US20170283464A1 - Crystalline And Amorphous Forms Of A Beta-Arrestin Effector - Google Patents
Crystalline And Amorphous Forms Of A Beta-Arrestin Effector Download PDFInfo
- Publication number
- US20170283464A1 US20170283464A1 US15/345,234 US201615345234A US2017283464A1 US 20170283464 A1 US20170283464 A1 US 20170283464A1 US 201615345234 A US201615345234 A US 201615345234A US 2017283464 A1 US2017283464 A1 US 2017283464A1
- Authority
- US
- United States
- Prior art keywords
- less
- seq
- degrees
- ray powder
- powder diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000000072 beta-Arrestins Human genes 0.000 title abstract description 6
- 108010080367 beta-Arrestins Proteins 0.000 title abstract description 6
- 239000012636 effector Substances 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 18
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 71
- 239000007864 aqueous solution Substances 0.000 claims description 29
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 230000001376 precipitating effect Effects 0.000 claims description 12
- 230000002526 effect on cardiovascular system Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 48
- 239000000203 mixture Substances 0.000 description 130
- 239000000047 product Substances 0.000 description 74
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 69
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 68
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 62
- 239000000243 solution Substances 0.000 description 58
- -1 peptidyl compound Chemical class 0.000 description 32
- 239000002244 precipitate Substances 0.000 description 31
- 239000007857 degradation product Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 24
- 235000019441 ethanol Nutrition 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 239000003814 drug Substances 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 229940079593 drug Drugs 0.000 description 20
- 230000001404 mediated effect Effects 0.000 description 20
- 230000021736 acetylation Effects 0.000 description 16
- 238000006640 acetylation reaction Methods 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 239000000843 powder Substances 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 230000006240 deamidation Effects 0.000 description 15
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 15
- 238000009472 formulation Methods 0.000 description 15
- 230000022244 formylation Effects 0.000 description 15
- 238000006170 formylation reaction Methods 0.000 description 15
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 230000001154 acute effect Effects 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 238000004128 high performance liquid chromatography Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 239000003755 preservative agent Substances 0.000 description 12
- 208000024172 Cardiovascular disease Diseases 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 229940024606 amino acid Drugs 0.000 description 11
- 150000001413 amino acids Chemical class 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000002050 diffraction method Methods 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 239000000872 buffer Substances 0.000 description 8
- 238000000113 differential scanning calorimetry Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000002335 preservative effect Effects 0.000 description 8
- 238000002411 thermogravimetry Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 229920006158 high molecular weight polymer Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 238000002336 sorption--desorption measurement Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 206010019280 Heart failures Diseases 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 6
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- 235000009697 arginine Nutrition 0.000 description 6
- 239000002738 chelating agent Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 235000003599 food sweetener Nutrition 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 239000003765 sweetening agent Substances 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 239000002178 crystalline material Substances 0.000 description 5
- 229960002885 histidine Drugs 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 206010060933 Adverse event Diseases 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- 206010007556 Cardiac failure acute Diseases 0.000 description 4
- 206010007559 Cardiac failure congestive Diseases 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 206010020802 Hypertensive crisis Diseases 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 206010062886 Procedural hypertension Diseases 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 206010000891 acute myocardial infarction Diseases 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 201000011461 pre-eclampsia Diseases 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000001757 thermogravimetry curve Methods 0.000 description 4
- 239000013638 trimer Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 108010008488 Glycylglycine Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- WINXNKPZLFISPD-UHFFFAOYSA-M Saccharin sodium Chemical compound [Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 WINXNKPZLFISPD-UHFFFAOYSA-M 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000002301 combined effect Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 238000001144 powder X-ray diffraction data Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000011285 therapeutic regimen Methods 0.000 description 3
- 235000008521 threonine Nutrition 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 2
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 230000005730 ADP ribosylation Effects 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 2
- 108050000824 Angiotensin II receptor Proteins 0.000 description 2
- 102000008873 Angiotensin II receptor Human genes 0.000 description 2
- WHLDJYNHXOMGMU-JYJNAYRXSA-N Arg-Val-Tyr Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 WHLDJYNHXOMGMU-JYJNAYRXSA-N 0.000 description 2
- ANAHQDPQQBDOBM-UHFFFAOYSA-N Arg-Val-Tyr Natural products CC(C)C(NC(=O)C(N)CCNC(=N)N)C(=O)NC(Cc1ccc(O)cc1)C(=O)O ANAHQDPQQBDOBM-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 2
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 2
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010058842 Cerebrovascular insufficiency Diseases 0.000 description 2
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 2
- 208000007530 Essential hypertension Diseases 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 229940125633 GPCR agonist Drugs 0.000 description 2
- 102000030782 GTP binding Human genes 0.000 description 2
- 108091000058 GTP-Binding Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 206010018985 Haemorrhage intracranial Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010055171 Hypertensive nephropathy Diseases 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 206010024119 Left ventricular failure Diseases 0.000 description 2
- 208000019695 Migraine disease Diseases 0.000 description 2
- 208000009525 Myocarditis Diseases 0.000 description 2
- 206010067598 Neurogenic hypertension Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 2
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 201000003099 Renovascular Hypertension Diseases 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 206010038923 Retinopathy Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000002333 angiotensin II receptor antagonist Substances 0.000 description 2
- 229940125364 angiotensin receptor blocker Drugs 0.000 description 2
- 208000007474 aortic aneurysm Diseases 0.000 description 2
- 239000008135 aqueous vehicle Substances 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- NNOYLBKZPCUCQT-UHFFFAOYSA-L calcium;1,1-dioxo-1,2-benzothiazol-3-olate;heptahydrate Chemical compound O.O.O.O.O.O.O.[Ca+2].C1=CC=C2C([O-])=NS(=O)(=O)C2=C1.C1=CC=C2C([O-])=NS(=O)(=O)C2=C1 NNOYLBKZPCUCQT-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011262 co‐therapy Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000006251 gamma-carboxylation Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229940043257 glycylglycine Drugs 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 108010085325 histidylproline Proteins 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 208000015210 hypertensive heart disease Diseases 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 201000005857 malignant hypertension Diseases 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 206010027599 migraine Diseases 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 2
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 208000002815 pulmonary hypertension Diseases 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000019408 sucralose Nutrition 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- 208000012175 toxemia of pregnancy Diseases 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- VXUOFDJKYGDUJI-UHFFFAOYSA-N (2-hydroxy-3-tetradecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C VXUOFDJKYGDUJI-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- NUFKRGBSZPCGQB-FLBSXDLDSA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;pentahydrate Chemical compound O.O.O.O.O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C NUFKRGBSZPCGQB-FLBSXDLDSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- ZPDQFUYPBVXUKS-YADHBBJMSA-N 1-stearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OC[C@H](N)C(O)=O ZPDQFUYPBVXUKS-YADHBBJMSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- WKNMKGVLOWGGOU-UHFFFAOYSA-N 2-aminoacetamide;hydron;chloride Chemical compound Cl.NCC(N)=O WKNMKGVLOWGGOU-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 1
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- TUBRCQBRKJXJEA-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O TUBRCQBRKJXJEA-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 101150059573 AGTR1 gene Proteins 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 239000004377 Alitame Substances 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000212384 Bifora Species 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 1
- 239000004072 C09CA03 - Valsartan Substances 0.000 description 1
- 239000002053 C09CA06 - Candesartan Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GHOSNRCGJFBJIB-UHFFFAOYSA-N Candesartan cilexetil Chemical compound C=12N(CC=3C=CC(=CC=3)C=3C(=CC=CC=3)C3=NNN=N3)C(OCC)=NC2=CC=CC=1C(=O)OC(C)OC(=O)OC1CCCCC1 GHOSNRCGJFBJIB-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- UDIPTWFVPPPURJ-UHFFFAOYSA-M Cyclamate Chemical compound [Na+].[O-]S(=O)(=O)NC1CCCCC1 UDIPTWFVPPPURJ-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 108050004114 Monellin Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- XBNBODFBGYLSDT-BMBHDKTESA-N N1[C@@H](CCC1)C(=O)O.N[C@@H](CC1=CNC=N1)C(=O)O.N[C@@H]([C@@H](C)CC)C(=O)O.N[C@@H](CC1=CC=C(C=C1)O)C(=O)O.N[C@@H](C(C)C)C(=O)O.N[C@@H](CCCNC(N)=N)C(=O)O Chemical compound N1[C@@H](CCC1)C(=O)O.N[C@@H](CC1=CNC=N1)C(=O)O.N[C@@H]([C@@H](C)CC)C(=O)O.N[C@@H](CC1=CC=C(C=C1)O)C(=O)O.N[C@@H](C(C)C)C(=O)O.N[C@@H](CCCNC(N)=N)C(=O)O XBNBODFBGYLSDT-BMBHDKTESA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- UEDUENGHJMELGK-HYDKPPNVSA-N Stevioside Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UEDUENGHJMELGK-HYDKPPNVSA-N 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 229940050528 albumin Drugs 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000002170 aldosterone antagonist Substances 0.000 description 1
- 229940083712 aldosterone antagonist Drugs 0.000 description 1
- 108010009985 alitame Proteins 0.000 description 1
- 235000019409 alitame Nutrition 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- DWKPZOZZBLWFJX-UHFFFAOYSA-L calcium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [Ca+2].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC DWKPZOZZBLWFJX-UHFFFAOYSA-L 0.000 description 1
- 229960000932 candesartan Drugs 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 235000013736 caramel Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- NPAKNKYSJIDKMW-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=NC3=CC=C[CH]C3=C12 NPAKNKYSJIDKMW-UHFFFAOYSA-N 0.000 description 1
- 229960004195 carvedilol Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- NFCRBQADEGXVDL-UHFFFAOYSA-M cetylpyridinium chloride monohydrate Chemical compound O.[Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 NFCRBQADEGXVDL-UHFFFAOYSA-M 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000625 cyclamic acid and its Na and Ca salt Substances 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- QGGZBXOADPVUPN-UHFFFAOYSA-N dihydrochalcone Chemical compound C=1C=CC=CC=1C(=O)CCC1=CC=CC=C1 QGGZBXOADPVUPN-UHFFFAOYSA-N 0.000 description 1
- PXLWOFBAEVGBOA-UHFFFAOYSA-N dihydrochalcone Natural products OC1C(O)C(O)C(CO)OC1C1=C(O)C=CC(C(=O)CC(O)C=2C=CC(O)=CC=2)=C1O PXLWOFBAEVGBOA-UHFFFAOYSA-N 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229940018614 docusate calcium Drugs 0.000 description 1
- 229940018600 docusate potassium Drugs 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- QBHFVMDLPTZDOI-UHFFFAOYSA-N dodecylphosphocholine Chemical compound CCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C QBHFVMDLPTZDOI-UHFFFAOYSA-N 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- HXQVQGWHFRNKMS-UHFFFAOYSA-M ethylmercurithiosalicylic acid Chemical compound CC[Hg]SC1=CC=CC=C1C(O)=O HXQVQGWHFRNKMS-UHFFFAOYSA-M 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 235000014705 isoleucine Nutrition 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229960002460 nitroprusside Drugs 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 229940083254 peripheral vasodilators imidazoline derivative Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Chemical group O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- CACRHRQTJDKAPJ-UHFFFAOYSA-M potassium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [K+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC CACRHRQTJDKAPJ-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000009991 second messenger activation Effects 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229960005480 sodium caprylate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- 229960001462 sodium cyclamate Drugs 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- OABYVIYXWMZFFJ-ZUHYDKSRSA-M sodium glycocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 OABYVIYXWMZFFJ-ZUHYDKSRSA-M 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- BYKRNSHANADUFY-UHFFFAOYSA-M sodium octanoate Chemical compound [Na+].CCCCCCCC([O-])=O BYKRNSHANADUFY-UHFFFAOYSA-M 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- JAJWGJBVLPIOOH-IZYKLYLVSA-M sodium taurocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 JAJWGJBVLPIOOH-IZYKLYLVSA-M 0.000 description 1
- IWQPOPSAISBUAH-VOVMJQHHSA-M sodium;2-[[(2z)-2-[(3r,4s,5s,8s,9s,10s,11r,13r,14s,16s)-16-acetyl-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1h-cyclopenta[a]phenanthren-17-ylidene]-6-methylheptanoyl]amino]ethanesulfonate Chemical compound [Na+].C1C[C@@H](O)[C@@H](C)[C@@H]2CC[C@]3(C)[C@@]4(C)C[C@H](C(C)=O)/C(=C(C(=O)NCCS([O-])(=O)=O)/CCCC(C)C)[C@@H]4C[C@@H](O)[C@H]3[C@]21C IWQPOPSAISBUAH-VOVMJQHHSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229960002256 spironolactone Drugs 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 229940013618 stevioside Drugs 0.000 description 1
- OHHNJQXIOPOJSC-UHFFFAOYSA-N stevioside Natural products CC1(CCCC2(C)C3(C)CCC4(CC3(CCC12C)CC4=C)OC5OC(CO)C(O)C(O)C5OC6OC(CO)C(O)C(O)C6O)C(=O)OC7OC(CO)C(O)C(O)C7O OHHNJQXIOPOJSC-UHFFFAOYSA-N 0.000 description 1
- 235000019202 steviosides Nutrition 0.000 description 1
- 239000006190 sub-lingual tablet Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940098466 sublingual tablet Drugs 0.000 description 1
- BAQAVOSOZGMPRM-UHFFFAOYSA-N sucralose Chemical compound OC1C(O)C(Cl)C(CO)OC1OC1(CCl)C(O)C(O)C(CCl)O1 BAQAVOSOZGMPRM-UHFFFAOYSA-N 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- RUDATBOHQWOJDD-UZVSRGJWSA-N ursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-UZVSRGJWSA-N 0.000 description 1
- 229960001661 ursodiol Drugs 0.000 description 1
- 229960004699 valsartan Drugs 0.000 description 1
- SJSNUMAYCRRIOM-QFIPXVFZSA-N valsartan Chemical compound C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=N[N]1 SJSNUMAYCRRIOM-QFIPXVFZSA-N 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000008979 vitamin B4 Nutrition 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present disclosure describes novel crystalline forms of a compound that acts as ⁇ -arrestin effector, processes for preparing and precipitating amorphous and crystalline forms of the compound, and uses thereof.
- U.S. Pat. No. 8,486,885 discloses peptides that act as GPCR agonist of GPCR receptors (e.g., angiotensin II). GPCR agonist causes activation of a heterotrimeric “G protein”. Such activation leads to second messenger/down-stream signaling (e.g., via diacylglycerol, inositol-triphosphate, calcium, etc.) causing changes in physiological function (e.g., blood pressure and fluid homeostasis).
- GPCR receptors e.g., angiotensin II
- GPCR agonist causes activation of a heterotrimeric “G protein”. Such activation leads to second messenger/down-stream signaling (e.g., via diacylglycerol, inositol-triphosphate, calcium, etc.) causing changes in physiological function (e.g., blood pressure and fluid homeostasis).
- SEQ ID NO. 27 referred to in U.S. Pat. No. 8,486,885 (hereinafter referred as SEQ. ID. NO. 1) is an agonist of ⁇ -arrestin/GRK-mediated signal transduction via AT1 angiotensin receptor.
- the amino acid sequence including, but not limited to, formula, variables, derivatives, of the peptide or peptide mimetic of SEQ ID NO. 1, the ability of the compound to effect G protein-mediated signaling or GPCR activity, or the absence of such signaling/activity, methods for preparation of SEQ. ID. NO. 1, and other related peptides are disclosed in U.S. Pat. No. 8,486,885, the contents of which are incorporated herein by reference in their entirety.
- the present disclosure provides novel crystalline modifications of the peptide of SEQ. ID. NO. 1, processes for preparing SEQ. ID. NO. 1, and optionally isolating such forms.
- the peptide of SEQ ID NO. 1 can be crystallized and is superior in properties.
- amorphous SEQ ID NO. 1 can be prepared, by precipitating SEQ. ID. NO. 1.
- Crystalline forms of SEQ ID NO. 1 are distinguished from prior art by improved stability, processability and can also be used in for pharmaceutical formulations.
- crystalline forms of SEQ. ID. NO. 1 are provided.
- the crystalline form is Form I of SEQ. ID. NO. 1 (hereinafter, Form I).
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 18.5 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 10.1 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 8.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 20.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5, and at about 10.1 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 10.1, and at about 8.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2, and at about 20.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, and at about 10.1 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, and at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, at about 10.1, and at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2, at about 18.5, and at about 20.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5, at about 10.1, at about 8.2, at about 20.2, and at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising one or more peaks as shown in FIG. 4 .
- the Form I is characterized by an X-ray powder diffraction pattern comprising one or more d-spacing values at about 10.7, at about 8.7, at about 4.7, at about 4.1, and at about 3.6 ⁇ 0.5 degrees angstroms.
- a pharmaceutical composition comprising a crystalline form of SEQ. ID. NO. 1 is provided.
- a pharmaceutical composition comprising a crystalline Form I of SEQ. ID. NO. 1 is provided.
- the pharmaceutical composition comprises Form I, wherein Form I is a peptide or a peptide mimetic of SEQ. ID. NO. 1.
- the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is cyclic.
- the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is dimerized.
- the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is trimerized.
- the pharmaceutical composition comprises Form I, further comprising an additional drug for the treatment of a cardiovascular or a cardio renal disorder.
- a process for preparing a crystalline form of SEQ. ID. NO. 1, comprising crystallizing SEQ. ID. NO. 1 to form Form I and optionally isolating the Form I of SEQ. ID. NO. 1 is provided.
- a process for preparing SEQ. ID. NO. 1, comprising precipitating SEQ. ID. NO. 1 and optionally isolating SEQ. ID. NO. 1 is provided.
- a pharmaceutical composition comprising SEQ. ID. NO.1 prepared by precipitating SEQ. ID. NO.1 is provided.
- a method of treating a cardiovascular or a cardiorenal disorder comprising administering to a patient in need thereof, a crystalline or an amorphous form of SEQ. ID. NO. 1 is provided.
- a method of treating a cardiovascular or a cardiorenal disorder comprising administering to a patient in need thereof, a crystalline Form I of SEQ. ID. NO. 1 is provided.
- FIG. 1 shows X-ray powder diffraction pattern of amorphous SEQ ID. NO. 1.
- FIG. 2 shows Differential Scanning Calorimetry (DSC) thermogram of amorphous SEQ. ID. NO. 1.
- FIG. 3 shows Sorption/Desorption profile of amorphous SEQ ID. NO. 1.
- FIG. 4 shows X-ray powder diffraction pattern of crystalline Form I of SEQ ID. NO. 1.
- FIG. 5 shows Differential Scanning Calorimetry (DSC) thermogram of crystalline Form I of SEQ. ID. NO. 1.
- FIG. 6 shows HPLC chromatogram of Form I of SEQ ID. NO. 1.
- FIG. 7 shows overlaid X-ray powder diffraction patterns of amorphous SEQ ID. NO. 1 and crystalline Form I of SEQ ID. NO. 1.
- FIG. 8 shows HPLC chromatograms of amorphous and crystalline Form I of SEQ ID. NO. 1.
- FIG. 9 shows microscopic image of crystalline Form I of SEQ ID. NO. 1 under cross polarized light.
- FIG. 10 shows microscopic image and particle size of crystalline Form I of SEQ ID. NO. 1 under plane polarized light.
- FIG. 11 shows the overlaid X-ray powder diffraction patterns for the precipitate of SEQ. ID. NO. 1 from ethanol and amorphous SEQ. ID. NO. 1.
- FIG. 12 shows the X-ray powder diffraction pattern for the precipitate of SEQ. ID. NO. 1 from water and acetone.
- FIG. 13 shows the X-ray powder diffraction pattern for the precipitate of SEQ. ID. NO. 1 from water and isopropyl alcohol.
- FIG. 14 shows overlaid X-ray powder diffraction patterns for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 15 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 16 shows a DSC thermogram for compounds produced according to Examples 1E, 1F, 1G, and 1H.
- FIG. 17 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 18 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 19 shows a TGA profile of crystalline SEQ. ID. NO.1.
- FIG. 20 shows FIG. 20 a DVS profile of crystalline SEQ. ID. NO. 1.
- FIG. 21 shows the PXRD of crystalline form SEQ. ID. NO.1 after completion of DVS analysis.
- FIG. 22 shows PXRD patterns of amorphous SEQ. ID. NO. 1 at various temperature and humidity conditions.
- FIG. 23 shows PXRD patterns of crystalline SEQ. ID. NO.1 at various temperature and humidity conditions.
- peptidyl and “peptidic” include active derivatives, variants, and/or mimetics of the peptides according to the present embodiments.
- Peptidic compounds are structurally similar bioactive equivalents of the peptides according to the present embodiments.
- structurally similar bioactive equivalent means a peptidyl compound with structure sufficiently similar to that of an identified bioactive peptide to produce substantially equivalent therapeutic effects.
- peptidic compounds derived from the amino acid sequence of the peptide, or having an amino acid sequence backbone of the peptide are considered structurally similar bioactive equivalents of the peptide.
- variant refers to a protein or polypeptide in which one or more amino acid substitutions, deletions, and/or insertions are present as compared to the amino acid sequence of a protein or peptide and include naturally occurring allelic variants or alternative splice variants of a protein or peptide.
- variants includes the replacement of one or more amino acids in a peptide sequence with a similar or homologous amino acid(s) or a dissimilar amino acid(s).
- variants include alanine substitutions at one or more of amino acid positions.
- Other preferred substitutions include conservative substitutions that have little or no effect on the overall net charge, polarity, or hydrophobicity of the protein.
- variant also encompasses polypeptides that have the amino acid sequence of the proteins/peptides of the present compounds with at least one and up to 25 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20) additional amino acids flanking either the 3′ or 5′ end of the amino acid sequence or both.
- variant also refers to a protein that is at least 60 to 99 percent identical (e.g., 60, 65, 70, 75, 80, 85, 90, 95, 98, 99, or 100%, inclusive) in its amino acid sequence of the proteins of the present compounds as determined by standard methods that are commonly used to compare the similarity in position of the amino acids of two polypeptides. The degree of similarity or identity between two proteins can be readily calculated by known methods.
- derivative refers to a chemically modified protein or polypeptide that has been chemically modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques, as for example, by addition of one or more polyethylene glycol molecules, sugars, phosphates, and/or other such molecules, where the molecule or molecules are not naturally attached to wild-type proteins.
- Derivatives include salts.
- Such chemical modifications are well described in basic texts and in more detailed monographs, as well as in research literature and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given protein or polypeptide. Also, a given protein or polypeptide may contain many types of modifications.
- Modifications can occur anywhere in a protein or polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation,
- derivatives include chemical modifications resulting in the protein or polypeptide becoming branched or cyclic, with or without branching. Cyclic, branched and branched circular proteins or polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.
- peptide mimetic refers to biologically active compounds that mimic the biological activity of a peptide or a protein but are no longer peptidic in chemical nature, that is, they no longer contain any peptide bonds (that is, amide bonds between amino acids).
- peptide mimetic is used in a broader sense to include molecules that are no longer completely peptidic in nature, such as pseudo-peptides, semi-peptides and peptoids. Whether completely or partially non-peptide, peptide mimetics according to the embodiments provide a spatial arrangement of reactive chemical moieties that closely resemble the three-dimensional arrangement of active groups in the peptide on which the peptide mimetic is based. As a result of this similar active-site geometry, the peptide mimetic has effects on biological systems that are similar to the biological activity of the peptide.
- peptide mimetics of the embodiments are preferably substantially similar in both three-dimensional shape and biological activity to the peptide described herein.
- peptide mimetics of the present compounds have protective groups at one or both ends of the compounds, and/or replacement of one or more peptide bonds with non-peptide bonds. Such modifications may render the compounds less susceptible to proteolytic cleavage than the compound itself.
- one or more peptide bonds can be replaced with an alternative type of covalent bond (e.g., a carbon-carbon bond or an acyl bond).
- Peptide mimetics can also incorporate amino-terminal or carboxyl terminal blocking groups such as t-butyloxycarbonyl, acetyl, alkyl, succinyl, methoxysuccinyl, suberyl, adipyl, azelayl, dansyl, benzyloxycarbonyl, fluorenylmethoxycarbonyl, methoxyazelayl, methoxyadipyl, methoxysuberyl, and 2,4,-dinitrophenyl, thereby rendering the mimetic less susceptible to proteolysis.
- amino-terminal or carboxyl terminal blocking groups such as t-butyloxycarbonyl, acetyl, alkyl, succinyl, methoxysuccinyl, suberyl, adipyl, azelayl, dansyl, benzyloxycarbonyl, fluorenylmethoxycarbonyl, methoxyazelayl, methoxyadipyl, me
- Non-peptide bonds and carboxyl- or amino-terminal blocking groups can be used singly or in combination to render the mimetic less susceptible to proteolysis than the corresponding peptide/compound. Additionally, substitution of D-amino acids for the normal L-stereoisomer can be effected, e.g., to increase the half-life of the molecule.
- salt may refer to any acid addition salts, including addition salts of free acids or addition salts of free bases. All of these salts (or other similar salts) may be prepared by conventional means. All such salts are acceptable provided that they are non-toxic and do not substantially interfere with the desired pharmacological activity.
- terapéuticaally effective amount means the amount of a compound that, when administered to a mammal for treating a state, disorder or condition is sufficient to effect a treatment (as defined below).
- the “therapeutically effective amount” will vary depending on the compound, the disease and its severity, the age, weight, physical condition and responsiveness of the mammal to be treated.
- pharmaceutically acceptable means biologically or pharmacologically compatible for in vivo use in animals or humans, and preferably means approved by a regulatory agency of the Federal or a State government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- treat in all its verb forms, means to relieve or alleviate at least one symptom of a cardiovascular disorder or a cardiorenal disorder in a subject, including chronic hypertension, hypertensive crisis, acute congestive heart failure, angina, acute myocardial infarction, left ventricular failure, cerebrovascular insufficiency, intracranial haemorrhage, heart failure, acute decompensated heart failure, essential hypertension, post-operative hypertension, hypertensive heart disease, hypertensive renal disease, renovascular hypertension, malignant hypertension, post-renal transplant patient stabilization, dilated cardiomyopathy, myocarditis, post-cardiac transplant patient stabilization, disorders associated with post-stent management, neurogenic hypertension, pre-eclampsia, abdominal aortic aneurysm, and any cardiovascular disorder with a hemodynamic component.
- the cardiovascular disorder is an acute cardiovascular disorder.
- the acute cardiovascular disorder is acute hypertensive crisis, toxemia of pregnancy, acute myocardial infarction, acute congestive heart failure, acute ischaemic heart disease, pulmonary hypertension, post-operative hypertension, migraine, retinopathy and post-operative cardiac/valve surgery.
- the term “synergy” is defined as the interaction of two or more agents so that their combined effect is greater than the sum of their individual effects. For example, if the effect of drug A alone in treating a disease is 25%, and the effect of drug B alone in treating a disease is 25%, but when the two drugs are combined the effect in treating the disease is 75%, the effect of A and B is synergistic.
- additive is defined as the interaction of two or more agents so that their combined effect is the same as the sum of their individual effects. For example, if the effect of drug A alone in treating a disease is 25%, and the effect of drug B alone in treating a disease is 25%, but when the two drugs are combined the effect in treating the disease is 50%, the effect of A and B is additive.
- pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and preferably do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a State government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia (e.g., Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985)) for use in animals, and more particularly in humans.
- Approximately 80% and 20% v/v of ethanol and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v ethanol and 20% v/v water to approximately 20% v/v ethanol and 80% v/v water.
- Approximately 80% and 20% v/v isopropyl alcohol and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v isopropyl alcohol and 20% v/v water to approximately 20% v/v isopropyl alcohol and 80% v/v water.
- Approximately 80% and 20% v/v of acetone and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v acetone and 20% v/v water to approximately 20% v/v acetone and 80% v/v water.
- the present embodiments relate to a synthetic octapeptide, namely SEQ. ID. NO. 1, having the amino sequence structure as follows: NH 2 -Sar Arg Val Tyr Ile His Pro D-Ala-OH.
- SEQ. ID NO. 1 is an agonist of ⁇ -arrestin/GRK-mediated signal transduction via the AT1 angiotensin receptor.
- An amorphous form of SEQ ID. NO. 1 can be prepared using solid-phase peptide synthesis using FMOC based solid state synthesis on a chlortriyl resin.
- the crude peptide can be purified by reverse phase chromatography and ion-exchange can be performed to remove trifluroacetic acid and to replace it with acetic acid.
- the amorphous form of SEQ ID. NO. 1 can then be isolated using lyophilization. Lyophilization may not be feasible for a large scale manufacturing of the peptide for commercial production.
- the present application relates to novel methods of precipitating SEQ. ID. NO. 1 and novel crystalline forms of SEQ. ID. NO. 1.
- FIG. 1 An example of an amorphous form of SEQ. ID. NO. 1, is illustrated in FIG. 1 , which shows a X-ray powder diffraction pattern of amorphous SEQ ID. NO. 1.
- FIG. 2 shows an example of a Differential Scanning Calorimetry (DSC) thermogram of amorphous SEQ. ID. NO. 1.
- FIG. 3 shows an example of Sorption/Desorption profile of amorphous SEQ ID. NO. 1.
- DSC thermogram shown in FIG. 2 exhibits two broad endotherm at around 76° C. and at around 159° C., as well as sharp endotherm at around 250° C.
- SEQ. ID. NO. 1 is highly hygroscopic as it adsorbed moisture with increase in % RH. More than about 25% (by weight) moisture was adsorbed at 95% RH at 25° C. as shown in FIG. 3 .
- FIGS. 1-3 show that the peptide of SEQ. ID. NO. 1 is amorphous.
- crystalline forms of SEQ ID NO. 1 are provided. In some embodiments crystalline Form I of SEQ ID NO. 1 is provided.
- the Form I is characterized by an X-ray powder diffraction pattern substantially as shown in FIG. 4 . In some embodiments, Form I is characterized by an X-ray powder diffraction pattern comprising one or more peaks as provided in Table 1. In some embodiments, Form I is characterized by an X-ray powder diffraction pattern comprising substantially all of, or all of, the peaks as provided in Table 1.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 8.2 ⁇ 0.5 degrees 28.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 10.1 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 15.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 16.5 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 18.5 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 20.2 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 23.1 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 30.8 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , about 10.1 ⁇ 0.5 degrees 2 ⁇ , about 18.5 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 6.1 ⁇ 0.5 degrees 2 ⁇ , about 8.2 ⁇ 0.5 degrees 2 ⁇ , about 10.1 ⁇ 0.5 degrees 2 ⁇ , about 11.4 ⁇ 0.5 degrees 2 ⁇ , about 13.2 ⁇ 0.5 degrees 2 ⁇ , about 16.1 ⁇ 0.5 degrees 2 ⁇ , about 18.5 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 23.1 ⁇ 0.5 degrees 2 ⁇ , about 24.4 ⁇ 0.5 degrees 2 ⁇ , and about 30.8 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 6.1 ⁇ 0.5 degrees 2 ⁇ , about 8.2 ⁇ 0.5 degrees 2 ⁇ , about 10.1 ⁇ 0.5 degrees 2 ⁇ , about 10.7 ⁇ 0.5 degrees 2 ⁇ , about 12.3 ⁇ 0.5 degrees 2 ⁇ , about 14.0 ⁇ 0.5 degrees 2 ⁇ , about 15.4 ⁇ 0.5 degrees 2 ⁇ , about 16.1 ⁇ 0.5 degrees 2 ⁇ , about 17.3 ⁇ 0.5 degrees 2 ⁇ , about 18.5 ⁇ 0.5 degrees 2 ⁇ , about 19.1 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 20.9 ⁇ 0.5 degrees 2 ⁇ , about 21.5 ⁇ 0.5 degrees 2 ⁇ , about 24.4 ⁇ 0.5 degrees 2 ⁇ , and about 30.8 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , and at about 10.1 ⁇ 0.5 degrees 2 ⁇ . In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 10.1 ⁇ 0.5 degrees 2 ⁇ and at about 18.5 ⁇ 0.5 degrees 2 ⁇ . In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5 ⁇ 0.5 degrees 2 ⁇ and at about 20.2-0.5 degrees 2 ⁇ . In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2 ⁇ 0.5 degrees 2 ⁇ and at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , at about 10.1 ⁇ 0.5 degrees 2 ⁇ and at about 18.5 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5 ⁇ 0.5 degrees 2 ⁇ , at about 20.2 ⁇ 0.5 degrees 2 ⁇ and at about 24.4 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , at about 10.1 ⁇ 0.5 degrees 2 ⁇ , at about 18.5 ⁇ 0.5 degrees 2 ⁇ and at about 20.2 ⁇ 0.5 degrees 28.
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , about 10.1 ⁇ 0.5 degrees 2 ⁇ , about 18.5 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 24.4 ⁇ 0.5 degrees 2 ⁇ and optionally having one or more peaks at about at about 6.1 ⁇ 0.5 degrees 2 ⁇ , about 11.4 ⁇ 0.5 degrees 2 ⁇ , about 13.2 ⁇ 0.5 degrees 2 ⁇ , about 16.1 ⁇ 0.5 degrees 2 ⁇ , about 23.1 ⁇ 0.5 degrees 2 ⁇ , about 30.8 ⁇ 0.5 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2 ⁇ 0.5 degrees 2 ⁇ , about 10.1 ⁇ 0.5 degrees 2 ⁇ , about 18.5 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 24.4 ⁇ 0.5 degrees 2 ⁇ and optionally having one or more peaks at about 6.1 ⁇ 0.5 degrees 2 ⁇ , about 10.7 ⁇ 0.5 degrees 2 ⁇ , about 12.3 ⁇ 0.5 degrees 2 ⁇ , about 14.0 ⁇ 0.5 degrees 2 ⁇ , about 15.4 ⁇ 0.5 degrees 2 ⁇ , about 16.1 ⁇ 0.5 degrees 2 ⁇ , about 17.3 ⁇ 0.5 degrees 2 ⁇ , about 19.1 ⁇ 0.5 degrees 2 ⁇ , about 20.2 ⁇ 0.5 degrees 2 ⁇ , about 20.9 ⁇ 0.5 degrees 2 ⁇ , about 21.5 ⁇ 0.5 degrees 2 ⁇ , about 30.8 ⁇ 0.5 degrees 2 ⁇ .
- the phrase “one or more peaks” should be understood to be inclusive of (i) crystalline forms that have XRD peaks at every peak value recited after this phrase, (ii) crystalline forms that have an XRD peak at only one of the peak values recited after this phrase, as well as (iii) crystalline forms that have XRD peaks at two or more (e.g., three or more, four or more, five or more, six or more, or even seven or more) of the peak values recited after this phrase.
- the Form I is characterized by any combination of the above data.
- the X-ray powder diffraction peaks recited herein for particular embodiments can vary by ⁇ 0.4 degrees 2 ⁇ , by ⁇ 0.3 degrees 2 ⁇ , by ⁇ 0.2 degrees 2 ⁇ , or by ⁇ 0.1 degrees 2 ⁇ .
- the Form I is characterized by an X-ray powder diffraction pattern comprising peaks having d-spacing values at about 10.7, at about 8.7, at about 4.7, at about 4.3, and at about 3.6 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 5.7 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 5.3 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 4.7 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 4.3 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 3.8 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 3.6 ⁇ 0.5 angstroms.
- the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value substantially as shown in Table 1.
- the X-ray powder diffraction peaks recited herein for particular embodiments having d-spacing values can vary by ⁇ 4% nm, by ⁇ 3% nm, by ⁇ 2% nm, or by ⁇ 1% nm or by ⁇ 4% angstroms, by ⁇ 3% angstroms, by ⁇ 2% angstroms, or by +1% angstroms.
- the relative intensities and positions of the peaks obtained by X-ray powder diffraction may vary depending upon, inter alia, the sample preparation technique, the sample mounting procedure, and the particular instrument employed.
- the listed X-ray powder diffraction pattern peaks for the crystalline Form I of SEQ ID. NO. 1 is about ⁇ 0.2 degrees 2 ⁇ .
- the crystalline Form I of SEQ. ID. NO. 1 is characterized using High Performance Liquid Chromatography and using microscopy.
- FIG. 6 shows an example of a HPLC chromatogram of Form I. Other methods for characterizing Form I could also be used.
- Form I can have any desired degree of purity, relative to other substances or components in the preparation.
- Form I is provided such that it is substantially pure, such as, for example, having greater than 30%, greater than 40° 0, greater than 500, greater than 60%, greater than 70%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, greater than 99%, greater than 99.2%, greater than 99.4%, greater than 99.5%, greater than 99.6%, greater than 99.7%, or greater than 99.9% purity, relative to other substances or components in the preparation.
- the Form I is about 45% to 95% pure, such as, for example, about 50% to 95% pure, about 55% to 90% pure, about 60% to 95% pure, or about 70% to 99% pure, relative to other substances or components in the preparation. In some embodiments, the Form I is about 95% to 99% pure. In some embodiments, Form I is about 90% to 95% pure. In some embodiments, the Form I is about 85% to 90% pure. In some embodiments, the Form I is about 80% to 85% pure. In some embodiments, the Form I is about 75% to 80% pure. In some embodiments, the Form I is about 70% to 75% pure. In certain embodiments, the Form I is about 65% to 70% pure.
- the Form I is about 60% to 65% pure. In other embodiments, the Form I is about 55% to 60% pure. In yet other embodiments, the Form I is about 50% to 55% pure. In some embodiments, Form I is about 45% to 50% pure.
- the Form I may comprise one or more impurities and/or a degradation product, such as a hydrolysis product, acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- a composition comprising Form I may comprise one or more impurities and/or a degradation product, such as a hydrolysis product, acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- the one or more impurities may be biologically active.
- Form I and/or the composition comprising Form I can contain any desired purity relative to hydrolysis product(s). In some embodiments, the composition comprises less than about 10% by weight of hydrolysis product(s), relative to the total weight of Form I and/or the composition, such as, for example, less than about 7.5 wt. %, less than about 5 wt. %, or less than about 2 wt. % of hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.05% to about 5% by weight of hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.05% to about 2% by weight of the hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.1% to about 2% by weight of the hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.01% to about 2% by weight of the hydrolysis product(s).
- Form I and/or the composition comprising Form I can contain any desired purity relative to acetylation product(s).
- the acetylation product may comprise less than 10% by weight of the Form I and/or the composition.
- the acetylation product may comprise less than 7.5% by weight of the Form I and/or the composition.
- the acetylation product may comprise less than 5% by weight of the Form I and/or the composition.
- the acetylation product may comprise less than 2% by weight of the Form I and/or the composition.
- the acetylation product may comprise less than 1% by weight of the Form I and/or the composition.
- the acetylation product may comprise less than 0.5% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.01% to about 2% by weight of the composition.
- Form I and/or the composition comprising Form I can contain any desired purity relative to formylation product(s).
- the formylation product may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition.
- Form I and/or the composition comprising Form I can contain any desired purity relative to oxidation product(s).
- the oxidation product may comprise less than 10% by weight of Form I and/or the composition.
- the oxidation product may comprise less than 7.5% by weight of Form I and/or the composition.
- the oxidation product may comprise less than 5% by weight of Form I and/or the composition.
- the oxidation product may comprise less than 2% by weight of Form I and/or the composition.
- the oxidation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition.
- the oxidation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.01% to about 2% by weight of Form I and/or the composition.
- Form I and/or the composition comprising Form I can contain any desired purity relative to water-mediated degradation product(s).
- the water-mediated degradation product(s) may comprise less than 10% by weight of Form I and/or the composition.
- the water-mediated degradation product(s) may comprise less than 7.5% by weight of Form I and/or the composition.
- the water-mediated degradation product(s) may comprise less than 5% by weight of Form I and/or the composition.
- the water-mediated degradation product(s) may comprise less than 2% by weight of Form I and/or the composition.
- the water-mediated degradation product(s) may comprise from about 0.05% to about 5% by weight of Form I and/or the composition.
- Form I and/or the composition comprising Form I can contain any desired purity relative to deamidation product(s).
- the deamidation product may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise less than 5% by weight of Form I and/or the composition. In other embodiments, the deamidation product may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition.
- a composition comprising Form I and less than 10 wt. % such as less than 8 wt. 0%, less than 6 wt. %, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of a degradation product, such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- a degradation product such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- a composition comprising Form I and less than 10 wt. % such as less than 8 wt. %, less than 6 wt. 0%, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of one or more impurities and/or a degradation product, such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- a degradation product such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- the peptide mimetic is cyclic. In some embodiments, the peptide mimetic is a dimer. In some embodiments, the peptide mimetic is a trimer.
- the compositions may comprise Form I and a dimer.
- the composition comprises less than about 20 wt. % of dimers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of dimers.
- the compositions may comprise Form I and a trimer.
- the composition comprises less than about 20 wt. % of trimers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of trimers.
- a composition comprising Form I and an isomer.
- the composition comprises less than about 20 wt. % of isomers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of isomers.
- a composition comprising Form I and less than about 40 wt %, such as less than about 30 wt. %, less than about 20 wt. %, less than about 15 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, less than about 0.1 wt. %, or less than about 0.01 wt. % of amorphous SEQ. ID. NO. 1.
- a composition comprising from about 50:50 and 99:1 Form I to amorphous SEQ. ID. NO. 1, such as, for example, from about 55:45 and 95:5 Form I to amorphous SEQ. ID. NO. 1, from about 60:40 and 90:10 Form I to amorphous SEQ. ID. NO. 1, from about 70:30 and 85:15 Form I to amorphous SEQ. ID. NO. 1, or from about 75:25 and 99:1 Form I to amorphous SEQ. ID. NO. 1.
- processes for preparing crystalline forms of SEQ ID. NO. 1 are provided.
- the crystalline Form I is produced by precipitating and crystallizing SEQ ID. NO. 1 and optionally isolating the Form I.
- the Form I is prepared by precipitating and crystallizing SEQ ID. NO. 1 in an aqueous solution and optionally isolating the Form I.
- the Form I is prepared by precipitating and crystallizing SEQ ID. NO. 1 in a super saturated aqueous solution and optionally isolating the Form I.
- aqueous solution such as, for example, water, DMSO, acids, and polar solvents, at various strengths or concentrations.
- aqueous solutions may include, but are not limited to, DMSO, water, ethanol, butanol, methanol, dicholoromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, formic acid, isopropanol, propanol, acetic acid, and nitromethane.
- the aqueous solution is selected from water, ethanol, propanol, dimethyl sulfoxide, acetone, and isopropanol.
- the water does not have any additional components or solvents added to it.
- the aqueous solution comprises water and acetone.
- the aqueous solution comprises water and isopropyl alcohol.
- the aqueous solution does not contain ethanol.
- the aqueous solution does not contain acetone.
- the aqueous solution does not contain organic solvents.
- the crystalline Form I of SEQ ID NO. 1 may be identified, characterized, and distinguished from amorphous form using any suitable manner.
- One skilled in the art will know many different methods of identification and characterization of Form I of SEQ ID NO. 1.
- the crystalline Form I of SEQ ID NO. 1 may be identified and characterized based on differences in diffraction, thermal, intensity, and/or spectroscopic properties of the amorphous and crystalline form. Suitable methods include, but are not limited to, X-ray diffractometry, capillary melting point determination, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and/or spectroscopic methods.
- TGA thermogravimetric analysis
- DSC differential scanning calorimetry
- Form I is precipitated from water.
- FIGS. 4 and 5 shows an example characterization of Form I using X-ray powder diffraction and DSC.
- Form I was precipitated from water and was characterized by HPLC and microscopy.
- FIG. 6 shows an example HPLC chromatogram of Form I.
- FIG. 8 shows exemplary HPLC chromatograms of amorphous and crystalline Form I of SEQ ID. NO. 1.
- the HPLC chromatograms shown in FIG. 8 confirmed that the crystalline form prepared from aqueous solution is chemically the same as SEQ. ID. NO. 1 amorphous form. These results demonstrate that Form I is a crystalline form of SEQ. ID. NO. 1.
- FIG. 9 shows an example microscopic image of crystalline Form I under cross polarized light.
- FIG. 10 shows an example microscopic image and particle size of crystalline Form I under plane polarized light.
- amorphous SEQ. ID. NO. 1 is prepared by precipitating SEQ ID. NO. 1 and optionally isolating SEQ. ID. NO.1. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising ethanol. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising acetone. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising isopropyl alcohol.
- SEQ. ID. NO. 1 can be dissolved in an aqueous solution of, for example, without limiting, ethanol, wherein the percentage of ethanol in the solution may be from approximately 80% and 20% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 60% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 50% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 55% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 40% v/v and the remainder of the solution approximately is water.
- SEQ. ID. NO.1 can be dissolved in an aqueous solution of, for example, without limiting, acetone, wherein the percentage of acetone in the solution may be from approximately 80% and 20% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 60% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 50% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 55% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 40% v/v and the remainder of the solution approximately is water.
- any suitable aqueous solution can be used in this regard, such as, for example, water, DMSO, acids, and polar solvents, at various strengths or concentrations.
- Such solutions may include, but are not limited to, DMSO, water, ethanol, butanol, methanol, dicholoromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, formic acid, isopropanol, propanol, acetic acid, and nitromethane.
- the solvent is selected from water, ethanol, propanol, dimethyl sulfoxide, acetone, and isopropanol.
- Precipitates from, for example, but not limited to, the solutions described herein, including, but not limited to, ethanol, acetone/water and isopropyl alcohol/water produce precipitate showing the same XRD pattern as the amorphous SEQ. ID. NO. 1.
- the results described herein demonstrate that the precipitates contain amorphous, mostly amorphous, a mixture of amorphous and crystalline forms, one or more crystalline forms, or a mixture of amorphous and one or more crystalline forms. Each of the preceding are considered as separate embodiments.
- the precipitate of SEQ. ID. NO.1 from, for example, but not limited to, ethanol, acetone or isopropyl alcohol may comprise amorphous, mostly amorphous, a mixture of amorphous and crystalline forms, one or more crystalline forms, or a mixture of amorphous and one or more crystalline forms. Each of which are considered as a separate embodiments.
- a precipitate comprising between about 50:50 and 99:1 Form I to amorphous SEQ. ID. NO. 1 is provided.
- the precipitate may comprise amorphous SEQ. ID. NO. 1.
- the precipitate may comprise mostly amorphous SEQ. ID. NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 1%, less than 0.50%, less than 0.25% by weight.
- the precipitate may comprise a mixture of one or more crystalline forms of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1.
- the precipitate may comprise crystalline SEQ. ID. NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 100%, less than 0.50%, or less than 0.25% by weight of the mixture.
- the precipitate may comprise amorphous SEQ. ID.
- NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 1%, less than 0.50%, or less than 0.25% by weight of the mixture.
- the methods of precipitating can also comprise heating the solution comprising SEQ. ID. NO. 1 and then allowing the solution to cool to ambient temperature.
- ambient temperature is 20-25° C.
- the solution is cooled to 10-20° C.
- the solution is heated to at least, or about, 10, 20, 30, 40, 50, or 60° C. before being cooled or allowed to cool to ambient temperature or a specific temperature.
- the solution is heated to about 10-20, 10-30, 10-40, 10-50, 20-30, 20-40, 20-50, 20-60, 30-40, 30-50, 30-60, 40-50, 40-60, 50-60, 25-45, 35-45, or 35-50, 45-55, or 45-60° C.
- the solution is heated at given temperature for about 0.5 to about 2 hours, about 1 to about 2 hours, about 0.5 to about 1.5 hours, or about 1 to about 1.5 hours.
- the crystal form is precipitated at a temperature of about 15 to about 25° C., about 15 to about 23° C., about 15 to about 20° C., about 15 to about 18° C., about 17 to about 25° C., about 17 to about 23° C., about 17 to about 21° C., about 17 to about 20° C., about 18 to about 25° C., about 18 to about 23° C., about 18 to about 21° C., about 18 to about 20° C., about 19 to about 25° C., about 19 to about 23° C., or about 19 to about 21° C., or any temperature between the respective ranges.
- the precipitates are allowed to form for about, or at least, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, or 24 hours. In some embodiments, the precipitates are allowed to form for about 2 to about 24, about 2 to about 18, about 2 to about 12, about 2 to about 10, about 2 to about 8, about 2 to about 6, about 2 to about 4, about 4 to about 24, about 4 to about 18, about 2 to about 12, about 4 to about 10, about 4 to about 8, about 4 to about 6, about 5 to about 24, about 5 to about 18, about 5 to about 12, about 5 to about 10, about 5 to about 8, about 5 to about 6, about 6 to about 24, about 6 to about 18, about 6 to about 12, about 6 to about 10, about 6 to about 8, about 8 to about 24, about 8 to about 18, about 8 to about 12, or about 8 to about 10 hours.
- an additional volume of water is added once the solution is heated and before it is cooled to the ambient or near ambient temperatures.
- the solution is further cooled to about, or less than, 15, 10, 5, 0, ⁇ 5, or ⁇ 10° C.
- the solution is cooled to about ⁇ 5° C. to about 15° C., about ⁇ 5° C. to about 10° C., about ⁇ 5° C. to about 5° C., about ⁇ 10° C. to about 15° C., about ⁇ 10° C. to about 10° C., about ⁇ 10° C. to about 5° C., about ⁇ 10° C. to about 0° C., about ⁇ 10° C.
- the solution is cooled for about, or at least, 1, 2, 3, 4, 5, 6, 12, 18, or 24 hours.
- the process comprises drying the precipitate.
- the precipitate is dried under vacuum.
- the precipitate is dried at a temperature of about 30° C. to about 50° C., about 35° C. to about 50° C., about 30° C. to about 45° C., about 35° C. to about 45° C., or about 40° C. to about 45° C.
- the precipitate is dried at a temperature of about 30° C., about 35° C., about 40° C., or about 45° C. to about 50° C.
- the drying can at a specific temperature can be performed under vacuum.
- the dried material is also lyophilized.
- the precipitations steps described above can be repeated. In some embodiments, the process is repeated one, two, or three times.
- Embodiments described herein can be used in pharmaceutical compositions and can be formulated by standard techniques using one or more physiologically acceptable carriers or excipients.
- the formulations may contain a buffer and/or a preservative.
- Form I and their physiologically acceptable salts, anhydrates, hydrates and/or solvates can be formulated for administration by any suitable route, including via inhalation, topically, nasally, orally, parenterally (for example, intravenously, intraperitoneally, intravesically or intrathecally) or rectally in a vehicle comprising one or more pharmaceutically acceptable carriers, the proportion of which is determined by the route of administration and standard biological practice.
- Other routes of administration are also described herein and can be used as well.
- compositions comprising effective amounts of Form I with, for example, pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or other carriers.
- pharmaceutically acceptable diluents such as, but not limited to, TRIS or other amines, carbonates, phosphates, amino acids, for example, glycinamide hydrochloride (especially in the physiological pH range), N-glycylglycine, sodium or potassium phosphate (dibasic, tribasic), etc.
- additives such as detergents and solubilizing agents (e.g., surfactants such as Pluronics, Tween 20, Tween 80 (Polysorbate 80), Cremophor, polyols such as polyethylene glycol, propylene glycol, etc.), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol, parabens, etc.) and bulking substances (e.g., sugars such as sucrose, lactose, mannitol, polymers such as polyvinylpyrrolidones or dextran, etc.); and/or incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc.
- surfactants such as Pluronics, Tween 20, Tween 80 (Polysorbate 80), Cremophor, polyols such as polyethylene glycol, propylene glycol, etc.
- compositions can be employed to influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of a composition comprising Form I as described herein. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 1435-1712 which are herein incorporated by reference.
- the buffer can be, for example, but not limited to, sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, or mixtures thereof.
- Each buffer can be used independently or in combination with another buffer.
- the buffer is glycylglycine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof.
- the preservative can be, but is not limited to, phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, or mixtures thereof.
- the preservative is phenol and/or m-cresol.
- the preservative is present in a concentration from about 0.1 mg/ml to about 100 mg/ml, more preferably in a concentration from about 0.1 mg/ml to about 50 mg/ml, about 0.1 mg/ml to about 25 mg/ml. In some embodiments, the preservative is present in a concentration from about 0.1 mg/ml to about 10 mg/ml.
- the formulation may further comprise a chelating agent where the chelating agent may be salts of ethlenediaminetetraacetic acid (EDTA), citric acid, and aspartic acid, and mixtures thereof.
- EDTA ethlenediaminetetraacetic acid
- citric acid citric acid
- aspartic acid and mixtures thereof.
- the chelating agent is present in a concentration from 0.1 mg/ml to 10 mg/ml, particularly in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the chelating agent is present in a concentration from 0.1 mg/ml to 2 mg/ml. In some embodiments, the chelating agent is present in a concentration from 2 mg/ml to 5 mg/ml.
- a chelating agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- the formulation may further comprise a stabilizer selected from the group of high molecular weight polymers or low molecular compounds where such stabilizers include, but are not limited to, polyethylene glycol (e.g., PEG 3350), polyvinylalcohol (PVA), polyvinylpyrrolidone, carboxymethylcellulose, different salts (e.g. sodium chloride), L-glycine, L-histidine, imidazole, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine and mixtures thereof.
- the stabilizer is L-histidine, imidazole, arginine, or any combination thereof.
- the high molecular weight polymer is present in a concentration from 0.1 mg/ml to 100 mg/ml, in a concentration from 0.1 mg/ml to 50 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 5 mg/ml to 10 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 10 mg/ml to 20 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 20 mg/ml to 30 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 30 mg/ml to 50 mg/ml.
- the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 100 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 50 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the low molecular weight polymer compound is present in a concentration from 5 mg/ml to 10 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 10 mg/ml to 20 mg/ml.
- the low molecular weight polymer is present in a concentration from 20 mg/ml to 30 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 30 mg/ml to 50 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 50 mg/ml to 60 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 60 mg/ml to 80 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 80 mg/ml to 100 mg/ml.
- the formulation may comprise a surfactant where a surfactant can be a detergent, ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g., Tween-20, or Tween-80), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kephalins, phosphatidyl serine), glyceroglycolipids (galactopyransoide), sphingophospholipids (sphin
- the formulations may also comprise a pharmaceutically acceptable sweetener.
- the sweetener comprises at least one intense sweetener such as, but not limited to, saccharin, sodium or calcium saccharin, aspartame, acesulfame potassium, sodium cyclamate, alitame, a dihydrochalcone sweetener, monellin, stevioside or sucralose (4,1′,6′-trichloro-4,1′,6′-trideoxygalactosucrose), preferably saccharin, sodium or calcium saccharin, and optionally a bulk sweetener such as sorbitol, mannitol, fructose, sucrose, maltose, isomalt, glucose, hydrogenated glucose syrup, xylitol, caramel or honey.
- intense sweetener such as, but not limited to, saccharin, sodium or calcium saccharin, aspartame, acesulfame potassium, sodium cyclamate, alitame, a di
- Intense sweeteners are conveniently employed in low concentrations.
- concentration may range from 0.04% to 0.1% (w/v) based on the total volume of the final formulation, or from about 0.06% in the low-dosage formulations and about 0.08% in the high-dosage ones.
- the bulk sweetener can effectively be used in larger quantities ranging from about 10% to about 35% or from about 10% to 15% (w/v).
- the formulations may be prepared by conventional techniques, for example, as described in Remington's Pharmaceutical Sciences, 1985 or in Remington: The Science and Practice of Pharmacy, 19th edition, 1995, where such conventional techniques of the pharmaceutical industry involve dissolving and mixing the ingredients as appropriate to give the desired end product.
- Administration of the compound or the formulations described herein may be carried out using any method known in the art.
- administration may be transdermal, parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intracerebroventricular, intrathecal, intranasal, aerosol, by suppositories, inhalation, or by oral administration.
- the compound or formulation is administered intravenously or by injection.
- Form I or a therapeutically acceptable salt thereof can be formulated in unit dosage forms such as gelcaps, caplets, granules, lozenges, bulk powders, capsules or tablets.
- the tablets or capsules may be prepared by conventional means with pharmaceutically acceptable excipients, including binding agents, for example, pregelatinised maize starch, polyvinylpyrrolidone, or hydroxypropyl methylcellulose; fillers, for example, lactose, microcrystalline cellulose, or calcium hydrogen phosphate, lubricants, for example, magnesium stearate, talc, or silica; disintegrants, for example, potato starch or sodium starch glycolate; or wetting agents, for example, sodium lauryl sulphate. Tablets can be coated by methods well known in the art.
- Liquid preparations for oral administration can take the form of, for example, solutions, syrups, or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use.
- Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives, for example, suspending agents, for example, sorbitol syrup, cellulose derivatives, or hydrogenated edible fats; emulsifying agents, for example, lecithin or acacia; non-aqueous vehicles, for example, almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils; and preservatives, for example, methyl or propyl-p-hydroxybenzoates or sorbic acid.
- the preparations can also contain buffer salts, flavoring, coloring, and/or sweetening agents as appropriate. If desired, preparations for oral administration can be suitably formulated to give controlled release of the active compound.
- Form I can be formulated in a pharmaceutically acceptable vehicle containing 0.1 to 10 percent, preferably 0.5 to 5 percent, of the active compound(s).
- a pharmaceutically acceptable vehicle containing 0.1 to 10 percent, preferably 0.5 to 5 percent, of the active compound(s).
- Such formulations can be in the form of a cream, lotion, sublingual tablet, aerosols and/or emulsions and can be included in a transdermal or buccal patch of the matrix or reservoir type as are conventional in the art for this purpose.
- Form I or an amorphous form of the compound can be administered by either intravenous, subcutaneous, or intramuscular injection, in compositions with pharmaceutically acceptable vehicles or carriers.
- Form I can be formulated for parenteral administration by injection, for example, by bolus injection or continuous infusion.
- Formulations for injection can be presented in unit dosage form, for example, in ampoules or in multi-dose containers, with an added preservative.
- the compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and can contain formulatory agents, for example, suspending, stabilizing, and/or dispersing agents.
- the compound can be precipitated and stored in an ampule or other container and then dissolved in a solution prior to being administered to a subject.
- the compound can be used in solution, and, for example, in a sterile aqueous vehicle which may also contain other solutes such as buffers or preservatives as well as sufficient quantities of pharmaceutically acceptable salts or of glucose to make the solution isotonic.
- the pharmaceutical compositions may be formulated with a pharmaceutically acceptable carrier to provide sterile solutions or suspensions for injectable administration.
- injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspensions in liquid prior to injection or as emulsions.
- Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride, or the like.
- the injectable pharmaceutical compositions may contain minor amounts of nontoxic auxiliary substances, such as wetting agents, pH buffering agents, and the like.
- absorption enhancing preparations e.g., liposomes
- Suitable pharmaceutical carriers are described in “Remington's pharmaceutical Sciences” by E. W. Martin.
- the compound may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
- a suitable propellant for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
- the dosage unit can be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of, for example, gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base, for example, lactose or starch.
- the compound may be used, for example, as a liquid spray, as a powder or in the form of drops.
- the compound can also be formulated in rectal compositions, for example, suppositories or retention enemas, for example, containing conventional suppository bases, for example, cocoa butter or other glycerides.
- the compound can be formulated as a depot preparation.
- Such long-acting formulations can be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection.
- the compound can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- compositions can, if desired, be presented in a pack or dispenser device that can contain one or more unit dosage forms containing the active ingredient.
- the pack can, for example, comprise metal or plastic foil, for example, a blister pack.
- the pack can also contain individual vials or other containers.
- the pack or dispenser device can be accompanied by instructions for administration.
- Crystalline Form I may be administered to a patient at therapeutically effective doses to prevent, treat, or control diseases and disorders mediated, in whole or in part, by a GPCR-ligand interaction described herein.
- Pharmaceutical compositions comprising crystalline Form I may be administered to a patient in an amount sufficient to elicit an effective protective or therapeutic response in the patient.
- the dose will be determined by the efficacy of the particular compound employed and the condition of the subject, as well as the body weight or surface area of the area to be treated.
- the size of the dose also will be determined by the existence, nature, and extent of any adverse effects that accompany the administration of a particular compound or vector in a particular subject.
- the amount and frequency of administration of the compound comprising Form I or another amorphous form prepared according to a method described herein and/or the pharmaceutically acceptable salts thereof can be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated.
- An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. In general it is contemplated that an effective amount would be from 0.001 mg/kg to 10 mg/kg body weight, and in particular from 0.01 mg/kg to 1 mg/kg body weight.
- an effective amount would be to continuously infuse by intravenous administration from 0.01 micrograms/kg body weight/min to 100 micrograms/kg body weight/min for a period of 12 hours to 14 days. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day.
- Sub-doses may be formulated as unit dosage forms, for example, containing 0.01 to 500 mg, and in particular 0.1 mg to 200 mg of active ingredient per unit dosage form.
- a composition comprising crystalline Form I of SEQ ID. NO. 1 or an amorphous form prepared according to a method described herein can be used for treating a cardiovascular or cardiorenal disorder that, for example, would respond favorably to a decrease in blood pressure.
- methods of treating cardiovascular disorders comprise administering to a subject, or a subject in need thereof, a therapeutically effective amount of crystalline Form I and/or pharmaceutically acceptable salt thereof. In some embodiments, the method comprises administering to a subject, or a subject in need thereof, a therapeutically effective amount of an amorphous form of SEQ ID. NO. 1 prepared according to a method described herein and/or pharmaceutically acceptable salt thereof.
- cardiovascular disorders include, but are not limited to, chronic hypertension, hypertensive crisis, acute congestive heart failure, angina, acute myocardial infarction, left ventricular failure, cerebrovascular insufficiency, intracranial haemorrhage, heart failure, acute decompensated heart failure, which can also be referred to as acute heart failure, essential hypertension, post-operative hypertension, hypertensive heart disease, hypertensive renal disease, renovascular hypertension, malignant hypertension, post-renal transplant patient stabilization, dilated cardiomyopathy, myocarditis, post-cardiac transplant patient stabilization, disorders associated with post-stent management, neurogenic hypertension, pre-eclampsia, abdominal aortic aneurysm, and any cardiovascular disorder with a hemodynamic component.
- the cardiovascular disorder is an acute cardiovascular disorder.
- the acute cardiovascular disorder is acute hypertensive crisis, toxemia of pregnancy, acute myocardial infarction, acute congestive heart failure, acute heart failure, acute ischaemic heart disease, pulmonary hypertension, post-operative hypertension, migraine, retinopathy and post-operative cardiac/valve surgery.
- methods of treating viral infectious disease linked to AT1R comprise administering to a subject in need thereof a therapeutically effective amount of crystalline Form I and/or pharmaceutically acceptable salt thereof.
- the composition is administered by intravenous injection.
- Methods are also provided for treating any cardiovascular or cardiorenal disorder by administering crystalline Form I and/or an amorphous form prepared according to a method described herein, and/or pharmaceutically acceptable salts thereof, in combination with other drugs for the treatment of cardiovascular and/or cardiorenal disorders.
- drugs include diuretics such as furosemide; vasodilators such as nitroglycerin, nitroprusside, brain natriuretic peptide (BNP), or analogues thereof; inotropes such as dobutamine; angiotensin converting enzyme (ACE) inhibitors such as captopril and enalapril; 3 blockers such as carvedilol and propranolol; angiotensin receptor blockers (ARBs) such as valsartan and candesartan; and/or aldosterone antagonists such as spironolactone.
- diuretics such as furosemide
- vasodilators such as nitroglycerin, nitroprusside, brain natriuretic peptide (BNP), or analogues thereof
- inotropes such as dobutamine
- angiotensin converting enzyme (ACE) inhibitors such as captopril and enalapril
- 3 blockers such
- crystalline Form I or the amorphous form is co-administered with one or more drugs for the treatment of cardiovascular and/or cardiorenal disorders to increase efficacy of treatment of cardiovascular and/or cardiorenal disorders and to reduce side effects associated with high doses of these therapeutics.
- the combination therapies described above have synergistic and additive therapeutic effects.
- An improvement in the drug therapeutic regimen can be described as the interaction of two or more agents so that their combined effect reduces the incidence of adverse event (AE) of either or both agents used in co-therapy. This reduction in the incidence of adverse effects can be a result of, e.g., administration of lower dosages of either or both agent used in the co-therapy.
- AE adverse event
- the compounds described herein are administered as a mono-therapy. In some embodiments, the compounds described herein are administered as part of a combination therapy. For example, a compound may be used in combination with other drugs or therapies that are used in the treatment/prevention/suppression and/or amelioration of the diseases or conditions for which compounds are useful.
- Such other drug(s) may be administered, by a route and in an amount commonly used therefore, contemporaneously or sequentially with the compounds described herein.
- a pharmaceutical unit dosage form containing such other drugs in addition to the compound described herein may be employed.
- the pharmaceutical compositions include those that also contain one or more other active ingredients, in addition to the compounds described herein.
- a subject or patient in whom administration of the therapeutic compound is an effective therapeutic regimen for a disease or disorder is often a human, but can be any animal, including a laboratory animal in the context of a clinical trial or screening or activity experiment.
- the methods, compound and compositions are particularly suited to administration to any animal, such as a mammal, and including, but by no means limited to, humans, domestic animals, such as feline or canine subjects, farm animals, such as but not limited to bovine, equine, caprine, ovine, and porcine subjects, wild animals (whether in the wild or in a zoological garden), research animals, such as mice, rats, rabbits, goats, sheep, pigs, dogs, cats, etc., avian species, such as chickens, turkeys, songbirds, etc., i.e., for veterinary medical use.
- FIG. 4 shows the X-ray powder diffraction pattern of Form I.
- FIG. 11 shows the X-ray powder diffraction pattern of the precipitate from ethanol.
- FIG. 12 shows the X-ray powder diffraction pattern of the precipitate from water and acetone.
- FIG. 14 shows the X-ray powder diffraction pattern of Form I of SEQ. ID. NO. 1. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 17 shows the X-ray powder diffraction pattern of Form I. Corresponding DSC thermogram is shown in FIG. 16 .
- FIG. 18 shows the X-ray powder diffraction pattern of Form I. Corresponding DSC thermogram is shown in FIG. 16 .
- Example 1 The X-ray powder diffraction patterns of Example 1 were determined using a bench-top X-ray diffractometer D8 Advance, Bruker AXS Inc., Madison, Wis.). A small amount of sample obtained from Example 1 was loaded onto Si-low background sample holder, and exposed to CuK ⁇ radiation (40 kV ⁇ 40 mA). The sample was scanned in a locked coupled mode with spinner rotating at a speed of 25 rpm. The angular range was 2° to 40° 20 in a step size of 0.0069, number of steps of 5470 and time/step of 0.39 second. Data collection and analyses were performed with commercially available software (Eva, version 2.0, Bruker AXS Inc., Madison, Wis.).
- the moisture sorption-desorption profiles of amorphous SEQ. ID. NO. 1 were obtained using a DVS Intrinsic Vapor Sorption Analyzer (Surface Measurement Systems Ltd, Allentown, Pa.) and are shown in FIG. 3 .
- a small quantity of sample from Example 1 was placed in a DVS sample holder.
- Two cycles of sorption/desorption profile were recorded at 25° C. in the range of 0% to 95% RH (the first sorption cycle was started at 45% RH) with maximum equilibration time of 120 min at each step (0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%).
- the bulk density of amorphous and crystalline form is roughly determined by dividing the weight of powder in gram by the volume of the weighted amount in mL. The powder is accurately weighed on a calibrated balance; the volume is measured by transferring the weighed amount in a graduated cylinder.
- thermogravimetric analyzer TGA Q5000IR, TA Instruments, New Castle, Del.
- flow rate 25 ml/min
- Thermogravimetry Analysis TGA: A thermogravimetric analyzer (TGA Q5000IR, TA Instruments, New Castle, Del.) with air cooling was used. About 2 mg of sample was weighed in platinum TGA pan and heated under dry nitrogen purge (flow rate 25 ml/min) at 10° C./min. The data was analyzed using Universal Analysis (TA instruments, New Castle, Del.).
- Dynamic Vapor Sorption The moisture sorption-desorption profile of Form I was obtained using a DVS Intrinsic Vapor Sorption Analyzer (Surface Measurement Systems Ltd, Allentown, Pa.). A small quantity of sample was placed in a DVS sample holder. 2 cycles of sorption/desorption profile were recorded at 25° C. in the range of 0% to 95% RH (the first sorption cycle was started at 45% RH) with maximum equilibration time of 120 min at each step (0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%).
- Powder X-Ray Diffractometry (PXRD): A small amount of sample was loaded onto Si-low background sample holder, and exposed to CuK ⁇ radiation (40 kV ⁇ 40 mA) in an X-ray diffractometer (D8 Advance, Bruker AXS Inc., Madison, Wis.). The sample was scanned in a locked coupled mode with spinner rotating at a speed of 25 rpm. The angular range was 2° to 40° 20 in a step size of 0.0069, number of steps of 5470 and time/step of 0.39 second. The data collection and analyses were performed with commercially available software (Eva, version 2.0, Bruker AXS Inc., Madison, Wis.).
- Determination of Degradation Product The amount of degradation products in the composition comprising SEQ. ID. NO. 1 was quantified by UPLC with UV detection at 205 nm using procedure described in method PRD-TM-ANL-01105 version 1.0.
- the bulk density of amorphous and crystalline SEQ. ID. NO.1 was determined to be 0.07 g/ml and 0.4 g/ml, respectively. Thus, the bulk density of crystalline SEQ. ID. NO. 1 was improved significantly and is approximately 6-fold higher than the amorphous material. This significant increase in bulk density of the crystalline form could not have been predicted.
- TGA The TGA weight loss curve of crystalline SEQ. ID. NO. 1 presented in FIG. 19 exhibits two weight-loss steps.
- the first weight loss event of 7.1% w/w occurs between 25° C. to 100° C.; the second one of 7.4% w/w occurs between 100° C. to 225° C.
- the two weight loss events matches the broad endotherms observed from the DSC thermogram and are associated with the loss of water and residual acetic acid present in the material.
- the data is shown in FIG. 19 .
- Dynamic Vapor Sorption The DVS data ( FIG. 20 ) shows that crystalline SEQ. ID. NO.1 is not as hygroscopic as amorphous SEQ. ID. NO.1. The crystalline form only adsorbed roughly 7.6% (by weight) at 60% RH and 11% (by weight) at 95% RH. However, amorphous form adsorbed more than 10% (by weight) at 60% RH and 30% (by weight) at 95% RH. After completion of DVS analysis, the sample was characterized by X-ray powder diffractometry. FIG. 21 shows that the crystalline form remained unchanged after exposing to two sorption/desorption cycles.
- the crystalline Form I has physical properties that are surprising and unexpected as compared to amorphous form.
- the data demonstrates that crystalline Form I has enhanced bulk density properties as compared to the amorphous form, which enables the product to have better handling, easier storage (does not take up as much space), and better flow in manufacturing.
- the crystalline form also has better chemical stability as compared to the amorphous form, and it is less hygroscopic.
- Form I is unexpectedly and surprisingly more stable and, unexpectedly, can be stored at either controlled refrigerated temperature (4 C) or at room temperature (20-25 C), which is a significant and unexpected advantage over the amorphous form, which is stored at ⁇ 20 C.
- the ability to store Form I at a higher temperature is unexpected, in part, because it is unusual for a crystalline form of a peptide to have this increase in stability at the higher temperatures (> ⁇ 20 C) especially in view of the hygroscopic properties of the amorphous form of SEQ. ID. NO.1.
- the crystalline Form I of SEQ. ID. NO. 1 is also expected to have synergy with other active or inactive components resulting in enhanced performance characteristics or properties of pharmaceutical compositions comprising one or more crystalline forms of the compounds described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cardiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Heart & Thoracic Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Hospice & Palliative Care (AREA)
- Urology & Nephrology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This application claims priority to and the benefit of U.S. Provisional Application No. 61/936,914, filed Feb. 7, 2014, which is hereby incorporated by reference in its entirety.
- The present disclosure describes novel crystalline forms of a compound that acts as β-arrestin effector, processes for preparing and precipitating amorphous and crystalline forms of the compound, and uses thereof.
- U.S. Pat. No. 8,486,885 discloses peptides that act as GPCR agonist of GPCR receptors (e.g., angiotensin II). GPCR agonist causes activation of a heterotrimeric “G protein”. Such activation leads to second messenger/down-stream signaling (e.g., via diacylglycerol, inositol-triphosphate, calcium, etc.) causing changes in physiological function (e.g., blood pressure and fluid homeostasis). One particular peptide disclosed in U.S. Pat. No. 8,486,885 is referred to therein as “SEQ ID NO. 27”, which has the following amino acid sequence: NH2-Sarcosine L-Arginine L-Valine L-Tyrosine L-Isoleucine L-Histidine L-Proline D-Alanine —OH referred to as NH2-Sar Arg Val Tyr Ile His Pro D-Ala-OH.
- SEQ ID NO. 27 referred to in U.S. Pat. No. 8,486,885 (hereinafter referred as SEQ. ID. NO. 1) is an agonist of β-arrestin/GRK-mediated signal transduction via AT1 angiotensin receptor. The amino acid sequence, including, but not limited to, formula, variables, derivatives, of the peptide or peptide mimetic of SEQ ID NO. 1, the ability of the compound to effect G protein-mediated signaling or GPCR activity, or the absence of such signaling/activity, methods for preparation of SEQ. ID. NO. 1, and other related peptides are disclosed in U.S. Pat. No. 8,486,885, the contents of which are incorporated herein by reference in their entirety.
- There remains a need in the art for improved forms of SEQ. ID. NO. 1 with improved properties. There also remains a need in the art for improved processes for preparing the peptide of SEQ. ID. NO. 1.
- The present disclosure provides novel crystalline modifications of the peptide of SEQ. ID. NO. 1, processes for preparing SEQ. ID. NO. 1, and optionally isolating such forms.
- Surprisingly, the peptide of SEQ ID NO. 1 can be crystallized and is superior in properties. Surprisingly, amorphous SEQ ID NO. 1 can be prepared, by precipitating SEQ. ID. NO. 1. Crystalline forms of SEQ ID NO. 1 are distinguished from prior art by improved stability, processability and can also be used in for pharmaceutical formulations.
- In some embodiments, crystalline forms of SEQ. ID. NO. 1 are provided. In some embodiments, the crystalline form is Form I of SEQ. ID. NO. 1 (hereinafter, Form I).
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 18.5±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 10.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 8.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 20.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5, and at about 10.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 10.1, and at about 8.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2, and at about 20.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, and at about 10.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, and at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2, at about 10.1, and at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2, at about 18.5, and at about 20.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5, at about 10.1, at about 8.2, at about 20.2, and at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising one or more peaks as shown in
FIG. 4 . - In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising one or more d-spacing values at about 10.7, at about 8.7, at about 4.7, at about 4.1, and at about 3.6±0.5 degrees angstroms.
- In some embodiments, a pharmaceutical composition comprising a crystalline form of SEQ. ID. NO. 1 is provided.
- In some embodiments, a pharmaceutical composition comprising a crystalline Form I of SEQ. ID. NO. 1 is provided.
- In some embodiments, the pharmaceutical composition comprises Form I, wherein Form I is a peptide or a peptide mimetic of SEQ. ID. NO. 1.
- In some embodiments, the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is cyclic.
- In some embodiments, the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is dimerized.
- In some embodiments, the pharmaceutical composition comprises Form I, wherein the peptide or a peptide mimetic is trimerized.
- In some embodiments, the pharmaceutical composition comprises Form I, further comprising an additional drug for the treatment of a cardiovascular or a cardio renal disorder.
- In some embodiments, a process for preparing a crystalline form of SEQ. ID. NO. 1, comprising crystallizing SEQ. ID. NO. 1 to form Form I and optionally isolating the Form I of SEQ. ID. NO. 1 is provided.
- In some embodiments, a process for preparing SEQ. ID. NO. 1, comprising precipitating SEQ. ID. NO. 1 and optionally isolating SEQ. ID. NO. 1 is provided.
- In some embodiments, a pharmaceutical composition comprising SEQ. ID. NO.1 prepared by precipitating SEQ. ID. NO.1 is provided.
- In some embodiments, a method of treating a cardiovascular or a cardiorenal disorder comprising administering to a patient in need thereof, a crystalline or an amorphous form of SEQ. ID. NO. 1 is provided.
- In some embodiments, a method of treating a cardiovascular or a cardiorenal disorder comprising administering to a patient in need thereof, a crystalline Form I of SEQ. ID. NO. 1 is provided.
- The details of one or more embodiments are set forth in the description below. Other features, objects, and advantages of the present teachings will be apparent from the description of examples and also from the appending claims.
-
FIG. 1 shows X-ray powder diffraction pattern of amorphous SEQ ID. NO. 1. -
FIG. 2 shows Differential Scanning Calorimetry (DSC) thermogram of amorphous SEQ. ID. NO. 1. -
FIG. 3 shows Sorption/Desorption profile of amorphous SEQ ID. NO. 1. -
FIG. 4 shows X-ray powder diffraction pattern of crystalline Form I of SEQ ID. NO. 1. -
FIG. 5 shows Differential Scanning Calorimetry (DSC) thermogram of crystalline Form I of SEQ. ID. NO. 1. -
FIG. 6 shows HPLC chromatogram of Form I of SEQ ID. NO. 1. -
FIG. 7 shows overlaid X-ray powder diffraction patterns of amorphous SEQ ID. NO. 1 and crystalline Form I of SEQ ID. NO. 1. -
FIG. 8 shows HPLC chromatograms of amorphous and crystalline Form I of SEQ ID. NO. 1. -
FIG. 9 shows microscopic image of crystalline Form I of SEQ ID. NO. 1 under cross polarized light. -
FIG. 10 shows microscopic image and particle size of crystalline Form I of SEQ ID. NO. 1 under plane polarized light. -
FIG. 11 shows the overlaid X-ray powder diffraction patterns for the precipitate of SEQ. ID. NO. 1 from ethanol and amorphous SEQ. ID. NO. 1. -
FIG. 12 shows the X-ray powder diffraction pattern for the precipitate of SEQ. ID. NO. 1 from water and acetone. -
FIG. 13 shows the X-ray powder diffraction pattern for the precipitate of SEQ. ID. NO. 1 from water and isopropyl alcohol. -
FIG. 14 shows overlaid X-ray powder diffraction patterns for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown inFIG. 16 . -
FIG. 15 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown inFIG. 16 . -
FIG. 16 shows a DSC thermogram for compounds produced according to Examples 1E, 1F, 1G, and 1H. -
FIG. 17 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown inFIG. 16 . -
FIG. 18 shows overlaid X-ray powder diffraction pattern for Form I of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. Corresponding DSC thermogram is shown inFIG. 16 . -
FIG. 19 shows a TGA profile of crystalline SEQ. ID. NO.1. -
FIG. 20 showsFIG. 20 a DVS profile of crystalline SEQ. ID. NO. 1. -
FIG. 21 shows the PXRD of crystalline form SEQ. ID. NO.1 after completion of DVS analysis. -
FIG. 22 shows PXRD patterns of amorphous SEQ. ID. NO. 1 at various temperature and humidity conditions. -
FIG. 23 shows PXRD patterns of crystalline SEQ. ID. NO.1 at various temperature and humidity conditions. - The terms “peptidyl” and “peptidic” include active derivatives, variants, and/or mimetics of the peptides according to the present embodiments. Peptidic compounds are structurally similar bioactive equivalents of the peptides according to the present embodiments.
- The term “structurally similar bioactive equivalent” means a peptidyl compound with structure sufficiently similar to that of an identified bioactive peptide to produce substantially equivalent therapeutic effects. For example, peptidic compounds derived from the amino acid sequence of the peptide, or having an amino acid sequence backbone of the peptide, are considered structurally similar bioactive equivalents of the peptide.
- The term “variant” refers to a protein or polypeptide in which one or more amino acid substitutions, deletions, and/or insertions are present as compared to the amino acid sequence of a protein or peptide and include naturally occurring allelic variants or alternative splice variants of a protein or peptide.
- The term “variant” includes the replacement of one or more amino acids in a peptide sequence with a similar or homologous amino acid(s) or a dissimilar amino acid(s). In some embodiments, variants include alanine substitutions at one or more of amino acid positions. Other preferred substitutions include conservative substitutions that have little or no effect on the overall net charge, polarity, or hydrophobicity of the protein.
- The term “variant” also encompasses polypeptides that have the amino acid sequence of the proteins/peptides of the present compounds with at least one and up to 25 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20) additional amino acids flanking either the 3′ or 5′ end of the amino acid sequence or both. The term “variant” also refers to a protein that is at least 60 to 99 percent identical (e.g., 60, 65, 70, 75, 80, 85, 90, 95, 98, 99, or 100%, inclusive) in its amino acid sequence of the proteins of the present compounds as determined by standard methods that are commonly used to compare the similarity in position of the amino acids of two polypeptides. The degree of similarity or identity between two proteins can be readily calculated by known methods.
- The term “derivative” refers to a chemically modified protein or polypeptide that has been chemically modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques, as for example, by addition of one or more polyethylene glycol molecules, sugars, phosphates, and/or other such molecules, where the molecule or molecules are not naturally attached to wild-type proteins. Derivatives include salts. Such chemical modifications are well described in basic texts and in more detailed monographs, as well as in research literature and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given protein or polypeptide. Also, a given protein or polypeptide may contain many types of modifications. Modifications can occur anywhere in a protein or polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, Proteins-Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., “Posttranslational Protein Modifications: Perspectives and Prospects,” pages. 1-12 in Posttranslational Covalent Modification Of Proteins, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., Meth. Enzvmol. 182:626-646 (1990) and Rattan et al., “Protein Synthesis: Posttranslational Modifications and Aging,” Ann N.Y. Acad. Sci. 663: 48-62 (1992).
- The term “derivatives” include chemical modifications resulting in the protein or polypeptide becoming branched or cyclic, with or without branching. Cyclic, branched and branched circular proteins or polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.
- The term “peptide mimetic” or “mimetic” refers to biologically active compounds that mimic the biological activity of a peptide or a protein but are no longer peptidic in chemical nature, that is, they no longer contain any peptide bonds (that is, amide bonds between amino acids). The term peptide mimetic is used in a broader sense to include molecules that are no longer completely peptidic in nature, such as pseudo-peptides, semi-peptides and peptoids. Whether completely or partially non-peptide, peptide mimetics according to the embodiments provide a spatial arrangement of reactive chemical moieties that closely resemble the three-dimensional arrangement of active groups in the peptide on which the peptide mimetic is based. As a result of this similar active-site geometry, the peptide mimetic has effects on biological systems that are similar to the biological activity of the peptide.
- The peptide mimetics of the embodiments are preferably substantially similar in both three-dimensional shape and biological activity to the peptide described herein. According to some embodiments, peptide mimetics of the present compounds have protective groups at one or both ends of the compounds, and/or replacement of one or more peptide bonds with non-peptide bonds. Such modifications may render the compounds less susceptible to proteolytic cleavage than the compound itself. For instance, one or more peptide bonds can be replaced with an alternative type of covalent bond (e.g., a carbon-carbon bond or an acyl bond). Peptide mimetics can also incorporate amino-terminal or carboxyl terminal blocking groups such as t-butyloxycarbonyl, acetyl, alkyl, succinyl, methoxysuccinyl, suberyl, adipyl, azelayl, dansyl, benzyloxycarbonyl, fluorenylmethoxycarbonyl, methoxyazelayl, methoxyadipyl, methoxysuberyl, and 2,4,-dinitrophenyl, thereby rendering the mimetic less susceptible to proteolysis. Non-peptide bonds and carboxyl- or amino-terminal blocking groups can be used singly or in combination to render the mimetic less susceptible to proteolysis than the corresponding peptide/compound. Additionally, substitution of D-amino acids for the normal L-stereoisomer can be effected, e.g., to increase the half-life of the molecule.
- The term “salt” or “salts” may refer to any acid addition salts, including addition salts of free acids or addition salts of free bases. All of these salts (or other similar salts) may be prepared by conventional means. All such salts are acceptable provided that they are non-toxic and do not substantially interfere with the desired pharmacological activity.
- The term “therapeutically effective amount” means the amount of a compound that, when administered to a mammal for treating a state, disorder or condition is sufficient to effect a treatment (as defined below). The “therapeutically effective amount” will vary depending on the compound, the disease and its severity, the age, weight, physical condition and responsiveness of the mammal to be treated.
- The term “pharmaceutically acceptable” means biologically or pharmacologically compatible for in vivo use in animals or humans, and preferably means approved by a regulatory agency of the Federal or a State government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- The term “treat”, in all its verb forms, means to relieve or alleviate at least one symptom of a cardiovascular disorder or a cardiorenal disorder in a subject, including chronic hypertension, hypertensive crisis, acute congestive heart failure, angina, acute myocardial infarction, left ventricular failure, cerebrovascular insufficiency, intracranial haemorrhage, heart failure, acute decompensated heart failure, essential hypertension, post-operative hypertension, hypertensive heart disease, hypertensive renal disease, renovascular hypertension, malignant hypertension, post-renal transplant patient stabilization, dilated cardiomyopathy, myocarditis, post-cardiac transplant patient stabilization, disorders associated with post-stent management, neurogenic hypertension, pre-eclampsia, abdominal aortic aneurysm, and any cardiovascular disorder with a hemodynamic component. Specifically in some aspects, the cardiovascular disorder is an acute cardiovascular disorder. In other specific aspects, the acute cardiovascular disorder is acute hypertensive crisis, toxemia of pregnancy, acute myocardial infarction, acute congestive heart failure, acute ischaemic heart disease, pulmonary hypertension, post-operative hypertension, migraine, retinopathy and post-operative cardiac/valve surgery.
- The term “synergy” is defined as the interaction of two or more agents so that their combined effect is greater than the sum of their individual effects. For example, if the effect of drug A alone in treating a disease is 25%, and the effect of drug B alone in treating a disease is 25%, but when the two drugs are combined the effect in treating the disease is 75%, the effect of A and B is synergistic.
- The term “additive” is defined as the interaction of two or more agents so that their combined effect is the same as the sum of their individual effects. For example, if the effect of drug A alone in treating a disease is 25%, and the effect of drug B alone in treating a disease is 25%, but when the two drugs are combined the effect in treating the disease is 50%, the effect of A and B is additive.
- The term “pharmaceutically acceptable” or “therapeutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and preferably do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human. Preferably, as used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a State government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia (e.g., Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985)) for use in animals, and more particularly in humans.
- The term “approximately” means plus or minus 5%.
- Approximately 80% and 20% v/v of ethanol and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v ethanol and 20% v/v water to approximately 20% v/v ethanol and 80% v/v water.
- Approximately 80% and 20% v/v isopropyl alcohol and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v isopropyl alcohol and 20% v/v water to approximately 20% v/v isopropyl alcohol and 80% v/v water.
- Approximately 80% and 20% v/v of acetone and the remainder of the solution approximately is water means a solution comprising between approximately 80% v/v acetone and 20% v/v water to approximately 20% v/v acetone and 80% v/v water.
- The present embodiments relate to a synthetic octapeptide, namely SEQ. ID. NO. 1, having the amino sequence structure as follows: NH2-Sar Arg Val Tyr Ile His Pro D-Ala-OH. SEQ. ID NO. 1 is an agonist of β-arrestin/GRK-mediated signal transduction via the AT1 angiotensin receptor.
- An amorphous form of SEQ ID. NO. 1 can be prepared using solid-phase peptide synthesis using FMOC based solid state synthesis on a chlortriyl resin. The crude peptide can be purified by reverse phase chromatography and ion-exchange can be performed to remove trifluroacetic acid and to replace it with acetic acid. The amorphous form of SEQ ID. NO. 1 can then be isolated using lyophilization. Lyophilization may not be feasible for a large scale manufacturing of the peptide for commercial production.
- The present application relates to novel methods of precipitating SEQ. ID. NO. 1 and novel crystalline forms of SEQ. ID. NO. 1.
- An example of an amorphous form of SEQ. ID. NO. 1, is illustrated in
FIG. 1 , which shows a X-ray powder diffraction pattern of amorphous SEQ ID. NO. 1.FIG. 2 shows an example of a Differential Scanning Calorimetry (DSC) thermogram of amorphous SEQ. ID. NO. 1.FIG. 3 shows an example of Sorption/Desorption profile of amorphous SEQ ID. NO. 1. - DSC thermogram shown in
FIG. 2 exhibits two broad endotherm at around 76° C. and at around 159° C., as well as sharp endotherm at around 250° C. SEQ. ID. NO. 1 is highly hygroscopic as it adsorbed moisture with increase in % RH. More than about 25% (by weight) moisture was adsorbed at 95% RH at 25° C. as shown inFIG. 3 .FIGS. 1-3 show that the peptide of SEQ. ID. NO. 1 is amorphous. - In some embodiments, crystalline forms of SEQ ID NO. 1 are provided. In some embodiments crystalline Form I of SEQ ID NO. 1 is provided.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern substantially as shown in
FIG. 4 . In some embodiments, Form I is characterized by an X-ray powder diffraction pattern comprising one or more peaks as provided in Table 1. In some embodiments, Form I is characterized by an X-ray powder diffraction pattern comprising substantially all of, or all of, the peaks as provided in Table 1. - In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 8.2±0.5 degrees 28.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 10.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 15.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 16.5±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 18.5±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 20.2±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 23.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a peak at about 30.8±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, about 10.1±0.5 degrees 2θ, about 18.5±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 6.1±0.5 degrees 2θ, about 8.2±0.5 degrees 2θ, about 10.1±0.5 degrees 2θ, about 11.4±0.5 degrees 2θ, about 13.2±0.5 degrees 2θ, about 16.1±0.5 degrees 2θ, about 18.5±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 23.1±0.5 degrees 2θ, about 24.4±0.5 degrees 2θ, and about 30.8±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 6.1±0.5 degrees 2θ, about 8.2±0.5 degrees 2θ, about 10.1±0.5 degrees 2θ, about 10.7±0.5 degrees 2θ, about 12.3±0.5 degrees 2θ, about 14.0±0.5 degrees 2θ, about 15.4±0.5 degrees 2θ, about 16.1±0.5 degrees 2θ, about 17.3±0.5 degrees 2θ, about 18.5±0.5 degrees 2θ, about 19.1±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 20.9±0.5 degrees 2θ, about 21.5±0.5 degrees 2θ, about 24.4±0.5 degrees 2θ, and about 30.8±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, and at about 10.1±0.5 degrees 2θ. In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 10.1±0.5 degrees 2θ and at about 18.5±0.5 degrees 2θ. In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5±0.5 degrees 2θ and at about 20.2-0.5 degrees 2θ. In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 20.2±0.5 degrees 2θ and at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, at about 10.1±0.5 degrees 2θ and at about 18.5±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 18.5±0.5 degrees 2θ, at about 20.2±0.5 degrees 2θ and at about 24.4±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, at about 10.1±0.5 degrees 2θ, at about 18.5±0.5 degrees 2θ and at about 20.2±0.5 degrees 28.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, at about 10.1±0.5 degrees 2θ, at about 18.5±0.5 degrees 2θ, and optionally one or more peaks at about 16.5-0.5 degrees 2θ and/or about 23.1±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, about 10.1±0.5 degrees 2θ, about 18.5±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 24.4±0.5 degrees 2θ and optionally having one or more peaks at about at about 6.1±0.5 degrees 2θ, about 11.4±0.5 degrees 2θ, about 13.2±0.5 degrees 2θ, about 16.1±0.5 degrees 2θ, about 23.1±0.5 degrees 2θ, about 30.8±0.5 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks at about 8.2±0.5 degrees 2θ, about 10.1±0.5 degrees 2θ, about 18.5±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 24.4±0.5 degrees 2θ and optionally having one or more peaks at about 6.1±0.5 degrees 2θ, about 10.7±0.5 degrees 2θ, about 12.3±0.5 degrees 2θ, about 14.0±0.5 degrees 2θ, about 15.4±0.5 degrees 2θ, about 16.1±0.5 degrees 2θ, about 17.3±0.5 degrees 2θ, about 19.1±0.5 degrees 2θ, about 20.2±0.5 degrees 2θ, about 20.9±0.5 degrees 2θ, about 21.5±0.5 degrees 2θ, about 30.8±0.5 degrees 2θ.
- As used herein, unless otherwise indicated, the phrase “one or more peaks” should be understood to be inclusive of (i) crystalline forms that have XRD peaks at every peak value recited after this phrase, (ii) crystalline forms that have an XRD peak at only one of the peak values recited after this phrase, as well as (iii) crystalline forms that have XRD peaks at two or more (e.g., three or more, four or more, five or more, six or more, or even seven or more) of the peak values recited after this phrase.
- In some embodiments, the Form I is characterized by a DSC thermogram as shown in
FIG. 5 . - In some embodiments, the Form I is characterized by any combination of the above data.
- In some embodiments, the X-ray powder diffraction peaks recited herein for particular embodiments can vary by ±0.4 degrees 2θ, by ±0.3 degrees 2θ, by ±0.2 degrees 2θ, or by ±0.1 degrees 2θ.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising peaks having d-spacing values at about 10.7, at about 8.7, at about 4.7, at about 4.3, and at about 3.6±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 10.7±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 8.7±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 5.7±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 5.3±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 4.7±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 4.3±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 3.8±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value at about 3.6±0.5 angstroms.
- In some embodiments, the Form I is characterized by an X-ray powder diffraction pattern comprising a d-spacing value substantially as shown in Table 1.
- In some embodiments, the X-ray powder diffraction peaks recited herein for particular embodiments having d-spacing values can vary by ±4% nm, by ±3% nm, by ±2% nm, or by ±1% nm or by ±4% angstroms, by ±3% angstroms, by ±2% angstroms, or by +1% angstroms.
- One skilled in the art will understand that the relative intensities and positions of the peaks obtained by X-ray powder diffraction may vary depending upon, inter alia, the sample preparation technique, the sample mounting procedure, and the particular instrument employed. For example, in some embodiments, the listed X-ray powder diffraction pattern peaks for the crystalline Form I of SEQ ID. NO. 1 is about ±0.2 degrees 2θ.
- In some embodiments, the crystalline Form I of SEQ. ID. NO. 1 is characterized using High Performance Liquid Chromatography and using microscopy.
FIG. 6 shows an example of a HPLC chromatogram of Form I. Other methods for characterizing Form I could also be used. - Form I can have any desired degree of purity, relative to other substances or components in the preparation. In some embodiments, Form I is provided such that it is substantially pure, such as, for example, having greater than 30%, greater than 40° 0, greater than 500, greater than 60%, greater than 70%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, greater than 99%, greater than 99.2%, greater than 99.4%, greater than 99.5%, greater than 99.6%, greater than 99.7%, or greater than 99.9% purity, relative to other substances or components in the preparation.
- In exemplary embodiments, the Form I is about 45% to 95% pure, such as, for example, about 50% to 95% pure, about 55% to 90% pure, about 60% to 95% pure, or about 70% to 99% pure, relative to other substances or components in the preparation. In some embodiments, the Form I is about 95% to 99% pure. In some embodiments, Form I is about 90% to 95% pure. In some embodiments, the Form I is about 85% to 90% pure. In some embodiments, the Form I is about 80% to 85% pure. In some embodiments, the Form I is about 75% to 80% pure. In some embodiments, the Form I is about 70% to 75% pure. In certain embodiments, the Form I is about 65% to 70% pure. In some embodiments, the Form I is about 60% to 65% pure. In other embodiments, the Form I is about 55% to 60% pure. In yet other embodiments, the Form I is about 50% to 55% pure. In some embodiments, Form I is about 45% to 50% pure.
- In some embodiments, the Form I may comprise one or more impurities and/or a degradation product, such as a hydrolysis product, acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product. In some embodiments, a composition comprising Form I may comprise one or more impurities and/or a degradation product, such as a hydrolysis product, acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product. In some embodiments, the one or more impurities may be biologically active.
- In some embodiments, Form I and/or the composition comprising Form I can contain any desired purity relative to hydrolysis product(s). In some embodiments, the composition comprises less than about 10% by weight of hydrolysis product(s), relative to the total weight of Form I and/or the composition, such as, for example, less than about 7.5 wt. %, less than about 5 wt. %, or less than about 2 wt. % of hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.05% to about 5% by weight of hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.05% to about 2% by weight of the hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.1% to about 2% by weight of the hydrolysis product(s). In some embodiments, Form I and/or the composition comprises from about 0.01% to about 2% by weight of the hydrolysis product(s).
- Alternatively, or in addition, Form I and/or the composition comprising Form I can contain any desired purity relative to acetylation product(s). In some embodiments, the acetylation product may comprise less than 10% by weight of the Form I and/or the composition. In some embodiments, the acetylation product may comprise less than 7.5% by weight of the Form I and/or the composition. In some embodiments, the acetylation product may comprise less than 5% by weight of the Form I and/or the composition. In some embodiments, the acetylation product may comprise less than 2% by weight of the Form I and/or the composition. In some embodiments, the acetylation product may comprise less than 1% by weight of the Form I and/or the composition. In some embodiments, the acetylation product may comprise less than 0.5% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the acetylation product may comprise from about 0.01% to about 2% by weight of the composition.
- Alternatively, or in addition, Form I and/or the composition comprising Form I can contain any desired purity relative to formylation product(s). In some embodiments, the formylation product may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the formylation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition.
- Alternatively, or in addition, Form I and/or the composition comprising Form I can contain any desired purity relative to oxidation product(s). In some embodiments, the oxidation product may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise less than 5% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the oxidation product may comprise from about 0.01% to about 2% by weight of Form I and/or the composition.
- Alternatively, or in addition, Form I and/or the composition comprising Form I can contain any desired purity relative to water-mediated degradation product(s). In some embodiments, the water-mediated degradation product(s) may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the water-mediated degradation product(s) may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the water-mediated degradation product(s) may comprise less than 5% by weight of Form I and/or the composition. In other embodiments, the water-mediated degradation product(s) may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the water-mediated degradation product(s) may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In exemplary embodiments, the water-mediated degradation product(s) may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the water-mediated degradation product(s) may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the water-mediated degradation product(s) may comprise from about 0.01% to about 2% by weight of Form I and/or the composition
- Alternatively, or in addition, Form I and/or the composition comprising Form I can contain any desired purity relative to deamidation product(s). In some embodiments, the deamidation product may comprise less than 10% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise less than 7.5% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise less than 5% by weight of Form I and/or the composition. In other embodiments, the deamidation product may comprise less than 2% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise from about 0.05% to about 5% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise from about 0.05% to about 2% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise from about 0.1% to about 2% by weight of Form I and/or the composition. In some embodiments, the deamidation product may comprise from about 0.01% to about 2% by weight of Form I and/or the composition.
- In some embodiments, a composition is provided comprising Form I and less than 10 wt. % such as less than 8 wt. 0%, less than 6 wt. %, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of a degradation product, such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- In some embodiments, a composition is provided comprising Form I and less than 20 wt. % such as less than 18 wt. %, less than 16 wt. %, less than 14 wt. %, less than 12 wt. %, less than 10 wt. %, less than 8 wt. %, less than 6 wt. %, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of a degradation product, such as a hydrolysis product, an acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- In some embodiments, a composition is provided comprising Form I and less than 10 wt. % such as less than 8 wt. %, less than 6 wt. 0%, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of one or more impurities and/or a degradation product, such as a hydrolysis product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- In some embodiments, a composition is provided comprising Form I and less than 20 wt. % such as less than 18 wt. %, less than 16 wt. %, less than 14 wt. %, less than 12 wt. %, less than 10 wt. %, less than 8 wt. %, less than 6 wt. %, less than 5 wt. %, less than 4 wt. %, less than 3 wt. %, less than 2 wt. %, less than 1 wt. %, less than 0.5 wt. %, or less than 0.25 wt. % of a combined total of one or more impurities and/or a degradation product, such as a hydrolysis product, an acetylation product, a formylation product, an oxidation product, a water-mediated degradation product, and/or a deamidation product.
- In some embodiments, a composition is provided comprising Form I and multimers. In some embodiments, the multimers may be formed due to disulfide linkages. In some embodiments, the multimers may be formed due to non-disulfide linkages. In some embodiments, the composition may contain any desired purity relative to multimers. In some embodiments, the composition comprises less than about 20 wt. % of multimers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of multimers.
- In some embodiments, a composition is provided comprising Form I and/or one more peptide mimetic of SEQ ID. NO. 1. In some embodiments, the composition may contain any desired purity relative to peptide mimetic of SEQ ID. NO. 1. For example, the composition may comprise less than about 20 wt. % of peptide mimetic, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of peptide mimetic. In some embodiments, the peptide mimetic is cyclic. In some embodiments, the peptide mimetic is a dimer. In some embodiments, the peptide mimetic is a trimer.
- In some embodiments, the compositions may comprise Form I and a dimer. In some embodiments, the composition comprises less than about 20 wt. % of dimers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of dimers.
- In some embodiments, the compositions may comprise Form I and a trimer. In some embodiments, the composition comprises less than about 20 wt. % of trimers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of trimers.
- In some embodiments, a composition is provided comprising Form I and an isomer. In some embodiments, the composition comprises less than about 20 wt. % of isomers, such as, for example, less than about 18 wt. %, less than about 16 wt. %, less than about 14 wt. %, less than about 12 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, or less than about 0.1 wt. % of isomers.
- In some embodiments, a composition is provided comprising Form I and less than about 40 wt %, such as less than about 30 wt. %, less than about 20 wt. %, less than about 15 wt. %, less than about 10 wt. %, less than about 8 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, less than about 0.1 wt. %, or less than about 0.01 wt. % of amorphous SEQ. ID. NO. 1.
- In some embodiments, a composition is provided comprising from about 50:50 and 99:1 Form I to amorphous SEQ. ID. NO. 1, such as, for example, from about 55:45 and 95:5 Form I to amorphous SEQ. ID. NO. 1, from about 60:40 and 90:10 Form I to amorphous SEQ. ID. NO. 1, from about 70:30 and 85:15 Form I to amorphous SEQ. ID. NO. 1, or from about 75:25 and 99:1 Form I to amorphous SEQ. ID. NO. 1.
- In some embodiments, processes for preparing crystalline forms of SEQ ID. NO. 1 are provided. In some embodiments, the crystalline Form I is produced by precipitating and crystallizing SEQ ID. NO. 1 and optionally isolating the Form I. In some embodiments, the Form I is prepared by precipitating and crystallizing SEQ ID. NO. 1 in an aqueous solution and optionally isolating the Form I. In some embodiments, the Form I is prepared by precipitating and crystallizing SEQ ID. NO. 1 in a super saturated aqueous solution and optionally isolating the Form I.
- Any suitable aqueous solution can be used in this regard, such as, for example, water, DMSO, acids, and polar solvents, at various strengths or concentrations. Such solutions may include, but are not limited to, DMSO, water, ethanol, butanol, methanol, dicholoromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, formic acid, isopropanol, propanol, acetic acid, and nitromethane. In some embodiments, the aqueous solution is selected from water, ethanol, propanol, dimethyl sulfoxide, acetone, and isopropanol. In some embodiments, the water does not have any additional components or solvents added to it. In some embodiments, the aqueous solution comprises water and acetone. In some embodiments, the aqueous solution comprises water and isopropyl alcohol. In some embodiments, the aqueous solution does not contain ethanol. In some embodiments, the aqueous solution does not contain acetone. In some embodiments, the aqueous solution does not contain organic solvents.
- The crystalline Form I of SEQ ID NO. 1 may be identified, characterized, and distinguished from amorphous form using any suitable manner. One skilled in the art will know many different methods of identification and characterization of Form I of SEQ ID NO. 1. For example, the crystalline Form I of SEQ ID NO. 1 may be identified and characterized based on differences in diffraction, thermal, intensity, and/or spectroscopic properties of the amorphous and crystalline form. Suitable methods include, but are not limited to, X-ray diffractometry, capillary melting point determination, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and/or spectroscopic methods.
- In some embodiments, Form I is precipitated from water. FIGS. 4 and 5 shows an example characterization of Form I using X-ray powder diffraction and DSC. In some embodiments, Form I was precipitated from water and was characterized by HPLC and microscopy.
FIG. 6 shows an example HPLC chromatogram of Form I. -
FIG. 7 shows overlaid X-ray powder diffraction patterns of amorphous SEQ ID. NO. 1 and crystalline Form I of SEQ ID. NO. 1 obtained using aqueous solution. In some embodiments, Form I is precipitated from supersaturated aqueous solution. XRD characterization from supersaturated aqueous solution indicates that Form I is crystalline material as shown inFIG. 7 . DSC thermogram of Form I inFIG. 5 also showed different endothermic transitions from the amorphous SEQ. ID. NO. 1, with the last endothermic peak appeared at around 255° C.-259° C. -
FIG. 8 shows exemplary HPLC chromatograms of amorphous and crystalline Form I of SEQ ID. NO. 1. The HPLC chromatograms shown inFIG. 8 confirmed that the crystalline form prepared from aqueous solution is chemically the same as SEQ. ID. NO. 1 amorphous form. These results demonstrate that Form I is a crystalline form of SEQ. ID. NO. 1. - Form I was further examined using polarized microscopy.
FIG. 9 shows an example microscopic image of crystalline Form I under cross polarized light.FIG. 10 shows an example microscopic image and particle size of crystalline Form I under plane polarized light. These results confirmed that Form I was crystalline material as birefringence was observed in the sample under cross polarized light after turning the sample stage from 0° to 90° angle as shown inFIG. 9 . The particle size was also determined as shown inFIG. 10 and Table 2. - In some embodiments, process for preparing the SEQ ID. NO. 1 are provided. In some embodiments, amorphous SEQ. ID. NO. 1 is prepared by precipitating SEQ ID. NO. 1 and optionally isolating SEQ. ID. NO.1. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising ethanol. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising acetone. In some embodiments, amorphous SEQ. ID. NO. 1 was precipitated from a solution comprising isopropyl alcohol.
- In some embodiments. SEQ. ID. NO. 1 can be dissolved in an aqueous solution of, for example, without limiting, ethanol, wherein the percentage of ethanol in the solution may be from approximately 80% and 20% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 60% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 50% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 55% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of ethanol in the solution may be approximately 40% v/v and the remainder of the solution approximately is water.
- In some embodiments, SEQ. ID. NO.1 can be dissolved in an aqueous solution of, for example, without limiting, isopropyl alcohol, wherein the percentage of isopropyl alcohol in the solution may be from approximately 80% and 30% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of isopropyl alcohol in the solution may be approximately 60% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of isopropyl alcohol in the solution may be approximately 50% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of isopropyl alcohol in the solution may be approximately 55% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of isopropyl alcohol in the solution may be approximately 40% v/v and the remainder of the solution approximately is water.
- In some embodiments, SEQ. ID. NO.1 can be dissolved in an aqueous solution of, for example, without limiting, acetone, wherein the percentage of acetone in the solution may be from approximately 80% and 20% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 60% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 50% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 55% v/v and the remainder of the solution approximately is water. In some embodiments, the percentage of acetone in the solution may be approximately 40% v/v and the remainder of the solution approximately is water.
- Additionally, any suitable aqueous solution can be used in this regard, such as, for example, water, DMSO, acids, and polar solvents, at various strengths or concentrations. Such solutions may include, but are not limited to, DMSO, water, ethanol, butanol, methanol, dicholoromethane, tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, formic acid, isopropanol, propanol, acetic acid, and nitromethane. In some embodiments, the solvent is selected from water, ethanol, propanol, dimethyl sulfoxide, acetone, and isopropanol.
- Precipitates from, for example, but not limited to, the solutions described herein, including, but not limited to, ethanol, acetone/water and isopropyl alcohol/water produce precipitate showing the same XRD pattern as the amorphous SEQ. ID. NO. 1. The results described herein demonstrate that the precipitates contain amorphous, mostly amorphous, a mixture of amorphous and crystalline forms, one or more crystalline forms, or a mixture of amorphous and one or more crystalline forms. Each of the preceding are considered as separate embodiments.
- In some embodiments, the precipitate of SEQ. ID. NO.1 from, for example, but not limited to, ethanol, acetone or isopropyl alcohol may comprise amorphous, mostly amorphous, a mixture of amorphous and crystalline forms, one or more crystalline forms, or a mixture of amorphous and one or more crystalline forms. Each of which are considered as a separate embodiments.
- In some embodiments, a precipitate comprising between about 50:50 and 99:1 Form I to amorphous SEQ. ID. NO. 1 is provided. In some embodiments, the precipitate may comprise amorphous SEQ. ID. NO. 1. In some embodiments, for example, the precipitate may comprise mostly amorphous SEQ. ID. NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 1%, less than 0.50%, less than 0.25% by weight.
- In some embodiments, the precipitate may comprise mostly crystalline SEQ. ID. NO. 1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 100, less than 5%, less than 1%, less than 0.50%, less than 0.25% by weight. In some other embodiments, for example, the precipitate may comprise one or more crystalline forms of SEQ. ID. NO. 1.
- In some embodiments, the precipitate may comprise a mixture of one or more crystalline forms of SEQ. ID. NO. 1 and amorphous SEQ. ID. NO. 1. For example, the precipitate may comprise crystalline SEQ. ID. NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 100%, less than 0.50%, or less than 0.25% by weight of the mixture. Alternatively, the precipitate may comprise amorphous SEQ. ID. NO.1 at about 99% to about 1% by weight, ranging from about less than 90%, less than 80%, less than 70%, less than 60%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, less than 1%, less than 0.50%, or less than 0.25% by weight of the mixture.
- The methods of precipitating can also comprise heating the solution comprising SEQ. ID. NO. 1 and then allowing the solution to cool to ambient temperature. In some embodiments, ambient temperature is 20-25° C. In some embodiments, the solution is cooled to 10-20° C. In some embodiments, the solution is heated to at least, or about, 10, 20, 30, 40, 50, or 60° C. before being cooled or allowed to cool to ambient temperature or a specific temperature. In some embodiments, the solution is heated to about 10-20, 10-30, 10-40, 10-50, 20-30, 20-40, 20-50, 20-60, 30-40, 30-50, 30-60, 40-50, 40-60, 50-60, 25-45, 35-45, or 35-50, 45-55, or 45-60° C. In some embodiments, the solution is heated at given temperature for about 0.5 to about 2 hours, about 1 to about 2 hours, about 0.5 to about 1.5 hours, or about 1 to about 1.5 hours.
- In some embodiments, the crystal form is precipitated at a temperature of about 15 to about 25° C., about 15 to about 23° C., about 15 to about 20° C., about 15 to about 18° C., about 17 to about 25° C., about 17 to about 23° C., about 17 to about 21° C., about 17 to about 20° C., about 18 to about 25° C., about 18 to about 23° C., about 18 to about 21° C., about 18 to about 20° C., about 19 to about 25° C., about 19 to about 23° C., or about 19 to about 21° C., or any temperature between the respective ranges. In some embodiments, the precipitates are allowed to form for about, or at least, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, or 24 hours. In some embodiments, the precipitates are allowed to form for about 2 to about 24, about 2 to about 18, about 2 to about 12, about 2 to about 10, about 2 to about 8, about 2 to about 6, about 2 to about 4, about 4 to about 24, about 4 to about 18, about 2 to about 12, about 4 to about 10, about 4 to about 8, about 4 to about 6, about 5 to about 24, about 5 to about 18, about 5 to about 12, about 5 to about 10, about 5 to about 8, about 5 to about 6, about 6 to about 24, about 6 to about 18, about 6 to about 12, about 6 to about 10, about 6 to about 8, about 8 to about 24, about 8 to about 18, about 8 to about 12, or about 8 to about 10 hours.
- In some embodiments, an additional volume of water is added once the solution is heated and before it is cooled to the ambient or near ambient temperatures. In some embodiments, the solution is further cooled to about, or less than, 15, 10, 5, 0, −5, or −10° C. In some embodiments, the solution is cooled to about −5° C. to about 15° C., about −5° C. to about 10° C., about −5° C. to about 5° C., about −10° C. to about 15° C., about −10° C. to about 10° C., about −10° C. to about 5° C., about −10° C. to about 0° C., about −10° C. to about −5° C., about −5° C. to about 15° C., about −5° C. to about 10° C., about −5° C. to about 5° C., about −5° C. to about 0° C., about 0° C. to about 15° C., about 0° C. to about 10° C., about 0° C. to about 5° C., about 5° C. to about 15° C., or about 5° C. to about 10° C. In some embodiments, the solution is cooled for about, or at least, 1, 2, 3, 4, 5, 6, 12, 18, or 24 hours.
- In some embodiments, the process comprises drying the precipitate. In some embodiments, the precipitate is dried under vacuum. In some embodiments, the precipitate is dried at a temperature of about 30° C. to about 50° C., about 35° C. to about 50° C., about 30° C. to about 45° C., about 35° C. to about 45° C., or about 40° C. to about 45° C. In some embodiments, the precipitate is dried at a temperature of about 30° C., about 35° C., about 40° C., or about 45° C. to about 50° C. For the avoidance of doubt, the drying can at a specific temperature can be performed under vacuum. In some embodiments, the dried material is also lyophilized.
- In some embodiments, the precipitations steps described above can be repeated. In some embodiments, the process is repeated one, two, or three times.
- Embodiments described herein can be used in pharmaceutical compositions and can be formulated by standard techniques using one or more physiologically acceptable carriers or excipients. In some embodiments, the formulations may contain a buffer and/or a preservative. Form I and their physiologically acceptable salts, anhydrates, hydrates and/or solvates, can be formulated for administration by any suitable route, including via inhalation, topically, nasally, orally, parenterally (for example, intravenously, intraperitoneally, intravesically or intrathecally) or rectally in a vehicle comprising one or more pharmaceutically acceptable carriers, the proportion of which is determined by the route of administration and standard biological practice. Other routes of administration are also described herein and can be used as well.
- In some embodiments, pharmaceutical compositions are provided comprising effective amounts of Form I with, for example, pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or other carriers. Such compositions are known to one skilled in the art and the compositions can be formulated using standard techniques. For example, diluents of various buffer content such as, but not limited to, TRIS or other amines, carbonates, phosphates, amino acids, for example, glycinamide hydrochloride (especially in the physiological pH range), N-glycylglycine, sodium or potassium phosphate (dibasic, tribasic), etc. or TRIS-HCl or acetate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., surfactants such as Pluronics,
Tween 20, Tween 80 (Polysorbate 80), Cremophor, polyols such as polyethylene glycol, propylene glycol, etc.), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol, parabens, etc.) and bulking substances (e.g., sugars such as sucrose, lactose, mannitol, polymers such as polyvinylpyrrolidones or dextran, etc.); and/or incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes may be used. Hyaluronic acid may also be used. Such compositions can be employed to influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of a composition comprising Form I as described herein. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 1435-1712 which are herein incorporated by reference. Where a buffer is to be included in the formulations, the buffer can be, for example, but not limited to, sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, or mixtures thereof. Each buffer can be used independently or in combination with another buffer. In some embodiments, the buffer is glycylglycine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof. - Where a pharmaceutically acceptable preservative is to be included in the formulations, the preservative can be, but is not limited to, phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, or mixtures thereof. In some embodiments the preservative is phenol and/or m-cresol.
- In some embodiments the preservative is present in a concentration from about 0.1 mg/ml to about 100 mg/ml, more preferably in a concentration from about 0.1 mg/ml to about 50 mg/ml, about 0.1 mg/ml to about 25 mg/ml. In some embodiments, the preservative is present in a concentration from about 0.1 mg/ml to about 10 mg/ml.
- The use of a preservative in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- In some embodiments, the formulation may further comprise a chelating agent where the chelating agent may be salts of ethlenediaminetetraacetic acid (EDTA), citric acid, and aspartic acid, and mixtures thereof.
- In some embodiments, the chelating agent is present in a concentration from 0.1 mg/ml to 10 mg/ml, particularly in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the chelating agent is present in a concentration from 0.1 mg/ml to 2 mg/ml. In some embodiments, the chelating agent is present in a concentration from 2 mg/ml to 5 mg/ml.
- The use of a chelating agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- In some embodiments, the formulation may further comprise a stabilizer selected from the group of high molecular weight polymers or low molecular compounds where such stabilizers include, but are not limited to, polyethylene glycol (e.g., PEG 3350), polyvinylalcohol (PVA), polyvinylpyrrolidone, carboxymethylcellulose, different salts (e.g. sodium chloride), L-glycine, L-histidine, imidazole, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine and mixtures thereof. In some embodiments, the stabilizer is L-histidine, imidazole, arginine, or any combination thereof.
- In some embodiments, the high molecular weight polymer is present in a concentration from 0.1 mg/ml to 100 mg/ml, in a concentration from 0.1 mg/ml to 50 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 5 mg/ml to 10 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 10 mg/ml to 20 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 20 mg/ml to 30 mg/ml. In some embodiments, the high molecular weight polymer is present in a concentration from 30 mg/ml to 50 mg/ml.
- In some embodiments, the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 100 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 50 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 0.1 mg/ml to 5 mg/ml. In some embodiments, the low molecular weight polymer compound is present in a concentration from 5 mg/ml to 10 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 10 mg/ml to 20 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 20 mg/ml to 30 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 30 mg/ml to 50 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 50 mg/ml to 60 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 60 mg/ml to 80 mg/ml. In some embodiments, the low molecular weight polymer is present in a concentration from 80 mg/ml to 100 mg/ml.
- The use of a stabilizer in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- In some embodiments, the formulation may comprise a surfactant where a surfactant can be a detergent, ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g., Tween-20, or Tween-80), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kephalins, phosphatidyl serine), glyceroglycolipids (galactopyransoide), sphingophospholipids (sphingomyelin), and sphingoglycolipids (ceramides, gangliosides), DSS (docusate sodium, docusate calcium, docusate potassium, SDS (sodium dodecyl sulfate or sodium lauryl sulfate), dipalmitoyl phosphatidic acid, sodium caprylate, bile acids and salts thereof and glycine or taurine conjugates, ursodeoxycholic acid, sodium cholate, sodium deoxycholate, sodium taurocholate, sodium glycocholate, N-Hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, anionic (alkyl-aryl-sulphonates) monovalent surfactants, palmitoyl lysophosphatidyl-L-serine, lysophospholipids (e.g., 1-acyl-sn-glycero-3-phosphate esters of ethanolamine, choline, serine or threonine), alkyl, alkoxyl (alkyl ester), alkoxy (alkyl ether)-derivatives of lysophosphatidyl and phosphatidylcholines, e.g., lauroyl and myristoyl derivatives of lysophosphatidylcholine, dipalmitoylphosphatidylcholine, and modifications of the polar head group, that is cholines, ethanolamines, phosphatidic acid, serines, threonines, glycerol, inositol, and the positively charged DODAC, DOTMA, DCP, BISHOP, lysophosphatidylserine and lysophosphatidylthreonine, zwitterionic surfactants (e.g., N-alkyl-N,N-dimethylammonio-1-propanesulfonates, 3-cholamido-1-propyldimethylammonio-1-propanesulfonate, dodecylphosphocholine, myristoyl lysophosphatidylcholine, hen egg lysolecithin), cationic surfactants (quarternary ammonium bases) (e.g., cetyl-trimethylammonium bromide, cetylpyridinium chloride), non-ionic surfactants, polyethyleneoxide/polypropyleneoxide block copolymers (Pluronics/Tetronics, Triton X-100, Dodecyl β-D-glucopyranoside) or polymeric surfactants (Tween-40, Tween-80, Brij-35), fusidic acid derivatives—(e.g., sodium tauro-dihydrofusidate etc.), long-chain fatty acids and salts thereof C6-C12 (e.g., oleic acid and caprylic acid), acylcarnitines and derivatives, Nα-acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, Nα-acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or acidic amino acid, Nα-acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, imidazoline derivatives, or any mixture thereof.
- The use of a surfactant in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- The formulations may also comprise a pharmaceutically acceptable sweetener. In some embodiments, the sweetener comprises at least one intense sweetener such as, but not limited to, saccharin, sodium or calcium saccharin, aspartame, acesulfame potassium, sodium cyclamate, alitame, a dihydrochalcone sweetener, monellin, stevioside or sucralose (4,1′,6′-trichloro-4,1′,6′-trideoxygalactosucrose), preferably saccharin, sodium or calcium saccharin, and optionally a bulk sweetener such as sorbitol, mannitol, fructose, sucrose, maltose, isomalt, glucose, hydrogenated glucose syrup, xylitol, caramel or honey.
- Intense sweeteners are conveniently employed in low concentrations. For example, in the case of sodium saccharin, the concentration may range from 0.04% to 0.1% (w/v) based on the total volume of the final formulation, or from about 0.06% in the low-dosage formulations and about 0.08% in the high-dosage ones. The bulk sweetener can effectively be used in larger quantities ranging from about 10% to about 35% or from about 10% to 15% (w/v).
- The formulations may be prepared by conventional techniques, for example, as described in Remington's Pharmaceutical Sciences, 1985 or in Remington: The Science and Practice of Pharmacy, 19th edition, 1995, where such conventional techniques of the pharmaceutical industry involve dissolving and mixing the ingredients as appropriate to give the desired end product.
- Administration of the compound or the formulations described herein may be carried out using any method known in the art. For example, administration may be transdermal, parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intracerebroventricular, intrathecal, intranasal, aerosol, by suppositories, inhalation, or by oral administration. In some embodiments, the compound or formulation is administered intravenously or by injection.
- For oral administration, Form I or a therapeutically acceptable salt thereof can be formulated in unit dosage forms such as gelcaps, caplets, granules, lozenges, bulk powders, capsules or tablets. The tablets or capsules may be prepared by conventional means with pharmaceutically acceptable excipients, including binding agents, for example, pregelatinised maize starch, polyvinylpyrrolidone, or hydroxypropyl methylcellulose; fillers, for example, lactose, microcrystalline cellulose, or calcium hydrogen phosphate, lubricants, for example, magnesium stearate, talc, or silica; disintegrants, for example, potato starch or sodium starch glycolate; or wetting agents, for example, sodium lauryl sulphate. Tablets can be coated by methods well known in the art.
- Liquid preparations for oral administration can take the form of, for example, solutions, syrups, or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives, for example, suspending agents, for example, sorbitol syrup, cellulose derivatives, or hydrogenated edible fats; emulsifying agents, for example, lecithin or acacia; non-aqueous vehicles, for example, almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils; and preservatives, for example, methyl or propyl-p-hydroxybenzoates or sorbic acid. The preparations can also contain buffer salts, flavoring, coloring, and/or sweetening agents as appropriate. If desired, preparations for oral administration can be suitably formulated to give controlled release of the active compound.
- For topical administration, Form I can be formulated in a pharmaceutically acceptable vehicle containing 0.1 to 10 percent, preferably 0.5 to 5 percent, of the active compound(s). Such formulations can be in the form of a cream, lotion, sublingual tablet, aerosols and/or emulsions and can be included in a transdermal or buccal patch of the matrix or reservoir type as are conventional in the art for this purpose.
- For parenteral administration, Form I or an amorphous form of the compound can be administered by either intravenous, subcutaneous, or intramuscular injection, in compositions with pharmaceutically acceptable vehicles or carriers. Form I can be formulated for parenteral administration by injection, for example, by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, for example, in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and can contain formulatory agents, for example, suspending, stabilizing, and/or dispersing agents. Additionally, the compound can be precipitated and stored in an ampule or other container and then dissolved in a solution prior to being administered to a subject.
- For administration by injection, the compound can be used in solution, and, for example, in a sterile aqueous vehicle which may also contain other solutes such as buffers or preservatives as well as sufficient quantities of pharmaceutically acceptable salts or of glucose to make the solution isotonic. In some embodiments, the pharmaceutical compositions may be formulated with a pharmaceutically acceptable carrier to provide sterile solutions or suspensions for injectable administration. In particular, injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspensions in liquid prior to injection or as emulsions. Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride, or the like. In addition, if desired, the injectable pharmaceutical compositions may contain minor amounts of nontoxic auxiliary substances, such as wetting agents, pH buffering agents, and the like. If desired, absorption enhancing preparations (e.g., liposomes) may be utilized. Suitable pharmaceutical carriers are described in “Remington's pharmaceutical Sciences” by E. W. Martin.
- For administration by inhalation, the compound may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. In the case of a pressurized aerosol, the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, for example, gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base, for example, lactose or starch. For intranasal administration the compound may be used, for example, as a liquid spray, as a powder or in the form of drops.
- The compound can also be formulated in rectal compositions, for example, suppositories or retention enemas, for example, containing conventional suppository bases, for example, cocoa butter or other glycerides.
- Furthermore, the compound can be formulated as a depot preparation. Such long-acting formulations can be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compound can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- The compositions can, if desired, be presented in a pack or dispenser device that can contain one or more unit dosage forms containing the active ingredient. The pack can, for example, comprise metal or plastic foil, for example, a blister pack. The pack can also contain individual vials or other containers. The pack or dispenser device can be accompanied by instructions for administration.
- Crystalline Form I may be administered to a patient at therapeutically effective doses to prevent, treat, or control diseases and disorders mediated, in whole or in part, by a GPCR-ligand interaction described herein. Pharmaceutical compositions comprising crystalline Form I may be administered to a patient in an amount sufficient to elicit an effective protective or therapeutic response in the patient. The dose will be determined by the efficacy of the particular compound employed and the condition of the subject, as well as the body weight or surface area of the area to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse effects that accompany the administration of a particular compound or vector in a particular subject.
- The amount and frequency of administration of the compound comprising Form I or another amorphous form prepared according to a method described herein and/or the pharmaceutically acceptable salts thereof can be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. In general it is contemplated that an effective amount would be from 0.001 mg/kg to 10 mg/kg body weight, and in particular from 0.01 mg/kg to 1 mg/kg body weight. More specifically it is contemplated that an effective amount would be to continuously infuse by intravenous administration from 0.01 micrograms/kg body weight/min to 100 micrograms/kg body weight/min for a period of 12 hours to 14 days. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Sub-doses may be formulated as unit dosage forms, for example, containing 0.01 to 500 mg, and in particular 0.1 mg to 200 mg of active ingredient per unit dosage form.
- In some embodiments, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose. The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.01 mg to about 1000 mg, from about 0.01 mg to about 750 mg, from about 0.01 mg to about 500 mg, or from about 0.01 mg to about 250 mg, according to the particular application. The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total dosage may be divided and administered in portions during the day as required.
- A composition comprising crystalline Form I of SEQ ID. NO. 1 or an amorphous form prepared according to a method described herein can be used for treating a cardiovascular or cardiorenal disorder that, for example, would respond favorably to a decrease in blood pressure.
- In some embodiments, methods of treating cardiovascular disorders are provided. In some embodiments, the method comprises administering to a subject, or a subject in need thereof, a therapeutically effective amount of crystalline Form I and/or pharmaceutically acceptable salt thereof. In some embodiments, the method comprises administering to a subject, or a subject in need thereof, a therapeutically effective amount of an amorphous form of SEQ ID. NO. 1 prepared according to a method described herein and/or pharmaceutically acceptable salt thereof. These cardiovascular disorders include, but are not limited to, chronic hypertension, hypertensive crisis, acute congestive heart failure, angina, acute myocardial infarction, left ventricular failure, cerebrovascular insufficiency, intracranial haemorrhage, heart failure, acute decompensated heart failure, which can also be referred to as acute heart failure, essential hypertension, post-operative hypertension, hypertensive heart disease, hypertensive renal disease, renovascular hypertension, malignant hypertension, post-renal transplant patient stabilization, dilated cardiomyopathy, myocarditis, post-cardiac transplant patient stabilization, disorders associated with post-stent management, neurogenic hypertension, pre-eclampsia, abdominal aortic aneurysm, and any cardiovascular disorder with a hemodynamic component.
- In some embodiments, the cardiovascular disorder is an acute cardiovascular disorder. In some embodiments, the acute cardiovascular disorder is acute hypertensive crisis, toxemia of pregnancy, acute myocardial infarction, acute congestive heart failure, acute heart failure, acute ischaemic heart disease, pulmonary hypertension, post-operative hypertension, migraine, retinopathy and post-operative cardiac/valve surgery.
- In some embodiments, methods of treating viral infectious disease linked to AT1R are provided. In some embodiments, the methods comprise administering to a subject in need thereof a therapeutically effective amount of crystalline Form I and/or pharmaceutically acceptable salt thereof. In specific embodiments, the composition is administered by intravenous injection.
- Methods are also provided for treating any cardiovascular or cardiorenal disorder by administering crystalline Form I and/or an amorphous form prepared according to a method described herein, and/or pharmaceutically acceptable salts thereof, in combination with other drugs for the treatment of cardiovascular and/or cardiorenal disorders. These other drugs include diuretics such as furosemide; vasodilators such as nitroglycerin, nitroprusside, brain natriuretic peptide (BNP), or analogues thereof; inotropes such as dobutamine; angiotensin converting enzyme (ACE) inhibitors such as captopril and enalapril; 3 blockers such as carvedilol and propranolol; angiotensin receptor blockers (ARBs) such as valsartan and candesartan; and/or aldosterone antagonists such as spironolactone.
- In the combination therapies, crystalline Form I or the amorphous form is co-administered with one or more drugs for the treatment of cardiovascular and/or cardiorenal disorders to increase efficacy of treatment of cardiovascular and/or cardiorenal disorders and to reduce side effects associated with high doses of these therapeutics.
- The combination therapies described above have synergistic and additive therapeutic effects. An improvement in the drug therapeutic regimen can be described as the interaction of two or more agents so that their combined effect reduces the incidence of adverse event (AE) of either or both agents used in co-therapy. This reduction in the incidence of adverse effects can be a result of, e.g., administration of lower dosages of either or both agent used in the co-therapy. For example, if the effect of Drug A alone is 25% and has an adverse event incidence of 45% at labeled dose; and the effect of Drug B alone is 25% and has an adverse event incidence of 30% at labeled dose, but when the two drugs are combined at lower than labeled doses of each, if the overall effect is 35% (an improvement, but not synergistic or additive) and the adverse incidence rate is 20%, there is an improvement in the drug therapeutic regimen.
- In some embodiments, the compounds described herein are administered as a mono-therapy. In some embodiments, the compounds described herein are administered as part of a combination therapy. For example, a compound may be used in combination with other drugs or therapies that are used in the treatment/prevention/suppression and/or amelioration of the diseases or conditions for which compounds are useful.
- Such other drug(s) may be administered, by a route and in an amount commonly used therefore, contemporaneously or sequentially with the compounds described herein. When a compound described herein is used contemporaneously with one or more other drugs, a pharmaceutical unit dosage form containing such other drugs in addition to the compound described herein may be employed. Accordingly, the pharmaceutical compositions include those that also contain one or more other active ingredients, in addition to the compounds described herein.
- A subject or patient in whom administration of the therapeutic compound is an effective therapeutic regimen for a disease or disorder is often a human, but can be any animal, including a laboratory animal in the context of a clinical trial or screening or activity experiment. Thus, as can be readily appreciated by one of ordinary skill in the art, the methods, compound and compositions are particularly suited to administration to any animal, such as a mammal, and including, but by no means limited to, humans, domestic animals, such as feline or canine subjects, farm animals, such as but not limited to bovine, equine, caprine, ovine, and porcine subjects, wild animals (whether in the wild or in a zoological garden), research animals, such as mice, rats, rabbits, goats, sheep, pigs, dogs, cats, etc., avian species, such as chickens, turkeys, songbirds, etc., i.e., for veterinary medical use.
- The following examples are merely illustrative and should not be construed as limiting the scope of the embodiments in any way as many variations and equivalents that are encompassed by these embodiments will become apparent to those skilled in the art upon reading the present disclosure.
- 100 mg SEQ. ID. NO. 1 was gradually dissolved in 0.5 ml of aqueous solution (deionized water). The mixture was vortexed until the sample completely dissolved. The mixture was allowed to sit at ambient condition for precipitation. After a suitable formation period, crystalline Form I was carefully isolated and dried. Form I was then characterized using X-ray powder diffractometry.
FIG. 4 shows the X-ray powder diffraction pattern of Form I. - 50 mg SEQ. ID. NO. 1 was gradually dissolved in 0.25 ml of ethanol. The mixture was vortexed until the sample completely dissolved. The mixture was allowed to sit at ambient condition for precipitation. After a suitable formation period of about 12 hours to 48 hours, the precipitate was carefully isolated and dried on an evaporator under continuous flow of nitrogen for about 12 hours to 48 hours. The precipitate was then characterized using X-ray powder diffractometry.
FIG. 11 shows the X-ray powder diffraction pattern of the precipitate from ethanol. - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 2 ml of water and the mixture was warmed to an appropriate temperature in the range of 10° C. to 60° C. To this mixture, acetone was added. The mixture was cooled to ambient temperature and was stirred for about 2-5 hours. The suspension was carefully filtered and isolated, and rinsed with acetone and dried under vacuum. The precipitate was then characterized using X-ray powder diffractometry.
FIG. 12 shows the X-ray powder diffraction pattern of the precipitate from water and acetone. - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 2 ml of water and the mixture was warmed to an appropriate temperature in the range of 10° C. to 60° C. To this mixture, 5 ml isopropyl alcohol was added. The mixture was cooled to ambient temperature and was stirred for about 2-5 hours. The suspension was carefully filtered and isolated, and rinsed with isopropyl alcohol and dried under vacuum. The precipitate was then characterized using X-ray powder diffractometry.
FIG. 13 shows the X-ray powder diffraction pattern of the precipitate from water and isopropyl alcohol. - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 1 ml of water at an appropriate temperature in the range of 10° C. to 60° C. The mixture was cooled to ambient temperature and was stirred for about 2-5 hours. The suspension was carefully isolated, and dried. Form I was then characterized using X-ray powder diffractometry.
FIG. 14 shows the X-ray powder diffraction pattern of Form I of SEQ. ID. NO. 1. Corresponding DSC thermogram is shown inFIG. 16 . - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 1.5 ml of water at an appropriate temperature in the range of 10° C. to 60° C. The mixture was cooled to ambient temperature and was stirred for about 2-5 hours and acetone was added. The suspension was carefully filtered and isolated, and dried. Form I was then characterized using X-ray powder diffractometry.
FIG. 15 shows the X-ray powder diffraction pattern of Form I. Corresponding DSC thermogram is shown inFIG. 16 . - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 2.5 ml of water at an appropriate temperature in the range of 10° C. to 60° C. The mixture was cooled to ambient temperature. The suspension was carefully isolated, and dried under vacuum. Form I was then characterized using X-ray powder diffractometry.
FIG. 17 shows the X-ray powder diffraction pattern of Form I. Corresponding DSC thermogram is shown inFIG. 16 . - 500 mg SEQ. ID. NO. 1 was gradually dissolved in 3.5 ml of water at an appropriate temperature in the range of 10° C. to 60° C. The mixture was cooled to ambient temperature. The suspension was stirred at room temperature and was carefully isolated by filtration, and dried under vacuum. Form I was then characterized using X-ray powder diffractometry.
FIG. 18 shows the X-ray powder diffraction pattern of Form I. Corresponding DSC thermogram is shown inFIG. 16 . - The chemical identity of crystalline Form I was determined using High Pressure Liquid Chromatography (HPLC) and Waters Sunfire C18 column (5 μm, 4.6×250 mm, Part #186002560) with UV detection at 215 nm. The column temperature was set at about 30-65° C. A gradient method consisting of 0.1% trifluoroacetic acid in deionized water as mobile phase A and 0.1% trifluoroacetic in methanol/DI water mixture (2:1 v/v) as mobile phase B was used at a flow rate of 1.0 mL/min with a run time of 39 min for each sample. Samples of amorphous SEQ. ID. NO. 1 and crystalline Form I were prepared in DI water at the same concentration of around 1.2 mg/mL and injected at a volume of 20 μL. Data was acquired and analyzed by TotalChrom® Chromatography Data System software (Perkin Elmer, Inc., Waltham, Mass.). Solubility of SEQ. ID. NO.1 in solvents as described above was unexpected and surprising and it allowed for successful precipitation and isolation of SEQ. ID. NO. 1, which is necessary for large scale manufacturing for commercial production.
- XRD characterization of Form I from supersaturated aqueous solution indicated that it is crystalline material. DSC thermogram of Form I also showed different endothermic transitions from amorphous SEQ. ID. NO. 1, with the last endothermic peak appeared to be around 255° C.−259° C. The HPLC chromatograms confirmed that the crystalline form prepared from supersaturated aqueous solution is chemical the same as SEQ. ID. NO. 1 amorphous form.
- These results suggest that Form I from water is a crystalline form of SEQ. ID. NO. 1. Results also suggest that the precipitates from ethanol, acetone/water and isopropyl alcohol/water showed same XRD pattern (
FIGS. 11-13 ) as the amorphous SEQ. ID. NO. 1 and that they may comprise amorphous, mostly amorphous, a mixture of amorphous and crystalline forms, one or more crystalline forms, or a mixture of amorphous and one or more crystalline forms. - The X-ray powder diffraction patterns of Example 1 were determined using a bench-top X-ray diffractometer D8 Advance, Bruker AXS Inc., Madison, Wis.). A small amount of sample obtained from Example 1 was loaded onto Si-low background sample holder, and exposed to CuKα radiation (40 kV×40 mA). The sample was scanned in a locked coupled mode with spinner rotating at a speed of 25 rpm. The angular range was 2° to 40° 20 in a step size of 0.0069, number of steps of 5470 and time/step of 0.39 second. Data collection and analyses were performed with commercially available software (Eva, version 2.0, Bruker AXS Inc., Madison, Wis.).
-
FIG. 4 shows the X-ray powder diffraction pattern for crystalline Form I. Peak positions are provided in Table 1. -
TABLE 1 Angle d value (2θ) (Angstrom) 6.182 14.28439 8.242 10.71841 8.633 10.2345 10.103 8.74851 10.71 8.24109 11.451 7.72162 12.364 7.15297 13.248 6.67774 14.081 6.28461 15.452 5.72976 16.103 5.49955 16.58 5.34234 17.323 5.11512 17.825 4.97193 18.516 4.78809 19.197 4.6198 20.14 4.37666 20.902 4.24645 21.517 4.12648 23.149 3.83918 24.423 3.64173 26.247 3.39266 1.812 3.20517 30.801 2.9006 32.472 2.75505 33.577 2.66691 38.428 2.34063 - Crystalline Form I was analyzed using Differential Scanning Calorimetry. A differential scanning calorimeter (DSC Q2000, TA Instruments, New Castle, Del.) with a refrigerated cooling accessory was used for the analysis. Approximately 2 to 5 mg of sample obtained from Example 1 was weighed and heated under dry nitrogen purge (flow rate of 50 mL/min) from 25° C. to 300° C. at 10° C./min. Data was analyzed using Universal Analysis (TA Instruments, New Castle, Del.) 1.1.3 Dynamic Vapor Sorption (DVS)
- The moisture sorption-desorption profiles of amorphous SEQ. ID. NO. 1 were obtained using a DVS Intrinsic Vapor Sorption Analyzer (Surface Measurement Systems Ltd, Allentown, Pa.) and are shown in
FIG. 3 . A small quantity of sample from Example 1 was placed in a DVS sample holder. Two cycles of sorption/desorption profile were recorded at 25° C. in the range of 0% to 95% RH (the first sorption cycle was started at 45% RH) with maximum equilibration time of 120 min at each step (0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%). - A polarized light microscope (Nikon Eclipse E600 POL, Morrell Instrument Company, Melville, N.Y.) with
Plan Fluor 10× objective was used. A tiny amount of sample was placed onto glass slide by spatula. The sample was then placed on circular rotating stage of the microscope. Sample was first observed under plane polarized light and then observed cross polarized light for birefringence phenomena. Images were captured and particle size was analyzed by Image-Pro® Plus version 5.0 (Media Cyberneics, Inc., Rockville, Md.). Form I from water was further examined using polarized microscopy. Results confirmed that the sample was crystalline material as birefringence was observed in the sample under cross polarized light after turning the sample stage from 0° to 90° angle as shown inFIG. 9 . Particle size was also determined as shown inFIG. 10 and Table 2. -
TABLE 2 Size (length) Size (width) Obj.# Area μm μm 1 297 24.4 17.6 2 2383 95.4 47.2 4 638 35.2 25.2 5 992 50.3 34.2 6 2635 96.7 39.4 7 3467 93.5 61.9 9 475 44.8 14.6 10 2123 87.7 40.8 - XRD characterization of Form I from supersaturated aqueous solution indicated that it is crystalline material. DSC thermogram of Form I also showed different endothermic transitions from amorphous SEQ. ID. NO. 1, with the last endothermic peak appeared to be around 255° C.−259° C. The HPLC chromatograms confirmed that the crystalline form prepared from supersaturated aqueous solution is chemical the same as SEQ. ID. NO. 1 amorphous form. These results suggest that Form I from water is a crystalline form of SEQ. ID. NO. 1. By contrast, the precipitate from ethanol showed same XRD pattern as the amorphous SEQ. ID. NO. 1 indicating that at least some amorphous material may be present in the precipitate.
- Methods
- Appearance: The appearance and flow property of crystalline powder was examined visually and photographic image was taken using a Nikon D3100 Digital SLR (14.2 MP with 18-55 mm f/3.5-5.6 AF-S DX VR Nikkor Zoom Lens) digital camera.
- Bulk Density: The bulk density of amorphous and crystalline form is roughly determined by dividing the weight of powder in gram by the volume of the weighted amount in mL. The powder is accurately weighed on a calibrated balance; the volume is measured by transferring the weighed amount in a graduated cylinder.
- Thermogravimetry Analysis (TGA): A thermogravimetric analyzer (TGA Q5000IR, TA Instruments, New Castle, Del.) with air cooling was used. About 2 mg of sample was weighed in platinum TGA pan and heated under dry nitrogen purge (flow
rate 25 ml/min) at 10° C./min. The data was analyzed using Universal Analysis (TA instruments, New Castle, Del.). - Dynamic Vapor Sorption (DVS): The moisture sorption-desorption profile of Form I was obtained using a DVS Intrinsic Vapor Sorption Analyzer (Surface Measurement Systems Ltd, Allentown, Pa.). A small quantity of sample was placed in a DVS sample holder. 2 cycles of sorption/desorption profile were recorded at 25° C. in the range of 0% to 95% RH (the first sorption cycle was started at 45% RH) with maximum equilibration time of 120 min at each step (0%, 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%).
- Stability Study: The effects of temperature and humidity on amorphous and crystalline (Form I) SEQ. ID. NO. 1 was evaluated, this is to provide assessment on the solid state stability of the crystalline SEQ. ID. NO.1. Approximately 1.6 mg of SEQ. ID. NO.1 was kept in an open scintillation vial in various temperatures and relative humidity conditions. The study design is provided in Table 3
-
TABLE 3 Stability Study Design Storage Temperature Relative Humidity Time points 25° C. 60% 2, 4, 8, and 12 weeks 40° C. 11%, 32%, 75%, 90% 2, 4, 8, and 12 weeks 50° C. 75% 2, 4, 8, and 12 weeks - Powder X-Ray Diffractometry (PXRD): A small amount of sample was loaded onto Si-low background sample holder, and exposed to CuKα radiation (40 kV×40 mA) in an X-ray diffractometer (D8 Advance, Bruker AXS Inc., Madison, Wis.). The sample was scanned in a locked coupled mode with spinner rotating at a speed of 25 rpm. The angular range was 2° to 40° 20 in a step size of 0.0069, number of steps of 5470 and time/step of 0.39 second. The data collection and analyses were performed with commercially available software (Eva, version 2.0, Bruker AXS Inc., Madison, Wis.).
- Determination of Degradation Product: The amount of degradation products in the composition comprising SEQ. ID. NO. 1 was quantified by UPLC with UV detection at 205 nm using procedure described in method PRD-TM-ANL-01105 version 1.0.
- Results
- Appearance: The color of crystalline form SEQ. ID. NO.1 (Form I) remained the same as the amorphous form. In addition, it was found that the crystalline form had better flow property as compared to the amorphous form.
- Bulk Density: The bulk density of amorphous and crystalline SEQ. ID. NO.1 was determined to be 0.07 g/ml and 0.4 g/ml, respectively. Thus, the bulk density of crystalline SEQ. ID. NO. 1 was improved significantly and is approximately 6-fold higher than the amorphous material. This significant increase in bulk density of the crystalline form could not have been predicted.
- TGA: The TGA weight loss curve of crystalline SEQ. ID. NO. 1 presented in
FIG. 19 exhibits two weight-loss steps. The first weight loss event of 7.1% w/w occurs between 25° C. to 100° C.; the second one of 7.4% w/w occurs between 100° C. to 225° C. The two weight loss events matches the broad endotherms observed from the DSC thermogram and are associated with the loss of water and residual acetic acid present in the material. The data is shown inFIG. 19 . - Dynamic Vapor Sorption (DVS): The DVS data (
FIG. 20 ) shows that crystalline SEQ. ID. NO.1 is not as hygroscopic as amorphous SEQ. ID. NO.1. The crystalline form only adsorbed roughly 7.6% (by weight) at 60% RH and 11% (by weight) at 95% RH. However, amorphous form adsorbed more than 10% (by weight) at 60% RH and 30% (by weight) at 95% RH. After completion of DVS analysis, the sample was characterized by X-ray powder diffractometry.FIG. 21 shows that the crystalline form remained unchanged after exposing to two sorption/desorption cycles. - Stability Study: The PXRD patterns of amorphous and crystalline SEQ. ID. NO.1 after 3 months of storage at various conditions are displayed in
FIG. 22 andFIG. 23 , respectively. The solid state form of both materials remains stable at all time-points and various temperature/humidity conditions. The results of total degradation of amorphous and crystalline SEQ. ID. NO. 1 are provided in Table 4. The total degradation of amorphous SEQ. ID. NO. 1 increase significantly as a function of time at high temperature and humidity conditions. At elevated conditions of 40° C./75% RH, 40° C./90% RH and 50° C./75% RH, a high level of hydrolytic degradation product is detected, which is the main contributor to the total degradation products of amorphous SEQ. ID. NO. 1. The degradation products of crystalline SEQ. ID. NO. 1 did not increase as significantly as compared to the amorphous form. There was only approximately 0.4% total degradation increased for crystalline SEQ. ID. NO.1 at 25° C./60% RH, 40° C./11% RH and 40° C./32% RH. At elevated conditions of 40° C./75% RH, 40° C./90% RH and 50° C./75% RH, hydrolytic degradation product is also the main contributor to the total degradation products, however, the level observed in crystalline SEQ. ID. NO. 1 is significantly lower than the one determined in amorphous SEQ. ID. NO. 1. Accordingly, crystalline SEQ. ID. NO. 1 is significantly, and unexpectedly, chemically more stable than amorphous SEQ. ID. NO. 1. -
TABLE 4 Total degradation results of amorphous and crystalline SEQ. ID. NO. 1 at various stability conditions Initial 2 wk 4 wk 8 wk 12 wk Amorphous SEQ. ID. NO. 1 25° C./60% RH 0.75% 1.08% 1.60% 1.40% 1.86% 40° C./11% RH 1.17% 1.50% 1.44% 2.07% 40° C./32% RH 0.91% 1.73% 1.45% 1.65% 40° C./75% RH 1.39% 2.30% 3.79% 4.06% 40° C./90% RH 3.36% 6.04% 9.93% 13.18% 50° C./75% RH 2.10% 3.22% 34.75% 38.15% Crystalline SEQ. ID. NO. 1 25° C./60% RH 0.65% 0.73% 0.90% 1.05% 1.00% 40° C./11% RH 0.72% 1.21% 0.89% 1.04% 40° C./32% RH 0.74% 1.01% 0.95% 1.08% 40° C./75% RH 0.85% 1.16% 1.09% 1.44% 40° C./90% RH 1.03% 1.34% 1.68% 1.50% 50° C./75% RH 0.80% 1.47% 4.52% 4.64% - As is demonstrated in the Examples, and as is discussed in this application, the crystalline Form I has physical properties that are surprising and unexpected as compared to amorphous form. For example, the data demonstrates that crystalline Form I has enhanced bulk density properties as compared to the amorphous form, which enables the product to have better handling, easier storage (does not take up as much space), and better flow in manufacturing. The crystalline form also has better chemical stability as compared to the amorphous form, and it is less hygroscopic. Thus, because of these two improved stability factors, Form I is unexpectedly and surprisingly more stable and, unexpectedly, can be stored at either controlled refrigerated temperature (4 C) or at room temperature (20-25 C), which is a significant and unexpected advantage over the amorphous form, which is stored at −20 C. The ability to store Form I at a higher temperature is unexpected, in part, because it is unusual for a crystalline form of a peptide to have this increase in stability at the higher temperatures (>−20 C) especially in view of the hygroscopic properties of the amorphous form of SEQ. ID. NO.1. The crystalline Form I of SEQ. ID. NO. 1 is also expected to have synergy with other active or inactive components resulting in enhanced performance characteristics or properties of pharmaceutical compositions comprising one or more crystalline forms of the compounds described herein.
- While the embodiments have been depicted and described by reference to exemplary embodiments, such a reference does not imply a limitation on the scope, and no such limitation is to be inferred. The embodiments are capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts having the benefit of this disclosure.
- The depicted and described embodiments are exemplary only, and are not exhaustive of the scope.
- All references cited herein are hereby incorporated by reference in their entirety.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/345,234 US20170283464A1 (en) | 2014-02-07 | 2016-11-07 | Crystalline And Amorphous Forms Of A Beta-Arrestin Effector |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461936914P | 2014-02-07 | 2014-02-07 | |
US14/616,487 US9518086B2 (en) | 2014-02-07 | 2015-02-06 | Crystalline and amorphous forms of a β-arrestin effector |
US15/345,234 US20170283464A1 (en) | 2014-02-07 | 2016-11-07 | Crystalline And Amorphous Forms Of A Beta-Arrestin Effector |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/616,487 Continuation US9518086B2 (en) | 2014-02-07 | 2015-02-06 | Crystalline and amorphous forms of a β-arrestin effector |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170283464A1 true US20170283464A1 (en) | 2017-10-05 |
Family
ID=53774370
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/616,487 Active US9518086B2 (en) | 2014-02-07 | 2015-02-06 | Crystalline and amorphous forms of a β-arrestin effector |
US15/345,234 Abandoned US20170283464A1 (en) | 2014-02-07 | 2016-11-07 | Crystalline And Amorphous Forms Of A Beta-Arrestin Effector |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/616,487 Active US9518086B2 (en) | 2014-02-07 | 2015-02-06 | Crystalline and amorphous forms of a β-arrestin effector |
Country Status (7)
Country | Link |
---|---|
US (2) | US9518086B2 (en) |
EP (1) | EP3102223A4 (en) |
JP (1) | JP2017506235A (en) |
CN (1) | CN106170293A (en) |
AU (1) | AU2015213777A1 (en) |
CA (1) | CA2938986A1 (en) |
WO (1) | WO2015120316A1 (en) |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3751404A (en) | 1971-02-12 | 1973-08-07 | Morton Norwich Products Inc | L-prolyl-l-arginyl-l-volyl-l-tyrosyl-l-volyl-l-histidyl-l-prolyl-glycine |
DE2360794C2 (en) * | 1973-12-06 | 1984-12-06 | Hoechst Ag, 6230 Frankfurt | Process for the production of peptides |
US3932624A (en) | 1974-06-17 | 1976-01-13 | Morton-Norwich Products, Inc. | Method for prolonging the inhibitory effect of saralasin on angiotensin II |
JPS5825980B2 (en) | 1976-02-12 | 1983-05-31 | ヤマサ醤油株式会社 | Cyclic nucleotide quantification method |
US4298523A (en) | 1980-06-17 | 1981-11-03 | Ortho Pharmaceutical Corporation | Methods and compositions for preparation of H-ARG-X-Z-Y-TYR-R |
US4547489A (en) | 1984-06-11 | 1985-10-15 | Ortho Pharmaceutical Corporation | Conformationally restricted thymopentin-like compounds |
US5182264A (en) | 1986-03-07 | 1993-01-26 | Schering Corporation | Angiotensin II receptor blockers as antiglaucoma agents |
ATE83480T1 (en) | 1988-09-05 | 1993-01-15 | Sankyo Co | CYCLIC PEPTIDE, ITS PRODUCTION AND USE IN THE TREATMENT OF CARDIOVASCULAR DISORDERS. |
GB8822483D0 (en) | 1988-09-24 | 1988-10-26 | Medical Res Council | Developments relating to mas oncogene |
US5401629A (en) | 1990-08-07 | 1995-03-28 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Assay methods and compositions useful for measuring the transduction of an intracellular signal |
CA2090401A1 (en) | 1990-08-27 | 1992-02-28 | Deborah A. Rathjen | Method of treating viral infection |
EP0498361A3 (en) | 1991-02-06 | 1992-09-02 | Schering Corporation | Combination of an angiotensin ii antagonist or renin inhibitor with a neutral endopeptidase inhibitor |
US5955430A (en) | 1993-09-24 | 1999-09-21 | University Of Southern California | Use of angiotensin II fragments and analogs thereof in tissue repair |
WO1995008337A1 (en) | 1993-09-24 | 1995-03-30 | The University Of Southern California | Use of angiotensin iii and analogs thereof in tissue repair |
DE69534339T2 (en) | 1994-02-08 | 2006-05-24 | Novartis Ag | TREATMENT OF NORMAL PRESSURE GLAUCOMA WITH VALSARTAN |
US5958884A (en) | 1997-04-11 | 1999-09-28 | The Brigham And Women's Hospital, Inc. | Compositions and methods for treating erectile dysfunction |
JP4347522B2 (en) | 1997-12-12 | 2009-10-21 | ユニバーシティ オブ サザン カリフォルニア | Wound healing composition |
US20040214836A1 (en) | 1998-05-29 | 2004-10-28 | Cheresh David A. | Method of treatment of myocardial infarction |
US6362371B1 (en) | 1998-06-08 | 2002-03-26 | Advanced Medicine, Inc. | β2- adrenergic receptor agonists |
US20050202029A1 (en) | 2003-10-03 | 2005-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Family of cystatin-related chemoattractant proteins |
US20070286863A1 (en) | 2006-05-17 | 2007-12-13 | Christopher Sinal | CMKLR regulation of adipogenesis and adipocyte metabolic function |
WO2008130217A1 (en) | 2006-08-08 | 2008-10-30 | Applied Nanosystems B.V. | Cyclic angiotensin analogs |
GB0705488D0 (en) | 2007-03-22 | 2007-05-02 | Isis Innovation | Treatment of inflammation and/or endotoxic shock |
CA2723372A1 (en) | 2008-05-05 | 2009-11-12 | University Of Rochester | Methods and compositions for the treatment or prevention of pathological cardiac remodeling and heart failure |
US8038992B2 (en) | 2008-05-10 | 2011-10-18 | The Board Of Trustees Of The Leland Stanford Junior University | Target for regulating multiple sclerosis |
WO2010019811A2 (en) | 2008-08-15 | 2010-02-18 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for screening for modulators of ccrl2 |
DK2376101T3 (en) * | 2008-12-29 | 2016-01-18 | Trevena Inc | BETA-arrestin effectors AND COMPOSITIONS AND METHODS FOR USE THEREOF |
EP2480531B1 (en) | 2009-09-21 | 2014-11-05 | ChemoCentryx, Inc. | Pyrrolidinone carboxamide derivatives as chemerin-r (chemr23) modulators |
CN103096895B (en) | 2010-06-24 | 2016-06-01 | 塔夫茨大学信托人 | The method of nicotinic acid analogies and use thereof |
WO2012150890A1 (en) * | 2011-05-02 | 2012-11-08 | Lipidor Ab | Antibacterial composition |
-
2015
- 2015-02-06 WO PCT/US2015/014892 patent/WO2015120316A1/en active Application Filing
- 2015-02-06 JP JP2016550813A patent/JP2017506235A/en active Pending
- 2015-02-06 US US14/616,487 patent/US9518086B2/en active Active
- 2015-02-06 EP EP15746506.3A patent/EP3102223A4/en not_active Withdrawn
- 2015-02-06 CN CN201580018401.2A patent/CN106170293A/en active Pending
- 2015-02-06 CA CA2938986A patent/CA2938986A1/en not_active Abandoned
- 2015-02-06 AU AU2015213777A patent/AU2015213777A1/en not_active Abandoned
-
2016
- 2016-11-07 US US15/345,234 patent/US20170283464A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2015120316A9 (en) | 2016-09-22 |
CA2938986A1 (en) | 2015-08-13 |
AU2015213777A1 (en) | 2016-09-22 |
CN106170293A (en) | 2016-11-30 |
EP3102223A1 (en) | 2016-12-14 |
WO2015120316A1 (en) | 2015-08-13 |
JP2017506235A (en) | 2017-03-02 |
US9518086B2 (en) | 2016-12-13 |
US20150225461A1 (en) | 2015-08-13 |
EP3102223A4 (en) | 2017-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2896802T3 (en) | Acid addition salts of benzimidazole derivative | |
CN111954539B (en) | Mitochondrial targeting peptides | |
CA2948283A1 (en) | Hepcidin mimetic peptides and uses thereof | |
JPS61227594A (en) | N,N'-dialkylguanidinodipeptide | |
US5932548A (en) | Lysine containing peptides for treatment of heart disease | |
TWI388333B (en) | Reconstituted surfactants having improved properties | |
TWI633887B (en) | Drug for preventing and/or treating polycystic kidney disease | |
SG178721A1 (en) | Amino acid prodrugs | |
KR20120104316A (en) | Pharmaceutical composition comprising oligopeptides, preferably cilengitide | |
AU2020260489A1 (en) | Chiral peptides | |
ES2268730T3 (en) | OPHTHALMIC PHARMACOLOGICAL COMPOSITIONS. | |
US20070149457A1 (en) | Stable solid forms of enterostatin | |
US20230174582A1 (en) | Vipr2 antagonist peptide | |
US9518086B2 (en) | Crystalline and amorphous forms of a β-arrestin effector | |
US20230391749A1 (en) | Crystalline and amorphous forms of a delta-opioid modulator | |
HK1230482A1 (en) | Crystalline and amorphous forms of a beta-arrestin effector | |
US9611293B2 (en) | Synthesis of beta-arrestin effectors | |
JP5087233B2 (en) | Preventive or therapeutic agent for keratoconjunctival disorder | |
AU2005255013A1 (en) | Mediators of reverse cholesterol transport for the treatment of hypercholesterolemia | |
US20020128199A1 (en) | Anti-depressant effects of corticotropin release inhibiting factor | |
HK1232443A1 (en) | Synthesis of beta-arrestin effectors | |
AU2015234367A1 (en) | Compositions and methods of use for cell targeted inhibitors of the cystic fibrosis transmembrane regulator associated ligand | |
US20150299262A1 (en) | Cyclic peptide and pharmaceutical product containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FOREST LABORATORIES HOLDINGS LIMITED, BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANGHVI, RITESH;LAWTON, GRAHAM RICHARD;YU, MEIKI;AND OTHERS;SIGNING DATES FROM 20140224 TO 20140306;REEL/FRAME:042847/0942 Owner name: TREVENA, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOREST LABORATORIES HOLDINGS LIMITED;REEL/FRAME:043026/0937 Effective date: 20140318 Owner name: TREVENA, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCORN, GREGORY;REEL/FRAME:043026/0898 Effective date: 20140210 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |