 and 24 months to ensure maintenance of reduction.
  • While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a number of modifications, changes, and adaptations may be implemented. Further, any dimensions mentioned are exemplary guidelines for one skilled in the art, and thus do not necessarily represent limitations as to size and/or proportion of embodiments of the invention.

Claims (13)

1. An apparatus to implant in a spine, comprising a means for stabilizing an atlantoaxial junction while allowing for axial rotation of stabilized vertebrae of the spine after implantation thereof, in cases of acquired ligamentous injury or fracture of the dens.
2. An apparatus for implanting in a spine comprising:
a first leg and second, physically distinct, leg, the first and second legs, respectively, having a first connection portion and a second connection portion, to connect the physically distinct first and second legs; and
a curved guide rod slidable within the first and second connection portions.
3. The apparatus of claim 2, wherein the first leg comprises a first elongated shaft extending from the first connection portion along a first axis at an angle with respect to a vertical axis and the second, physically distinct, leg comprises a second elongated shaft extending from the second connection portion along a first axis at an angle with respect to the vertical axis.
4. The apparatus of claim 3, wherein the first and second connection portions comprise first and second blocks that vertically extend, respectively, from the first and second elongated shafts along the vertical axis, wherein the blocks comprise respectively, first and second ovalized passages sized to allow passage of the curved guide.
5. The apparatus of claim 3, wherein the first and second elongated shafts are adapted to be fastened, respectively, to a first and second polyaxial screw.
6. The apparatus of claim 5, wherein the guide rod has a larger width than height to create an oval cross-section.
7. The apparatus of claim 2, wherein the curved guide rod comprises a curve to mimic anatomic rotational motion of an average person.
8. The apparatus of claim 2, wherein the first connection portion includes a through hole for free passage of a screw and wherein the second connection portion includes a threaded hole for threadably receiving the screw and a spacer therebetween.
9-14. (canceled)
15. The apparatus of claim 2, wherein the curved guide rod to limit translational motion and allow axial rotation of particular vertebrae.
16. The apparatus of claim 2, wherein the curved guide rod comprises a guide for axial rotation of particular vertebrae.
17. The apparatus of claim 2, comprising polyaxial screws to connect vertebrae respectively to the first and second connection portions.
18. The apparatus of claim 6, comprising polyaxial screws to respectively attach the first block and the second block to vertebrae.
US15/499,739 2012-05-22 2017-04-27 Method and device for restabilization with axial rotation of the atlantoaxial junction Abandoned US20170290610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/499,739 US20170290610A1 (en) 2012-05-22 2017-04-27 Method and device for restabilization with axial rotation of the atlantoaxial junction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261650403P 2012-05-22 2012-05-22
PCT/US2013/042280 WO2013177314A1 (en) 2012-05-22 2013-05-22 A method and device for restabilization with axial rotation of the atlantoaxial junction
US14/550,161 US9662142B2 (en) 2012-05-22 2014-11-21 Method and device for restabilization with axial rotation of the atlantoaxial junction
US15/499,739 US20170290610A1 (en) 2012-05-22 2017-04-27 Method and device for restabilization with axial rotation of the atlantoaxial junction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/550,161 Continuation US9662142B2 (en) 2012-05-22 2014-11-21 Method and device for restabilization with axial rotation of the atlantoaxial junction

Publications (1)

Publication Number Publication Date
US20170290610A1 true US20170290610A1 (en) 2017-10-12

Family

ID=49624323

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/550,161 Expired - Fee Related US9662142B2 (en) 2012-05-22 2014-11-21 Method and device for restabilization with axial rotation of the atlantoaxial junction
US15/499,739 Abandoned US20170290610A1 (en) 2012-05-22 2017-04-27 Method and device for restabilization with axial rotation of the atlantoaxial junction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/550,161 Expired - Fee Related US9662142B2 (en) 2012-05-22 2014-11-21 Method and device for restabilization with axial rotation of the atlantoaxial junction

Country Status (2)

Country Link
US (2) US9662142B2 (en)
WO (1) WO2013177314A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211144B2 (en) * 2009-09-09 2015-12-15 Globus Medical, Inc. Spine surgery device and method
WO2013177314A1 (en) * 2012-05-22 2013-11-28 The Regents Of The University Of California A method and device for restabilization with axial rotation of the atlantoaxial junction
WO2015155789A2 (en) * 2014-04-07 2015-10-15 Salunke Pravin Artificial implant for atlas-axis (c1-2) lateral joints and method of use thereof
CN104166762A (en) * 2014-08-15 2014-11-26 段少银 Construction method of finite element model of atlanto-axial joint, ligaments and vertebral artery
US11065038B2 (en) 2019-08-08 2021-07-20 Medos International Sarl Fracture reduction using implant based solution
WO2023015243A2 (en) * 2021-08-04 2023-02-09 University Of Florida Research Foundation, Incorporated Neurosurgical navigation system reference array apparatus
CN115363732A (en) * 2022-08-31 2022-11-22 北京市富乐科技开发有限公司 A device for reduction of occipitocervical dislocation

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387212A (en) * 1993-01-26 1995-02-07 Yuan; Hansen A. Vertebral locking and retrieving system with central locking rod
US5437671A (en) * 1992-03-10 1995-08-01 Zimmer, Inc. Perpendicular rod connector for spinal fixation device
US5702392A (en) * 1995-09-25 1997-12-30 Wu; Shing-Sheng Coupling plate for spinal correction and a correction device of using the same
US20040015166A1 (en) * 2002-07-22 2004-01-22 Gorek Josef E. System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
US20050203518A1 (en) * 2004-03-05 2005-09-15 Biedermann Motech Gmbh Stabilization device for the dynamic stabilization of vertebrae or bones and rod like element for such a stabilization device
US20050228381A1 (en) * 2004-04-09 2005-10-13 Kirschman David L Disk augmentation system and method
US20050261768A1 (en) * 2004-05-21 2005-11-24 Trieu Hai H Interspinous spacer
US20060079896A1 (en) * 2004-09-30 2006-04-13 Depuy Spine, Inc. Methods and devices for posterior stabilization
US20060084991A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US20060129239A1 (en) * 2004-12-13 2006-06-15 Kwak Seungkyu D Artificial facet joint device having a compression spring
US20060142759A1 (en) * 2004-12-23 2006-06-29 Impliant Ltd. Adjustable spinal prosthesis
US20060149229A1 (en) * 2004-12-30 2006-07-06 Kwak Seungkyu Daniel Artificial facet joint
US20060149230A1 (en) * 2004-12-30 2006-07-06 Kwak Seungkyu Daniel Posterior stabilization system
US20060241601A1 (en) * 2005-04-08 2006-10-26 Trautwein Frank T Interspinous vertebral and lumbosacral stabilization devices and methods of use
US20060282078A1 (en) * 2005-06-10 2006-12-14 Depuy Spine, Inc. Posterior dynamic stabilization cross connectors
US20070005137A1 (en) * 2005-06-30 2007-01-04 Depuy Spine, Inc. Non-linear artificial ligament system
US20070073289A1 (en) * 2005-09-27 2007-03-29 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US20070118120A1 (en) * 2005-11-23 2007-05-24 Sdgi Holdings, Inc. Spinous process anchoring systems and methods
US20070191831A1 (en) * 2006-01-26 2007-08-16 Depuy Spine, Inc. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US20070191847A1 (en) * 2003-11-07 2007-08-16 Uri Arnin Spinal prostheses
US20070233077A1 (en) * 2006-03-31 2007-10-04 Khalili Farid B Dynamic intervertebral spacer assembly
US20080091200A1 (en) * 2004-04-22 2008-04-17 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods
US20090131984A1 (en) * 2007-11-19 2009-05-21 Linares Miguel A Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US7604652B2 (en) * 2005-10-11 2009-10-20 Impliant Ltd. Spinal prosthesis
US20100030266A1 (en) * 2008-07-30 2010-02-04 Martin Michael J Posterior element rigid retention system and methods of using same
US20100076493A1 (en) * 2004-02-17 2010-03-25 Facet Solutions, Inc. Facet Joint Replacement Instruments and Methods
US7892258B2 (en) * 2008-01-14 2011-02-22 Globus Medical, Inc. Spine stabilization system and integrated rod
US20110071569A1 (en) * 2009-09-21 2011-03-24 Michael Black Transverse Connector
US20110087289A1 (en) * 2009-10-12 2011-04-14 Khiem Pham Trans-Iliac Connector
US20110087288A1 (en) * 2007-10-24 2011-04-14 Tara Stevenson Surgical Fixation System and Related Methods
US8128664B2 (en) * 2005-04-07 2012-03-06 Zimmer Spine Intervertebral implant for lumbosacral joint
US20120095512A1 (en) * 2010-10-18 2012-04-19 Raj Nihalani Cross connectors
US20120095511A1 (en) * 2010-10-18 2012-04-19 Raj Nihalani Cross connectors
US20120109202A1 (en) * 2010-04-30 2012-05-03 Neuraxis Llc Intersegmental motion preservation system for use in the spine and methods for use thereof
US20120150303A1 (en) * 2007-11-19 2012-06-14 Linares Medical Devices, Llc Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US20120150230A1 (en) * 2010-12-09 2012-06-14 Innovasis, Inc. Cross connector with central hub
US8496688B2 (en) * 2009-12-31 2013-07-30 Industrial Technology Research Institute Flexible spine fixing structure
US8702758B2 (en) * 2009-12-31 2014-04-22 Industrial Technology Research Institute Flexible spine fixing structure
US20140277163A1 (en) * 2013-03-15 2014-09-18 Ryan Kretzer Reinforcement systems for spine stabilization constructs
US20140277146A1 (en) * 2013-03-15 2014-09-18 Blackstone Medical, Inc. Cross-braced bilateral spinal rod connector
US8920471B2 (en) * 2010-07-12 2014-12-30 K2M, Inc. Transverse connector
US20150039034A1 (en) * 2013-08-01 2015-02-05 Musc Foundation For Research Development Skeletal bone fixation mechanism
US20150157362A1 (en) * 2013-12-05 2015-06-11 Warsaw Orthopedic, Inc. Spinal implant system and method
US20150182263A1 (en) * 2013-03-15 2015-07-02 Jcbd, Llc Spinal stabilization system
US20160302929A1 (en) * 2015-04-15 2016-10-20 FreeseTEC Corporation Spinal fusion containment system
US9510872B2 (en) * 2013-03-15 2016-12-06 Jcbd, Llc Spinal stabilization system
US20170007299A1 (en) * 2015-07-07 2017-01-12 K2M, Inc. Spinal construct with flexible member
US9603637B2 (en) * 2014-06-06 2017-03-28 Aurora Spine, Inc. Polyaxial interspinous fusion implant and bone growth stimulation system
US9662142B2 (en) * 2012-05-22 2017-05-30 Cervical Solutions, Llc Method and device for restabilization with axial rotation of the atlantoaxial junction
US9662150B1 (en) * 2007-02-26 2017-05-30 Nuvasive, Inc. Spinal stabilization system and methods of use
US20180000522A1 (en) * 2016-06-30 2018-01-04 Linares Medical Devices, Llc Vertebral scaffold for supporting a rear of a spinal column along opposite extending rows of lateral processes
US20180049778A1 (en) * 2016-08-18 2018-02-22 Premia Spine Ltd. Spinal prosthesis with adjustable support element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE476930T1 (en) * 2002-02-20 2010-08-15 Stephen Ritland DEVICE FOR CONNECTING HAND SCREWS
WO2008019397A2 (en) * 2006-08-11 2008-02-14 Archus Orthopedics, Inc. Angled washer polyaxial connection for dynamic spine prosthesis
US20080091271A1 (en) * 2006-10-13 2008-04-17 Bonitati John A Mobile/fixed prosthetic knee systems
US8556939B2 (en) * 2008-01-08 2013-10-15 Fraser Cummins Henderson Mathematical relationship of strain, neurological dysfunction and abnormal behavior resulting from neurological dysfunction of the brainstem

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437671A (en) * 1992-03-10 1995-08-01 Zimmer, Inc. Perpendicular rod connector for spinal fixation device
US5387212A (en) * 1993-01-26 1995-02-07 Yuan; Hansen A. Vertebral locking and retrieving system with central locking rod
US5702392A (en) * 1995-09-25 1997-12-30 Wu; Shing-Sheng Coupling plate for spinal correction and a correction device of using the same
US20040015166A1 (en) * 2002-07-22 2004-01-22 Gorek Josef E. System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
US20070191847A1 (en) * 2003-11-07 2007-08-16 Uri Arnin Spinal prostheses
US20100076493A1 (en) * 2004-02-17 2010-03-25 Facet Solutions, Inc. Facet Joint Replacement Instruments and Methods
US20050203518A1 (en) * 2004-03-05 2005-09-15 Biedermann Motech Gmbh Stabilization device for the dynamic stabilization of vertebrae or bones and rod like element for such a stabilization device
US20050228381A1 (en) * 2004-04-09 2005-10-13 Kirschman David L Disk augmentation system and method
US20080091200A1 (en) * 2004-04-22 2008-04-17 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods
US20050261768A1 (en) * 2004-05-21 2005-11-24 Trieu Hai H Interspinous spacer
US20060079896A1 (en) * 2004-09-30 2006-04-13 Depuy Spine, Inc. Methods and devices for posterior stabilization
US20060084991A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US20060129239A1 (en) * 2004-12-13 2006-06-15 Kwak Seungkyu D Artificial facet joint device having a compression spring
US20060142759A1 (en) * 2004-12-23 2006-06-29 Impliant Ltd. Adjustable spinal prosthesis
US20060149230A1 (en) * 2004-12-30 2006-07-06 Kwak Seungkyu Daniel Posterior stabilization system
US20060149229A1 (en) * 2004-12-30 2006-07-06 Kwak Seungkyu Daniel Artificial facet joint
US8128664B2 (en) * 2005-04-07 2012-03-06 Zimmer Spine Intervertebral implant for lumbosacral joint
US20060241601A1 (en) * 2005-04-08 2006-10-26 Trautwein Frank T Interspinous vertebral and lumbosacral stabilization devices and methods of use
US20060282078A1 (en) * 2005-06-10 2006-12-14 Depuy Spine, Inc. Posterior dynamic stabilization cross connectors
US20070005137A1 (en) * 2005-06-30 2007-01-04 Depuy Spine, Inc. Non-linear artificial ligament system
US20070073289A1 (en) * 2005-09-27 2007-03-29 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US7604652B2 (en) * 2005-10-11 2009-10-20 Impliant Ltd. Spinal prosthesis
US20070118120A1 (en) * 2005-11-23 2007-05-24 Sdgi Holdings, Inc. Spinous process anchoring systems and methods
US20070191831A1 (en) * 2006-01-26 2007-08-16 Depuy Spine, Inc. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US20070233077A1 (en) * 2006-03-31 2007-10-04 Khalili Farid B Dynamic intervertebral spacer assembly
US9662150B1 (en) * 2007-02-26 2017-05-30 Nuvasive, Inc. Spinal stabilization system and methods of use
US20110087288A1 (en) * 2007-10-24 2011-04-14 Tara Stevenson Surgical Fixation System and Related Methods
US20090131984A1 (en) * 2007-11-19 2009-05-21 Linares Miguel A Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US20120150303A1 (en) * 2007-11-19 2012-06-14 Linares Medical Devices, Llc Spine support implant including inter vertebral insertable fluid ballastable insert and inter-vertebral web retaining harnesses
US7892258B2 (en) * 2008-01-14 2011-02-22 Globus Medical, Inc. Spine stabilization system and integrated rod
US20100030266A1 (en) * 2008-07-30 2010-02-04 Martin Michael J Posterior element rigid retention system and methods of using same
US20110071569A1 (en) * 2009-09-21 2011-03-24 Michael Black Transverse Connector
US20110087289A1 (en) * 2009-10-12 2011-04-14 Khiem Pham Trans-Iliac Connector
US8496688B2 (en) * 2009-12-31 2013-07-30 Industrial Technology Research Institute Flexible spine fixing structure
US8702758B2 (en) * 2009-12-31 2014-04-22 Industrial Technology Research Institute Flexible spine fixing structure
US20120109202A1 (en) * 2010-04-30 2012-05-03 Neuraxis Llc Intersegmental motion preservation system for use in the spine and methods for use thereof
US8920471B2 (en) * 2010-07-12 2014-12-30 K2M, Inc. Transverse connector
US20120095512A1 (en) * 2010-10-18 2012-04-19 Raj Nihalani Cross connectors
US20120095511A1 (en) * 2010-10-18 2012-04-19 Raj Nihalani Cross connectors
US20120150230A1 (en) * 2010-12-09 2012-06-14 Innovasis, Inc. Cross connector with central hub
US9662142B2 (en) * 2012-05-22 2017-05-30 Cervical Solutions, Llc Method and device for restabilization with axial rotation of the atlantoaxial junction
US20150182263A1 (en) * 2013-03-15 2015-07-02 Jcbd, Llc Spinal stabilization system
US20140277146A1 (en) * 2013-03-15 2014-09-18 Blackstone Medical, Inc. Cross-braced bilateral spinal rod connector
US9510872B2 (en) * 2013-03-15 2016-12-06 Jcbd, Llc Spinal stabilization system
US9603638B2 (en) * 2013-03-15 2017-03-28 Jcbd, Llc Spinal stabilization system
US20140277163A1 (en) * 2013-03-15 2014-09-18 Ryan Kretzer Reinforcement systems for spine stabilization constructs
US20150039034A1 (en) * 2013-08-01 2015-02-05 Musc Foundation For Research Development Skeletal bone fixation mechanism
US20150157362A1 (en) * 2013-12-05 2015-06-11 Warsaw Orthopedic, Inc. Spinal implant system and method
US9603637B2 (en) * 2014-06-06 2017-03-28 Aurora Spine, Inc. Polyaxial interspinous fusion implant and bone growth stimulation system
US20160302929A1 (en) * 2015-04-15 2016-10-20 FreeseTEC Corporation Spinal fusion containment system
US20170007299A1 (en) * 2015-07-07 2017-01-12 K2M, Inc. Spinal construct with flexible member
US20180000522A1 (en) * 2016-06-30 2018-01-04 Linares Medical Devices, Llc Vertebral scaffold for supporting a rear of a spinal column along opposite extending rows of lateral processes
US20180049778A1 (en) * 2016-08-18 2018-02-22 Premia Spine Ltd. Spinal prosthesis with adjustable support element

Also Published As

Publication number Publication date
US20150209084A1 (en) 2015-07-30
WO2013177314A1 (en) 2013-11-28
US9662142B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
US9662142B2 (en) Method and device for restabilization with axial rotation of the atlantoaxial junction
US7883532B2 (en) Vertebral pars interarticularis clamp a new spine fixation device, instrumentation, and methodology
US9375238B2 (en) Rotatable bone plate
US8523922B2 (en) Dynamic multi-axial fastener
US7901433B2 (en) Occipito-cervical stabilization system and method
US8470009B1 (en) Bone fastener and method of use
US20110178552A1 (en) Vertebral pars interarticularis clamp a new spine fixation device, instrumentation, and methodology
US20140107659A1 (en) In situ rod measuring instrument and method of use
US9044276B2 (en) Odontoid fracture dynamic compression apparatus and method
JP2011509712A (en) Spinal fixation device and method
EP3226789B1 (en) Bone implant having tether band
US12042183B2 (en) Integral double rod spinal construct
Chen et al. Posterior atlantoaxial transpedicular screw and plate fixation
Khoueir et al. Use of hinged rods for controlled osteoclastic correction of a fixed cervical kyphotic deformity in ankylosing spondylitis: Case report
US20200289165A1 (en) A screw-rod instrument specially used for posterior atlantoaxial vertebrae fixation
US9060813B1 (en) Surgical fixation system and related methods
US20160128734A1 (en) Threaded Setscrew Crosslink
US20170065302A9 (en) Spinal construct and method
CN119403504A (en) Spinal Implants
US20120245693A1 (en) Spinal fixation device
US20130204302A1 (en) Spinal implant system and method
US20120245638A1 (en) Sacral brace
JP2025530258A (en) Hook-spring plate for regulating immature rib growth to correct early-onset scoliosis
Bonthius et al. Rib construct for severe spinal deformity in young children: a 3-part investigation of biomechanical, animal, and clinical case data
Jeszenszky et al. Vertebral resection

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERVICAL SOLUTIONS, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTO, ROLANDO;LIPSCOMB, KRISTEN;LEUNG, ENOCH;AND OTHERS;SIGNING DATES FROM 20161010 TO 20161019;REEL/FRAME:042170/0330

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION