US20170219635A1 - Devices and methods for detecting usb devices attached to a usb charging port - Google Patents
Devices and methods for detecting usb devices attached to a usb charging port Download PDFInfo
- Publication number
- US20170219635A1 US20170219635A1 US15/431,214 US201715431214A US2017219635A1 US 20170219635 A1 US20170219635 A1 US 20170219635A1 US 201715431214 A US201715431214 A US 201715431214A US 2017219635 A1 US2017219635 A1 US 2017219635A1
- Authority
- US
- United States
- Prior art keywords
- usb
- line
- voltage
- charging port
- usb device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0045—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
-
- H02J7/0052—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H02J2007/0062—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Charging a battery in a USB device commences with attaching the USB device to a host device that is capable of providing current to charge the batteries in the USB device. Subsequent to attachment, a determination is made as to the type of USB device and the type of host device that are attached together. If a charging port is detected, the charging port provides current to charge the batteries in the USB device.
- FIG. 1 is a schematic diagram of the charge detection circuit of a USB device per specification BC1.1.
- FIG. 2 is a schematic diagram of an embodiment of a USB charging port.
- FIG. 3 is a flow chart describing the operation of the charging port of FIG. 2 .
- USB universal serial bus
- the universal serial bus has become a dominant device for transmitting data between computers and other electronic devices.
- the electronic devices include peripherals, such as printers and keyboards, and portable devices, such as cellular telephones and recording devices. These electronic devices are referred to herein collectively as USB devices.
- the computer or other device that controls the USB is referred to as the host device or simply the host.
- the USB has four conductors, two power lines and two data lines. The two power lines are referred to as Vbus and ground and the two data lines are referred to as D+ and D ⁇ .
- USB enables USB devices to communicate with a host and to be powered by the host while using a single USB cable. More specifically, the power lines, Vbus and ground, provide power to the USB device and the data lines, D+ and D ⁇ , provide the data communications between the host and the USB device. In the case of battery-powered USB devices, the power lines are able to charge the batteries as described in greater detail below.
- USB devices such as cellular telephones use a single USB port for data communications and power.
- a user can recharge the batteries by attaching a USB cable between the single USB port and a host.
- the wall mounted battery chargers are capable of supplying significantly more power than some computers or other hosts.
- USB specifications dictate the manner in which USB devices detect battery chargers (charging ports) and the manner in which they charge.
- BC1.1 and BC1.2 Two primary specifications related to battery charging of USB devices have been developed.
- the specification BC1.1 was adopted by the USB Implementers Forum in April of 2009.
- the specification BC1.1 was replaced by the more advanced specification BC1.2, which was adopted by the USB Implementers Forum in December of 2010.
- BC1.1 was adopted by the USB Implementers Forum in December of 2010.
- BC1.1 there are many USB devices on the market and in use that use the older specification BC1.1.
- Many of these USB devices that use the specification BC1.1 are not able to charge when connected to a charging port that is operating per the specification BC1.2.
- some manufacturers use proprietary USB charging specifications that do not operate with other USB devices or hosts.
- the charging port described herein may be a dedicated charging port (DCP), a charging downstream port (CDP), or a standard downstream port (SDP).
- DCP dedicated charging port
- CDP charging downstream port
- SDP standard downstream port
- a dedicated charging port is able to provide approximately 1.5 amperes to a USB device whereas a standard downstream port may only be able to supply approximately 500-900 mA to a USB device.
- FIG. 1 is a schematic diagram of the charge detection circuit 100 of a USB device 104 complying with at least one version of the USB battery charging specification BC1.1.
- the charge detection circuit 100 is used by the USB device 104 to determine if a charging port is attached to the USB port 106 of the USB device 104 as described below.
- the USB device 104 is attached to a host, which is a charging port, via the USB port 106 .
- the lines D+ and D ⁇ are connected to a resistor 108 that is located in the charging port as described in greater detail below.
- the value of the resistor 108 may be between zero and 250 ohms.
- the value of the resistor 108 is so low, it is sometimes referred to as a short between the lines D+ and D ⁇ . It is noted that the use of the resistor connected between the line D+ and D ⁇ is an example of a charging port configuration and that other circuits may be connected to the lines D+ and D ⁇ .
- the USB port 106 has four conductors or lines, which are referred to individually as Vbus, Ground (GND), data positive (D+), and data minus (D ⁇ ).
- Vbus and GND are not shown connected to any components in the charge detection circuit 100 . Rather, Vbus and GND are used to supply power to the USB device 104 and to charge batteries used to operate the USB device 104 .
- the data lines D+ and D ⁇ are used to transmit data between the USB device 104 and the host. As described below, lines D+ and D ⁇ are also use to detect whether a host is attached to the USB device 104 and to indicate the type of host attached thereto.
- the line D+ is connected to a voltage source VDP_SRC by way of a switch SW 1 .
- the voltage source VDP_SRC may provide a voltage between 0.5 and 0.7 volts.
- the line D+ is also connected to a current source 112 by way of a switch SW 2 .
- the current source 112 may provide a current of a predetermined amount, which is referred to as IDP_SRC.
- the current source 112 may supply a current of approximately 7-12 uA.
- line D+ is connected to a physical layer interface (PHY) 114 , which is also referred to as a USB transceiver.
- PHY physical layer interface
- the connection to the physical layer interface 114 is represented by a leakage resistance 116 having a value of RDAT_LKG and a leakage voltage, which is referred to as VDAT_LKG.
- the values of RDAT_LKG may be approximately 300 k ohms and the value of VDAT_LKG may be between zero and 3.6 volts.
- the line D ⁇ is connected to a pull down resistor 118 by a switch SW 3 .
- the resistor 118 has a value referred to as RDM_DWN, which may have a value of between 14.25 k ohms and 24.8 k ohms.
- the line D ⁇ is also connected to the non-inverting side of a voltage comparator 120 and an inverting input of an AND gate 122 by a switch SW 4 .
- the non-inverting input of the voltage comparator 120 is also connected to a current sink 126 .
- the current sink 126 is sometimes referred to as being activated when the switch SW 4 closes.
- the line D ⁇ is also connected to the physical layer interface 114 wherein the connection is represented by the leakage resistance Rdat_lkg and the leakage voltage Vdat_lkg.
- the inverting input of the voltage comparator 120 is connected to a reference voltage VDAT_REF, which may be between 0.25 and 0.4 volts. Accordingly, the voltage comparator 120 compares the voltage on line D ⁇ to the reference voltage VDAT_REF.
- the output of the voltage comparator 120 is an input to the AND gate 122 .
- the output of the AND gate 122 provides a signal to the physical layer interface 114 as to whether a charging port has been connected to the USB device 104 . A high value from the AND gate 122 is indicative of a charging port connected to the USB device 104 .
- the USB device 104 first detects that a USB cable is attached by way of a procedure sometimes referred to as “VBUS detect”. This detection may be achieved by conventional methods of monitoring Vbus. For example, when the voltage on Vbus transitions to a value higher than 0.8V, it is indicative of a USB cable being attached to the USB device 104 . When the USB cable is determined to be attached to the USB device 104 , the USB device is sometimes referred to as being in “session valid”.
- a “data contact detect” is performed, which determines when the lines D+ and D ⁇ are electrically connected to the host.
- a data contact detect occurs after the session valid when the voltage on the line D+ goes low.
- the current source 112 is activated by closing switch SW 2 .
- switch SW 3 is closed, which connects the line D ⁇ to ground via the resistor 118 .
- the host device will pull the voltage on the line D+ low by way of a pull down resistor in the host device.
- the host will connect the line D+ to the line D ⁇ . Because the line D ⁇ is pulled down by the resistor 118 , the line D+ will go low when the host device is connected to the USB device 104 .
- data contact detect occurs when the voltage on the line D+ goes low after session valid.
- USB devices per BC1.1 do not have a time out procedure if they do not detect that the voltage on line D+ has gone low after a session valid. If the voltage on the line D+ is driven high by the charging port, the BC1.1 device will never be able to obtain a data contact detect. BC1.2 devices do not have this issue because they will skip the data contact detection and move on to the primary detection, described below, after a period.
- the charging port and methods of operating the charging port described herein monitor the lines D ⁇ and D+. If the line D ⁇ is pulled down while the line D+ is not pulled down, the charging port determines that the connected device is a BC1.1 device and proceeds to a dedicated charging port mode per BC1.1.
- the USB device 104 proceeds to determine if the host is a charging port by performing a “primary detection”.
- the USB device 104 closes switch SW 1 , which turns on the voltage source 110 .
- the switch SW 4 is also closed, which connects the current sink 126 to the line D ⁇ . If a host other than a charging port is attached to the line D ⁇ , the host pulls the voltage on the line D ⁇ below the voltage VDAT_REF, so the CHG_DET line is low, indicating that no charging port is connected to the USB port 106 . If the voltage on line D ⁇ is greater than the voltage VDAT_REF and below a logic one voltage, then the CHG_DET line is high indicating that the USB device 104 is attached to a charging port.
- a USB device under BC1.1 may have problems if the line D ⁇ is driven high by the host device and the USB device was able to pass beyond the data contact detect. By driving the line D ⁇ too high, it could be interpreted as a logic high by the AND gate 122 and drive the charge detection line CHG_DET low, so the USB device 104 detects that no charging port is connected. In such a situation, the host described herein may determine that the USB device 104 is a BC1.1 device. In order to proceed with charging, the power may be removed from the USB device and a shorting resistor may be connected between D+ and D ⁇ by the host device which indicates to the USB device 104 that a charging port is attached thereto.
- USB devices are somewhat different than the BC1.1 devices and may conflict with BC1.1 devices.
- one manufacturer produces USB devices and corresponding charging ports or adapters (referred to herein collectively as charging ports) that use different charge and charge detection specifications.
- the charging ports output specific voltages through predefined impedances on the lines D+ and D ⁇ that are indicative of the type of charging port connected to the USB device. It follows that this manufacturer produces USB devices that monitor the voltages on the lines D+ and D ⁇ to determine the type of charging port that is connected thereto. In one embodiment of these devices, a voltage of approximately 2.7 volts is output on the line D ⁇ and a voltage of approximately 2.0 volts is output on the line on D+.
- the voltage configuration indicates that the charging port is configured for a first type of USB device that charges per a specific charging specification. However, a second type of charging port outputs approximately 2.0 volts on the line D ⁇ and approximately 2.7 volts on the line D+. This voltage configuration is indicative of a charging port configured for a second type of USB device. The second type of USB device may draw significantly more current during battery charging than the first type of USB device.
- the BC1.1 USB devices are not able to recognize the charging port from the above-described manufacturer.
- the line D+ is driven high by the charging port. Accordingly, the BC1.1 device cannot proceed with the data contact detect because the voltage on the line D+ will never go low.
- the charging ports drive the voltage on the line D ⁇ to a voltage that may be high enough to where it could be a logic high. In doing so, the CHRG_DET line is driven to a logic low. If the BC1.1 USB devices are able to proceed beyond data contact detect, they may not recognize that a charging port is attached thereto and do not enter a charging mode. Accordingly, the BC1.1 USB devices are attached to charging ports, but they do not charge their batteries.
- FIG. 2 A schematic diagram of a USB charging port 200 that can determine if a USB device is a BC1.1 device or if the USB device is of a manufacturer using a different charging specification as described above is shown in FIG. 2 .
- the charging port 200 has a USB port 202 that is attachable to a USB cable, which in turn is attachable to the USB port 106 on the USB device 104 .
- the USB port 202 includes the same lines as described above, VBUS, GND, D+, and D ⁇ .
- the line VBUS is connected to a current monitor 206 that monitors the current flowing in the line VBUS. Accordingly, the current monitor 206 monitors the current used by the USB device when it is charging.
- the GND line is connected to a conventional ground.
- the line D ⁇ is connected to a node 210 on a switch SW 5 by way of a line 212 .
- the line D+ is connected to a node 214 on a switch SW 6 by way of a line 216 .
- the switches SW 5 and SW 6 may be separate as shown in FIG. 2 , or they may be a single switch.
- Detection and controls circuits 220 are connected between the line 212 and the line 216 .
- the detection and control circuits 220 may measure the voltages on the lines 212 and 216 and control the state of the switches SW 5 and SW 6 .
- the switch SW 5 has three contacts, which are referred to individually as the first contact 226 , the second contact 228 , and the third contact 230 .
- the contacts 226 , 228 , 230 are connectable to the node 210 .
- the switch SW 5 is an electronic switch.
- the switch SW 6 is very similar to the switch SW 5 and has three contacts, a first contact 232 , a second contact 234 , and a third contact 236 .
- the contacts 232 , 234 , 236 are connectable to the node 214 .
- the switch SW 6 may also be an electronic switch.
- the first node 226 of the switch SW 5 is connected to the line D ⁇ of a host controller 240 .
- the host controller may be a conventional host controller that transmits and receives data on the lines D+ and D ⁇ .
- the first contact 232 of the switch SW 6 is connected to the line D+ of the host controller.
- the second contact 228 of the switch SW 5 is connected to a node 240 of a switch SW 7 that is part of a power supply 242 .
- the power supply 242 applies voltages onto the lines D+ and D ⁇ as described below.
- the second contact 234 of the switch SW 6 is connected to a node 244 of a switch SW 8 that is also part of the power supply 242 .
- the third contact 230 of the switch SW 5 is connected to a resistor 108 , which is the same resistor 108 of FIG. 1 .
- the third contact 236 of the switch SW 6 is also connected to the resistor 108 . It follows that when the switches SW 5 and SW 6 are connected to the third contacts 230 , 236 , the resistor 108 is connected between the data lines D+ and D ⁇ . Such a configuration is indicative to a BC1.1 and a BC1.2 USB device that it is connected to a charging port as described above.
- the switch SW 7 has a first contact 250 and a second contact 252 .
- the switch SW 8 has a first contact 254 and a second contact 256 .
- the first contact 250 of the switch SW 7 is connected to the second contact 256 of the switch SW 8 .
- the first contact 250 of the switch SW 7 is also connected to a first voltage source 260 by way of a resistor 262 .
- the first voltage source 260 supplies a voltage of approximately 2.7 volts. In the embodiment of the power supply 242 described herein, value of the resistor 262 is approximately 10 k ohms; however, the value of the resistor 262 may be different.
- the first contact of the switch SW 8 is connected to the second contact 252 of the switch SW 7 .
- the first contact 254 of the switch SW 8 is also connected to a second voltage source 264 by way of a resistor 266 .
- the second voltage source 264 outputs a voltage of approximately 2.0 volts and the value of the resistor 266 is approximately 10 k ohms. As with the resistor 262 , the value of the resistor 266 may be different than 10 k ohms.
- the voltages described above refer to an embodiment of a charging port. It is noted that other voltage values may be used in different embodiments.
- the switches SW 7 and SW 8 are in a first mode when the nodes 240 , 244 are connected to the first ports 250 , 254 .
- the voltage of the first voltage source 260 is output on the node 240 and the voltage of the second voltage source 264 is output on the node 244 .
- the switches SW 7 and SW 8 are in a second mode when the nodes 240 , 244 are connected to the second ports 252 , 256 .
- the switches SW 7 , SW 8 are in the second mode, the voltage from the first voltage source 260 is output on the node 244 and the voltage from the second voltage source 264 is output on the node 240 .
- the charging port 200 has to determine which type of USB device it is attached to.
- the manufacturer described above outputs voltages on the lines D+ and D ⁇ from the charging port.
- the USB device measures the voltages on the lines D+ and D ⁇ . If the line D+ is approximately 2.0 volts and the voltage on the line D ⁇ is approximately 2.7 volts, the USB device determines that it is connected to a first type of charging port that is able to output a first level of current.
- the USB device determines that a second type of charging port is connected wherein the second type of charging port is able to supply more current than the first type of charging port.
- the charging port 200 described herein is able to be used with both types of USB devices.
- the first step in battery charging is to attach the USB device 104 to the charging port as shown in step 302 of the flow chart 300 .
- the above-described VBUS detect is then performed.
- the next step is to determine if a BC1.1 or BC1.2 compliant USB device is attached to the charging port 200 as described in step 304 of flow chart 300 .
- a BC1.1 device is sometimes referred to as an alpha device.
- a USB device that is compliant with BC1.1 or BC1.2 will sink the current on the data line D ⁇ to ground or pull down the voltage on the voltage on the line D ⁇ . It follows that the voltage on the line D ⁇ measured at the detect and control circuit 220 will be below what it should be without the current sink 126 or the pull down resistor 118 connected thereto.
- the line D+ on a BC1.1 or BC1.2 device is connected to the voltage supply 110 , which sources (but does not sink) between 0.5 and 0.75 volts.
- the voltages on these lines can be measured by the detection and control circuits 220 . If the voltage on the line D ⁇ is less than what it would be but for the current sink, and the charging voltage present on the line D+ is maintained, then the USB device is likely compliant with BC1.1.
- the period that the line D+ is maintained may be greater than 1.5 seconds. In other embodiments, the period may be greater than or approximately equal to 0.25 seconds.
- the detection and control circuit 220 When applied specifically to the charging port 200 , voltages are applied to the lines D+ and D ⁇ via the power supply 242 , as described in step 303 , and the voltages on lines D+ and D ⁇ are measured at the detection and control circuits 220 .
- the voltage on line D+ should be high because the voltage supply 110 can only source a current. For example, if the power supply 264 applies approximately 2.0 volts on the line D+, the detection and control circuit 220 should measure approximately 2.0 volts.
- the voltage on line D ⁇ should be lower than the voltage supplied by the power supply 242 because the USB device 104 sinks the line D ⁇ to ground.
- Applying the voltages to the lines D+ and D ⁇ is achieved by connecting the node 210 to the second port 228 and connecting the node 214 to the second port 234 .
- the lines D+ and D ⁇ are then connected to the voltage sources 260 , 264 by way of the impedances 262 , 266 .
- the power supply 242 can be placed in the first mode so that 2.7 volts is applied to the line D ⁇ and 2.0 volts is applied to the line D+.
- the voltages on the lines D+ and D ⁇ are measured by the detection and control circuits 220 .
- the voltage on the line D+ should be about 2.0 volts, or within a predetermined range of 2.0 volts, such as 1.9 to 2.1 volts.
- the voltage on the line D ⁇ should be lower than the voltage applied by the voltage supply 242 .
- the voltage may be less than approximately 2.4 volts.
- the voltage on the line D ⁇ may be less than 2.6 volts or it may be less than 0.1 volts less than the voltage supplied by the voltage source 260 .
- the charging port 200 determines that the USB device is compliant per BC1.1, which is sometimes referred to as being an alpha device. The processing then proceeds to step 306 of the flow chart 300 . Otherwise, the USB device has a charging specification of another manufacturer and processing proceeds to step 308 of the flowchart 300 .
- the charging port 200 will set the correct battery charging specifications for such a device.
- the resistor 108 will be connected between the lines D+ and D ⁇ to indicate that the charging port 200 is a charging port per BC1.1.
- step 306 removes the power from the USB device. This may be achieved by disconnecting VBUS from the USB device. By recycling the USB device 104 , the process of determining the type of USB device connected to the charging port starts over with the resistor 108 connected between the lines D+ and D ⁇ .
- Connecting the resistor 108 to the lines D+ and D ⁇ is performed by setting the switch SW 5 for the node 210 to connect to the third contact 230 .
- the switch SW 6 is set for the node 214 to connect to the third contact 236 .
- the line D+ is essentially shorted to the line D ⁇ because they are connected by the resistor 108 as described in step 310 of the flow chart 300 .
- Power is then returned to the USB device by the charging port 200 as described in step 312 of the flow chart 300 . Because the lines D ⁇ and D+ are shorted, the USB device will recognize the charging port 200 correctly as a dedicated charging port and will charge the battery per a battery charging specification.
- the USB device may have been determined to be from a manufacturer that does not comply with the above-described battery charging specifications. Rather, the manufacturer uses a specification wherein voltages are applied to the lines D+ and D ⁇ by the charging port to indicate that it is a dedicated battery charger, per a proprietary specification as described above. The USB device measures the voltages on the lines D+ and D ⁇ to determine that a dedicated charging port is connected and then the USB device commences charging.
- the manufacturer has a first or older specification for older USB devices that draw lower current than newer USB devices using a newer or second specification.
- the older USB devices that draw less current are referred to as beta devices and the newer USB devices that draw more current are referred to as gamma devices.
- the older devices may draw less than 550 mA and the newer devices may draw approximately 2.0 amperes.
- Older charging ports may not be able to supply the current required to charge the newer devices.
- the newer USB devices may recognize the older charging ports and may, upon detection of an older charging port, limit their current draw to the lower current supplied by the older charging ports.
- the charging port 200 described herein is able to detect whether the manufacturer's USB device is an older type that draws less current than a newer type and to supply the appropriate current.
- the process of determining the type of device commences with applying voltages from the charging port 200 to the USB device via the lines D+ and D ⁇ indicating that the charging port 200 is configured for an older USB device that draws less current than a newer USB device.
- This first step is shown at step 316 of the flow chart 300 .
- this first step is accomplished by connecting the first voltage source 260 to the line D ⁇ and connecting the second voltage source 264 to the line D+. More specifically, the switches SW 7 and SW 8 are placed in the first mode and the nodes 210 , 214 are connected to the second ports 228 , 234 . Accordingly, 2.7 volts is output on the line D ⁇ and 2.0 volts is output on the line D+.
- the current drawn from the charging port 200 is measured at step 318 . More specifically, the current drawn on VBUS to charge the USB device is measured by the current monitor 206 . A decision is made at step 320 to determine if the current drawn is greater than a predetermined value. If the current drawn is greater than a predetermined value, the USB device is likely a second or newer type of device and processing proceeds to step 322 where the voltages on D+ and D ⁇ are swapped. In some embodiments, the predetermined current value is approximately 750 mA. With regard to the charging port 200 , the states of the switches SW 7 and SW 8 are changed. At step 324 , the current drawn on VBUS is measured again. Because the charging port 200 is in a state to provide high current to a newer USB device, the current drawn on VBUS should increase if the USB device is a newer type device. For example, the current drawn may increase to approximately 900 mA or greater.
- a decision as to whether the current drawn on VBUS has increased is shown at step 326 of the flow chart 300 . If the current has increased, the USB device is a newer type device and needs the higher current provided by the present configuration of the charging port 200 . The voltages on the lines D+ and D ⁇ remain at 2.7 and 2.0 volts respectively, and the charging port 200 provides charging power per the specification of the newer USB device.
- step 326 If, at step 326 , the current drawn by the USB device did not increase, the USB device is an older device, so the voltages on D+ and D ⁇ are set to reflect the older device as described in step 330 .
- the charging port 200 then commences to charge the USB device per the older charging specification as described in step 332 . It is also noted that if the decision from step 320 is negative, the USB device is an older device and will charge per the older specifications as described in step 332 .
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Power Sources (AREA)
Abstract
Methods and devices for detecting USB devices attached to a USB charging port including a USB port having a first data line D+, a second data line D−, and a power line are disclosed. A USB device is attached to the USB port; applying power to the USB device by the power line; applying a first voltage to the line D+ at the USB port by a first impedance; applying a second voltage to the line D− at the USB port by a second impedance. The voltages on the line D+ and the line D− are then monitored at the USB port. If the voltage on the line D+ is approximately equal to a first predetermined value for a predetermined period and the voltage on the line D− is below a second predetermined value, then the USB device is determined to be of an alpha type device.
Description
- This application is a continuation of U.S. Nonprovisional patent application Ser. No. 14/530,295, filed Oct. 31, 2014, which is a continuation of U.S. Nonprovisional patent application Ser. No. 13/298,204, filed Nov. 16, 2011, which claims priority to U.S. Provisional Patent Application No. 61/414,780, filed on Nov. 17, 2010 and 61/414,791, filed on Nov. 17, 2010, which are incorporated herein by reference in their entirety.
- Many different battery-powered devices are charged via a USB connection. Charging a battery in a USB device commences with attaching the USB device to a host device that is capable of providing current to charge the batteries in the USB device. Subsequent to attachment, a determination is made as to the type of USB device and the type of host device that are attached together. If a charging port is detected, the charging port provides current to charge the batteries in the USB device.
- Over time, several different battery charging specifications have been developed for different charging ports. The different battery charging specifications have created some conflicts between different charging ports and different USB devices. Accordingly, not all battery-powered USB devices will enter a charging mode when attached to all charging ports.
-
FIG. 1 is a schematic diagram of the charge detection circuit of a USB device per specification BC1.1. -
FIG. 2 is a schematic diagram of an embodiment of a USB charging port. -
FIG. 3 is a flow chart describing the operation of the charging port ofFIG. 2 . - The universal serial bus (USB) has become a dominant device for transmitting data between computers and other electronic devices. The electronic devices include peripherals, such as printers and keyboards, and portable devices, such as cellular telephones and recording devices. These electronic devices are referred to herein collectively as USB devices. The computer or other device that controls the USB is referred to as the host device or simply the host. The USB has four conductors, two power lines and two data lines. The two power lines are referred to as Vbus and ground and the two data lines are referred to as D+ and D−.
- The use of the USB enables USB devices to communicate with a host and to be powered by the host while using a single USB cable. More specifically, the power lines, Vbus and ground, provide power to the USB device and the data lines, D+ and D−, provide the data communications between the host and the USB device. In the case of battery-powered USB devices, the power lines are able to charge the batteries as described in greater detail below.
- Many battery-powered USB devices, such as cellular telephones use a single USB port for data communications and power. A user can recharge the batteries by attaching a USB cable between the single USB port and a host. Due to the limited power that can be output from some hosts, such as some computers, many battery-powered USB devices are charged by connecting the USB port of the USB device to a wall mounted battery charger. The wall mounted battery chargers are capable of supplying significantly more power than some computers or other hosts.
- USB specifications dictate the manner in which USB devices detect battery chargers (charging ports) and the manner in which they charge. Over time, two primary specifications related to battery charging of USB devices have been developed, BC1.1 and BC1.2. The specification BC1.1 was adopted by the USB Implementers Forum in April of 2009. The specification BC1.1 was replaced by the more advanced specification BC1.2, which was adopted by the USB Implementers Forum in December of 2010. However, there are many USB devices on the market and in use that use the older specification BC1.1. Many of these USB devices that use the specification BC1.1 are not able to charge when connected to a charging port that is operating per the specification BC1.2. To complicate the matter, some manufacturers use proprietary USB charging specifications that do not operate with other USB devices or hosts.
- Host devices and methods of operating host devices that enable BC1.1, BC1.2, and some proprietary USB devices to be charged from a single charging port are disclosed herein. The charging port described herein may be a dedicated charging port (DCP), a charging downstream port (CDP), or a standard downstream port (SDP). A dedicated charging port is able to provide approximately 1.5 amperes to a USB device whereas a standard downstream port may only be able to supply approximately 500-900 mA to a USB device.
- Reference is made to
FIG. 1 , which is a schematic diagram of thecharge detection circuit 100 of aUSB device 104 complying with at least one version of the USB battery charging specification BC1.1. Thecharge detection circuit 100 is used by theUSB device 104 to determine if a charging port is attached to theUSB port 106 of theUSB device 104 as described below. TheUSB device 104 is attached to a host, which is a charging port, via theUSB port 106. Although the charging port is not shown inFIG. 1 , the lines D+ and D− are connected to aresistor 108 that is located in the charging port as described in greater detail below. The value of theresistor 108 may be between zero and 250 ohms. Because the value of theresistor 108 is so low, it is sometimes referred to as a short between the lines D+ and D−. It is noted that the use of the resistor connected between the line D+ and D− is an example of a charging port configuration and that other circuits may be connected to the lines D+ and D−. - As briefly described above, the
USB port 106 has four conductors or lines, which are referred to individually as Vbus, Ground (GND), data positive (D+), and data minus (D−). Vbus and GND are not shown connected to any components in thecharge detection circuit 100. Rather, Vbus and GND are used to supply power to theUSB device 104 and to charge batteries used to operate theUSB device 104. The data lines D+ and D− are used to transmit data between theUSB device 104 and the host. As described below, lines D+ and D− are also use to detect whether a host is attached to theUSB device 104 and to indicate the type of host attached thereto. - The line D+ is connected to a voltage source VDP_SRC by way of a switch SW1. The voltage source VDP_SRC may provide a voltage between 0.5 and 0.7 volts. The line D+ is also connected to a
current source 112 by way of a switch SW2. Thecurrent source 112 may provide a current of a predetermined amount, which is referred to as IDP_SRC. Thecurrent source 112 may supply a current of approximately 7-12 uA. In addition, line D+ is connected to a physical layer interface (PHY) 114, which is also referred to as a USB transceiver. The connection to thephysical layer interface 114 is represented by aleakage resistance 116 having a value of RDAT_LKG and a leakage voltage, which is referred to as VDAT_LKG. The values of RDAT_LKG may be approximately 300 k ohms and the value of VDAT_LKG may be between zero and 3.6 volts. - The line D− is connected to a pull down
resistor 118 by a switch SW3. Theresistor 118 has a value referred to as RDM_DWN, which may have a value of between 14.25 k ohms and 24.8 k ohms. The line D− is also connected to the non-inverting side of avoltage comparator 120 and an inverting input of anAND gate 122 by a switch SW4. The non-inverting input of thevoltage comparator 120 is also connected to acurrent sink 126. Thecurrent sink 126 is sometimes referred to as being activated when the switch SW4 closes. As with the line D+, the line D− is also connected to thephysical layer interface 114 wherein the connection is represented by the leakage resistance Rdat_lkg and the leakage voltage Vdat_lkg. - The inverting input of the
voltage comparator 120 is connected to a reference voltage VDAT_REF, which may be between 0.25 and 0.4 volts. Accordingly, thevoltage comparator 120 compares the voltage on line D− to the reference voltage VDAT_REF. The output of thevoltage comparator 120 is an input to the ANDgate 122. The output of the ANDgate 122 provides a signal to thephysical layer interface 114 as to whether a charging port has been connected to theUSB device 104. A high value from the ANDgate 122 is indicative of a charging port connected to theUSB device 104. - Having described the
USB device 104, its operation for detecting an attachment to a charging port will now be described. TheUSB device 104 first detects that a USB cable is attached by way of a procedure sometimes referred to as “VBUS detect”. This detection may be achieved by conventional methods of monitoring Vbus. For example, when the voltage on Vbus transitions to a value higher than 0.8V, it is indicative of a USB cable being attached to theUSB device 104. When the USB cable is determined to be attached to theUSB device 104, the USB device is sometimes referred to as being in “session valid”. - When the attachment has been established and the USB device is in session valid, a “data contact detect” is performed, which determines when the lines D+ and D− are electrically connected to the host. In summary, a data contact detect occurs after the session valid when the voltage on the line D+ goes low. In a BC1.1 device, the
current source 112 is activated by closing switch SW2. In addition, switch SW3 is closed, which connects the line D− to ground via theresistor 118. In some host devices, the host device will pull the voltage on the line D+ low by way of a pull down resistor in the host device. In other devices, the host will connect the line D+ to the line D−. Because the line D− is pulled down by theresistor 118, the line D+ will go low when the host device is connected to theUSB device 104. In any event, data contact detect occurs when the voltage on the line D+ goes low after session valid. - USB devices per BC1.1 do not have a time out procedure if they do not detect that the voltage on line D+ has gone low after a session valid. If the voltage on the line D+ is driven high by the charging port, the BC1.1 device will never be able to obtain a data contact detect. BC1.2 devices do not have this issue because they will skip the data contact detection and move on to the primary detection, described below, after a period. The charging port and methods of operating the charging port described herein monitor the lines D− and D+. If the line D− is pulled down while the line D+ is not pulled down, the charging port determines that the connected device is a BC1.1 device and proceeds to a dedicated charging port mode per BC1.1.
- When data contact detect is complete, the
USB device 104 proceeds to determine if the host is a charging port by performing a “primary detection”. TheUSB device 104 closes switch SW1, which turns on the voltage source 110. The switch SW4 is also closed, which connects thecurrent sink 126 to the line D−. If a host other than a charging port is attached to the line D−, the host pulls the voltage on the line D− below the voltage VDAT_REF, so the CHG_DET line is low, indicating that no charging port is connected to theUSB port 106. If the voltage on line D− is greater than the voltage VDAT_REF and below a logic one voltage, then the CHG_DET line is high indicating that theUSB device 104 is attached to a charging port. - A USB device under BC1.1 may have problems if the line D− is driven high by the host device and the USB device was able to pass beyond the data contact detect. By driving the line D− too high, it could be interpreted as a logic high by the AND
gate 122 and drive the charge detection line CHG_DET low, so theUSB device 104 detects that no charging port is connected. In such a situation, the host described herein may determine that theUSB device 104 is a BC1.1 device. In order to proceed with charging, the power may be removed from the USB device and a shorting resistor may be connected between D+ and D− by the host device which indicates to theUSB device 104 that a charging port is attached thereto. - Some other USB devices are somewhat different than the BC1.1 devices and may conflict with BC1.1 devices. For example, one manufacturer produces USB devices and corresponding charging ports or adapters (referred to herein collectively as charging ports) that use different charge and charge detection specifications. In these specifications, the charging ports output specific voltages through predefined impedances on the lines D+ and D− that are indicative of the type of charging port connected to the USB device. It follows that this manufacturer produces USB devices that monitor the voltages on the lines D+ and D− to determine the type of charging port that is connected thereto. In one embodiment of these devices, a voltage of approximately 2.7 volts is output on the line D− and a voltage of approximately 2.0 volts is output on the line on D+. The voltage configuration indicates that the charging port is configured for a first type of USB device that charges per a specific charging specification. However, a second type of charging port outputs approximately 2.0 volts on the line D− and approximately 2.7 volts on the line D+. This voltage configuration is indicative of a charging port configured for a second type of USB device. The second type of USB device may draw significantly more current during battery charging than the first type of USB device.
- Many of the BC1.1 USB devices are not able to recognize the charging port from the above-described manufacturer. When the above-described charging port is attached to the BC1.1 device, the line D+ is driven high by the charging port. Accordingly, the BC1.1 device cannot proceed with the data contact detect because the voltage on the line D+ will never go low. In addition, the charging ports drive the voltage on the line D− to a voltage that may be high enough to where it could be a logic high. In doing so, the CHRG_DET line is driven to a logic low. If the BC1.1 USB devices are able to proceed beyond data contact detect, they may not recognize that a charging port is attached thereto and do not enter a charging mode. Accordingly, the BC1.1 USB devices are attached to charging ports, but they do not charge their batteries.
- A schematic diagram of a
USB charging port 200 that can determine if a USB device is a BC1.1 device or if the USB device is of a manufacturer using a different charging specification as described above is shown inFIG. 2 . - The charging
port 200 has aUSB port 202 that is attachable to a USB cable, which in turn is attachable to theUSB port 106 on theUSB device 104. TheUSB port 202 includes the same lines as described above, VBUS, GND, D+, and D−. The line VBUS is connected to acurrent monitor 206 that monitors the current flowing in the line VBUS. Accordingly, thecurrent monitor 206 monitors the current used by the USB device when it is charging. The GND line is connected to a conventional ground. - The line D− is connected to a
node 210 on a switch SW5 by way of aline 212. The line D+ is connected to anode 214 on a switch SW6 by way of aline 216. The switches SW5 and SW6 may be separate as shown inFIG. 2 , or they may be a single switch. Detection and controlscircuits 220 are connected between theline 212 and theline 216. The detection andcontrol circuits 220 may measure the voltages on thelines - The switch SW5 has three contacts, which are referred to individually as the
first contact 226, thesecond contact 228, and thethird contact 230. Thecontacts node 210. In some embodiments, the switch SW5 is an electronic switch. The switch SW6 is very similar to the switch SW5 and has three contacts, afirst contact 232, asecond contact 234, and athird contact 236. Thecontacts node 214. The switch SW6 may also be an electronic switch. - The
first node 226 of the switch SW5 is connected to the line D− of ahost controller 240. The host controller may be a conventional host controller that transmits and receives data on the lines D+ and D−. Thefirst contact 232 of the switch SW6 is connected to the line D+ of the host controller. Thesecond contact 228 of the switch SW5 is connected to anode 240 of a switch SW7 that is part of apower supply 242. Thepower supply 242 applies voltages onto the lines D+ and D− as described below. Thesecond contact 234 of the switch SW6 is connected to anode 244 of a switch SW8 that is also part of thepower supply 242. - The
third contact 230 of the switch SW5 is connected to aresistor 108, which is thesame resistor 108 ofFIG. 1 . Thethird contact 236 of the switch SW6 is also connected to theresistor 108. It follows that when the switches SW5 and SW6 are connected to thethird contacts resistor 108 is connected between the data lines D+ and D−. Such a configuration is indicative to a BC1.1 and a BC1.2 USB device that it is connected to a charging port as described above. - The
power supply 242 will now be described. The switch SW7 has afirst contact 250 and asecond contact 252. The switch SW8 has afirst contact 254 and asecond contact 256. Thefirst contact 250 of the switch SW7 is connected to thesecond contact 256 of the switch SW8. Thefirst contact 250 of the switch SW7 is also connected to afirst voltage source 260 by way of aresistor 262. Thefirst voltage source 260 supplies a voltage of approximately 2.7 volts. In the embodiment of thepower supply 242 described herein, value of theresistor 262 is approximately 10 k ohms; however, the value of theresistor 262 may be different. The first contact of the switch SW8 is connected to thesecond contact 252 of the switch SW7. Thefirst contact 254 of the switch SW8 is also connected to asecond voltage source 264 by way of aresistor 266. Thesecond voltage source 264 outputs a voltage of approximately 2.0 volts and the value of theresistor 266 is approximately 10 k ohms. As with theresistor 262, the value of theresistor 266 may be different than 10 k ohms. The voltages described above refer to an embodiment of a charging port. It is noted that other voltage values may be used in different embodiments. - The switches SW7 and SW8 are in a first mode when the
nodes first ports first voltage source 260 is output on thenode 240 and the voltage of thesecond voltage source 264 is output on thenode 244. The switches SW7 and SW8 are in a second mode when thenodes second ports first voltage source 260 is output on thenode 244 and the voltage from thesecond voltage source 264 is output on thenode 240. - The operation of the charging
port 200 will now be described with additional reference to theflow chart 300 ofFIG. 3 , which describes the operation of thepower supply 200. - As described above, there are different USB devices to which the charging
port 200 may be attached, therefore, the charging port has to determine which type of USB device it is attached to. Unlike the protocol of the BC1.1 and BC1.2 specifications, the manufacturer described above outputs voltages on the lines D+ and D− from the charging port. The USB device measures the voltages on the lines D+ and D−. If the line D+ is approximately 2.0 volts and the voltage on the line D− is approximately 2.7 volts, the USB device determines that it is connected to a first type of charging port that is able to output a first level of current. If the voltage on line D− is approximately 2.0 volts and the voltage on line D+ is approximately 2.7 volts, then the USB device determines that a second type of charging port is connected wherein the second type of charging port is able to supply more current than the first type of charging port. As described below, the chargingport 200 described herein is able to be used with both types of USB devices. - The first step in battery charging is to attach the
USB device 104 to the charging port as shown instep 302 of theflow chart 300. The above-described VBUS detect is then performed. - The next step is to determine if a BC1.1 or BC1.2 compliant USB device is attached to the charging
port 200 as described instep 304 offlow chart 300. A BC1.1 device is sometimes referred to as an alpha device. As described above, a USB device that is compliant with BC1.1 or BC1.2 will sink the current on the data line D− to ground or pull down the voltage on the voltage on the line D−. It follows that the voltage on the line D− measured at the detect and controlcircuit 220 will be below what it should be without thecurrent sink 126 or the pull downresistor 118 connected thereto. The line D+ on a BC1.1 or BC1.2 device is connected to the voltage supply 110, which sources (but does not sink) between 0.5 and 0.75 volts. The voltages on these lines can be measured by the detection andcontrol circuits 220. If the voltage on the line D− is less than what it would be but for the current sink, and the charging voltage present on the line D+ is maintained, then the USB device is likely compliant with BC1.1. The period that the line D+ is maintained may be greater than 1.5 seconds. In other embodiments, the period may be greater than or approximately equal to 0.25 seconds. - When applied specifically to the charging
port 200, voltages are applied to the lines D+ and D− via thepower supply 242, as described instep 303, and the voltages on lines D+ and D− are measured at the detection andcontrol circuits 220. The voltage on line D+ should be high because the voltage supply 110 can only source a current. For example, if thepower supply 264 applies approximately 2.0 volts on the line D+, the detection andcontrol circuit 220 should measure approximately 2.0 volts. The voltage on line D− should be lower than the voltage supplied by thepower supply 242 because theUSB device 104 sinks the line D− to ground. Applying the voltages to the lines D+ and D− is achieved by connecting thenode 210 to thesecond port 228 and connecting thenode 214 to thesecond port 234. The lines D+ and D− are then connected to thevoltage sources impedances power supply 242 can be placed in the first mode so that 2.7 volts is applied to the line D− and 2.0 volts is applied to the line D+. - As briefly described above, the voltages on the lines D+ and D− are measured by the detection and
control circuits 220. The voltage on the line D+ should be about 2.0 volts, or within a predetermined range of 2.0 volts, such as 1.9 to 2.1 volts. The voltage on the line D− should be lower than the voltage applied by thevoltage supply 242. For example, the voltage may be less than approximately 2.4 volts. In some embodiments, the voltage on the line D− may be less than 2.6 volts or it may be less than 0.1 volts less than the voltage supplied by thevoltage source 260. If these criteria are met and maintained for a predetermined period, the chargingport 200 determines that the USB device is compliant per BC1.1, which is sometimes referred to as being an alpha device. The processing then proceeds to step 306 of theflow chart 300. Otherwise, the USB device has a charging specification of another manufacturer and processing proceeds to step 308 of theflowchart 300. - If the USB device is compliant per BC1.1, the charging
port 200 will set the correct battery charging specifications for such a device. In the embodiment of the chargingport 200 described herein, theresistor 108 will be connected between the lines D+ and D− to indicate that the chargingport 200 is a charging port per BC1.1. In order to recycle the USB device,step 306 removes the power from the USB device. This may be achieved by disconnecting VBUS from the USB device. By recycling theUSB device 104, the process of determining the type of USB device connected to the charging port starts over with theresistor 108 connected between the lines D+ and D−. - Connecting the
resistor 108 to the lines D+ and D− is performed by setting the switch SW5 for thenode 210 to connect to thethird contact 230. Likewise, the switch SW6 is set for thenode 214 to connect to thethird contact 236. In this mode, the line D+ is essentially shorted to the line D− because they are connected by theresistor 108 as described instep 310 of theflow chart 300. Power is then returned to the USB device by the chargingport 200 as described instep 312 of theflow chart 300. Because the lines D− and D+ are shorted, the USB device will recognize the chargingport 200 correctly as a dedicated charging port and will charge the battery per a battery charging specification. - Returning to step 304 of the
flow chart 300, the USB device may have been determined to be from a manufacturer that does not comply with the above-described battery charging specifications. Rather, the manufacturer uses a specification wherein voltages are applied to the lines D+ and D− by the charging port to indicate that it is a dedicated battery charger, per a proprietary specification as described above. The USB device measures the voltages on the lines D+ and D− to determine that a dedicated charging port is connected and then the USB device commences charging. - In the embodiments described herein, the manufacturer has a first or older specification for older USB devices that draw lower current than newer USB devices using a newer or second specification. For reference purposes, the older USB devices that draw less current are referred to as beta devices and the newer USB devices that draw more current are referred to as gamma devices. The older devices may draw less than 550 mA and the newer devices may draw approximately 2.0 amperes. Older charging ports may not be able to supply the current required to charge the newer devices. However, the newer USB devices may recognize the older charging ports and may, upon detection of an older charging port, limit their current draw to the lower current supplied by the older charging ports. The charging
port 200 described herein is able to detect whether the manufacturer's USB device is an older type that draws less current than a newer type and to supply the appropriate current. - The process of determining the type of device commences with applying voltages from the charging
port 200 to the USB device via the lines D+ and D− indicating that the chargingport 200 is configured for an older USB device that draws less current than a newer USB device. This first step is shown atstep 316 of theflow chart 300. In the embodiment of the chargingport 200 ofFIG. 2 , this first step is accomplished by connecting thefirst voltage source 260 to the line D− and connecting thesecond voltage source 264 to the line D+. More specifically, the switches SW7 and SW8 are placed in the first mode and thenodes second ports - The current drawn from the charging
port 200 is measured atstep 318. More specifically, the current drawn on VBUS to charge the USB device is measured by thecurrent monitor 206. A decision is made atstep 320 to determine if the current drawn is greater than a predetermined value. If the current drawn is greater than a predetermined value, the USB device is likely a second or newer type of device and processing proceeds to step 322 where the voltages on D+ and D− are swapped. In some embodiments, the predetermined current value is approximately 750 mA. With regard to the chargingport 200, the states of the switches SW7 and SW8 are changed. Atstep 324, the current drawn on VBUS is measured again. Because the chargingport 200 is in a state to provide high current to a newer USB device, the current drawn on VBUS should increase if the USB device is a newer type device. For example, the current drawn may increase to approximately 900 mA or greater. - A decision as to whether the current drawn on VBUS has increased is shown at
step 326 of theflow chart 300. If the current has increased, the USB device is a newer type device and needs the higher current provided by the present configuration of the chargingport 200. The voltages on the lines D+ and D− remain at 2.7 and 2.0 volts respectively, and the chargingport 200 provides charging power per the specification of the newer USB device. - If, at
step 326, the current drawn by the USB device did not increase, the USB device is an older device, so the voltages on D+ and D− are set to reflect the older device as described instep 330. The chargingport 200 then commences to charge the USB device per the older charging specification as described instep 332. It is also noted that if the decision fromstep 320 is negative, the USB device is an older device and will charge per the older specifications as described instep 332. - While illustrative and presently preferred embodiments of the invention have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations except insofar as limited by the prior art.
Claims (2)
1. A method for detecting the type of USB device connected to a USB charging port, said USB charging port comprising a USB port comprising a first data line D+, a second data line D−, and a power line, said method comprising:
attaching said USB device to said USB port;
applying power to said USB device by way of said power line;
applying a first voltage to said line D+ at said USB port;
applying a second voltage to said line D− line at said USB; and
monitoring the current drawn on the power line;
if said current drawn on said power line is below a first predetermined current value, then determining that said USB device is of a beta type.
the method further comprising:
applying said first voltage to said line D− at said USB port;
applying said second voltage to said line D+ at said USB port;
monitoring the current drawn on said power line, wherein said USB device is of a gamma type if said current drawn on said power line increases above a second predetermined current value.
2. The method of claim 1 and further comprising:
applying said first voltage to said line D+ and applying said second voltage to said line D− if said current does not increase above said predetermined value.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/431,214 US20170219635A1 (en) | 2010-11-17 | 2017-02-13 | Devices and methods for detecting usb devices attached to a usb charging port |
US15/860,373 US10746766B2 (en) | 2010-11-17 | 2018-01-02 | Devices and methods for detecting USB devices attached to a USB charging port |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41479110P | 2010-11-17 | 2010-11-17 | |
US41478010P | 2010-11-17 | 2010-11-17 | |
US13/298,204 US8890469B2 (en) | 2010-11-17 | 2011-11-16 | Devices and methods for detecting USB devices attached to a USB charging port |
US14/530,295 US9568509B2 (en) | 2010-11-17 | 2014-10-31 | Devices and methods for detecting USB devices attached to a USB charging port |
US15/431,214 US20170219635A1 (en) | 2010-11-17 | 2017-02-13 | Devices and methods for detecting usb devices attached to a usb charging port |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/530,295 Continuation US9568509B2 (en) | 2010-11-17 | 2014-10-31 | Devices and methods for detecting USB devices attached to a USB charging port |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/860,373 Continuation US10746766B2 (en) | 2010-11-17 | 2018-01-02 | Devices and methods for detecting USB devices attached to a USB charging port |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170219635A1 true US20170219635A1 (en) | 2017-08-03 |
Family
ID=46047168
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/298,204 Active 2033-01-02 US8890469B2 (en) | 2010-11-17 | 2011-11-16 | Devices and methods for detecting USB devices attached to a USB charging port |
US14/530,295 Active 2032-01-05 US9568509B2 (en) | 2010-11-17 | 2014-10-31 | Devices and methods for detecting USB devices attached to a USB charging port |
US15/431,214 Abandoned US20170219635A1 (en) | 2010-11-17 | 2017-02-13 | Devices and methods for detecting usb devices attached to a usb charging port |
US15/860,373 Active US10746766B2 (en) | 2010-11-17 | 2018-01-02 | Devices and methods for detecting USB devices attached to a USB charging port |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/298,204 Active 2033-01-02 US8890469B2 (en) | 2010-11-17 | 2011-11-16 | Devices and methods for detecting USB devices attached to a USB charging port |
US14/530,295 Active 2032-01-05 US9568509B2 (en) | 2010-11-17 | 2014-10-31 | Devices and methods for detecting USB devices attached to a USB charging port |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/860,373 Active US10746766B2 (en) | 2010-11-17 | 2018-01-02 | Devices and methods for detecting USB devices attached to a USB charging port |
Country Status (1)
Country | Link |
---|---|
US (4) | US8890469B2 (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8989867B2 (en) | 2011-07-14 | 2015-03-24 | Cyberonics, Inc. | Implantable nerve wrap for nerve stimulation configured for far field radiative powering |
US9148026B2 (en) * | 2011-09-30 | 2015-09-29 | Fairchild Semiconductor Corporation | Charger detection with proprietary charger support |
TW201316650A (en) * | 2011-10-14 | 2013-04-16 | Feature Integration Technology Inc | A charging controller and a portable apparatus using the same |
US9120132B2 (en) * | 2011-11-09 | 2015-09-01 | ZZ Ventures, LLC | Pallet washing apparatus |
US9142982B2 (en) * | 2011-11-14 | 2015-09-22 | Mediatek Inc. | Method and apparatus for performing charging port detection control |
US8990592B2 (en) * | 2012-01-25 | 2015-03-24 | Smsc Holdings S.A.R.L. | Overcoming limited common-mode range for USB systems |
US20130207472A1 (en) * | 2012-02-13 | 2013-08-15 | Kuo-Ching Chiang | Extension USB Socket |
US8904054B2 (en) * | 2012-03-20 | 2014-12-02 | Sony Corporation | Method and apparatus for mode switching of interface ports |
US8745301B2 (en) | 2012-10-29 | 2014-06-03 | Qualcomm Incorporated | High voltage dedicated charging port |
US8760123B2 (en) | 2012-10-29 | 2014-06-24 | Qualcomm Incorporated | High voltage dedicated charging port |
TWI547395B (en) * | 2012-11-12 | 2016-09-01 | 威盛電子股份有限公司 | Battery management system and electrical mobile device |
US20140312691A1 (en) * | 2013-03-15 | 2014-10-23 | Cooper Technologies Company | Smart power strip with automatic device connection detection |
US20170163062A9 (en) * | 2013-03-15 | 2017-06-08 | Samuel Blake Fuller | Wearable / mountable mobile charging device |
CN103427460B (en) * | 2013-07-31 | 2016-09-07 | 华为终端有限公司 | A kind of power supply terminal, charge control method and device |
US9356460B2 (en) * | 2013-08-05 | 2016-05-31 | Texas Instruments Incorporated | Method and apparatus of fast battery charging with universal high power input source |
US9470644B2 (en) * | 2013-11-18 | 2016-10-18 | Qualcomm Incorporated | Devices and methods for facilitating USB charger detection |
US9748783B2 (en) * | 2014-06-02 | 2017-08-29 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Smart voltage dedicated charger system |
US9448259B2 (en) | 2014-07-10 | 2016-09-20 | Qualcomm Incorporated | Apparatuses and methods to distinguish proprietary, non-floating and floating chargers for regulating charging currents |
CN106716389B (en) * | 2014-08-05 | 2020-04-10 | 德州仪器公司 | Method for fast USB charging, electronic device and charger device |
JP6488733B2 (en) * | 2015-02-02 | 2019-03-27 | 株式会社ソシオネクスト | Power supply circuit, charging circuit, charging system, power feeding method and charging method |
US10181742B2 (en) * | 2015-05-14 | 2019-01-15 | Mediatek Inc. | Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device |
US10554058B2 (en) | 2015-05-14 | 2020-02-04 | Media Tek Inc. | Systems and methods for monitoring an operating status of a connector |
JP6641388B2 (en) | 2015-05-14 | 2020-02-05 | 日本テキサス・インスツルメンツ合同会社 | USB controller ESD protection device and method |
US10658860B2 (en) | 2015-05-14 | 2020-05-19 | Mediatek Inc. | Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device |
WO2017049548A1 (en) * | 2015-09-24 | 2017-03-30 | 广东欧珀移动通信有限公司 | Mobile terminal, power supply adapter, and upgrading method thereof |
US11181966B2 (en) | 2015-11-13 | 2021-11-23 | Texas Instruments Incorporated | USB interface circuit and method for low power operation |
US9979214B2 (en) * | 2016-01-12 | 2018-05-22 | Richtek Technology Corporation | Adaptive buck converter and charging cable using the same |
US10170923B2 (en) | 2016-01-12 | 2019-01-01 | Richtek Technology Corporation | Adaptive buck converter with monitor circuit and charging cable using the same |
KR102544248B1 (en) | 2016-02-16 | 2023-06-16 | 삼성전자주식회사 | Electronic device supporting usb interface and control method for the usb interface |
CN106129501B (en) * | 2016-06-29 | 2019-05-03 | 珠海市魅族科技有限公司 | A kind of method and device of terminal charge |
JP6738016B2 (en) * | 2016-07-27 | 2020-08-12 | 富士通クライアントコンピューティング株式会社 | Expansion device, system and program |
CN106385074A (en) * | 2016-10-12 | 2017-02-08 | 成都芯源系统有限公司 | Charging mode automatic detection unit, charging circuit and related method |
EP3367210A1 (en) | 2017-02-24 | 2018-08-29 | Thomson Licensing | Method for operating a device and corresponding device, system, computer readable program product and computer readable storage medium |
CN107247179A (en) * | 2017-05-03 | 2017-10-13 | 北京世纪龙脉科技有限公司 | A kind of voltage detecting circuit of USB device |
TWI667481B (en) | 2018-06-29 | 2019-08-01 | 群光電能科技股份有限公司 | Transmission cable and power supply apparatus using the same |
CN113078696B (en) * | 2020-01-03 | 2024-05-07 | 北京小米移动软件有限公司 | Electronic device, charging method and device thereof, and readable storage medium |
US11923675B2 (en) * | 2021-12-17 | 2024-03-05 | Qualcomm Incorporated | Systems and methods for liquid presentation detection |
CN115589051B (en) * | 2022-11-18 | 2023-04-18 | 荣耀终端有限公司 | Charging method and terminal equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100064148A1 (en) * | 2008-09-10 | 2010-03-11 | Cyber Power System Inc. | Universal USB power supply |
US7688037B2 (en) * | 2005-11-28 | 2010-03-30 | Lg Electronics, Inc. | Charging control apparatus and method of mobile terminal |
US20100127864A1 (en) * | 2005-02-15 | 2010-05-27 | Research In Motion Limited | Systems and Methods for Charging a Chargeable USB Device |
US20100201308A1 (en) * | 2006-06-29 | 2010-08-12 | Nokia Corporation | Device and method for battery charging |
US8412873B2 (en) * | 2007-12-21 | 2013-04-02 | Gemalto Sa | USB bridge |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175127A (en) * | 2000-09-29 | 2002-06-21 | Oki Electric Ind Co Ltd | Microcontroller |
US6897773B2 (en) * | 2002-01-25 | 2005-05-24 | Alfred Dennis Ridley | Computer powered wire(less) ultra-intelligent real-time monitor |
US7268561B2 (en) * | 2004-09-20 | 2007-09-11 | Texas Instruments Incorporated | USB attach detection for USB 1.1 and USB OTG devices |
TWI272495B (en) * | 2005-04-14 | 2007-02-01 | Richtek Technology Corp | Configuration device and method for current output at USB port |
US7949802B2 (en) * | 2006-12-08 | 2011-05-24 | Nokia Corporation | Enhanced communication via a serial interface |
US7644217B2 (en) * | 2007-03-02 | 2010-01-05 | Microchip Technology Incorporated | Detecting connection to a USB host or hub without using an extra status input |
US20080265838A1 (en) * | 2007-04-24 | 2008-10-30 | Saurabh Garg | Battery charging using a USB-ID pin of a USB interface |
US20080272741A1 (en) * | 2007-05-03 | 2008-11-06 | Summit Microelectronics, Inc. | Systems and methods for detecting power sources |
US7782022B2 (en) * | 2007-10-19 | 2010-08-24 | Texas Instruments Incorporated | Input source detection for a battery charger |
US7581970B2 (en) * | 2007-11-16 | 2009-09-01 | Sony Ericsson Mobile Communications Ab | Multipurpose universal serial bus cable |
US8386814B2 (en) | 2009-07-20 | 2013-02-26 | Texas Instruments Incorporated | Continuous monitoring of a USB client for battery charging specification charging capacity |
US8880909B2 (en) | 2009-07-20 | 2014-11-04 | Texas Instruments Incorporated | Auto-detect polling for correct handshake to USB client |
TWI384721B (en) * | 2009-08-19 | 2013-02-01 | Richtek Technology Corp | Charger and portable device having the same |
-
2011
- 2011-11-16 US US13/298,204 patent/US8890469B2/en active Active
-
2014
- 2014-10-31 US US14/530,295 patent/US9568509B2/en active Active
-
2017
- 2017-02-13 US US15/431,214 patent/US20170219635A1/en not_active Abandoned
-
2018
- 2018-01-02 US US15/860,373 patent/US10746766B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100127864A1 (en) * | 2005-02-15 | 2010-05-27 | Research In Motion Limited | Systems and Methods for Charging a Chargeable USB Device |
US7688037B2 (en) * | 2005-11-28 | 2010-03-30 | Lg Electronics, Inc. | Charging control apparatus and method of mobile terminal |
US20100201308A1 (en) * | 2006-06-29 | 2010-08-12 | Nokia Corporation | Device and method for battery charging |
US8412873B2 (en) * | 2007-12-21 | 2013-04-02 | Gemalto Sa | USB bridge |
US20100064148A1 (en) * | 2008-09-10 | 2010-03-11 | Cyber Power System Inc. | Universal USB power supply |
Also Published As
Publication number | Publication date |
---|---|
US20180188297A1 (en) | 2018-07-05 |
US10746766B2 (en) | 2020-08-18 |
US20150123648A1 (en) | 2015-05-07 |
US8890469B2 (en) | 2014-11-18 |
US9568509B2 (en) | 2017-02-14 |
US20120119696A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10746766B2 (en) | Devices and methods for detecting USB devices attached to a USB charging port | |
TWI680626B (en) | Power receiving device, control circuit, electronic device, and operation method of power supply system | |
US11646585B2 (en) | Methods, electronic devices, and charger apparatus for quick USB charging | |
US8698449B2 (en) | Charger with detection of power input type | |
US8880909B2 (en) | Auto-detect polling for correct handshake to USB client | |
JP5917778B2 (en) | High voltage dedicated charging port | |
US8386814B2 (en) | Continuous monitoring of a USB client for battery charging specification charging capacity | |
US9483093B2 (en) | Electronic device and method for controlling a setting of a maximum consumption current | |
JP5981043B2 (en) | High voltage dedicated charging port | |
CA2611630C (en) | Detachable tip for communicating with adapter and electronic device | |
US9201480B2 (en) | Method and system for determining an arbitrary charging protocol in USB charging ports | |
US8242742B2 (en) | Chargers, systems and methods for detecting a power source | |
US10241935B2 (en) | Portable device, cable assembly, and USB system | |
CN106502939B (en) | USB adapter and data transmission equipment | |
US20100052620A1 (en) | Battery charger ic including built-in usb detection | |
US10141760B2 (en) | Power supply circuit, charge circuit, charging system, power supplying method, and charging method | |
CN108347089B (en) | Electric energy transmission controller, electric energy transmission system and electric energy transmission method | |
US20100060233A1 (en) | Charger with USB detection | |
CN115237235B (en) | USB equipment shift-out identification circuit and method and power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |