US20170287893A1 - Electrostatic discharge protection device having an adjustable triggering threshold - Google Patents

Electrostatic discharge protection device having an adjustable triggering threshold Download PDF

Info

Publication number
US20170287893A1
US20170287893A1 US15/252,964 US201615252964A US2017287893A1 US 20170287893 A1 US20170287893 A1 US 20170287893A1 US 201615252964 A US201615252964 A US 201615252964A US 2017287893 A1 US2017287893 A1 US 2017287893A1
Authority
US
United States
Prior art keywords
terminal
power supply
bias
supply terminal
low power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/252,964
Other versions
US9793257B1 (en
Inventor
Mathieu Rouviere
Arnaud Florence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Tours SAS
Original Assignee
STMicroelectronics Tours SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Tours SAS filed Critical STMicroelectronics Tours SAS
Assigned to STMICROELECTRONICS (TOURS) SAS reassignment STMICROELECTRONICS (TOURS) SAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FLORENCE, ARNAUD, Rouviere, Mathieu
Publication of US20170287893A1 publication Critical patent/US20170287893A1/en
Application granted granted Critical
Publication of US9793257B1 publication Critical patent/US9793257B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0676Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type comprising combinations of diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Definitions

  • the present disclosure relates to devices for protecting electronic components, and particularly integrated circuits, against electrostatic discharges.
  • FIG. 1 schematically illustrates an electronic device comprising an integrated circuit 100 , and a device 110 for protecting integrated circuit 100 against electrostatic discharges.
  • Integrated circuit 100 comprises terminals of connection to external devices. More particularly, in the shown example, integrated circuit 100 comprises a terminal 101 of application of a high power supply potential VDD of the circuit, a terminal 102 of application of a low power supply potential or reference potential GND of the circuit, and an input/output terminal 103 (IO) of the circuit, capable of supplying and/or of receiving data signals.
  • VDD high power supply potential
  • GND low power supply potential or reference potential
  • IO input/output terminal 103
  • Protection device 110 is coupled to connection terminals 101 , 102 , and 103 of integrated circuit 100 .
  • the function of protection device 110 is to enable, when an electrostatic discharge occurs on one of the connection terminals of integrated circuit 100 , a fast removal of the discharge, to avoid for the latter to damage circuit 100 .
  • Protection device 110 of FIG. 1 comprises two diodes 111 and 112 , series-connected between power supply terminals 102 and 101 of integrated circuit 100 .
  • the junction of diodes 111 and 112 is coupled to input/output terminal 103 of circuit 100 .
  • diode 111 has its anode connected to low power supply terminal 102 and has its cathode connected to input/output terminal 103
  • diode 112 has its anode connected to input/output terminal 103 and its cathode connected to high power supply terminal 101 .
  • Protection device 110 further comprises a Zener diode 113 connected in parallel with diodes 111 and 112 , between the low and high power supply terminals 102 and 101 of circuit 100 . Zener diode 113 has its anode connected to terminal 102 and its cathode connected to terminal 101 .
  • Protection device 110 operates as follows. When a overvoltage which is positive with respect to the reference potential or ground potential GND occurs on terminal 103 of integrated circuit 100 , this overvoltage is removed via diode 112 , which is then forward-conductive, and via Zener diode 113 , which then conducts in avalanche. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 103 of circuit 100 , this overvoltage is removed via diode 111 , which is then forward-conductive. When an overvoltage which is positive with respect to reference potential GND occurs on terminal 101 of circuit 100 , this overvoltage is removed via Zener diode 113 , which then conducts in avalanche. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 101 of circuit 100 , this overvoltage is removed via Zener diode 113 , which is then forward-conductive.
  • the threshold for triggering the protection is set by the avalanche threshold of Zener diode 113 .
  • the triggering threshold should be selected to be greater than power supply voltage VDD of integrated circuit 100 , and greater than the maximum voltage level of the data signals capable of transiting on input/output terminal 103 of circuit 100 , but smaller than the maximum overvoltage level capable of being withstood by circuit 100 with no degradation.
  • the window within which the protection device triggering threshold should be selected is relatively limited, which poses problems on the design of the electronic systems.
  • a specific protection device should be selected, by taking into account the levels of the nominal operating voltages of the component, and the maximum overvoltage level that the component can withstand.
  • an electrostatic discharge protection device with an adjustable triggering threshold, to be able to use a same protection device in systems having different nominal operating voltages.
  • An embodiment provides an electrostatic discharge protection device, comprising: first and second diodes series-connected between first and second connection terminals of the device; a third connection terminal coupled to the junction of the first and second diodes; and a capacitor connected in parallel with the first and second diodes, between the first and second terminals.
  • the first diode is forward-connected between the second and third terminals
  • the second diode is forward-connected between the third and first terminals
  • the capacitor has a first electrode connected to the first terminal and a second electrode connected to the second terminal.
  • the device comprises a package for encapsulating the first and second diodes and the capacitor, the package exposing the first, second, and third connection terminals of the device.
  • Another embodiment provides a system comprising an integrated circuit and a protection device such as defined hereabove.
  • the integrated circuit comprises a first terminal of application of a power supply potential, a second terminal of application of a reference potential, and a third input/output terminal, the second and third terminals of the protection device being respectively coupled to the second and third terminals of the integrated circuit, and the first terminal of the protection device being coupled to a terminal of application of a DC bias potential.
  • the first terminal of the protection device is coupled to the first terminal of the integrated circuit.
  • the first terminal of the protection device is coupled to a terminal of application of a DC bias potential different from the power supply potential.
  • FIG. 1 previously-described, schematically illustrates an electronic system comprising an integrated circuit and an example of an integrated circuit protection device
  • FIG. 2 schematically illustrates an electronic system comprising an integrated circuit and an example of an integrated circuit protection device according to an embodiment
  • FIG. 3 schematically illustrates an electronic system comprising an integrated circuit and another example of an integrated circuit protection device according to an embodiment.
  • term “connected” is used to designate a direct electric connection, with no intermediate electronic component, for example, by means of one or a plurality of conductive tracks or conductive wires
  • term “coupled” or term “linked” is used to designate either an electric connection which may be direct (then meaning “connected”) or indirect (that is, via one or a plurality of intermediate components).
  • expressions “approximately”, “substantially”, and “in the order of” mean to within 10%, preferably to within 5%.
  • FIG. 2 schematically illustrates an electronic system comprising an integrated circuit 100 , for example, identical or similar to circuit 100 of FIG. 1 , and an embodiment of a device 210 of protection of integrated circuit 100 against electrostatic discharges.
  • Protection device 210 of FIG. 2 comprises two diodes 211 and 212 series-connected between connection terminals N 1 and N 2 of device 210 . Terminals N 1 and N 2 of the device are respectively coupled to the high power supply terminal 101 and to the low power supply terminal 102 of circuit 100 .
  • the series connection junction of diodes 211 and 212 is coupled to a connection terminal N 3 of device 210 , coupled to input/output terminal 103 of circuit 100 . More particularly, in the shown example, diode 211 has its anode connected to terminal N 2 and its cathode connected to terminal N 3 , and diode 212 has its anode connected to terminal N 3 and its cathode connected to terminal N 1 .
  • Protection device 210 further comprises a capacitor 213 connected in parallel with diodes 211 and 212 , between connection terminals N 1 and N 2 of device 210 . In the shown example, the electrodes of capacitor 213 are respectively connected to terminal N 1 and to terminal N 2 . Protection device 210 operates as follows. When the integrated circuit 100 is being powered and there is no overvoltage, capacitor 210 of the protection device charges to a voltage substantially equal to power supply voltage VDD of circuit 100 . When an overvoltage which is positive with respect to the reference potential or ground potential GND occurs on terminal 103 of integrated circuit 100 , this overvoltage is removed via diode 212 , which then is forward-conductive, and capacitor 213 , which is conductive for transient signals.
  • the triggering threshold of the protection is set by the DC voltage level across capacitor 213 , that is, by the DC bias potential applied to terminal N 1 of the protection device, that is, high power supply potential VDD of integrated circuit 100 in the example of FIG. 2 .
  • protection device 210 automatically adapts to the level of power supply voltage VDD of integrated circuit 100 to be protected.
  • identical protection devices 210 may be used in systems powered at different voltage levels.
  • integrated circuit 100 may comprise a plurality of different input/output terminals (I/O) to be protected.
  • Protection device 210 of FIG. 2 may then be replicated as many times as circuit 100 comprises input/output terminals to be protected, terminals N 1 and N 2 of the different devices 210 being respectively connected to power supply terminals 101 and 102 of circuit 100 , each input/output terminal to be protected of circuit 100 being connected to terminal N 3 of one of protection devices 210 .
  • a same capacitor 213 may be shared by a plurality of input/output terminals of the protection device.
  • the protection device may comprise a plurality of pairs of diodes 211 , 212 series-connected between terminals N 1 and N 2 , the junction of each pair of diodes being intended to be connected to one of the input/output terminals of the circuit to be protected, and a single capacitor 213 shared by said pairs of diodes, connected between terminals N 1 and N 2 .
  • Diodes 211 and 212 and capacitor 213 of protection device 210 are preferably components external to integrated circuit 100 . This enables to position protection 210 at closest to the impact of the transient signal independently from the position of circuit 100 to be protected in the system. To be able to withstand high electrostatic discharges, diodes 211 and 212 and capacitor 213 preferably have low series resistances, and thus have relatively large surface areas. As an example, the equivalent dynamic series resistance of the protection device is in the range from 10 to 100 m ⁇ , for example, in the order of 50 m ⁇ . Diodes 211 and 212 are for example capable of withstanding with no degradation currents up to 16 A for an 8-kV IEC 61000-4-2 transient wave.
  • capacitor 213 should be able to withstand a voltage equivalent to the discharge of the capacitance of the network (in the order of 150 pF) of the transient wave.
  • capacitor 213 has a capacitance in the range from 0.5 to 5 ⁇ F, for example, in the order of 1 ⁇ F, which corresponds to a voltage across capacitor 213 in the order of 1.2 V.
  • the voltage across capacitor 213 falls to approximately 0.24 V.
  • the residual voltage for a residual overvoltage on the input of the circuit to be protected then is in the order of VDD+the voltage drop of diode 212 in the on state+the voltage across capacitor 213 , that is, approximately 1.2 V for a 1- ⁇ F capacitance. Relatively low residual voltages can thus be obtained with a capacitor having a capacitance in the range from 0.5 to 5 ⁇ F.
  • Diodes 211 and 212 and capacitor 213 are for example arranged in a same encapsulation package of protection device 210 , which package does not include circuit 100 to be protected and exposes connection terminals N 1 , N 2 , and N 3 of protection device 210 .
  • Diode 211 and 212 and capacitor 213 may be monolithically integrated in a same integrated circuit chip. As a variation, diodes 211 and 212 and capacitor 213 may be discrete components integrated in a same package to form a SiP-type protection device (“System In Package”).
  • FIG. 3 schematically illustrates another example of an electronic system comprising an integrated circuit 100 , for example, identical or similar to circuit 100 of FIGS. 1 and 2 , and a device 210 for protecting integrated circuit 100 against electrostatic discharges.
  • Protection device 210 of the system of FIG. 3 is for example identical to protection device 210 of the system of FIG. 2 .
  • connection terminal N 1 of protection device 210 is not connected to high power supply terminal 101 of circuit 100 to be protected, but rather to a terminal or node 301 of application of a DC bias potential VBIAS, different from high power supply potential VDD of the circuit to be protected.
  • Bias potential VBIAS which is positive with respect to reference potential GND, may be supplied by integrated circuit 100 to be protected, or by an external bias circuit (not shown) of the system.
  • the threshold for triggering the protection may be set to a level independent from power supply voltage VDD of integrated circuit 100 to be protected, for example, to a level lower or higher than power supply voltage VDD.
  • protection device 210 enables to remove positive or negative overvoltages occurring on input/output terminal 103 of circuit 100 , but does not enable to remove overvoltages occurring on high power supply terminal 101 of circuit 100 .
  • Other protection components may be provided to address electrostatic discharges likely to occur on terminal 101 .
  • integrated circuit 100 may comprise, for each input/output terminal of the circuit, in addition to diodes 211 and 212 of protection device 210 , two integrated protection diodes, series-connected between low power supply terminal 102 and high power supply terminal 101 of the circuit, the junction of the two diodes being coupled to the input/output terminal to be protected of circuit 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

An electrostatic discharge protection device includes first and second diodes series-connected between first and second connection terminals. A third connection terminal is coupled to a junction of the first and second diodes. A capacitor is connected in parallel with the first and second diodes between the first and second terminals.

Description

    PRIORITY CLAIM
  • This application claims the priority benefit of French Application for Patent No. 1652712, filed Mar. 30, 2016, the disclosure of which is hereby incorporated by reference in its entirety to the maximum extent allowable by law.
  • TECHNICAL FIELD
  • The present disclosure relates to devices for protecting electronic components, and particularly integrated circuits, against electrostatic discharges.
  • BACKGROUND
  • FIG. 1 schematically illustrates an electronic device comprising an integrated circuit 100, and a device 110 for protecting integrated circuit 100 against electrostatic discharges.
  • Integrated circuit 100 comprises terminals of connection to external devices. More particularly, in the shown example, integrated circuit 100 comprises a terminal 101 of application of a high power supply potential VDD of the circuit, a terminal 102 of application of a low power supply potential or reference potential GND of the circuit, and an input/output terminal 103 (IO) of the circuit, capable of supplying and/or of receiving data signals.
  • Protection device 110 is coupled to connection terminals 101, 102, and 103 of integrated circuit 100. The function of protection device 110 is to enable, when an electrostatic discharge occurs on one of the connection terminals of integrated circuit 100, a fast removal of the discharge, to avoid for the latter to damage circuit 100.
  • Protection device 110 of FIG. 1 comprises two diodes 111 and 112, series-connected between power supply terminals 102 and 101 of integrated circuit 100. The junction of diodes 111 and 112 is coupled to input/output terminal 103 of circuit 100. More particularly, in this example, diode 111 has its anode connected to low power supply terminal 102 and has its cathode connected to input/output terminal 103, and diode 112 has its anode connected to input/output terminal 103 and its cathode connected to high power supply terminal 101. Protection device 110 further comprises a Zener diode 113 connected in parallel with diodes 111 and 112, between the low and high power supply terminals 102 and 101 of circuit 100. Zener diode 113 has its anode connected to terminal 102 and its cathode connected to terminal 101.
  • Protection device 110 operates as follows. When a overvoltage which is positive with respect to the reference potential or ground potential GND occurs on terminal 103 of integrated circuit 100, this overvoltage is removed via diode 112, which is then forward-conductive, and via Zener diode 113, which then conducts in avalanche. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 103 of circuit 100, this overvoltage is removed via diode 111, which is then forward-conductive. When an overvoltage which is positive with respect to reference potential GND occurs on terminal 101 of circuit 100, this overvoltage is removed via Zener diode 113, which then conducts in avalanche. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 101 of circuit 100, this overvoltage is removed via Zener diode 113, which is then forward-conductive.
  • For positive overvoltages, the threshold for triggering the protection is set by the avalanche threshold of Zener diode 113. The triggering threshold should be selected to be greater than power supply voltage VDD of integrated circuit 100, and greater than the maximum voltage level of the data signals capable of transiting on input/output terminal 103 of circuit 100, but smaller than the maximum overvoltage level capable of being withstood by circuit 100 with no degradation.
  • In recent integrated circuit manufacturing processes, the window within which the protection device triggering threshold should be selected is relatively limited, which poses problems on the design of the electronic systems. In particular, for each component to be protected, a specific protection device should be selected, by taking into account the levels of the nominal operating voltages of the component, and the maximum overvoltage level that the component can withstand.
  • To ease the design of electronic systems and decrease costs, it would be desirable to have an electrostatic discharge protection device with an adjustable triggering threshold, to be able to use a same protection device in systems having different nominal operating voltages.
  • SUMMARY
  • An embodiment provides an electrostatic discharge protection device, comprising: first and second diodes series-connected between first and second connection terminals of the device; a third connection terminal coupled to the junction of the first and second diodes; and a capacitor connected in parallel with the first and second diodes, between the first and second terminals.
  • According to an embodiment, the first diode is forward-connected between the second and third terminals, and the second diode is forward-connected between the third and first terminals.
  • According to an embodiment, the capacitor has a first electrode connected to the first terminal and a second electrode connected to the second terminal.
  • According to an embodiment, the device comprises a package for encapsulating the first and second diodes and the capacitor, the package exposing the first, second, and third connection terminals of the device.
  • Another embodiment provides a system comprising an integrated circuit and a protection device such as defined hereabove.
  • According to an embodiment, the integrated circuit comprises a first terminal of application of a power supply potential, a second terminal of application of a reference potential, and a third input/output terminal, the second and third terminals of the protection device being respectively coupled to the second and third terminals of the integrated circuit, and the first terminal of the protection device being coupled to a terminal of application of a DC bias potential.
  • According to an embodiment, the first terminal of the protection device is coupled to the first terminal of the integrated circuit.
  • According to an embodiment, the first terminal of the protection device is coupled to a terminal of application of a DC bias potential different from the power supply potential.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings, wherein:
  • FIG. 1, previously-described, schematically illustrates an electronic system comprising an integrated circuit and an example of an integrated circuit protection device;
  • FIG. 2 schematically illustrates an electronic system comprising an integrated circuit and an example of an integrated circuit protection device according to an embodiment; and
  • FIG. 3 schematically illustrates an electronic system comprising an integrated circuit and another example of an integrated circuit protection device according to an embodiment.
  • DETAILED DESCRIPTION
  • The same elements have been designated with the same reference numerals in the different drawings. For clarity, only those elements which are useful to the understanding of the described embodiments have been shown and are detailed. In the present description, term “connected” is used to designate a direct electric connection, with no intermediate electronic component, for example, by means of one or a plurality of conductive tracks or conductive wires, and term “coupled” or term “linked” is used to designate either an electric connection which may be direct (then meaning “connected”) or indirect (that is, via one or a plurality of intermediate components). Unless otherwise specified, expressions “approximately”, “substantially”, and “in the order of” mean to within 10%, preferably to within 5%.
  • FIG. 2 schematically illustrates an electronic system comprising an integrated circuit 100, for example, identical or similar to circuit 100 of FIG. 1, and an embodiment of a device 210 of protection of integrated circuit 100 against electrostatic discharges.
  • Protection device 210 of FIG. 2 comprises two diodes 211 and 212 series-connected between connection terminals N1 and N2 of device 210. Terminals N1 and N2 of the device are respectively coupled to the high power supply terminal 101 and to the low power supply terminal 102 of circuit 100. The series connection junction of diodes 211 and 212 is coupled to a connection terminal N3 of device 210, coupled to input/output terminal 103 of circuit 100. More particularly, in the shown example, diode 211 has its anode connected to terminal N2 and its cathode connected to terminal N3, and diode 212 has its anode connected to terminal N3 and its cathode connected to terminal N1. Protection device 210 further comprises a capacitor 213 connected in parallel with diodes 211 and 212, between connection terminals N1 and N2 of device 210. In the shown example, the electrodes of capacitor 213 are respectively connected to terminal N1 and to terminal N2. Protection device 210 operates as follows. When the integrated circuit 100 is being powered and there is no overvoltage, capacitor 210 of the protection device charges to a voltage substantially equal to power supply voltage VDD of circuit 100. When an overvoltage which is positive with respect to the reference potential or ground potential GND occurs on terminal 103 of integrated circuit 100, this overvoltage is removed via diode 212, which then is forward-conductive, and capacitor 213, which is conductive for transient signals. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 103 of circuit 100, this overvoltage is removed via diode 211, which is then forward-conductive. When an overvoltage which is positive with respect to reference potential GND occurs on terminal 101 of circuit 100, this overvoltage is removed via capacitor 213, which is conductive for transient signals. When an overvoltage which is negative with respect to reference potential GND occurs on terminal 101 of circuit 100, this overvoltage is removed via diodes 211 and 212, which are then forward-conductive.
  • Thus, in the embodiment of FIG. 2, for positive overvoltages, the triggering threshold of the protection is set by the DC voltage level across capacitor 213, that is, by the DC bias potential applied to terminal N1 of the protection device, that is, high power supply potential VDD of integrated circuit 100 in the example of FIG. 2.
  • An advantage of the configuration of FIG. 2 is that the triggering threshold of protection device 210 automatically adapts to the level of power supply voltage VDD of integrated circuit 100 to be protected. Thus, identical protection devices 210 may be used in systems powered at different voltage levels.
  • In practice, integrated circuit 100 may comprise a plurality of different input/output terminals (I/O) to be protected. Protection device 210 of FIG. 2 may then be replicated as many times as circuit 100 comprises input/output terminals to be protected, terminals N1 and N2 of the different devices 210 being respectively connected to power supply terminals 101 and 102 of circuit 100, each input/output terminal to be protected of circuit 100 being connected to terminal N3 of one of protection devices 210. As a variation, rather than replicating capacitor 213 as many times as circuit 100 comprises input/output terminals to be protected, a same capacitor 213 may be shared by a plurality of input/output terminals of the protection device. In other words, the protection device may comprise a plurality of pairs of diodes 211, 212 series-connected between terminals N1 and N2, the junction of each pair of diodes being intended to be connected to one of the input/output terminals of the circuit to be protected, and a single capacitor 213 shared by said pairs of diodes, connected between terminals N1 and N2.
  • Diodes 211 and 212 and capacitor 213 of protection device 210 are preferably components external to integrated circuit 100. This enables to position protection 210 at closest to the impact of the transient signal independently from the position of circuit 100 to be protected in the system. To be able to withstand high electrostatic discharges, diodes 211 and 212 and capacitor 213 preferably have low series resistances, and thus have relatively large surface areas. As an example, the equivalent dynamic series resistance of the protection device is in the range from 10 to 100 mΩ, for example, in the order of 50 mΩ. Diodes 211 and 212 are for example capable of withstanding with no degradation currents up to 16 A for an 8-kV IEC 61000-4-2 transient wave. For IEC 61000-4-2 transient overvoltages, capacitor 213 should be able to withstand a voltage equivalent to the discharge of the capacitance of the network (in the order of 150 pF) of the transient wave. As an example, capacitor 213 has a capacitance in the range from 0.5 to 5 μF, for example, in the order of 1 μF, which corresponds to a voltage across capacitor 213 in the order of 1.2 V. For a 5-μF capacitance, the voltage across capacitor 213 falls to approximately 0.24 V. The residual voltage for a residual overvoltage on the input of the circuit to be protected then is in the order of VDD+the voltage drop of diode 212 in the on state+the voltage across capacitor 213, that is, approximately 1.2 V for a 1-μF capacitance. Relatively low residual voltages can thus be obtained with a capacitor having a capacitance in the range from 0.5 to 5 μF. Diodes 211 and 212 and capacitor 213 are for example arranged in a same encapsulation package of protection device 210, which package does not include circuit 100 to be protected and exposes connection terminals N1, N2, and N3 of protection device 210. Diode 211 and 212 and capacitor 213 may be monolithically integrated in a same integrated circuit chip. As a variation, diodes 211 and 212 and capacitor 213 may be discrete components integrated in a same package to form a SiP-type protection device (“System In Package”).
  • FIG. 3 schematically illustrates another example of an electronic system comprising an integrated circuit 100, for example, identical or similar to circuit 100 of FIGS. 1 and 2, and a device 210 for protecting integrated circuit 100 against electrostatic discharges.
  • Protection device 210 of the system of FIG. 3 is for example identical to protection device 210 of the system of FIG. 2.
  • The system of FIG. 3 differs from the system of FIG. 2 in that, in the system of FIG. 3, connection terminal N1 of protection device 210 is not connected to high power supply terminal 101 of circuit 100 to be protected, but rather to a terminal or node 301 of application of a DC bias potential VBIAS, different from high power supply potential VDD of the circuit to be protected. Bias potential VBIAS, which is positive with respect to reference potential GND, may be supplied by integrated circuit 100 to be protected, or by an external bias circuit (not shown) of the system.
  • An advantage of the configuration of FIG. 3 is that the threshold for triggering the protection may be set to a level independent from power supply voltage VDD of integrated circuit 100 to be protected, for example, to a level lower or higher than power supply voltage VDD.
  • It should be noted that in the configuration of FIG. 3, protection device 210 enables to remove positive or negative overvoltages occurring on input/output terminal 103 of circuit 100, but does not enable to remove overvoltages occurring on high power supply terminal 101 of circuit 100. Other protection components, not shown, may be provided to address electrostatic discharges likely to occur on terminal 101.
  • Specific embodiments have been described. Various alterations, modifications, and improvements will occur to those skilled in the art. In particular, the described embodiments are not limited to the examples of numerical values mentioned in the present description. It should further be noted that the electronic systems described in relation with FIGS. 2 and 3 may comprise additional protection components integrated to circuit 100, not detailed in the drawings, which complete the protection provided by device 210. In particular, integrated circuit 100 may comprise, for each input/output terminal of the circuit, in addition to diodes 211 and 212 of protection device 210, two integrated protection diodes, series-connected between low power supply terminal 102 and high power supply terminal 101 of the circuit, the junction of the two diodes being coupled to the input/output terminal to be protected of circuit 100.
  • Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.

Claims (12)

1. A device for protecting a circuit against electrostatic discharges, comprising:
first and second diodes series-connected between first and second connection terminals;
a third connection terminal coupled to a junction between the first and second diodes and connected to an input/output node of said circuit; and
a capacitor connected in parallel with the first and second diodes and between the first and second terminals; and
wherein said second connection terminal is connected to a ground node of said circuit and wherein said first connection terminal is coupled to receive a bias voltage different from a voltage at the input/output node, ground node or supply voltage node of said circuit.
2. The device of claim 1, wherein the first diode is forward-connected between the second and third terminals, and the second diode is forward-connected between the third and first terminals.
3. The device of claim 1, wherein the capacitor has a first electrode connected to the first terminal and a second electrode connected to the second terminal.
4. The device of claim 1, comprising a package for encapsulating the first and second diodes and the capacitor, this package exposing the first, second and third connection terminals.
5. A system, comprising:
an integrated circuit having a high power supply terminal, a signal terminal and a low power supply terminal; and
a device for protecting the integrated circuit comprising:
first and second diodes series-connected between bias node and the low power supply terminal;
a junction between the first and second diodes connected to the signal terminal; and
a capacitor connected in parallel with the first and second diodes and between the bias node and the low power supply terminal; and
wherein the bias node is coupled to receive bias voltage different from a voltage at any of the high power supply terminal, signal terminal or low power supply terminal of said integrated circuit.
6. A system, comprising:
an integrated circuit having a high power supply terminal, a signal terminal and a low power supply terminal, the high and low power supply terminals receiving circuit power supply voltages;
a device for protecting the integrated circuit consisting of:
first and second diodes series-connected between a bias terminal and the low power supply terminal, said bias terminal different from the high power supply terminal, the signal terminal and the low power supply terminal;
a junction between the first and second diodes connected to the signal terminal; and
a capacitor connected in parallel with the series-connected first and second diodes and between the bias terminal and the low power supply terminal; and
a bias supply configured to apply a bias voltage to said bias terminal that is different from the circuit power supply voltages.
7. (canceled)
8. The device of claim 6, wherein the first diode is forward-connected between the low power supply terminal and the signal terminal, and the second diode is forward-connected between the signal terminal and the bias terminal.
9. The device of claim 6, wherein the capacitor has a first electrode connected to the bias supply terminal and a second electrode connected to the low power supply terminal.
10. The device of claim 6, comprising a package for encapsulating the first and second diodes and the capacitor, this package exposing the bias supply terminal, the signal terminals and the low power supply terminal.
11. A system, comprising:
an integrated circuit having a high power supply terminal, a signal terminal and a low power supply terminal; and
a device for protecting the integrated circuit comprising:
a first diode directly connected between the signal terminal and the low power supply terminal;
a second diode directly connected between a bias terminal and the signal terminal, said bias terminal being different from the high power supply terminal, the signal terminal and the low power supply terminal;
a capacitor directly connected between the bias terminal and the low power supply terminal; and
a bias supply configured to apply a bias voltage to said bias terminal, said bias voltage being different from a voltage at the high power supply terminal, the signal terminal and the low power supply terminal.
12. A system, comprising:
an integrated circuit having a high power supply terminal, a signal terminal and a low power supply terminal; and
a device for protecting the integrated circuit against an electrostatic discharge (ESD), said device comprising:
a first ESD diode connected between the signal terminal and the low power supply terminal;
a second ESD diode connected between a bias terminal and the signal terminal, said bias terminal being different from the high power supply terminal, the signal terminal and the low power supply terminal;
a capacitor connected between the bias terminal and the low power supply terminal; and
a bias supply configured to apply a bias voltage to said bias terminal, said bias voltage being different from a voltage at the high power supply terminal, the signal terminal and the low power supply terminal.
US15/252,964 2016-03-30 2016-08-31 Electrostatic discharge protection device having an adjustable triggering threshold Active US9793257B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652712A FR3049766B1 (en) 2016-03-30 2016-03-30 DEVICE FOR PROTECTION AGAINST ELECTROSTATIC DISCHARGES WITH AN ADJUSTABLE TRIGGER THRESHOLD
FR1652712 2016-03-30

Publications (2)

Publication Number Publication Date
US20170287893A1 true US20170287893A1 (en) 2017-10-05
US9793257B1 US9793257B1 (en) 2017-10-17

Family

ID=55953296

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/252,964 Active US9793257B1 (en) 2016-03-30 2016-08-31 Electrostatic discharge protection device having an adjustable triggering threshold

Country Status (3)

Country Link
US (1) US9793257B1 (en)
CN (2) CN206516631U (en)
FR (1) FR3049766B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200035670A1 (en) * 2018-07-27 2020-01-30 Faraday Technology Corp. Electrostatic discharge protection apparatus for integrated circuit
US11801168B2 (en) 2019-11-15 2023-10-31 The Procter And Gamble Company Tape-type absorbent article with belt structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189588A (en) * 1989-03-15 1993-02-23 Matsushita Electric Industrial Co., Ltd. Surge protection apparatus
US20020180552A1 (en) * 2001-05-29 2002-12-05 Bennett Jeffrey H. Input power limiter for a microwave receiver
US8183593B2 (en) * 2009-10-16 2012-05-22 Oracle America, Inc. Semiconductor die with integrated electro-static discharge device
US20130050884A1 (en) * 2011-08-23 2013-02-28 Himax Technologies Limited Electrostatic discharge (esd) protection element and esd circuit thereof
FR2994335A1 (en) * 2012-08-01 2014-02-07 St Microelectronics Tours Sas DEVICE FOR PROTECTING AN INTEGRATED CIRCUIT AGAINST OVERVOLTAGES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200035670A1 (en) * 2018-07-27 2020-01-30 Faraday Technology Corp. Electrostatic discharge protection apparatus for integrated circuit
US11801168B2 (en) 2019-11-15 2023-10-31 The Procter And Gamble Company Tape-type absorbent article with belt structure

Also Published As

Publication number Publication date
FR3049766B1 (en) 2018-11-16
FR3049766A1 (en) 2017-10-06
CN107293539A (en) 2017-10-24
CN206516631U (en) 2017-09-22
CN107293539B (en) 2019-03-19
US9793257B1 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
KR101784061B1 (en) Transient voltage protection circuits and devices
US9716382B2 (en) Electrostatic protection circuit and semiconductor integrated circuit apparatus
EP2937901B1 (en) Electrostatic discharge protection circuit
US9520716B2 (en) Electrostatic protection circuit and semiconductor integrated circuit apparatus
EP3261121B1 (en) Surge protection circuit
US10236684B2 (en) ESD protection circuit
US11411395B2 (en) Electrostatic discharge protection circuit and operation method
CN102693978A (en) Electrostatic discharge protection circuit
US20130003242A1 (en) Transient voltage suppressor for multiple pin assignments
US20180374705A1 (en) Integrated transient voltage suppressor circuit
JP2021044488A (en) Protection circuit
CN101378056A (en) Semiconductor integrated circuit
US9793257B1 (en) Electrostatic discharge protection device having an adjustable triggering threshold
US10978444B2 (en) RC-triggered bracing circuit
US8773823B2 (en) Overvoltage protection structure for a differential link
US10910822B2 (en) Control of a power transistor with a drive circuit
US8908340B2 (en) Switched transient voltage suppression circuit
CN118044084A (en) Level sensing cut-off for rate triggered electrostatic discharge protection circuit
TWI506908B (en) Transient voltage suppressor
CN118017454A (en) ESD protection circuit
US20130249044A1 (en) Semiconductor device
CN112242696A (en) Electrostatic discharge protection circuit and operation method
US12009358B2 (en) Protective circuit against electrostatic discharges
US20230369849A1 (en) Esd protection for multi-die integrated circuits (ics) including integrated passive devices
US20180351353A1 (en) Electrostatic discharge (esd) protection for a high side driver circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS (TOURS) SAS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROUVIERE, MATHIEU;FLORENCE, ARNAUD;SIGNING DATES FROM 20140908 TO 20160908;REEL/FRAME:039735/0173

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4