US20170233453A1 - Methods of use of soluble cd24 for therapy of rheumatoid arthritis - Google Patents
Methods of use of soluble cd24 for therapy of rheumatoid arthritis Download PDFInfo
- Publication number
- US20170233453A1 US20170233453A1 US15/437,968 US201715437968A US2017233453A1 US 20170233453 A1 US20170233453 A1 US 20170233453A1 US 201715437968 A US201715437968 A US 201715437968A US 2017233453 A1 US2017233453 A1 US 2017233453A1
- Authority
- US
- United States
- Prior art keywords
- cd24fc
- protein
- mice
- mins
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 23
- 206010039073 rheumatoid arthritis Diseases 0.000 title description 63
- 238000002560 therapeutic procedure Methods 0.000 title description 4
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 claims abstract description 159
- 102100038081 Signal transducer CD24 Human genes 0.000 claims abstract description 144
- 108090000623 proteins and genes Proteins 0.000 claims description 27
- 102000004169 proteins and genes Human genes 0.000 claims description 25
- 235000018102 proteins Nutrition 0.000 claims description 23
- 102000044489 human CD24 Human genes 0.000 claims description 15
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 14
- 239000013598 vector Substances 0.000 claims description 13
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 11
- 230000001404 mediated effect Effects 0.000 claims description 8
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 7
- 230000001177 retroviral effect Effects 0.000 claims description 7
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 6
- 229920001184 polypeptide Polymers 0.000 claims description 6
- 239000004474 valine Substances 0.000 claims description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 5
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 4
- 235000004279 alanine Nutrition 0.000 claims description 4
- 230000000451 tissue damage Effects 0.000 claims description 4
- 231100000827 tissue damage Toxicity 0.000 claims description 4
- 210000004899 c-terminal region Anatomy 0.000 claims description 3
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 3
- 230000000754 repressing effect Effects 0.000 claims description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 claims 1
- 208000024908 graft versus host disease Diseases 0.000 claims 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 claims 1
- 108060003951 Immunoglobulin Proteins 0.000 abstract description 2
- 102000018358 immunoglobulin Human genes 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 91
- 230000001225 therapeutic effect Effects 0.000 description 44
- 241000699666 Mus <mouse, genus> Species 0.000 description 41
- 108010047827 Sialic Acid Binding Immunoglobulin-like Lectins Proteins 0.000 description 33
- 102000007073 Sialic Acid Binding Immunoglobulin-like Lectins Human genes 0.000 description 33
- 201000010099 disease Diseases 0.000 description 32
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 32
- 241001465754 Metazoa Species 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 28
- 108020001507 fusion proteins Proteins 0.000 description 27
- 102000037865 fusion proteins Human genes 0.000 description 27
- 150000001413 amino acids Chemical class 0.000 description 25
- 238000011282 treatment Methods 0.000 description 25
- 208000009386 Experimental Arthritis Diseases 0.000 description 22
- 206010003246 arthritis Diseases 0.000 description 22
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical group P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 19
- 102000004127 Cytokines Human genes 0.000 description 18
- 108090000695 Cytokines Proteins 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 18
- 230000003367 anti-collagen effect Effects 0.000 description 17
- 230000002757 inflammatory effect Effects 0.000 description 17
- 239000003814 drug Substances 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 230000003993 interaction Effects 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 238000011084 recovery Methods 0.000 description 13
- 229940079593 drug Drugs 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000003442 weekly effect Effects 0.000 description 12
- 238000011740 C57BL/6 mouse Methods 0.000 description 11
- 101100533516 Mus musculus Siglec10 gene Proteins 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- 208000023275 Autoimmune disease Diseases 0.000 description 10
- 230000008506 pathogenesis Effects 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 102000008186 Collagen Human genes 0.000 description 9
- 108010035532 Collagen Proteins 0.000 description 9
- 241000282567 Macaca fascicularis Species 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 229920001436 collagen Polymers 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000002158 endotoxin Substances 0.000 description 9
- 229920006008 lipopolysaccharide Polymers 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 210000002540 macrophage Anatomy 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 7
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 208000037816 tissue injury Diseases 0.000 description 7
- 101000883515 Homo sapiens Chitinase-3-like protein 1 Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 6
- 230000003828 downregulation Effects 0.000 description 6
- 102000054350 human CHI3L1 Human genes 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 5
- 238000011725 BALB/c mouse Methods 0.000 description 5
- 102000000503 Collagen Type II Human genes 0.000 description 5
- 108010041390 Collagen Type II Proteins 0.000 description 5
- 241000287828 Gallus gallus Species 0.000 description 5
- 102000001554 Hemoglobins Human genes 0.000 description 5
- 108010054147 Hemoglobins Proteins 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 108090001005 Interleukin-6 Proteins 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000015788 innate immune response Effects 0.000 description 5
- 210000001503 joint Anatomy 0.000 description 5
- 201000006417 multiple sclerosis Diseases 0.000 description 5
- 230000026731 phosphorylation Effects 0.000 description 5
- 238000006366 phosphorylation reaction Methods 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- -1 Catalog No. 20022 Proteins 0.000 description 4
- 102000055207 HMGB1 Human genes 0.000 description 4
- 108700010013 HMGB1 Proteins 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- 238000011887 Necropsy Methods 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000003435 antirheumatic agent Substances 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 229940027941 immunoglobulin g Drugs 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000007170 pathology Effects 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 description 3
- 101150021904 HMGB1 gene Proteins 0.000 description 3
- 101001074035 Homo sapiens Zinc finger protein GLI2 Proteins 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 108091027967 Small hairpin RNA Proteins 0.000 description 3
- 108020000411 Toll-like receptor Proteins 0.000 description 3
- 102000002689 Toll-like receptor Human genes 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 241000713893 Xenotropic murine leukemia virus Species 0.000 description 3
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000006167 equilibration buffer Substances 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 238000012252 genetic analysis Methods 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 231100000062 no-observed-adverse-effect level Toxicity 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 201000008827 tuberculosis Diseases 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 2
- 229940123907 Disease modifying antirheumatic drug Drugs 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 2
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 2
- 101710113864 Heat shock protein 90 Proteins 0.000 description 2
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000836954 Homo sapiens Sialic acid-binding Ig-like lectin 10 Proteins 0.000 description 2
- 101000617285 Homo sapiens Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241001049988 Mycobacterium tuberculosis H37Ra Species 0.000 description 2
- 241000702619 Porcine parvovirus Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 210000003423 ankle Anatomy 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000139 costimulatory effect Effects 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 235000012631 food intake Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 102000052379 human SIGLEC10 Human genes 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 231100000607 toxicokinetics Toxicity 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 238000002562 urinalysis Methods 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 206010002536 Anisocytosis Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 206010007710 Cartilage injury Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 238000011763 DBA/1J (JAX™ mouse strain) Methods 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 206010011906 Death Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027540 Microcytosis Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100288142 Mus musculus Klkb1 gene Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 102100021010 Nucleolin Human genes 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 101710143293 Sialic acid-binding Ig-like lectin 10 Proteins 0.000 description 1
- 102100027164 Sialic acid-binding Ig-like lectin 10 Human genes 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 231100000230 acceptable toxicity Toxicity 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 244000309457 enveloped RNA virus Species 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- ZWJINEZUASEZBH-UHFFFAOYSA-N fenamic acid Chemical class OC(=O)C1=CC=CC=C1NC1=CC=CC=C1 ZWJINEZUASEZBH-UHFFFAOYSA-N 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010019692 hepatic necrosis Diseases 0.000 description 1
- 238000012766 histopathologic analysis Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 231100000149 liver necrosis Toxicity 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 239000012516 mab select resin Substances 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011815 naïve C57Bl6 mouse Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 108010044762 nucleolin Proteins 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 150000005599 propionic acid derivatives Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012562 protein A resin Substances 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000012950 reanalysis Methods 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 210000001090 spherocyte Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000012418 validation experiment Methods 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000011100 viral filtration Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70596—Molecules with a "CD"-designation not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- This invention relates to compositions and methods for treating rheumatoid arthritis.
- CD24 is known as the heat-stable antigen. It is expressed as a glycosyl-phosphatidyl-inositol (GPI)-anchored molecule and has a wide distribution in different lineages. Because of the tendency of CD24 to be expressed on immature cells, it has also been used as part of stem cell markers and for lymphocyte differentiation. The first function associated with CD24 is a costimulatory activity for antigen-specific T cell response. In vivo studies indicated that, as a costimulator for T cell activation in the lymphoid organ, CD24 is redundant but becomes essential in the absence of CD28.
- GPI glycosyl-phosphatidyl-inositol
- mice with a targeted mutation of CD24 are completely resistant to induction of experimental autoimmune encephalomyelitis (EAE).
- CD24 Polymorphisms of human CD24 are associated with risk and progression of several autoimmune diseases, including multiple sclerosis and rheumatoid arthritis (RA).
- RA rheumatoid arthritis
- soluble CD24 consisting of the extracellular portion of murine CD24 and human IgG1 Fc ameliorated the clinical symptom of experimental autoimmune diseases, the mouse model of multiple sclerosis.
- DAMPs danger-associated molecular patterns
- RA affects 0.5-1% of human populations. Although a number of disease-modifying antirheumatic drugs (DMARDs) are currently available, even the gold standard of biologic DMARDs, the therapeutics targeting the tumor-necrosis factor alpha, lead to 50% improvement according to American College of Rheumatology Improvement Criteria (ACR50) in less than 50% of the patients receiving the treatments. No cure for RA is available. It is therefore necessary to test additional therapeutics for RA. RA is presumed to be autoimmune diseases in the joint, although the cause of the diseases remains largely obscure. A number of studies have implicated T cells in the pathogenesis of rheumatoid arthritis. More recently, it has been demonstrated that transfer of antibodies can cause the development of inflammation of the joints of mice. The pathology of the lesions resembles human rheumatoid arthritis.
- RA pathogenesis of RA involves host response to DAMP and since the CD24 molecule negatively regulate host response to DAMPs, the potential of using soluble CD24 to treat RA was investigated.
- the passive transfer model of RA was chosen because of both relevance to human diseases and simplicity of experimental designs.
- a CD24 protein comprising a mature human CD24 variant consisting of SEQ ID NO: 1.
- the CD24 protein may further comprise a portion of a mammalian immunoglobulin (Ig), which may be fused to the N-terminus or C-terminus of the mature CD24.
- Ig portion may be the Fc portion of a human Ig protein.
- the Fc portion may consist of the hinge region and CH2 and CH3 domains of the human Ig protein, and the Ig may be IgG1, IgG2, IgG3, IgG4, or IgA.
- the Fc portion may consist of the hinge region and CH3 and CH4 regions of IgM.
- the CD24 protein may be soluble, and may be glycosylated.
- the CD24 protein may also be produced using a eukaryotic protein expression system, which may comprise a vector contained in a Chinese Hamster Ovary cell line or a replication-defective retroviral vector.
- the replication-defective retroviral vector may be stably integrated into the genome of a eukaryotic cell.
- FIGS. 1A-B show the amino acid composition of the CD24 fusion protein, CD24IgG1Fc (also referred to herein as CD24Fc) (SEQ ID NO: 5).
- the underlined 26 amino acids are the signal peptide of CD24 (SEQ ID NO: 4).
- the boxed, bold portion of the sequence is the mature CD24 protein used in the fusion protein (SEQ ID NO: 1).
- the last amino acid (A or V) that is ordinarily present in the mature CD24 protein has been deleted from the construct to avoid immunogenicity.
- the non-underlined, non-bold letters are the sequence of IgG1 Fc, including the hinge region and CH1 and CH2 domains (SEQ ID NO: 6).
- FIG. 1B shows the sequence of CD24 V Fc (SEQ ID NO: 7), in which the mature human CD24 protein is the valine polymorphic variant of SEQ ID NO: 2.
- the various parts of the fusion protein are marked as in FIG. 1A .
- FIG. 2 Methods for purification and processing of CD24IgG1Fc (CD24Fc) expressed from mammalian cell lines.
- FIG. 3 Amino acid sequence variations between mature CD24 proteins from mouse (SEQ ID NO: 3) and human (SEQ ID NO: 2). The potential glycosylation sites are bolded, with the N-glycosylation sites in red.
- FIGS. 4A-C WinNonlin compartmental modeling analysis of pharmacokenitics of CD24IgG1 (CD24Fc). The opened circles represent the average of 3 mice, and the line is the predicted pharmacokinetic curve.
- FIG. 4A i.v. injection of 1 mg CD24IgG1.
- FIG. 4B s.c. injection of 1 mg CD24IgG1 (CD24Fc).
- FIG. 4C Comparison of the total amounts of antibody in the blood as measured by areas under curve (AUC), half-life and maximal blood concentration. Note that overall, the AUC and Cmax of the s.c. injection is about 80% of i.v. injection, although the difference is not statistically significant.
- FIGS. 5A-B CD24-Siglec G (10) interaction discriminates between PAMP and DAMP.
- FIG. 5A Host response to PAMP was unaffected by CD24-Siglec G(10) interaction.
- FIG. 5B CD24-Siglec G (10) interaction represses host response to DAMP, possibly through the Siglec G/10-associated SHP-1.
- FIGS. 6A-B A single injection of CD24Fc reduces clinical score of CAIA.
- FIG. 6A Diagram of experiments. BALB/c mice (8 weeks old) received mAbs on day 1 in conjunction with either vehicle or fusion proteins. The mice were injected LPS on day 3, and were observed daily for 3 weeks.
- FIG. 6B CD24Fc reduces clinical scores of CAIA. The fusion proteins (1 mg/mouse) or vehicles were injected once on day 1. Clinical scores were determined double blind. *, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001. The effect of CD24 was reproduced in 6 independent experiments, involving a total of 52 mice in the PBS group and 54 mice in CD24Fc group.
- FIGS. 7A-B CD24Fc reduces the levels of inflammatory cytokines in the joint and CAIA.
- CAIA initiated and treated as diagramed in FIG. 6A .
- the inflammatory cytokines were measured by cytokine bead array from BD Pharmingen.
- FIG. 7A Representative FACS profile.
- FIG. 7B The summary of reduced cytokines (Mean ⁇ SE) measured in the joint homogenates.
- FIG. 8 CD24Fc reduces inflammation and destruction of cartilage in the joint.
- front and hind paws were dissected from both CD24Fc treated and control mice, fixed in 4% paraformaldehyde for 24 hours followed by decalcification with 5% formic acid. The paws were then embedded in paraffin and the longitudinal section were stained with H&E and Safranin O red (Sigma-Aldrich).
- FIG. 9 Therapeutic effect of CD24Fc administrated on day 5 of CAIA induction.
- the CAIA-induced mice were randomized into two groups, receiving either vehicle (PBS) or CD24 Fc. The mice were scored double blind. Representative of three independent experiments are shown.
- FIGS. 10A-B Low doses of CD24Fc prevent development of CAIA.
- FIG. 10A Diagram of experiments.
- FIG. 10B Clinical scores of arthritis, scored double blind.
- FIGS. 11A-B Siglecg is essential for therapeutic effect of CD24Fc, WT ( FIG. 11A ) and Siglecg ⁇ / ⁇ mice ( FIG. 11B ) received either vehicle control or CD24Fc in conjunction of a cocktail of anti-collagen mAbs. The clinical scores were recorded daily double blind.
- FIGS. 12A-F Construction of CD24 v Fc and CD24Fc.
- FIG. 12A Diagram of the fusion proteins. The polymorphic residue in extracellular domain was deleted in CD24Fc.
- FIG. 12B SDS-PAGE analysis for the purity of the two fusion proteins. The numbers shown are ⁇ g of proteins loaded.
- FIG. 12C Comparison between CD24 v Fc and CD24Fc for their binding to Siglec10Fc. Desialylated CD24Fc was used as a negative control.
- FIG. 12D Comparison between CD24Fc and CD24 v Fc for the therapeutic effect in the CAIA model.
- CD24Fc or CD24 v Fc (200 ⁇ g/mouse) was injected into mice in conjunction with a cocktail of anti-collagen antibodies on day 1. Arthritis was elicited by treatment with LPS on day 3. The diseases were scored double blind. Data shown in FIGS. 12C and D are means and SEM. FIGS. 12E and 12F also compare the therapeutic effects of CD24Fc and CD24 V Fc, in experiments performed similarly to the ones shown in FIG. 12D , except that IgG1 Fc was used as a negative control. As shown in FIG. 12E , CD24Fc reduced the RA score as early as day 4, and showed statistically significant protection throughout the three weeks of observation. On the other hand, as shown in FIG. 12F , CD24 V Fc showed a reduction in RA score starting on day 8. Although reduced scores were observed thereafter, the reduction did not reach statistical significance.
- FIGS. 13A-B CD24Fc conferred protection against CIA in DBA/1 mice.
- FIG. 13B Therapeutic effect of CD24Fc in CIA of DBA/1 mice.
- FIGS. 14A-B CD24Fc caused rapid recovery in mice with ongoing chicken CIA.
- 8-week old C57BL/6 mice were immunized with 100 ⁇ L of collagen-CFA emulsion (made by mixing 4 mg/ml of chick type II collagen with equal volume of CFA containing 5 mg/ml of M. tuberculosis ) intradermally at the base of the tail.
- booster immunization with the same collagen-CFA emulsion was administered intradermally 1.5 cm from the tail base.
- FIG. 14A On day 28, mice with a clinical score >3 were randomized to receive either vehicle or CD24Fc (1 mg/mouse). The endpoint was a reduction of score by 50% (top) or 80% (bottom).
- FIGS. 15A-C CD24 inhibited inflammatory cytokine production by human macrophages.
- FIG. 15A ShRNA silencing of CD24 led to spontaneous production of TNF ⁇ , IL-6 and IL-1 ⁇ .
- THP1 cells were transduced with lentiviral vectors encoding either scrambled or two independent CD24 shRNA. The transduced cells were differentiated into macrophages by culturing for 4 days with PMA (15 ng/ml). After washing away PMA and nonadherent cells, the cells were cultured for another 24 hours for measurement of inflammatory cytokines by cytokine beads array.
- FIG. 15B As in FIG.
- FIG. 15A except that the given concentration of CD24Fc or control IgG Fc was added to macrophages in the last 24 hours.
- FIG. 15C CD24Fc was more efficient than CD24 v Fc in suppressing the spontaneous production of inflammatory cytokines by CD24-silenced macrophage cell line THP1. The data shown are as detailed in the FIG. 12 legends, except that the CD24Fc and CD24 v Fc are compared side-by-side.
- FIGS. 16A-C Contribution of Siglec G to protection by CD24Fc.
- FIG. 16A CD24Fc stimulated tyrosine phosphorylation of, and SHP-1 binding to, Siglec G. Spleen cells from CD24-deficient mice were stimulated with either vehicle, Fc control or CD24Fc (1 ⁇ g/ml) for 30 min. After lysis, the Siglec G protein was precipitated with anti-Siglec G antisera. Siglec G phosphorylation and its association to SHP-1 were detected by Western blot.
- FIG. 16B Siglecg was essential for therapeutic effect of CD24Fc in mice with low dose of anti-collagen antibodies. WT ( FIG.
- FIG. 16A Targeted mutation of Siglecg attenuated but did not abrogate the therapeutic effect of CD24Fc with double doses of anti-collagen antibodies.
- the anti-collagen antibodies (4 mg/mouse) and CD24Fc (1 mg/mouse) were added on day 1, while LPS (100 ⁇ g/mouse) was added on day 3.
- FIGS. 17A-B show pharmacokinetic profiles of CD24 in male and female mice at doses of 12.5, 35, and 125 mg/kg.
- FIGS. 18A and B show CD24Fc serum concentrations vs. time in cynomolgus monkeys (12.5 mg/kg dose).
- the inventors have discovered that a soluble form of CD24 is highly effective for treating rheumatoid arthritis.
- a variant CD24 fusion protein in which the core of human CD24 lacks the polymorphic amino acid at position 57 of full-length CD24 has a superior therapeutic effect when compared with a CD24 protein which has a wild-type core CD24 sequence.
- each intervening number there between with the same degree of precision is explicitly contemplated.
- the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the numbers 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated.
- a “peptide” or “polypeptide” is a linked sequence of amino acids and may be natural, synthetic, or a modification or combination of natural and synthetic.
- “Substantially identical” may mean that a first and second amino acid sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% over a region of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300 amino acids.
- Treatment when referring to protection of an animal from a disease, means preventing, suppressing, repressing, or completely eliminating the disease.
- Preventing the disease involves administering a composition of the present invention to an animal prior to onset of the disease.
- Suppressing the disease involves administering a composition of the present invention to an animal after induction of the disease but before its clinical appearance.
- Repressing the disease involves administering a composition of the present invention to an animal after clinical appearance of the disease.
- a “variant” may mean means a peptide or polypeptide that differs in amino acid sequence by the insertion, deletion, or conservative substitution of amino acids, but retain at least one biological activity.
- Representative examples of “biological activity” include the ability to bind to a toll-like receptor and to be bound by a specific antibody.
- Variant may also mean a protein with an amino acid sequence that is substantially identical to a referenced protein with an amino acid sequence that retains at least one biological activity.
- a conservative substitution of an amino acid i.e., replacing an amino acid with a different amino acid of similar properties (e.g., hydrophilicity, degree and distribution of charged regions) is recognized in the art as typically involving a minor change.
- hydropathic index of amino acids As understood in the art. Kyte et al., J. Mol. Biol. 157:105-132 (1982).
- the hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes can be substituted and still retain protein function. In one aspect, amino acids having hydropathic indexes of ⁇ 2 are substituted.
- the hydrophilicity of amino acids can also be used to reveal substitutions that would result in proteins retaining biological function.
- hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide, a useful measure that has been reported to correlate well with antigenicity and immunogenicity.
- U.S. Pat. No. 4,554,101 incorporated fully herein by reference.
- Substitution of amino acids having similar hydrophilicity values can result in peptides retaining biological activity, for example immunogenicity, as is understood in the art.
- Substitutions may be performed with amino acids having hydrophilicity values within ⁇ 2 of each other. Both the hyrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties.
- CD24 protein which may have the amino sequence of mature human CD24, which may be SETTTGTSSNSSQSTSNSGLAPNPTNATTK (SEQ ID NO: 1) or SETTTGTSSNSSQSTSNSGLAPNPTNATTK(V/A) (SEQ ID NO: 2), or mouse CD24, which may be NQTSVAPFPGNQNISASPNPTNATTRG (SEQ ID NO: 3), or a variant thereof.
- the CD24 may be soluble.
- the CD24 may further comprise a N-terminal signal peptide, which may have the amino acid sequence MGRAMVARLGLGLLLLALLLPTQIYS (SEQ ID NO: 4).
- the CD24 may also have an amino acid sequence described in FIG. 1 or 3 .
- the CD24 may exist in one of two allelic forms, such that the C-terminal amino acid of the mature human CD24 may be a valine or an alanine.
- the C-terminal valine or alanine may be immunogenic and may be omitted from the CD24 to reduce its immunogenicity.
- the difference between the two alleles may affect the risk of autoimmune diseases, including multiple sclerosis and RA. Nevertheless, since the two allelic forms affect the expression levels of membrane-bounded form, the variation should not affect the function of CD24.
- the CD24 may be fused at its N- or C-terminal end to a portion of a mammalian Ig protein, which may be human or mouse.
- the portion may be a Fc region of the Ig protein.
- the Fc region may comprise the hinge region and CH2 and CH3 domains of the Ig protein.
- the Ig protein may be human IgG1, IgG2, IgG3, IgG4, IgM, or IgA.
- the Fc portion may comprise SEQ ID NO: 6.
- the Ig protein may also be IgM, and the Fc portion may comprise the hinge region and CH3 and CH4 domains of IgM.
- the CD24 may also be fused at its N- or C-terminus to a protein tag, which may be GST, His, or FLAG. Methods for making fusion proteins and purifying fusion proteins are well known in the art.
- the CD24 may be heavily glycosylated, and may be involved in functions of CD24 such as costimulation and interaction with danger-associated molecular patterns.
- the CD24 may be prepared using a eukaryotic expression system.
- the expression system may entail expression from a vector in mammalian cells, such as Chinese Hamster Ovary (CHO) cells.
- the system may also be a viral vector, such as a replication-defective retroviral vector that may be used to infect eukaryotic cells.
- the CD24 may also be produced from a stable cell line that expresses CD24 from a vector or a portion of a vector that has been integrated into the cellular genome.
- the stable cell line may express CD24 from an integrated replication-defective retroviral vector.
- the expression system may be GPExTM.
- the CD24 may be used to treat rheumatoid arthritis.
- the CD24 may be administered to a subject in need thereof.
- the subject may be a mammal such as a human.
- the CD24 may be combined with another drug, such as a disease-modifying antirheumatic drug (DMARD).
- DMARD disease-modifying antirheumatic drug
- the drug may be a nonsteriod anti-inflammatory drug (NSAID), which may be a propionic acid derivative, an acetic acid derivative, an enolic acid derivative, a fenamic acid derivative, or a selective Cox2 inhibitor.
- NSAID nonsteriod anti-inflammatory drug
- the drug may also be a corticosteroid or Methotrexate.
- the drug may be a biologic, which may be a TNF- ⁇ antagonist such as an anti-TNF- ⁇ antibody or a fusion protein that binds to TNF- ⁇ (Enbrel), an anti-CD20 mAb, an antagonist of costimulatory molecule CD80 and CD86 such as a monoclonal antibody or a fusion protein (CTLA4Ig) that binds to the two molecules, or an antagonist for a receptor of either IL-1 or IL-6.
- TNF- ⁇ antagonist such as an anti-TNF- ⁇ antibody or a fusion protein that binds to TNF- ⁇ (Enbrel)
- an anti-CD20 mAb an antagonist of costimulatory molecule CD80 and CD86
- CD80 and CD86 such as a monoclonal antibody or a fusion protein (CTLA4Ig) that binds to the two molecules, or an antagonist for a receptor of either IL-1 or IL-6.
- CTLA4Ig monoclonal antibody or a fusion protein
- the CD24 may be contained in a pharmaceutical composition, which may comprise a solvent, which may keep the CD24 stable over an extended period.
- the solvent may be PBS, which may keep the CD24 stable for at least 36 months at ⁇ 20° C. ( ⁇ 15 ⁇ 25° C.).
- the solvent may be capable of accommodating the CD24 in combination with the other drug.
- the dose to be used for human may ultimately be determined through a clinical trial to determine a dose with acceptable toxicity and clinical efficacy.
- the initial clinical dose for human may be estimated through pharmacokinetics and toxicity studies in rodents and non-human primates.
- the dose of CD24 may be 0.01 mg/kg to 1000 mg/Kg, and may be 1 to 500 mg/kg, depending on the severity of disease being treated and the route of administration.
- the route of administration of the pharmaceutical composition may be parenteral.
- Parenteral administration includes, but is not limited to, intravenous, intraarterial, intraperitoneal, subcutaneous, intramuscular, intrathecal, intraarticular and direct injection into affected joints.
- the agent may be administered as a suitably acceptable formulation in accordance with normal veterinary practice. The veterinarian can readily determine the dosing regimen and route of administration that is most appropriate for a particular animal.
- the pharmaceutical composition may be administered to a human patient, cat, dog, large animal, or an avian.
- the CD24 may be administered simultaneously or metronomically with other treatments.
- the term “metronomically” as used herein means the administration of the agent at times different from the other treatment and at a certain frequency relative to repeat administration.
- the CD24 may be administered at any point prior to another treatment including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr, 36 hr, 34
- the CD24 may be administered at any point prior to a second treatment of the CD24 including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr,
- the CD24 may be administered at any point after another treatment including about 1 min, 2 mins., 3 mins., 4 mins., 5 mins., 6 mins., 7 mins., 8 mins., 9 mins., 10 mins., 15 mins., 20 mins., 25 mins., 30 mins., 35 mins., 40 mins., 45 mins., 50 mins., 55 mins., 1 hr, 2 hr, 3 hr, 4 hr, 6 hr, 8 hr, 10 hr, 12 hr, 14 hr, 16 hr, 18 hr, 20 hr, 22 hr, 24 hr, 26 hr, 28 hr, 30 hr, 32 hr, 34 hr, 36 hr, 38 hr, 40 hr, 42 hr, 44 hr, 46 hr, 48 hr, 50 hr, 52 hr, 54 hr, 56
- the CD24 may be administered at any point prior after a previous CD24 treatment including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr, 36
- the extracellular domain of CD24 was fused to IgG1 Fc.
- the amino acid composition of the CD24 fusion protein is provided in FIG. 1 .
- a replication-defective retroviral vector that drives expression of the CD24Ig fusion protein was then generated.
- the GPExTM an acronym for gene product expression
- the GPExTM offers several important advantages, the most important of which is the, on average, >1000 insertions/cell but with only 1 copy/insertion.
- the retrovirus preferentially inserts into the transcriptional active locus, the GPExTM resulted in a high level of expression of the targeted protein.
- Stable cell lines that produce a high yield of CD24Ig were generated.
- 45 grams of GLP grade products and ⁇ 100 grams of cGMP grade products were produced.
- the methods used for downstream processing of media harvested from the bioreactor are summarized in the flow chart below ( FIG. 2 ).
- the bioreactor culture media was clarified using Cuno 60M02 Maximizer depth filters followed by a Millipore Opticap 0.22 um filter. The filtrate was collected into a sterile collection bag. Samples were obtained for CD24-Fc yield quantitation by ELISA.
- the clarified media was passed over a column of Protein A resin (GE Healthcare MabSelect) at a concentration not exceeding 16 g/L of resin (based on ELISA) and a contact time of 4 minutes.
- the column was washed with the equilibration buffer (50 mM Tris+0.15M NaCl pH7.5), then with 10 mM sodium citrate/citric acid pH 6.0 for 5cvs.
- Bound CD24Ig was eluted from the column using 10 mM sodium citrate/citric acid pH 3.5
- the Protein A eluate fraction was immediately brought to pH 3.0 with the addition of 2M Hydrochloric acid and held at this pH for 30 minutes at ambient temperature. It was then brought to pH 5.0 with the addition of 1M Tris base, and filtered to clarity using a 0.65 um glass fiber filter (Sartorius Sartopure GF2) and 0.2 um (Sartorius Sartopore 2) into a sterile collection bag.
- 2M Hydrochloric acid was then brought to pH 5.0 with the addition of 1M Tris base, and filtered to clarity using a 0.65 um glass fiber filter (Sartorius Sartopure GF2) and 0.2 um (Sartorius Sartopore 2) into a sterile collection bag.
- the column was washed with the equilibration buffer (10 mM sodium citrate/citric acid pH 5.0) and bound CD24Ig was eluted from the column using 10 mM sodium citrate/citric acid+0.2M NaCl pH5.0.
- the effluent was collected into a sterile collection bag.
- the SP-Sepharose elute was adjusted to pH 7.5 by the addition of 1M Tris base and diluted with WFI to reduce the conductivity.
- the filter was washed with the equilibration buffer (10 mM Tris pH 7.5) and the CD24-Fc is contained in the flow through and is collected into a sterile collection bag.
- the Mustang Q flow through was then filtered at a constant pressure of 30 psi through a 0.2 mM filter and a Millipore NFP viral filter (nominal pore size 20 nm) and was collected into a sterile collection bag.
- the product was concentrated and diafiltered using a 10 kDa ultrafiltration membrane (Millipore Prep/Scale) into a 10 mM sodium phosphate, 150 mM sodium chloride pH 7.2 at approximately 10 mg/mL final concentration as determined by absorbance at 280 nm.
- Analytical samples were drawn from the bulk whilst in a biosafety cabinet. Labeling was performed and the samples were delivered to QC for testing while the bulk aliquots were stored at 2-8° C. pending release.
- the viral clearance validation was performed at Cardinal Health, NC, on samples prepared at CHM. Qualified scientists from Gala Biotech performed the chromatography and filtration steps in the Cardinal Health Viral Validation facility with the assistance of Cardinal Health personnel.
- the scale down procedure was developed from the 200 L scale process. Two viruses were chosen to be used in this study. The first was Xenotropic murine Leukemia virus (XMuLv), which is an enveloped RNA virus of 80-130 nm in size from the Retroviridae viral family. The second was Porcine Parvovirus (PPV), which is a nonenveloped DNA virus of 18-26 nm in size. This is considered a robust virus, and was expected to demonstrate a much lower viral reduction through the purification protocol than the XMuLv.
- XMuLv Xenotropic murine Leukemia virus
- PSV Porcine Parvovirus
- CD24IgG1 1 mg was injected into na ⁇ ve C57BL/6 mice and collected blood samples at different timepoints (5 min, 1 hr, 4 hrs, 24 hrs, 48 hrs, 7 days, 14 days and 21 days) with 3 mice in each timepoint.
- the sera were diluted 1:100 and the levels of CD24Ig was detected using a sandwich ELISA using purified anti-human CD24 (3.3 ⁇ g/ml) as the capturing antibody and peroxidase conjugated goat anti-human IgG Fc (5 ⁇ g/ml) as the detecting antibodies.
- FIG. 4 a The decay curve of CD24Ig revealed a typical biphase decay of the protein.
- the first biodistribution phase had a half life of 12.4 hours.
- the second phase follows a model of first-order elimination from the central compartment.
- the half life for the second phase was 9.54 days, which is similar to that of antibodies in vivo.
- RA is predominantly a T-cell mediated autoimmune diseases.
- B lymphocytes in addition or rheumatoid factors, a host of autoreactive antibodies have been found in RA patients, although it has not been definitively addressed in human.
- antibodies specific for either ubiquitous or tissue specific antigens are sufficient to cause RA symptoms.
- antibodies from the K/B ⁇ N TCR transgenic mice were found to be fully capable of transferring RA-like diseases in the new host.
- a cocktail for 4 anti-collagen antibodies is now widely used to induce RA in the mouse. This model is now called CAIA, for collagen antibody-induced arthritis.
- CD24 provides a powerful negative regulation for host response to tissue injuries.
- CD24 is a GPI anchored molecules that is broadly expressed in hematopoietic cells and other tissue stem cells. Genetic analysis of a variety of autoimmune disease in human, including multiple sclerosis, systemic lupus erythromatosus, RA, and giant cell arthritis, showed significant association between CD24 polymorphism and risk of autoimmune diseases.
- Siglec G is a member of I-lectin family, defined by their ability to recognize sialic acid containing structure.
- Siglec G recognized sialic acid containing structure on CD24 and negatively regulates production of inflammatory cytokines by dendritic cells. In terms of its ability to interact with CD24, human Siglec 10 and mouse Siglec G are functionally equivalent. However, it is unclear if there is a one-to-one correlation between mouse and human homologues. Although the mechanism remains to be full elucidated, it is plausible that SiglecG-associated SHP1 may be involved in the negative regulation. These data, reported in Science recently, leads to a new model in which CD24-Siglec G/10 interaction may play a critical in discrimination pathogen-associated molecular pattern (PAMP) from DAMP ( FIG. 5 ).
- PAMP pathogen-associated molecular pattern
- CD24 may trap the inflammatory stimuli to prevent their interaction with TLR or RAGE. This notion is supported by observations that CD24 is associated with several DAMP molecules, including HSP70, 90, HMGB1 and nucleolin. Second, perhaps after associated with DAMP, CD24 may stimulate signaling by Siglec G. Both mechanisms may act in concert as mice with targeted mutation of either gene mounted much stronger inflammatory response. In fact, DC cultured from bone marrow from either CD24 ⁇ / ⁇ or Siglec G ⁇ / ⁇ mice produced much higher inflammatory cytokines when stimulated with either HMGB1, HSP70, or HSP90.
- the CAIA was induced on 8 weeks old BALB/c mice by i.v. injection of a cocktail of 4 anti-collagen mAbs (MD Biosciences, St. Paul, Minn.) at 2 mg/mouse on day 1, and i.p. injection of 100 ⁇ g/mouse of LPS (MD Bioscience) on day 3.
- the mice were treated on day 1 with either 1 mg CD24Fc or equal volume of 1 ⁇ PBS vehicle as negative control.
- CD24Fc provided highly significant therapeutic effects.
- cytokines were measured from homogenized joints of CD24Fc treated mice or PBS control group, and measured the supernatant of 200 ⁇ g tissue homogenates by cytokine beads array.
- a typical example is shown in FIG. 8 a
- the summary data are shown in FIG. 7 b .
- CD24Fc The effect of CD24Fc is substantiated by histological analysis of the synovial joints of CAIA mice, as presented in FIG. 8 .
- H&E staining demonstrated that the joint synoviums in the PBS group are heavily infiltrated with inflammatory cells including neutrophil, macrophage, and lymphocytes ( FIG. 8 a ).
- sever cartilage damages were revealed by the loss of safranin O red staining in PBS-treated ( FIG. 8 c ) mice, but not CD24Fc-treated group ( FIG. 8 d ).
- CD24Fc was titrated through a wide range of doses. As shown in FIG. 10 , as little as 2 microgram/mice is sufficient to have statistically significant therapeutic effect.
- CD24Fc protect mice by interacting with Siglec G. Since the Siglecg-deficient mice were produced with ES cells from C57BL/6 mice, we used WT C57BL/6 mice as control. As shown in FIG. 11 a , since the B6 mice are known to be less susceptible to the CAIA, the overall disease score is lower than that observed in the BALB/c mice. Nevertheless, a single injection of the CD24Fc essentially wiped out the clinical signs in the WT mice. Importantly, even though the disease is less severe in the Siglecg-deficient mice, CD24Fc had no therapeutic effect. Therefore, the therapeutic effect of CD24Fc is strictly dependent on the Siglecg gene.
- mice A study of CD24Fc in mice was performed in order to evaluate the toxicity and systemic exposure of CD24Fc when intravenously administered to mice once weekly for four weeks, and the reversibility of toxicity following a four-week recovery period.
- a total of 320 male and female mice were assigned to Groups 1-4 for evaluation of the toxicity (20/sex/group) and reversibility (20/sex/group). All of these mice were treated intravenously with either PBS buffer or CD24Fc at doses of 12.5, 35, or 125 mg/kg once weekly for 4 weeks.
- mice were assigned to Groups 5-8 for evaluation of the systemic exposure of CD24Fc following the first dose (3/sex in Group 5 and 27/sex/group in Groups 6-8) and the last dose (6/sex in Group 5 and 30/sex/group in Groups 6-8). All of these mice were treated intravenously with either PBS buffer or CD24Fc at doses of 12.5, 35, or 125 mg/kg once on Day 1 or once weekly for 4 weeks.
- mice treated with either PBS buffer or CD24Fc No morbidity or mortality was found in mice treated with either PBS buffer or CD24Fc, with the exception that one male mouse treated with 35 mg/kg of CD24Fc in Group 7 was found dead on Day 21. This death occurred in 1/680 of mice and did not appear to be associated with the treatment. No treatment-related changes were noted in clinical observations, body weights, food consumption, ophthalmology, hematology, coagulation, clinical chemistry, organ weights, and organ-to-body or to-brain weight ratios. No treatment-related macroscopic and microscopic findings were observed in all examined animals.
- Anti-CD24Fc antibody was detected in 10/30 of mice on Day 30 and 12/30 of mice on Day 57, which appeared to be dose dependent with no difference between male and female mice. A higher systemic exposure following the first dose and last dose was observed in male animals compared to female animals. An approximately linear increase in AUC values was observed when mice were treated with increasing doses of CD24Fc from 12.5 mg/kg to 125 mg/kg. An accumulation of CD24Fc in mice was observed after dosing once weekly for four weeks.
- the NOAEL was considered to be equal to or greater than 125 mg/kg.
- CD24Fc was performed in cynomolgus monkeys to examine the pharmacokinetics and potential toxicity, acquired immunity, and immunogenicity following administration of CD24Fc administered by intravenous infusion once weekly for four weeks, and to evaluate recovery from any effects of the test article over a dose-free period of at least 10 weeks.
- the test article formulation was used as received for dose administration.
- Blood samples were collected for toxicokinetic analysis predose, 15 minutes, and 6, 24, and 72 hours in relation to dose administration on Days 1 and 22, predose on Day 8, and on Day 29 (at the same time of day as Day 22 end of infusion).
- Blood samples for flow cytometry were collected prestudy (three time points), and on Days 28 and 98.
- Blood samples for anti-drug antibodies (ADA) were collected prestudy and on Days 28 and 98.
- T-cell dependent antibody response To evaluate the T-cell dependent antibody response (TDAR), the animals were immunized with a 1:1 emulsion of keyhole limpet hemocyanin (KLH) and Incomplete Freund's Adjuvant (IFA) injected intramuscularly on the thigh to achieve a dose of 750 mg/animal on Day 10, and to recovery animals on Day 84. Blood samples for anti-KLH response were collected prestudy, and on Days 20, 24, 28, 94, and 98. Twenty four (24) animals (3/sex/group) were euthanized one week after the last dose. The remaining 16 animals (2/sex/group) were continued on the study without further dosing, and euthanized on Day 98 (76 days after the last dose).
- KLH keyhole limpet hemocyanin
- IFA Incomplete Freund's Adjuvant
- CD24Fc administered via 1-hour intravenous infusion once weekly for 4 consecutive weeks at 12.5 mg/kg/week (Group 2), 35 mg/kg/week (Group 3), or 125 mg/kg/week (Group 4) was generally well tolerated in male and female cynomolgus monkeys through a 4-week dosing period, followed by a 10 week recovery period.
- CD24Fc was detected in serum samples from all dosed animals. No measurable amount of CD24Fc was detected in control or predose serum samples. Incurred sample reanalysis (ISR) was performed, and the results met the acceptance criteria. Serum was screened for the presence of anti-CD24Fc antibody. Seven animals out of the 40 total were identified as positive at the prestudy time point (17.5%). This rate of positive samples prior to test article administration is similar to the rate observed in the validation (12.5%) which demonstrated a subpopulation of animals with pre-existing anti-CD24Fc antibodies. Three animals were identified as positive during the dosing period of the study.
- ISR Incurred sample reanalysis
- the validation experiment also demonstrated that 10 ⁇ g/mL of CD24Fc inhibited the measurement of anti-CD24Fc antibodies in reference to the positive control, and all dose groups at the Day 29 toxicokinetic time point had concentrations greater than 10 ⁇ g/mL measured in serum. Only one animal (125 mg/kg/week dose group) screened positive for anti-CD24Fc antibodies within the recovery interval.
- the no-observed-adverse-effect level (NOAEL) for CD24Fc was considered to be 12.5 mg/kg/week under the conditions of this study when administered once weekly for four weeks.
- the pharmacokinetics of CD24Fc were examined in the mouse and cynomolgus monkeys. These animal PK studies were carried out by two preclinical contract research organizations. The mouse study was performed by JOINN Laboratory at Beijing, China, while the cynomolgus monkey study was carried out by Charles River Laboratory at Reno, Nev., USA. Both studies were in compliance with the Good Laboratory Protocol (GLP) and the final reports were audited. As an independent report, the WinNonLin analysis of pharmacokinetic characterizations of CD24Fc in this report were performed by either JOINN Laboratory at Beijing, China (PK in mouse) or OncoImmune Inc. (PK in cynomolgus monkey).
- CD24Fc was intravenously administered to mice once weekly for four weeks.
- a total of 360 mice were assigned to Groups 1-4 for evaluation of the systemic exposure of CD24Fc following the first dose (3/sex in Group 1 and 27/sex/group in Groups 2-4) and the last dose (6/sex in Group 1 and 30/sex/group in Groups 2-4.). All of these mice were treated intravenously with either PBS buffer or CD24Fc at doses of 12.5, 35, or 125 mg/kg once weekly for 4 weeks. Blood samples were collected at each time point from 3 mice/sex/group in Groups 1-4 via orbital vein for determination of the serum concentrations of CD24Fc.
- a Variant CD24 has Improved Activity Over Wild-Type CD24
- CD24Fc CD24 polypeptide containing human CD24 missing the polymorphic amino acid at position 57
- CD24 V Fc CD24 V Fc
- CD24Fc and CD24vFc were manufactured by OncoImmune, Inc.; Bovine type II collagen, Catalog No. 20022, Chondrex Inc., Redmond, Wash.; a cocktail of 4 anti-collagen mAbs Catolog No. CIA-MAB-50 for BALB/c and CIA-MAB-2C for C57BL/6 mice, MD Bioproducts, St. Paul, Minn.; Chick type II collagen, Catalog No. 20011, Chondrex Inc., Redmond, Wash.; Complete Freund's adjuvant: Catalog No. 7008, Chondrex Inc., Redmond, Wash., with heat-killed M.
- tuberculosis H37 Ra (non-viable) at concentration of 1 mg/ml
- Complete Freund's adjuvant Catalog No. 7023, Chondrex Inc., Redmond, Wash., with heat-killed M. tuberculosis H37 Ra (non-viable) at concentration of 5 mg/ml
- Incomplete Freund's adjuvant Catalog No. 7002, Chondrex Inc., Redmond, Wash.
- Cytometric Bead Array (CBA) Mouse Inflammation Kit, Catalog No. 552364, BD Biosciences, San Jose, Calif.
- mice BALB/cAnNCr (01B05, NCI) and C57BL/6NCr (01055, NCI) mice, male, 7 weeks old, were purchased from the National Cancer Institute (NCI) at Frederick, Md. DBA/1J (000670, JAX) mice, male, 7 weeks old, were received from Jackson Laboratories. All mice were quarantined for 7 days prior to immunization. During quarantine, the animals were examined for general health and acceptability for use in this study. Individual animals were identified by ear mark. Animal cages were identified by study number, animal number, and group number. To minimize cage variation, different treatments were given to individual mouse in the same cages and scored in a double-blind protocol.
- mice (8 weeks old) received mAbs (2 mg/mouse) on day 1 in conjunction with either vehicle or fusion proteins.
- Mice received LPS (100 ⁇ g/mouse) on day 3, and were observed daily for 3 weeks.
- the fusion proteins (0.2 or 1 mg/mouse) or vehicles were injected once on day 1.
- the dose of anti-collagen antibodies was either 2 mg/mouse or 4 mg/mouse.
- mice were immunized with 100 ⁇ L of collagen-CFA emulsion (made by mixing 2 mg/ml of bovine type II collagen with equal volume of CFA containing 1 mg/ml of M. tuberculosis ) subcutaneously at the base of the tail.
- mice were booster-immunized with 60 ⁇ L of collagen-IFA emulsion (made by mixing 2 mg/ml of collagen with equal volume of IFA) subcutaneously 1.5 cm from the tail base. Treatments were initiated either before or after the development of symptom of arthritis.
- mice with clinical symptoms were randomized to receive either vehicle or CD24Fc.
- the scoring of arthritis was based on the following scale.
- Prophylactic model in CIA model in DBA/1 mice On day 17, the immunized mice were randomly divided into two groups and were treated with vehicle (PBS) or given doses of CD24Fc. The mice were observed double blind for three weeks.
- PBS vehicle
- CD24Fc doses of CD24Fc
- CD24 Human mature CD24 exists in two allelic forms, in which either a valine or alanine is present at the C-terminus (position 57 of the CD24 amino acid sequence). Fusion proteins including either allelic form may provoke anti-drug antibodies in some RA patients. Thus, in order to avoid immunogenicity, it was tested whether the polymorphic residue can be removed from CD24, while maintaining regulatory function of CD24. As diagrammed in FIG. 12A , two fusion proteins were created, one with the entire extracellular domain of CD24 V allele (CD24 V Fc) (the mature CD24 sequence having SEQ ID NO: 2), while the other had a one amino acid deletion at the C-terminus of the resulting mature CD24 (CD24Fc) (the mature CD24 sequence having SEQ ID NO: 1). Both forms were expressed and purified to a similar degree ( FIG. 12B ).
- FIG. 12D in comparison with vehicle control, CD24Fc provided highly significant therapeutic effects. Surprisingly, CD24 V Fc was far less effective, with activity not very different from the negative control.
- FIGS. 12E and 12F also show that CD24Fc is more effective than CD24 V Fc, although unlike in the experiments in FIG. 12D , CD24 V Fc did have more activity than the negative control.
- CD24Fc Inhibits Production of Inflammatory Cytokines by a Human Macrophage Cell Line with shRNA Silencing of CD24
- CD24 was silenced in human THP1 cell line and then differentiation into macrophage was induced by treating the cells with PMA. As shown in FIG. 15A , CD24 silencing substantially increased production of TNF ⁇ , IL-1 ⁇ , and IL-6. These data demonstrate an essential role for endogenous human CD24 in production of inflammatory cytokines. Importantly, CD24Fc strongly inhibited production of TNF ⁇ , as well as IL-1 ⁇ and IL-6 ( FIG. 15B ). Consistent with the therapeutic effect in vivo, CD24 V Fc was approximately 10-fold less effective in inhibiting the production of inflammatory cytokines in the macrophage cell line ( FIG. 15C ).
- CD24Fc interacts with Siglec G in mice and Siglec 10 in humans.
- spleen cells from CD24 ⁇ / ⁇ mice were incubated with either vehicle, Fc or CD24Fc for 30 min, and tyrosine phosphorylation and SHP-1 binding to Siglec G were measured.
- FIG. 16A CD24Fc strongly stimulated tyrosine phosphorylation of Siglec G.
- the amount of SHP1 co-precipitated with Siglec G was dramatically increased.
- CD24Fc has potent therapeutic effects in three mouse RA models, including a CAIA and two CIA models.
- the efficacies in multiple models indicates that CD24Fc has a therapeutic effect among RA in humans with different underlying pathogenesis.
- RA is predominantly a T-cell mediated autoimmune diseases.
- B lymphocytes in RA pathogenesis.
- a host of auto-antibodies have been found in RA patients.
- Several lines of evidence have demonstrated that in the mouse models, antibodies specific for either ubiquitous or tissue specific antigens are sufficient to cause RA symptoms.
- the CIA model is commonly used for RA as it can mimic both induction and effector function of both adaptive and innate immunity.
- Two CIA models were used to validate the therapeutic effect of CD24Fc.
- Bovine collagen-induced RA in DBA/1 mice is the most commonly used model. The above data show that CD24Fc reduced the disease score either before or after onset of disease in this model.
- One drawback of the bovine CIA model is that only relatively small numbers of strains are susceptible. In particular, C57BL/6 mice, which are commonly used for genetic studies are resistant. More recently, a protocol has been developed to induce CIA in C57BL/6 mice using chicken collagen. As shown above, CD24Fc accelerated recovery of arthritis induced by chicken collagen. The fact that the CD24Fc confers protection in multiple models demonstrates the robustness of its therapeutic effect.
- CD24Fc binds to both Siglec G and human Siglec 10.
- CD24Fc signals through Siglec G and triggers tyrosine phosphorylation.
- CD24Fc works at least in part through Siglec G.
- CD24Fc and other fusion proteins containing variant CD24 missing the polymorphic A/V amino acid represents a new class of therapeutics for RA.
- This approach may be preferable to antibodies targeting individual DAMPs or inflammatory cytokins. Since multiple DAMPs are released during autoimmune destruction, targeting individual DAMP may be less effective than targeting a broad-spectrum regulator such as CD24-Siglec G pathway. Nevertheless, it should be pointed out that the data in this example demonstrate that the protection is not completely dependent on signaling through Siglec G. At least two additional mechanisms can be invoked. First, by binding to DAMPs, CD24 may reduce the amounts of DAMPs available for their agonist receptors, such as RAGE, TLR. Second, since CD24 is heterogeneously glycosylated, it may bind to other members of Siglecs to confer negative regulation.
- a fusion protein comprising a non-polymorphic extracellular domain of human CD24 (comprising SEQ ID NO: 1) protects mice against arthritis initiated by either anti-collagen antibodies or immunization of collagen. The protection is at least partially dependent on its interaction with Siglec G.
- the data demonstrate the potential of harnessing the negative regulation of innate immunity to tissue injuries.
- the non-polymorphic variant of CD24 is superior to wild-type CD24 in suppressing inflammatory cytokine production and protecting mice against RA.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Provided herein is a CD24 protein. The CD24 protein may include mature human or mouse CD24, as well as a N- or C-terminally fused portion of a mammalian immunoglobulin.
Description
- This invention relates to compositions and methods for treating rheumatoid arthritis.
- This section provides background information which is not necessarily prior art and a general summary of the present disclosure which is not a comprehensive disclosure of its full scope or all of its features.
- CD24 is known as the heat-stable antigen. It is expressed as a glycosyl-phosphatidyl-inositol (GPI)-anchored molecule and has a wide distribution in different lineages. Because of the tendency of CD24 to be expressed on immature cells, it has also been used as part of stem cell markers and for lymphocyte differentiation. The first function associated with CD24 is a costimulatory activity for antigen-specific T cell response. In vivo studies indicated that, as a costimulator for T cell activation in the lymphoid organ, CD24 is redundant but becomes essential in the absence of CD28. This would not be the case for local target organs that are not as “costimulator rich.” Consistent with this notion, it has been demonstrated that mice with a targeted mutation of CD24 are completely resistant to induction of experimental autoimmune encephalomyelitis (EAE).
- Polymorphisms of human CD24 are associated with risk and progression of several autoimmune diseases, including multiple sclerosis and rheumatoid arthritis (RA). In cases of multiple sclerosis, it has been reported that soluble CD24, consisting of the extracellular portion of murine CD24 and human IgG1 Fc ameliorated the clinical symptom of experimental autoimmune diseases, the mouse model of multiple sclerosis. More recent studies have demonstrated that CD24 interact with and represses host response to danger-associated molecular patterns (DAMPs).
- RA affects 0.5-1% of human populations. Although a number of disease-modifying antirheumatic drugs (DMARDs) are currently available, even the gold standard of biologic DMARDs, the therapeutics targeting the tumor-necrosis factor alpha, lead to 50% improvement according to American College of Rheumatology Improvement Criteria (ACR50) in less than 50% of the patients receiving the treatments. No cure for RA is available. It is therefore necessary to test additional therapeutics for RA. RA is presumed to be autoimmune diseases in the joint, although the cause of the diseases remains largely obscure. A number of studies have implicated T cells in the pathogenesis of rheumatoid arthritis. More recently, it has been demonstrated that transfer of antibodies can cause the development of inflammation of the joints of mice. The pathology of the lesions resembles human rheumatoid arthritis.
- Animal models relevant to human RA played an important role for the advancement of therapeutic development in DMARDs. For example, collagen-induced arthritis in the mouse and rat were critical for the development of therapeutics for RA. More recently, it has been demonstrated that adaptive transfer of anti-collagen antibodies cause robust RA-like lesion in the mice. Since auto-antibodies are elevated in RA patients prior to the onset of diseases, passive transfer of collagen-specific antibody is a relevant model for human RA.
- Since the pathogenesis of RA involves host response to DAMP and since the CD24 molecule negatively regulate host response to DAMPs, the potential of using soluble CD24 to treat RA was investigated. The passive transfer model of RA was chosen because of both relevance to human diseases and simplicity of experimental designs.
- Provided herein is a CD24 protein comprising a mature human CD24 variant consisting of SEQ ID NO: 1. The CD24 protein may further comprise a portion of a mammalian immunoglobulin (Ig), which may be fused to the N-terminus or C-terminus of the mature CD24. The Ig portion may be the Fc portion of a human Ig protein. The Fc portion may consist of the hinge region and CH2 and CH3 domains of the human Ig protein, and the Ig may be IgG1, IgG2, IgG3, IgG4, or IgA. The Fc portion may consist of the hinge region and CH3 and CH4 regions of IgM.
- The CD24 protein may be soluble, and may be glycosylated. The CD24 protein may also be produced using a eukaryotic protein expression system, which may comprise a vector contained in a Chinese Hamster Ovary cell line or a replication-defective retroviral vector. The replication-defective retroviral vector may be stably integrated into the genome of a eukaryotic cell.
-
FIGS. 1A-B .FIG. 1A shows the amino acid composition of the CD24 fusion protein, CD24IgG1Fc (also referred to herein as CD24Fc) (SEQ ID NO: 5). The underlined 26 amino acids are the signal peptide of CD24 (SEQ ID NO: 4). The boxed, bold portion of the sequence is the mature CD24 protein used in the fusion protein (SEQ ID NO: 1). The last amino acid (A or V) that is ordinarily present in the mature CD24 protein has been deleted from the construct to avoid immunogenicity. The non-underlined, non-bold letters are the sequence of IgG1 Fc, including the hinge region and CH1 and CH2 domains (SEQ ID NO: 6).FIG. 1B shows the sequence of CD24VFc (SEQ ID NO: 7), in which the mature human CD24 protein is the valine polymorphic variant of SEQ ID NO: 2. The various parts of the fusion protein are marked as inFIG. 1A . -
FIG. 2 . Methods for purification and processing of CD24IgG1Fc (CD24Fc) expressed from mammalian cell lines. -
FIG. 3 . Amino acid sequence variations between mature CD24 proteins from mouse (SEQ ID NO: 3) and human (SEQ ID NO: 2). The potential glycosylation sites are bolded, with the N-glycosylation sites in red. -
FIGS. 4A-C . WinNonlin compartmental modeling analysis of pharmacokenitics of CD24IgG1 (CD24Fc). The opened circles represent the average of 3 mice, and the line is the predicted pharmacokinetic curve.FIG. 4A . i.v. injection of 1 mg CD24IgG1.FIG. 4B . s.c. injection of 1 mg CD24IgG1 (CD24Fc).FIG. 4C . Comparison of the total amounts of antibody in the blood as measured by areas under curve (AUC), half-life and maximal blood concentration. Note that overall, the AUC and Cmax of the s.c. injection is about 80% of i.v. injection, although the difference is not statistically significant. -
FIGS. 5A-B . CD24-Siglec G (10) interaction discriminates between PAMP and DAMP.FIG. 5A . Host response to PAMP was unaffected by CD24-Siglec G(10) interaction.FIG. 5B . CD24-Siglec G (10) interaction represses host response to DAMP, possibly through the Siglec G/10-associated SHP-1. -
FIGS. 6A-B . A single injection of CD24Fc reduces clinical score of CAIA.FIG. 6A . Diagram of experiments. BALB/c mice (8 weeks old) received mAbs onday 1 in conjunction with either vehicle or fusion proteins. The mice were injected LPS onday 3, and were observed daily for 3 weeks.FIG. 6B . CD24Fc reduces clinical scores of CAIA. The fusion proteins (1 mg/mouse) or vehicles were injected once onday 1. Clinical scores were determined double blind. *, P<0.05; **, P<0.01; ***, P<0.001. The effect of CD24 was reproduced in 6 independent experiments, involving a total of 52 mice in the PBS group and 54 mice in CD24Fc group. -
FIGS. 7A-B . CD24Fc reduces the levels of inflammatory cytokines in the joint and CAIA. CAIA initiated and treated as diagramed inFIG. 6A . The inflammatory cytokines were measured by cytokine bead array from BD Pharmingen.FIG. 7A . Representative FACS profile.FIG. 7B . The summary of reduced cytokines (Mean±SE) measured in the joint homogenates. -
FIG. 8 . CD24Fc reduces inflammation and destruction of cartilage in the joint. Onday 7, front and hind paws were dissected from both CD24Fc treated and control mice, fixed in 4% paraformaldehyde for 24 hours followed by decalcification with 5% formic acid. The paws were then embedded in paraffin and the longitudinal section were stained with H&E and Safranin O red (Sigma-Aldrich). -
FIG. 9 . Therapeutic effect of CD24Fc administrated onday 5 of CAIA induction. The CAIA-induced mice were randomized into two groups, receiving either vehicle (PBS) or CD24 Fc. The mice were scored double blind. Representative of three independent experiments are shown. -
FIGS. 10A-B . Low doses of CD24Fc prevent development of CAIA.FIG. 10A . Diagram of experiments.FIG. 10B . Clinical scores of arthritis, scored double blind. -
FIGS. 11A-B . Siglecg is essential for therapeutic effect of CD24Fc, WT (FIG. 11A ) and Siglecg−/− mice (FIG. 11B ) received either vehicle control or CD24Fc in conjunction of a cocktail of anti-collagen mAbs. The clinical scores were recorded daily double blind. -
FIGS. 12A-F . Construction of CD24vFc and CD24Fc.FIG. 12A . Diagram of the fusion proteins. The polymorphic residue in extracellular domain was deleted in CD24Fc.FIG. 12B . SDS-PAGE analysis for the purity of the two fusion proteins. The numbers shown are μg of proteins loaded.FIG. 12C . Comparison between CD24vFc and CD24Fc for their binding to Siglec10Fc. Desialylated CD24Fc was used as a negative control.FIG. 12D . Comparison between CD24Fc and CD24vFc for the therapeutic effect in the CAIA model. CD24Fc or CD24vFc (200 μg/mouse) was injected into mice in conjunction with a cocktail of anti-collagen antibodies onday 1. Arthritis was elicited by treatment with LPS onday 3. The diseases were scored double blind. Data shown inFIGS. 12C and D are means and SEM.FIGS. 12E and 12F also compare the therapeutic effects of CD24Fc and CD24VFc, in experiments performed similarly to the ones shown inFIG. 12D , except that IgG1 Fc was used as a negative control. As shown inFIG. 12E , CD24Fc reduced the RA score as early asday 4, and showed statistically significant protection throughout the three weeks of observation. On the other hand, as shown inFIG. 12F , CD24VFc showed a reduction in RA score starting onday 8. Although reduced scores were observed thereafter, the reduction did not reach statistical significance. -
FIGS. 13A-B . CD24Fc conferred protection against CIA in DBA/1 mice.FIG. 13A . CD24Fc suppressed development of arthritis in the CIA model. Mice received a single treatment (1 mg/mouse) onday 17 when no clinical symptoms had developed. Data shown are disease scores among the mice that had developed arthritis with disease scores from 3 to 8. The difference between CD24Fc and PBS group was significant (P=0.02, Fisher's PLSD test). N=9 for vehicle and N=7 for CD24Fc group.FIG. 13B . Therapeutic effect of CD24Fc in CIA of DBA/1 mice. The mice with clinical symptoms of scores from 3 to 8 were randomized to receive either 200 μg CD24Fc or an equal volume of control vehicle (PBS) by i.p. injection, every the other day, five times. The mice were inspected daily to score for the clinical symptoms for two weeks. CD24Fc significantly lessened the clinical symptoms of arthritis when arthritis developed (P=0.02, Fisher's PLSD test). N=6 for PBS and N=5 for CD24Fc groups. -
FIGS. 14A-B . CD24Fc caused rapid recovery in mice with ongoing chicken CIA. Onday 1, 8-week old C57BL/6 mice were immunized with 100 μL of collagen-CFA emulsion (made by mixing 4 mg/ml of chick type II collagen with equal volume of CFA containing 5 mg/ml of M. tuberculosis) intradermally at the base of the tail. Onday 21, booster immunization with the same collagen-CFA emulsion was administered intradermally 1.5 cm from the tail base.FIG. 14A . On day 28, mice with a clinical score >3 were randomized to receive either vehicle or CD24Fc (1 mg/mouse). The endpoint was a reduction of score by 50% (top) or 80% (bottom). N=12 for PBS, and N=11 for CD24Fc.FIG. 14B . Dose-dependent therapeutic effect of CD24Fc in chicken CIA model. Details as inFIG. 14A , except that the treatments started at the peak of disease (average score of 5.5 in both groups on day 33). Mice with a clinical score >3 were randomized to receive 5 injections of either vehicle or CD24Fc. The endpoint was a reduction of score by either 50% (top) or 80% (bottom). N=11. The difference between the 100 μg experimental and the vehicle control groups was statistically significant. -
FIGS. 15A-C . CD24 inhibited inflammatory cytokine production by human macrophages.FIG. 15A . ShRNA silencing of CD24 led to spontaneous production of TNFα, IL-6 and IL-1β. THP1 cells were transduced with lentiviral vectors encoding either scrambled or two independent CD24 shRNA. The transduced cells were differentiated into macrophages by culturing for 4 days with PMA (15 ng/ml). After washing away PMA and nonadherent cells, the cells were cultured for another 24 hours for measurement of inflammatory cytokines by cytokine beads array.FIG. 15B . As inFIG. 15A , except that the given concentration of CD24Fc or control IgG Fc was added to macrophages in the last 24 hours.FIG. 15C . CD24Fc was more efficient than CD24vFc in suppressing the spontaneous production of inflammatory cytokines by CD24-silenced macrophage cell line THP1. The data shown are as detailed in theFIG. 12 legends, except that the CD24Fc and CD24vFc are compared side-by-side. -
FIGS. 16A-C . Contribution of Siglec G to protection by CD24Fc.FIG. 16A . CD24Fc stimulated tyrosine phosphorylation of, and SHP-1 binding to, Siglec G. Spleen cells from CD24-deficient mice were stimulated with either vehicle, Fc control or CD24Fc (1 μg/ml) for 30 min. After lysis, the Siglec G protein was precipitated with anti-Siglec G antisera. Siglec G phosphorylation and its association to SHP-1 were detected by Western blot.FIG. 16B . Siglecg was essential for therapeutic effect of CD24Fc in mice with low dose of anti-collagen antibodies. WT (FIG. 16A ) and Siglece−/− mice (FIG. 16B ) received either vehicle control or CD24Fc in conjunction of a cocktail of anti-collagen mAbs (2 mg/mouse). LPS was injected on day 3 (100 μg/mouse). The clinical scores were recorded daily double blind. Data are representative of two experiments.FIG. 16C . Targeted mutation of Siglecg attenuated but did not abrogate the therapeutic effect of CD24Fc with double doses of anti-collagen antibodies. The anti-collagen antibodies (4 mg/mouse) and CD24Fc (1 mg/mouse) were added onday 1, while LPS (100 μg/mouse) was added onday 3. Male WT (FIG. 16A ) and Siglece−/− mice (FIG. 16B ) were observed daily for clinical score. % inhibitions were calculated by % reduction of accumulated RA score. N=5. Male mice were used at 8 weeks of age. -
FIGS. 17A-B .FIGS. 17A and B show pharmacokinetic profiles of CD24 in male and female mice at doses of 12.5, 35, and 125 mg/kg. -
FIGS. 18A and B show CD24Fc serum concentrations vs. time in cynomolgus monkeys (12.5 mg/kg dose). - The inventors have discovered that a soluble form of CD24 is highly effective for treating rheumatoid arthritis. In particular, the inventors have discovered that a variant CD24 fusion protein in which the core of human CD24 lacks the polymorphic amino acid at position 57 of full-length CD24 has a superior therapeutic effect when compared with a CD24 protein which has a wild-type core CD24 sequence.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.
- For recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the
numbers - A “peptide” or “polypeptide” is a linked sequence of amino acids and may be natural, synthetic, or a modification or combination of natural and synthetic.
- “Substantially identical” may mean that a first and second amino acid sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% over a region of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300 amino acids.
- “Treatment” or “treating,” when referring to protection of an animal from a disease, means preventing, suppressing, repressing, or completely eliminating the disease. Preventing the disease involves administering a composition of the present invention to an animal prior to onset of the disease. Suppressing the disease involves administering a composition of the present invention to an animal after induction of the disease but before its clinical appearance. Repressing the disease involves administering a composition of the present invention to an animal after clinical appearance of the disease.
- A “variant” may mean means a peptide or polypeptide that differs in amino acid sequence by the insertion, deletion, or conservative substitution of amino acids, but retain at least one biological activity. Representative examples of “biological activity” include the ability to bind to a toll-like receptor and to be bound by a specific antibody. Variant may also mean a protein with an amino acid sequence that is substantially identical to a referenced protein with an amino acid sequence that retains at least one biological activity. A conservative substitution of an amino acid, i.e., replacing an amino acid with a different amino acid of similar properties (e.g., hydrophilicity, degree and distribution of charged regions) is recognized in the art as typically involving a minor change. These minor changes can be identified, in part, by considering the hydropathic index of amino acids, as understood in the art. Kyte et al., J. Mol. Biol. 157:105-132 (1982). The hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes can be substituted and still retain protein function. In one aspect, amino acids having hydropathic indexes of ±2 are substituted. The hydrophilicity of amino acids can also be used to reveal substitutions that would result in proteins retaining biological function. A consideration of the hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide, a useful measure that has been reported to correlate well with antigenicity and immunogenicity. U.S. Pat. No. 4,554,101, incorporated fully herein by reference. Substitution of amino acids having similar hydrophilicity values can result in peptides retaining biological activity, for example immunogenicity, as is understood in the art. Substitutions may be performed with amino acids having hydrophilicity values within ±2 of each other. Both the hyrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties.
- Provided herein is a CD24 protein, which may have the amino sequence of mature human CD24, which may be SETTTGTSSNSSQSTSNSGLAPNPTNATTK (SEQ ID NO: 1) or SETTTGTSSNSSQSTSNSGLAPNPTNATTK(V/A) (SEQ ID NO: 2), or mouse CD24, which may be NQTSVAPFPGNQNISASPNPTNATTRG (SEQ ID NO: 3), or a variant thereof. The CD24 may be soluble. The CD24 may further comprise a N-terminal signal peptide, which may have the amino acid sequence MGRAMVARLGLGLLLLALLLPTQIYS (SEQ ID NO: 4). The CD24 may also have an amino acid sequence described in
FIG. 1 or 3 . The CD24 may exist in one of two allelic forms, such that the C-terminal amino acid of the mature human CD24 may be a valine or an alanine. The C-terminal valine or alanine may be immunogenic and may be omitted from the CD24 to reduce its immunogenicity. The difference between the two alleles may affect the risk of autoimmune diseases, including multiple sclerosis and RA. Nevertheless, since the two allelic forms affect the expression levels of membrane-bounded form, the variation should not affect the function of CD24. - Despite considerable sequence variations in the amino acid sequence of the mature CD24 proteins from mouse and human, they are functionally equivalents in interaction with the danger-associated molecular patterns (DAMP). Since host response to DAMP is considered important for the pathogenesis of RA, the mouse and human CD24 may be functionally equivalent in treating RA. As a result of sequence conservation between mouse and human CD24 primarily in the C-terminus and in the abundance of glycosylation sites, significant variations in the mature CD24 proteins may be tolerated in using the CD24 to treat RA, especially if those variations do not affect the conserved residues in the C-terminus or do not affect the glycosylation sites from either mouse or human CD24.
- a. Fusion
- The CD24 may be fused at its N- or C-terminal end to a portion of a mammalian Ig protein, which may be human or mouse. The portion may be a Fc region of the Ig protein. The Fc region may comprise the hinge region and CH2 and CH3 domains of the Ig protein. The Ig protein may be human IgG1, IgG2, IgG3, IgG4, IgM, or IgA. The Fc portion may comprise SEQ ID NO: 6. The Ig protein may also be IgM, and the Fc portion may comprise the hinge region and CH3 and CH4 domains of IgM. The CD24 may also be fused at its N- or C-terminus to a protein tag, which may be GST, His, or FLAG. Methods for making fusion proteins and purifying fusion proteins are well known in the art.
- b. Production
- The CD24 may be heavily glycosylated, and may be involved in functions of CD24 such as costimulation and interaction with danger-associated molecular patterns. The CD24 may be prepared using a eukaryotic expression system. The expression system may entail expression from a vector in mammalian cells, such as Chinese Hamster Ovary (CHO) cells. The system may also be a viral vector, such as a replication-defective retroviral vector that may be used to infect eukaryotic cells. The CD24 may also be produced from a stable cell line that expresses CD24 from a vector or a portion of a vector that has been integrated into the cellular genome. The stable cell line may express CD24 from an integrated replication-defective retroviral vector. The expression system may be GPEx™.
- The CD24 may be used to treat rheumatoid arthritis. The CD24 may be administered to a subject in need thereof. The subject may be a mammal such as a human.
- a. Combined CD24 Therapy
- The CD24 may be combined with another drug, such as a disease-modifying antirheumatic drug (DMARD). The drug may be a nonsteriod anti-inflammatory drug (NSAID), which may be a propionic acid derivative, an acetic acid derivative, an enolic acid derivative, a fenamic acid derivative, or a selective Cox2 inhibitor. The drug may also be a corticosteroid or Methotrexate. The drug may be a biologic, which may be a TNF-α antagonist such as an anti-TNF-α antibody or a fusion protein that binds to TNF-α (Enbrel), an anti-CD20 mAb, an antagonist of costimulatory molecule CD80 and CD86 such as a monoclonal antibody or a fusion protein (CTLA4Ig) that binds to the two molecules, or an antagonist for a receptor of either IL-1 or IL-6. The CD24 and the other drug may be administrated together or sequentially.
- b. Pharmaceutical Composition
- The CD24 may be contained in a pharmaceutical composition, which may comprise a solvent, which may keep the CD24 stable over an extended period. The solvent may be PBS, which may keep the CD24 stable for at least 36 months at −20° C. (−15˜−25° C.). The solvent may be capable of accommodating the CD24 in combination with the other drug.
- c. Dosage
- The dose to be used for human may ultimately be determined through a clinical trial to determine a dose with acceptable toxicity and clinical efficacy. The initial clinical dose for human may be estimated through pharmacokinetics and toxicity studies in rodents and non-human primates. The dose of CD24 may be 0.01 mg/kg to 1000 mg/Kg, and may be 1 to 500 mg/kg, depending on the severity of disease being treated and the route of administration.
- d. Administration
- The route of administration of the pharmaceutical composition may be parenteral. Parenteral administration includes, but is not limited to, intravenous, intraarterial, intraperitoneal, subcutaneous, intramuscular, intrathecal, intraarticular and direct injection into affected joints. For veterinary use, the agent may be administered as a suitably acceptable formulation in accordance with normal veterinary practice. The veterinarian can readily determine the dosing regimen and route of administration that is most appropriate for a particular animal. The pharmaceutical composition may be administered to a human patient, cat, dog, large animal, or an avian.
- The CD24 may be administered simultaneously or metronomically with other treatments. The term “simultaneous” or “simultaneously” as used herein, means that the CD24 and other treatment be administered within 48 hours, preferably 24 hours, more preferably 12 hours, yet more preferably 6 hours, and most preferably 3 hours or less, of each other. The term “metronomically” as used herein means the administration of the agent at times different from the other treatment and at a certain frequency relative to repeat administration.
- The CD24 may be administered at any point prior to another treatment including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr, 36 hr, 34 hr, 32 hr, 30 hr, 28 hr, 26 hr, 24 hr, 22 hr, 20 hr, 18 hr, 16 hr, 14 hr, 12 hr, 10 hr, 8 hr, 6 hr, 4 hr, 3 hr, 2 hr, 1 hr, 55 mins., 50 mins., 45 mins., 40 mins., 35 mins., 30 mins., 25 mins., 20 mins., 15 mins, 10 mins, 9 mins, 8 mins, 7 mins., 6 mins., 5 mins., 4 mins., 3 mins, 2 mins, and 1 mins. The CD24 may be administered at any point prior to a second treatment of the CD24 including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr, 36 hr, 34 hr, 32 hr, 30 hr, 28 hr, 26 hr, 24 hr, 22 hr, 20 hr, 18 hr, 16 hr, 14 hr, 12 hr, 10 hr, 8 hr, 6 hr, 4 hr, 3 hr, 2 hr, 1 hr, 55 mins., 50 mins., 45 mins., 40 mins., 35 mins., 30 mins., 25 mins., 20 mins., 15 mins., 10 mins., 9 mins., 8 mins., 7 mins., 6 mins., 5 mins., 4 mins., 3 mins, 2 mins, and 1 mins.
- The CD24 may be administered at any point after another treatment including about 1 min, 2 mins., 3 mins., 4 mins., 5 mins., 6 mins., 7 mins., 8 mins., 9 mins., 10 mins., 15 mins., 20 mins., 25 mins., 30 mins., 35 mins., 40 mins., 45 mins., 50 mins., 55 mins., 1 hr, 2 hr, 3 hr, 4 hr, 6 hr, 8 hr, 10 hr, 12 hr, 14 hr, 16 hr, 18 hr, 20 hr, 22 hr, 24 hr, 26 hr, 28 hr, 30 hr, 32 hr, 34 hr, 36 hr, 38 hr, 40 hr, 42 hr, 44 hr, 46 hr, 48 hr, 50 hr, 52 hr, 54 hr, 56 hr, 58 hr, 60 hr, 62 hr, 64 hr, 66 hr, 68 hr, 70 hr, 72 hr, 74 hr, 76 hr, 78 hr, 80 hr, 82 hr, 84 hr, 86 hr, 88 hr, 90 hr, 92 hr, 94 hr, 96 hr, 98 hr, 100 hr, 102 hr, 104 hr, 106 hr, 108 hr, 110 hr, 112 hr, 114 hr, 116 hr, 118 hr, and 120 hr. The CD24 may be administered at any point prior after a previous CD24 treatment including about 120 hr, 118 hr, 116 hr, 114 hr, 112 hr, 110 hr, 108 hr, 106 hr, 104 hr, 102 hr, 100 hr, 98 hr, 96 hr, 94 hr, 92 hr, 90 hr, 88 hr, 86 hr, 84 hr, 82 hr, 80 hr, 78 hr, 76 hr, 74 hr, 72 hr, 70 hr, 68 hr, 66 hr, 64 hr, 62 hr, 60 hr, 58 hr, 56 hr, 54 hr, 52 hr, 50 hr, 48 hr, 46 hr, 44 hr, 42 hr, 40 hr, 38 hr, 36 hr, 34 hr, 32 hr, 30 hr, 28 hr, 26 hr, 24 hr, 22 hr, 20 hr, 18 hr, 16 hr, 14 hr, 12 hr, 10 hr, 8 hr, 6 hr, 4 hr, 3 hr, 2 hr, 1 hr, 55 mins., 50 mins., 45 mins., 40 mins., 35 mins., 30 mins., 25 mins., 20 mins., 15 mins., 10 mins., 9 mins., 8 mins., 7 mins., 6 mins., 5 mins., 4 mins., 3 mins, 2 mins, and 1 mins.
- The following examples are provided to illustrate the methods of the invention and are by no means to limit the use of the methods.
- The extracellular domain of CD24 was fused to IgG1 Fc. The amino acid composition of the CD24 fusion protein is provided in
FIG. 1 . A replication-defective retroviral vector that drives expression of the CD24Ig fusion protein was then generated. The GPEx™ (an acronym for gene product expression) system offers several important advantages, the most important of which is the, on average, >1000 insertions/cell but with only 1 copy/insertion. Moreover, since the retrovirus preferentially inserts into the transcriptional active locus, the GPEx™ resulted in a high level of expression of the targeted protein. Stable cell lines that produce a high yield of CD24Ig were generated. Inaddition 45 grams of GLP grade products and ˜100 grams of cGMP grade products were produced. The methods used for downstream processing of media harvested from the bioreactor are summarized in the flow chart below (FIG. 2 ). - The bioreactor culture media was clarified using Cuno 60M02 Maximizer depth filters followed by a Millipore Opticap 0.22 um filter. The filtrate was collected into a sterile collection bag. Samples were obtained for CD24-Fc yield quantitation by ELISA.
- The clarified media was passed over a column of Protein A resin (GE Healthcare MabSelect) at a concentration not exceeding 16 g/L of resin (based on ELISA) and a contact time of 4 minutes. The column was washed with the equilibration buffer (50 mM Tris+0.15M NaCl pH7.5), then with 10 mM sodium citrate/citric acid pH 6.0 for 5cvs. Bound CD24Ig was eluted from the column using 10 mM sodium citrate/citric acid pH 3.5
- The Protein A eluate fraction was immediately brought to pH 3.0 with the addition of 2M Hydrochloric acid and held at this pH for 30 minutes at ambient temperature. It was then brought to pH 5.0 with the addition of 1M Tris base, and filtered to clarity using a 0.65 um glass fiber filter (Sartorius Sartopure GF2) and 0.2 um (Sartorius Sartopore 2) into a sterile collection bag.
- The viral inactivated material was applied to a column of SP-Sepharose (GE Healthcare) at a concentration not exceeding 25 g/L of resin (based on A280 nm of 1.22=1 mg/mL) and a linear flow rate of 250 cm/hr. The column was washed with the equilibration buffer (10 mM sodium citrate/citric acid pH 5.0) and bound CD24Ig was eluted from the column using 10 mM sodium citrate/citric acid+0.2M NaCl pH5.0. The effluent was collected into a sterile collection bag.
- The SP-Sepharose elute was adjusted to pH 7.5 by the addition of 1M Tris base and diluted with WFI to reduce the conductivity. The diluted material was applied to a Mustang Q filter (Pall) at a concentration not exceeding 0.5 g/L of resin (based on A280 nm of 1.22=1 mg/mL) and at a flow rate of 5 column volumes/minute. The filter was washed with the equilibration buffer (10 mM Tris pH 7.5) and the CD24-Fc is contained in the flow through and is collected into a sterile collection bag.
- The Mustang Q flow through was then filtered at a constant pressure of 30 psi through a 0.2 mM filter and a Millipore NFP viral filter (
nominal pore size 20 nm) and was collected into a sterile collection bag. - The product was concentrated and diafiltered using a 10 kDa ultrafiltration membrane (Millipore Prep/Scale) into a 10 mM sodium phosphate, 150 mM sodium chloride pH 7.2 at approximately 10 mg/mL final concentration as determined by absorbance at 280 nm. Analytical samples were drawn from the bulk whilst in a biosafety cabinet. Labeling was performed and the samples were delivered to QC for testing while the bulk aliquots were stored at 2-8° C. pending release.
- The viral clearance validation was performed at Cardinal Health, NC, on samples prepared at CHM. Qualified scientists from Gala Biotech performed the chromatography and filtration steps in the Cardinal Health Viral Validation facility with the assistance of Cardinal Health personnel. The scale down procedure was developed from the 200 L scale process. Two viruses were chosen to be used in this study. The first was Xenotropic murine Leukemia virus (XMuLv), which is an enveloped RNA virus of 80-130 nm in size from the Retroviridae viral family. The second was Porcine Parvovirus (PPV), which is a nonenveloped DNA virus of 18-26 nm in size. This is considered a robust virus, and was expected to demonstrate a much lower viral reduction through the purification protocol than the XMuLv.
- 1 mg of CD24IgG1 (CD24Fc) was injected into naïve C57BL/6 mice and collected blood samples at different timepoints (5 min, 1 hr, 4 hrs, 24 hrs, 48 hrs, 7 days, 14 days and 21 days) with 3 mice in each timepoint. The sera were diluted 1:100 and the levels of CD24Ig was detected using a sandwich ELISA using purified anti-human CD24 (3.3 μg/ml) as the capturing antibody and peroxidase conjugated goat anti-human IgG Fc (5 μg/ml) as the detecting antibodies. As shown in
FIG. 4a . The decay curve of CD24Ig revealed a typical biphase decay of the protein. The first biodistribution phase had a half life of 12.4 hours. The second phase follows a model of first-order elimination from the central compartment. The half life for the second phase was 9.54 days, which is similar to that of antibodies in vivo. These data suggest that the fusion protein is very stable in the blood stream. In another study in which the fusion protein was injected subcutaneously, an almost identical half life of 9.52 days was observed (FIG. 4b ). More importantly, while it took approximately 48 hours for the CD24Ig to reach peak levels in the blood, the total amount of the fusion protein in the blood, as measured by AUC, was substantially the same by either route of injection. Thus, from therapeutic point of view, different route of injection should not affect the therapeutic effect of the drug. This observation greatly simplified the experimental design for primate toxicity and clinical trials. - For decades, it has been assumed that RA is predominantly a T-cell mediated autoimmune diseases. In the last two decades, there is a reawaking on the possible role for antibodies and B lymphocytes in RA pathogenesis. Thus, in addition or rheumatoid factors, a host of autoreactive antibodies have been found in RA patients, although it has not been definitively addressed in human. However, several lines of evidence have demonstrated that in the mouse models, antibodies specific for either ubiquitous or tissue specific antigens are sufficient to cause RA symptoms. For instance, antibodies from the K/B×N TCR transgenic mice were found to be fully capable of transferring RA-like diseases in the new host. Likewise, a cocktail for 4 anti-collagen antibodies is now widely used to induce RA in the mouse. This model is now called CAIA, for collagen antibody-induced arthritis.
- Genetic analyses of CAIA model indicate critical roles for complement. Although other possibilities exist, these requirements suggest potential involvement of antibody-mediated tissue damage in the pathogenesis of RA. The linkage between tissue damage and inflammation is a long-standing observation in immunology. Nearly two decades ago, Matzinger proposed what was popularly called danger theory. In essence, she argued that the immune system is turned on when it senses the dangers in the host. Although the nature of danger was not well defined at the time, it has been determined that necrosis is associated with the release of intracellular components such as HMGB1 and Heat-shock proteins, which were called DAMP, for danger-associated molecular patterns. DAMP were found to promote production of inflammatory cytokines and autoimmune diseases. In animal models, inhibitors of HMGB1 and HSP90 were found to ameliorate RA. The involvement of DAMP raised the prospect that negative regulation for host response to DAMP can be explored for RA therapy.
- Using acetaminophen-induced liver necrosis and ensuring inflammation, we observed that through interaction Siglec G, CD24 provides a powerful negative regulation for host response to tissue injuries. CD24 is a GPI anchored molecules that is broadly expressed in hematopoietic cells and other tissue stem cells. Genetic analysis of a variety of autoimmune disease in human, including multiple sclerosis, systemic lupus erythromatosus, RA, and giant cell arthritis, showed significant association between CD24 polymorphism and risk of autoimmune diseases. Siglec G is a member of I-lectin family, defined by their ability to recognize sialic acid containing structure. Siglec G recognized sialic acid containing structure on CD24 and negatively regulates production of inflammatory cytokines by dendritic cells. In terms of its ability to interact with CD24,
human Siglec 10 and mouse Siglec G are functionally equivalent. However, it is unclear if there is a one-to-one correlation between mouse and human homologues. Although the mechanism remains to be full elucidated, it is plausible that SiglecG-associated SHP1 may be involved in the negative regulation. These data, reported in Science recently, leads to a new model in which CD24-Siglec G/10 interaction may play a critical in discrimination pathogen-associated molecular pattern (PAMP) from DAMP (FIG. 5 ). - At least two overlapping mechanisms may explain the function of CD24. First, by binding to a variety of DAMP, CD24 may trap the inflammatory stimuli to prevent their interaction with TLR or RAGE. This notion is supported by observations that CD24 is associated with several DAMP molecules, including HSP70, 90, HMGB1 and nucleolin. Second, perhaps after associated with DAMP, CD24 may stimulate signaling by Siglec G. Both mechanisms may act in concert as mice with targeted mutation of either gene mounted much stronger inflammatory response. In fact, DC cultured from bone marrow from either CD24−/− or Siglec G−/− mice produced much higher inflammatory cytokines when stimulated with either HMGB1, HSP70, or HSP90. In contrast, no effect were found in their response to PAMP, such as LPS and PolyI:C. These data not only provided a mechanism for the innate immune system to distinguish pathogen from tissue injury, but also suggest that CD24 and Siglec G as potential therapeutic targets for diseases associated with tissue injuries.
- Given the suspected role for innate immunity to tissue injury in the pathogenesis of RA and the role for CD24-Siglec G/10 pathway in negatively regulate such response, the possibility of stimulating this pathway to treat RA was explored. Pathogenesis of essentially all autoimmune diseases involves induction of immune response to autoantigen and autoimmune destruction. The autoimmune destructive phase was focused on, based the novel function of CD24-Siglec G interaction. Therefore, for the preliminary analysis, collagen antibody-induced arthritis model was adopted to evaluate potential therapeutic effect.
- As shown in
FIG. 6a , the CAIA was induced on 8 weeks old BALB/c mice by i.v. injection of a cocktail of 4 anti-collagen mAbs (MD Biosciences, St. Paul, Minn.) at 2 mg/mouse onday 1, and i.p. injection of 100 μg/mouse of LPS (MD Bioscience) onday 3. The mice were treated onday 1 with either 1 mg CD24Fc or equal volume of 1×PBS vehicle as negative control. As shown inFIG. 6b , in comparison with vehicle control, CD24Fc provided highly significant therapeutic effects. - To understand the mechanism by which CD24Fc reduces arthritis in this model, cytokines were measured from homogenized joints of CD24Fc treated mice or PBS control group, and measured the supernatant of 200 μg tissue homogenates by cytokine beads array. A typical example is shown in
FIG. 8a , while the summary data are shown inFIG. 7b . These data demonstrated that systematically administrated CD24 reduces the levels of multiple inflammatory cytokines including TNF-α, IL-6, MCP-1(CCL2) and IL-1β. - The effect of CD24Fc is substantiated by histological analysis of the synovial joints of CAIA mice, as presented in
FIG. 8 . Onday 7 after induction of arthritis, H&E staining demonstrated that the joint synoviums in the PBS group are heavily infiltrated with inflammatory cells including neutrophil, macrophage, and lymphocytes (FIG. 8a ). This was much reduced in the CD24Fc treated mice (FIG. 8b ). In addition, sever cartilage damages were revealed by the loss of safranin O red staining in PBS-treated (FIG. 8c ) mice, but not CD24Fc-treated group (FIG. 8d ). - To determine whether mice, CD24Fc have therapeutic effect on ongoing RA, treatment was started at either 5 or 7 days after induction of RA. As shown in
FIG. 9 , significant reduction of RA score was observed as soon as two days after CD24Fc treatment. The therapeutic effect lasted for the remaining period of observation even without additional treatment. These data further strengthen the therapeutic potential of CD24Fc on ongoing diseases. - In order to estimate the therapeutic doses of CD24Fc in human, CD24Fc was titrated through a wide range of doses. As shown in
FIG. 10 , as little as 2 microgram/mice is sufficient to have statistically significant therapeutic effect. - To determine whether CD24Fc protect mice by interacting with Siglec G, we determined if the therapeutic effect depends on the Siglecg gene. Since the Siglecg-deficient mice were produced with ES cells from C57BL/6 mice, we used WT C57BL/6 mice as control. As shown in
FIG. 11a , since the B6 mice are known to be less susceptible to the CAIA, the overall disease score is lower than that observed in the BALB/c mice. Nevertheless, a single injection of the CD24Fc essentially wiped out the clinical signs in the WT mice. Importantly, even though the disease is less severe in the Siglecg-deficient mice, CD24Fc had no therapeutic effect. Therefore, the therapeutic effect of CD24Fc is strictly dependent on the Siglecg gene. - Taken together, the data described herein demonstrates high therapeutic efficacy of CD24Fc for CAIA. Given our extensive data on safety, stability and our successful manufacture of CD24Fc all point to great potential of the fusion protein as a therapeutic for RA.
- Toxicity
- A study of CD24Fc in mice was performed in order to evaluate the toxicity and systemic exposure of CD24Fc when intravenously administered to mice once weekly for four weeks, and the reversibility of toxicity following a four-week recovery period. A total of 320 male and female mice were assigned to Groups 1-4 for evaluation of the toxicity (20/sex/group) and reversibility (20/sex/group). All of these mice were treated intravenously with either PBS buffer or CD24Fc at doses of 12.5, 35, or 125 mg/kg once weekly for 4 weeks. A total of 360 mice were assigned to Groups 5-8 for evaluation of the systemic exposure of CD24Fc following the first dose (3/sex in
Group Group Day 1 or once weekly for 4 weeks. - No morbidity or mortality was found in mice treated with either PBS buffer or CD24Fc, with the exception that one male mouse treated with 35 mg/kg of CD24Fc in
Group 7 was found dead onDay 21. This death occurred in 1/680 of mice and did not appear to be associated with the treatment. No treatment-related changes were noted in clinical observations, body weights, food consumption, ophthalmology, hematology, coagulation, clinical chemistry, organ weights, and organ-to-body or to-brain weight ratios. No treatment-related macroscopic and microscopic findings were observed in all examined animals. - Anti-CD24Fc antibody was detected in 10/30 of mice on
Day - In summary, no observed adverse effects were noted in mice treated with CD24Fc at doses of 12.5, 35 or 125 mg/kg once weekly for 4 weeks with a 4 week recovery period. The NOAEL was considered to be equal to or greater than 125 mg/kg.
- Another study of CD24Fc was performed in cynomolgus monkeys to examine the pharmacokinetics and potential toxicity, acquired immunity, and immunogenicity following administration of CD24Fc administered by intravenous infusion once weekly for four weeks, and to evaluate recovery from any effects of the test article over a dose-free period of at least 10 weeks. The test article, CD24Fc (Lot No. FP004.12-06097-001), and the control article, 1× phosphate-buffered saline (PBS), pH 7.2 (Lot No. 654446), were supplied as a clear, colorless, preformulated aqueous solution and as a preformulated aqueous solution, respectively. The test article formulation was used as received for dose administration.
- Forty experimentally naive cynomolgus monkeys (20 males and 20 females), 2.9 to 4.7 years of age for the males and 2.9 to 5.0 years of age for the females, and weighing 2.1 to 3.2 kg for the males and 2.2 to 2.9 kg for the females at the outset (Day −1) of the study, were assigned to dose groups as shown in Table 2 below.
- All animals were dosed via 1-hour intravenous infusion once weekly for 4 consecutive weeks. The first day of dosing was designated Day 1 (04 and 5 Sep. 2009, Sets A and B, respectively). The animals were evaluated for changes in clinical signs (evaluations of morbidity and/or mortality [twice daily] and cage side observations [once daily], body weight (Weeks −2 and −1, and weekly thereafter), electrocardiography (prestudy and Day 28), ophthalmology (prestudy and Day 28), and clinical pathology indices (including serum chemistry, hematology, and coagulation (three prestudy and Days 28 and 98), and urinalysis [via cystocentesis on Days 28 and 98]). Blood samples were collected for toxicokinetic analysis predose, 15 minutes, and 6, 24, and 72 hours in relation to dose administration on
Days Day 8, and on Day 29 (at the same time of day asDay 22 end of infusion). Blood samples for flow cytometry were collected prestudy (three time points), and on Days 28 and 98. Blood samples for anti-drug antibodies (ADA) were collected prestudy and on Days 28 and 98. To evaluate the T-cell dependent antibody response (TDAR), the animals were immunized with a 1:1 emulsion of keyhole limpet hemocyanin (KLH) and Incomplete Freund's Adjuvant (IFA) injected intramuscularly on the thigh to achieve a dose of 750 mg/animal onDay 10, and to recovery animals on Day 84. Blood samples for anti-KLH response were collected prestudy, and onDays 20, 24, 28, 94, and 98. Twenty four (24) animals (3/sex/group) were euthanized one week after the last dose. The remaining 16 animals (2/sex/group) were continued on the study without further dosing, and euthanized on Day 98 (76 days after the last dose). At termination, a full necropsy was conducted on all animals, and tissues were collected, preserved, processed, and examined microscopically by a Study Pathologist certified by the American College of Veterinary Pathologists (ACVP). At recovery, a full necropsy was conducted on all animals, and tissues were collected, preserved, processed, and selected tissues (based on clinical pathology and gross observations) were examined microscopically by a study pathologist certified by the ACVP. - The results showed that CD24Fc administered via 1-hour intravenous infusion once weekly for 4 consecutive weeks at 12.5 mg/kg/week (Group 2), 35 mg/kg/week (Group 3), or 125 mg/kg/week (Group 4) was generally well tolerated in male and female cynomolgus monkeys through a 4-week dosing period, followed by a 10 week recovery period. There were no CD24Fc-related changes in clinical observations, food consumption, body weights, electrocardiographic measurements, ophthalmic examinations, serum chemistry (one exception noted below), coagulation, urinalysis parameters, macroscopic findings, or organ weights or organ weight ratios. There were no CD24Fc-related changes in peripheral blood mononuclear cell subset counts obtained by flow cytometry, or anti-KLH immunoglobulin G (IgG) responses to KLH challenge. There was a possible approximately 2-fold increase in ALP related to CD24Fc for one male administered 35 mg/kg/week at Day 98 compared to predose and Day 28 values. There was also a possible CD24Fc-related slight decrease in hemoglobin at Day 28 for 35 mg/kg/week males. The magnitude and/or nature of these changes was not considered adverse in this study. On Day 28, one male administered 35 mg/kg/week had an approximate 13% decrease in hemoglobin concentration. On Day 98 (76 days after the last dose), changes in hematology for this animal included a 21% decrease in hemoglobin, a 16% increase in red blood cell counts, a 21% decrease in mean cell volume (MCV), a 32% decrease in mean cell hemoglobin (MCH), a 14% decrease in mean cell hemoglobin concentration (MCHC), a 24% increase in red cell distribution width (RDW), and an approximately 2-fold increase in platelet and reticulocyte counts compared to prestudy (Day −2) levels. Day 98 blood smear analysis documented hypochromic red blood cells, microcytosis, anisocytosis, schistocytes, poikilocytes, and spherocytes, as well as an apparent increase in platelet numbers. These hematology changes are not considered typical findings in cynomolgus monkeys. However, no corresponding histopathology abnormalities were identified, and these hematology findings were not observed in any other animals in the mid-dose (35 mg/kg/week) or high-dose (125 mg/kg/week) groups.
- At
Day 29 terminal necropsy, there were microscopic findings of fibrin thrombi in hepatic sinusoids and multifocal glial nodules in the brain of one female administered 125 mg/kg/week. The changes were mild and occurred only in one animal, but they were not typical background findings. More extensive independent studies established that the lesion was also observed in placebo samples and therefore was not drug-related. At recovery necropsy, histopathologic analysis of the following subset of tissues was performed based on clinical pathology or gross findings: all tissues except for mammary glands from a male administered 35 mg/kg/week, the duodenum from another male administered 35 mg/kg/week, and testes from one male administered 125 mg/kg/week. No microscopic findings were found related to the administration of CD24Fc. - CD24Fc was detected in serum samples from all dosed animals. No measurable amount of CD24Fc was detected in control or predose serum samples. Incurred sample reanalysis (ISR) was performed, and the results met the acceptance criteria. Serum was screened for the presence of anti-CD24Fc antibody. Seven animals out of the 40 total were identified as positive at the prestudy time point (17.5%). This rate of positive samples prior to test article administration is similar to the rate observed in the validation (12.5%) which demonstrated a subpopulation of animals with pre-existing anti-CD24Fc antibodies. Three animals were identified as positive during the dosing period of the study. The validation experiment also demonstrated that 10 μg/mL of CD24Fc inhibited the measurement of anti-CD24Fc antibodies in reference to the positive control, and all dose groups at the
Day 29 toxicokinetic time point had concentrations greater than 10 μg/mL measured in serum. Only one animal (125 mg/kg/week dose group) screened positive for anti-CD24Fc antibodies within the recovery interval. - Based on the hematology findings, the no-observed-adverse-effect level (NOAEL) for CD24Fc was considered to be 12.5 mg/kg/week under the conditions of this study when administered once weekly for four weeks.
- Pharmacokinetics of CD24 in Mice and Monkeys
- The pharmacokinetics of CD24Fc were examined in the mouse and cynomolgus monkeys. These animal PK studies were carried out by two preclinical contract research organizations. The mouse study was performed by JOINN Laboratory at Beijing, China, while the cynomolgus monkey study was carried out by Charles River Laboratory at Reno, Nev., USA. Both studies were in compliance with the Good Laboratory Protocol (GLP) and the final reports were audited. As an independent report, the WinNonLin analysis of pharmacokinetic characterizations of CD24Fc in this report were performed by either JOINN Laboratory at Beijing, China (PK in mouse) or OncoImmune Inc. (PK in cynomolgus monkey).
- In the mouse PK study, CD24Fc was intravenously administered to mice once weekly for four weeks. A total of 360 mice were assigned to Groups 1-4 for evaluation of the systemic exposure of CD24Fc following the first dose (3/sex in
Group Group Group 1, blood samples were collected prior to dosing onDays Day 29. For Groups 2-4, blood samples were collected at 5 and 15 minutes; and 1, 4, 8, 24, 48, 72, and 168 hours following dosing onDays Day 29. - The summarized results of the mouse serum concentration of CD24Fc following the first dose and last dose are included in Table 1, and the WinNonlin analysis of serum CD24Fc concentration vs. time points is included in
FIG. 17 . -
TABLE 1 Pharmacokinetic parameters of CD24Fc in mice Female Male unit 125 mg/ kg 35 mg/kg 12.5 mg/kg 125 mg/ kg 35 mg/kg 12.5 mg/kg First dose parameters T1/2 h 46.36 59.18 63.93 48.51 70.57 63.00 Cmax mg/ml 3.17 0.66 0.32 2.13 0.99 0.54 AUC(0-168 h) h * mg/ml 39.04 8.65 5.85 44.00 19.99 7.55 AUCinf h * mg/ml 43.53 11.84 8.00 49.10 26.13 10.18 Vd ml/kg 192.06 252.33 144.09 178.18 136.39 111.55 Cl ml/h/kg 2.87 2.96 1.56 2.55 1.34 1.23 MRT h 39.08 67.85 56.68 39.58 61.09 66.21 Cmax ratio 10.04 2.09 1.00 3.92 1.83 1.00 AUC ratio 5.44 1.48 1.00 4.82 2.57 1.00 Last dose parameters t1/2 h 87.51 131.86 128.63 75.02 167.27 58.90 Cmax mg/ml 3.61 0.40 0.14 5.07 0.76 0.65 AUC(0-336 h) h * mg/ml 177.00 21.35 7.68 251.18 88.20 35.75 AUCinf h * mg/ml 187.95 26.41 9.07 258.93 112.49 36.36 Vd ml/kg 83.96 252.16 255.74 52.25 75.08 29.22 Cl ml/h/kg 0.67 1.33 1.38 0.48 0.31 0.34 MRT h 91.64 121.30 106.00 77.98 106.29 70.30 Cmax ratio 25.09 2.81 1.00 7.86 1.17 1.00 AUC ratio 20.72 2.91 1.00 7.12 3.09 1.00 Faccu 4.32 2.23 1.13 5.27 4.31 3.57 - The summarized results of the monkey serum concentrations of CD24Fc following the single dose are included in Table 2, and the WinNonlin analysis of serum CD24Fc concentration vs. time points is included in
FIG. 18 . -
TABLE 2 Pharmacokinetic parameters of CD24Fc in cynomolgus monkeys PK Parameters unit 35 mg/kg 12.5 mg/kg t½ h 148.39 188.29 Cmax mg/ml 0.89 0.25 AUC (0-t) h * mg/ml 67.09 17.02 AUCinf h * mg/ml 67.31 20.06 Vd ml/kg 108.21 153.10 Cl ml/h/kg 0.52 0.62 MRT h 204.22 151.07 Cmax ratio 3.56 1.00 AUC ratio 3.36 1.00 - This example shows that a CD24 polypeptide containing human CD24 missing the polymorphic amino acid at position 57 (SEQ ID NO: 1) (CD24Fc) is more effective for treating RA than a CD24 polypeptide containing wild-type CD24 (SEQ ID NO: 2) (CD24VFc).
- Methods
- Antibodies, Fusion Proteins and Other Materials
- CD24Fc and CD24vFc were manufactured by OncoImmune, Inc.; Bovine type II collagen, Catalog No. 20022, Chondrex Inc., Redmond, Wash.; a cocktail of 4 anti-collagen mAbs Catolog No. CIA-MAB-50 for BALB/c and CIA-MAB-2C for C57BL/6 mice, MD Bioproducts, St. Paul, Minn.; Chick type II collagen, Catalog No. 20011, Chondrex Inc., Redmond, Wash.; Complete Freund's adjuvant: Catalog No. 7008, Chondrex Inc., Redmond, Wash., with heat-killed M. tuberculosis H37 Ra (non-viable) at concentration of 1 mg/ml; Complete Freund's adjuvant: Catalog No. 7023, Chondrex Inc., Redmond, Wash., with heat-killed M. tuberculosis H37 Ra (non-viable) at concentration of 5 mg/ml; Incomplete Freund's adjuvant: Catalog No. 7002, Chondrex Inc., Redmond, Wash.; Lipopolysaccharide (LPS), Catalog No. 9028, Chondrex Inc., Redmond, Wash., from E. coli 0111:B4; Cytometric Bead Array (CBA) Mouse Inflammation Kit, Catalog No. 552364, BD Biosciences, San Jose, Calif.; Cytometric Bead Array (CBA) Human Inflammatory Cytokines Kit, Catalog No. 551811, BD Biosciences, San Jose, Calif.
- Experimental Animals
- BALB/cAnNCr (01B05, NCI) and C57BL/6NCr (01055, NCI) mice, male, 7 weeks old, were purchased from the National Cancer Institute (NCI) at Frederick, Md. DBA/1J (000670, JAX) mice, male, 7 weeks old, were received from Jackson Laboratories. All mice were quarantined for 7 days prior to immunization. During quarantine, the animals were examined for general health and acceptability for use in this study. Individual animals were identified by ear mark. Animal cages were identified by study number, animal number, and group number. To minimize cage variation, different treatments were given to individual mouse in the same cages and scored in a double-blind protocol.
- CAIA Model
- BALB/c mice (8 weeks old) received mAbs (2 mg/mouse) on
day 1 in conjunction with either vehicle or fusion proteins. Mice received LPS (100 μg/mouse) onday 3, and were observed daily for 3 weeks. The fusion proteins (0.2 or 1 mg/mouse) or vehicles were injected once onday 1. In the C57BL/6 mice, the dose of anti-collagen antibodies was either 2 mg/mouse or 4 mg/mouse. - CIA Models
- CIA in DBA/1 mice. On
day 1, 8-week old DBA/1 mice were immunized with 100 μL of collagen-CFA emulsion (made by mixing 2 mg/ml of bovine type II collagen with equal volume of CFA containing 1 mg/ml of M. tuberculosis) subcutaneously at the base of the tail. Onday 10, mice were booster-immunized with 60 μL of collagen-IFA emulsion (made by mixing 2 mg/ml of collagen with equal volume of IFA) subcutaneously 1.5 cm from the tail base. Treatments were initiated either before or after the development of symptom of arthritis. - CIA in C57BL/6 mice. On
day 1, 8-week old C57BL/6 mice were immunized with 100 μL of collagen-CFA emulsion (made by mixing 4 mg/ml of chick type II collagen with equal volume of CFA containing 5 mg/ml of M. tuberculosis) intradermally at the base of the tail. Onday 21, booster immunization with the same collagen-CFA emulsion was administered intradermally 1.5 cm from the tail base. On day 28, mice with clinical symptoms were randomized to receive either vehicle or CD24Fc. - Treatment in RA Models
- The scoring of arthritis was based on the following scale.
- 0, normal; 1, mild, but definite redness and swelling of the ankle or wrist, or apparent redness and swelling limited to individual digits, regardless of the number of affected digits; 2, moderate redness and swelling of ankle of wrist; 3, severe redness and swelling of the entire paw including digits; 4, maximally inflamed limb with involvement of multiple joints. A combined score of 4 limbs in a mouse was reported as the disease score for the mouse.
- Prophylactic treatment in CAIA was initiated at the same time as the anti-collagen antibodies.
- Prophylactic model in CIA model in DBA/1 mice: On
day 17, the immunized mice were randomly divided into two groups and were treated with vehicle (PBS) or given doses of CD24Fc. The mice were observed double blind for three weeks. - Therapeutic CIA in DBA/1 model with ongoing diseases were initiated at either 25 days after the first immunization using mice with clinical scores from 3 to 8.
- Therapeutic CIA in the C57BL/6 mice was initiated on day 28 or using only those mice with a clinical score from 3 to 8.
- Statistical Methods
- Group means and standard deviation values (when deemed appropriate) were calculated for all numerical data obtained. The difference between CD24Fc and control mice was statistically analyzed with Fisher PLSD Test, or t-test for pairwise comparisons.
- Results
- Therapeutic Effect of Non-Polymorphic CD24Fc on Collage-Antibody-Induced Arthritis
- Human mature CD24 exists in two allelic forms, in which either a valine or alanine is present at the C-terminus (position 57 of the CD24 amino acid sequence). Fusion proteins including either allelic form may provoke anti-drug antibodies in some RA patients. Thus, in order to avoid immunogenicity, it was tested whether the polymorphic residue can be removed from CD24, while maintaining regulatory function of CD24. As diagrammed in
FIG. 12A , two fusion proteins were created, one with the entire extracellular domain of CD24V allele (CD24VFc) (the mature CD24 sequence having SEQ ID NO: 2), while the other had a one amino acid deletion at the C-terminus of the resulting mature CD24 (CD24Fc) (the mature CD24 sequence having SEQ ID NO: 1). Both forms were expressed and purified to a similar degree (FIG. 12B ). - To determine whether the valine on CD24 is required for CD24-
Siglec 10 interaction, their binding of CD24Fc and CD24VFc to a Siglec 10Fc fusion protein was compared. As shown inFIG. 12C , CD24Fc interacted with Siglec 10Fc in a dose-dependent manner. The interaction depended on sialic acid on CD24Fc as pre-treatment of CD24Fc with sialidase prevented the binding. Surprisingly, while CD24VFc also interacted with Siglec 10Fc, the interaction was significantly weaker than that of CD24-Fc-Siglec 10Fc. The CAIA was induced in 8 week-old BALB/c mice by i.v. injection of a cocktail of 4 anti-collagen mAbs in conjunction with CD24VFc, CD24Fc, human IgG1Fc or equal volume of 1×PBS vehicle as negative control. As shown inFIG. 12D , in comparison with vehicle control, CD24Fc provided highly significant therapeutic effects. Surprisingly, CD24VFc was far less effective, with activity not very different from the negative control. In experiments similar to the ones shown inFIG. 12D ,FIGS. 12E and 12F also show that CD24Fc is more effective than CD24VFc, although unlike in the experiments inFIG. 12D , CD24VFc did have more activity than the negative control. Comparisons of the therapeutic effects of CD24Fc and CD24VFC indicate that deleting the polymorphic amino acid residue is not only likely to remove a potential issue of immunogenicity, but it also significantly increases the anti-inflammatory activity of the CD24 protein. Since the Fc portion was identical in the two constructs, the therapeutic effect is largely attributable to CD24 function. Since Fc protein often exacerbated arthritis (data not shown), vehicle controls were used for in vivo studies to avoid inducing a confounding effect. - Therapeutic Effect of CD24Fc in Collagen-Induced Arthritis (CIA) Models
- Since CAIA primarily reflects joint inflammation initiated by antibody-induced tissue injuries, and since RA involves both adaptive and innate immune-mediated destruction that can be better reflected in CIA setting, two CIA models were used to study to potential therapeutic effect of the CD24Fc. First, the prophylactic effect of CD24Fc were tested in the DBA/1 mouse. As shown in
FIG. 13A , treatment with a single dose of CD24Fc prior to the development of clinical symptoms substantially reduced subsequent disease scores (P=0.02). To determine whether CD24Fc confers therapeutic effect for ongoing CIA in the DBA/1 mice, the treatment was initiated when the mice had arthritis scores from 3 to 8. The CD24Fc (200 μg/mouse) or vehicle was delivered every other day for 5 times. As shown inFIG. 13B , a clear reduction of arthritis score was observed as early as after two treatments. Significant reduction of clinical symptoms was observed in the CD24Fc group (P=0.02). - It has been reported that chicken collagen induces severe arthritis in C57BL/6 background. Therefore, this model was used to substantiate the therapeutic effect of CD24Fc. Since a significant variation in disease score was observed within the same group, 50% and 80% reductions of disease scores were used as the endpoints of the study. The percentage of mice that reached either therapeutic endpoint over a three week period was compared. As shown in
FIG. 14A , CD24Fc accelerated recovery of mice after severe clinical signs had developed. To test the therapeutic effect at the peak of diseases, another week was allowed to pass for mice to reach peak clinical score, at which point mice were treated with repeated injections of either 100 or 50 μg/mouse (once every other day for a total of 5 injections). As shown inFIG. 14B , a transient increase of recovery was achieved with 50 μg/mouse/injection. However, a sustained recovery was achieved with only 100 μg/mouse/injection. These data demonstrate a dose-dependent therapeutic effect even when the drug was administrated at the peak of diseases. - CD24Fc Inhibits Production of Inflammatory Cytokines by a Human Macrophage Cell Line with shRNA Silencing of CD24
- To determine whether CD24 regulates production of inflammatory cytokines in human cell line, CD24 was silenced in human THP1 cell line and then differentiation into macrophage was induced by treating the cells with PMA. As shown in
FIG. 15A , CD24 silencing substantially increased production of TNFα, IL-1β, and IL-6. These data demonstrate an essential role for endogenous human CD24 in production of inflammatory cytokines. Importantly, CD24Fc strongly inhibited production of TNFα, as well as IL-1β and IL-6 (FIG. 15B ). Consistent with the therapeutic effect in vivo, CD24VFc was approximately 10-fold less effective in inhibiting the production of inflammatory cytokines in the macrophage cell line (FIG. 15C ). - CD24Fc Confers Protection by Signaling Through Siglec G
- It has been reported that CD24Fc interacts with Siglec G in mice and
Siglec 10 in humans. To determine whether CD24Fc signals through Siglec G, spleen cells from CD24−/− mice were incubated with either vehicle, Fc or CD24Fc for 30 min, and tyrosine phosphorylation and SHP-1 binding to Siglec G were measured. As shown inFIG. 16A , CD24Fc strongly stimulated tyrosine phosphorylation of Siglec G. Correspondingly, the amount of SHP1 co-precipitated with Siglec G was dramatically increased. These results demonstrate that CD24Fc is capable of signaling through Siglec G. - To test the significance of CD24Fc signaling through Siglec G in therapy of RA, WT mice and Siglec G-deficient mice were compared for their response to CD24Fc. As shown in
FIG. 16B , when lower doses of anti-collagen antibodies were used, disease was less severe, yet the protection was completely dependent on the Siglecg gene. However, with increased doses of anti-collagen antibodies, the protective effect was only partially dependent on Siglecg, as the protection was still obvious, albeit less pronounced (52% in KO vs 72% in WT mice) (FIG. 16C ). These data demonstrate that while CD24Fc can signal through Siglec G to confer protection against CAIA, an additional mechanism exists that allows CD24Fc to protect against RA in the absence of Siglec G. - Discussion
- Taken together, the results demonstrate that CD24Fc has potent therapeutic effects in three mouse RA models, including a CAIA and two CIA models. The efficacies in multiple models indicates that CD24Fc has a therapeutic effect among RA in humans with different underlying pathogenesis. For decades, it has been assumed that RA is predominantly a T-cell mediated autoimmune diseases. In the last two decades, there has been a re-awaking on the possible role for antibodies and B lymphocytes in RA pathogenesis. Thus, in addition to rheumatoid factors, a host of auto-antibodies have been found in RA patients. Several lines of evidence have demonstrated that in the mouse models, antibodies specific for either ubiquitous or tissue specific antigens are sufficient to cause RA symptoms. For instance, antibodies from K/B×N TCR transgenic mice were found to be fully capable of transferring RA-like diseases in the new host. Likewise, a cocktail of 4 anti-collagen antibodies is now widely used to induce RA in mice. Genetic analyses of the CAIA model indicate critical roles for complement. Although other possibilities exist, these requirements suggest potential involvement of antibody-mediated tissue damage in the pathogenesis of RA. The efficacy of CD24Fc in this model demonstrates that the fusion protein may be useful for antibody-mediated destruction phase in RA patients.
- The CIA model is commonly used for RA as it can mimic both induction and effector function of both adaptive and innate immunity. Two CIA models were used to validate the therapeutic effect of CD24Fc. Bovine collagen-induced RA in DBA/1 mice is the most commonly used model. The above data show that CD24Fc reduced the disease score either before or after onset of disease in this model. One drawback of the bovine CIA model is that only relatively small numbers of strains are susceptible. In particular, C57BL/6 mice, which are commonly used for genetic studies are resistant. More recently, a protocol has been developed to induce CIA in C57BL/6 mice using chicken collagen. As shown above, CD24Fc accelerated recovery of arthritis induced by chicken collagen. The fact that the CD24Fc confers protection in multiple models demonstrates the robustness of its therapeutic effect.
- An important issue relating to drug development is mechanism of action. Since it has been reported that CD24Fc binds to both Siglec G and
human Siglec 10, the significance of this interaction was evaluated. In vitro, as shown above, CD24Fc signals through Siglec G and triggers tyrosine phosphorylation. In vivo, as shown above, CD24Fc works at least in part through Siglec G. These results demonstrate that it is plausible that CD24Fc protects against RA through strengthening the Siglec G-mediated protection against innate immunity to DAMPs. To date, no RA drug has been developed by fortifying the negative regulation over innate response to DAMPs. Therefore, CD24Fc and other fusion proteins containing variant CD24 missing the polymorphic A/V amino acid (SEQ ID NO: 1) represents a new class of therapeutics for RA. This approach may be preferable to antibodies targeting individual DAMPs or inflammatory cytokins. Since multiple DAMPs are released during autoimmune destruction, targeting individual DAMP may be less effective than targeting a broad-spectrum regulator such as CD24-Siglec G pathway. Nevertheless, it should be pointed out that the data in this example demonstrate that the protection is not completely dependent on signaling through Siglec G. At least two additional mechanisms can be invoked. First, by binding to DAMPs, CD24 may reduce the amounts of DAMPs available for their agonist receptors, such as RAGE, TLR. Second, since CD24 is heterogeneously glycosylated, it may bind to other members of Siglecs to confer negative regulation. - Conclusion
- A fusion protein comprising a non-polymorphic extracellular domain of human CD24 (comprising SEQ ID NO: 1) protects mice against arthritis initiated by either anti-collagen antibodies or immunization of collagen. The protection is at least partially dependent on its interaction with Siglec G. The data demonstrate the potential of harnessing the negative regulation of innate immunity to tissue injuries. Unexpectedly, the non-polymorphic variant of CD24 is superior to wild-type CD24 in suppressing inflammatory cytokine production and protecting mice against RA.
Claims (13)
1.-10. (canceled)
11. A method of repressing danger-associated molecular pattern (DAMP)-mediated tissue damage in a subject undergoing hematopoietic stem cell transplantation, comprising administering to a subject in need thereof a CD24 protein comprising a mature human CD24 polypeptide, wherein the mature human CD24 polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 1, and wherein the CD24 protein does not comprise an alanine or valine immediately C-terminal to SEQ ID NO: 1.
12. The method of claim 11 , wherein the subject has graft versus host disease.
13. The method of claim 11 , wherein the CD24 protein further comprises a protein tag, wherein the protein tag is fused to the C-terminus of the mature human CD24 or at the N-terminus of the CD24 protein.
14. The method of claim 13 , wherein the protein tag comprises a Fc portion of a mammalian Ig protein.
15. The method of claim 14 , wherein the Fc portion comprises (a) a hinge region and CH2 and CH3 domains of the mammalian Ig protein, wherein the Ig protein is human and wherein the Ig is selected from the group consisting of IgG1, IgG2, IgG3, IgG4, and IgA; or (b) a hinge region and CH3 and CH4 domains of IgM.
16. The method of claim 11 , wherein the CD24 protein is soluble.
17. The method of claim 11 , wherein the CD24 protein is glycosylated.
18. The method of claim 11 , wherein the CD24 protein is produced using a eukaryotic protein expression system.
19. The method of claim 18 , wherein the expression system comprises a vector contained in a Chinese Hamster Ovary cell line or a replication-defective retroviral vector.
20. The method of claim 19 , wherein the replication-defective retroviral vector is stably integrated into the genome of a eukaryotic cell.
21. The method of claim 11 , wherein the CD24 protein consists of the amino acid sequence set forth in SEQ ID NO: 1 fused at its C-terminus to a hinge region and CH2 and CH3 domains of human IgG1 Fc.
22. The method of claim 21 , wherein the hinge region and CH2 and CH3 domains of human IgG1 Fc consist of the amino acid sequence set forth in SEQ ID NO: 6.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/437,968 US20170233453A1 (en) | 2010-04-28 | 2017-02-21 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US16/104,072 US10793617B2 (en) | 2010-04-28 | 2018-08-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US17/009,540 US20200399345A1 (en) | 2010-04-28 | 2020-09-01 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32907810P | 2010-04-28 | 2010-04-28 | |
PCT/US2011/034282 WO2011139820A1 (en) | 2010-04-28 | 2011-04-28 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US201313643527A | 2013-02-12 | 2013-02-12 | |
US13/892,705 US20130231464A1 (en) | 2010-04-28 | 2013-05-13 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US14/055,609 US8895022B2 (en) | 2010-04-28 | 2013-10-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US14/519,745 US9611309B2 (en) | 2010-04-28 | 2014-10-21 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US15/437,968 US20170233453A1 (en) | 2010-04-28 | 2017-02-21 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/519,745 Continuation US9611309B2 (en) | 2010-04-28 | 2014-10-21 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/104,072 Continuation US10793617B2 (en) | 2010-04-28 | 2018-08-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170233453A1 true US20170233453A1 (en) | 2017-08-17 |
Family
ID=49043199
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/892,705 Abandoned US20130231464A1 (en) | 2010-04-28 | 2013-05-13 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US14/055,609 Expired - Fee Related US8895022B2 (en) | 2010-04-28 | 2013-10-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US14/519,745 Active 2031-06-01 US9611309B2 (en) | 2010-04-28 | 2014-10-21 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US15/437,968 Abandoned US20170233453A1 (en) | 2010-04-28 | 2017-02-21 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US16/104,072 Active US10793617B2 (en) | 2010-04-28 | 2018-08-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US17/009,540 Abandoned US20200399345A1 (en) | 2010-04-28 | 2020-09-01 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/892,705 Abandoned US20130231464A1 (en) | 2010-04-28 | 2013-05-13 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
US14/055,609 Expired - Fee Related US8895022B2 (en) | 2010-04-28 | 2013-10-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US14/519,745 Active 2031-06-01 US9611309B2 (en) | 2010-04-28 | 2014-10-21 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/104,072 Active US10793617B2 (en) | 2010-04-28 | 2018-08-16 | Methods of use of soluble CD24 for therapy of rheumatoid arthritis |
US17/009,540 Abandoned US20200399345A1 (en) | 2010-04-28 | 2020-09-01 | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Country Status (1)
Country | Link |
---|---|
US (6) | US20130231464A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10654887B2 (en) | 2016-05-11 | 2020-05-19 | Ge Healthcare Bio-Process R&D Ab | Separation matrix |
US10711035B2 (en) | 2016-05-11 | 2020-07-14 | Ge Healthcare Bioprocess R&D Ab | Separation matrix |
US10730908B2 (en) | 2016-05-11 | 2020-08-04 | Ge Healthcare Bioprocess R&D Ab | Separation method |
US10889615B2 (en) | 2016-05-11 | 2021-01-12 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US11566082B2 (en) | 2014-11-17 | 2023-01-31 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US11623941B2 (en) | 2016-09-30 | 2023-04-11 | Cytiva Bioprocess R&D Ab | Separation method |
US11708390B2 (en) | 2016-05-11 | 2023-07-25 | Cytiva Bioprocess R&D Ab | Method of storing a separation matrix |
US11753438B2 (en) | 2016-05-11 | 2023-09-12 | Cytiva Bioprocess R&D Ab | Method of cleaning and/or sanitizing a separation matrix |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130231464A1 (en) | 2010-04-28 | 2013-09-05 | Oncolmmune, Inc. | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
EP3292144B1 (en) * | 2015-05-07 | 2020-08-26 | OncoImmune, Inc. | Use of cd24 for lowering low-density lipoprotein cholesterol levels |
US11571461B2 (en) * | 2017-03-07 | 2023-02-07 | Oncoimmune, Inc. | Methods of use of soluble CD24 for treating lupus nephritis |
KR20200034957A (en) * | 2017-05-15 | 2020-04-01 | 온코이뮨, 아이앤씨. | How to use soluble CD24 for neuroprotection and remyelination |
BR112020017950A2 (en) * | 2018-03-05 | 2021-03-09 | Oncoimmune, Inc. | METHODS OF USING SOLUBLE CD24 TO TREAT ACQUIRED IMMUNODEFICIENCY SYNDROME (HIV / AIDS) |
US11911441B2 (en) * | 2018-06-04 | 2024-02-27 | Oncoimmune, Inc. | Methods of use of CD24 for the prevention and treatment of leukemia relapse |
EP3921338A4 (en) * | 2019-02-06 | 2022-11-23 | Oncoimmune Inc. | Targeting cd24-siglec interactions for the treatment and prevention of nonalcoholic steatohepatitis |
CN115281149A (en) * | 2021-05-12 | 2022-11-04 | 四川大学华西医院 | Preclinical rheumatoid arthritis (Pre-RA) mouse model |
CN118076625A (en) * | 2021-09-28 | 2024-05-24 | 广州昂科免疫生物技术有限公司 | Fusion proteins comprising 071 core peptides and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011139820A1 (en) * | 2010-04-28 | 2011-11-10 | Oncolmmune, Inc. | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541087A (en) * | 1994-09-14 | 1996-07-30 | Fuji Immunopharmaceuticals Corporation | Expression and export technology of proteins as immunofusins |
US5759775A (en) * | 1994-10-27 | 1998-06-02 | Genetech, Inc. | Methods for detecting nucleic acids encoding AL--1 neurotrophic factor |
US20030106084A1 (en) * | 2000-03-29 | 2003-06-05 | Yang Liu | Methods of blocking tissue destruction by autoreactive T cells |
US20030095966A1 (en) * | 2000-03-29 | 2003-05-22 | Yang Liu | Method of blocking tissue destruction by autoreactive T cells |
AU2003220387A1 (en) * | 2002-03-19 | 2003-10-08 | Tularik Inc. | Gene amplification in cancer |
CN100594037C (en) | 2002-11-15 | 2010-03-17 | Musc研究发展基金会 | Complement receptor 2 targeted complement modulators |
WO2004085648A2 (en) * | 2003-03-19 | 2004-10-07 | Biogen Idec Ma Inc. | Nogo receptor binding protein |
US20090011407A1 (en) | 2003-11-26 | 2009-01-08 | The Ohio State University Research Foundation | Polymorphic Cd24 Genotypes that are Predictive of Multiple Sclerosis Risk and Progression |
EP1713914A2 (en) * | 2004-01-28 | 2006-10-25 | Celldex Therapeutics Limited | MEDICAL TREATMENT USING AN RNAi AGENT TARGETING A HUMAN NOTCH SIGNALLING PATHWAY MEMBER |
US20060160220A1 (en) * | 2004-11-12 | 2006-07-20 | Iogenetics | Retroviral vectors with introns |
CN101125888A (en) | 2006-08-17 | 2008-02-20 | 苏州思坦维生物技术有限责任公司 | Expression production for recombination immunoglobulin capable of specifically identifying blood vessel endothelial cell growth factor and application thereof |
EP2385065A1 (en) * | 2007-11-01 | 2011-11-09 | Perseid Therapeutics LLC | Immunosuppressive polypeptides and nucleic acids |
US20130231464A1 (en) * | 2010-04-28 | 2013-09-05 | Oncolmmune, Inc. | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
KR20200034957A (en) | 2017-05-15 | 2020-04-01 | 온코이뮨, 아이앤씨. | How to use soluble CD24 for neuroprotection and remyelination |
-
2013
- 2013-05-13 US US13/892,705 patent/US20130231464A1/en not_active Abandoned
- 2013-10-16 US US14/055,609 patent/US8895022B2/en not_active Expired - Fee Related
-
2014
- 2014-10-21 US US14/519,745 patent/US9611309B2/en active Active
-
2017
- 2017-02-21 US US15/437,968 patent/US20170233453A1/en not_active Abandoned
-
2018
- 2018-08-16 US US16/104,072 patent/US10793617B2/en active Active
-
2020
- 2020-09-01 US US17/009,540 patent/US20200399345A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011139820A1 (en) * | 2010-04-28 | 2011-11-10 | Oncolmmune, Inc. | Methods of use of soluble cd24 for therapy of rheumatoid arthritis |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11566082B2 (en) | 2014-11-17 | 2023-01-31 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US10654887B2 (en) | 2016-05-11 | 2020-05-19 | Ge Healthcare Bio-Process R&D Ab | Separation matrix |
US10711035B2 (en) | 2016-05-11 | 2020-07-14 | Ge Healthcare Bioprocess R&D Ab | Separation matrix |
US10730908B2 (en) | 2016-05-11 | 2020-08-04 | Ge Healthcare Bioprocess R&D Ab | Separation method |
US10889615B2 (en) | 2016-05-11 | 2021-01-12 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US10995113B2 (en) | 2016-05-11 | 2021-05-04 | Cytiva Bioprocess R&D Ab | Separation matrix |
US11667671B2 (en) | 2016-05-11 | 2023-06-06 | Cytiva Bioprocess R&D Ab | Separation method |
US11685764B2 (en) | 2016-05-11 | 2023-06-27 | Cytiva Bioprocess R&D Ab | Separation matrix |
US11708390B2 (en) | 2016-05-11 | 2023-07-25 | Cytiva Bioprocess R&D Ab | Method of storing a separation matrix |
US11753438B2 (en) | 2016-05-11 | 2023-09-12 | Cytiva Bioprocess R&D Ab | Method of cleaning and/or sanitizing a separation matrix |
US12037359B2 (en) | 2016-05-11 | 2024-07-16 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US11623941B2 (en) | 2016-09-30 | 2023-04-11 | Cytiva Bioprocess R&D Ab | Separation method |
Also Published As
Publication number | Publication date |
---|---|
US8895022B2 (en) | 2014-11-25 |
US20150239953A1 (en) | 2015-08-27 |
US10793617B2 (en) | 2020-10-06 |
US9611309B2 (en) | 2017-04-04 |
US20140107322A1 (en) | 2014-04-17 |
US20190016783A1 (en) | 2019-01-17 |
US20200399345A1 (en) | 2020-12-24 |
US20130231464A1 (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200399345A1 (en) | Methods of use of soluble cd24 for therapy of rheumatoid arthritis | |
JP6888221B2 (en) | How to use soluble CD24 for the treatment of rheumatoid arthritis | |
AU2011248540A1 (en) | Methods of use of soluble CD24 for therapy of rheumatoid arthritis | |
US11547741B2 (en) | Methods of use of soluble CD24 for treating immune related adverse events in cancer therapies | |
EP3292144B1 (en) | Use of cd24 for lowering low-density lipoprotein cholesterol levels | |
US20230108492A1 (en) | Methods of use of soluble cd24 for treating viral pneumonia | |
KR20190126801A (en) | How to use soluble CD24 to treat systemic lupus erythematosus | |
EP3790571B1 (en) | Peptides derived from oca-b for use in the treatment of autoimmune diseases and of leukemia | |
JP6488376B2 (en) | PHARMACEUTICAL COMPOSITIONS, DRUGS AND COMBINATION MEDICINES CONTAINING HUMANIZED COBRA FACTOR FOR REDUCING OR PREVENTING IMMUNOGENICITY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |