US20170241422A1 - Method and system for detection of faults in pump assembly via handheld communication device - Google Patents

Method and system for detection of faults in pump assembly via handheld communication device Download PDF

Info

Publication number
US20170241422A1
US20170241422A1 US15/519,713 US201515519713A US2017241422A1 US 20170241422 A1 US20170241422 A1 US 20170241422A1 US 201515519713 A US201515519713 A US 201515519713A US 2017241422 A1 US2017241422 A1 US 2017241422A1
Authority
US
United States
Prior art keywords
pump assembly
communication device
handheld communication
fault
sound signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/519,713
Inventor
Flemming Munk
Casper Lyngesen MOGENSEN
Jan Carøe Aarestrup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Publication of US20170241422A1 publication Critical patent/US20170241422A1/en
Assigned to GRUNDFOS HOLDING A/S reassignment GRUNDFOS HOLDING A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOGENSEN, Casper Lyngesen, MUNK, FLEMMING, Aarestrup, Jan Carøe
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0077Safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the present invention relates to a method for detecting faults or operational parameters in a pump assembly having an electric motor and a pump.
  • the invention further relates to a fault detection system for detecting faults in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft.
  • Different fault conditions may occur in pump assemblies, which are driven by electrical motors.
  • the faults may occur to the electrical motor itself, or it may occur to parts of the pump.
  • the faults may for instance be bearing faults, damage to the impellers or contamination of the pump assembly. Further, some faults, such as cavitation, occur only at certain drive conditions of the pump assembly.
  • EP 1 972 793 A1 (Grundfos) described a method for detection of errors in a pump assembly via a vibration sensor, such as an accelerometer, which is fitted to the pump assembly.
  • a vibration sensor such as an accelerometer
  • this method has the disadvantage that the sensor needs to be fitted to the housing of the pump, which in many situations is cumbersome.
  • this is obtained by a method for detecting faults in a pump assembly including an electric motor and a pump by use of a handheld communication device running an app, wherein the pump assembly or electric motor has at least one rotating shaft, the method comprising:
  • the invention provides a fault detection system for detecting faults in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft, and wherein the fault detection system further comprises:
  • the invention provides a non-transitory computer readable storage medium storing one or more programs, which when executed by a handheld communication device cause the handheld communication device to perform any of the methods of claims 1 - 11 .
  • the invention provides a method, system and a computer program, such as a software app, which sequentially can carry out dedicated measurements and analyses to detect specific fault states for the pump assembly.
  • This provides a more accurate measurement system, where individual fault states more accurately can be detected. This can for instance be achieved out by first carrying out a first dedicated measurement to detect if the pump assembly has a particular fault state and then carrying out a second measurement to detect if the pump assembly has another particular fault state. It is also possible to sequentially scan for a plurality of noise sources associated with different fault states, and where the individual noise sources are located in different frequency bands or ranges. It is also possible to sequentially run measurements through different signal processing algorithms in order to identify individual fault states. This will be elaborated upon in the following.
  • steps a)-c) or at least step b)-c) may be sequentially be repeated for detection of individual fault states.
  • the sound measurement is preferably a contactless sound measurement.
  • the sequence may also be carried out via vibration measurements from the housing of the pump assembly.
  • the preselected frequency ranges may be at least partly overlapping or they may be located in separate ranges.
  • the pump assembly or the electric motor advantageously comprises at least one rotating shaft.
  • the method is carried out by carrying out a first measurement for a first duration of time for detecting a first fault state, and then carrying out a second measurement for a second duration of time for detecting a second fault state.
  • the first measurement and the second measurement may for instance carried out at two different positions relative to the pump assembly.
  • the invention provides a method where the individual fault states are more efficiently measured by sequentially carrying out dedicated measurements for particular fault states, which may more efficiently be detected via specific measurement positions.
  • steps a)-c) may be repeated for the individual measurements and detection of fault states.
  • the method is carried out by sequentially executing scans for individual fault states.
  • the method may for instance be carried out by carrying out a first scan in a first frequency range for detecting a first fault state and then carrying out a second scan in a second frequency range for detecting a second fault state.
  • the invention provides a method where the individual fault states are more efficiently measured by sequentially carrying out dedicated scans for particular fault states, where the associated noise may be located in different frequency bands or ranges.
  • steps b)-c) may be repeated for the individual measurements and detection of fault states.
  • the first frequency range is located in a first band in the near the kHz-range, advantageously up to 1 kHz or up to 15 kHz
  • the second frequency range is located in a second band in the kHz-range, advantageously 10-20 kHz.
  • an order of fault states to be detected or scanned for is set from the software app.
  • the order may also be randomly set by the software app.
  • the fault states may for instance be identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • the method advantageously at least carries out sequential detection of water hammering and cavitation.
  • Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to pump equipment. From a pump warranty perspective, it would be desirable if the method or system would be cable of detecting and logging every water hammer incident. Any phenomenon that manipulates mechanical energy cannot switch abruptly from one energy state to the next. This means that a sound cannot switch suddenly from silence to its maximum amplitude. A finite time, however brief, is needed, during which the sound can evolve to its new state, This transitional time is called the attack transient.
  • the evolution of the amplitude of a sound can be divided into four basic parts—Attack, Delay, Sustain and Release.
  • the evolution of the amplitude of a sound represented as an idealized line that links the positive peaks of its waveform is called the envelope of the wave.
  • the water hammer sound have an envelope curve like a piano with a frequency content below 1 kHz—the valve sound has en envelope like a trumpet with a frequency content from 1 kHz to 15 kHz.
  • a signature for water hammer is a low frequency fast attack and long release sound.
  • An algorithm for water hammer detection must perform both an frequency analysis and measure the envelope shape of the sound.
  • the envelope curve can be found from the vibration or sound signal by bandpass filter the signal, absolute square the result followed by a lowpass filter.
  • a scanned frequency range may for detecting water hammering may then lie in a range up to 1 kHz (e.g. 100 Hz-1 kHz) and/or in a range from 1 khZ to 15 kHz. It is also possible to make a combined scan of the ranges.
  • Cavitation is the formation of bubbles or cavities in liquid, developed in areas of relatively low pressure around an impeller in a pump. The imploding or collapsing of these bubbles trigger intense shockwaves inside the pump, causing significant damage to the impeller and/or the pump housing.
  • the sound of cavitation is per nature a very high frequency sound, and is not overlapping with the sound of the mechanical components of the motor and pump.
  • a robust signature of cavitation can be obtained by measuring the energy of the spectrum from 10 kHz to 20 kHz. This can be performed in the time domain using a bandpass filter, and sum up the filtered signal, or in the frequency domain by performing a frequency transformation and sum up the component in the spectrum from 10 kHz to 20 Khz. The energy level will often be compared to a baseline, and when the baseline is exceeded by some levels, an cavitation alarm can be issued.
  • the handheld communication device may advantageously provide a feedback, e.g. an audial, visual or vibrational feedback, when an acceptable measurement position of the microphone has been found or when an acceptable measurement has been carried out. Thereby, the user can be prompted to know that the next measurement or scan of the sequence is ready to be carried out.
  • a feedback e.g. an audial, visual or vibrational feedback
  • the invention provides a method for detecting faults in a pump assembly including an electric motor and a pump by use of a handheld communication device, wherein the pump assembly or electric motor has at least one rotating shaft, the method comprising:
  • a handheld communication device such as a smart phone
  • a microphone By processing the sound signal, it is made possible to detect faults via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly.
  • the processing unit or software may be implemented in for instance an app that is installed on the smart phone. Alternatively or in addition thereto, the processing unit or software (or part thereof) may be implemented on an external server unit. Thus, the measured sound signal or partially processed signal may be uploaded to a server or a cloud, where the detected sound signal is processed.
  • the method provides a method where a worker or user having to service the pump assembly will be able to detect faults by use of the handheld communication device and optionally an externally coupled microphone only, which provides a particular simple fault detection system and method compared to prior art systems and methods. Further, the method has advantages over fault detection methods utilising accelerometers or vibrometers, since these are sensitive to the position on the pump assembly.
  • An app is installed on the handheld communication device for detecting and recognising the condition or fault of the pump.
  • the app acts as a front-end for the processing and analysing unit, or the processing and analysing part may be implemented in the app.
  • handheld communication device may cover a number of portable devices of a limited size and may for instance be chosen from the group consisting of: a smart phone, a tablet, a PDA, and a wearable device, such as a smart watch.
  • app or “software app” are abbreviation for application and software application.
  • An app is a piece of software and may run on the Internet, on a computer, a smart device or other electronic devices. In the present invention, the app is run on the handheld communication device.
  • the processing step of step b) comprises the sub-steps of processing the measured sound signal so as to estimate the rotational speed of the rotating shaft and optionally normalising the measured sound signals or processed sound signals.
  • the influence of the rotational speed of the shaft may be eliminated from the signal or processed signal, whereby the processed signal is independent of the rotational speed of the shaft.
  • sound emanating conditions including any possible faults may be detected independent of the current rotational speed.
  • the estimation of the rotational speed may be carried out via a spectral analysis. This may for instance be carried out by sampling and optionally down-sampling the measured sound signal after which the sampled signal is run through a Fast Fourier Transformation (FFT), and wherein the FFT signal is analysed in order to locate peaks. The peaks will correspond to the rotational speed of the shaft.
  • FFT Fast Fourier Transformation
  • the processing step of step b) comprises the step of filtering out periodic signals of the processed signal, wherein the recognition of step c) is carried out by use of the periodic signals.
  • the method comprises the step of running a pre-routine, where the rotating shaft is brought to a drive condition, where sound signals emanating from the pump assembly are detectable by the microphone.
  • a pre-routine where the rotating shaft is brought to a drive condition, where sound signals emanating from the pump assembly are detectable by the microphone.
  • Small circular pumps in homes run very silent and can be difficult for a standard handheld communication device to detect. In general, this may be carried out in a number of ways. It may for instance be carried out by letting the drive shaft be swept from a low rotational speed (or from zero) and increase the rotational speed until a sound signal can be detected.
  • the operational test condition may be driven at a higher rotational speed than the normal operating conditions in order to ensure that a sound signal can be measured and to ensure that the sound emanating from the pump assembly is within an audible range, e.g. above 20 Hz.
  • an external microphone is coupled to the handheld communication device.
  • a high-sensitive microphone which may be sufficient for measurements on small circular pumps in homes.
  • steps b) and/or c) are carried out via a processing unit, such as a DSP or micro-processor, implemented in the handheld communication device and/or a software application installed on the handheld communication device.
  • steps b) and/or c) are carried out via a processing unit implemented in an external server or a software program installed on an external server. It is also possible to carry out steps b) and c) partly by the handheld communication device and partly by the external server.
  • the app may also store the measurements on the handheld communication device and then upload the measurements later to an external server for processing and analysis. It is also contemplated that the measured sound may be continuously streamed to the external server.
  • the processing unit or software app comprises a library or database of different pump assembly types or models.
  • the sound emanating condition including any possible faults in step c) is recognised by use of said library of different pump assembly types or models.
  • the library makes it possible to link certain processed sound spectrums to particular fault types of a particular pump assembly type or model. Thereby, a more accurate fault detection method may be obtained.
  • the pump assembly type or model may advantageously be input into the handheld communication device. This may simply be carried out by typing or finding the pump assembly type or model into the app, or by choosing a picture from the app corresponding to the particular pump assembly type or model. Thereby, the installed app may be instructed in linking the processed sound spectrum to the particular pump assembly type or model. Alternatively, the user can take a photograph of the nameplate on the pump assembly, and detection software in the handheld communication device may then identify the type or model. It is also possible to utilise QR codes or similar.
  • the app on the handheld communication device prompts an external server for information about the inputted pump assembly type or model. This may for instance be initiated, if the inputted pump assembly type or model is not present in the library installed on the handheld communication device. In this case, the app may prompt the external server for information about the new pump assembly type or model and download this information to the smart phone or other type handheld communication device. It may also be initiated as a general step, if the processing and analysing is carried out in the external server.
  • the library may further comprise information about how to rectify an identified fault for a particular pump assembly type or model.
  • the library may for instance comprise a guide advising the service worker on the different steps to be carried out in order to rectify the fault.
  • the guide may be installed in the app on the handheld communication device, or the guide may be uploaded or accessed from an external server, once the pump assembly type or model and fault have been detected.
  • the library may further comprise information about how to align the microphone in relation to the pump assembly. Thereby, the service worker may be instructed in how to best obtain and measure the sound signals needed for identifying a particular condition or fault of the pump assembly.
  • the library is further adapted to accumulate sound measurements or processed sound measurements from different pump assemblies.
  • the system may better learn to identify different types of faults and optionally dependent on the particular pump assembly type or model.
  • the learning process can for instance be carried out via the use of a neural network.
  • the sound measurements may for instance be linked to a certain types of identified faults, which may also encompass fault types, which have not previously been encountered. This can also facilitate the learning process.
  • step a) comprises a plurality of measurements with the microphone arranged at different locations relative to the pump assembly.
  • steps a) and b), or steps a), b), and c) may be repeated with the microphone arranged at different locations relative to the pump assembly.
  • Different types of operating conditions may more easily be measured at different microphone positions. Sound emitted due to the rotational speed of the shaft may for instance for certain types of pumps more easily be measured at an end portion of the pump, whereas faults, such as a damaged bearing, may better be measured from a side portion or cylindrical portion of the pump.
  • the handheld communication device provides a feedback, e.g. an audial, visual or vibrational feedback, when an acceptable measurement position of the microphone has been found.
  • the acceptable condition may for instance be determined by a minimum threshold value for the measured sound signals.
  • the processing in step b) may preferably be carried out via a method chosen from the group of: RMS level detection, spectral analysis, envelope analysis, and Cepstral analysis.
  • the processing may also be carried out by a combination of said analysis methods, whereby the significance of the analysis may be increased.
  • the at least one rotating shaft is swept from a first rotational speed to a second rotational speed over a pre-set time period, and wherein the method a spectrogram is measured and processed.
  • the processed signal is analysed in order to compare operational conditions in a diagram plotted with two variables, e.g. the rotational speed and the sound frequency.
  • two variables e.g. the rotational speed and the sound frequency.
  • This provides a method with even higher significance as the conditions are analysed over a greater range than just one rotational speed.
  • the spectral contributions that increase proportional with the shaft frequency are related to the bearing and will thus give a clear indication of bearing faults. Further, some parts of the spectrum are independent of the shaft frequency and will thus give an indication across the spectrum and may be related to the resonance structure of the motor.
  • contactless measurements are performed at a first operation point.
  • the pump assembly is then moved in its operational state to a second discrete point, e.g. by increasing the rotational speed of the shaft, and measurements are then performed in this working point.
  • the measurements of the two operational points are then compared by the handheld communication device, and the optimum operational point is then selected by the app in the device.
  • An instruction is then given by the device to the pump assembly that the pump assembly must run in the optimum operational point from now on.
  • diagnostics are performed in two or more separate points of operation, and the pump assembly is transferred from a sub-optimum working point with e.g.
  • Movement from one working point to another can be based on a measurement of a single parameter in each of the two working points, e.g. measuring flow noise in the pipes, or can be based on measurement of a plurality of parameters. Accordingly, the measurements may be carried out at a plurality of different discrete rotational speeds of the at least one rotating shaft e.g. to find optimum measurement conditions.
  • fault states are logged during the sweep in order to identify rotational speed regions, where the pump assembly is faulty.
  • This may for instance be regions, where the fault states are particular pronounced, e.g. where resonance effects enhance the faults. It may for instance be cavitation states, which occur for particular shaft speeds.
  • the fault states may for instance be logged if a measured significance level is about a set threshold level.
  • the pump assembly is subsequently instructed to avoid driving the pump assembly at rotational speed regions, where the pump assembly is faulty or the states, where faults are particularly pronounced.
  • the lifetime of the pump assembly may be extended by ensuring that the pump assembly is not driven at rotational speeds, where the pump assembly may be further damaged. This is particular relevant for cavitation, which may occur only at particular drive conditions.
  • the instructions may be sent wirelessly from the handheld communication device, e.g. by Bluetooth or infrared.
  • the pump assembly may receive the instructions via an external server.
  • the fault states may for instance be identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • the invention also provides a fault detection system for detecting faults or operational parameters in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft, and wherein the fault detection system further comprises:
  • This provides a particular simple system, where a service worker only needs to bring a handheld communication device, such as a smart phone, and possibly an externally connected microphone for identifying faults in a pump assembly.
  • the system allows sound signals to be measured by use of an internal or external microphone. Further, by processing the sound signal, it is made possible to detect faults via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly, which otherwise could influence the measurements.
  • the microphone is implemented in the handheld communication device.
  • the handheld communication device may for instance be a smart phone, and the microphone is the internal microphone of the smart phone.
  • the microphone is externally coupled to the handheld communication device.
  • the recognition module may advantageously be implemented on the handheld communication device.
  • the system further comprises an external server.
  • the recognition module may be implemented on the external server.
  • part of the processing unit may also be implemented on the external server, e.g. as a signal processor or a software application.
  • the system may further comprise a filter module adapted for processing the detected sound signal so as to eliminate an influence of a current rotational speed of the shaft and filtering out periodic signals of the processed signal.
  • This filter module may be implemented in the handheld communication device or the external server.
  • the processing unit and/or filter module may comprise an analysis module chosen from the group of: an RMS level detection module, a spectral analysis module, an envelope analysis module, and a Cepstral analysis module.
  • the recognition module may advantageously comprise fuzzy logic and/or a neural network.
  • the system comprises a library module, in which characteristic patterns are stored for certain operating conditions, and wherein the recognizing module is designed for recognition of an operating condition by way of the stored pattern.
  • the patterns may be based on any of the previous analysis methods and modules, i.e. RMS level patterns, spectral patterns, envelope patterns, or Cepstral patterns.
  • the microphone may be a directional microphone, e.g. having a directional profile, where the microphone is particular sensitive to certain directions and possibly suppressing sound from certain directions.
  • the recognition module may advantageously also be adapted to estimate the rotational speed of the at least on rotating shaft. Thereby, the system is able to normalize the measured sound spectrum to the rotational speed of the shaft, whereby the spectrum can be compared across broad drive conditions.
  • the embodiments are more generic in nature. Thus, most of the embodiments may also be carried out by use of other types of sensors. Accordingly, the embodiments relating to the various algorithms and use of an external sensor may also be carried out via for instance a handheld communication device and a secondary sensor, such as an accelerometer. This may further be used as verification of measurements based on sound.
  • FIG. 1 shows an embodiment of a fault detection system according to the invention
  • FIG. 2 shows an embodiment of the fault detection system with a first type of pump assembly
  • FIG. 3 shows an embodiment of the fault detection system with a second type of pump assembly
  • FIG. 4 illustrates components of a handheld communication device part of the fault detection system, and components and sound sources of a pump assembly
  • FIG. 5 shows a handheld communication device with a Graphical User Interface
  • FIG. 6 illustrates steps involved in estimating the rotational speed of a shaft in a pump assembly by use of measured sound signals
  • FIG. 7 illustrates the steps in a condition monitoring system
  • FIG. 8 illustrates a fault in a bearing of a pump assembly and the associated sounds emitted due said fault
  • FIG. 9 shows a bearing in perspective
  • FIG. 10 illustrates the steps in an envelope analysis method
  • FIG. 11 illustrates diagrams obtained from spectral analyses and Cepstral analyses
  • FIG. 12 illustrates a normalisation pre-process for use in Cepstral analysis
  • FIG. 13 illustrates the steps in a method of detecting a fault in a pump assembly
  • FIG. 14 illustrates the steps in a method of sequentially detecting individual fault states in a pump assembly.
  • FIG. 1 shows a fault detection system 10 according to the invention for detecting faults in a pump assembly 20 , which comprises a pump and an electrical motor (not shown).
  • the pump assembly 20 is installed in a pipe system with pipes 15 , 16 .
  • the system comprises a handheld communication device 30 , e.g. in form of a smart phone as illustrated or a tablet computer or the like.
  • the handheld communication device 30 comprises an externally coupled microphone 32 , which may be used for contactless measuring sound signals emanating from the pump assembly 20 .
  • the system further comprises an external server 40 or cloud.
  • the pump assembly 20 is a circular pump typically used for circulating water in heating systems.
  • the pump assembly 20 is of a type as shown in FIG. 2 , where the pump and electrical motor are implemented into a common housing 21 .
  • the pump assembly 20 ′ is of a type, wherein the pump and the electrical motor are separated into a pump housing 22 ′ and an electrical motor housing 24 ′ respectively.
  • the pump assembly 20 ′ has distinct and separated sources of acoustical noise. Noises from ball bearings, stator, rotor and other parts will come from housing 24 ′, and electrical noise will emanate from the terminal box 25 ′, which incorporates control electronics for the pump assembly. Noise from the fluid in the pipes, i.e. flow noise, emanates from the pump housing 22 ′ or from the pipes (not shown) connected to the pump housing. Noise from cavitation, from the impeller of the pump or from water hammer will also emanate from this area of the pump assembly.
  • the handheld communication device 30 may comprises a processing unit, such as a microcomputer or a digital sound processor and/or a software application installed on the handheld communication device 30 for processing a sound signal measured via the microphone 32 .
  • the measured sound signals or the processed sound signals may be compared to known sound emanating conditions, which are indicative of a fault in the pump assembly by use of a recognition module.
  • the microphone 32 has been depicted as an externally coupled microphone.
  • the invention also contemplates using an internal microphone.
  • the external microphone may for instance be necessary, if the internal microphone of the handheld communication device 30 has particular restrictions on the measurable audio bandwidth or directional restraints.
  • FIG. 4 shows one embodiment of a handheld device 130 and a pump assembly 120 for use in the fault detection system 110 according to the invention.
  • the handheld communication device 130 comprises a microcomputer 131 for assisting and interpreting data.
  • the fault detection system may comprise a dedicated system, e.g. a microcomputer or digital signal processor particularly designed for detecting fault conditions, but in a preferred embodiment, the fault detection system comprises a dedicated software application, which is installed on the handheld communication device 130 .
  • the handheld communication device 130 comprises a microphone 132 for contactless measuring sounds (illustrated with waves between the handheld communication device and pump assembly) emanating from the pump assembly 120 and which may be indicative of a particular fault condition of the pump assembly 120 .
  • the handheld communication device 130 further comprises a display 133 for providing a visual feedback to a service worker using the handheld communication device 130 .
  • the handheld communication device 130 additionally comprises an input module 134 , whereby the service worker may input information into the handheld communication device 130 or the software application installed on the communication device 130 .
  • the input module 134 may be part of the display via for instance a touch display, which is now part of most smart phones and tablet computers. However, in principle the input module may also be a keypad of the communication device 130 .
  • the handheld communication device 130 further comprises a communication module 135 which allows the handheld communication device 135 to communicate with the pump assembly 120 and/or the external server.
  • the communication device may comprise a number of different communication types, such as but not limited to GSM, CDMA, 3G, 4G, infrared, and Bluetooth®.
  • the handheld communication device 130 may further comprise a library 136 stored in the software application.
  • the library may comprise a database over known pump assembly types and models, known faults and related sound emanating conditions, e.g. linked to the particular pump assembly type or model, instruction guides on how to obtain measurements from the particular pump assembly type or model, and instruction guides on how to rectify an identified fault.
  • the handheld communication device 130 may further comprise a number of other sensors, such as for instance an accelerometer 137 .
  • the sensors are advantageously integrated in the handheld communication device 130 , however; as with the microphone, it is also possible to use externally coupled sensors.
  • the additional sensors may for instance be used to obtain a secondary verification of the sound measurement.
  • the internal accelerometer 137 may for instance be used for a secondary measurement, where the handheld communication device 130 physically contacts the housing of the pump assembly 120 so as to obtain vibration measurements.
  • the pump assembly 120 comprises a number of different features, which may lead to faults and noise sources.
  • the pump assembly 120 comprises a motor and rotor 123 for driving the pump, and which may be the source of emitted sounds and faults.
  • the pump assembly 120 may comprise bearings 126 , which along with mechanical seals, are often the source of occurring faults in pump assemblies.
  • the pump may further comprise an impeller 125 with impeller blades or vanes that cause the movement of fluid in the pump.
  • the pump assembly 120 further comprises electronic parts 129 for controlling the pump assembly 120 and acting as an interface between a service worker or external server and the pump assembly 120 .
  • noise from water in the pipe 127 may be the source of sounds emitted from or near the pump assembly and may vary from turbulent or laminar flows.
  • the pump assembly 120 may be prone to cavitation 128 at certain drive conditions.
  • Cavitation is the formation of vapour cavities in a liquid, such as small air bubbles or voids in water, which are caused by forcing acting upon the liquid. Cavitation usually occurs when a fluid is subjected to rapid pressure change that cause the formation of cavities, when the pressure is relatively low. When subjected to a relative high 5 pressure, the voids implode and can generate intense shockwaves, which may cause wear to for instance the impeller 125 of the pump assembly 120 .
  • Noise from cavitation typically appears as small “pops” e.g. in the kHz-band, e.g. 10 kHz-20 kHz. Additionally, water hammering 124 may occur.
  • Each noise source has its specific frequency range.
  • Noise from the impeller in the pump typically is the same as the rotational speed of the shaft, i.e. around 3000 RPM.
  • the blades on the impeller also generate noise, the blade frequency being a multiple of the rotational speed.
  • Flow noise i.e. noise stemming from the liquid flowing in the pipes, is typically white noise, also called 1/f noise, and is in the range of 1 Hz to 25 kHz.
  • the electronics of the pump assembly often generates a broadband noise spectrum due to the use of switching electronics. A typical range is 50 kHz to 200 kHz. Cavitation noise is as mentioned in the range of 10 kHz to 20 kHz.
  • the system provides a particularly simple fault detection system 10 , 110 , where a service worker only needs to bring a handheld communication device 30 , 130 , such as a smart phone, and possibly an externally connected microphone for identifying faults in a pump assembly 20 , 120 .
  • the system allows sound signals to be measured by use of an internal or external microphone. Further, by processing the sound signal, it is made possible to detect faults and/or identify fault causes via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly, which otherwise could influence the measurements, and which are sensitive to the position on the pump assembly.
  • the analysis tool may be implemented in a processing unit or software application that is installed on the handheld communication device.
  • the processing unit or software may be implemented on an external server unit.
  • the measured sound signal or partially processed signal may be uploaded to a server or a cloud, where the detected sound signal is processed.
  • the system may be configured to identify a number of different fault states, e.g. identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • the software application installed on e.g. a mobile phone 30 having a display 34 may be provided with a Graphical User Interface (GUI) as for instance shown in FIG. 5 , which may show the status of the afore-mentioned fault states.
  • GUI Graphical User Interface
  • the system may be adapted to detect the rotational speed of the shaft of the pump assembly and may display this on the GUI as well.
  • the GUI may show the measured sound frequency spectrum.
  • the measured sound signals may be normalised in accordance with the detected rotational speed, whereby it is made easier to compare the fault spectrum to know sound emanating conditions.
  • the physical speed of the shaft can be measured by using a tachometer.
  • the principle is to beam a laser to a reflecting tape on the shaft, and thereby counting the number of reflections during a time interval.
  • this will require that a reflecting tape to be mounted on every shaft, and often it will not be practical or even possible to get into contact with a rotating shaft.
  • This is also not aligned with the principle behind the present invention, which is intended to provide a simple tool for the service worker and preferably a non-invasive and contactless method of detecting the rotational speed and a possible fault.
  • the fault detection system comprises an algorithm for estimating the rotational speed of the shaft based on sound signals measured with the system according to the invention.
  • the outline of the algorithm is illustrated in FIG. 6 .
  • the sound signal is measured (in step 210 ) via the microphone of the handheld communication device and is converted to a digital sample signal (in step 220 ), which provides an array of samples having a number of samples produced at a given sampling frequency, which is set by the handheld communication device.
  • a digital sample signal in step 220
  • the frequency band that will contain a signal component related to the RPM will typically be in the range of 10 to 60 Hz.
  • the signal is down-sampled to for instance 128 Hz (in step 240 ) and keeping the frequency above the Nyquist rate.
  • the down-sampling provides a limited number of samples.
  • the samples are collected into a circular buffer with a size of for instance 512 samples (in step 250 ).
  • the length of the signal vector must be increased. However, increasing the signal vector will slow down the estimator.
  • Another solution will be to keep the frequency resolution, but interpolate the number of points in the spectra using zero padding (step 260 ).
  • the new signal vector will contain a windowed version of the buffer vector—zero padded to for instance 8192 points—which provides a resolution of approximately 1 rpm.
  • the interpolated signal is Fourier transformed (in step 270 ) and the resulting Fourier spectrum will show a clear peak corresponding to the RPM.
  • the RPM may (in step 290 ) be found by finding a maximum or peak of the Fourier spectrum (in step 280 ).
  • the vibration or sound spectrum from a running motor will always produce a small signal component corresponding to the rotation frequency because no rotor can be made without a small imbalance. However, other signal components can be generated from other parts of the motor, pump or fluid.
  • a small search window may be introduced. The position of the search window will be controlled from known motor parameters, or if the operator has some knowledge about the expected RPM. The size of the window may for instance be fixed to a width of 200 rpm and the height of the window is set to 1.
  • the algorithm for detecting the RPM is generic in nature and not only restricted to sound measurements via a handheld communication device.
  • the estimation may for instance also be based on vibration measurements as for instance described in EP1972793.
  • the invention also provides a method of estimating the rotational speed of a shaft of a pump assembly, where a vibration or sound is measured and sampled, resampled, down-sampled, buffered, zero-padded, Fourier transformed, and peak detected.
  • CM Condition Monitoring
  • the objectives is to develop a CM system to detect bearing faults based on measured sound signals 310 via a handheld communication device.
  • a typical detector for a CM system could be constructed by the two elements shown in FIG. 7 , viz. a feature extraction 320 and a classification 330 of the fault.
  • Feature extraction is the process of generating a set of descriptors or characteristic attributes from the sound measurements.
  • the Classification is the process of interpreting and comparing the feature against a set of pre-analyzed features with known causes, in order to estimate a proper diagnosis. This division is advantageous, as it underline the fact, that the best classification algorithm based on a large neural network will make a wrong diagnosis, if the feature extraction algorithm is poorly made.
  • a bearing 426 as shown in FIGS. 8 and 9 is a high precision mechanical construction with two raceways and a finite number of balls 440 .
  • the corresponding emitted sound signal obtained with a microphone will be a low power white noise-like signal.
  • a transient response will be measured by the microphone every time a ball 440 hits this defect 450 . This will make the corresponding sound signal 470 significant with a periodic structure 480 reflecting the time interval between each impact.
  • the signal analysis of sound signal data has currently resulted in four different approaches to determine the level of damages, viz. RMS level detection, spectral analysis, envelope analysis, and Cepstral analysis.
  • the RMS level detection provides a particular simple method of determining a fault stage based on signal levels.
  • this method has the disadvantage that it is “frequency blind” and can thus not distinguish between different noise sources. Further, the method cannot distinguish between for instance the basis signal and the first harmonic. Thus, it is difficult to provide a robust system and method based on RMS level detection, since the method is not very selective.
  • Spectral analysis of a vibration signal makes it possible to differentiate between signal components with different frequencies, as they often relates to different sources of vibration.
  • the analysis is often performed using the Power Spectrum of the signal, which calculate how the signal energy is distributed in the frequency domain
  • the measured frequency will depends on the number of balls of the bearing, the shaft frequency f shaft , the ball diameter, the retainer diameter and the ball contact angle.
  • faults to the outer ring 460 , the inner ring 455 , the retainer 465 or the ball 440 may for instance be 3.06, 4.93, 0.38, and 2.03 times the shaft frequency f shaft . This means that the faults will be located in different parts of the sound frequency spectrum and may thus be used to identify the type of fault.
  • the library of the fault detection system may comprise a database of expected spectrums based on bearing types of known pump assembly models.
  • the sound signal can be interpreted as the result of an Amplitude Modulation (AM) of a carrier in accordance with a modulating wave.
  • AM Amplitude Modulation
  • the modulated wave/baseband signal will be the impact impulse train, and the carrier will be the ringing/characteristic sound of the bearing and corresponding motor construction.
  • the demodulation can be accomplished by using a simple, yet highly effective device known as the envelope detector.
  • an envelope detector produces an output signal that follows the envelope of the input signal waveform exactly.
  • the analog version consists of a diode and a resistor-capacitor filter to down mixing and lowpass filtering the signal, but a digital version can be obtained using similar operations.
  • a property of the wideband Fourier Spectrogram is a high time resolution, as the underlying short-time Fourier transform (STFT) utilize a very short window length.
  • STFT short-time Fourier transform
  • the sliding window will alternately pass through high energy and low energy signal areas as a function of time.
  • the corresponding spectra will also be alternately high and low energy spectra, and the corresponding Fourier Spectrogram will be dominated by vertical stripes (the 1/T line spectrum).
  • the wideband Fourier Spectrogram of a vibration signal from a bearing with an outer fault will reveal the envelope curve (impact pulse train) in a certain frequency band.
  • the envelope curve can be extracted by calculating the time marginal of the spectrogram and may as illustrated in FIG. 10 be carried out without calculation of the spectrogram by bandpass filtering the signal (step 510 ), absolute square the result (step 520 ) followed by a low-pass filter (step 530 ).
  • the envelope analysis is then obtained when a frequency analysis is performed on the envelope curve from the detector by a Fourier transformation (step 540 ) and absolute squaring the result (Step 550 ).
  • the envelope analysis approach has the advantage that calculation complexity is simple as it can be done using two filtering operations followed by an FFT.
  • the method has the disadvantage in limitation of the selection of the specifications for the bandpass filter.
  • the carrier frequency is not related to the bearing, but depends on the motor construction and placement. It might also change depending on the shaft frequency. This will demand individual setup for each application and may thus be complex.
  • a common sign of all bearing faults are the presence of a periodic structure of the measured sound signal.
  • a property of the Narrowband Fourier Spectrogram is a high frequency resolution, as the underlying STFT utilize a long window length. In the case of a periodic signal, the window will catch several periods of the signal, and the corresponding spectrum will be discrete, thus showing a line spectrum.
  • the Fourier representation of a periodic signal will be a pulse train with equidistant contributions. In the Fourier Spectrogram, this pulse train will show up as horizontal stripes as seen in FIG. 11 a . A measure of the impact rate will be the distance between any two stripes. But instead of selecting a pair of frequencies (this would introduce a limitation), an overall estimate of the rate can be obtained by performing a frequency transformation of all the stripes, i.e. a frequency analysis of a frequency representation. This approach is called a Cepstral analysis and the result is illustrated in the Cepstrum shown in FIG. 11 b . The Cepstrum is generally found by taking the Inverse Fourier Transformation of the logarithm of the estimated spectrum of the measured sound signal.
  • the Cepstral representation not only illustrate the expected contribution for the aforementioned fundamental frequency 610 , but also indicate periodic structures with other impact rates 620 , 630 , 640 . This gives a more descriptive signature of a bearing fault.
  • the sound signal used in FIG. 11 has been recorded on a motor with a defect bearing (outer raceway).
  • the shaft speed is swept from 10 Hz to 50 Hz (500 to 2,500 rpm) during 60 seconds. It is very interesting to inspect the corresponding spectrogram in FIG. 11 c . It illustrate that some part of the spectrum are independent of the shaft frequency, as they are placed as horizontal contributions.
  • each column of the spectrogram is high pass filtered and Fourier transformed.
  • the Cepstral representation shows how the impact rate change as a function of time. Often there are more than one impact rates as the vibration signal contain multiple vibration sources. Their position (rate) makes it possible to distinct between different sources.
  • the Cepstral representation is based on a frequency analysis of the frequency representation, it measures the frequency content through the complete domain. If some passages of the spectra are attenuated/amplified as result of resonance in the construction, the level of the corresponding Cepstral will only experience a minor change and no peaks will disappear. This property underline the fact, that the Cepstral domain is a measure of periodicity not frequency.
  • the location of the peaks in the Cepstral domain are depending on the shaft RPM (as illustrated in FIG. 11 d ), and in order to interpreted the Cepstral representation in connection with bearing fault detection, the RPM must be provided in parallel with the Cepstral. This will complicate the task of diagnosing/classification the Cepstral coefficients unnecessary.
  • the location of peaks in a feature for a particular bearing fault must be fixed for variable RPM.
  • This scaling of the Cepstral domain relative to the RPM can in general be obtained in three ways: preprocessing of the vibration data before the Cepstral analysis, scaling one of the frequency axis in the Cepstral calculation or post processing of the Cepstral data. In a preferred embodiment, it has been selected to preprocess the vibration data by resampling in accordance with the detected rotational speed of the shaft, see also previous explanation.
  • the elements of the normalization algorithm is illustrated in FIG. 12 .
  • the measured sound signal is run through a pre-processing step 700 , where the measured signal is normalized in relation to the shaft frequency f shaft .
  • the purpose of the preprocessing is to scale the frequency axis of the sound signal.
  • the signal In order to avoid aliasing, the signal must be properly lowpass filtered (in step 710 ), before down-sampling. This filtering may be performed by a 20th order Butterworth filter.
  • the classical approach to resampling is to filtering the time discrete signal using an non-causal sinc function as impulse response function (step 720 ), after which the pre-processed signal may be sent through the Cepstral analysis (in step 730 ).
  • the RPM can in the case of a synchronous motor be obtained from the frequency converter, but in the case of an asynchronous motor, the RPM has to be measured separately or determined in accordance with the previously explained algorithm from the sound signal.
  • the resulting Cepstrum may be compared to Cepstrums of known operating conditions including fault conditions in order to identify a particular fault. This may for instance be carried out by pattern recognition.
  • the fault detection system has now been described for four different analysis methods. However, it is recognized that the fault detection may also use a combination of the various analysis methods and that particular fault types may better be detected with one of said methods.
  • Cavitation may for instance be detected via sounds in the kHz band, e.g. between 10 kHz and 20 kHz.
  • the method for detecting faults in a pump assembly may for instance be carried out in accordance with the steps illustrated in FIG. 13 .
  • a first step 810 the pump assembly model is input into a software app on the handheld communication device.
  • the pump assembly is optionally run through a pre-routine 820 , where the rotational speed of the shaft is increased or set to a speed, where sounds emanating from the pump assembly may be detected via the microphone of the handheld communication device.
  • a third step 830 sounds emanating from the pump assembly are contactless measured via the microphone of the handheld communication device.
  • the software app may for instance provide the user with a guide on the display showing at which positions the microphone and/or the handheld communication device should be arranged so as to obtain the sound measurements.
  • This step may for instance be carried out by simultaneously carrying out a sweep of the rotational speed of the shaft, such that sound measurements are carried out for an interval of shaft speeds.
  • Positioning of the handheld device, and measurement with the device is done in two distinct steps.
  • the step of positioning may take between 10 seconds and 1 minute, and measurement may take from 5 seconds to 1 minute depending on the number of parameters to be measured.
  • the distance from the device to the pump assembly is from around 1 meter to a few centimetres, typically in the range from 5 cm to 30 cm from the pump assembly.
  • the app When positioning the handheld communication device or microphone, the app will advantageously show in the app on the screen of the device if the signal(s) received from the pump aggregate is adequate and sufficient in amplitude and quality in order to perform a measurement.
  • the user will move the device closer to the pump assembly, or away from the pump assembly, or move the device to the sides, above, or below the pump assembly. While doing this, the device and the app will detect the signal, and once an optimum position is reached, the device may give an acoustic signal, vibrate or give a visual indication in the display of the device. In this way, the handheld communication device has given signal feedback to the user.
  • This signal and device positioning procedure can be made for one single parameter, e.g.
  • the handheld communication device measures for a first duration of time, e.g. the flow noise in the area of 1 Hz to 25 kHz, and then switches or a second duration of time to e.g. measuring noise generated by the electronics in the range 50 kHz to 200 kHz.
  • a first duration of time e.g. the flow noise in the area of 1 Hz to 25 kHz
  • switches or a second duration of time e.g. measuring noise generated by the electronics in the range 50 kHz to 200 kHz.
  • the handheld device or more precisely the app of the handheld communication device sequentially executes scans of one or more of the noise sources 120 shown in FIG. 4 .
  • the order can be set by the app or be random.
  • the method can also detect dry running of the pump, i.e. the case where the rotor and impeller rotates, but where no liquid is in the pipe. This situation is detrimental to the bearings.
  • a statement as to “Dry run: Yes” or “Dry run: No” can be made and shown on the display of the handheld device as shown in FIG. 5 .
  • the system may also as later explained learn to recognise a dry run state, e.g. via a neural network or a database linking a dry run state with associated sound signal patterns or spectrums and possibly the pump type or model.
  • the method can likewise also detect unbalance in the pump assembly.
  • the unbalance may for instance be caused from the rotor or the impeller blades.
  • the unbalance may also occur, if the impeller blades are damaged, e.g. from erosion or cavitation.
  • the system may also as later explained learn to recognise a unbalance state, e.g. via a neural network or a database linking a unbalance state with associated sound signal patterns or spectrums and possibly the pump type or model.
  • the method can further detect water hammering (or hydraulic shock), which is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe.
  • Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to pump equipment. From a pump warranty perspective, it would be desirable if the method or system would be cable of detecting and logging every water hammer incident. Any phenomenon that manipulates mechanical energy cannot switch abruptly from one energy state to the next. This means that a sound cannot switch suddenly from silence to its maximum amplitude. A finite time, however brief, is needed, during which the sound can evolve to its new state, This transitional time is called the attack transient.
  • the evolution of the amplitude of a sound can be divided into four basic parts—Attack, Delay, Sustain and Release.
  • the evolution of the amplitude of a sound represented as an idealized line that links the positive peaks of its waveform is called the envelope of the wave.
  • the water hammer sound have an envelope curve like a piano with a frequency content below 1 kHz—the valve sound has en envelope like a trumpet with a frequency content from 1 kHz to 15 kHz.
  • a signature for water hammer is a low frequency fast attack and long release sound.
  • An algorithm for water hammer detection must perform both an frequency analysis and measure the envelope shape of the sound.
  • the envelope curve can be found from the vibration or sound signal by bandpass filter the signal, absolute square the result followed by a lowpass filter.
  • the method can detect cavitation, which is the formation of bubbles or cavities in liquid, developed in areas of relatively low pressure around an impeller in a pump.
  • cavitation is the formation of bubbles or cavities in liquid, developed in areas of relatively low pressure around an impeller in a pump.
  • the imploding or collapsing of these bubbles trigger intense shockwaves inside the pump, causing significant damage to the impeller and/or the pump housing.
  • the sound of cavitation is per nature a very high frequency sound, and is not overlapping with the sound of the mechanical components of the motor and pump.
  • a robust signature of cavitation can be obtained by measuring the energy of the spectrum from 10 kHz to 20 kHz. This can be performed in the time domain using a bandpass filter, and sum up the filtered signal, or in the frequency domain by performing a frequency transformation and sum up the component in the spectrum from 10 kHz to 20 Khz. The energy level will often be compared to a baseline, and when the baseline is exceeded by some levels, an cavitation
  • a fourth step 840 the measured sound signals are processed according to the previous routine, i.e. run through an algorithm to estimate the rotational speed of the shaft and further analysed in accordance with one or more of the previously described analysis methods.
  • the analysis may be carried out on the handheld communication device, on an external server or a combination thereof.
  • a fifth step 850 the processed signals are compared to stored sound emanating conditions in order to identify the operational condition of the pump assembly and to identify any possible faults.
  • the results of the analysis are displayed on the GUI to the service worker in a sixth step 860 .
  • the pump may be instructed in step 870 to not drive the pump assembly in rotational speed regions, where the pump assembly is faulty. This may prolong the time before parts need to be replaced and the lifetime of the pump assembly.
  • the pump assembly may be instructed directly via the handheld communication device or via the external server.
  • the software app may instruct the service worker to replace the pump assembly or a part of the pump assembly in step 880 .
  • the software app may provide a guide on the GUI, which instructs the service worker on how to replace the identified damaged part.
  • the sound signals measured in step 830 and/or the processed signals 840 may be uploaded to an external server and stored in a library or server. Thereby, it is possible to provide a library of known sound measurements or processed spectrums, whereby the system may better learn to identify different types of faults and optionally dependent on the particular pump assembly type or model.
  • the learning process can for instance be carried out via the use of a neural network.
  • the sound measurements may for instance be linked to a certain types of identified faults, which may also encompass fault types, which have not previously been encountered. This can also facilitate the learning process. Thereby, the fault detection system will continuously be better at identifying fault conditions.
  • the fault detection system will sequentially carry out measurements or individual scans to identify individual fault states of the pump assembly, e.g. from the aforementioned fault states. This is illustrated in FIG. 14 .
  • the system In a first step 910 , the system probes for a first fault state and in a following second step 920 , the system probes for a second fault state.
  • the system sequentially carries out dedicated measurements and analyses to detect specific fault states for the pump assembly.
  • This provides a more accurate measurement system, where individual fault states more accurately can be detected.
  • This can for instance be carried out by first carrying out a first dedicated measurement to detect if the pump assembly has a particular fault state and then carrying out a second measurement to detect if the pump assembly as another particular fault state.
  • the system advantageously at least probes for at least water hammering faults and cavitation faults in two consecutive measurements or scans.
  • the associated noise from these faults are as previously described located in different frequency bands and may also require different signal processing steps in order to detect the faults.
  • the system probes for faults in a first predetermined frequency range, which is located in a first band near the kHz-range, and in a second predetermined frequency range, which is located in a second band in the kHz-range. These ranges are particularly suited for detection of water hammering and cavitation faults.
  • Each of the probe steps may be run through separate dedicated signal processing algorithms associated with the particular fault state.
  • the fault detection system may as illustrated in FIG. 14 also carry out a third step 930 , wherein the system probes for a third fault state.
  • the system may of course also carry out additional steps for probing for additional fault steps.
  • Each of the probing steps 910 - 930 may comprise a number of the steps 810 - 880 from the individual fault detection methods as shown in FIG. 13 , in particular steps 830 - 860 .

Abstract

A method for detecting faults or operational parameters in a pump assembly by use of a handheld communication device is described. The pump assembly includes an electric motor and a pump, wherein the pump assembly or electric motor has at least one rotating shaft The method comprises the steps of: a) measuring a sound signal emanating from the pump assembly by use of a microphone connected to or implemented in the handheld communication device, b) processing the measured sound signal, and c) recognising one or more sound emanating condition including any possible faults by way of the processed sound signal. The app automatically repeats at least steps b) and c) for a plurality of preselected frequency ranges in order to detect different fault states.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method for detecting faults or operational parameters in a pump assembly having an electric motor and a pump. The invention further relates to a fault detection system for detecting faults in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft.
  • BACKGROUND OF THE INVENTION
  • Different fault conditions may occur in pump assemblies, which are driven by electrical motors. The faults may occur to the electrical motor itself, or it may occur to parts of the pump. The faults may for instance be bearing faults, damage to the impellers or contamination of the pump assembly. Further, some faults, such as cavitation, occur only at certain drive conditions of the pump assembly.
  • It is desirable to be able to detect such faults as early as possible in order to be able to replace the damaged parts or the entire pump assembly before a complete failure of the pump assembly occurs.
  • EP 1 972 793 A1 (Grundfos) described a method for detection of errors in a pump assembly via a vibration sensor, such as an accelerometer, which is fitted to the pump assembly. However, this method has the disadvantage that the sensor needs to be fitted to the housing of the pump, which in many situations is cumbersome.
  • Further, there is a need for a method and system, whereby a service worker or user more easily can identify faults in a pump assembly without the need to carry bulky equipment when servicing the pump assembly
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to obtain a new method and system, which overcome or ameliorates at least one of the disadvantages of the prior art or which provide a useful alternative.
  • According to a first aspect of the invention, this is obtained by a method for detecting faults in a pump assembly including an electric motor and a pump by use of a handheld communication device running an app, wherein the pump assembly or electric motor has at least one rotating shaft, the method comprising:
      • a) measuring a sound signal emanating from the pump assembly by use of a microphone connected to or implemented in the handheld communication device,
      • b) processing the measured sound signal, and
      • c) recognising one emanating condition including a possible fault state by way of the processed sound signal, wherein
      • the app automatically repeats at least steps b) and c) for a plurality of preselected frequency ranges in order to detect different fault states.
  • According to a second aspect, the invention provides a fault detection system for detecting faults in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft, and wherein the fault detection system further comprises:
      • a handheld communication device, which includes
        • a microphone for measuring sound emanating from the pump assembly or electric motor, and further
        • a processing unit implemented in the handheld communication device and a software app installed on the handheld communication device for processing a measured sound signal measured via said microphone, wherein the fault detection system further comprises:
      • a recognition module for recognising a fault condition by way of the processed sound signal, wherein
      • the fault detection system is configured to carrying out a sequence of fault detection steps by automatically processing the measured sound signal in a plurality of preselected frequency ranges in order to detect different fault states.
  • According to a third aspect, the invention provides a non-transitory computer readable storage medium storing one or more programs, which when executed by a handheld communication device cause the handheld communication device to perform any of the methods of claims 1-11.
  • Thus, it is seen that the invention provides a method, system and a computer program, such as a software app, which sequentially can carry out dedicated measurements and analyses to detect specific fault states for the pump assembly. This provides a more accurate measurement system, where individual fault states more accurately can be detected. This can for instance be achieved out by first carrying out a first dedicated measurement to detect if the pump assembly has a particular fault state and then carrying out a second measurement to detect if the pump assembly has another particular fault state. It is also possible to sequentially scan for a plurality of noise sources associated with different fault states, and where the individual noise sources are located in different frequency bands or ranges. It is also possible to sequentially run measurements through different signal processing algorithms in order to identify individual fault states. This will be elaborated upon in the following.
  • Overall, it is seen that steps a)-c) or at least step b)-c) may be sequentially be repeated for detection of individual fault states.
  • The sound measurement is preferably a contactless sound measurement. However, the sequence may also be carried out via vibration measurements from the housing of the pump assembly.
  • The preselected frequency ranges may be at least partly overlapping or they may be located in separate ranges.
  • The pump assembly or the electric motor advantageously comprises at least one rotating shaft.
  • In the following a number of embodiments are described which apply to the method, the system and the computer program. The features from the various embodiments may be used separately or combined.
  • According to a first embodiment, the method is carried out by carrying out a first measurement for a first duration of time for detecting a first fault state, and then carrying out a second measurement for a second duration of time for detecting a second fault state. The first measurement and the second measurement may for instance carried out at two different positions relative to the pump assembly. Thus, the invention provides a method where the individual fault states are more efficiently measured by sequentially carrying out dedicated measurements for particular fault states, which may more efficiently be detected via specific measurement positions. In this embodiment, steps a)-c) may be repeated for the individual measurements and detection of fault states.
  • According to a second embodiment, the method is carried out by sequentially executing scans for individual fault states. The method may for instance be carried out by carrying out a first scan in a first frequency range for detecting a first fault state and then carrying out a second scan in a second frequency range for detecting a second fault state. Accordingly, it is seen that the invention provides a method where the individual fault states are more efficiently measured by sequentially carrying out dedicated scans for particular fault states, where the associated noise may be located in different frequency bands or ranges. In this embodiment, steps b)-c) may be repeated for the individual measurements and detection of fault states.
  • In an advantageous embodiment, the first frequency range is located in a first band in the near the kHz-range, advantageously up to 1 kHz or up to 15 kHz, and the second frequency range is located in a second band in the kHz-range, advantageously 10-20 kHz. These ranges are particularly suited for detection of water hammering and cavitation faults, respectfully, which will be explained later in more detail.
  • According to an advantageous embodiment, an order of fault states to be detected or scanned for is set from the software app. The order may also be randomly set by the software app.
  • The fault states may for instance be identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • The method advantageously at least carries out sequential detection of water hammering and cavitation.
  • Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to pump equipment. From a pump warranty perspective, it would be desirable if the method or system would be cable of detecting and logging every water hammer incident. Any phenomenon that manipulates mechanical energy cannot switch abruptly from one energy state to the next. This means that a sound cannot switch suddenly from silence to its maximum amplitude. A finite time, however brief, is needed, during which the sound can evolve to its new state, This transitional time is called the attack transient. By the same terminology, there is a release transient at the time during which the sound return back to silence. In general, the evolution of the amplitude of a sound can be divided into four basic parts—Attack, Delay, Sustain and Release. The evolution of the amplitude of a sound represented as an idealized line that links the positive peaks of its waveform is called the envelope of the wave. Using this terminology, the water hammer sound have an envelope curve like a piano with a frequency content below 1 kHz—the valve sound has en envelope like a trumpet with a frequency content from 1 kHz to 15 kHz. A signature for water hammer is a low frequency fast attack and long release sound. An algorithm for water hammer detection must perform both an frequency analysis and measure the envelope shape of the sound. The envelope curve can be found from the vibration or sound signal by bandpass filter the signal, absolute square the result followed by a lowpass filter. A scanned frequency range may for detecting water hammering may then lie in a range up to 1 kHz (e.g. 100 Hz-1 kHz) and/or in a range from 1 khZ to 15 kHz. It is also possible to make a combined scan of the ranges.
  • Cavitation is the formation of bubbles or cavities in liquid, developed in areas of relatively low pressure around an impeller in a pump. The imploding or collapsing of these bubbles trigger intense shockwaves inside the pump, causing significant damage to the impeller and/or the pump housing. The sound of cavitation is per nature a very high frequency sound, and is not overlapping with the sound of the mechanical components of the motor and pump. A robust signature of cavitation can be obtained by measuring the energy of the spectrum from 10 kHz to 20 kHz. This can be performed in the time domain using a bandpass filter, and sum up the filtered signal, or in the frequency domain by performing a frequency transformation and sum up the component in the spectrum from 10 kHz to 20 Khz. The energy level will often be compared to a baseline, and when the baseline is exceeded by some levels, an cavitation alarm can be issued.
  • Overall, it is seen that the fault states relating to water hammering and cavitation can be identified by sequentially carrying out separate measurements or separate scans or signal processing of different frequency ranges.
  • The handheld communication device may advantageously provide a feedback, e.g. an audial, visual or vibrational feedback, when an acceptable measurement position of the microphone has been found or when an acceptable measurement has been carried out. Thereby, the user can be prompted to know that the next measurement or scan of the sequence is ready to be carried out.
  • In the following a number of additional embodiments are described, which may be combined with the method, system, and computer program according to the invention.
  • Further, the invention provides a method for detecting faults in a pump assembly including an electric motor and a pump by use of a handheld communication device, wherein the pump assembly or electric motor has at least one rotating shaft, the method comprising:
      • a) contactless measuring a sound signal emanating from the pump assembly by use of a microphone connected to or implemented in the handheld communication device,
      • b) processing the measured sound signal, and
      • c) recognising one or more sound emanating condition including any possible faults by way of the processed sound signal.
  • This provides a particular simple method, where a handheld communication device, such as a smart phone, can be used for detecting a sound signal by use of an internal or external microphone. Further, by processing the sound signal, it is made possible to detect faults via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly.
  • The processing unit or software may be implemented in for instance an app that is installed on the smart phone. Alternatively or in addition thereto, the processing unit or software (or part thereof) may be implemented on an external server unit. Thus, the measured sound signal or partially processed signal may be uploaded to a server or a cloud, where the detected sound signal is processed.
  • Overall, the method provides a method where a worker or user having to service the pump assembly will be able to detect faults by use of the handheld communication device and optionally an externally coupled microphone only, which provides a particular simple fault detection system and method compared to prior art systems and methods. Further, the method has advantages over fault detection methods utilising accelerometers or vibrometers, since these are sensitive to the position on the pump assembly.
  • An app is installed on the handheld communication device for detecting and recognising the condition or fault of the pump. The app acts as a front-end for the processing and analysing unit, or the processing and analysing part may be implemented in the app.
  • The term “handheld communication device” may cover a number of portable devices of a limited size and may for instance be chosen from the group consisting of: a smart phone, a tablet, a PDA, and a wearable device, such as a smart watch.
  • The terms “app” or “software app” are abbreviation for application and software application. An app is a piece of software and may run on the Internet, on a computer, a smart device or other electronic devices. In the present invention, the app is run on the handheld communication device.
  • According to an advantageous embodiment, the processing step of step b) comprises the sub-steps of processing the measured sound signal so as to estimate the rotational speed of the rotating shaft and optionally normalising the measured sound signals or processed sound signals. Thereby, the influence of the rotational speed of the shaft may be eliminated from the signal or processed signal, whereby the processed signal is independent of the rotational speed of the shaft. Thereby, sound emanating conditions including any possible faults may be detected independent of the current rotational speed.
  • The estimation of the rotational speed may be carried out via a spectral analysis. This may for instance be carried out by sampling and optionally down-sampling the measured sound signal after which the sampled signal is run through a Fast Fourier Transformation (FFT), and wherein the FFT signal is analysed in order to locate peaks. The peaks will correspond to the rotational speed of the shaft.
  • In yet another advantageous embodiment, the processing step of step b) comprises the step of filtering out periodic signals of the processed signal, wherein the recognition of step c) is carried out by use of the periodic signals.
  • In a particular advantageous embodiment, the method comprises the step of running a pre-routine, where the rotating shaft is brought to a drive condition, where sound signals emanating from the pump assembly are detectable by the microphone. Small circular pumps in homes run very silent and can be difficult for a standard handheld communication device to detect. In general, this may be carried out in a number of ways. It may for instance be carried out by letting the drive shaft be swept from a low rotational speed (or from zero) and increase the rotational speed until a sound signal can be detected. In some situations, the operational test condition may be driven at a higher rotational speed than the normal operating conditions in order to ensure that a sound signal can be measured and to ensure that the sound emanating from the pump assembly is within an audible range, e.g. above 20 Hz.
  • In another embodiment, an external microphone is coupled to the handheld communication device. Thereby, it is possible to use for instance a high-sensitive microphone, which may be sufficient for measurements on small circular pumps in homes.
  • In one embodiment, steps b) and/or c) are carried out via a processing unit, such as a DSP or micro-processor, implemented in the handheld communication device and/or a software application installed on the handheld communication device. In another embodiment, steps b) and/or c) are carried out via a processing unit implemented in an external server or a software program installed on an external server. It is also possible to carry out steps b) and c) partly by the handheld communication device and partly by the external server.
  • The app may also store the measurements on the handheld communication device and then upload the measurements later to an external server for processing and analysis. It is also contemplated that the measured sound may be continuously streamed to the external server.
  • According to an advantageous embodiment, the processing unit or software app comprises a library or database of different pump assembly types or models.
  • In one embodiment, the sound emanating condition including any possible faults in step c) is recognised by use of said library of different pump assembly types or models. Thus, the library makes it possible to link certain processed sound spectrums to particular fault types of a particular pump assembly type or model. Thereby, a more accurate fault detection method may be obtained.
  • The pump assembly type or model may advantageously be input into the handheld communication device. This may simply be carried out by typing or finding the pump assembly type or model into the app, or by choosing a picture from the app corresponding to the particular pump assembly type or model. Thereby, the installed app may be instructed in linking the processed sound spectrum to the particular pump assembly type or model. Alternatively, the user can take a photograph of the nameplate on the pump assembly, and detection software in the handheld communication device may then identify the type or model. It is also possible to utilise QR codes or similar.
  • In one embodiment, the app on the handheld communication device prompts an external server for information about the inputted pump assembly type or model. This may for instance be initiated, if the inputted pump assembly type or model is not present in the library installed on the handheld communication device. In this case, the app may prompt the external server for information about the new pump assembly type or model and download this information to the smart phone or other type handheld communication device. It may also be initiated as a general step, if the processing and analysing is carried out in the external server.
  • The library may further comprise information about how to rectify an identified fault for a particular pump assembly type or model. Thus, the library may for instance comprise a guide advising the service worker on the different steps to be carried out in order to rectify the fault. The guide may be installed in the app on the handheld communication device, or the guide may be uploaded or accessed from an external server, once the pump assembly type or model and fault have been detected.
  • Additionally, the library may further comprise information about how to align the microphone in relation to the pump assembly. Thereby, the service worker may be instructed in how to best obtain and measure the sound signals needed for identifying a particular condition or fault of the pump assembly.
  • In one advantageous embodiment, the library is further adapted to accumulate sound measurements or processed sound measurements from different pump assemblies. Thereby, it is possible to provide a library of known sound measurements or processed spectrums, whereby the system may better learn to identify different types of faults and optionally dependent on the particular pump assembly type or model. The learning process can for instance be carried out via the use of a neural network. The sound measurements may for instance be linked to a certain types of identified faults, which may also encompass fault types, which have not previously been encountered. This can also facilitate the learning process.
  • In one embodiment, step a) comprises a plurality of measurements with the microphone arranged at different locations relative to the pump assembly. Alternatively or in addition thereto, steps a) and b), or steps a), b), and c) may be repeated with the microphone arranged at different locations relative to the pump assembly. Different types of operating conditions may more easily be measured at different microphone positions. Sound emitted due to the rotational speed of the shaft may for instance for certain types of pumps more easily be measured at an end portion of the pump, whereas faults, such as a damaged bearing, may better be measured from a side portion or cylindrical portion of the pump.
  • According to an advantageous embodiment, the handheld communication device provides a feedback, e.g. an audial, visual or vibrational feedback, when an acceptable measurement position of the microphone has been found. The acceptable condition may for instance be determined by a minimum threshold value for the measured sound signals.
  • The processing in step b) may preferably be carried out via a method chosen from the group of: RMS level detection, spectral analysis, envelope analysis, and Cepstral analysis. The processing may also be carried out by a combination of said analysis methods, whereby the significance of the analysis may be increased.
  • In a particular advantageous embodiment, the at least one rotating shaft is swept from a first rotational speed to a second rotational speed over a pre-set time period, and wherein the method a spectrogram is measured and processed. Thus, the processed signal is analysed in order to compare operational conditions in a diagram plotted with two variables, e.g. the rotational speed and the sound frequency. This provides a method with even higher significance as the conditions are analysed over a greater range than just one rotational speed. The spectral contributions that increase proportional with the shaft frequency are related to the bearing and will thus give a clear indication of bearing faults. Further, some parts of the spectrum are independent of the shaft frequency and will thus give an indication across the spectrum and may be related to the resonance structure of the motor.
  • Instead of sweeping through a number of rotational speeds, it is also possible to make contactless measurements at discrete operational points. Thus, contactless measurements are performed at a first operation point. The pump assembly is then moved in its operational state to a second discrete point, e.g. by increasing the rotational speed of the shaft, and measurements are then performed in this working point. The measurements of the two operational points are then compared by the handheld communication device, and the optimum operational point is then selected by the app in the device. An instruction is then given by the device to the pump assembly that the pump assembly must run in the optimum operational point from now on. With the method, just described, diagnostics are performed in two or more separate points of operation, and the pump assembly is transferred from a sub-optimum working point with e.g. unacceptable resonance frequencies in the assembly, or cavitation in the pipes or in the pump, to an operation point with less resonance frequencies or no cavitation. Movement from one working point to another can be based on a measurement of a single parameter in each of the two working points, e.g. measuring flow noise in the pipes, or can be based on measurement of a plurality of parameters. Accordingly, the measurements may be carried out at a plurality of different discrete rotational speeds of the at least one rotating shaft e.g. to find optimum measurement conditions.
  • In a highly advantageous embodiment, fault states are logged during the sweep in order to identify rotational speed regions, where the pump assembly is faulty. This may for instance be regions, where the fault states are particular pronounced, e.g. where resonance effects enhance the faults. It may for instance be cavitation states, which occur for particular shaft speeds. The fault states may for instance be logged if a measured significance level is about a set threshold level.
  • According to another advantageous embodiment, the pump assembly is subsequently instructed to avoid driving the pump assembly at rotational speed regions, where the pump assembly is faulty or the states, where faults are particularly pronounced. Thereby, the lifetime of the pump assembly may be extended by ensuring that the pump assembly is not driven at rotational speeds, where the pump assembly may be further damaged. This is particular relevant for cavitation, which may occur only at particular drive conditions.
  • The instructions may be sent wirelessly from the handheld communication device, e.g. by Bluetooth or infrared. Alternatively, the pump assembly may receive the instructions via an external server.
  • The fault states may for instance be identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • The invention also provides a fault detection system for detecting faults or operational parameters in a pump assembly comprising a pump and an electric motor, wherein the pump assembly or electric motor has at least one rotating shaft, and wherein the fault detection system further comprises:
      • a handheld communication device, which includes
        • a microphone for contactless measuring sound emanating from the pump assembly or electric motor, and further
        • a processing unit implemented in the handheld communication device and/or a software app installed on the handheld communication device for processing a measured sound signal measured via said microphone, wherein the fault detection system further comprises:
      • a recognition module for recognising a sound emanating condition including any possible faults by way of the processed sound signal.
  • This provides a particular simple system, where a service worker only needs to bring a handheld communication device, such as a smart phone, and possibly an externally connected microphone for identifying faults in a pump assembly. The system allows sound signals to be measured by use of an internal or external microphone. Further, by processing the sound signal, it is made possible to detect faults via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly, which otherwise could influence the measurements.
  • In one embodiment, the microphone is implemented in the handheld communication device. In another embodiment, the handheld communication device may for instance be a smart phone, and the microphone is the internal microphone of the smart phone. In yet another embodiment, the microphone is externally coupled to the handheld communication device.
  • The recognition module may advantageously be implemented on the handheld communication device.
  • According to a particular advantageous embodiment, the system further comprises an external server. In such a setup, the recognition module may be implemented on the external server. Further, part of the processing unit may also be implemented on the external server, e.g. as a signal processor or a software application.
  • The system may further comprise a filter module adapted for processing the detected sound signal so as to eliminate an influence of a current rotational speed of the shaft and filtering out periodic signals of the processed signal. This filter module may be implemented in the handheld communication device or the external server.
  • The processing unit and/or filter module may comprise an analysis module chosen from the group of: an RMS level detection module, a spectral analysis module, an envelope analysis module, and a Cepstral analysis module.
  • The recognition module may advantageously comprise fuzzy logic and/or a neural network.
  • In one advantageous embodiment, the system comprises a library module, in which characteristic patterns are stored for certain operating conditions, and wherein the recognizing module is designed for recognition of an operating condition by way of the stored pattern. The patterns may be based on any of the previous analysis methods and modules, i.e. RMS level patterns, spectral patterns, envelope patterns, or Cepstral patterns.
  • The microphone may be a directional microphone, e.g. having a directional profile, where the microphone is particular sensitive to certain directions and possibly suppressing sound from certain directions.
  • The recognition module may advantageously also be adapted to estimate the rotational speed of the at least on rotating shaft. Thereby, the system is able to normalize the measured sound spectrum to the rotational speed of the shaft, whereby the spectrum can be compared across broad drive conditions.
  • It is recognized that some of the embodiments are more generic in nature. Thus, most of the embodiments may also be carried out by use of other types of sensors. Accordingly, the embodiments relating to the various algorithms and use of an external sensor may also be carried out via for instance a handheld communication device and a secondary sensor, such as an accelerometer. This may further be used as verification of measurements based on sound.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is explained in detail below with reference to embodiments shown in the drawings, in which
  • FIG. 1 shows an embodiment of a fault detection system according to the invention,
  • FIG. 2 shows an embodiment of the fault detection system with a first type of pump assembly,
  • FIG. 3 shows an embodiment of the fault detection system with a second type of pump assembly,
  • FIG. 4 illustrates components of a handheld communication device part of the fault detection system, and components and sound sources of a pump assembly,
  • FIG. 5 shows a handheld communication device with a Graphical User Interface,
  • FIG. 6 illustrates steps involved in estimating the rotational speed of a shaft in a pump assembly by use of measured sound signals,
  • FIG. 7 illustrates the steps in a condition monitoring system,
  • FIG. 8 illustrates a fault in a bearing of a pump assembly and the associated sounds emitted due said fault,
  • FIG. 9 shows a bearing in perspective,
  • FIG. 10 illustrates the steps in an envelope analysis method,
  • FIG. 11 illustrates diagrams obtained from spectral analyses and Cepstral analyses,
  • FIG. 12 illustrates a normalisation pre-process for use in Cepstral analysis,
  • FIG. 13 illustrates the steps in a method of detecting a fault in a pump assembly, and
  • FIG. 14 illustrates the steps in a method of sequentially detecting individual fault states in a pump assembly.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a fault detection system 10 according to the invention for detecting faults in a pump assembly 20, which comprises a pump and an electrical motor (not shown). The pump assembly 20 is installed in a pipe system with pipes 15, 16. The system comprises a handheld communication device 30, e.g. in form of a smart phone as illustrated or a tablet computer or the like. The handheld communication device 30 comprises an externally coupled microphone 32, which may be used for contactless measuring sound signals emanating from the pump assembly 20. The system further comprises an external server 40 or cloud. The pump assembly 20 is a circular pump typically used for circulating water in heating systems.
  • In a first embodiment, the pump assembly 20 is of a type as shown in FIG. 2, where the pump and electrical motor are implemented into a common housing 21. In a second embodiment shown in FIG. 3, the pump assembly 20′ is of a type, wherein the pump and the electrical motor are separated into a pump housing 22′ and an electrical motor housing 24′ respectively.
  • Thus, in difference to the pump assembly of FIGS. 1 and 2, the pump assembly 20′ has distinct and separated sources of acoustical noise. Noises from ball bearings, stator, rotor and other parts will come from housing 24′, and electrical noise will emanate from the terminal box 25′, which incorporates control electronics for the pump assembly. Noise from the fluid in the pipes, i.e. flow noise, emanates from the pump housing 22′ or from the pipes (not shown) connected to the pump housing. Noise from cavitation, from the impeller of the pump or from water hammer will also emanate from this area of the pump assembly.
  • The handheld communication device 30 may comprises a processing unit, such as a microcomputer or a digital sound processor and/or a software application installed on the handheld communication device 30 for processing a sound signal measured via the microphone 32. The measured sound signals or the processed sound signals may be compared to known sound emanating conditions, which are indicative of a fault in the pump assembly by use of a recognition module.
  • In FIGS. 1-3, the microphone 32 has been depicted as an externally coupled microphone. However, the invention also contemplates using an internal microphone. The external microphone may for instance be necessary, if the internal microphone of the handheld communication device 30 has particular restrictions on the measurable audio bandwidth or directional restraints.
  • FIG. 4 shows one embodiment of a handheld device 130 and a pump assembly 120 for use in the fault detection system 110 according to the invention.
  • The handheld communication device 130 comprises a microcomputer 131 for assisting and interpreting data. The fault detection system may comprise a dedicated system, e.g. a microcomputer or digital signal processor particularly designed for detecting fault conditions, but in a preferred embodiment, the fault detection system comprises a dedicated software application, which is installed on the handheld communication device 130.
  • As previously mentioned, the handheld communication device 130 comprises a microphone 132 for contactless measuring sounds (illustrated with waves between the handheld communication device and pump assembly) emanating from the pump assembly 120 and which may be indicative of a particular fault condition of the pump assembly 120. The handheld communication device 130 further comprises a display 133 for providing a visual feedback to a service worker using the handheld communication device 130. The handheld communication device 130 additionally comprises an input module 134, whereby the service worker may input information into the handheld communication device 130 or the software application installed on the communication device 130. The input module 134 may be part of the display via for instance a touch display, which is now part of most smart phones and tablet computers. However, in principle the input module may also be a keypad of the communication device 130.
  • The handheld communication device 130 further comprises a communication module 135 which allows the handheld communication device 135 to communicate with the pump assembly 120 and/or the external server. The communication device may comprise a number of different communication types, such as but not limited to GSM, CDMA, 3G, 4G, infrared, and Bluetooth®.
  • The handheld communication device 130 may further comprise a library 136 stored in the software application. The library may comprise a database over known pump assembly types and models, known faults and related sound emanating conditions, e.g. linked to the particular pump assembly type or model, instruction guides on how to obtain measurements from the particular pump assembly type or model, and instruction guides on how to rectify an identified fault.
  • In addition to the microphone 132, the handheld communication device 130 may further comprise a number of other sensors, such as for instance an accelerometer 137. The sensors are advantageously integrated in the handheld communication device 130, however; as with the microphone, it is also possible to use externally coupled sensors. The additional sensors may for instance be used to obtain a secondary verification of the sound measurement. The internal accelerometer 137 may for instance be used for a secondary measurement, where the handheld communication device 130 physically contacts the housing of the pump assembly 120 so as to obtain vibration measurements.
  • As further shown in FIG. 4, the pump assembly 120 comprises a number of different features, which may lead to faults and noise sources. The pump assembly 120 comprises a motor and rotor 123 for driving the pump, and which may be the source of emitted sounds and faults. Further, the pump assembly 120 may comprise bearings 126, which along with mechanical seals, are often the source of occurring faults in pump assemblies. The pump may further comprise an impeller 125 with impeller blades or vanes that cause the movement of fluid in the pump. The pump assembly 120 further comprises electronic parts 129 for controlling the pump assembly 120 and acting as an interface between a service worker or external server and the pump assembly 120.
  • Further, noise from water in the pipe 127 may be the source of sounds emitted from or near the pump assembly and may vary from turbulent or laminar flows. Further, the pump assembly 120 may be prone to cavitation 128 at certain drive conditions. Cavitation is the formation of vapour cavities in a liquid, such as small air bubbles or voids in water, which are caused by forcing acting upon the liquid. Cavitation usually occurs when a fluid is subjected to rapid pressure change that cause the formation of cavities, when the pressure is relatively low. When subjected to a relative high 5 pressure, the voids implode and can generate intense shockwaves, which may cause wear to for instance the impeller 125 of the pump assembly 120. Noise from cavitation typically appears as small “pops” e.g. in the kHz-band, e.g. 10 kHz-20 kHz. Additionally, water hammering 124 may occur.
  • Each noise source has its specific frequency range. Noise from the impeller in the pump typically is the same as the rotational speed of the shaft, i.e. around 3000 RPM. In addition to this, the blades on the impeller also generate noise, the blade frequency being a multiple of the rotational speed. Flow noise, i.e. noise stemming from the liquid flowing in the pipes, is typically white noise, also called 1/f noise, and is in the range of 1 Hz to 25 kHz. The electronics of the pump assembly often generates a broadband noise spectrum due to the use of switching electronics. A typical range is 50 kHz to 200 kHz. Cavitation noise is as mentioned in the range of 10 kHz to 20 kHz. Ball bearings generated noise in the area of 1 kHz to 15 kHz, while the electrical motor and the mechanical rotor creates noise in the range of the rotational speed of the shaft. Water hammer, which in extreme cases can destroy the pump, is detectable in the range of 1 Hz to 300 Hz.
  • Overall, the system provides a particularly simple fault detection system 10, 110, where a service worker only needs to bring a handheld communication device 30, 130, such as a smart phone, and possibly an externally connected microphone for identifying faults in a pump assembly 20, 120. The system allows sound signals to be measured by use of an internal or external microphone. Further, by processing the sound signal, it is made possible to detect faults and/or identify fault causes via a non-invasive, contactless method, since no sensors have to be fitted to the pump assembly, which otherwise could influence the measurements, and which are sensitive to the position on the pump assembly.
  • The analysis tool may be implemented in a processing unit or software application that is installed on the handheld communication device. Alternatively or in addition thereto, the processing unit or software (or part thereof) may be implemented on an external server unit. Thus, the measured sound signal or partially processed signal may be uploaded to a server or a cloud, where the detected sound signal is processed.
  • The system may be configured to identify a number of different fault states, e.g. identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
  • The software application installed on e.g. a mobile phone 30 having a display 34 may be provided with a Graphical User Interface (GUI) as for instance shown in FIG. 5, which may show the status of the afore-mentioned fault states. Further, the system may be adapted to detect the rotational speed of the shaft of the pump assembly and may display this on the GUI as well. Further, the GUI may show the measured sound frequency spectrum. The measured sound signals may be normalised in accordance with the detected rotational speed, whereby it is made easier to compare the fault spectrum to know sound emanating conditions.
  • Estimating the Rotation Speed Based on Spectral Analysis
  • When working with a pump assembly as in the present invention, it is often important to know the physical rotation speed of the shaft or RPM. Knowing the electrical frequency of the electrical motor is not enough, as there exist a slip between the electrical and the physical speed for asynchronous motors.
  • The physical speed of the shaft can be measured by using a tachometer. The principle is to beam a laser to a reflecting tape on the shaft, and thereby counting the number of reflections during a time interval. However, this will require that a reflecting tape to be mounted on every shaft, and often it will not be practical or even possible to get into contact with a rotating shaft. This is also not aligned with the principle behind the present invention, which is intended to provide a simple tool for the service worker and preferably a non-invasive and contactless method of detecting the rotational speed and a possible fault.
  • Accordingly, the fault detection system comprises an algorithm for estimating the rotational speed of the shaft based on sound signals measured with the system according to the invention. The outline of the algorithm is illustrated in FIG. 6.
  • The sound signal is measured (in step 210) via the microphone of the handheld communication device and is converted to a digital sample signal (in step 220), which provides an array of samples having a number of samples produced at a given sampling frequency, which is set by the handheld communication device. In order to process the sampled signal, it may be necessary to resample (in step 230) the vector sample to a power of two.
  • The frequency band that will contain a signal component related to the RPM will typically be in the range of 10 to 60 Hz. To restrict the frequency analysis to this band, the signal is down-sampled to for instance 128 Hz (in step 240) and keeping the frequency above the Nyquist rate. For some handheld communication devices, it is only possible to detect audible frequencies above 20 Hz. In such a case, it may be necessary to increase the RPM to a speed, where it can be detected.
  • In each loop of the program, the down-sampling provides a limited number of samples. To obtain a sufficient frequency resolution, the samples are collected into a circular buffer with a size of for instance 512 samples (in step 250).
  • If a frequency analysis is performed on the buffer vector, the corresponding RPM resolution will be ΔRPM=60 (128 Hz/512 points)=15 rpm. This resolution may in some circumstances be too low. To increase the resolution, the length of the signal vector must be increased. However, increasing the signal vector will slow down the estimator. Another solution will be to keep the frequency resolution, but interpolate the number of points in the spectra using zero padding (step 260). The new signal vector will contain a windowed version of the buffer vector—zero padded to for instance 8192 points—which provides a resolution of approximately 1 rpm.
  • The interpolated signal is Fourier transformed (in step 270) and the resulting Fourier spectrum will show a clear peak corresponding to the RPM. Thus, the RPM may (in step 290) be found by finding a maximum or peak of the Fourier spectrum (in step 280).
  • The vibration or sound spectrum from a running motor will always produce a small signal component corresponding to the rotation frequency because no rotor can be made without a small imbalance. However, other signal components can be generated from other parts of the motor, pump or fluid. To make the estimation of the RPM more robust, a small search window may be introduced. The position of the search window will be controlled from known motor parameters, or if the operator has some knowledge about the expected RPM. The size of the window may for instance be fixed to a width of 200 rpm and the height of the window is set to 1.
  • It should be noted that the algorithm for detecting the RPM is generic in nature and not only restricted to sound measurements via a handheld communication device. The estimation may for instance also be based on vibration measurements as for instance described in EP1972793.
  • Accordingly, the invention also provides a method of estimating the rotational speed of a shaft of a pump assembly, where a vibration or sound is measured and sampled, resampled, down-sampled, buffered, zero-padded, Fourier transformed, and peak detected.
  • Fault Detection
  • In the following, the fault detection system and method of identifying faults are explained with reference to bearing fault detection. However, the system is also applicable for detecting other types of faults.
  • The concept of Condition Monitoring (CM) is the use of advanced technologies in order to determine equipment conditions, and potentially predict failures. A perspective of this early prediction is to change load conditions in order to delay a potential break down until a scheduled maintenance. This will in general improve equipment reliability, minimizing downtime and maximizing component life.
  • In the current application, the objectives is to develop a CM system to detect bearing faults based on measured sound signals 310 via a handheld communication device. A typical detector for a CM system could be constructed by the two elements shown in FIG. 7, viz. a feature extraction 320 and a classification 330 of the fault.
  • Feature extraction is the process of generating a set of descriptors or characteristic attributes from the sound measurements. The Classification is the process of interpreting and comparing the feature against a set of pre-analyzed features with known causes, in order to estimate a proper diagnosis. This division is advantageous, as it underline the fact, that the best classification algorithm based on a large neural network will make a wrong diagnosis, if the feature extraction algorithm is poorly made.
  • A bearing 426 as shown in FIGS. 8 and 9 is a high precision mechanical construction with two raceways and a finite number of balls 440. As the inner 455 and outer raceway 460 are rotating with a relative speed, the corresponding emitted sound signal obtained with a microphone will be a low power white noise-like signal. However, in the case of any abnormality, such as a crack 450 in the outer raceway 460, a transient response will be measured by the microphone every time a ball 440 hits this defect 450. This will make the corresponding sound signal 470 significant with a periodic structure 480 reflecting the time interval between each impact.
  • The signal analysis of sound signal data has currently resulted in four different approaches to determine the level of damages, viz. RMS level detection, spectral analysis, envelope analysis, and Cepstral analysis.
  • RMS Level Detection
  • There is a strong negative correlation between the overall sound level for a bearing and the expected lifetime of that bearing. By assessing the sound levels (RMS) and comparing these with some warning levels or threshold levels, a damage to the bearings can be determined. Thus, the RMS level detection provides a particular simple method of determining a fault stage based on signal levels. However, this method has the disadvantage that it is “frequency blind” and can thus not distinguish between different noise sources. Further, the method cannot distinguish between for instance the basis signal and the first harmonic. Thus, it is difficult to provide a robust system and method based on RMS level detection, since the method is not very selective.
  • Spectral Analysis
  • Spectral analysis of a vibration signal makes it possible to differentiate between signal components with different frequencies, as they often relates to different sources of vibration. The analysis is often performed using the Power Spectrum of the signal, which calculate how the signal energy is distributed in the frequency domain
  • Based on the bearing geometry, it is possible to calculate four fundamental frequencies, which represent the most common occurrence bearing faults, viz. faults to the outer ring 460, an inner ring 455, a retainer 465 or the balls 440 of the bearings, see also FIG. 9.
  • The measured frequency will depends on the number of balls of the bearing, the shaft frequency fshaft, the ball diameter, the retainer diameter and the ball contact angle. For a given bearing geometry, such as a NSK6305 bearing, faults to the outer ring 460, the inner ring 455, the retainer 465 or the ball 440 may for instance be 3.06, 4.93, 0.38, and 2.03 times the shaft frequency fshaft. This means that the faults will be located in different parts of the sound frequency spectrum and may thus be used to identify the type of fault.
  • Accordingly, the library of the fault detection system may comprise a database of expected spectrums based on bearing types of known pump assembly models.
  • Envelope Analysis
  • This is original an analog approach with roots in communication technology. The sound signal can be interpreted as the result of an Amplitude Modulation (AM) of a carrier in accordance with a modulating wave. The modulated wave/baseband signal will be the impact impulse train, and the carrier will be the ringing/characteristic sound of the bearing and corresponding motor construction. In the case of a narrowband AM wave (large carrier frequency compared with the message bandwidth), the demodulation can be accomplished by using a simple, yet highly effective device known as the envelope detector. Ideally, an envelope detector produces an output signal that follows the envelope of the input signal waveform exactly. The analog version consists of a diode and a resistor-capacitor filter to down mixing and lowpass filtering the signal, but a digital version can be obtained using similar operations.
  • The construction of the envelope detector can also be argued using the Fourier Spectrogram. As this procedure provide some insight into the properties and limitations of the envelope approach, a short presentation will be given next. A property of the wideband Fourier Spectrogram is a high time resolution, as the underlying short-time Fourier transform (STFT) utilize a very short window length. In the case of a periodic signal, the sliding window will alternately pass through high energy and low energy signal areas as a function of time. The corresponding spectra will also be alternately high and low energy spectra, and the corresponding Fourier Spectrogram will be dominated by vertical stripes (the 1/T line spectrum). The wideband Fourier Spectrogram of a vibration signal from a bearing with an outer fault will reveal the envelope curve (impact pulse train) in a certain frequency band.
  • If the Spectrogram is calculated for a bandpass filtered signal that only contained the frequencies around aforementioned certain frequency band, the envelope curve can be extracted by calculating the time marginal of the spectrogram and may as illustrated in FIG. 10 be carried out without calculation of the spectrogram by bandpass filtering the signal (step 510), absolute square the result (step 520) followed by a low-pass filter (step 530).
  • The envelope analysis is then obtained when a frequency analysis is performed on the envelope curve from the detector by a Fourier transformation (step 540) and absolute squaring the result (Step 550).
  • The four fundamental frequencies relating to the four bearing fault types will emerge in the frequency spectrum similar to the spectral analysis.
  • The envelope analysis approach has the advantage that calculation complexity is simple as it can be done using two filtering operations followed by an FFT. However, the method has the disadvantage in limitation of the selection of the specifications for the bandpass filter. The carrier frequency is not related to the bearing, but depends on the motor construction and placement. It might also change depending on the shaft frequency. This will demand individual setup for each application and may thus be complex.
  • Cepstral Analysis
  • A common sign of all bearing faults are the presence of a periodic structure of the measured sound signal. A property of the Narrowband Fourier Spectrogram is a high frequency resolution, as the underlying STFT utilize a long window length. In the case of a periodic signal, the window will catch several periods of the signal, and the corresponding spectrum will be discrete, thus showing a line spectrum.
  • This means that the Fourier representation of a periodic signal will be a pulse train with equidistant contributions. In the Fourier Spectrogram, this pulse train will show up as horizontal stripes as seen in FIG. 11a . A measure of the impact rate will be the distance between any two stripes. But Instead of selecting a pair of frequencies (this would introduce a limitation), an overall estimate of the rate can be obtained by performing a frequency transformation of all the stripes, i.e. a frequency analysis of a frequency representation. This approach is called a Cepstral analysis and the result is illustrated in the Cepstrum shown in FIG. 11b . The Cepstrum is generally found by taking the Inverse Fourier Transformation of the logarithm of the estimated spectrum of the measured sound signal.
  • It is interesting to note, that the Cepstral representation not only illustrate the expected contribution for the aforementioned fundamental frequency 610, but also indicate periodic structures with other impact rates 620, 630, 640. This gives a more descriptive signature of a bearing fault.
  • The sound signal used in FIG. 11 has been recorded on a motor with a defect bearing (outer raceway). In FIGS. 11c and 11d , the shaft speed is swept from 10 Hz to 50 Hz (500 to 2,500 rpm) during 60 seconds. It is very interesting to inspect the corresponding spectrogram in FIG. 11c . It illustrate that some part of the spectrum are independent of the shaft frequency, as they are placed as horizontal contributions.
  • They constitute the resonance area of the motor construction. The spectral contributions that increase proportional with the shaft frequency are related to the bearing. For a fixed time position, the frequency slide constitute a discrete spectrum that are related to a periodic signal, and a bearing signal is only periodic when the bearing are defect. To obtain the Cepstral representation in FIG. 11d , each column of the spectrogram is high pass filtered and Fourier transformed. The Cepstral representation shows how the impact rate change as a function of time. Often there are more than one impact rates as the vibration signal contain multiple vibration sources. Their position (rate) makes it possible to distinct between different sources.
  • As the Cepstral representation is based on a frequency analysis of the frequency representation, it measures the frequency content through the complete domain. If some passages of the spectra are attenuated/amplified as result of resonance in the construction, the level of the corresponding Cepstral will only experience a minor change and no peaks will disappear. This property underline the fact, that the Cepstral domain is a measure of periodicity not frequency.
  • The location of the peaks in the Cepstral domain are depending on the shaft RPM (as illustrated in FIG. 11d ), and in order to interpreted the Cepstral representation in connection with bearing fault detection, the RPM must be provided in parallel with the Cepstral. This will complicate the task of diagnosing/classification the Cepstral coefficients unnecessary. The location of peaks in a feature for a particular bearing fault must be fixed for variable RPM. This scaling of the Cepstral domain relative to the RPM can in general be obtained in three ways: preprocessing of the vibration data before the Cepstral analysis, scaling one of the frequency axis in the Cepstral calculation or post processing of the Cepstral data. In a preferred embodiment, it has been selected to preprocess the vibration data by resampling in accordance with the detected rotational speed of the shaft, see also previous explanation. The elements of the normalization algorithm is illustrated in FIG. 12.
  • The measured sound signal is run through a pre-processing step 700, where the measured signal is normalized in relation to the shaft frequency fshaft.
  • The purpose of the preprocessing is to scale the frequency axis of the sound signal. In order to avoid aliasing, the signal must be properly lowpass filtered (in step 710), before down-sampling. This filtering may be performed by a 20th order Butterworth filter. The classical approach to resampling is to filtering the time discrete signal using an non-causal sinc function as impulse response function (step 720), after which the pre-processed signal may be sent through the Cepstral analysis (in step 730).
  • The RPM can in the case of a synchronous motor be obtained from the frequency converter, but in the case of an asynchronous motor, the RPM has to be measured separately or determined in accordance with the previously explained algorithm from the sound signal.
  • Once the signal has been normalized and run through the Cepstral analysis, the resulting Cepstrum may be compared to Cepstrums of known operating conditions including fault conditions in order to identify a particular fault. This may for instance be carried out by pattern recognition.
  • The fault detection system has now been described for four different analysis methods. However, it is recognized that the fault detection may also use a combination of the various analysis methods and that particular fault types may better be detected with one of said methods.
  • The analysis methods have been described for bearing faults, which typically show themselves at relative low sound frequencies. However, other types of faults may be identified in other frequency bands. Cavitation may for instance be detected via sounds in the kHz band, e.g. between 10 kHz and 20 kHz.
  • Method for Detecting Faults
  • The method for detecting faults in a pump assembly may for instance be carried out in accordance with the steps illustrated in FIG. 13.
  • In a first step 810, the pump assembly model is input into a software app on the handheld communication device. The pump assembly is optionally run through a pre-routine 820, where the rotational speed of the shaft is increased or set to a speed, where sounds emanating from the pump assembly may be detected via the microphone of the handheld communication device.
  • In a third step 830, sounds emanating from the pump assembly are contactless measured via the microphone of the handheld communication device. Between step 820 and 830, the software app may for instance provide the user with a guide on the display showing at which positions the microphone and/or the handheld communication device should be arranged so as to obtain the sound measurements. This step may for instance be carried out by simultaneously carrying out a sweep of the rotational speed of the shaft, such that sound measurements are carried out for an interval of shaft speeds.
  • Positioning of the handheld device, and measurement with the device, is done in two distinct steps. The step of positioning may take between 10 seconds and 1 minute, and measurement may take from 5 seconds to 1 minute depending on the number of parameters to be measured. The distance from the device to the pump assembly is from around 1 meter to a few centimetres, typically in the range from 5 cm to 30 cm from the pump assembly.
  • When positioning the handheld communication device or microphone, the app will advantageously show in the app on the screen of the device if the signal(s) received from the pump aggregate is adequate and sufficient in amplitude and quality in order to perform a measurement. The user will move the device closer to the pump assembly, or away from the pump assembly, or move the device to the sides, above, or below the pump assembly. While doing this, the device and the app will detect the signal, and once an optimum position is reached, the device may give an acoustic signal, vibrate or give a visual indication in the display of the device. In this way, the handheld communication device has given signal feedback to the user. This signal and device positioning procedure can be made for one single parameter, e.g. for measuring cavitation, or it can be made for several parameters at the same time. In the latter case, the app of the device may find an optimum position for measuring a plurality of parameters at the same time. As the frequency ranges of some of the fault parameters differ from each other, the handheld communication device measures for a first duration of time, e.g. the flow noise in the area of 1 Hz to 25 kHz, and then switches or a second duration of time to e.g. measuring noise generated by the electronics in the range 50 kHz to 200 kHz. Thus, the handheld device, or more precisely the app of the handheld communication device sequentially executes scans of one or more of the noise sources 120 shown in FIG. 4. The order can be set by the app or be random.
  • The method can also detect dry running of the pump, i.e. the case where the rotor and impeller rotates, but where no liquid is in the pipe. This situation is detrimental to the bearings. By looking at the difference in the sound signal measured when the pump is running with liquid, and when running without liquid, a statement as to “Dry run: Yes” or “Dry run: No” can be made and shown on the display of the handheld device as shown in FIG. 5. The system may also as later explained learn to recognise a dry run state, e.g. via a neural network or a database linking a dry run state with associated sound signal patterns or spectrums and possibly the pump type or model.
  • The method can likewise also detect unbalance in the pump assembly. The unbalance may for instance be caused from the rotor or the impeller blades. The unbalance may also occur, if the impeller blades are damaged, e.g. from erosion or cavitation. The system may also as later explained learn to recognise a unbalance state, e.g. via a neural network or a database linking a unbalance state with associated sound signal patterns or spectrums and possibly the pump type or model.
  • The method can further detect water hammering (or hydraulic shock), which is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to pump equipment. From a pump warranty perspective, it would be desirable if the method or system would be cable of detecting and logging every water hammer incident. Any phenomenon that manipulates mechanical energy cannot switch abruptly from one energy state to the next. This means that a sound cannot switch suddenly from silence to its maximum amplitude. A finite time, however brief, is needed, during which the sound can evolve to its new state, This transitional time is called the attack transient. By the same terminology, there is a release transient at the time during which the sound return back to silence. In general, the evolution of the amplitude of a sound can be divided into four basic parts—Attack, Delay, Sustain and Release. The evolution of the amplitude of a sound represented as an idealized line that links the positive peaks of its waveform is called the envelope of the wave. Using this terminology, the water hammer sound have an envelope curve like a piano with a frequency content below 1 kHz—the valve sound has en envelope like a trumpet with a frequency content from 1 kHz to 15 kHz. A signature for water hammer is a low frequency fast attack and long release sound. An algorithm for water hammer detection must perform both an frequency analysis and measure the envelope shape of the sound. The envelope curve can be found from the vibration or sound signal by bandpass filter the signal, absolute square the result followed by a lowpass filter.
  • Finally, the method can detect cavitation, which is the formation of bubbles or cavities in liquid, developed in areas of relatively low pressure around an impeller in a pump. The imploding or collapsing of these bubbles trigger intense shockwaves inside the pump, causing significant damage to the impeller and/or the pump housing. The sound of cavitation is per nature a very high frequency sound, and is not overlapping with the sound of the mechanical components of the motor and pump. A robust signature of cavitation can be obtained by measuring the energy of the spectrum from 10 kHz to 20 kHz. This can be performed in the time domain using a bandpass filter, and sum up the filtered signal, or in the frequency domain by performing a frequency transformation and sum up the component in the spectrum from 10 kHz to 20 Khz. The energy level will often be compared to a baseline, and when the baseline is exceeded by some levels, an cavitation alarm can be issued.
  • In a fourth step 840, the measured sound signals are processed according to the previous routine, i.e. run through an algorithm to estimate the rotational speed of the shaft and further analysed in accordance with one or more of the previously described analysis methods. The analysis may be carried out on the handheld communication device, on an external server or a combination thereof.
  • In a fifth step 850, the processed signals are compared to stored sound emanating conditions in order to identify the operational condition of the pump assembly and to identify any possible faults. The results of the analysis are displayed on the GUI to the service worker in a sixth step 860.
  • Based on the possible identified fault, the pump may be instructed in step 870 to not drive the pump assembly in rotational speed regions, where the pump assembly is faulty. This may prolong the time before parts need to be replaced and the lifetime of the pump assembly. The pump assembly may be instructed directly via the handheld communication device or via the external server.
  • Alternatively, the software app may instruct the service worker to replace the pump assembly or a part of the pump assembly in step 880. The software app may provide a guide on the GUI, which instructs the service worker on how to replace the identified damaged part.
  • The sound signals measured in step 830 and/or the processed signals 840 may be uploaded to an external server and stored in a library or server. Thereby, it is possible to provide a library of known sound measurements or processed spectrums, whereby the system may better learn to identify different types of faults and optionally dependent on the particular pump assembly type or model. The learning process can for instance be carried out via the use of a neural network. The sound measurements may for instance be linked to a certain types of identified faults, which may also encompass fault types, which have not previously been encountered. This can also facilitate the learning process. Thereby, the fault detection system will continuously be better at identifying fault conditions.
  • According to the invention, the fault detection system will sequentially carry out measurements or individual scans to identify individual fault states of the pump assembly, e.g. from the aforementioned fault states. This is illustrated in FIG. 14. In a first step 910, the system probes for a first fault state and in a following second step 920, the system probes for a second fault state. Thereby, the system sequentially carries out dedicated measurements and analyses to detect specific fault states for the pump assembly. This provides a more accurate measurement system, where individual fault states more accurately can be detected. This can for instance be carried out by first carrying out a first dedicated measurement to detect if the pump assembly has a particular fault state and then carrying out a second measurement to detect if the pump assembly as another particular fault state. It is also possible to sequentially scan for a plurality of different noise sources, where the individual noise sources are located in different frequency bands or ranges. It is also possible to sequentially run measurements through different signal processing algorithms in order to identify individual fault states.
  • The system advantageously at least probes for at least water hammering faults and cavitation faults in two consecutive measurements or scans. The associated noise from these faults are as previously described located in different frequency bands and may also require different signal processing steps in order to detect the faults. In an advantageous embodiment, the system probes for faults in a first predetermined frequency range, which is located in a first band near the kHz-range, and in a second predetermined frequency range, which is located in a second band in the kHz-range. These ranges are particularly suited for detection of water hammering and cavitation faults. Each of the probe steps may be run through separate dedicated signal processing algorithms associated with the particular fault state.
  • The fault detection system may as illustrated in FIG. 14 also carry out a third step 930, wherein the system probes for a third fault state. The system may of course also carry out additional steps for probing for additional fault steps.
  • Each of the probing steps 910-930 may comprise a number of the steps 810-880 from the individual fault detection methods as shown in FIG. 13, in particular steps 830-860.
  • The invention has been described with reference to advantageous embodiments. However, the scope of the invention is not limited to the illustrated embodiments, and alterations and modifications can be carried out without deviating from the scope of the invention, which is defined by the following claims.
  • Reference Numerals
    10, 110 Fault detection system
    15, 16  Pipes
    20, 20′, 110 Pump assembly
     21 Common housing
    22′ Pump housing
    123 Motor and rotor
    24′ Electrical motor housing
    124 Water hammer
    25′ Terminal box
    125 Impeller
    126 Bearings
    127 Water in pipe noise
    128 Cavitation
    129 Electronic
    30, 130 Handheld communication device/smart phone
    131 Signal processor/ micro computer
    32, 132 Microphone
    133 Display
    134 Input module
    135 Communication module
    136 Library
    137 Additional sensor(s)/Accelerometer
     40 Server/cloud
    210-290 Steps in algorithm for detecting shaft speed
    310-340 Parts of condition monitoring system
    426 Bearing
    440 Ball of bearing
    450 Crack/fault
    455 Inner raceway
    460 Outer raceway
    465 Retainer
    470 Sound signal
    480 Periodic structure
    510-550 Steps in envelope analysis
    610-640 Lines referring to fundamental frequency and other impact
    rates
    700-730 Steps in normalisation and Cepstral analysis
    810-880 Steps in fault detection method according to the invention
    910-930 Steps in sequentially probing for different fault states

Claims (15)

1. A method for detecting faults in a pump assembly including an electric motor and a pump by use of a handheld communication device running an app, the method comprising:
a) measuring a sound signal emanating from the pump assembly by use of a microphone connected to or implemented in the handheld communication device,
b) processing the measured sound signal, and
c) recognizing one emanating condition including a possible fault state by way of the processed sound signal, wherein the app automatically repeats at least steps b) and c) for a plurality of preselected frequency ranges in order to detect different fault states.
2. A method according to claim 1, wherein the method is carried out by carrying out a first measurement for a first duration of time for detecting a first fault state, and then carrying out a second measurement for a second duration of time for detecting a second fault state.
3. A method according to claim 2, wherein the first measurement and the second measurement are carried out at two different positions relative to the pump assembly.
4. A method according to claim 1, wherein the method is carried out by sequentially executing scans for individual fault states.
5. A method according to claim 4, wherein the method is carried out by carrying out a first scan in a first frequency range for detecting a first fault state and then carrying out a second scan in a second frequency range for detecting a second fault state.
6. A method according to claim 5, wherein the first frequency range is located in a first band near or in the kHz-range, advantageously up to 1 kHz, and the second frequency range is located in a second band in the kHz-range, advantageously 10-20 kHz.
7. A method according to claim 1, wherein steps b) and/or c) are carried out via a processing unit, such as a DSP, implemented in the handheld communication device and/or a software app installed on the handheld communication device.
8. A method according to claim 1, wherein fault states are identified among the group of: bearing faults, cavitation, dry running, water hammering and unbalance.
9. A method according to claim 8, wherein the method at least carries out sequential detection of water hammering and cavitation.
10. A method according to claim 1, wherein the processing step of step b) comprises the sub-steps of processing the measured sound signal so as to estimate the rotational speed of the rotating shaft and optionally normalizing the measured sound signals or processed sound signals and/or wherein the processing step of step b) optionally comprises the step of filtering out periodic signals of the processed signal, and wherein the recognition of step c) is carried out by use of the periodic signals.
11. A method according to claim 1, wherein the handheld communication device provides a feedback, e.g. an audial, visual or vibrational feedback, when an acceptable measurement position of the microphone has been found.
12. A fault detection system for detecting faults in a pump assembly, the fault detection system comprising:
a pump;
an electric motor;
a handheld communication device, which includes a microphone for measuring sound emanating from the pump assembly or electric motor;
a processing unit implemented in the handheld communication device;
a software app installed on the handheld communication device for processing a measured sound signal measured via said microphone;
a recognition module for recognizing a fault condition by way of the processed sound signal, wherein the fault detection system is configured to automatically repeat a sequence of fault detection steps by processing the measured sound signal and recognizing one emanating condition including a possible fault state in a plurality of preselected frequency ranges in order to detect different fault states.
13. A fault detection system according to claim 12, wherein the recognition module is implemented on the handheld communication device.
14. A fault detection system according to claim 12, wherein the processing unit and/or filter module comprises an analysis module chosen from the group of:
an RMS level detection module;
a spectral analysis module;
an envelope analysis module; or
a Cepstral analysis module.
15. A non-transitory computer readable storage medium storing one or more programs, which when executed by a handheld communication device cause the handheld communication device to perform a method for a pump assembly including an electric motor and a pump by use of the handheld, the method comprising:
a) measuring a sound signal emanating from the pump assembly by use of a microphone connected to or implemented in the handheld communication device,
b) processing the measured sound signal, and
c) recognizing one emanating condition including a possible fault state by way of the processed sound signal, wherein steps a)-c) are repeated for a plurality of different frequency ranges in order to detect different fault states.
US15/519,713 2014-10-15 2015-10-14 Method and system for detection of faults in pump assembly via handheld communication device Abandoned US20170241422A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/EP2014/072123 WO2015197141A1 (en) 2014-10-15 2014-10-15 METHOD AND SYSTEM FOR DETECTION OF FAULTS IN PUMP ASSEMBLY VIA HANDHELD COMMUNICATION DEVICe
EPPCT/EP2014/072123 2014-10-15
PCT/EP2015/073780 WO2016059112A1 (en) 2014-10-15 2015-10-14 Method and system for detection of faults in pump assembly via handheld communication device

Publications (1)

Publication Number Publication Date
US20170241422A1 true US20170241422A1 (en) 2017-08-24

Family

ID=51726509

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/519,685 Active 2034-11-14 US10316849B2 (en) 2014-10-15 2014-10-15 Method and system for detection of faults in pump assembly via handheld communication device
US15/519,713 Abandoned US20170241422A1 (en) 2014-10-15 2015-10-14 Method and system for detection of faults in pump assembly via handheld communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/519,685 Active 2034-11-14 US10316849B2 (en) 2014-10-15 2014-10-15 Method and system for detection of faults in pump assembly via handheld communication device

Country Status (4)

Country Link
US (2) US10316849B2 (en)
EP (2) EP3207256B1 (en)
CN (2) CN107076155B (en)
WO (2) WO2015197141A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173090A (en) * 2016-03-23 2017-09-28 三菱日立パワーシステムズ株式会社 Vibration measuring device for rotary machines, vibration measuring method for rotary machines, and program
JP2019203891A (en) * 2018-05-21 2019-11-28 和廣電子有限公司 Method and device capable of detecting abnormality of machine arm and pump in advance
USD890211S1 (en) 2018-01-11 2020-07-14 Wayne/Scott Fetzer Company Pump components
US10711788B2 (en) 2015-12-17 2020-07-14 Wayne/Scott Fetzer Company Integrated sump pump controller with status notifications
USD893552S1 (en) 2017-06-21 2020-08-18 Wayne/Scott Fetzer Company Pump components
JP2020125971A (en) * 2019-02-04 2020-08-20 株式会社ジェイテクト Inspection device and learning model for inspection generating device
FR3094421A1 (en) * 2019-03-29 2020-10-02 Wilo Intec PREDICTIVE MAINTENANCE PROCEDURE FOR A FLUID CIRCULATION PUMP
CN112049787A (en) * 2019-10-25 2020-12-08 华北电力大学(保定) Non-contact water pump fault detection method and system
US10871423B2 (en) * 2016-03-30 2020-12-22 Intel Corporation Internet of things device for monitoring the motion of oscillating equipment
US20210172432A1 (en) * 2019-12-09 2021-06-10 Ami Global Method for surveillance of air operated diaphragm pump and surveillance device
US20210216051A1 (en) * 2018-06-01 2021-07-15 Kawasaki Jukogyo Kabushiki Kaisha Apparatus unit
WO2021144552A1 (en) * 2020-01-14 2021-07-22 Edwards Limited Vacuum pump monitoring method and apparatus
JP2021162457A (en) * 2020-03-31 2021-10-11 国立研究開発法人産業技術総合研究所 Contact state monitoring method and system between mechanical elements
EP3833870A4 (en) * 2018-08-08 2021-10-20 Fluid Handling LLC Variable speed pumping control system with active temperature and vibration monitoring and control means
US20210344293A1 (en) * 2020-04-30 2021-11-04 Chauvin Arnoux Process for disaggregating charges using an electrical signature
US11202161B2 (en) 2006-02-07 2021-12-14 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
US11211043B2 (en) 2018-04-11 2021-12-28 Bongiovi Acoustics Llc Audio enhanced hearing protection system
CN113959555A (en) * 2020-07-20 2022-01-21 中国石油天然气股份有限公司 Method and device for intercepting vibration signal
US20220024038A1 (en) * 2018-12-24 2022-01-27 Abb Schweiz Ag Method for Diagnosing a Robot, Device and Server
CN114109800A (en) * 2021-12-03 2022-03-01 河南省高远公路养护技术有限公司 Hydraulic plunger pump fault diagnosis device and method based on sound recognition technology
US11425499B2 (en) 2006-02-07 2022-08-23 Bongiovi Acoustics Llc System and method for digital signal processing
US11431312B2 (en) 2004-08-10 2022-08-30 Bongiovi Acoustics Llc System and method for digital signal processing
CN115750428A (en) * 2022-12-29 2023-03-07 重庆成峰水务工程有限责任公司 Water pump vibration frequency detection system and detection method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865787B2 (en) 2016-12-06 2020-12-15 Pentair Flow Technologies, Llc Connected pump system controller and method of use
FR3059784A1 (en) * 2016-12-06 2018-06-08 Universite De Corse P Paoli DIAGNOSTIC INSTALLATION OF AN ELECTRIC MACHINE
EP3242036B1 (en) 2016-12-30 2020-10-28 Grundfos Holding A/S Method for detecting a condition of a pump unit
RU2726968C1 (en) * 2016-12-30 2020-07-17 Грундфос Холдинг А/С Sensor assembly and method of detecting damages in pumps and pump assembly comprising such sensor assembly
CN109959889A (en) * 2017-12-25 2019-07-02 通用电气公司 The monitoring method and system of magnetic resonance imaging system cold head working condition
DE102018201838A1 (en) * 2018-02-06 2019-08-08 Robert Bosch Gmbh Method for setting up and monitoring a system
CN110749372A (en) * 2018-07-18 2020-02-04 上海数深智能科技有限公司 Motor vibration movement intelligent diagnosis system and use method thereof
EP3618266A1 (en) * 2018-08-28 2020-03-04 Siemens Aktiengesellschaft Determining the rotational speed of a rotor on by vibration analysis
EP3647597B1 (en) * 2018-11-05 2021-11-03 Grundfos Holding A/S Sensor arrangement and method for monitoring a circulation pump system
CN109540560B (en) * 2018-11-30 2020-03-24 厦门大学 Absolute anti-aliasing multi-scale filtering method for complex harmonic dynamic process of rotating mechanical structure
WO2020113465A1 (en) * 2018-12-05 2020-06-11 Covestro Deutschland Ag Method, mobile device and system for detecting defects in insulation panel
DE102019218080A1 (en) * 2019-11-22 2021-05-27 Zf Friedrichshafen Ag Fault detection system
EP3825553B1 (en) * 2019-11-25 2024-01-10 Grundfos Holding A/S Method for controlling a water utility system using a user perception of noise
CN110985425A (en) * 2019-11-29 2020-04-10 联想(北京)有限公司 Information detection method, electronic equipment and computer readable storage medium
CN111852956B (en) * 2020-07-15 2021-11-19 南通大学 Micro-channel cavitation suppression system for rotating impeller
CN112460040A (en) * 2020-11-23 2021-03-09 中国华能集团清洁能源技术研究院有限公司 Pump sound wave monitoring system and method
EP4012523A1 (en) * 2020-12-10 2022-06-15 ABB Schweiz AG Monitoring industrial equipment with at least one rotating member
CN113250961B (en) * 2021-05-10 2023-05-23 广东葆德科技有限公司 Compressor fault detection method and system
CN113266569B (en) * 2021-05-10 2023-04-28 广东葆德科技有限公司 Noise-based fault detection method and system for compressor
CN113295263A (en) * 2021-05-19 2021-08-24 二重(德阳)重型装备有限公司 Self-generating vibration monitoring and alarming device
GB2607568A (en) * 2021-05-21 2022-12-14 Edwards Ltd Pump monitoring system and method
WO2023088931A1 (en) 2021-11-17 2023-05-25 Grundfos Holding A/S Method and apparatus for detecting hydraulic shock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315522A (en) * 1966-01-21 1967-04-25 Curtiss Wright Corp Acoustical analyser for indicating component malfunction of high-speed engines and the like
US6757665B1 (en) * 1999-09-28 2004-06-29 Rockwell Automation Technologies, Inc. Detection of pump cavitation/blockage and seal failure via current signature analysis
US20080234964A1 (en) * 2004-09-13 2008-09-25 Nsk Ltd. Abnormality Diagnosing Apparatus and Abnormality Diagnosing Method
US20100082275A1 (en) * 2007-03-23 2010-04-01 Grundfos Management A/S Method for the Detection of Errors in Pump Units
US20120111114A1 (en) * 2009-05-20 2012-05-10 Ksb Aktiengesellschaft Method and Apparatus for Determining an Operating Point of a Work Machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335485A (en) 1986-07-30 1988-02-16 チッソ株式会社 Granular potassium sulfate and manufacture
JP3046426B2 (en) 1991-11-19 2000-05-29 株式会社東芝 Monitoring equipment for plant equipment
JP2847643B2 (en) 1996-10-28 1999-01-20 新菱冷熱工業株式会社 Method for detecting abnormality of air conditioning fan and pump by acoustic method
US20060266913A1 (en) 2005-05-26 2006-11-30 Baker Hughes Incororated System, method, and apparatus for nodal vibration analysis of a device at different operational frequencies
JP5142033B2 (en) * 2008-07-04 2013-02-13 ミネベアモータ株式会社 Sealed motor
US8676387B2 (en) 2008-10-13 2014-03-18 General Electric Company Methods and systems for determining operating states of pumps
FI20095133A0 (en) * 2009-02-12 2009-02-12 Enercomp Oy Energy Efficiency Observer
US8840838B2 (en) * 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
DE102012104214A1 (en) 2012-05-15 2013-11-21 Xylem Ip Holdings Llc Pumping unit, pumping unit configuration system and method
US9541606B2 (en) 2012-12-17 2017-01-10 General Electric Company Fault detection system and associated method
CN103744021A (en) * 2013-12-23 2014-04-23 煤炭科学研究总院 Apparatus and method for motor fault monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315522A (en) * 1966-01-21 1967-04-25 Curtiss Wright Corp Acoustical analyser for indicating component malfunction of high-speed engines and the like
US6757665B1 (en) * 1999-09-28 2004-06-29 Rockwell Automation Technologies, Inc. Detection of pump cavitation/blockage and seal failure via current signature analysis
US20080234964A1 (en) * 2004-09-13 2008-09-25 Nsk Ltd. Abnormality Diagnosing Apparatus and Abnormality Diagnosing Method
US20100082275A1 (en) * 2007-03-23 2010-04-01 Grundfos Management A/S Method for the Detection of Errors in Pump Units
US20120111114A1 (en) * 2009-05-20 2012-05-10 Ksb Aktiengesellschaft Method and Apparatus for Determining an Operating Point of a Work Machine

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431312B2 (en) 2004-08-10 2022-08-30 Bongiovi Acoustics Llc System and method for digital signal processing
US11202161B2 (en) 2006-02-07 2021-12-14 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
US11425499B2 (en) 2006-02-07 2022-08-23 Bongiovi Acoustics Llc System and method for digital signal processing
US10711788B2 (en) 2015-12-17 2020-07-14 Wayne/Scott Fetzer Company Integrated sump pump controller with status notifications
US11486401B2 (en) 2015-12-17 2022-11-01 Wayne/Scott Fetzer Company Integrated sump pump controller with status notifications
JP2017173090A (en) * 2016-03-23 2017-09-28 三菱日立パワーシステムズ株式会社 Vibration measuring device for rotary machines, vibration measuring method for rotary machines, and program
US10871423B2 (en) * 2016-03-30 2020-12-22 Intel Corporation Internet of things device for monitoring the motion of oscillating equipment
USD1015378S1 (en) 2017-06-21 2024-02-20 Wayne/Scott Fetzer Company Pump components
USD893552S1 (en) 2017-06-21 2020-08-18 Wayne/Scott Fetzer Company Pump components
USD890211S1 (en) 2018-01-11 2020-07-14 Wayne/Scott Fetzer Company Pump components
USD1014560S1 (en) 2018-01-11 2024-02-13 Wayne/Scott Fetzer Company Pump components
US11211043B2 (en) 2018-04-11 2021-12-28 Bongiovi Acoustics Llc Audio enhanced hearing protection system
JP2019203891A (en) * 2018-05-21 2019-11-28 和廣電子有限公司 Method and device capable of detecting abnormality of machine arm and pump in advance
US20210216051A1 (en) * 2018-06-01 2021-07-15 Kawasaki Jukogyo Kabushiki Kaisha Apparatus unit
EP3833870A4 (en) * 2018-08-08 2021-10-20 Fluid Handling LLC Variable speed pumping control system with active temperature and vibration monitoring and control means
US20220024038A1 (en) * 2018-12-24 2022-01-27 Abb Schweiz Ag Method for Diagnosing a Robot, Device and Server
US11604170B2 (en) 2019-02-04 2023-03-14 Jtekt Corporation Inspection device and inspection learning model generation device
JP7283096B2 (en) 2019-02-04 2023-05-30 株式会社ジェイテクト Inspection device and learning model generation device for inspection
JP2020125971A (en) * 2019-02-04 2020-08-20 株式会社ジェイテクト Inspection device and learning model for inspection generating device
FR3094421A1 (en) * 2019-03-29 2020-10-02 Wilo Intec PREDICTIVE MAINTENANCE PROCEDURE FOR A FLUID CIRCULATION PUMP
CN112049787A (en) * 2019-10-25 2020-12-08 华北电力大学(保定) Non-contact water pump fault detection method and system
US20210172432A1 (en) * 2019-12-09 2021-06-10 Ami Global Method for surveillance of air operated diaphragm pump and surveillance device
WO2021144552A1 (en) * 2020-01-14 2021-07-22 Edwards Limited Vacuum pump monitoring method and apparatus
JP2021162457A (en) * 2020-03-31 2021-10-11 国立研究開発法人産業技術総合研究所 Contact state monitoring method and system between mechanical elements
JP7458065B2 (en) 2020-03-31 2024-03-29 国立研究開発法人産業技術総合研究所 Contact state monitoring method and system between machine elements
FR3109824A1 (en) * 2020-04-30 2021-11-05 Chauvin Arnoux Charge disaggregation method using an electrical signature
US20210344293A1 (en) * 2020-04-30 2021-11-04 Chauvin Arnoux Process for disaggregating charges using an electrical signature
US11777432B2 (en) * 2020-04-30 2023-10-03 Chauvin Arnoux Process for disaggregating charges using an electrical signature
CN113959555A (en) * 2020-07-20 2022-01-21 中国石油天然气股份有限公司 Method and device for intercepting vibration signal
CN114109800A (en) * 2021-12-03 2022-03-01 河南省高远公路养护技术有限公司 Hydraulic plunger pump fault diagnosis device and method based on sound recognition technology
CN115750428A (en) * 2022-12-29 2023-03-07 重庆成峰水务工程有限责任公司 Water pump vibration frequency detection system and detection method

Also Published As

Publication number Publication date
US10316849B2 (en) 2019-06-11
WO2016059112A1 (en) 2016-04-21
EP3207256C0 (en) 2023-11-29
CN107076157B (en) 2020-08-11
CN107076157A (en) 2017-08-18
CN107076155B (en) 2020-04-21
EP3207258A1 (en) 2017-08-23
EP3207256B1 (en) 2023-11-29
US20170248142A1 (en) 2017-08-31
EP3207256A1 (en) 2017-08-23
CN107076155A (en) 2017-08-18
WO2015197141A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US10316849B2 (en) Method and system for detection of faults in pump assembly via handheld communication device
JP6111347B2 (en) Diagnostic method and apparatus for plain bearing
Al-Obaidi Experimental comparative investigations to evaluate cavitation conditions within a centrifugal pump based on vibration and acoustic analyses techniques
US10670657B2 (en) System for monitoring operation status of electric machine and mobile phone therefor and server-based system using the same
Mousmoulis et al. Application of Spectral Kurtosis on vibration signals for the detection of cavitation in centrifugal pumps
CA2874991A1 (en) Methods and apparatuses for defect diagnosis in a mechanical system
JP2018179735A (en) Abnormality diagnostic method and abnormality diagnostic device for rotary component
CN109883703A (en) It is a kind of to be concerned with the fan bearing health monitoring diagnostic method of cepstral analysis based on vibration signal
EP3469216A1 (en) Pump assembly, method and computer program
JP4580601B2 (en) Cavitation diagnostic equipment for hydroelectric power generation equipment
WO2015011791A1 (en) Abnormality detection evaluation system
JP2011180082A (en) Diagnostic method and device of sliding bearing
EP1686443A1 (en) Methods, systems, and computer program products for implementing condition monitoring activities
Rodriguez et al. Comparative study between laser vibrometer and accelerometer measurements for mechanical fault detection of electric motors
JP7201413B2 (en) Analyzer and analysis program
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
Tossavainen Sound based fault detection system
RU2769990C1 (en) Method for vibration diagnostics of dc electric motors using the wavelet analysis method
Stephen A Review about the Diagnostics of Rotodynamic Pump using Vibro-Acoustic Method
Klausen et al. Paper D Multi-band Identification for Enhancing Bearing Fault Detection in Variable Speed Conditions

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GRUNDFOS HOLDING A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNK, FLEMMING;MOGENSEN, CASPER LYNGESEN;AARESTRUP, JAN CAROEE;SIGNING DATES FROM 20170807 TO 20170830;REEL/FRAME:043859/0453

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION