US20170236545A1 - High performance robotic optical storage system - Google Patents
High performance robotic optical storage system Download PDFInfo
- Publication number
- US20170236545A1 US20170236545A1 US15/046,395 US201615046395A US2017236545A1 US 20170236545 A1 US20170236545 A1 US 20170236545A1 US 201615046395 A US201615046395 A US 201615046395A US 2017236545 A1 US2017236545 A1 US 2017236545A1
- Authority
- US
- United States
- Prior art keywords
- disc
- enclosure
- based media
- optical
- media
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/22—Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
- G11B17/225—Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records wherein the disks are transferred from a fixed magazine to a fixed playing unit using a moving carriage
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/02—Details
- G11B17/038—Centering or locking of a plurality of discs in a single cartridge
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/22—Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/22—Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
- G11B17/228—Control systems for magazines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/02—Details
- G11B17/04—Feeding or guiding single record carrier to or from transducer unit
Definitions
- an apparatus includes one or more disc media cassettes configured to store multiple disc-based media. Multiple disc drives are configured to read and write data to the multiple disc-based media.
- a robotic delivery device is configured to transport a selected disc-based media to and from at least one disc drive of the multiple disc drives, and to transport the selected disc-based media directly to a spindle on the at least one disc drive
- FIG. 1 is a high performance optical storage system, according to an embodiment
- FIG. 2 shows entry/removal of disc cassettes with optical discs and optical disc drives into/out from an example rack enclosure, according to an embodiment
- FIG. 3 is an example disc cassette for holding and retrieval of optical discs, according to an embodiment
- FIGS. 4A-F show retrieval of an optical disc from the cassette shown in FIG. 3 by the disc retrieval unit (DRU) including a kicker device and disc gripper device, according to an embodiment;
- DRU disc retrieval unit
- FIG. 5 is an isolated view of the DRU and an optical disc being held by the disc gripper device, according to an embodiment
- FIG. 6 is a close-up view of a disc carrier portion of the DRU and an optical disc being gripped by the disc gripper device, according to an embodiment
- FIG. 7 is a close-up view of a kicker tip of the DRU, according to an embodiment
- FIGS. 8A-E show progression for loading of an optical disc into a disc drive from the DRU, according to an embodiment
- FIG. 9 shows control circuitry and electronics for the high performance optical storage system, according to an embodiment
- FIG. 10 illustrates a block diagram for a process for disc drop off by the high performance optical storage system, according to one embodiment.
- FIG. 11 illustrates a block diagram for a process for disc pickup by the high performance optical storage system, according to one embodiment.
- One or more embodiments integrates specialized high speed robotics, robust mechanical design, performance enhanced drives and a high failure tolerance erasure code to achieve low access times.
- the system includes components that provide high storage density and performance. Achieving high speed operation requires rapid acceleration, high move velocity and rapid pick-up, drop-off, drive spin-up, and initialization operations. High storage density requires tight disc spacing, and thus highly accurate and repeatable positioning within the system.
- FIG. 1 is a high performance optical storage system 100 , according to an embodiment.
- the high performance optical storage system 100 includes an enclosure 110 , a moveable arm 120 connected to a disc retrieval unit (DRU) 125 , multiple optical disc drives 130 , multiple optical disc-based media (discs) 140 , disc cassettes 150 , and tracks 160 and 165 that hold the disc cassettes 150 in place.
- the enclosure 110 provides a stable platform and protection from the environment.
- the enclosure includes filter material connected to cooling fans (not shown) and a top enclosure (not shown for internal viewing).
- the enclosure may be sized as a typical 19 inch rack mounted device with rack mounting connectors.
- the enclosure 110 may have a greater capacity of optical disc drives 130 , disc cassettes 150 , and thus, discs 140 .
- the disc cassettes 150 are placed within the enclosure 110 on either side (e.g., left and right sides) of the enclosure 110 .
- additional disc cassettes 150 and discs 140 space is available adjacent the disc drives 130 (e.g., towards the front of the enclosure 110 ).
- more disc drives 130 may be positioned adjacent each other on the left and right side of the enclosure 110 when more available space for disc drives 130 is available.
- the moveable arm 120 moves through motors and gears on tracks within the enclosure 110 to move the DRU 125 from the back of the enclosure 110 to the front of the enclosure 110 .
- the DRU 125 is moveable to either side of the enclosure 110 to retrieve a disc 140 for placement in a disc drive 130 or for replacement back to a disc cassette 150 .
- the components of the high performance optical storage system are described in further detail below.
- FIG. 2 shows entry/removal of disc cassettes 150 with discs 140 and disc drives 130 into/out from an example rack enclosure 110 , according to an embodiment.
- the disc drives 130 are commonly mounted to a carrier assembly such that they can be easily removed from one end of the enclosure 110 for maintenance. This way, the set of disc drives 130 may plug into a backplane in the carrier.
- the disc cassettes 150 are modular units that hold many optical discs 140 (e.g., 50 discs, etc.) and may be removed through an end of the enclosure 110 .
- the disc drives 130 are all positioned on one side of the enclosure 110 . This allows all the disc drives 130 to be mounted in a single carrier and still allow a central support at the end of the enclosure 110 .
- the enclosure 110 may have different disc cassette 150 capacities on either side of the enclosure 110 . Using cassette 150 assemblies as shown allows for a single part to be utilized on both sides of the enclosure 110 to create different storage capacities as desired.
- FIG. 3 is an example disc cassette 150 for holding/storing and retrieval of optical discs 140 , according to an embodiment.
- the discs 140 are contained in the disc cassettes 140 within a slot (or channel, groove, etc.) 355 .
- the disc cassettes 150 hold the discs coaxially in a vertical orientation.
- the discs 140 are spaced very tightly, for example 1.82 mm apart.
- Thin ribs e.g., 0.4 mm form the slot 355 , separate the discs 140 and provide guidance when removing a disc 140 from a particular location or returning it to the disc cassette 150 .
- the ribs are designed to limit lateral contact with a disc 140 surface to that portion of the outer edge, which is free of data (i.e., does not contain data).
- the cassette has features that allow the DRU 125 ( FIG. 1 ) to be positioned to within +/ ⁇ 0.1 mm so a disc selector or kicker device 420 ( FIGS. 4A-F ) can lift one disc 140 into a disc gripper device 410 without disturbing adjacent discs 140 .
- the disc cassette has additional features or track connectors 360 , 365 and 370 , 375 that position it with respect to a mounting track 160 / 165 ( FIG. 1 ) on the enclosure 110 bottom portion.
- the track connectors 365 and 370 have a “dove tail” feature that fits within the track portions 165 and 160 , respectively.
- the track connectors are spring-like or flexible for gripping the mounting tracks 160 / 165 .
- the disc cassette 150 contacts the outer rim of the disc 140 over an angle spanning substantially less than 180 degrees (see lines 390 ) when the disc is at home in a disc cassette 150 .
- the cassette has a shorter lip 385 to the center of the enclosure 110 ( FIG. 1 ), and a taller lip 380 at the outside of the enclosure 110 .
- an optional disc retainer bale 395 may be employed limiting the motion of the discs 140 when not being accessed.
- the disc retainer bale 395 is be moved out of the way (e.g., by the disc gripper device 410 ( FIGS. 4A-F ) when accessing a disc 140 .
- the disc cassette 150 includes an optional disc retainer bale 395 .
- the disc retainer bale 395 is spring-loaded.
- FIGS. 4A-F show retrieval of an optical disc 140 from the disc cassette 150 shown in FIG. 3 by the DRU 125 including a kicker device 420 and disc gripper device 410 , according to an embodiment.
- the disc cassette 150 is designed to provide disc 140 access motions in both the vertical and horizontal directions as show in FIGS. 4A-F . That is, the disc 140 is lifted above the inner lip 385 ( FIG. 3 ) and then translated to the center of the enclosure 110 within the DRU 125 .
- the DRU 125 is positioned by the robotics for alignment across from the selected disc 140 .
- FIG. 4A the disc cassette 150 is designed to provide disc 140 access motions in both the vertical and horizontal directions as show in FIGS. 4A-F . That is, the disc 140 is lifted above the inner lip 385 ( FIG. 3 ) and then translated to the center of the enclosure 110 within the DRU 125 .
- the DRU 125 is positioned by the robotics for alignment across from the selected disc 140 .
- the disc gripper device 410 is moved laterally from the center of the DRU 125 to a position vertically above the selected disc 140 . If there is a restraint mechanism on the cassette (e.g., disc retainer bale 395 ( FIG. 3 ), it is moved out of the way by the disc gripper device 410 .
- a restraint mechanism on the cassette e.g., disc retainer bale 395 ( FIG. 3 )
- the disc kicker device 420 is rotated by the robotic controller of the DRU 125 until it contacts the edge of the disc 140 .
- the disc kicker device 420 is further rotated by the robotic controller remaining in contact with edge of the disc 140 .
- the shape of the disc cassette 150 constrains the disc 140 to move it vertically by lifting the disc 140 into the disc gripper device 410 .
- the edge of the disc 140 near the outside of the enclosure 110 is constrained against out-of-plane motion by the slot 355 ( FIG. 3 ) in the disc cassette 150 .
- the disc gripper device 420 closes jaws 415 ( FIG.
- the disc kicker device 420 is retracted by the robotic controller of the DRU 125 to the central position.
- the disc gripper device 410 is returned to the central position within the DRU 125 , moving the disc 140 into the travel position.
- the angle of contact subtended by the disc cassette 150 must be limited to allow for this motion of the disc 140 .
- the extension of the disc cassette 150 slot 355 above the storage contact point of the disc 140 provides a vital out of plane motion restraint for the disc 140 .
- the slot 355 further operates as a guide when a disc 140 is returned to the disc cassette 150 .
- the slot 355 pitch is slightly larger than the thickness of a disc 140 . Tighter spacing allow for more discs 140 to fit in the enclosure 110 . This spacing is limited by the disc cassette 150 materials to maintain the disc 140 orientation.
- the disc cassette is preferably made by injection molding. However, other molding techniques may also be employed.
- the disc cassette 150 includes “dove tails” on the track connectors 365 and 370 disposed along the bottom to facilitate position registration and to securely hold the disc cassettes 150 in place, while allowing for the cassettes to be inserted and extracted from the enclosure 110 by sliding out an end of the enclosure 110 .
- FIG. 5 is an isolated view of the DRU 125 and an optical disc 140 being held by the jaws 415 of the disc gripper device 410 , according to an embodiment.
- the DRU 125 is configured in a “T” configuration, with a crossbar or arm 120 that travels above the discs 140 and has a central portion attached beneath the arm 120 .
- the arm 120 moves longitudinally along the center of the enclosure 110 , driven by a motor 510 that travels with the arm 120 .
- the motor 510 drives the arm 120 via pinion attachments 520 on both ends of the arm 120 that engage racks on both sides of the enclosure 110 .
- the DRU 125 is supported on bearings at either end of the arm 120 .
- the mechanical arrangement thus drives both ends in concert along the racks of the enclosure 110 .
- This arrangement prevents the DRU 125 from binding due to bearing friction. It also aids in keeping the DRU 125 rigid and limits twisting motion, which allows for tight tolerances on the disc 140 spacing.
- the DRU 125 includes a wiring control connector 530 that communicate control commands to the controlling circuitry of the DRU 125 .
- FIG. 6 is a close-up view of a disc carrier portion of the DRU 125 and a disc 140 being gripped by the disc gripper device 410 , according to an embodiment.
- the DRU 125 includes the disc gripper device 410 , which holds the disc 140 by both surfaces in the edge region.
- the disc gripper device 410 travels laterally on the arm 120 , such that it can be positioned over discs 140 on either side of the enclosure 110 ( FIG. 1 ), in the center for travel, and at the dropoff/pickup positions at the disc drives 130 .
- the central portion of the DRU 125 which is a disc carrier including the disc kicker device 420 that lifts the discs 140 out of the disc cassette 150 using a motor 610 , control electronics, sensors 630 , and a disc guide (groove or slot) 620 .
- the disc guide 620 constrains the bottom edge of the disc 140 when the disc gripper device 410 is positioned in the carrier. This keeps the disc 140 stable during high speed accelerations and from windage during high speed motion of the arm 120 , allowing the DRU 125 to move a disc 140 from one end of the enclosure 110 to the other in under 1 second.
- the disc guide 620 has a capture region at either side to provide tolerance for deviations of the disc 140 orientation from perfectly vertical when moving the disc 140 into the carrier.
- a further aspect of the disc guide 620 is that it also acts as a guide for the disc kicker device 420 , keeping the disc 140 and disc kicker device 420 properly registered to each other.
- the DRU 125 does not require a traveling lateral power connection (Flex cable, wire harness, etc.) to function.
- the DRU 125 is designed such that power is only required at discrete lateral positions of the disc gripper device 410 . These discrete lateral positions are located at the left and right dropoff/pickup positions. Power is provided here by contacts, such as pushpins, that the laterally moving portion comes into contact with at the stated positions. This operation is facilitated by the disc gripper device 410 being powered only to perform grip or un-grip operations. No power is required when holding a disc 140 .
- the disc 140 media may be single sided or dual sided.
- the disc drives 130 ( FIG. 1 ) may have single sided or dual sided capable. It may be that single side disc drives 130 are used in combination with dual side media.
- the DRU 125 may include a mechanism to flip the disc 140 about a vertical axis to orient the desired side of the media for drive operations. In one example, the flip operation may occur while transporting the media, thus has limited or no impact on performance. In another example, a separate mechanism flips the discs 140 . In this example, the DRU 125 delivers a disc 140 to the flipper and retrieves it after it has been flipped. Another example includes orienting a subset of the disc drives 130 for operating on one side of the discs 140 , and the remaining drives for operating on the other side of the discs 140 . This avoids the need to perform a flip operation.
- FIG. 7 is a close-up view of a kicker tip 710 for the disc kicker device 420 of the DRU 125 , according to an embodiment.
- 1.2 mm thick discs 140 are packed on 1.82 mm centers in the disc cassette 150 , leaving 0.62 mm between discs 140 .
- a disc 140 must be rapidly selected from the disc cassette 140 , secured by the disc gripper device 410 ( FIGS. 4A-F ), and moved onto the DRU 125 ( FIG. 1 ) for transport to a disc drive 130 without disturbing or damaging adjacent discs 140 .
- discs 140 must also be returned to their slots 355 after the requested data has been read.
- a motor 610 ( FIG. 6 ) actuated disc kicker device 420 on the disc carrier of the DRU 125 is swung back and forth to contact discs 140 on either side of the enclosure 110 ( FIG. 1 ).
- the tip 710 of the disc kicker device 420 blade are somewhat wider than the disc 140 and are shaped to capture the disc 140 edge, thus preventing the disc 140 from slipping off the tip 710 .
- blade tips 710 with a concave contour or a shallow trapezoidal groove may be employed to fulfill this objective.
- FIGS. 8A-E show progression for loading of an optical disc 140 into a disc drive 130 from the DRU 125 ( FIG. 1 ), according to an embodiment.
- the disc gripper device 410 is designed to securely hold a disc 140 using the jaws 415 with sufficient force to allow rapid acceleration without the disc 140 slipping, and to enable rapid gripping and releasing of the disc 140 .
- the disc 140 surface must not be damaged during these operations.
- a further aspect of the disc gripper device 410 is that it must not drop a disc 140 on power loss, thus power is required only to transition between gripped and un-gripped states.
- the disc gripper device 410 jaws 415 are shaped so as to contact only the non-data portion of the outer diameter of a disc 140 . This may be facilitated by gripping the disc 140 edge over an angle of about 35 degrees.
- the disc gripper device 410 is mounted on a high speed translation mechanism on the arm 120 , such as a lead screw.
- the disc gripper device 410 can translate laterally such that it can access discs 140 on both sides of the enclosure 110 ( FIG. 1 ), and to the disc mount position in the disc drives 130 .
- the disc gripper device 410 mechanism may be provided with a stage for rotating the disc 140 about a vertical axis to allow the use of double-sided media with single-sided disc drives 130 .
- a second disc gripper device (not shown) is positioned with rotation capability at fixed location in the enclosure 110 . The disc 140 is delivered to the second disc gripper device, and the first disc gripper releases the disc 140 and moves away.
- the second disc gripper device rotates the disc through 180 degrees, and then the first disc gripper device (e.g., disc gripper device 410 ) returns and retrieves the disc 140 from the second disc gripper device.
- the second disc gripper device may be positioned on the bottom of the enclosure 110 and rotate the disc 140 about a vertical axis, or it may be mounted to a side of the enclosure 110 and rotate the disc 140 about a horizontal axis.
- the DRU 125 may move a second disc 140 between the storage area and the disc drives 140 while the first disc 140 is being flipped.
- direct robotic delivery and pickup of media to and from a mount position at the optical drive spindle 810 is implemented.
- the mount position is defined as where the center of the optical disc is displaced in the plane of the disc from the center of the spindle by less than an inner diameter of the optical disc.
- a further advantage is that high density disc packing requires tight tolerance in the disc retrieval from the disc drive 130 .
- Tray and slot loaders have significant slop in the position of the disc when presented for pickup.
- a disc drive 130 includes a modified conventional disc drive that is customized to provide direct access operations.
- An opening is provided in the drive case to allow the disc gripper device 410 to move to the spindle 810 mount position.
- the disc gripper device 410 jaws 415 clamping mechanism is used to secure the disc 140 after the disc 140 is unclamped from the spindle 810 .
- the hub mechanism of the disc drive 130 is shock mounted, and this provides sufficient tolerance to allow the disc gripper device 410 to securely grip a disc 140 over a range of mounted disc positions, and to allow the spindle clamp to grip a disc 140 being delivered over a range of positions.
- the compliance provided by the hub mechanism shock mounting allows the disc gripper device 410 to be positioned such that there is a slight vertical interference between the top of the disc 140 and a disc sense mechanism of the disc gripper 410 when it is in its limiting “disc present” position. This insures that the disc 140 will have a vertical net force against a disc sense mechanism in its limit position when the disc gripper device 410 is actuated at the disc drive 130 .
- the implementation of the direct access customized disc drive 130 provides for mounting/unmounting of a disc 140 to be accomplished in about 1 second.
- the DRU 125 moves to the longitudinal position for dropoff at the chosen disc drive 130 within the enclosure 110 .
- the disc gripper device 410 then translates laterally to the mount position, and holds the disc 140 until the clamp mechanism has secured the disc 140 on the spindle 810 .
- the disc gripper 410 releases the disc 140 and retreats back to a centered position of the DRU 125 .
- the disc 140 may be retrieved from the disc drive 130 by securely gripping the disc 140 by the jaws 415 of the disc gripper device 410 while it is held on the optical drive spindle 810 (after it has stopped rotating and before the disc drive 130 clamp has released it) so that the disc 140 is always under positive control.
- the disc drive 130 it is beneficial for the disc drive 130 to include constraints, which allow the spindle 810 clamp to fail safe. This means that if the spindle 810 clamp releases the disc 140 inadvertently, the disc 140 can either be re-clamped by the spindle 810 , or delivered to the disc gripper 410 . During load, the disc gripper 410 could release prior to the spindle 810 clamp being engaged, and during pickup the spindle 810 clamp can release before the gripper 410 engages.
- the disc drives 130 are positioned such that the lateral disc dropoff/pickup position of the disc gripper device 410 at the disc drives 130 differs only slightly ( ⁇ 1 cm) from the lateral position for disc dropoff/pickup in the disc cassette 150 ( FIGS. 4A-F ) on the same side of the enclosure 110 ( FIG. 1 ) as the disc drives 130 .
- the disc drive 130 is vertically positioned such that the disc drive 130 mount position aligns with a disc 140 in the disc gripper device 410 .
- a shadow mask is incorporated at the bottom edge of the disk drive 130 that allows the DRU 125 to be longitudinally positioned to within + ⁇ 0.1 mm.
- a further aspect includes the use of optical disc drives 130 with high speed initialization features.
- Such a disc drive 130 significantly reduces the time from disc 140 load to first byte of data. In standard disc drives, this operation can take 10s of seconds as the drive performs operations such as identifying the media type, reading bad block tables or other initialization data off the media, etc.
- an inventory manager (described below) is implemented that stores and transmits initialization information to the disc drive 130 on media load, eliminating the time required by the disc drive 130 to read this information from the disc 140 . This reduces the initialization time to around 1 second.
- FIG. 9 shows control circuitry and electronics 900 for the high performance optical storage system 100 ( FIG. 1 ), according to an embodiment.
- optical sensors of the sensor set 920 are used in the system to provide contactless position information for various moving components.
- optical sensors of the sensor set 920 on the disc carrier of the DRU 125 combined with the features of the disc cassettes 150 and the disc drives 130 allow the disc gripper device 410 to be positioned to within + ⁇ 0.1 mm.
- Other sensors of the sensor set 920 are used to sense location of the disc kicker device 420 , whether a disc 140 is in the disc gripper device 410 , the lateral position of the disc gripper device 410 , etc.
- Sensors of the sensor set 920 may be used in concert with features on the disc cassettes 150 to facilitate positioning of the DRU 125 at disc 140 locations. Other examples include referring to the discs 140 themselves. Similarly, features may be disposed on the enclosure 110 or the disc drives 130 to facilitate accurate positioning of the DRU 125 when loading and unloading discs 140 from the disc drives 130 . In another example, transmissive photo interrupter sensors may be utilized for position state sensing of the various components. The motors used in the system may be of the brushless DC type, optionally with shaft encoders to aid in position determination.
- the motors may include the DRU 125 longitudinal motor(s) 941 , the gripper device 410 lateral motor(s) 942 , the gripper device 410 motor 943 , the disc kicker device 420 motor(s) 944 , etc.
- control electronics shown in the control circuitry and electronics 900 are partitioned into a robotic controller (the disc carrier controller 930 ) on the disc carrier and an enclosure controller 910 otherwise mounted in the enclosure 110 ( FIG. 1 ).
- the latter does not move, and includes a CPU 912 , memory 911 and associated components for running the control software.
- the control circuitry and electronics 900 includes local storage for holding the operating system and the control software, although in another example may instead boot over a network and load the necessary software, or even boot off the optical media of a disc 140 .
- flash memory storage is implemented.
- the enclosure controller 910 includes both the external interface to a host system or network as well as interfaces (SATA 913 , storage interface 916 ) to the disc drives 130 , collectively shown as a set 917 .
- the external interface may include a network interface, such as Ethernet.
- the network interface would include two connections, such as Ethernet connections 914 and 915 with each directed to a separate switch.
- a third external interface might be used for system control and monitoring.
- the enclosure controller 910 is responsive to commands over the external interface to load a disc 140 , read and write data, and perform other operations.
- the enclosure controller 910 communicates with the robotic controller (disc carrier controller 930 ) to send commands, such as to load a selected disc 140 ( FIG. 1 ) in a selected disc drive 130 .
- the enclosure controller 910 also includes a data buffer for holding read and write data during data transfers.
- the robotic controller manages the robotic activities of the high performance optical storage system 100 , including controlling the motors, reading optical and other sensor data and communicating state information with the enclosure controller 910 .
- the robotic controller communicates with the enclosure controller 910 over a serial interface.
- the interface may be wired, such as universal serial bus (USB) over a flex cable, or wireless, such as infrared data association (IRDA), BLUETOOTH®, etc.
- USB universal serial bus
- IRDA infrared data association
- BLUETOOTH® wireless
- the high performance optical storage system 100 may have been powered down in an unknown state, such as by an unintended power loss.
- the high performance optical storage system 100 must determine if a disc 140 is in the disc gripper device 410 and if so, position the disc gripper device 410 within the drive carrier prior to a longitudinal move.
- the sensors set 920 includes sensors to detect if the disc gripper device 410 is centered, or to the left or right of center. Thus, the disc gripper device 410 can be moved directly to the center position.
- sensors of the sensor set 920 are provided to determine if the disc kicker device 420 is centered, or to the left or right of center. Once both disc gripper device 410 and disc kicker device 420 are centered, the DRU 125 may be moved longitudinally. All these functions are accomplished through means of the set of sensors 920 . In one embodiment, optical sensors are used to make the position determinations.
- the high performance optical storage system 100 determines if discs 140 are located within any of the disc drives 130 .
- the disc drives 130 may be queried to see if a disc 140 is loaded and the spindle 810 clamped. It is possible for a disc 140 to remain in a disc drive 130 but not be clamped by the spindle 810 . This can be tested by attempting a clamp operation.
- an inventory manger is implemented that includes metadata for each disc 140 in the high performance optical storage system 100 .
- the metadata may include the media type, bad block table or other initialization information, location of the disc within the enclosure 110 , etc.
- the high performance optical storage system 100 can transmit this initialization information to a disc drive 130 upon the load operation, which substantially shortens the startup time.
- the inventory manager also queries the disc drive 130 on unload to obtain updates to the media.
- metadata such as changes in the bad block information
- nonvolatile storage which may be external to the high performance optical storage system 100 .
- Any system metadata can be periodically flushed to specific locations on the media in the library to create self-described system state, such as for relocating a system.
- the metadata may be stored on other nonvolatile media in the enclosure controller 910 .
- the high performance optical storage system 100 software includes a library executive, which is responsive to read, write, mount and dismount commands from a host system.
- the library executive forwards mount and dismount commands and information to the disc carrier controller 930 .
- the mount command information includes the disc location in the disc cassette 150 to select and the disc drive 130 to load.
- the dismount command information includes information on the disc drive 130 to unload and the target location for storing the disc 140 in the disc cassette 150 .
- FIG. 10 illustrates a block diagram for a process 1000 for disc 140 drop off by the high performance optical storage system 100 , according to one embodiment.
- the dropoff and pickup of discs 140 ( FIG. 1 ) directly at the spindle 810 ( FIGS. 8A-E ) may be facilitated by adjusting the operational timing of the disc drive 130 .
- the operation of engaging the spindle clamp spins up the spindle motor as soon as the clamp engages.
- unloading the disc generally disengages the spindle clamp once the spindle motor has stopped spinning.
- the dropoff operation involves the following.
- the disc gripper device 410 moves the disc 140 into the dropoff position. Once this is achieved, in block 1020 the spindle clamp may be engaged. At this point, the disc 140 is still secured in the disc gripper device 410 . The disc is released from the disc gripper device 410 and the disc gripper device 430 is retracted. In block 1030 it is determined whether the spindle clamp is successfully engaged or not. If the spindle clamp is not successfully engaged, the process 1000 returned to block 1020 . Otherwise, process 1000 proceeds to block 1040 . In block 1040 where the disc gripper device 410 is un-gripped and retracted. In block 1050 it is determined whether the disc 140 was successfully un-gripped and retracted.
- process 1000 returns to block 1040 .
- the DRU 125 is free to perform an operation on a different disc 140 .
- the spindle motor may be spun up in block 1060 . In one example, it may be desirable to delay the spin up until the disc gripper device 410 has retracted if there are clearance issues.
- FIG. 11 illustrates a block diagram for a process 1100 for disc pickup by the high performance optical storage system 100 , according to one embodiment.
- the pickup process 1100 is roughly the inverse sequence to the dropoff process 1000 ( FIG. 10 ).
- the spindle motor is spun down.
- block 1140 it is determined whether the disc gripper device 410 has moved to the pickup location or not.
- process 1100 returns to block 1130 and continues to attempt to move to the pickup location. Otherwise process 1100 proceeds to block 1150 . In block 1150 , the disc gripper device 410 then uses the jaws 415 to clamp the disc 140 . In block 1160 it is determined whether the jaws 415 successfully clamped the disc 140 or not. If the jaws did not successfully clamp the disc 140 , process 1100 returns to block 1140 . Otherwise, process 1100 proceeds to block 1170 . In block 1170 once the grip is complete, the spindle clamp is disengaged. In block 1180 it is determined whether the spindle clamp has been successfully disengaged or not.
- process 1100 returns to block 1170 . Otherwise, process 1100 proceeds to block 1190 where the disc gripper device 410 can retract with the disc 140 . If there is no interference issue, then the disc gripper device 410 may be moved to the pickup position prior to the spindle having stopped.
- aspects of the present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration
- the computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention
- the computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device.
- the computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
- a non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing.
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable programmable read-only memory
- SRAM static random access memory
- CD-ROM compact disc read-only memory
- DVD digital versatile disk
- memory stick a floppy disk
- a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon
- a computer readable storage medium is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
- Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network.
- the network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers.
- a network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
- Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages.
- the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
- the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
- electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
- These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
- These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
- the computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
- each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s).
- the functions noted in the blocks may occur out of the order noted in the Figures.
- two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
Landscapes
- Automatic Disk Changers (AREA)
Abstract
Description
- Today's optical libraries have low performance, with access times of 10s of seconds to a minute or more. While optical drives allow fast random access to data on a disc, the overall random access performance is limited by the media move time and drive initialization times. The latter limitations means that today's optical systems are largely designed for slow tier operations.
- Embodiments of the invention relate to robotic devices for data reading from and writing to media storage devices. In one embodiment, an apparatus includes one or more disc media cassettes configured to store multiple disc-based media. Multiple disc drives are configured to read and write data to the multiple disc-based media. A robotic delivery device is configured to transport a selected disc-based media to and from at least one disc drive of the multiple disc drives, and to transport the selected disc-based media directly to a spindle on the at least one disc drive
- These and other features, aspects and advantages of the present invention will become understood with reference to the following description, appended claims and accompanying figures.
-
FIG. 1 is a high performance optical storage system, according to an embodiment; -
FIG. 2 shows entry/removal of disc cassettes with optical discs and optical disc drives into/out from an example rack enclosure, according to an embodiment; -
FIG. 3 is an example disc cassette for holding and retrieval of optical discs, according to an embodiment; -
FIGS. 4A-F show retrieval of an optical disc from the cassette shown inFIG. 3 by the disc retrieval unit (DRU) including a kicker device and disc gripper device, according to an embodiment; -
FIG. 5 is an isolated view of the DRU and an optical disc being held by the disc gripper device, according to an embodiment; -
FIG. 6 is a close-up view of a disc carrier portion of the DRU and an optical disc being gripped by the disc gripper device, according to an embodiment; -
FIG. 7 is a close-up view of a kicker tip of the DRU, according to an embodiment; -
FIGS. 8A-E show progression for loading of an optical disc into a disc drive from the DRU, according to an embodiment; -
FIG. 9 shows control circuitry and electronics for the high performance optical storage system, according to an embodiment; -
FIG. 10 illustrates a block diagram for a process for disc drop off by the high performance optical storage system, according to one embodiment; and -
FIG. 11 illustrates a block diagram for a process for disc pickup by the high performance optical storage system, according to one embodiment. - The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
- One or more embodiments integrates specialized high speed robotics, robust mechanical design, performance enhanced drives and a high failure tolerance erasure code to achieve low access times. The system includes components that provide high storage density and performance. Achieving high speed operation requires rapid acceleration, high move velocity and rapid pick-up, drop-off, drive spin-up, and initialization operations. High storage density requires tight disc spacing, and thus highly accurate and repeatable positioning within the system.
-
FIG. 1 is a high performanceoptical storage system 100, according to an embodiment. In one embodiment, the high performanceoptical storage system 100 includes anenclosure 110, amoveable arm 120 connected to a disc retrieval unit (DRU) 125, multipleoptical disc drives 130, multiple optical disc-based media (discs) 140,disc cassettes 150, andtracks disc cassettes 150 in place. In one embodiment, theenclosure 110 provides a stable platform and protection from the environment. In one example, the enclosure includes filter material connected to cooling fans (not shown) and a top enclosure (not shown for internal viewing). In one embodiment, the enclosure may be sized as a typical 19 inch rack mounted device with rack mounting connectors. Depending on the space and enclosure size chosen, theenclosure 110 may have a greater capacity ofoptical disc drives 130,disc cassettes 150, and thus,discs 140. In one example, thedisc cassettes 150 are placed within theenclosure 110 on either side (e.g., left and right sides) of theenclosure 110. In one example,additional disc cassettes 150 anddiscs 140 space is available adjacent the disc drives 130 (e.g., towards the front of the enclosure 110). Inwider enclosures 110,more disc drives 130 may be positioned adjacent each other on the left and right side of theenclosure 110 when more available space fordisc drives 130 is available. In one embodiment, themoveable arm 120 moves through motors and gears on tracks within theenclosure 110 to move theDRU 125 from the back of theenclosure 110 to the front of theenclosure 110. The DRU 125 is moveable to either side of theenclosure 110 to retrieve adisc 140 for placement in adisc drive 130 or for replacement back to adisc cassette 150. The components of the high performance optical storage system are described in further detail below. -
FIG. 2 shows entry/removal ofdisc cassettes 150 withdiscs 140 anddisc drives 130 into/out from anexample rack enclosure 110, according to an embodiment. In one embodiment, thedisc drives 130 are commonly mounted to a carrier assembly such that they can be easily removed from one end of theenclosure 110 for maintenance. This way, the set ofdisc drives 130 may plug into a backplane in the carrier. Thedisc cassettes 150 are modular units that hold many optical discs 140 (e.g., 50 discs, etc.) and may be removed through an end of theenclosure 110. In one example, thedisc drives 130 are all positioned on one side of theenclosure 110. This allows all thedisc drives 130 to be mounted in a single carrier and still allow a central support at the end of theenclosure 110. In one example, theenclosure 110 may havedifferent disc cassette 150 capacities on either side of theenclosure 110. Usingcassette 150 assemblies as shown allows for a single part to be utilized on both sides of theenclosure 110 to create different storage capacities as desired. -
FIG. 3 is anexample disc cassette 150 for holding/storing and retrieval ofoptical discs 140, according to an embodiment. In one embodiment, thediscs 140 are contained in thedisc cassettes 140 within a slot (or channel, groove, etc.) 355. Thedisc cassettes 150 hold the discs coaxially in a vertical orientation. Thediscs 140 are spaced very tightly, for example 1.82 mm apart. Thin ribs (e.g., 0.4 mm) form theslot 355, separate thediscs 140 and provide guidance when removing adisc 140 from a particular location or returning it to thedisc cassette 150. In one embodiment, the ribs are designed to limit lateral contact with adisc 140 surface to that portion of the outer edge, which is free of data (i.e., does not contain data). The cassette has features that allow the DRU 125 (FIG. 1 ) to be positioned to within +/−0.1 mm so a disc selector or kicker device 420 (FIGS. 4A-F ) can lift onedisc 140 into adisc gripper device 410 without disturbingadjacent discs 140. The disc cassette has additional features ortrack connectors mounting track 160/165 (FIG. 1 ) on theenclosure 110 bottom portion. In one embodiment, thetrack connectors track portions mounting tracks 160/165. - In one embodiment, the
disc cassette 150 contacts the outer rim of thedisc 140 over an angle spanning substantially less than 180 degrees (see lines 390) when the disc is at home in adisc cassette 150. The cassette has ashorter lip 385 to the center of the enclosure 110 (FIG. 1 ), and ataller lip 380 at the outside of theenclosure 110. As described, a combination of gravity and friction hold thediscs 140 in place. To provide further protection against shock, an optionaldisc retainer bale 395 may be employed limiting the motion of thediscs 140 when not being accessed. In one example, thedisc retainer bale 395 is be moved out of the way (e.g., by the disc gripper device 410 (FIGS. 4A-F ) when accessing adisc 140. In one embodiment, thedisc cassette 150 includes an optionaldisc retainer bale 395. In one example, thedisc retainer bale 395 is spring-loaded. -
FIGS. 4A-F show retrieval of anoptical disc 140 from thedisc cassette 150 shown inFIG. 3 by theDRU 125 including akicker device 420 anddisc gripper device 410, according to an embodiment. In one embodiment, thedisc cassette 150 is designed to providedisc 140 access motions in both the vertical and horizontal directions as show inFIGS. 4A-F . That is, thedisc 140 is lifted above the inner lip 385 (FIG. 3 ) and then translated to the center of theenclosure 110 within theDRU 125. InFIG. 4A , theDRU 125 is positioned by the robotics for alignment across from the selecteddisc 140. InFIG. 4B , thedisc gripper device 410 is moved laterally from the center of theDRU 125 to a position vertically above the selecteddisc 140. If there is a restraint mechanism on the cassette (e.g., disc retainer bale 395 (FIG. 3 ), it is moved out of the way by thedisc gripper device 410. - In
FIG. 4C thedisc kicker device 420 is rotated by the robotic controller of theDRU 125 until it contacts the edge of thedisc 140. InFIG. 4D thedisc kicker device 420 is further rotated by the robotic controller remaining in contact with edge of thedisc 140. The shape of thedisc cassette 150 constrains thedisc 140 to move it vertically by lifting thedisc 140 into thedisc gripper device 410. During this operation, the edge of thedisc 140 near the outside of theenclosure 110 is constrained against out-of-plane motion by the slot 355 (FIG. 3 ) in thedisc cassette 150. Once thedisc 140 has reached its vertical limit, thedisc gripper device 420 closes jaws 415 (FIG. 5 ) on both surfaces of thedisc 140 in the edge region, securely holding thedisc 140. InFIG. 4E thedisc kicker device 420 is retracted by the robotic controller of theDRU 125 to the central position. InFIG. 4F thedisc gripper device 410 is returned to the central position within theDRU 125, moving thedisc 140 into the travel position. In one example, the angle of contact subtended by thedisc cassette 150 must be limited to allow for this motion of thedisc 140. Further, the extension of thedisc cassette 150slot 355 above the storage contact point of thedisc 140 provides a vital out of plane motion restraint for thedisc 140. Theslot 355 further operates as a guide when adisc 140 is returned to thedisc cassette 150. - In one embodiment, the
slot 355 pitch is slightly larger than the thickness of adisc 140. Tighter spacing allow formore discs 140 to fit in theenclosure 110. This spacing is limited by thedisc cassette 150 materials to maintain thedisc 140 orientation. The disc cassette is preferably made by injection molding. However, other molding techniques may also be employed. In one example, thedisc cassette 150 includes “dove tails” on thetrack connectors disc cassettes 150 in place, while allowing for the cassettes to be inserted and extracted from theenclosure 110 by sliding out an end of theenclosure 110. -
FIG. 5 is an isolated view of theDRU 125 and anoptical disc 140 being held by thejaws 415 of thedisc gripper device 410, according to an embodiment. In one embodiment, theDRU 125 is configured in a “T” configuration, with a crossbar orarm 120 that travels above thediscs 140 and has a central portion attached beneath thearm 120. Thearm 120 moves longitudinally along the center of theenclosure 110, driven by amotor 510 that travels with thearm 120. In one example, themotor 510 drives thearm 120 viapinion attachments 520 on both ends of thearm 120 that engage racks on both sides of theenclosure 110. In one example, theDRU 125 is supported on bearings at either end of thearm 120. The mechanical arrangement thus drives both ends in concert along the racks of theenclosure 110. This arrangement prevents theDRU 125 from binding due to bearing friction. It also aids in keeping theDRU 125 rigid and limits twisting motion, which allows for tight tolerances on thedisc 140 spacing. In one example, theDRU 125 includes awiring control connector 530 that communicate control commands to the controlling circuitry of theDRU 125. -
FIG. 6 is a close-up view of a disc carrier portion of theDRU 125 and adisc 140 being gripped by thedisc gripper device 410, according to an embodiment. In one embodiment, theDRU 125 includes thedisc gripper device 410, which holds thedisc 140 by both surfaces in the edge region. Thedisc gripper device 410 travels laterally on thearm 120, such that it can be positioned overdiscs 140 on either side of the enclosure 110 (FIG. 1 ), in the center for travel, and at the dropoff/pickup positions at the disc drives 130. The central portion of theDRU 125, which is a disc carrier including thedisc kicker device 420 that lifts thediscs 140 out of thedisc cassette 150 using amotor 610, control electronics,sensors 630, and a disc guide (groove or slot) 620. Thedisc guide 620 constrains the bottom edge of thedisc 140 when thedisc gripper device 410 is positioned in the carrier. This keeps thedisc 140 stable during high speed accelerations and from windage during high speed motion of thearm 120, allowing theDRU 125 to move adisc 140 from one end of theenclosure 110 to the other in under 1 second. - In one embodiment, the
disc guide 620 has a capture region at either side to provide tolerance for deviations of thedisc 140 orientation from perfectly vertical when moving thedisc 140 into the carrier. In one example, a further aspect of thedisc guide 620 is that it also acts as a guide for thedisc kicker device 420, keeping thedisc 140 anddisc kicker device 420 properly registered to each other. - In one embodiment, the
DRU 125 does not require a traveling lateral power connection (Flex cable, wire harness, etc.) to function. In one example, theDRU 125 is designed such that power is only required at discrete lateral positions of thedisc gripper device 410. These discrete lateral positions are located at the left and right dropoff/pickup positions. Power is provided here by contacts, such as pushpins, that the laterally moving portion comes into contact with at the stated positions. This operation is facilitated by thedisc gripper device 410 being powered only to perform grip or un-grip operations. No power is required when holding adisc 140. - In one embodiment, the
disc 140 media may be single sided or dual sided. The disc drives 130 (FIG. 1 ) may have single sided or dual sided capable. It may be that single side disc drives 130 are used in combination with dual side media. In such a case, in one embodiment theDRU 125 may include a mechanism to flip thedisc 140 about a vertical axis to orient the desired side of the media for drive operations. In one example, the flip operation may occur while transporting the media, thus has limited or no impact on performance. In another example, a separate mechanism flips thediscs 140. In this example, theDRU 125 delivers adisc 140 to the flipper and retrieves it after it has been flipped. Another example includes orienting a subset of the disc drives 130 for operating on one side of thediscs 140, and the remaining drives for operating on the other side of thediscs 140. This avoids the need to perform a flip operation. -
FIG. 7 is a close-up view of akicker tip 710 for thedisc kicker device 420 of theDRU 125, according to an embodiment. In one embodiment, 1.2 mmthick discs 140 are packed on 1.82 mm centers in thedisc cassette 150, leaving 0.62 mm betweendiscs 140. Adisc 140 must be rapidly selected from thedisc cassette 140, secured by the disc gripper device 410 (FIGS. 4A-F ), and moved onto the DRU 125 (FIG. 1 ) for transport to adisc drive 130 without disturbing or damagingadjacent discs 140. In one example,discs 140 must also be returned to theirslots 355 after the requested data has been read. - In one embodiment, a motor 610 (
FIG. 6 ) actuateddisc kicker device 420 on the disc carrier of theDRU 125 is swung back and forth to contactdiscs 140 on either side of the enclosure 110 (FIG. 1 ). Atip 710 of thedisc kicker device 420 aligned with one of thediscs 140 contacts the disc edge and, with thedisc 140 back edge guided by fins in the back wall of thedisc cassette 150, lifts thedisc 140 vertically into thedisc gripper device 410 jaws 415 (FIG. 5 ) or lowers it out of thedisc gripper device 410 back into thedisc cassette 150. In one embodiment, thetip 710 of thedisc kicker device 420 blade are somewhat wider than thedisc 140 and are shaped to capture thedisc 140 edge, thus preventing thedisc 140 from slipping off thetip 710. In other example,blade tips 710 with a concave contour or a shallow trapezoidal groove may be employed to fulfill this objective. -
FIGS. 8A-E show progression for loading of anoptical disc 140 into adisc drive 130 from the DRU 125 (FIG. 1 ), according to an embodiment. Thedisc gripper device 410 is designed to securely hold adisc 140 using thejaws 415 with sufficient force to allow rapid acceleration without thedisc 140 slipping, and to enable rapid gripping and releasing of thedisc 140. Thedisc 140 surface must not be damaged during these operations. A further aspect of thedisc gripper device 410 is that it must not drop adisc 140 on power loss, thus power is required only to transition between gripped and un-gripped states. In one embodiment, thedisc gripper device 410jaws 415 are shaped so as to contact only the non-data portion of the outer diameter of adisc 140. This may be facilitated by gripping thedisc 140 edge over an angle of about 35 degrees. - In one embodiment, the
disc gripper device 410 is mounted on a high speed translation mechanism on thearm 120, such as a lead screw. Thedisc gripper device 410 can translate laterally such that it can accessdiscs 140 on both sides of the enclosure 110 (FIG. 1 ), and to the disc mount position in the disc drives 130. In one example, thedisc gripper device 410 mechanism may be provided with a stage for rotating thedisc 140 about a vertical axis to allow the use of double-sided media with single-sided disc drives 130. In another example, a second disc gripper device (not shown) is positioned with rotation capability at fixed location in theenclosure 110. Thedisc 140 is delivered to the second disc gripper device, and the first disc gripper releases thedisc 140 and moves away. The second disc gripper device rotates the disc through 180 degrees, and then the first disc gripper device (e.g., disc gripper device 410) returns and retrieves thedisc 140 from the second disc gripper device. The second disc gripper device may be positioned on the bottom of theenclosure 110 and rotate thedisc 140 about a vertical axis, or it may be mounted to a side of theenclosure 110 and rotate thedisc 140 about a horizontal axis. To facilitate throughput, theDRU 125 may move asecond disc 140 between the storage area and the disc drives 140 while thefirst disc 140 is being flipped. - In one embodiment, direct robotic delivery and pickup of media to and from a mount position at the
optical drive spindle 810 is implemented. The mount position is defined as where the center of the optical disc is displaced in the plane of the disc from the center of the spindle by less than an inner diameter of the optical disc. This differs from conventional designs, where the disc is delivered to a tray or slot load optical drive. Direct load improves the round trip time for adisc 140 by about 4 seconds, as it avoids the roughly a 2 second tray/slot load and unload times. A further advantage is that both tray and slot load mechanisms are subject to mechanical breakdown, limiting the drive lifetime in terms of load/unload cycles. One or more embodiments avoid such wear-out mechanisms. A further advantage is that high density disc packing requires tight tolerance in the disc retrieval from thedisc drive 130. Tray and slot loaders have significant slop in the position of the disc when presented for pickup. In one example, adisc drive 130 includes a modified conventional disc drive that is customized to provide direct access operations. An opening is provided in the drive case to allow thedisc gripper device 410 to move to thespindle 810 mount position. Thedisc gripper device 410jaws 415 clamping mechanism is used to secure thedisc 140 after thedisc 140 is unclamped from thespindle 810. - In one embodiment, the hub mechanism of the
disc drive 130 is shock mounted, and this provides sufficient tolerance to allow thedisc gripper device 410 to securely grip adisc 140 over a range of mounted disc positions, and to allow the spindle clamp to grip adisc 140 being delivered over a range of positions. The compliance provided by the hub mechanism shock mounting allows thedisc gripper device 410 to be positioned such that there is a slight vertical interference between the top of thedisc 140 and a disc sense mechanism of thedisc gripper 410 when it is in its limiting “disc present” position. This insures that thedisc 140 will have a vertical net force against a disc sense mechanism in its limit position when thedisc gripper device 410 is actuated at thedisc drive 130. In one example, the implementation of the direct access customizeddisc drive 130 provides for mounting/unmounting of adisc 140 to be accomplished in about 1 second. - In one embodiment, to mount a
disc 140 in thedisc drive 130, theDRU 125 moves to the longitudinal position for dropoff at the chosendisc drive 130 within theenclosure 110. Thedisc gripper device 410 then translates laterally to the mount position, and holds thedisc 140 until the clamp mechanism has secured thedisc 140 on thespindle 810. In one example, thedisc gripper 410 releases thedisc 140 and retreats back to a centered position of theDRU 125. Similarly, thedisc 140 may be retrieved from thedisc drive 130 by securely gripping thedisc 140 by thejaws 415 of thedisc gripper device 410 while it is held on the optical drive spindle 810 (after it has stopped rotating and before thedisc drive 130 clamp has released it) so that thedisc 140 is always under positive control. In another embodiment, it is beneficial for thedisc drive 130 to include constraints, which allow thespindle 810 clamp to fail safe. This means that if thespindle 810 clamp releases thedisc 140 inadvertently, thedisc 140 can either be re-clamped by thespindle 810, or delivered to thedisc gripper 410. During load, thedisc gripper 410 could release prior to thespindle 810 clamp being engaged, and during pickup thespindle 810 clamp can release before thegripper 410 engages. - In one embodiment, the disc drives 130 are positioned such that the lateral disc dropoff/pickup position of the
disc gripper device 410 at the disc drives 130 differs only slightly (<1 cm) from the lateral position for disc dropoff/pickup in the disc cassette 150 (FIGS. 4A-F ) on the same side of the enclosure 110 (FIG. 1 ) as the disc drives 130. Thedisc drive 130 is vertically positioned such that thedisc drive 130 mount position aligns with adisc 140 in thedisc gripper device 410. In one example, a shadow mask is incorporated at the bottom edge of thedisk drive 130 that allows theDRU 125 to be longitudinally positioned to within +−0.1 mm. - In one embodiment, a further aspect includes the use of
optical disc drives 130 with high speed initialization features. Such adisc drive 130 significantly reduces the time fromdisc 140 load to first byte of data. In standard disc drives, this operation can take 10s of seconds as the drive performs operations such as identifying the media type, reading bad block tables or other initialization data off the media, etc. In one embodiment, an inventory manager (described below) is implemented that stores and transmits initialization information to thedisc drive 130 on media load, eliminating the time required by thedisc drive 130 to read this information from thedisc 140. This reduces the initialization time to around 1 second. -
FIG. 9 shows control circuitry andelectronics 900 for the high performance optical storage system 100 (FIG. 1 ), according to an embodiment. In one embodiment, optical sensors of the sensor set 920 are used in the system to provide contactless position information for various moving components. In one example, optical sensors of the sensor set 920 on the disc carrier of theDRU 125 combined with the features of thedisc cassettes 150 and the disc drives 130 allow thedisc gripper device 410 to be positioned to within +−0.1 mm. Other sensors of the sensor set 920 are used to sense location of thedisc kicker device 420, whether adisc 140 is in thedisc gripper device 410, the lateral position of thedisc gripper device 410, etc. Sensors of the sensor set 920 may be used in concert with features on thedisc cassettes 150 to facilitate positioning of theDRU 125 atdisc 140 locations. Other examples include referring to thediscs 140 themselves. Similarly, features may be disposed on theenclosure 110 or the disc drives 130 to facilitate accurate positioning of theDRU 125 when loading and unloadingdiscs 140 from the disc drives 130. In another example, transmissive photo interrupter sensors may be utilized for position state sensing of the various components. The motors used in the system may be of the brushless DC type, optionally with shaft encoders to aid in position determination. In one example, the motors may include theDRU 125 longitudinal motor(s) 941, thegripper device 410 lateral motor(s) 942, thegripper device 410motor 943, thedisc kicker device 420 motor(s) 944, etc. - In one embodiment, the control electronics shown in the control circuitry and
electronics 900 are partitioned into a robotic controller (the disc carrier controller 930) on the disc carrier and anenclosure controller 910 otherwise mounted in the enclosure 110 (FIG. 1 ). The latter does not move, and includes aCPU 912,memory 911 and associated components for running the control software. In one example, the control circuitry andelectronics 900 includes local storage for holding the operating system and the control software, although in another example may instead boot over a network and load the necessary software, or even boot off the optical media of adisc 140. In another example, flash memory storage is implemented. Theenclosure controller 910 includes both the external interface to a host system or network as well as interfaces (SATA 913, storage interface 916) to the disc drives 130, collectively shown as aset 917. In one example, the external interface may include a network interface, such as Ethernet. In one embodiment, for enhanced reliability, the network interface would include two connections, such asEthernet connections - In one embodiment, the
enclosure controller 910 is responsive to commands over the external interface to load adisc 140, read and write data, and perform other operations. In one example, theenclosure controller 910 communicates with the robotic controller (disc carrier controller 930) to send commands, such as to load a selected disc 140 (FIG. 1 ) in a selecteddisc drive 130. Theenclosure controller 910 also includes a data buffer for holding read and write data during data transfers. - In one embodiment, the robotic controller (disc carrier controller 930) manages the robotic activities of the high performance
optical storage system 100, including controlling the motors, reading optical and other sensor data and communicating state information with theenclosure controller 910. In one embodiment, the robotic controller (disc carrier controller 930) communicates with theenclosure controller 910 over a serial interface. The interface may be wired, such as universal serial bus (USB) over a flex cable, or wireless, such as infrared data association (IRDA), BLUETOOTH®, etc. In one example, on initialization, it is critical for thedisc carrier controller 930 to determine the physical state of the high performanceoptical storage system 100 to prevent damage. If the high performanceoptical storage system 100 has undergone a controlled shutdown, this state information may be recorded within the library. Even so, this shutdown state needs to be confirmed. The high performanceoptical storage system 100 may have been powered down in an unknown state, such as by an unintended power loss. For example, before theDRU 125 can move longitudinally, the high performanceoptical storage system 100 must determine if adisc 140 is in thedisc gripper device 410 and if so, position thedisc gripper device 410 within the drive carrier prior to a longitudinal move. In one embodiment, the sensors set 920 includes sensors to detect if thedisc gripper device 410 is centered, or to the left or right of center. Thus, thedisc gripper device 410 can be moved directly to the center position. Similarly, sensors of the sensor set 920 are provided to determine if thedisc kicker device 420 is centered, or to the left or right of center. Once bothdisc gripper device 410 anddisc kicker device 420 are centered, theDRU 125 may be moved longitudinally. All these functions are accomplished through means of the set ofsensors 920. In one embodiment, optical sensors are used to make the position determinations. - In one embodiment, the high performance
optical storage system 100 determines ifdiscs 140 are located within any of the disc drives 130. The disc drives 130 may be queried to see if adisc 140 is loaded and thespindle 810 clamped. It is possible for adisc 140 to remain in adisc drive 130 but not be clamped by thespindle 810. This can be tested by attempting a clamp operation. - In one embodiment, an inventory manger is implemented that includes metadata for each
disc 140 in the high performanceoptical storage system 100. In one example, the metadata may include the media type, bad block table or other initialization information, location of the disc within theenclosure 110, etc. The high performanceoptical storage system 100 can transmit this initialization information to adisc drive 130 upon the load operation, which substantially shortens the startup time. The inventory manager also queries thedisc drive 130 on unload to obtain updates to the media. - In one example, metadata, such as changes in the bad block information, is stored by the inventory manager in nonvolatile storage which may be external to the high performance
optical storage system 100. Any system metadata can be periodically flushed to specific locations on the media in the library to create self-described system state, such as for relocating a system. Alternatively, the metadata may be stored on other nonvolatile media in theenclosure controller 910. - In one embodiment, the high performance
optical storage system 100 software includes a library executive, which is responsive to read, write, mount and dismount commands from a host system. The library executive forwards mount and dismount commands and information to thedisc carrier controller 930. The mount command information includes the disc location in thedisc cassette 150 to select and thedisc drive 130 to load. The dismount command information includes information on thedisc drive 130 to unload and the target location for storing thedisc 140 in thedisc cassette 150. -
FIG. 10 illustrates a block diagram for aprocess 1000 fordisc 140 drop off by the high performanceoptical storage system 100, according to one embodiment. In one embodiment, the dropoff and pickup of discs 140 (FIG. 1 ) directly at the spindle 810 (FIGS. 8A-E ) may be facilitated by adjusting the operational timing of thedisc drive 130. In conventional disc drives, the operation of engaging the spindle clamp spins up the spindle motor as soon as the clamp engages. Similarly, unloading the disc generally disengages the spindle clamp once the spindle motor has stopped spinning. In one embodiment, it is advantageous to separate the motor spinning from the spindle clamp engagement, as shown in process 1000 (error recovery paths where operations have failed are not shown for clarity). The dropoff operation involves the following. Inblock 1010 thedisc gripper device 410 moves thedisc 140 into the dropoff position. Once this is achieved, inblock 1020 the spindle clamp may be engaged. At this point, thedisc 140 is still secured in thedisc gripper device 410. The disc is released from thedisc gripper device 410 and the disc gripper device 430 is retracted. Inblock 1030 it is determined whether the spindle clamp is successfully engaged or not. If the spindle clamp is not successfully engaged, theprocess 1000 returned to block 1020. Otherwise,process 1000 proceeds to block 1040. Inblock 1040 where thedisc gripper device 410 is un-gripped and retracted. Inblock 1050 it is determined whether thedisc 140 was successfully un-gripped and retracted. If thedisc 140 was not successfully un-gripped and thedisc gripper 410 retracted,process 1000 returns to block 1040. At this point theDRU 125 is free to perform an operation on adifferent disc 140. Once thedisc 140 is released the spindle motor may be spun up inblock 1060. In one example, it may be desirable to delay the spin up until thedisc gripper device 410 has retracted if there are clearance issues. -
FIG. 11 illustrates a block diagram for aprocess 1100 for disc pickup by the high performanceoptical storage system 100, according to one embodiment. In one embodiment, thepickup process 1100 is roughly the inverse sequence to the dropoff process 1000 (FIG. 10 ). Inblock 1110 the spindle motor is spun down. Inblock 1120 it is determined whether the spindle motor has successfully spun down or not. If the spindle motor has not successfully spun down,process 1100 returns to block 1110. Otherwise,process 1100 proceeds to block 1130 where the spindle has stopped and thedisc gripper device 410 is moved to the pickup location. Inblock 1140 it is determined whether thedisc gripper device 410 has moved to the pickup location or not. If thedisc gripper device 410 did not move to the pickup location,process 1100 returns to block 1130 and continues to attempt to move to the pickup location. Otherwiseprocess 1100 proceeds to block 1150. Inblock 1150, thedisc gripper device 410 then uses thejaws 415 to clamp thedisc 140. Inblock 1160 it is determined whether thejaws 415 successfully clamped thedisc 140 or not. If the jaws did not successfully clamp thedisc 140,process 1100 returns to block 1140. Otherwise,process 1100 proceeds to block 1170. Inblock 1170 once the grip is complete, the spindle clamp is disengaged. Inblock 1180 it is determined whether the spindle clamp has been successfully disengaged or not. If the spindle clamp has not been successfully disengaged,process 1100 returns to block 1170. Otherwise,process 1100 proceeds to block 1190 where thedisc gripper device 410 can retract with thedisc 140. If there is no interference issue, then thedisc gripper device 410 may be moved to the pickup position prior to the spindle having stopped. - As will be appreciated by one skilled in the art, aspects of the present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
- The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
- Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
- Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
- Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
- These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
- The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
- The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
- References in the claims to an element in the singular is not intended to mean “one and only” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described exemplary embodiment that are currently known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the present claims. No claim element herein is to be construed under the provisions of 35 U.S.C. section 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or “step for.”
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/046,395 US9741389B1 (en) | 2016-02-17 | 2016-02-17 | High performance robotic optical storage system |
PCT/IB2017/050592 WO2017141129A1 (en) | 2016-02-17 | 2017-02-03 | High performance robotic optical storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/046,395 US9741389B1 (en) | 2016-02-17 | 2016-02-17 | High performance robotic optical storage system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170236545A1 true US20170236545A1 (en) | 2017-08-17 |
US9741389B1 US9741389B1 (en) | 2017-08-22 |
Family
ID=59561689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/046,395 Active US9741389B1 (en) | 2016-02-17 | 2016-02-17 | High performance robotic optical storage system |
Country Status (2)
Country | Link |
---|---|
US (1) | US9741389B1 (en) |
WO (1) | WO2017141129A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10796720B2 (en) * | 2017-12-07 | 2020-10-06 | Panasonic Intellectual Property Management Co., Ltd. | Disc device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9633686B1 (en) | 2016-02-17 | 2017-04-25 | International Business Machines Corporation | Disc storage cassettes |
US10529371B1 (en) | 2018-10-29 | 2020-01-07 | International Business Machines Corporation | Actuator tip calibration for robotic optical storage system |
US10600441B1 (en) | 2018-12-07 | 2020-03-24 | International Business Machines Corporation | Disc gripper for storage discs |
US10546608B1 (en) | 2019-02-04 | 2020-01-28 | International Business Machines Corporation | Method and system for selecting and moving a single disc in an optical disc library |
US11175986B1 (en) | 2020-07-01 | 2021-11-16 | International Business Machines Corporation | Storage systems implementing offset erasure code stripes |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59231772A (en) * | 1983-06-13 | 1984-12-26 | Toshiba Corp | Automatic disk changing device |
JPH0821188B2 (en) | 1983-12-27 | 1996-03-04 | 株式会社東芝 | Disc auto changer device |
US4815057A (en) | 1986-05-23 | 1989-03-21 | Kubik Enterprises, Inc. | Multiple-player disc-changer apparatus |
US4901172A (en) | 1987-05-08 | 1990-02-13 | Fuji Photo Film Co., Ltd. | Recording/playback apparatus with auto-changer |
US4989191A (en) | 1989-01-03 | 1991-01-29 | Frank Sheafen Kuo | Data processing system with mixed media memory packs |
US5136562A (en) | 1989-04-11 | 1992-08-04 | Staar Development, S.A. | Automatic changer for information storage devices |
US5067116A (en) | 1990-05-07 | 1991-11-19 | Kadrmas Kenneth A | Automatic disc changer apparatus |
US5207727A (en) | 1990-07-06 | 1993-05-04 | Rapsco Incorporated | Can end handling system |
DE4105016C2 (en) | 1991-02-19 | 1994-12-08 | Wurlitzer Gmbh | Record player |
US5274620A (en) | 1991-12-12 | 1993-12-28 | Kubik Enterprises, Inc. | Compact disc handling mechanism |
US5292222A (en) | 1992-03-31 | 1994-03-08 | International Business Machines Corporation | Robotic load device for outer diameter pickup of a disk |
US5253911A (en) | 1992-04-03 | 1993-10-19 | Storage Technology Corporation | Gripper apparatus for use in a robotics system |
JP3289959B2 (en) | 1992-08-10 | 2002-06-10 | クラリオン株式会社 | Disk unit |
US5481514A (en) | 1992-08-31 | 1996-01-02 | Victor Company Of Japan, Ltd. | Recording/reproducing apparatus including an auto changer for a disk-like recording medium |
US5544148A (en) | 1993-05-20 | 1996-08-06 | Nakamichi Corporation | Compact configuration disk player |
GB2279490B (en) | 1993-06-30 | 1997-03-26 | Tanashin Denki Co | Disk playback apparatus |
US5680377A (en) | 1993-11-03 | 1997-10-21 | International Business Machines Corporation | Automated data storage library employing multi-direction picker with double lip gripper |
US5528566A (en) | 1993-11-05 | 1996-06-18 | Mcgee; Michael D. | Apparatus for optical disc storage of optical discs and selective access and/or retrieval thereof via pneumatic control |
JP3384856B2 (en) * | 1994-01-05 | 2003-03-10 | パイオニア株式会社 | Disc auto changer |
US5805561A (en) | 1994-01-18 | 1998-09-08 | Sony Corporation | Cartridge engagement system for optical disk cartridges having a positionable carriage |
US5588796A (en) | 1994-04-18 | 1996-12-31 | Atg Cygnet Inc. | Apparatus and method for handling information storage media |
US5586094A (en) * | 1994-07-28 | 1996-12-17 | P&P Marketing, Inc. | Apparatus and method for storing and playing optical disc with grooved opposing disc transfer arms |
JP3145631B2 (en) | 1995-05-25 | 2001-03-12 | インターナショナル・ビジネス・マシーンズ・コーポレ−ション | Cartridge, disk drive and disk media library for disk without hub |
US5953293A (en) | 1995-09-12 | 1999-09-14 | Sony Corporation | Recording and/or reproducing apparatus for disk-like recording medium |
JPH0991831A (en) | 1995-09-20 | 1997-04-04 | Funai Electric Co Ltd | Disk auto-changer |
JP3090411B2 (en) | 1995-09-22 | 2000-09-18 | 松下電器産業株式会社 | Disc changer device |
JP3469693B2 (en) * | 1995-10-09 | 2003-11-25 | パイオニア株式会社 | Disk autochanger |
US6002662A (en) | 1995-11-29 | 1999-12-14 | Sony Corporation | Disc recording and/or reproducing apparatus and disc presence detecting method |
JP3402888B2 (en) * | 1995-12-14 | 2003-05-06 | パイオニア株式会社 | Disk autochanger device |
JP3406764B2 (en) * | 1996-02-06 | 2003-05-12 | パイオニア株式会社 | Auto disk changer device |
JPH09251701A (en) | 1996-03-14 | 1997-09-22 | Nippon Columbia Co Ltd | Automatic changer |
JP3557794B2 (en) | 1996-07-15 | 2004-08-25 | ソニー株式会社 | Disk changer device |
US7145841B1 (en) | 1997-03-13 | 2006-12-05 | David Miller | Programmable self-operating compact disk duplication system |
EP1012839A4 (en) | 1997-04-30 | 2001-01-10 | Spectra Logic Corp | Data cartridge library system |
US6064544A (en) | 1998-06-16 | 2000-05-16 | Nec Corporation | Information medium conveying method and apparatus |
US6373796B1 (en) | 1998-11-10 | 2002-04-16 | Rowe International, Inc. | Disc changer |
US6587405B1 (en) | 1998-11-25 | 2003-07-01 | Micron Technology, Inc. | Linear optical disk changer with side switching capabilities |
US20020101816A1 (en) | 1999-05-20 | 2002-08-01 | Michael F. Braitberg | Removable optical storage device and system |
JP2001148145A (en) | 1999-11-19 | 2001-05-29 | Yamaha Corp | Disk holder and disk changer device |
US6454509B1 (en) | 2000-04-06 | 2002-09-24 | Plasmon Ide, Inc. | Mechanically actuated picker for data storage library |
US6802070B2 (en) | 2000-06-09 | 2004-10-05 | Primera Technology, Inc. | Compact disc transporter |
US6731455B2 (en) | 2001-04-26 | 2004-05-04 | International Business Machines Corporation | Automated library system including a gripper assembly apparatus for interfacing with a storage device |
US20040080852A1 (en) | 2002-10-18 | 2004-04-29 | Seagate Technology Llc | Disc caddy feeder system with caddy gripper for data storage devices |
US20050007896A1 (en) * | 2003-03-25 | 2005-01-13 | Rodney Haas | Multiple compact disk storage, recording and playback system |
DE10314383A1 (en) | 2003-03-28 | 2004-10-07 | Integrated Dynamics Engineering Gmbh | Fast exchange station for wafer transport |
JP2006526867A (en) | 2003-06-05 | 2006-11-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Device with data carrier disk drive and method for inserting a data carrier into the device |
US7212375B2 (en) | 2003-08-15 | 2007-05-01 | Quantum Corporation | Automated storage library gripper apparatus and method |
US7193810B2 (en) | 2003-08-15 | 2007-03-20 | Quantum Corporation | Automated storage library gripper with finger position detector |
US8134799B1 (en) | 2004-04-06 | 2012-03-13 | Oracle America, Inc. | Gripper assembly for data storage system |
TWI261808B (en) * | 2004-06-30 | 2006-09-11 | Yung Tang Steel Co Ltd | CD exchanger, related CD management system, CD pickup process and recovery process of abnormal shutdown |
GB0416744D0 (en) | 2004-07-27 | 2004-09-01 | Clearwater Innovations Ltd | Disc cartridge |
JP2006127659A (en) | 2004-10-29 | 2006-05-18 | Orion Denki Kk | Disk device with rattle prevention mechanism of traverse unit |
US7673309B2 (en) * | 2005-01-20 | 2010-03-02 | Hie Electronics, Inc. | Scalable integrated high density optical data/media storage delivery system |
US20070127323A1 (en) * | 2005-12-02 | 2007-06-07 | Owens John C | Network attached mountable optical disc storage library |
US20110215012A1 (en) | 2006-02-16 | 2011-09-08 | Haggard Clifton C | Disk holding device |
US7777985B2 (en) | 2007-05-11 | 2010-08-17 | Tandberg Data Corporation | Transport method and apparatus for cartridge library utilizing cam slot and follower for moving a robot carriage |
US8041449B2 (en) * | 2008-04-17 | 2011-10-18 | Teradyne, Inc. | Bulk feeding disk drives to disk drive testing systems |
US8305706B2 (en) | 2008-07-11 | 2012-11-06 | Imation Corp. | Disk library system including array of removable disk cartridges and movable connector system |
US8385163B2 (en) * | 2009-01-06 | 2013-02-26 | Hitachi-Lg Data Storage, Inc. | Optical disc library system and methods |
WO2010129906A2 (en) * | 2009-05-08 | 2010-11-11 | Powerfile, Inc. | Optical disc storage system |
JP2011108315A (en) | 2009-11-16 | 2011-06-02 | Sony Corp | Disk loading mechanism |
US9428336B2 (en) | 2010-07-28 | 2016-08-30 | Par Systems, Inc. | Robotic storage and retrieval systems |
JP2012243335A (en) * | 2011-05-17 | 2012-12-10 | Sony Corp | Disk conveyance device and disk storage system |
US8899406B2 (en) | 2012-08-20 | 2014-12-02 | Spectra Logic, Corporation | System, mechanism, and method for physically manipulating media |
US8824250B2 (en) * | 2012-11-06 | 2014-09-02 | Hitachi-Lg Data Storage Korea, Inc. | Archive system for double sided optical disc |
JP2014099220A (en) | 2012-11-13 | 2014-05-29 | Toshiba Corp | Information processing device |
JP2014203483A (en) | 2013-04-05 | 2014-10-27 | 日立コンシューマエレクトロニクス株式会社 | Optical disk library device |
CN204149156U (en) | 2014-10-27 | 2015-02-11 | 哈尔滨众德合创智能装备有限责任公司 | A kind of CD mobile robot |
-
2016
- 2016-02-17 US US15/046,395 patent/US9741389B1/en active Active
-
2017
- 2017-02-03 WO PCT/IB2017/050592 patent/WO2017141129A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10796720B2 (en) * | 2017-12-07 | 2020-10-06 | Panasonic Intellectual Property Management Co., Ltd. | Disc device |
Also Published As
Publication number | Publication date |
---|---|
US9741389B1 (en) | 2017-08-22 |
WO2017141129A1 (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9741389B1 (en) | High performance robotic optical storage system | |
US9741390B1 (en) | Optical disc drive | |
US7996174B2 (en) | Disk drive testing | |
US10186295B2 (en) | Disc gripper for storage disc | |
US5471561A (en) | Automated storage library with rotatable arm and oblique angle effectors | |
US20090153993A1 (en) | Disk Drive Testing | |
US10580451B2 (en) | Disc storage cassettes comprising index features | |
US20120102374A1 (en) | Storage device testing | |
US9761265B2 (en) | Disc device and disc separation method | |
CN106710609B (en) | Rack-mounted optical disk library and stacked optical disk array library with same | |
US10600441B1 (en) | Disc gripper for storage discs | |
JP2012517655A (en) | Storage device testing | |
US10692526B2 (en) | Actuator tip calibration for robotic optical storage system | |
US11238896B2 (en) | Passive retraction of a hub clamp in an optical disc drive | |
US7715284B2 (en) | Cassette library device and method of controlling the attitude thereof | |
US10546608B1 (en) | Method and system for selecting and moving a single disc in an optical disc library | |
US10127941B2 (en) | Optical disk drive guide | |
US8087040B2 (en) | Slot-in type disk drive | |
JP3248396B2 (en) | Automatic media changer and media tray | |
KR20140111462A (en) | Archive system using optical disc | |
JPH11185359A (en) | Disk reproducing device | |
KR20150034033A (en) | Archive system using optical disc | |
JP2015090722A (en) | Disc archive device, and disc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALTKNECHT, DAVID J.;BEST, JOHN S.;BETHUNE, DONALD S.;AND OTHERS;SIGNING DATES FROM 20160204 TO 20160215;REEL/FRAME:037758/0745 |
|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE FOR THE FIFTH INVENTOR PREVIOUSLY RECORDED AT REEL: 037758 FRAME: 0745. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:ALTKNECHT, DAVID J.;BEST, JOHN S.;BETHUNE, DONALD S.;AND OTHERS;SIGNING DATES FROM 20160204 TO 20160215;REEL/FRAME:038243/0901 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |