US20170194071A9 - Deflection containing electrical conductor - Google Patents

Deflection containing electrical conductor Download PDF

Info

Publication number
US20170194071A9
US20170194071A9 US14/616,434 US201514616434A US2017194071A9 US 20170194071 A9 US20170194071 A9 US 20170194071A9 US 201514616434 A US201514616434 A US 201514616434A US 2017194071 A9 US2017194071 A9 US 2017194071A9
Authority
US
United States
Prior art keywords
conductor
deflections
cutout
thickness
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/616,434
Other versions
US20160233004A1 (en
US9865372B2 (en
Inventor
Erwin Kroulik
Timothy J. Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flex Cable Inc
Original Assignee
Flex Cable Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/943,560 external-priority patent/US8952565B2/en
Application filed by Flex Cable Inc filed Critical Flex Cable Inc
Priority to US14/616,434 priority Critical patent/US9865372B2/en
Publication of US20160233004A1 publication Critical patent/US20160233004A1/en
Assigned to Flex-Cable reassignment Flex-Cable ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, TIMOTHY J, KROULIK, ERWIN
Publication of US20170194071A9 publication Critical patent/US20170194071A9/en
Application granted granted Critical
Publication of US9865372B2 publication Critical patent/US9865372B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • B60L11/18
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/28End pieces consisting of a ferrule or sleeve
    • H01R11/281End pieces consisting of a ferrule or sleeve for connections to batteries
    • H01R11/288Interconnections between batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention in general relates to an electrical conductor and in particular to an electrical conductor having multiple deflections.
  • the principal role of an electrical conductor is to provide electrical communication between conductor terminals. Electrical conductors that communicate large amperages require larger cross-sectional areas that make the resultant electrical conductor less flexible. When a thick gauge electrical connector is subjected to vibration, the terminal contacts created by the connector are degraded thereby lowering conductivity through the system and leading to premature failure of terminal contacts. These problems are particularly pronounced when the electrical connector is associated with a vehicle or other highly vibratory uses. Conventional electrical connectors have taken the form of either metallic bars or wires. Neither of these has been wholly satisfactory on the basis that the latter while providing high transmission current densities is also inflexible and tends to suffer more rapid vibration induced terminal connector failure while the latter has opposite attributes relative to a strip electrical connector.
  • An electrical conductor includes at least one strip of conductive material defining a length and having a first end with a first cutout and a second end having a second cutout.
  • the cutouts engage electrical terminals.
  • Multiple strips are optionally used to form a stack and are bent to include at least two deflections orthogonal to the length of the strip with the deflections being in the same direction and separated by a trough.
  • the deflections are readily provided within the plane defined by the cutouts or extend above the plane.
  • the deflections are located between the first cutout and the second cutout.
  • An electrical conductor is also provided that includes at least three arms with cutouts or other forms for engaging electrical terminals.
  • the multiple arm embodiment includes at least two deflections on a single arm.
  • the electrical conductor is particularly well suited for interconnection of batteries associated with a vehicle power system.
  • FIG. 1 is a perspective view of an inventive dual end deflection containing electrical conductor
  • FIG. 2 is a perspective view of an inventive multiple terminal deflection containing electrical conductor
  • FIG. 3 is a perspective view of an inventive planar dual end deflection containing electrical conductor.
  • the present invention has utility as an electrical conductor.
  • An inventive conductor is particularly well suited to operate in an environment associated with an electric or hybrid vehicle.
  • Particularly beneficial features of an inventive conductor include multiple vibration damping deflections orthogonal to the conductor length. While it is appreciated that the inclusion of at least two deflections orthogonal to the length of a conductor or conductor segment increases the height profile of the conductor, the ability of an inventive conductor to damp vibrations and thereby prolong electrical performance has been found to be a worthwhile tradeoff in spite of the convention that minimal profile electrical conductors are desirous in the confined volumes of electric or hybrid vehicle power systems. It is appreciated that the deflections are readily provided in plane while orthogonal to a conductor length as measured in the direction between cutouts.
  • an inventive electrical conductor is formed of layers of sheet material that are bonded together with layers of lower melting temperature material and subsequently deformed from a planar laminar form into an inventive electrical conductor with at least two deflections along the linear portion.
  • FIG. 1 An inventive electrical conductor is shown generally at 10 in FIG. 1 .
  • the conductor 10 has ends 16 A and 16 B.
  • the ends 16 A and 16 B are each adapted to engage an extrinsic electrical terminal T to provide an electrical conduction path therebetween. It is appreciated that an end 16 A or 16 B is amenable to functioning as an electrical contact with an electrical terminal T through a clamp that engages the thickness of the conductor 10 proximal to the end 16 A or 16 B.
  • an end portion 16 A or 16 B has a hole 14 or a notch 18 through the thickness of the conductor 10 that is adapted to engage an electrical terminal T or otherwise form a high surface area electrical contact with the electrical terminal T through insertion of a fastener F or other conventional component to the hole 14 or notch 18 and into electrical communication with the terminal T.
  • a hole 14 or notch 18 in one end of an inventive conductor 10 is wholly independent from those present in another end of the conductor 10 .
  • a hole is circular, oblong, or of a polygonal cross-sectional shape.
  • holes and notches are collectively and synonymously referred to generically as cutouts.
  • the conductive material strip 12 is deformed to include at least two deflections 20 between the end portions 16 A and 16 B and preferably bounded by cutouts.
  • the deflections 20 are formed orthogonal to a long axis of the strip 12 that as shown in FIG. 1 corresponds to the length of the conductor 10 .
  • placement of at least two deflections 20 in the same direction relative to the length of a conductor 10 creates a vibrational damping structure within the conductor 10 that enhances operational performance of an inventive conductor relative to an otherwise identical length planar conductor.
  • a third, fourth, or fifth additional deflection is added to the vibrational damping structure formed by deflections.
  • the trough 22 intermediate between deflections 20 is vertically displaced anywhere between deflection apices 24 defined by height h and an opposing vector ⁇ h extending below plane P defined by ends 16 A and 16 B.
  • the trough 22 has a minimal value of between 0 and 0.8 h.
  • the height h of a deflection 20 is typically between 2.5 and 5 times the thickness, t.
  • a deflection 20 has a height h of between 3 and 4 times the thickness t.
  • a deflection 20 can assume a variety of shapes illustratively including a sine wave, triangle wave, square wave, and asymmetric forms of any of the aforementioned shapes, preferably a deflection 20 has a shape variant of the aforementioned that has a continuous curvature as sharp angular changes in direction in a conductive metal strip have been shown to compromise the current carrying capacities of a resultant electrical conductor.
  • a deflection 20 is a smoothly changing curve approximated by a simple expression such as a sine, Gaussian, or Poisson expression.
  • the deflection 20 has a full width half max that is between 2.5t and 5t, where t denotes the thickness of strip or strips 12 .
  • Deflection 20 A has a height h A and a full width half max w A for which the above descriptions with respect to deflection 20 are equally applicable thereto.
  • h A is between 90 and 110 percent of h.
  • w A is preferably between 90 and 110 percent of w.
  • the spacing between apices 24 and 24 A is denoted as “d” and is typically between 2.5 and 5 times the thickness t.
  • d is between 0.7 w and 1.3 w.
  • the surface portions of the strip 12 intermediate between ends 16 A and 16 B are optionally covered with a polymeric electrical insulator 26 .
  • An optional insulator 26 is depicted only on a top surface of the cutaway view and there in partial cutaway view for visual clarity. In usage, a circumferential coating of an insulator 26 is optionally present.
  • Polymeric electrical insulators operative herein illustratively include thermoplastic elastomers (TPE), thermoplastic vulcanizates (TPV), poly vinyl chloride (PVC), polytetrafluoroethylene, silicone, polyolefin, neoprene, and varnish.
  • An inventive electrical conductor 10 is optionally formed without a sheath surrounding the end portion 16 A and also without a grommet, rivet, or ferrule surrounding a hole 14 or notch 18 formed in end 16 A or 16 B.
  • a strip 12 is chosen on a basis of electrical conductivity properties as well as operational longevity in the environment in which a given inventive electrical conductor 10 is applied.
  • Representative material suitable for the formation of a conductive strip 12 illustratively include copper, aluminum, iron, silver, and alloys thereof; steel; intermetallics; superconductors; pnictides, alloys thereof, and laminate thereof. Copper and copper alloys represent preferred compositions for a strip 12 . More preferably, half hard and spring tempered copper and copper alloys are used to form a strip 12 , and in particular for a conductor 10 operative in a vehicle application. It is appreciated that construction of an electrical conductor 10 according to the present invention is amenable to joinder of multiple metal strips 12 to form a superimposed stack.
  • a typical thickness t of a single strip of a stack of such strips is between 0.25 and 6.8 millimeters.
  • a third, fourth, or fifth additional deflection is added to the vibrational damping structure formed by deflections.
  • the trough 22 intermediate between deflections 20 is vertically displaced anywhere between deflection apices 24 defined by height h and an opposing vector ⁇ h extending below plane P defined by ends 16 A and 16 B.
  • the trough 22 has a minimal value of between 0 and 0.8 h.
  • the height h of a deflection 20 is typically between 2.5 and 5 times the thickness, t.
  • a deflection 20 has a height h of between 3 and 4 times the thickness t.
  • Deflection 20 A has a height h A and a full width half max w A for which the above descriptions with respect to deflection 20 are equally applicable thereto.
  • h A is between 90 and 110 percent of h.
  • w A is preferably between 90 and 110 percent of w.
  • the spacing between apices 24 and 24 A is denoted as “d” and is typically between 2.5 and 5 times the thickness t.
  • the conductor 30 is formed as detailed above with respect to FIG. 1 .
  • the conductor 30 has ends 32 A and 32 B.
  • Base surfaces define planes P A -P D with at least two such planes engaging terminals T 1 , T 2 , T 3 , or T 4 .
  • At least one set of deflections 34 - 34 A, 36 - 36 A, and 38 - 38 A are provided between adjacent planes P A -P B , P B -P C , or P C -P D . It is appreciated that planes P A , P B and P C need not be parallel with one another.
  • each of these deflections has the properties ascribed above with respect to deflections 20 and 20 A and include apices, deflection height, and deflection width properties that are also detailed above with respect to such properties in FIG. 1 . It should be appreciated that each of the other deflections is also characterized by a deflection height and full width half max characterization, as well as a deflection shape, all of which are detailed above with respect to FIG. 1 . As detailed above with respect to FIG. 1 , it is appreciated and indeed preferred that a conductor 30 be formed from multiple strips 40 that are superimposed and formed into a unitary structure, as detailed above with respect to FIG. 1 .
  • a strip 40 and multiple such strips that are combined to form the conductor 30 are readily formed from the materials detailed above with respect to strip 12 of FIG. 1 .
  • an insulation layer is not depicted.
  • the inventive conductor is well suited to absorb stresses associated with terminal misalignment and dynamic bend and twist as experienced by a vehicle battery assembly.
  • FIG. 3 is a perspective view of a planar embodiment of an inventive conductor that is shown generally at 60 .
  • Ends 66 A and 66 B each have a hole 68 A and 68 B, respectively, or a notch as shown at 18 in FIG. 1 for engaging an electrical terminal.
  • the holes 68 A and/or 68 B are oblong.
  • the conductor 60 is formed from a single strip 12 or stacks thereof as detailed above.
  • Planar deflections 70 and 70 A are formed orthogonal to L and in the plane or surface defined by face 72 .
  • a similar pair of deflections 74 and 74 A are provided to bound the axis 68 A- 68 B. Deflection pairs 70 - 70 A and 74 - 74 A are separated by troughs 76 and 78 , respectively.
  • Patent documents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These documents and publications are incorporated herein by reference to the same extent as if each individual document or publication was specifically and individually incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

An electrical conductor is provided that includes at least one strip of conductive material defining a length and having a first end with a first cutout and a second end having a second cutout. The cutouts engage electrical terminals. The at least two deflections are orthogonal to the length of the strip. The deflections are located between the first cutout and the second cutout and are in plane or out of plane of the cutouts. The electrical conductor is particularly well suited for interconnection of batteries associated with a vehicle power system.

Description

    RELATED APPLICATIONS
  • This application claims priority benefit of U.S. Non-provisional application Ser. No. 12/943,560 filed Nov. 10, 2010; now U.S. Pat. No. 8,952,565 issued Feb. 10, 2015; the contents of which are hereby incorporated by record.
  • FIELD OF THE INVENTION
  • The present invention in general relates to an electrical conductor and in particular to an electrical conductor having multiple deflections.
  • BACKGROUND OF THE INVENTION
  • The principal role of an electrical conductor is to provide electrical communication between conductor terminals. Electrical conductors that communicate large amperages require larger cross-sectional areas that make the resultant electrical conductor less flexible. When a thick gauge electrical connector is subjected to vibration, the terminal contacts created by the connector are degraded thereby lowering conductivity through the system and leading to premature failure of terminal contacts. These problems are particularly pronounced when the electrical connector is associated with a vehicle or other highly vibratory uses. Conventional electrical connectors have taken the form of either metallic bars or wires. Neither of these has been wholly satisfactory on the basis that the latter while providing high transmission current densities is also inflexible and tends to suffer more rapid vibration induced terminal connector failure while the latter has opposite attributes relative to a strip electrical connector.
  • SUMMARY OF THE INVENTION
  • An electrical conductor is provided that includes at least one strip of conductive material defining a length and having a first end with a first cutout and a second end having a second cutout. The cutouts engage electrical terminals. Multiple strips are optionally used to form a stack and are bent to include at least two deflections orthogonal to the length of the strip with the deflections being in the same direction and separated by a trough. The deflections are readily provided within the plane defined by the cutouts or extend above the plane. The deflections are located between the first cutout and the second cutout. An electrical conductor is also provided that includes at least three arms with cutouts or other forms for engaging electrical terminals. The multiple arm embodiment includes at least two deflections on a single arm. The electrical conductor is particularly well suited for interconnection of batteries associated with a vehicle power system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an inventive dual end deflection containing electrical conductor;
  • FIG. 2 is a perspective view of an inventive multiple terminal deflection containing electrical conductor; and
  • FIG. 3 is a perspective view of an inventive planar dual end deflection containing electrical conductor.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention has utility as an electrical conductor. An inventive conductor is particularly well suited to operate in an environment associated with an electric or hybrid vehicle. Particularly beneficial features of an inventive conductor include multiple vibration damping deflections orthogonal to the conductor length. While it is appreciated that the inclusion of at least two deflections orthogonal to the length of a conductor or conductor segment increases the height profile of the conductor, the ability of an inventive conductor to damp vibrations and thereby prolong electrical performance has been found to be a worthwhile tradeoff in spite of the convention that minimal profile electrical conductors are desirous in the confined volumes of electric or hybrid vehicle power systems. It is appreciated that the deflections are readily provided in plane while orthogonal to a conductor length as measured in the direction between cutouts. Preferably, an inventive electrical conductor is formed of layers of sheet material that are bonded together with layers of lower melting temperature material and subsequently deformed from a planar laminar form into an inventive electrical conductor with at least two deflections along the linear portion.
  • An inventive electrical conductor is shown generally at 10 in FIG. 1. The conductor 10 has ends 16A and 16B. The ends 16A and 16B are each adapted to engage an extrinsic electrical terminal T to provide an electrical conduction path therebetween. It is appreciated that an end 16A or 16B is amenable to functioning as an electrical contact with an electrical terminal T through a clamp that engages the thickness of the conductor 10 proximal to the end 16A or 16B. Alternatively, an end portion 16A or 16B has a hole 14 or a notch 18 through the thickness of the conductor 10 that is adapted to engage an electrical terminal T or otherwise form a high surface area electrical contact with the electrical terminal T through insertion of a fastener F or other conventional component to the hole 14 or notch 18 and into electrical communication with the terminal T. It is appreciated that the presence, dimensions, and shape of a hole 14 or notch 18 in one end of an inventive conductor 10 is wholly independent from those present in another end of the conductor 10. By way of example, a hole is circular, oblong, or of a polygonal cross-sectional shape. As used herein, holes and notches are collectively and synonymously referred to generically as cutouts. The conductive material strip 12 is deformed to include at least two deflections 20 between the end portions 16A and 16B and preferably bounded by cutouts. The deflections 20 are formed orthogonal to a long axis of the strip 12 that as shown in FIG. 1 corresponds to the length of the conductor 10. According to the present invention, placement of at least two deflections 20 in the same direction relative to the length of a conductor 10 creates a vibrational damping structure within the conductor 10 that enhances operational performance of an inventive conductor relative to an otherwise identical length planar conductor. Optionally, a third, fourth, or fifth additional deflection is added to the vibrational damping structure formed by deflections. Optionally, the trough 22 intermediate between deflections 20 is vertically displaced anywhere between deflection apices 24 defined by height h and an opposing vector −h extending below plane P defined by ends 16A and 16B. Preferably, the trough 22 has a minimal value of between 0 and 0.8 h. The height h of a deflection 20 is typically between 2.5 and 5 times the thickness, t. Preferably, a deflection 20 has a height h of between 3 and 4 times the thickness t. While a deflection 20 can assume a variety of shapes illustratively including a sine wave, triangle wave, square wave, and asymmetric forms of any of the aforementioned shapes, preferably a deflection 20 has a shape variant of the aforementioned that has a continuous curvature as sharp angular changes in direction in a conductive metal strip have been shown to compromise the current carrying capacities of a resultant electrical conductor. Preferably, a deflection 20 is a smoothly changing curve approximated by a simple expression such as a sine, Gaussian, or Poisson expression. The deflection 20 has a full width half max that is between 2.5t and 5t, where t denotes the thickness of strip or strips 12.
  • Deflection 20A has a height hA and a full width half max wA for which the above descriptions with respect to deflection 20 are equally applicable thereto. Preferably, hA is between 90 and 110 percent of h. wA is preferably between 90 and 110 percent of w. The spacing between apices 24 and 24A is denoted as “d” and is typically between 2.5 and 5 times the thickness t. Preferably, d is between 0.7 w and 1.3 w. The surface portions of the strip 12 intermediate between ends 16A and 16B are optionally covered with a polymeric electrical insulator 26.
  • An optional insulator 26 is depicted only on a top surface of the cutaway view and there in partial cutaway view for visual clarity. In usage, a circumferential coating of an insulator 26 is optionally present. Polymeric electrical insulators operative herein illustratively include thermoplastic elastomers (TPE), thermoplastic vulcanizates (TPV), poly vinyl chloride (PVC), polytetrafluoroethylene, silicone, polyolefin, neoprene, and varnish. An inventive electrical conductor 10 is optionally formed without a sheath surrounding the end portion 16A and also without a grommet, rivet, or ferrule surrounding a hole 14 or notch 18 formed in end 16A or 16B.
  • A strip 12 is chosen on a basis of electrical conductivity properties as well as operational longevity in the environment in which a given inventive electrical conductor 10 is applied. Representative material suitable for the formation of a conductive strip 12 illustratively include copper, aluminum, iron, silver, and alloys thereof; steel; intermetallics; superconductors; pnictides, alloys thereof, and laminate thereof. Copper and copper alloys represent preferred compositions for a strip 12. More preferably, half hard and spring tempered copper and copper alloys are used to form a strip 12, and in particular for a conductor 10 operative in a vehicle application. It is appreciated that construction of an electrical conductor 10 according to the present invention is amenable to joinder of multiple metal strips 12 to form a superimposed stack. The details of forming a conductor 10 from a stack of strips 12 are detailed in copending U.S. patent application Ser. No. 12/569,080 and in particular paragraphs [0011]-[0017] thereof. A typical thickness t of a single strip of a stack of such strips is between 0.25 and 6.8 millimeters.
  • Optionally, a third, fourth, or fifth additional deflection is added to the vibrational damping structure formed by deflections. Optionally, the trough 22 intermediate between deflections 20 is vertically displaced anywhere between deflection apices 24 defined by height h and an opposing vector −h extending below plane P defined by ends 16A and 16B. Preferably, the trough 22 has a minimal value of between 0 and 0.8 h. The height h of a deflection 20 is typically between 2.5 and 5 times the thickness, t. Preferably, a deflection 20 has a height h of between 3 and 4 times the thickness t. Deflection 20A has a height hA and a full width half max wA for which the above descriptions with respect to deflection 20 are equally applicable thereto. Preferably, hA is between 90 and 110 percent of h. wA is preferably between 90 and 110 percent of w. The spacing between apices 24 and 24A is denoted as “d” and is typically between 2.5 and 5 times the thickness t.
  • Referring now to FIG. 2 a multi-terminal engaging inventive conductor is shown generally at 30. The conductor 30 is formed as detailed above with respect to FIG. 1. The conductor 30 has ends 32A and 32B. Base surfaces define planes PA-PD with at least two such planes engaging terminals T1, T2, T3, or T4. At least one set of deflections 34-34A, 36-36A, and 38-38A are provided between adjacent planes PA-PB, PB-PC, or PC-PD. It is appreciated that planes PA, PB and PC need not be parallel with one another. Each of these deflections has the properties ascribed above with respect to deflections 20 and 20A and include apices, deflection height, and deflection width properties that are also detailed above with respect to such properties in FIG. 1. It should be appreciated that each of the other deflections is also characterized by a deflection height and full width half max characterization, as well as a deflection shape, all of which are detailed above with respect to FIG. 1. As detailed above with respect to FIG. 1, it is appreciated and indeed preferred that a conductor 30 be formed from multiple strips 40 that are superimposed and formed into a unitary structure, as detailed above with respect to FIG. 1. A strip 40 and multiple such strips that are combined to form the conductor 30 are readily formed from the materials detailed above with respect to strip 12 of FIG. 1. For visual clarity, an insulation layer is not depicted. As shown in FIG. 2, the inventive conductor is well suited to absorb stresses associated with terminal misalignment and dynamic bend and twist as experienced by a vehicle battery assembly.
  • FIG. 3 is a perspective view of a planar embodiment of an inventive conductor that is shown generally at 60. Ends 66A and 66B each have a hole 68A and 68B, respectively, or a notch as shown at 18 in FIG. 1 for engaging an electrical terminal. Preferably, the holes 68A and/or 68B are oblong. The conductor 60 is formed from a single strip 12 or stacks thereof as detailed above. Planar deflections 70 and 70A are formed orthogonal to L and in the plane or surface defined by face 72. A similar pair of deflections 74 and 74A are provided to bound the axis 68A-68B. Deflection pairs 70-70A and 74-74A are separated by troughs 76 and 78, respectively.
  • Patent documents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These documents and publications are incorporated herein by reference to the same extent as if each individual document or publication was specifically and individually incorporated herein by reference.
  • The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.

Claims (19)

1. An electrical conductor comprising: a plurality of joined strips of conductive material defining a thickness and having a first end with a first cutout and a second end with a second cutout, said plurality of joined strips including at least two sinusoidal wave deflections being between the first cutout and the second cutout, said plurality of joined strips forming a superimposed stack, a single strip of said stack having a thickness between 0.25 and 6.8 millimeters, said at least two deflections are in a same direction from a plane defined by a surface through which the first cutout and the second cutout extend.
2. The conductor of claim 1 wherein said at least two deflections are two deflections.
3. The conductor of claim 1 wherein at least two of said at least two deflections have a same height and a same width within 20 percent.
4. The conductor of claim 1 wherein one of said at least two deflections has a deflection width of between 2.5 and 5 times the thickness.
5. The conductor of claim 1 wherein one of said at least two deflections has a deflection height of between 2.5 and 5 times the thickness.
6. The conductor of claim 5 further comprising a minimum intermediate between said one of said at least two deflections and a second deflection, said minimum positioned to be less than the absolute value of the height.
7. The conductor of claim 4 wherein all of said at least two deflections have the width of between 2.5 and 5 times the thickness.
8. The conductor of claim 1 wherein said plurality of joined strips of conductive material are formed of copper or a copper alloy.
9. The conductor of claim 9 wherein said copper or said copper alloys are half hard or spring tempered.
10. The conductor of claim 1 wherein said first cutout is independent of contact with a sheath or a grommet extending therethrough.
11. The conductor of claim 1 further comprising a polymeric insulator enveloping a portion of said at least one strip between the first end and the second end.
12. An electrical conductor comprising plurality of joined strips of conductive material defining a thickness and at least three planar surfaces, a first planar surface having a first end with a first cutout, a second planar surface with a second end having a second cutout, and a third planar surface therebetween, said plurality of joined strips being bent to include at least two sinusoidal deflections orthogonal to one of the at least three planar surfaces, said at least two deflections being in the same direction.
13. The conductor of claim 12 wherein said at least two deflections are a pair of deflections separating said first planar surface from said second planar surface and second pair of deflections separating said second planar surface from said third planar surface.
14. The conductor of claim 12 wherein one of said at least two deflections has a deflection width of between 2.5 and 5 times the thickness.
15. The conductor of claim 12 wherein one of said at least two deflections has a deflection height of between 2.5 and 5 times the thickness.
16. The conductor of claim 12 wherein said plurality of joined strips of conductive material are formed of copper or a copper alloy.
17. The conductor of claim 12 wherein at least two deflections are in a plane defined by a surface through which the first cutout and the second cutout extend.
18. A vehicle power supply comprising:
an electrical load;
a first battery located within a vehicle in electrical communication with said load;
a second battery located within the vehicle;
a battery conductor with a plurality of joined strips of conductive material defining a thickness and having a first end with a first cutout and a second end with a second cutout, said plurality of joined strips including at least two sinusoidal wave deflections being between the first cutout and the second cutout, said plurality of joined strips turning a superimposed stack, a single strip of said stack having a thickness between 0.25 and 6.8 millimeters, said at least two deflections are in a same direction from a plane defined by a surface through which the first cutout and the second cutout extend; and
wherein said battery conductor provides electrical communication between said first battery and said second battery.
19. The vehicle power supply of claim 18 wherein the electrical conductor is formed from a plurality of strips forming a stack with intermediate solder therebetween to provide electrical conductivity between said plurality of strips.
US14/616,434 2010-11-10 2015-02-06 Deflection containing electrical conductor Active 2031-12-23 US9865372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/616,434 US9865372B2 (en) 2010-11-10 2015-02-06 Deflection containing electrical conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/943,560 US8952565B2 (en) 2010-11-10 2010-11-10 Deflection containing electrical conductor
US14/616,434 US9865372B2 (en) 2010-11-10 2015-02-06 Deflection containing electrical conductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/943,560 Continuation US8952565B2 (en) 2010-11-10 2010-11-10 Deflection containing electrical conductor

Publications (3)

Publication Number Publication Date
US20160233004A1 US20160233004A1 (en) 2016-08-11
US20170194071A9 true US20170194071A9 (en) 2017-07-06
US9865372B2 US9865372B2 (en) 2018-01-09

Family

ID=56567012

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/616,434 Active 2031-12-23 US9865372B2 (en) 2010-11-10 2015-02-06 Deflection containing electrical conductor

Country Status (1)

Country Link
US (1) US9865372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598530A1 (en) * 2018-07-17 2020-01-22 Tyco Electronics Belgium EC bvba Connection member for connecting to a busbar of a battery, battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662704B1 (en) * 2017-01-18 2024-05-02 삼성에스디아이 주식회사 Manual Service Disconnect for Battery System

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393951A (en) 1993-02-01 1995-02-28 Watteredge-Uniflex, Inc. Flexible jumper and method of making
JPH10302548A (en) 1997-04-24 1998-11-13 Nkk Corp Flexible conductor
JP3523025B2 (en) 1997-08-22 2004-04-26 矢崎総業株式会社 Bus bar for connection between batteries
JPH11250950A (en) 1998-02-27 1999-09-17 Harness Syst Tech Res Ltd Battery connecting structure
JP2000149667A (en) 1998-11-13 2000-05-30 Furukawa Electric Co Ltd:The Laminated bus bar
JP2000285986A (en) 1999-03-30 2000-10-13 Yazaki Corp Connecting structure of electric component and bus bar
JP2000299912A (en) 1999-04-09 2000-10-24 Harness Syst Tech Res Ltd Bus bar connecting structure
JP4759689B2 (en) 2001-09-18 2011-08-31 株式会社井上製作所 Method for manufacturing flexible conductor and method for manufacturing compression-type copper tube terminal
JP2003235137A (en) 2002-02-04 2003-08-22 Showa Electric Wire & Cable Co Ltd Connection conductor
ITBS20020054A1 (en) 2002-06-05 2003-12-05 Bbi Electric Spa METHOD OF TAPING OF CONDUCTIVE BARS FOR ELECTRIC DUCTS
JP4272125B2 (en) 2004-07-26 2009-06-03 矢崎総業株式会社 Busbar circuit body and manufacturing method thereof
WO2008098193A2 (en) 2007-02-09 2008-08-14 Johnson Controls--Saft Advanced Power Solutions Llc Buss bar for batteries
JP4428406B2 (en) 2007-06-18 2010-03-10 株式会社デンソー U-turn bus bar
JP4844512B2 (en) 2007-09-05 2011-12-28 株式会社豊田自動織機 Terminal fixing structure for electrically connecting circuit board and wiring conductor, and terminal fixing method for electrically connecting circuit board and wiring conductor
CN201222633Y (en) 2008-06-30 2009-04-15 陈建峰 Improved bus slot cover board
US7914294B2 (en) 2008-07-16 2011-03-29 GM Global Technology Operations LLC Flexible electric bus bar in a small space
KR101034418B1 (en) 2008-11-14 2011-05-12 박병주 Plate-Shaped Conductive Body
US8952565B2 (en) 2010-11-10 2015-02-10 Flex-Cable Deflection containing electrical conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598530A1 (en) * 2018-07-17 2020-01-22 Tyco Electronics Belgium EC bvba Connection member for connecting to a busbar of a battery, battery
EP3598529A1 (en) * 2018-07-17 2020-01-22 Tyco Electronics Belgium EC bvba Connection member for connecting to a busbar of a battery, battery
US11283138B2 (en) 2018-07-17 2022-03-22 Tyco Electronics Belgium Ec Bvba Connection member for connecting to a busbar of a battery, battery

Also Published As

Publication number Publication date
US20160233004A1 (en) 2016-08-11
US9865372B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US8952565B2 (en) Deflection containing electrical conductor
JP6774757B2 (en) Electrical contact means and electrical cable assemblies for the automotive industry
BRPI1105028A2 (en) Female terminal for an electrical connector for connection to a male blade terminal and electrical connector
CN104321906A (en) Bimetal buss bar assembly
CN102770985A (en) Flexible cell connector
MX2012012251A (en) Improved press-fit busbar and busway employing same.
JPH0548124U (en) Tape wire
WO2017069209A1 (en) Conductive member module and battery pack
RU2627738C2 (en) Contact clip for connecting jack of electrical wire and connecting jack of electrical wire containing it
US20160268575A1 (en) Busbar and busbar module
US20150050829A1 (en) Contact element
US9912082B2 (en) Electric wire connection structure
JP2005327690A (en) Terminal crimping structure and terminal crimping method to aluminum cable and manufacturing method of aluminum cable with terminal
US9865372B2 (en) Deflection containing electrical conductor
CN104067449A (en) Ground connection structure and method for producing same
JP6062758B2 (en) Busbar and terminal connection structure
CN102369641A (en) Conductor for high voltage electric apparatus
US10460853B2 (en) Power cable and bus bar with transitional cross sections
KR20170021697A (en) Busbar assembly for high voltage
EP2571119B1 (en) Flexible busbar
US20110076861A1 (en) Laminar electrical connector
EP3761390A1 (en) Connecting assembly and battery pack
WO2023001692A1 (en) Contact system and battery set comprising it
KR20070006940A (en) Adjustable cable connector wire guide and connector assembly incorporating the same
CN116349092A (en) Cable connector for motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLEX-CABLE, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KROULIK, ERWIN;JONES, TIMOTHY J;REEL/FRAME:039557/0164

Effective date: 20160826

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4