US20170272302A1 - Method and system for service preparation of a residential network access device - Google Patents

Method and system for service preparation of a residential network access device Download PDF

Info

Publication number
US20170272302A1
US20170272302A1 US15/601,343 US201715601343A US2017272302A1 US 20170272302 A1 US20170272302 A1 US 20170272302A1 US 201715601343 A US201715601343 A US 201715601343A US 2017272302 A1 US2017272302 A1 US 2017272302A1
Authority
US
United States
Prior art keywords
rnad
access device
address
network access
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/601,343
Inventor
Pieter Koert Veenstra
Gerardus Franciscus Johannes Wilhelmus Janssen
Johannes Angelina Hoffmans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke KPN NV
Original Assignee
Koninklijke KPN NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke KPN NV filed Critical Koninklijke KPN NV
Priority to US15/601,343 priority Critical patent/US20170272302A1/en
Assigned to KONINKLIJKE KPN N.V. reassignment KONINKLIJKE KPN N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOFFMANS, JOHANNES ANGELINA, JANSSEN, GERARDUS FRANCISCUS JOHANNES WILHEMUS, VEENSTRA, PIETER KOERT
Publication of US20170272302A1 publication Critical patent/US20170272302A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04L29/12216
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2807Exchanging configuration information on appliance services in a home automation network
    • H04L12/2814Exchanging control software or macros for controlling appliance services in a home automation network
    • H04L29/12839
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • H04L61/2007
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/6022
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses

Definitions

  • the invention relates to the field of providing network services to customers. More particularly, the invention relates to the field of service preparation of a residential network access device in order to enable customers to enjoy a network service after said service preparation.
  • IP telephony As an alternative for conventional plain old telephony systems (POTS).
  • POTS plain old telephony systems
  • IP telephony services typically require a residential network access device to adapt the outbound voice information to the IP telephony network and the inbound voice information to the requirements of the conventional telephone.
  • network access devices are often complicated and require considerable preparation efforts from a user before the IP telephony service can be enjoyed.
  • An example of such a residential network access device is disclosed in US 2006/079280. Similar problems are encountered for other types of IP services.
  • a method of service preparation of a residential network access device from one or more remote provisioning devices is proposed in order to prepare the residential network access device to receive a network service over a communications network.
  • a line identifier is received indicating a physical line used by said residential network access device to connect to said communication network.
  • An IP address is transmitted from said one or more provisioning devices to said residential network access device for which said line identifier has been received.
  • the IP address is intended to function as a source address of the residential network access device.
  • software code portions are transmitted to said IP address of said residential network access device, said software code portions being required for receiving said network service.
  • a system for service preparation of a residential network access device to receive a network service over a communications network.
  • the system comprises one or more remote provisioning devices and a network access node device arranged for establishing a communicative connection between a plurality of said residential network access devices and said one or more remote provisioning devices.
  • the one or more provisioning devices are arranged for receiving a line identifier from said network access node device indicating a physical line used by said residential network access device to connect to said communication network.
  • the provisioning devices are further arranged for transmitting an IP address from said one or more provisioning devices to said residential network access device for which said line identifier has been received.
  • the IP address is intended to function as a source address of said residential network access device.
  • the one or more provisioning devices are arranged to transmit software code portions to said IP address of said residential network access device, said software code portions being required for receiving said network service.
  • the method and system as defined above realize a plug-and-play residential network access device.
  • the connection of the residential network access device at a dwelling of a customer triggers the transmission of the line identifier via which the residential network access device connects to a network access node device from this network access node device to a provisioning device of the network service provider or an associated third party.
  • This line identifier is valuable location information for customer relation services (e.g. billing) and location dependent services (e.g. routing of emergency calls to the nearest emergency centre).
  • an IP address is assigned to the residential network access device from a provisioning device in order to allow transmission of further functional data to the residential network access device. This functional data prepares the residential network access device for performing functions related to the desired network service.
  • the only action required by a customer desiring to enjoy a network service is to plug the residential network device into the appropriate connection in his dwelling after which an automatic installing and authorisation/registration process is performed requiring no further involvement of the customer.
  • no additional actions are expected from the customer that go beyond the simple connection of a POTS telephone.
  • the residential network access device may be an off-the-shelf device that requires no assignment of customer specific information to the residential network access device before connection to the network.
  • the residential network access device only stores a device identifier, such as a MAC address, and is further capable of notifying the network access node device of its connection.
  • the MAC address pertains to general data not linked to any specific customer. Consequently, provisioning and changing of residential network access devices is simple.
  • the MAC address bridges the gap between the physical line identifier via which the residential network access device connects to the communication network and the IP address received from the provisioning device. This is particularly advantageous in a combined Ethernet-IP communication network, as the Ethernet part of the communication network is transparent for the IP address.
  • a communication network uses and couples information from various layers of the Internet model (layer 1: physical line identifier; layer 2: MAC address; layer 3: IP address; higher layers: customer credentials) to advantage.
  • the embodiments may also proof to be functional for preventing nomadic use of the residential network access device. The latter function may be relevant for location dependent services.
  • FIG. 1 depicts a schematic illustration of a communication network for providing IP telephony services to a residential network access device according to an embodiment of the invention
  • FIG. 2 displays a schematic illustration of an adaptor of a residential network access device
  • FIG. 3 shows a first example of a communication diagram for performing a method for service preparation of a residential network access device over the communication network of FIG. 1 according to an embodiment of the invention
  • FIG. 4 shows a second example of a communication diagram for performing a method for service preparation of a residential network access device over the communication network of FIG. 1 according to an embodiment of the invention.
  • a residential network access device 1 hereinafter also referred to as RNAD, is illustrated that is connected to a communication network 2 .
  • the RNAD 1 comprises an adaptor 3 and a fibre network terminator 4 and is capable of being connected to a conventional (copper) wired telephone 5 .
  • the adaptor 3 and the fibre network terminator 4 are not necessarily integrated in a single device.
  • the fibre network terminator 4 may provide RJ45 connections for connection of the adaptor 3 .
  • the adaptor 3 when properly configured according to the below described method, is capable of providing an IP telephony network service (VoIP) for the conventional telephone 5 over the communication network 2 .
  • VoIP IP telephony network service
  • the fibre network terminator 4 provides Ethernet access for the customer of the RNAD 1 .
  • the functionality of the fibre network terminator 4 is limited to providing access on Ethernet level via one or more virtual local area networks (VLANs).
  • the fibre network terminator 4 comprises further connections for receiving other services over the communication network that will not be described further.
  • the RNAD 1 is communicatively connected by a fibre 6 to the communication network 2 by a fibre access node device 7 .
  • the fibre access node device 7 comprises a fibre access card with inputs 8 for further fibres of further RNADs (not shown).
  • the fibre access node device 7 may be capable of receiving fibres of several hundreds of RNADs 1 .
  • the VLANs of the RNADs 1 are mapped on a VLAN connection to an IP edge router 11 for IP routing with provisioning devices as will be further described below.
  • the communication network 2 comprises an Ethernet part 9 and an IP part 10 , said parts being separated by the edge router 11 .
  • the communication network 2 further comprises a plurality of provisioning devices 12 - 14 .
  • the provisioning device 12 may be a server, connected to the router 11 , that is capable of assigning IP addresses to devices over the communication network 2 , such as a Dynamic Host Configuration Protocol (DHCP) server.
  • DHCP Dynamic Host Configuration Protocol
  • DHCP automates the assignment of IP addresses.
  • Provisioning device 13 is a management server taking care of the actual preparation of the RNAD 1 for receiving the IP telephony service over the communication network 2 .
  • Provisioning device 14 is an IP multimedia subsystem (IMS) providing the IP telephony service by voice emulation after preparation of the RNAD 1 for receiving this service.
  • IMS uses open standard IP protocols, defined by the IEFT, and is capable of providing IP based services, such as VoIP.
  • the IMS 14 employs a telephony application server (not shown individually) that uses the Session Initiation Protocol (SIP) for call session control of the RNAD 1 .
  • SIP Session Initiation Protocol
  • SIP Session Initiation Protocol
  • SIP Session Initiation Protocol
  • SIP is an application layer signaling peer-to-peer protocol for creating, modifying and terminating sessions, such as IP telephone calls.
  • SIP is specified in RFC 3261 of the IEFT SIP Working Group. It should be appreciated, however, that other signaling protocols, such as H.248, may be used.
  • the system illustrated in FIG. 1 may contain further devices or systems for executing further functions, including, but not limited to, couplings for the IMS 14 to an existing conventional PSTN network (bridge-to-voice), systems for billing, maintenance, service etc. and a Session Border Controller (SBC).
  • a SBC is a device used in some IP telephony networks for exerting control over the signaling and media streams involved in setting up, conducting, and tearing down calls. SBCs are put into the signaling and/or media path between a calling and a called party and may split a SIP signalling stream and a RIP media stream.
  • a customer desiring to receive IP telephony network services for a service provider may obtain a RNAD 1 or an adaptor 3 as shown schematically in FIG. 2 .
  • the dwelling of the customer may already contain a fibre network terminator 4 , such that only an adaptor 3 is required for receiving the IP telephony service.
  • the adaptor 3 comprises a first connection 20 for the conventional telephone 5 and a second connection 21 for a fibre connection to the fibre network terminator 4 and further to the network access node device 7 over the fibre 6 .
  • the adaptor 3 further comprises a processor 22 and a memory 23 .
  • the processor 22 is arranged for converting SIP controlled IP telephony signals from the IMS 14 into conventional POTS signals for the telephone 5 by emulation of a POTS service and vice versa.
  • the memory 23 stores a device identifier, such as a unique media access control (MAC) address. Furthermore, the memory may store further data obtained in the method described below.
  • the memory 23 may be flash memory capable of storing configuration data. For such an RNAD 1 , power failure does not directly require anew service preparation of the RNAD 1 .
  • FIG. 3 shows a first example of a communication diagram for performing a method for service preparation of the RNAD 1 over the communication network 2 of FIG. 1 according to an embodiment of the invention.
  • a DHCP request is then automatically triggered and transmitted to the fibre access node device 7 .
  • the request 31 may include the MAC identifier of the RNAD 1 and other credentials of the RNAD 1 , such as a serial number.
  • the request may be a broadcast request to DHCP servers 12 listening in the communication network 2 for this request in order to provide an IP address to the RNAD 1 .
  • the RNAD 1 may have a specific URL 12 of a DHCP server 12 stored in its memory 23 .
  • the fibre access node device 7 analyses the line ID, indicating the port used by the physical line, i.e. the fibre 6 , over which the DHCP request is received. This line ID is stored in the fibre access node device 7 together with the MAC address of the RNAD 1 via Ethernet learning. The line ID is not known at the RNAD 1 and thus is only available in the communication network 2 . The MAC address is unique within the fibre access node device 7 . The fibre access node device 7 then forwards the DHCP request in step 32 to the DHCP server 12 .
  • the DHCP server 12 comprises a configuration table of IP addresses corresponding to the line ID's in the various fibre access node devices 7 .
  • the DHCP server 12 selects the IP address corresponding to the line ID of fibre 6 and returns the IP address in step 33 to the RNAD 1 .
  • the IP source address is assigned to the RNAD 1 .
  • the router 11 intercepts and stores the MAC address of RNAD 1 in combination with the selected IP address. Furthermore, a network address URL 13 of the management server 13 is returned to the RNAD 1 .
  • the DHCP server 12 communicates the assigned IP source address to the management server 13 .
  • the assigned IP address may also be communicated to IMS 14 (not shown), if the IP address is used for authentication purposes in IMS 14 .
  • step 35 a request containing the MAC address of RNAD 1 is received at the management server 13 with URL 13 from the RNAD 1 for network service preparation.
  • the management server 13 is already aware of the IP source address of the RNAD 1 , since this address was obtained in step 34 from the DHCP server 12 .
  • the management server 13 transmits voice emulation software code portions to the assigned IP address of RNAD 1 for loading in the firmware of the RNAD 1 .
  • the software code portions are required for receiving the IP telephony network service.
  • the RNAD 1 receives customer specific credentials from the management server 13 , including a public ID (e.g. a E.164 telephone number and a host domain), a private ID (a customer number to be used, e.g., for billing purposes) and possible other information such as a digit map.
  • the public ID may e.g. be retrieved from a table storing relations between assigned IP source addresses for the RNAD 1 with a corresponding E.164 telephone number.
  • the RNAD 1 receives a further network address, URL 14 , of the IMS server 14 .
  • a trusted connection may be arranged between the RNAD 1 and the management server 13 on the basis of an encrypted identifier.
  • step 37 the management server 13 communicates the assigned credentials, e.g. public ID and private ID, to the IMS 14 . This step may be omitted if the management server 13 has received the IP source address of the RNAD 1 from the DHCP server 12 .
  • the RNAD 1 contacts the IMS 14 via URL 14 for the first time by transmitting the received credentials, such as the public ID and private ID, to the IMS 14 .
  • a customer specific service profile is established for the RNAD 1 with the line identifier of the fibre 6 .
  • the IMS 14 may act either on the basis of the credentials if these are trusted or also check the IP source address of the RNAD 1 if the IP source address has been provided to IMS 14 .
  • the RNAD 1 is signalled that the IP telephony service is ready. From this moment on, the customer may initiate or receive IP telephone calls with his conventional telephone 5 .
  • the SIP standardised challenge mechanism may provide for a secure relation between the RNAD 1 and the IMS 14 .
  • FIG. 4 shows a second example of a communication diagram for performing a method for service preparation of the RNAD 1 over the communication network 2 of FIG. 1 according to an embodiment of the invention.
  • the DHCP server 12 dynamically assigns IP source addresses to the RNADs 1 .
  • Such an embodiment may prove to be advantageous with regard to the scalability of the system, since the DHCP server 12 no longer contains a configuration table with a reserved IP address for each line identifier.
  • a DHCP broadcast request is then automatically triggered and transmitted to the fibre access node device 7 .
  • the request 31 may include the MAC identifier of the RNAD 1 and other credentials of the RNAD 1 , such as a serial number.
  • the fibre access node device 7 analyses the line ID, indicating the port used by the physical line, i.e. the fibre 6 , over which the request is received. This line ID is stored in the fibre access node 7 together with the MAC address of the RNAD 1 via Ethernet learning and is not available to the RNAD 1 .
  • the MAC address is unique within the fibre access node 7 .
  • the fibre access node 7 forwards the DHCP request in step 42 to the DHCP server 12 .
  • the DHCP server 12 now assigns a dynamic IP source address to the RNAD 1 in step 43 as opposed to the method as described with reference to FIG. 3 .
  • the DHCP server 12 stores the assigned IP address and the associated line ID.
  • the router 11 intercepts and stores the MAC address of RNAD 1 in combination with the assigned IP address. Furthermore, a network address URL 13 of the management server 13 is returned in step 43 .
  • step 44 a request containing the MAC address of RNAD 1 is received at the management server 13 from the RNAD 1 for network service preparation.
  • step 45 the management server 13 transmits a request to DHCP server 12 to check whether DHCP server 12 assigned an IP source address to RNAD 1 in step 43 .
  • step 46 the assignment of such an IP source address is confirmed by the DHCP server 12 to the management server 13 .
  • the management server 13 transmits voice emulation software code portions to the dynamically assigned IP address of RNAD 1 for loading in the firmware of the RNAD 1 .
  • the software code portions are required for receiving the IP telephony network service.
  • the RNAD 1 receives customer specific credentials from the management server 13 , including a public ID (e.g. a E.164 telephone number and a host domain), a private ID (a customer number to be used, e.g. for billing purposes) and possible other information such as a digit map.
  • the RNAD 1 receives a further network address, URL 14 , of the IMS server 14 .
  • a trusted connection may be obtained on the basis of an encrypted identifier.
  • step 48 the management server 13 communicates the assigned credentials, e.g. the public ID and private ID, to the IMS 14 .
  • the RNAD 1 contacts the IMS 14 for the first time by transmitting the public ID and private ID, to the IMS 14 .
  • a customer specific service profile is established for the RNAD 1 with the line identifier of the fibre 6 .
  • the RNAD 1 is signalled that the IP telephony service is ready. From this moment on, the customer may initiate or receive IP telephone calls with his conventional telephone 5 .
  • the SIP standardised challenge mechanism may provide for a secure relation between the RNAD 1 and the IMS 14 .
  • the action for the customer is limited to plugging the RNAD 1 , or the adaptor 3 if a fibre network terminator 4 is already installed, in the appropriate connection.
  • This action corresponds to connecting a POTS device to a conventional telecommunication network.
  • the further preparation of the RNAD 1 to a service ready state is fully automatic.
  • the part of the communication network 2 ranging from the fibre access node device 7 to the provisioning devices 12 - 14 and further is what is referred to as a ‘trusted’ communication network.
  • source identifiers of traffic such as the line ID
  • source identifiers from the RNAD 1 can be manipulated on various levels (physically, e.g. by reconnecting fibres to other ports or on another level, e.g. spoofing of the MAC address of an RNAD 1 by another user) and is ‘untrusted’.
  • Both the line ID of the RNAD 1 and the IP address assigned to the RNAD 1 are trusted parameters, since these are assigned by the fibre access node device 7 and the DHCP server 12 , respectively, which are in the trusted part of the communication network 2 .
  • the MAC address of the RNAD 1 which may be spoofed and is, therefore, untrusted, has a bridging function between these trusted parameters.
  • RNAD 1 may be taken if the above described method is applied. These measures may prevent malicious use as well.
  • the fibre access node device 7 has stored a line identifier and a MAC address of the RNAD 1 in steps 31 and 41 , respectively. If the fibre access node 7 receives the same MAC address over another physical line, access is denied for the latter received MAC address since it does not correspond to the line ID-MAC address pair stored in the fibre access node device 7 . Retrieving the MAC address at the fibre access node device 7 may be performed by Ethernet learning. Blocking access on the basis of Ethernet learning requires frequent (5-15 minutes) transactions between the RNAD 1 and the fibre access node device 7 . The number of MAC addresses for a particular VLAN may be restricted to e.g. two.
  • the edge router 11 has stored a pair relating the assigned IP address of the RNAD 1 and the MAC address in step 33 and 43 , respectively.
  • a customer using a RNAD 1 requesting IP telephony service via another fibre access node 7 is denied access at the edge router 11 if the received source IP address and MAC address do not correspond to the pair stored at the edge router 11 .
  • both the fibre access node 7 and IP edge router perform filtering or screening functions to avoid nomadic use of the RNAD 1 .

Abstract

The invention relates to a method and system of service preparation of a residential network access device from one or more remote provisioning devices to prepare said residential network access device to receive a network service over a communications network. The method comprises the steps of receiving a line identifier indicating a physical line used by said residential network access device to connect to said communication network; transmitting an IP address from said one or more provisioning devices to said residential network access device for which said line identifier has been received, said IP address being a source address for said residential network access device, and transmitting software code portions to said IP address of said residential network access device, said software code portions being required for receiving said network service.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority from U.S. patent application Ser. No. 13/075,398 filed on Mar. 30, 2011, which is a continuation of and claims priority from U.S. patent application Ser. No. 12/445,121 filed on Apr. 10, 2009, which is a U.S. National Stage Entry of International Application No. PCT/EP2007/008466 filed on Sep. 28, 2009, which claims priority from European Application No. EP06021448.3 filed on Oct. 12, 2006, all of which are herein incorporated by reference for all purposes.
  • FIELD OF THE INVENTION
  • Generally, the invention relates to the field of providing network services to customers. More particularly, the invention relates to the field of service preparation of a residential network access device in order to enable customers to enjoy a network service after said service preparation.
  • BACKGROUND OF THE INVENTION
  • The field of telecommunications has seen a tremendous change in the last decade. One of changes relates to the emergence of IP telephony as an alternative for conventional plain old telephony systems (POTS). In IP telephony, voice information is transmitted in discrete packets over packet switched communication networks instead of claiming a circuit switched connection in a telephone network for the entire duration of the telephone conversation.
  • Typically, users that desire to enjoy IP telephony services while using conventional plain old telephones need a residential network access device to adapt the outbound voice information to the IP telephony network and the inbound voice information to the requirements of the conventional telephone. Such network access devices are often complicated and require considerable preparation efforts from a user before the IP telephony service can be enjoyed. An example of such a residential network access device is disclosed in US 2006/079280. Similar problems are encountered for other types of IP services.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide a method and system for service preparation of a residential network access device that requires only limited effort from a user before a network service, such as IP telephony or another type of IP application, can be enjoyed.
  • In one aspect of the invention, a method of service preparation of a residential network access device from one or more remote provisioning devices is proposed in order to prepare the residential network access device to receive a network service over a communications network. A line identifier is received indicating a physical line used by said residential network access device to connect to said communication network. An IP address is transmitted from said one or more provisioning devices to said residential network access device for which said line identifier has been received. The IP address is intended to function as a source address of the residential network access device. Furthermore, software code portions are transmitted to said IP address of said residential network access device, said software code portions being required for receiving said network service.
  • In another aspect of the invention, a system for service preparation of a residential network access device is proposed to receive a network service over a communications network. The system comprises one or more remote provisioning devices and a network access node device arranged for establishing a communicative connection between a plurality of said residential network access devices and said one or more remote provisioning devices. The one or more provisioning devices are arranged for receiving a line identifier from said network access node device indicating a physical line used by said residential network access device to connect to said communication network. The provisioning devices are further arranged for transmitting an IP address from said one or more provisioning devices to said residential network access device for which said line identifier has been received. The IP address is intended to function as a source address of said residential network access device. Furthermore, the one or more provisioning devices are arranged to transmit software code portions to said IP address of said residential network access device, said software code portions being required for receiving said network service.
  • The method and system as defined above realize a plug-and-play residential network access device. In particular, the connection of the residential network access device at a dwelling of a customer triggers the transmission of the line identifier via which the residential network access device connects to a network access node device from this network access node device to a provisioning device of the network service provider or an associated third party. This line identifier is valuable location information for customer relation services (e.g. billing) and location dependent services (e.g. routing of emergency calls to the nearest emergency centre). After having received the line identifier, an IP address is assigned to the residential network access device from a provisioning device in order to allow transmission of further functional data to the residential network access device. This functional data prepares the residential network access device for performing functions related to the desired network service. Consequently, the only action required by a customer desiring to enjoy a network service is to plug the residential network device into the appropriate connection in his dwelling after which an automatic installing and authorisation/registration process is performed requiring no further involvement of the customer. In other words, no additional actions are expected from the customer that go beyond the simple connection of a POTS telephone. In particular, it is not required that the customer has to go through a cumbersome username/password verification session on a webpage of a service provider.
  • An additional advantage of the proposed method and system is that the residential network access device may be an off-the-shelf device that requires no assignment of customer specific information to the residential network access device before connection to the network. The residential network access device only stores a device identifier, such as a MAC address, and is further capable of notifying the network access node device of its connection. The MAC address, however, pertains to general data not linked to any specific customer. Consequently, provisioning and changing of residential network access devices is simple.
  • On example embodiment of the invention described herein is advantageous in that the MAC address bridges the gap between the physical line identifier via which the residential network access device connects to the communication network and the IP address received from the provisioning device. This is particularly advantageous in a combined Ethernet-IP communication network, as the Ethernet part of the communication network is transparent for the IP address.
  • Other embodiments of the invention described herein are advantageous in that that a communication network is provided that uses and couples information from various layers of the Internet model (layer 1: physical line identifier; layer 2: MAC address; layer 3: IP address; higher layers: customer credentials) to advantage. The embodiments may also proof to be functional for preventing nomadic use of the residential network access device. The latter function may be relevant for location dependent services.
  • Further aspects of the invention and embodiments as defined in the claims will be clarified with reference to the attached drawings and corresponding description. It will be understood that the invention is not in any way restricted to the embodiments disclosed in these drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1 depicts a schematic illustration of a communication network for providing IP telephony services to a residential network access device according to an embodiment of the invention;
  • FIG. 2 displays a schematic illustration of an adaptor of a residential network access device;
  • FIG. 3 shows a first example of a communication diagram for performing a method for service preparation of a residential network access device over the communication network of FIG. 1 according to an embodiment of the invention, and
  • FIG. 4 shows a second example of a communication diagram for performing a method for service preparation of a residential network access device over the communication network of FIG. 1 according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • In FIG. 1, a residential network access device 1, hereinafter also referred to as RNAD, is illustrated that is connected to a communication network 2. The RNAD 1 comprises an adaptor 3 and a fibre network terminator 4 and is capable of being connected to a conventional (copper) wired telephone 5.
  • It should be noted that the adaptor 3 and the fibre network terminator 4 are not necessarily integrated in a single device. In that case, the fibre network terminator 4 may provide RJ45 connections for connection of the adaptor 3.
  • It should further be appreciated that, although the presently described embodiment is limited to a fibre network connection, the described method, procedures and system are equally well applicable to copper wired connection, e.g. for xDSL connections with IP applications over Ethernet.
  • The adaptor 3, when properly configured according to the below described method, is capable of providing an IP telephony network service (VoIP) for the conventional telephone 5 over the communication network 2.
  • The fibre network terminator 4 provides Ethernet access for the customer of the RNAD 1. In the present embodiment, the functionality of the fibre network terminator 4 is limited to providing access on Ethernet level via one or more virtual local area networks (VLANs). The fibre network terminator 4 comprises further connections for receiving other services over the communication network that will not be described further.
  • The RNAD 1 is communicatively connected by a fibre 6 to the communication network 2 by a fibre access node device 7. The fibre access node device 7 comprises a fibre access card with inputs 8 for further fibres of further RNADs (not shown). The fibre access node device 7 may be capable of receiving fibres of several hundreds of RNADs 1. In the fibre access node, the VLANs of the RNADs 1 are mapped on a VLAN connection to an IP edge router 11 for IP routing with provisioning devices as will be further described below.
  • The communication network 2 comprises an Ethernet part 9 and an IP part 10, said parts being separated by the edge router 11.
  • The communication network 2 further comprises a plurality of provisioning devices 12-14.
  • In particular, the provisioning device 12 may be a server, connected to the router 11, that is capable of assigning IP addresses to devices over the communication network 2, such as a Dynamic Host Configuration Protocol (DHCP) server. DHCP automates the assignment of IP addresses.
  • Provisioning device 13 is a management server taking care of the actual preparation of the RNAD 1 for receiving the IP telephony service over the communication network 2.
  • Provisioning device 14 is an IP multimedia subsystem (IMS) providing the IP telephony service by voice emulation after preparation of the RNAD 1 for receiving this service. IMS uses open standard IP protocols, defined by the IEFT, and is capable of providing IP based services, such as VoIP. The IMS 14 employs a telephony application server (not shown individually) that uses the Session Initiation Protocol (SIP) for call session control of the RNAD 1. SIP is an application layer signaling peer-to-peer protocol for creating, modifying and terminating sessions, such as IP telephone calls. SIP is specified in RFC 3261 of the IEFT SIP Working Group. It should be appreciated, however, that other signaling protocols, such as H.248, may be used.
  • It will be evident for the skilled person that the system illustrated in FIG. 1 may contain further devices or systems for executing further functions, including, but not limited to, couplings for the IMS 14 to an existing conventional PSTN network (bridge-to-voice), systems for billing, maintenance, service etc. and a Session Border Controller (SBC). A SBC is a device used in some IP telephony networks for exerting control over the signaling and media streams involved in setting up, conducting, and tearing down calls. SBCs are put into the signaling and/or media path between a calling and a called party and may split a SIP signalling stream and a RIP media stream.
  • A customer desiring to receive IP telephony network services for a service provider may obtain a RNAD 1 or an adaptor 3 as shown schematically in FIG. 2. As mentioned above, the dwelling of the customer may already contain a fibre network terminator 4, such that only an adaptor 3 is required for receiving the IP telephony service. The adaptor 3 comprises a first connection 20 for the conventional telephone 5 and a second connection 21 for a fibre connection to the fibre network terminator 4 and further to the network access node device 7 over the fibre 6. The adaptor 3 further comprises a processor 22 and a memory 23. The processor 22 is arranged for converting SIP controlled IP telephony signals from the IMS 14 into conventional POTS signals for the telephone 5 by emulation of a POTS service and vice versa. The memory 23 stores a device identifier, such as a unique media access control (MAC) address. Furthermore, the memory may store further data obtained in the method described below. The memory 23 may be flash memory capable of storing configuration data. For such an RNAD 1, power failure does not directly require anew service preparation of the RNAD 1.
  • FIG. 3 shows a first example of a communication diagram for performing a method for service preparation of the RNAD 1 over the communication network 2 of FIG. 1 according to an embodiment of the invention.
  • The customer that obtained the adaptor 3 of FIG. 2 plugs second connection 21 into the appropriate connection of the fibre network terminator 4. A DHCP request, using DHCP option 82 and indicated by step 31 in FIG. 3, is then automatically triggered and transmitted to the fibre access node device 7. The request 31 may include the MAC identifier of the RNAD 1 and other credentials of the RNAD 1, such as a serial number. The request may be a broadcast request to DHCP servers 12 listening in the communication network 2 for this request in order to provide an IP address to the RNAD 1. Alternatively, the RNAD 1 may have a specific URL 12 of a DHCP server 12 stored in its memory 23.
  • The fibre access node device 7 analyses the line ID, indicating the port used by the physical line, i.e. the fibre 6, over which the DHCP request is received. This line ID is stored in the fibre access node device 7 together with the MAC address of the RNAD 1 via Ethernet learning. The line ID is not known at the RNAD 1 and thus is only available in the communication network 2. The MAC address is unique within the fibre access node device 7. The fibre access node device 7 then forwards the DHCP request in step 32 to the DHCP server 12.
  • In the embodiment of FIG. 3, the DHCP server 12 comprises a configuration table of IP addresses corresponding to the line ID's in the various fibre access node devices 7. The DHCP server 12 selects the IP address corresponding to the line ID of fibre 6 and returns the IP address in step 33 to the RNAD 1. In this step the IP source address is assigned to the RNAD 1. The router 11 intercepts and stores the MAC address of RNAD 1 in combination with the selected IP address. Furthermore, a network address URL 13 of the management server 13 is returned to the RNAD 1.
  • In step 34, the DHCP server 12 communicates the assigned IP source address to the management server 13. The assigned IP address may also be communicated to IMS 14 (not shown), if the IP address is used for authentication purposes in IMS 14.
  • In step 35, a request containing the MAC address of RNAD 1 is received at the management server 13 with URL 13 from the RNAD 1 for network service preparation. The management server 13 is already aware of the IP source address of the RNAD 1, since this address was obtained in step 34 from the DHCP server 12.
  • In response step 36, the management server 13 transmits voice emulation software code portions to the assigned IP address of RNAD 1 for loading in the firmware of the RNAD 1. The software code portions are required for receiving the IP telephony network service. Apart from the software for configuring the RNAD 1, the RNAD 1 receives customer specific credentials from the management server 13, including a public ID (e.g. a E.164 telephone number and a host domain), a private ID (a customer number to be used, e.g., for billing purposes) and possible other information such as a digit map. The public ID may e.g. be retrieved from a table storing relations between assigned IP source addresses for the RNAD 1 with a corresponding E.164 telephone number. Also, the RNAD 1 receives a further network address, URL 14, of the IMS server 14. In the exchange of information between the RNAD 1 and the management server 13, a trusted connection may be arranged between the RNAD 1 and the management server 13 on the basis of an encrypted identifier.
  • In step 37, the management server 13 communicates the assigned credentials, e.g. public ID and private ID, to the IMS 14. This step may be omitted if the management server 13 has received the IP source address of the RNAD 1 from the DHCP server 12.
  • In registration step 38, the RNAD 1 contacts the IMS 14 via URL 14 for the first time by transmitting the received credentials, such as the public ID and private ID, to the IMS 14. A customer specific service profile is established for the RNAD 1 with the line identifier of the fibre 6. The IMS 14 may act either on the basis of the credentials if these are trusted or also check the IP source address of the RNAD 1 if the IP source address has been provided to IMS 14.
  • In registration confirmation step 39, the RNAD 1 is signalled that the IP telephony service is ready. From this moment on, the customer may initiate or receive IP telephone calls with his conventional telephone 5.
  • In the exchange of information of steps 38 and 39, the SIP standardised challenge mechanism may provide for a secure relation between the RNAD 1 and the IMS 14.
  • In the method depicted in FIG. 3, the IP source address for the RNAD 1 is a permanent address. FIG. 4 shows a second example of a communication diagram for performing a method for service preparation of the RNAD 1 over the communication network 2 of FIG. 1 according to an embodiment of the invention. In this method the DHCP server 12 dynamically assigns IP source addresses to the RNADs 1. Such an embodiment may prove to be advantageous with regard to the scalability of the system, since the DHCP server 12 no longer contains a configuration table with a reserved IP address for each line identifier.
  • Again, the customer that obtained the adaptor 3 of FIG. 2 simply connects the second connection 21 into the appropriate connection of his dwelling. A DHCP broadcast request, using DHCP option 82 and indicated by step 41 in FIG. 4, is then automatically triggered and transmitted to the fibre access node device 7. Again, the request 31 may include the MAC identifier of the RNAD 1 and other credentials of the RNAD 1, such as a serial number. The fibre access node device 7 analyses the line ID, indicating the port used by the physical line, i.e. the fibre 6, over which the request is received. This line ID is stored in the fibre access node 7 together with the MAC address of the RNAD 1 via Ethernet learning and is not available to the RNAD 1. The MAC address is unique within the fibre access node 7.
  • The fibre access node 7 forwards the DHCP request in step 42 to the DHCP server 12.
  • The DHCP server 12 now assigns a dynamic IP source address to the RNAD 1 in step 43 as opposed to the method as described with reference to FIG. 3. The DHCP server 12 stores the assigned IP address and the associated line ID. The router 11 intercepts and stores the MAC address of RNAD 1 in combination with the assigned IP address. Furthermore, a network address URL 13 of the management server 13 is returned in step 43.
  • In step 44, a request containing the MAC address of RNAD 1 is received at the management server 13 from the RNAD 1 for network service preparation.
  • In step 45, the management server 13 transmits a request to DHCP server 12 to check whether DHCP server 12 assigned an IP source address to RNAD 1 in step 43. In step 46, the assignment of such an IP source address is confirmed by the DHCP server 12 to the management server 13.
  • In response step 47, the management server 13 transmits voice emulation software code portions to the dynamically assigned IP address of RNAD 1 for loading in the firmware of the RNAD 1. The software code portions are required for receiving the IP telephony network service. Apart from the software for configuring the RNAD 1, the RNAD 1 receives customer specific credentials from the management server 13, including a public ID (e.g. a E.164 telephone number and a host domain), a private ID (a customer number to be used, e.g. for billing purposes) and possible other information such as a digit map. Also, the RNAD 1 receives a further network address, URL 14, of the IMS server 14. In the exchange of information between the RNAD 1 and the management server 13, a trusted connection may be obtained on the basis of an encrypted identifier.
  • In step 48, the management server 13 communicates the assigned credentials, e.g. the public ID and private ID, to the IMS 14.
  • In registration step 49, the RNAD 1 contacts the IMS 14 for the first time by transmitting the public ID and private ID, to the IMS 14. A customer specific service profile is established for the RNAD 1 with the line identifier of the fibre 6.
  • In registration confirmation step 50, the RNAD 1 is signalled that the IP telephony service is ready. From this moment on, the customer may initiate or receive IP telephone calls with his conventional telephone 5.
  • In the exchange of information of steps 49 and 50, the SIP standardised challenge mechanism may provide for a secure relation between the RNAD 1 and the IMS 14.
  • It should be appreciated from the above described methods that the action for the customer is limited to plugging the RNAD 1, or the adaptor 3 if a fibre network terminator 4 is already installed, in the appropriate connection. This action corresponds to connecting a POTS device to a conventional telecommunication network. The further preparation of the RNAD 1 to a service ready state is fully automatic.
  • The part of the communication network 2 ranging from the fibre access node device 7 to the provisioning devices 12-14 and further is what is referred to as a ‘trusted’ communication network. In other words, source identifiers of traffic, such as the line ID, are reliable in the trusted part of communication networks. On the other hand, source identifiers from the RNAD 1 can be manipulated on various levels (physically, e.g. by reconnecting fibres to other ports or on another level, e.g. spoofing of the MAC address of an RNAD 1 by another user) and is ‘untrusted’.
  • Both the line ID of the RNAD 1 and the IP address assigned to the RNAD 1 are trusted parameters, since these are assigned by the fibre access node device 7 and the DHCP server 12, respectively, which are in the trusted part of the communication network 2. The MAC address of the RNAD 1, which may be spoofed and is, therefore, untrusted, has a bridging function between these trusted parameters.
  • If one desires to prevent nomadic use of the RNAD 1, i.e. use of the RNAD 1 from different physical lines that is noticed by the service provider, measures may be taken if the above described method is applied. These measures may prevent malicious use as well.
  • First, the fibre access node device 7 has stored a line identifier and a MAC address of the RNAD 1 in steps 31 and 41, respectively. If the fibre access node 7 receives the same MAC address over another physical line, access is denied for the latter received MAC address since it does not correspond to the line ID-MAC address pair stored in the fibre access node device 7. Retrieving the MAC address at the fibre access node device 7 may be performed by Ethernet learning. Blocking access on the basis of Ethernet learning requires frequent (5-15 minutes) transactions between the RNAD 1 and the fibre access node device 7. The number of MAC addresses for a particular VLAN may be restricted to e.g. two.
  • Second, the edge router 11 has stored a pair relating the assigned IP address of the RNAD 1 and the MAC address in step 33 and 43, respectively. A customer using a RNAD 1 requesting IP telephony service via another fibre access node 7 is denied access at the edge router 11 if the received source IP address and MAC address do not correspond to the pair stored at the edge router 11.
  • Thus, both the fibre access node 7 and IP edge router perform filtering or screening functions to avoid nomadic use of the RNAD 1.

Claims (1)

1. A method of service preparation of a residential network access device from one or more remote provisioning devices to prepare said residential network access device to receive a network service over a communications network, said method comprising the steps of:
receiving a line identifier indicating a physical line used by said residential network access device to connect to said communication network;
transmitting an IP address from said one or more provisioning devices to said residential network access device for which said line identifier has been received, said IP address being a source address for said residential network access device, and
transmitting software code portions to said IP address of said residential network access device, said software code portions being required for receiving said network service.
US15/601,343 2006-10-12 2017-05-22 Method and system for service preparation of a residential network access device Abandoned US20170272302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/601,343 US20170272302A1 (en) 2006-10-12 2017-05-22 Method and system for service preparation of a residential network access device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP06021448.3 2006-10-12
EP06021448A EP1912411B1 (en) 2006-10-12 2006-10-12 Method and system for service preparation of a residential network access device
PCT/EP2007/008466 WO2008043442A2 (en) 2006-10-12 2007-09-28 Method and system for service preparation of a residential network access device
US44512109A 2009-04-10 2009-04-10
US13/075,398 US9769009B2 (en) 2006-10-12 2011-03-30 Method and system for service preparation of a residential network access device
US15/601,343 US20170272302A1 (en) 2006-10-12 2017-05-22 Method and system for service preparation of a residential network access device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/075,398 Continuation US9769009B2 (en) 2006-10-12 2011-03-30 Method and system for service preparation of a residential network access device

Publications (1)

Publication Number Publication Date
US20170272302A1 true US20170272302A1 (en) 2017-09-21

Family

ID=37875505

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/445,121 Active 2028-05-03 US7940782B2 (en) 2006-10-12 2007-09-28 Method and system for service preparation of a residential network access device
US13/075,398 Active 2027-11-01 US9769009B2 (en) 2006-10-12 2011-03-30 Method and system for service preparation of a residential network access device
US15/601,343 Abandoned US20170272302A1 (en) 2006-10-12 2017-05-22 Method and system for service preparation of a residential network access device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/445,121 Active 2028-05-03 US7940782B2 (en) 2006-10-12 2007-09-28 Method and system for service preparation of a residential network access device
US13/075,398 Active 2027-11-01 US9769009B2 (en) 2006-10-12 2011-03-30 Method and system for service preparation of a residential network access device

Country Status (6)

Country Link
US (3) US7940782B2 (en)
EP (1) EP1912411B1 (en)
AT (1) ATE463121T1 (en)
DE (1) DE602006013324D1 (en)
ES (1) ES2342784T3 (en)
WO (1) WO2008043442A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918531B2 (en) 2009-05-07 2014-12-23 Cisco Technology, Inc. Automated network device provisioning using dynamic host configuration protocol
US8879419B2 (en) * 2009-07-28 2014-11-04 Centurylink Intellectual Property Llc System and method for registering an IP telephone
EP2328355A1 (en) 2009-11-27 2011-06-01 Koninklijke KPN N.V. Automated service migration
EP2747360A1 (en) 2012-12-20 2014-06-25 Koninklijke KPN N.V. Provisioning a user device in a network subsystem
TWI521969B (en) * 2013-07-01 2016-02-11 明基電通股份有限公司 Matching method and data sharing method for network access apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105881A1 (en) * 2001-12-03 2003-06-05 Symons Julie Anna Method for detecting and preventing intrusion in a virtually-wired switching fabric
US20050180403A1 (en) * 2004-02-12 2005-08-18 Haddad Najeeb F. Automation of IP phone provisioning with self-service voice application
US20050259654A1 (en) * 2004-04-08 2005-11-24 Faulk Robert L Jr Dynamic access control lists
US7516487B1 (en) * 2003-05-21 2009-04-07 Foundry Networks, Inc. System and method for source IP anti-spoofing security
US7899929B1 (en) * 2003-06-05 2011-03-01 Juniper Networks, Inc. Systems and methods to perform hybrid switching and routing functions

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292794B1 (en) * 1998-10-22 2001-09-18 Libera, Inc. Method of integrating text retrieval to enhance software stem searching
US6400730B1 (en) * 1999-03-10 2002-06-04 Nishan Systems, Inc. Method and apparatus for transferring data between IP network devices and SCSI and fibre channel devices over an IP network
US20020162029A1 (en) 2001-04-25 2002-10-31 Allen Keith Joseph Method and system for broadband network access
ES2215870T3 (en) 2001-06-14 2004-10-16 Alcatel TERMINAL, ACCESS SERVER SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT THAT ALLOWS AT LEAST A USER CONTACT WITH AT LEAST A SERVICE SYSTEM.
EP1293790B1 (en) * 2001-09-18 2006-12-20 STMicroelectronics Limited Scan test apparatus using oversampling for synchronisation
US7274684B2 (en) * 2001-10-10 2007-09-25 Bruce Fitzgerald Young Method and system for implementing and managing a multimedia access network device
US7480724B2 (en) * 2002-09-25 2009-01-20 At&T Intellectual Property I, L.P. API tool-set for providing services through a residential communication gateway
CN100472485C (en) * 2003-04-25 2009-03-25 松下电器产业株式会社 Multi-medium information sharing system
JP3803669B2 (en) * 2003-11-07 2006-08-02 Necアクセステクニカ株式会社 Network connection system and network connection method
US7461140B2 (en) 2003-12-19 2008-12-02 Lsi Corporation Method and apparatus for identifying IPsec security policy in iSCSI
JP4176655B2 (en) * 2004-02-24 2008-11-05 株式会社エヌ・ティ・ティ・ドコモ Address dynamic allocation system, relay apparatus, and address dynamic allocation method
US7422152B2 (en) * 2004-05-13 2008-09-09 Cisco Technology, Inc. Methods and devices for providing scalable RFID networks
US7519362B2 (en) 2004-09-13 2009-04-14 Laperch Richard C Personal wireless gateway and method for implementing the same
US7505421B2 (en) * 2005-03-29 2009-03-17 Research In Motion Limited Methods and apparatus for use in establishing session initiation protocol communications for virtual private networking
US8079062B2 (en) * 2005-05-16 2011-12-13 Cisco Technology, Inc. Method and system using presence information to manage network access
US8094663B2 (en) * 2005-05-31 2012-01-10 Cisco Technology, Inc. System and method for authentication of SP ethernet aggregation networks
US8238352B2 (en) * 2005-09-02 2012-08-07 Cisco Technology, Inc. System and apparatus for rogue VoIP phone detection and managing VoIP phone mobility
US8553678B2 (en) * 2005-10-04 2013-10-08 Cisco Technology, Inc. Distributed codec for packet-based communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105881A1 (en) * 2001-12-03 2003-06-05 Symons Julie Anna Method for detecting and preventing intrusion in a virtually-wired switching fabric
US7516487B1 (en) * 2003-05-21 2009-04-07 Foundry Networks, Inc. System and method for source IP anti-spoofing security
US7899929B1 (en) * 2003-06-05 2011-03-01 Juniper Networks, Inc. Systems and methods to perform hybrid switching and routing functions
US20050180403A1 (en) * 2004-02-12 2005-08-18 Haddad Najeeb F. Automation of IP phone provisioning with self-service voice application
US20050259654A1 (en) * 2004-04-08 2005-11-24 Faulk Robert L Jr Dynamic access control lists

Also Published As

Publication number Publication date
ATE463121T1 (en) 2010-04-15
US20100085958A1 (en) 2010-04-08
US20110176548A1 (en) 2011-07-21
EP1912411B1 (en) 2010-03-31
US9769009B2 (en) 2017-09-19
EP1912411A1 (en) 2008-04-16
US7940782B2 (en) 2011-05-10
WO2008043442A2 (en) 2008-04-17
WO2008043442A3 (en) 2008-07-10
ES2342784T3 (en) 2010-07-14
DE602006013324D1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US20170272302A1 (en) Method and system for service preparation of a residential network access device
US6400707B1 (en) Real time firewall security
CA2275829C (en) Ip telephony gateway
CA2556876C (en) A method for allocating network resources
US20020010865A1 (en) Method and apparatus for remote office access management
US7274684B2 (en) Method and system for implementing and managing a multimedia access network device
US7099301B1 (en) Voice over internet protocol proxy gateway
CN1332542C (en) VoIP wireless telephone system and method utilizing wireless LAN
US20050031108A1 (en) System for discover of provisioning information by telephones in a frame switched network without a broadcast based protocol
US20020159442A1 (en) Method of indicating the origin of a mobile user in a data network
US7342920B2 (en) Voice over internet protocol (VoIP) telephone apparatus and communications systems for carrying VoIP traffic
EA004219B1 (en) Methods for fast dial-on-demand internet access with analog modems bypassing long modem negotiations
AU761977B2 (en) Security in telecommunications network gateways
US20050141492A1 (en) Subscriber station
JP2010130396A (en) Management system
US8588132B1 (en) Enhancing wireless telecommunications services on-site
ES2285242T3 (en) CARRIER CONNECTION SIGNALING IN A DISTRIBUTED ARCHITECTURE.
Cisco Voice Over IP for the Cisco AS5800 Commands
Cisco Cisco 2600 Series - Cisco IOS Release 12.2 XB
Cisco Chapter 2: Voice and Dial Networks: Design Fundamentals
Cisco Configuring ISDN BRI
Cisco Software Enhancements for the Cisco 800 Routers and SOHO Routers
Cisco Configuring the Cisco ICS 7750
Cisco Cisco MC3810 - Cisco IOS Release 12.2 XB
Cisco Cisco 3600 Series - Cisco IOS Release 12.2 XB

Legal Events

Date Code Title Description
AS Assignment

Owner name: KONINKLIJKE KPN N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VEENSTRA, PIETER KOERT;JANSSEN, GERARDUS FRANCISCUS JOHANNES WILHEMUS;HOFFMANS, JOHANNES ANGELINA;REEL/FRAME:043487/0234

Effective date: 20090417

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION