US20170184328A1 - Cryocooler and rotary valve mechanism - Google Patents

Cryocooler and rotary valve mechanism Download PDF

Info

Publication number
US20170184328A1
US20170184328A1 US15/379,589 US201615379589A US2017184328A1 US 20170184328 A1 US20170184328 A1 US 20170184328A1 US 201615379589 A US201615379589 A US 201615379589A US 2017184328 A1 US2017184328 A1 US 2017184328A1
Authority
US
United States
Prior art keywords
recess
rotor
area
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/379,589
Inventor
Takaaki MORIE
Mingyao Xu
Qian Bao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Assigned to SUMITOMO HEAVY INDUSTRIES, LTD. reassignment SUMITOMO HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAO, Qian, MORIE, TAKAAKI, XU, MINGYAO
Publication of US20170184328A1 publication Critical patent/US20170184328A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/006Gas cycle refrigeration machines using a distributing valve of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • F25B2309/14181Pulse-tube cycles with valves in gas supply and return lines the valves being of the rotary type

Definitions

  • the present invention in particular embodiments relates to cryocoolers and rotary valve mechanisms for cryocoolers.
  • Cryocoolers typified by Gifford-McMahon (GM) cryocoolers, include working-gas (also called refrigerant-gas) expanders and compressors.
  • Expanders for the most part include a displacer that is axially reciprocated by a driving means, and a regenerator that is built into the displacer. The displacer is accommodated in a cylinder that guides its reciprocation. The variable volume that by the relative movement of the displacer with respect to the cylinder is formed between the two is employed as the working-gas expansion chamber. By appropriately synchronizing expansion-chamber volume change and pressure change, the expander is able to produce coldness.
  • the cryocooler is furnished with a valve unit for controlling the pressure of the expansion chamber.
  • the valve unit is configured so as to switch alternately between supply of high-pressure working gas from the compressor to the expander, and recovery of low-pressure working gas from the expander to the compressor.
  • the usual practice is to employ a rotary valve mechanism as the valve unit.
  • the valve unit is also furnished in other cryocoolers such as pulse-tube refrigerators.
  • the present invention in one aspect affords a cryocooler including: a working gas compressor provided with a compressor expulsion port and a compressor suction port; an expander provided with a gas expansion chamber and a low-pressure gas chamber communicated with the compressor suction port; a stator valve member disposed in the low-pressure gas chamber, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface and communicated with the compressor expulsion port, and a gas venting port opening on the stator-side rotary sliding surface and communicated with the gas expansion chamber; and a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of
  • the rotor-valve polymer member includes a rotor-valve outer peripheral surface facing the low-pressure gas chamber, a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface, a recess-area bottom wall surface facing the rotor valve high-pressure recess area, a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and a first thin-walled polymer portion having a first minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined
  • the present invention in another aspect affords a cryocooler rotary valve mechanism including: a stator valve member disposed in a low-pressure gas chamber of a cryocooler, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface, and a gas venting port opening on the stator-side rotary sliding surface; a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of a single cycle of rotation of the rotor-valve polymer member and to cut off the high-pressure gas inlet port from the gas venting port in the remainder of the single cycle.
  • the rotor valve resin member includes a rotor-valve outer peripheral surface facing the low-pressure gas chamber, a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface, a recess-area bottom wall surface facing the rotor valve high-pressure recess area, a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and a thin-walled polymer portion having a minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined with respect to both the
  • the present invention in still another aspect affords a rotary valve mechanism including: a stator valve member furnished with one of either a dome-shaped high-pressure recess area made of a polymer or a high-pressure flow path made of metal; and a rotor valve member furnished with the other of either the dome-shaped high-pressure recess area made of a polymer or the high-pressure flow path made of metal, and seals a high-pressure region being the high-pressure flow path communicated with the dome-shaped high-pressure recess area and is disposed adjoining the stator valve member such as to isolate the high-pressure region from its low-pressure surrounding environs.
  • the present invention enables improved reliability in cryocooler rotary-valve mechanisms.
  • FIG. 1 is a view which schematically shows the entire configuration of a cryocooler according to an embodiment of the present invention and schematically shows a cross section of an expander of the cryocooler.
  • FIG. 2 is an exploded perspective view schematically showing a main portion of a rotary valve which may be used in the cryocooler shown in FIG. 1 .
  • FIG. 3 is a perspective view schematically showing a rotor valve member which may be used in the cryocooler shown in FIG. 1 .
  • FIG. 4 is a view showing a simulation result of a flow rate of a working gas in a high-pressure flow path with respect to the rotor valve member shown in FIG. 3 .
  • FIG. 5 is a perspective view schematically showing a rotor valve member according to an embodiment of the present invention.
  • FIG. 6 is a view showing a simulation result of von Mises stress applied to the rotor valve member shown in FIG. 5 .
  • a rotary valve mechanism of a cryocooler includes a stator valve member formed of metal (or a resin) and a rotor valve member which rotationally slides on the stator valve member and is formed of a resin (or metal).
  • the stator valve member and the rotor valve member may be respectively referred to as a stator valve plate and a rotor valve plate.
  • the rotary valve mechanism is installed in a low-pressure chamber which is filled with a relatively low-pressure working gas.
  • a metal member includes a high-pressure flow path for a high-pressure working gas, and the high-pressure flow path is formed to penetrate the metal member.
  • a resin member includes a dome-shaped high-pressure recessed portion for a high-pressure working gas.
  • a dome-shaped recessed portion is formed in which a cross section perpendicular in a depth direction of the recessed portion gradually decreases in the depth direction.
  • the dome-shaped recessed portion is formed by an arbitrary processing method. For example, the dome-shaped recessed portion may be formed by fillet processing or chamfering processing.
  • the rotor valve member seals a high-pressure region in which the high-pressure flow path of metal communicates with the dome-shaped high-pressure recessed portion of a resin, and is disposed to be adjacent to the stator valve member to separate the high-pressure region from the a low-pressure surrounding environment.
  • the dome-shaped recessed portion may communicate with the high-pressure flow path in at least a portion of a rotation of one period of the rotary valve mechanism and may block the high-pressure flow path in other portions of the rotation.
  • At least a portion (particularly, a portion facing the high-pressure region) of solid portions of the rotor valve member and the stator valve member functions as a pressure partition wall which receives a load of a differential pressure between a high pressure and a low pressure.
  • the thickness of the partition wall portion gradually increases in the depth direction. Accordingly, stress which is applied to the surface of the dome-shaped recessed portion or the inside of the partition wall decreases. Particularly, a decrease of stress in a thin portion of the resin member reduces damage risk at the location and improves reliability of the rotary valve mechanism.
  • the surface of the dome-shaped recessed portion does not have a sharp corner portion which significantly influences the flow of the working gas, a decrease in pressure loss of the flow of the working gas and improvement in refrigeration performance are realized.
  • FIG. 1 is a view schematically showing a cryocooler 10 according to an embodiment of the present invention.
  • the cryocooler 10 includes a compressor 12 which compresses a working gas and an expander 14 which cools the working gas by adiabatic expansion.
  • the working gas is helium gas.
  • the expander 14 may be also referred to as a cold head.
  • a regenerator 16 which pre-cools the working gas is included in the expander 14 .
  • the cryocooler 10 includes a gas pipe 18 which includes a first pipe 18 a and a second pipe 18 b which are respectively connected to the compressor 12 and the expander 14 .
  • the shown cryocooler 10 is a single-staged GM cryocooler.
  • a working gas having a first high pressure is supplied from a discharging port 12 a of the compressor 12 to the expander 14 through the first pipe 18 a .
  • the pressure of the working gas is decreased from the first high pressure to a second high pressure which is lower than the first high pressure due to adiabatic expansion in the expander 14 .
  • the working gas having the second high pressure is returned from the expander 14 to a suction port 12 b of the compressor 12 through the second pipe 18 b .
  • the compressor 12 compresses the returned working gas having the second high pressure. Accordingly, the pressure of the working gas increases to the first high pressure again.
  • the first high pressure and the second high pressure are significantly higher than the atmospheric pressure.
  • the first high pressure and the second high pressure are simply referred to as a high pressure and a low pressure, respectively.
  • the high pressure is 2 to 3 MPa
  • the low pressure is 0.5 to 1.5 MPa.
  • a difference between the high pressure and the low pressure is approximately 1.2 to 2 MPa.
  • the expander 14 includes an expander movable portion 20 and an expander stationary portion 22 .
  • the expander movable portion 20 is configured so as to reciprocate in an axial direction (up-down direction in FIG. 1 ) with respect to the expander stationary portion 22 .
  • the movement direction of the expander movable portion 20 is indicated by an arrow A in FIG. 1 .
  • the expander stationary portion 22 is configured so as to support the expander movable portion 20 to be reciprocated in the axial direction.
  • the expander stationary portion 22 is configured of an airtight container in which the expander movable portion 20 is accommodated along with a high-pressure gas (including first high-pressure gas and second high-pressure gas).
  • the expander movable portion 20 includes a displacer 24 and a displacer drive shaft 26 which reciprocates the displacer 24 .
  • a regenerator 16 is built in the displacer 24 .
  • the displacer 24 includes a displacer member 24 a which surrounds the regenerator 16 .
  • An internal space of the displacer member 24 a is filled with a regenerator material. Accordingly, the regenerator 16 is formed inside the displacer 24 .
  • the displacer 24 has a substantially columnar shape which extends in the axial direction.
  • the displacer member 24 a includes an outer diameter and an inner diameter which are substantially constant in the axial direction. Accordingly, the regenerator 16 also has a substantially columnar shape which extends in the axial direction.
  • the expander stationary portion 22 approximately has two configurations which includes a cylinder 28 and a drive mechanism housing 30 .
  • the upper portion of the expander stationary portion 22 in the axial direction is the drive mechanism housing 30
  • the lower portion of the expander stationary portion 22 in the axial direction is the cylinder 28
  • the drive mechanism housing 30 and the cylinder 28 are firmly connected to each other.
  • the cylinder 28 is configured to guide the reciprocation of the displacer 24 .
  • the cylinder 28 extends in the axial direction from the drive mechanism housing 30 .
  • the cylinder 28 has an inner diameter which is substantially constant in the axial direction. Accordingly, the cylinder 28 has a substantially cylindrical inner surface which extends in the axial direction. The inner diameter is slightly greater than the outer diameter of the displacer member 24 a.
  • the expander stationary portion 22 includes a cooling stage 32 .
  • the cooling stage 32 is fixed to the terminal of the cylinder 28 on the side opposite to the drive mechanism housing 30 in the axial direction.
  • the cooling stage 32 is provided so as to transfer coldness generated by the expander 14 to other objects.
  • the objects are attached to the cooling stage 32 , and are cooled by the cooling stage 32 during the operation of the cryocooler 10 .
  • the regenerator 16 includes a regenerator high-temperature portion 16 a on one side (upper side in the drawing) in the axial direction, and a regenerator low-temperature portion 16 b on the side (lower side in the drawing) opposite to the regenerator high-temperature portion 16 a .
  • the regenerator 16 has a temperature distribution in the axial direction.
  • other components for example, displacer 24 and cylinder 28 ) of the expander 14 which surrounds the regenerator 16 also have axial temperature distributions.
  • the expander 14 includes a high-temperature portion on one side in the axial direction and a low-temperature portion on the other side in the axial direction during the operation of the expander 14 .
  • the high-temperature portion has a temperature such as an approximately room temperature.
  • the cooling temperatures of the low-temperature portion are different from each other according to the use of the cryocooler 10 , and for example, the low-temperature portion is cooled to a temperature which is included in a range from approximately 10 K to approximately 10 0 K.
  • the cooling stage 32 is fixed to the cylinder 28 to enclose the low-temperature portion of the cylinder 28 .
  • the axial direction indicates the movement direction of the expander movable portion 20 with respect to the expander stationary portion 22 .
  • the radial direction indicates a direction (horizontal direction in the drawing) perpendicular to the axial direction
  • the circumferential direction indicates a direction which surrounds the axial direction.
  • An element of the expander 14 being close to the cooling stage 32 in the axial direction may be referred to “down”, and the element being far from the cooling stage 32 in the axial direction may be referred to as “up.” Accordingly, the high-temperature portion and the low-temperature portion of the expander 14 are respectively positioned on the upper portion and the lower portion in the axial direction.
  • the expressions are used so as to only assist understanding of a relative positional relationship between elements of the expander 14 . Accordingly, the expressions are not related to the disposition of the expander 14 when the expander 14 is installed in site.
  • the cooling stage 32 may be installed upward and the drive mechanism housing 30 may be installed downward.
  • the expander 14 may be installed such that the axial direction coincides with the horizontal direction.
  • the axial direction indicates the direction of the rotary shaft of the rotary valve mechanism.
  • the expander 14 includes a valve portion 34 , a housing gas flow path 36 , an upper gas chamber 37 , a displacer upper-lid gas flow path 38 , a displacer lower-lid gas flow path 39 , a gas expansion chamber 40 , and a low-pressure gas chamber 42 .
  • a high-pressure gas flows from the first pipe 18 a to the gas expansion chamber 40 via the valve portion 34 , the housing gas flow path 36 , the upper gas chamber 37 , the displacer upper-lid gas flow path 38 , the regenerator 16 , and the displacer lower-lid gas flow path 39 .
  • the gas returned to the gas expansion chamber 40 flows to the low-pressure gas chamber 42 via the displacer lower-lid gas flow path 39 , the regenerator 16 , the displacer upper-lid gas flow path 38 , the upper gas chamber 37 , the housing gas flow path 36 , and the valve portion 34 .
  • valve portion 34 is configured to control the pressure of the gas expansion chamber 40 to be synchronized with the reciprocation of the displacer 24 .
  • the valve portion 34 functions as a portion of a supply path for supplying a high-pressure gas to the gas expansion chamber 40 , and function as a portion of a discharging path for discharging a low-pressure gas from the gas expansion chamber 40 .
  • the valve portion 34 is configured to end the discharging of the low-pressure gas and to start the supply of the high-pressure gas when the displacer 24 passes a bottom dead center or the vicinity thereof.
  • the valve portion 34 is configured to end the supply of the high-pressure gas and to start the discharging of the low-pressure gas when the displacer 24 passes a top dead center or the vicinity thereof. In this way, the valve portion 34 is configured to switch the supply function and the discharging function of the working gas to be synchronized with the reciprocation of the displacer 24 .
  • the housing gas flow path 36 is formed so as to penetrate the drive mechanism housing 30 such that gas flows between the expander stationary portion 22 and the upper gas chamber 37 .
  • the upper gas chamber 37 is formed between the expander stationary portion 22 and the displacer 24 on the regenerator high-temperature portion 16 a side. More specifically, the upper gas chamber 37 is interposed between the drive mechanism housing 30 and the displacer 24 in the axial direction, and is surrounded by the cylinder 28 in the circumferential direction. The upper gas chamber 37 is adjacent to the low-pressure gas chamber 42 . The upper gas chamber 37 is also referred to as a room temperature chamber. The upper gas chamber 37 is a variable volume which is formed between the expander movable portion 20 and the expander stationary portion 22 .
  • the displacer upper-lid gas flow path 38 is at least one opening of the displacer member 24 a which is formed to allow the regenerator high-temperature portion 16 a to communicate with the upper gas chamber 37 .
  • the displacer lower-lid gas flow path 39 is at least one opening of the displacer member 24 a which is formed to allow the regenerator low-temperature portion 16 b to communicate with the gas expansion chamber 40 .
  • a seal portion 44 which seals a clearance between the displacer 24 and the cylinder 28 is provided on the side surface of the displacer member 24 a .
  • the seal portion 44 may be attached to the displacer member 24 a so as to surround the displacer upper-lid gas flow path 38 in the circumferential direction.
  • the gas expansion chamber 40 is formed between the cylinder 28 and the displacer 24 on the regenerator low-temperature portion 16 b side. Similarly to the upper gas chamber 37 , the gas expansion chamber 40 is a variable volume which is formed between the expander movable portion 20 and the expander stationary portion 22 , and the volume of the gas expansion chamber 40 is complementarily changed with the volume of the upper gas chamber 37 by the relative movement of the displacer 24 with respect to the cylinder 28 . Since the seal portion 44 is provided, a direct gas flow (that is, the flow of gas which bypasses the regenerator 16 ) between the upper gas chamber 37 and the gas expansion chamber 40 is not generated.
  • the low-pressure gas chamber 42 defines the inside of the drive mechanism housing 30 .
  • the second pipe 18 b is connected to the drive mechanism housing 30 . Accordingly, the low-pressure gas chamber 42 communicates with the suction port 12 b of the compressor 12 through the second pipe 18 b . Therefore, the low-pressure gas chamber 42 is always maintained to a low pressure.
  • the displacer drive shaft 26 protrudes from the displacer 24 to the low-pressure gas chamber 42 through the upper gas chamber 37 .
  • the expander stationary portion 22 includes a pair of drive shaft guides 46 a and 46 b which support the displacer drive shaft 26 in the axial direction in a movable manner.
  • Each of the drive shaft guides 46 a and 46 b is provided in the drive mechanism housing 30 so as to surround the displacer drive shaft 26 .
  • the drive shaft guide 46 b positioned on the lower side in the axial direction or the lower end section of the drive mechanism housing 30 is airtightly configured. Accordingly, the low-pressure gas chamber 42 is separated from the upper gas chamber 37 . The direct gas flow between the low-pressure gas chamber 42 and the upper gas chamber 37 is not generated.
  • the expander 14 includes a drive mechanism 48 which is accommodated in the low-pressure gas chamber 42 and drives the displacer 24 .
  • the drive mechanism 48 includes a motor 48 a and a scotch yoke mechanism 48 b .
  • the displacer drive shaft 26 forms a portion of the scotch yoke mechanism 48 b .
  • the scotch yoke mechanism 48 b includes a crank pin 49 which extends to be parallel to the output shaft of the motor 48 a and is eccentric to the output shaft.
  • the displacer drive shaft 26 is connected to the scotch yoke mechanism 48 b to be driven in the axial direction by the scotch yoke mechanism 48 b .
  • the displacer 24 is reciprocated in the axial direction by the rotation of the motor 48 a .
  • the scotch yoke mechanism 48 b is interposed between the drive shaft guides 46 a and 46 b , and the drive shaft guides 46 a and 46 b are positioned at different positions from each other in the axial direction.
  • the valve portion 34 is connected to the drive mechanism 48 and is accommodated in the drive mechanism housing 30 .
  • the valve portion 34 is a rotary valve type.
  • the valve portion 34 includes a rotor valve resin member (hereinafter, may be simply referred to as a rotor valve member) 34 a and a stator valve metal member (hereinafter, may be simply referred to as a stator valve member) 34 b .
  • the rotor valve member 34 a is formed of a resin material (for example, engineering plastic material or fluoropolymer material), and the stator valve member 34 b is formed of metal (for example, aluminum material or steel material).
  • the rotor valve member 34 a may be formed of metal and the stator valve member 34 b is formed of a resin.
  • the rotor valve member 34 a is connected to the output shaft of the motor 48 a so as to be rotated by the rotation of the motor 48 a .
  • the rotor valve member 34 a is in surface-contact with the stator valve member 34 b so as to rotationally slide on the stator valve member 34 b .
  • the stator valve member 34 b is fixed to the drive mechanism housing 30 .
  • the stator valve member 34 b is configured so as to receive the high-pressure gas which enters the drive mechanism housing 30 from the first pipe 18 a.
  • the operation of the cryocooler 10 having the above-described configuration is described.
  • the valve portion 34 is switched to connect the discharging port 12 a of the compressor 12 to the gas expansion chamber 40 .
  • An intake process of the cryocooler 10 starts.
  • the high-pressure gas enters the regenerator high-temperature portion 16 a through the housing gas flow path 36 , the upper gas chamber 37 , and the displacer upper-lid gas flow path 38 from the valve portion 34 .
  • the gas is cooled while passing through the regenerator 16 and enters the gas expansion chamber 40 through the displacer lower-lid gas flow path 39 from the regenerator low-temperature portion 16 b .
  • the displacer 24 moves toward the top dead center of the cylinder 28 . Accordingly, the volume of the gas expansion chamber 40 increases. In this way, the gas expansion chamber 40 is filled with a high-pressure gas.
  • the valve portion 34 is switched so as to connect the suction port 12 b of the compressor 12 to the gas expansion chamber 40 .
  • the intake process ends and an exhaust process starts.
  • the high-pressure gas is expanded in the gas expansion chamber 40 .
  • the expanded gas enters the regenerator 16 through the displacer lower-lid gas flow path 39 from the gas expansion chamber 40 .
  • the gas is cooled while passing through the regenerator 16 .
  • the gas is returned from the regenerator 16 to the compressor 12 via the housing gas flow path 36 , the valve portion 34 , and the low-pressure gas chamber 42 .
  • the displacer 24 moves toward the bottom dead center of the cylinder 28 . Accordingly, the volume of the gas expansion chamber 40 decreases and a low-pressure gas is discharged from the gas expansion chamber 40 . If the exhaust process ends, the intake process starts again.
  • the above-described process is one-time cooling cycle in the cryocooler 10 .
  • the cryocooler 10 repeats the cooling cycle and cools the cooling stage 32 to a desired temperature. Accordingly, the cryocooler 10 can cool an object which is thermally connected to the cooling stage 32 to a cryogenic temperature.
  • FIG. 2 is an exploded perspective view schematically showing a main portion of an exemplary rotary valve used in the cryocooler 10 shown in FIG. 1 .
  • a dashed line Y shown in FIG. 2 indicates a rotary shaft of the valve portion 34 .
  • the stator valve member 34 b has a flat stator-side rotary sliding surface 50
  • a rotor valve member 134 a similarly to the stator valve member 34 b and a rotor valve member 134 a has a flat rotor-side rotary sliding surface 52 .
  • the stator-side rotary sliding surface 50 and the rotor-side rotary sliding surface 52 are perpendicular to the rotation axis Y. Since the stator-side rotary sliding surface 50 and the rotor-side rotary sliding surface 52 are in surface-contact with each other, leakage of a refrigerant gas is prevented.
  • the stator valve member 34 b is fixed to the inside of the drive mechanism housing 30 by a stator valve fixing pin 54 .
  • the stator valve fixing pin 54 engages with a stator valve end surface 51 which is positioned on the side opposite to the stator-side rotary sliding surface 50 of the stator valve member 34 b in the rotation axis direction, and regulates the rotation of the stator valve member 34 b.
  • the rotor valve member 134 a is rotatably supported by a rotor valve bearing 56 shown in FIG. 1 .
  • An engagement hole (not shown) which engages with the crank pin 49 is formed on a rotor valve end surface 58 which is positioned on the rotor-side rotary sliding surface 52 of the rotor valve member 134 a in the rotation axis direction.
  • the motor 48 a rotates the crank pin 49 , and thereby, the rotor valve member 134 a rotates so as to be synchronized with the scotch yoke mechanism 48 b .
  • the rotor valve member 134 a includes a rotor valve outer peripheral surface 60 which connects the rotor-side rotary sliding surface 52 to the rotor valve end surface 58 .
  • the rotor valve outer peripheral surface 60 is supported by the rotor valve bearing 56 and faces the low-pressure gas chamber 42 .
  • the stator valve member 34 b includes a high-pressure gas inlet port 62 and a gas flow port 64 .
  • the high-pressure gas inlet port 62 is opened to the center portion of the stator-side rotary sliding surface 50 , and is formed to penetrate the center portion of the stator valve member 34 b in the rotation axis direction.
  • the high-pressure gas inlet port 62 communicates with the discharging port 12 a of the compressor 12 through the first pipe 18 a .
  • the gas flow port 64 is opened outside the high-pressure gas inlet port 62 in the radial direction on the stator-side rotary sliding surface 50 .
  • the gas flow port 64 is formed in an approximately arc-shaped groove with the high-pressure gas inlet port 62 as a center.
  • the stator valve member 34 b includes a communication path 66 which is formed so as to penetrate the stator valve member 34 b to connect the gas flow port 64 to the housing gas flow path 36 . Accordingly, the gas flow port 64 finally communicates with the gas expansion chamber 40 via the communication path 66 and the housing gas flow path 36 .
  • One end of the communication path 66 is opened to the gas flow port 64 and the other end thereof is opened to the side surface of the stator valve member 34 b . While the portion of the communication path 66 on the gas flow port 64 side extends in the rotation axis direction, the portion of the communication path 66 on the housing gas flow path 36 side which is orthogonal to the portion of communication path 66 on the gas flow port 64 side extends in the radial direction.
  • the low-pressure returned gas flows from the gas expansion chamber 40 to the gas flow port 64 in the exhaust process while the high-pressure gas flows to the gas flow port 64 in the intake process of the cryocooler 10 .
  • the rotor valve member 134 a includes a rotor valve high-pressure recessed portion 68 and a rotor valve opening portion 70 .
  • the rotor-side rotary sliding surface 52 is in surface-contact with the stator-side rotary sliding surface 50 around the rotor valve high-pressure recessed portion 68 .
  • the rotor-side rotary sliding surface 52 is in surface-contact with the stator-side rotary sliding surface 50 around the rotor valve opening portion 70 .
  • the rotor valve high-pressure recessed portion 68 is opened to the rotor-side rotary sliding surface 52 and is formed in an elliptical groove.
  • the rotor valve high-pressure recessed portion 68 extends from the center portion of the rotor-side rotary sliding surface 52 to the outside in the radial direction.
  • the depth of the rotor valve high-pressure recessed portion 68 is smaller than the length of the rotor valve member 134 a in the rotation axis direction, and the rotor valve high-pressure recessed portion 68 does not penetrate the rotor valve member 134 a .
  • One end of the rotor valve high-pressure recessed portion 68 in the radial direction is positioned at the location corresponding to the high-pressure gas inlet port 62 on the rotor-side rotary sliding surface 52 . Accordingly, the rotor valve high-pressure recessed portion 68 is connected to the high-pressure gas inlet port 62 always.
  • the other end in the radial direction of the rotor valve high-pressure recessed portion 68 is formed so as to be positioned on approximately the same circumference as that of the gas flow port 64 of the stator valve member 34 b.
  • the intake valve is configured in the valve portion 34 .
  • the rotor valve high-pressure recessed portion 68 is configured so as to allow the high-pressure gas inlet port 62 to communicate with the gas flow port 64 in a portion (for example, intake process) of one period of the rotation of the rotor valve member 134 a , and allow the high-pressure gas inlet port 62 not to communicate with the gas flow port 64 in a remaining portion (for example, exhaust process) of the one period.
  • the rotor valve member 134 a seals the high-pressure region and is disposed to be adjacent to the stator valve member 34 b so as to separate the high-pressure region from the low-pressure surrounding environment (that is, low-pressure gas chamber 42 ).
  • the rotor valve high-pressure recessed portion 68 is provided as a flow direction changing portion or a flow path folding portion in the high-pressure flow path of the valve portion 34 .
  • the rotor valve opening portion 70 is an arc-shaped hole which penetrates from the rotor-side rotary sliding surface 52 of the rotor valve member 134 a to the rotor valve end surface 58 , and forms a low-pressure flow path which communicates with the low-pressure gas chamber 42 .
  • the rotor valve opening portion 70 is positioned on approximately the side opposite to the outer end section of the rotor valve high-pressure recessed portion 68 in the radial direction with respect to the center portion of the rotor-side rotary sliding surface 52 .
  • the rotor valve opening portion 70 is formed so as to be positioned on approximately the same circle as that of the gas flow port 64 of the stator valve member 34 b .
  • the exhaust valve is configured in the valve portion 34 .
  • the rotor valve member 134 a is configured to allow the gas flow port 64 to communicate with the low-pressure gas chamber 42 in at least a portion (for example, exhaust process) of the period in which the high-pressure gas inlet port 62 does not communicate with the gas flow port 64 .
  • FIG. 3 is a perspective view schematically showing a rotor valve member 234 a which is used in the cryocooler 10 shown in FIG. 1 .
  • the rotor valve member 234 a includes the rotor valve high-pressure recessed portion 68 and the rotor valve opening portion 70 and functions as an intake/exhaust valve.
  • the rotor valve member 234 a includes a recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74 .
  • the recessed portion bottom wall surface 72 faces the rotor valve high-pressure recessed portion 68 and determines the depth of the rotor valve high-pressure recessed portion 68 .
  • the recessed portion bottom wall surface 72 is parallel to the rotor-side rotary sliding surface 52 and is perpendicular to the rotation axis direction.
  • the recessed portion peripheral wall surface 74 forms an elliptical recessed portion outline 76 on the rotor-side rotary sliding surface 52 and extends from the recessed portion outline 76 to the recessed portion bottom wall surface 72 .
  • the recessed portion peripheral wall surface 74 intersects the recessed portion bottom wall surface 72 so as to be perpendicular to the recessed portion bottom wall surface 72 , and forms an edge line 78 . Accordingly, the edge line 78 has the same dimension and shape as those of the recessed portion outline 76 .
  • the rotor valve opening portion 70 is formed in a fan-shaped through hole.
  • the resin thickness of the rotor valve member 234 a is changed along the recessed portion outline 76 from the recessed portion peripheral wall surface 74 to the rotor valve outer peripheral surface 60 , and the rotor valve member 234 a includes a first thinned-wall resin portion 80 and a second thinned-wall resin portion 82 .
  • the first thinned-wall resin portion 80 has a first minimum resin thickness 84 from the recessed portion peripheral wall surface 74 to the rotor valve outer peripheral surface 60 .
  • the second thinned-wall resin portion 82 has a second minimum resin thickness 86 from the recessed portion peripheral wall surface 74 to the rotor valve opening portion 70 .
  • the first minimum resin thickness 84 and the second minimum resin thickness 86 may be the same as each other or may be different from each other.
  • the first minimum resin thickness 84 may be larger than or may be smaller than the second minimum resin thickness 86 .
  • the recessed portion outline 76 includes a first arc-shaped portion 76 a , a second arc-shaped portion 76 b , a first linear portion 76 c , and a second linear portion 76 d .
  • the first arc-shaped portion 76 a and the second arc-shaped portion 76 b are respectively positioned on the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82 .
  • the first linear portion 76 c and the second linear portion 76 d connect the first arc-shaped portion 76 a to the second arc-shaped portion 76 b .
  • the first linear portion 76 c and the second linear portion 76 d extends from the center portion on the rotor-side rotary sliding surface 52 to the outside in the radial direction, and the gap between the first linear portion 76 c and the second linear portion 76 d gradually increases from the center portion toward the outside in the radial direction.
  • the width of the outer portion of the rotor valve high-pressure recessed portion 68 in the radial direction is wider than that of the center portion. Since the gas flow port 64 of the stator valve member 34 b is positioned on the outside in the radial direction, according to the shape of the rotor valve high-pressure recessed portion 68 , it is possible to extend the intake period of the cryocooler 10 to some extent.
  • FIG. 4 is a view showing a simulation result of a flow rate of a working gas in the high-pressure flow path in the valve portion 34 with respect to the rotor valve member 234 a shown in FIG. 3 .
  • a region in which the flow rate is small is indicated by a dark gray
  • a region in which the flow rate is great is indicated by a light gray.
  • the flow of the working gas from the high-pressure gas inlet port 62 of the stator valve member 34 b to the gas flow port 64 is folded at the rotor valve high-pressure recessed portion 68 , a region 92 having a small flow rate is generated in the vicinity of the edge line 78 .
  • the region 92 is little used as a flow path, and generates pressure loss in the flow.
  • a fillet surface-shaped boundary 94 is formed between the region 92 and the gas flow region inside the rotor valve high-pressure recessed portion 68 .
  • FIG. 5 is a perspective view schematically showing the rotor valve member 34 a according to an embodiment of the present invention.
  • the rotor valve member 34 a includes the rotor valve high-pressure recessed portion 68 and the rotor valve opening portion 70 , and functions as an intake/exhaust valve.
  • the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82 respectively include a first inclination joint region 88 and the second inclination joint region 90 .
  • the first inclination joint region 88 connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 and is inclined with respect to each of the recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74 .
  • the second inclination joint region 90 connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 and is inclined with respect to each of the recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74 .
  • the rotor valve member 34 a includes a fillet surface which connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 over the entire periphery of the recessed portion peripheral wall surface 74 .
  • the first inclination joint region 88 and the second inclination joint region 90 form a portion of the fillet surface.
  • the recessed portion bottom wall surface 72 of the rotor valve member 34 a is formed in a dome shape.
  • the rotor valve high-pressure recessed portion 68 does not have the edge line 78 which is included in the rotor valve member 234 a shown in FIG. 3 , and is smoothly curved from the recessed portion peripheral wall surface 74 to the recessed portion bottom wall surface 72 .
  • the dome-shaped recessed portion bottom wall surface 72 determines the maximum depth of the rotor valve high-pressure recessed portion 68 from the rotor-side rotary sliding surface 52 .
  • the first minimum resin thickness 84 and the second minimum resin thickness 86 is smaller than the maximum depth. In this way, the resin thickness of the rotor valve member 34 a is relatively thin. This contributes to a decrease in the size of the rotor valve member 34 a.
  • the fillet surface has a fillet radius which is smaller than the radius of the first arc-shaped portion 76 a or the second arc-shaped portion 76 b .
  • the fillet radius is greater than 1/10 of the radius of the arc-shaped portion. Accordingly, it is possible to obtain stress alleviation effects in the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82 . It is possible to obtain greater stress alleviation effects by increasing the fillet radius.
  • the first linear portion 76 c and the second linear portion 76 d extends from the center portion on the rotor-side rotary sliding surface 52 to the outside in the radial direction, and the gap between the first linear portion 76 c and the second linear portion 76 d gradually increases from the center portion toward the outside in the radial direction.
  • the rotor valve member 34 a may be formed of a fluoropolymer material.
  • the fillet surface may have a fillet radius which is determined such that the maximum value of von Mises Stress applied to the recessed portion peripheral wall surface 74 is smaller than 1 ⁇ 3 (or 1 ⁇ 5) of the tensile strength of the fluoropolymer material.
  • the fillet radius may be determined such that the maximum value of von Mises stress applied to the recessed portion peripheral wall surface 74 is smaller than 1 ⁇ 5 of the tensile strength of the fluoropolymer material.
  • the fillet radius may be determined such that the maximum value of von Mises stress applied to the recessed portion peripheral wall surface 74 is larger than 1 ⁇ 6 (or 1 ⁇ 8) of the tensile strength of the fluoropolymer material.
  • FIG. 6 is a view showing a simulation result of the von Mises stress applied to the rotor valve member 34 a shown in FIG. 5 .
  • FIG. 6 shows the simulation result during the operation of the cryocooler 10 (that is, a state where the pressure of the region inside the rotor valve high-pressure recessed portion 68 is high and the pressure of the region (low-pressure gas chamber 42 ) around the rotor valve member 34 a is low).
  • a region in which the stress is great is indicated by dark gray
  • a region in which the stress is small is indicated by light gray.
  • the rotor valve opening portion 70 is omitted.
  • the maximum value of the von Mises stress is generated in the inner surface of the first thinned-wall resin portion 80 facing the rotor valve high-pressure recessed portion 68 .
  • the maximum value is approximately 6.66 MPa.
  • the tensile strength of the used fluoropolymer material is approximately 37 MPa. Accordingly, the maximum value of the von Mises stress is smaller than 1 ⁇ 5 of the tensile strength of the used material.
  • the maximum value of the von Mises stress is generated on the inner surface of the first thinned-wall resin portion 80 , and the value is approximately 8.5 MPa.
  • the dome-shaped recessed portion bottom wall surface 72 is formed along the boundary 94 shown in FIG. 4 .
  • the region 92 contributing to the pressure loss is embedded in the material so as to form a smooth curved surface. Accordingly, it is possible to decrease the pressure loss of the flow of the working gas and improve refrigeration performance of the cryocooler 10 .
  • first inclination joint region 88 and the second inclination joint region 90 are formed on the fillet surface.
  • the first inclination joint region 88 and/or the second inclination joint region 90 may be a flat inclined surface (for example, a surface which is chamfered by 45°, or a surface which is chamfered by an arbitrary angle).
  • cryocooler is a single-stage GM cryocooler.
  • present invention is not limited to this, and the configuration of the flow path of the working gas according to the embodiment can be applied to a two-stage or a multiple-stage GM cryocooler, or can be applied to other cryocoolers such as a pulse tube cryocooler.

Abstract

A rotary valve mechanism includes a stator valve member furnished with one of either a dome-shaped high-pressure recess area made of a polymer or a high-pressure flow path made of metal, and a rotor valve member furnished with the other of either the dome-shaped high-pressure recess area made of a polymer or the high-pressure flow path made of metal, and seals a high-pressure region being the high-pressure flow path communicated with the dome-shaped high-pressure recess area and is disposed adjoining the stator valve member such as to isolate the high-pressure region from its low-pressure surrounding environs.

Description

    INCORPORATION BY REFERENCE
  • Priority is claimed to Japanese Patent Application No. 2015-257052, filed Dec. 28, 2015, the Entire Content of which is incorporated herein by reference.
  • BACKGROUND
  • Technical Field
  • The present invention in particular embodiments relates to cryocoolers and rotary valve mechanisms for cryocoolers.
  • Description of Related Art
  • Cryocoolers, typified by Gifford-McMahon (GM) cryocoolers, include working-gas (also called refrigerant-gas) expanders and compressors. Expanders for the most part include a displacer that is axially reciprocated by a driving means, and a regenerator that is built into the displacer. The displacer is accommodated in a cylinder that guides its reciprocation. The variable volume that by the relative movement of the displacer with respect to the cylinder is formed between the two is employed as the working-gas expansion chamber. By appropriately synchronizing expansion-chamber volume change and pressure change, the expander is able to produce coldness.
  • For that purpose, the cryocooler is furnished with a valve unit for controlling the pressure of the expansion chamber. The valve unit is configured so as to switch alternately between supply of high-pressure working gas from the compressor to the expander, and recovery of low-pressure working gas from the expander to the compressor. The usual practice is to employ a rotary valve mechanism as the valve unit. The valve unit is also furnished in other cryocoolers such as pulse-tube refrigerators.
  • SUMMARY
  • The present invention in one aspect affords a cryocooler including: a working gas compressor provided with a compressor expulsion port and a compressor suction port; an expander provided with a gas expansion chamber and a low-pressure gas chamber communicated with the compressor suction port; a stator valve member disposed in the low-pressure gas chamber, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface and communicated with the compressor expulsion port, and a gas venting port opening on the stator-side rotary sliding surface and communicated with the gas expansion chamber; and a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of a single cycle of rotation of the rotor-valve polymer member and to cut off the high-pressure gas inlet port from the gas venting port in the remainder of the single cycle. The rotor-valve polymer member includes a rotor-valve outer peripheral surface facing the low-pressure gas chamber, a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface, a recess-area bottom wall surface facing the rotor valve high-pressure recess area, a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and a first thin-walled polymer portion having a first minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined with respect to both the recess-area bottom wall surface and the recess-area peripheral wall surface.
  • The present invention in another aspect affords a cryocooler rotary valve mechanism including: a stator valve member disposed in a low-pressure gas chamber of a cryocooler, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface, and a gas venting port opening on the stator-side rotary sliding surface; a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of a single cycle of rotation of the rotor-valve polymer member and to cut off the high-pressure gas inlet port from the gas venting port in the remainder of the single cycle. The rotor valve resin member includes a rotor-valve outer peripheral surface facing the low-pressure gas chamber, a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface, a recess-area bottom wall surface facing the rotor valve high-pressure recess area, a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and a thin-walled polymer portion having a minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined with respect to both the recess-area bottom wall surface and the recess-area peripheral wall surface.
  • The present invention in still another aspect affords a rotary valve mechanism including: a stator valve member furnished with one of either a dome-shaped high-pressure recess area made of a polymer or a high-pressure flow path made of metal; and a rotor valve member furnished with the other of either the dome-shaped high-pressure recess area made of a polymer or the high-pressure flow path made of metal, and seals a high-pressure region being the high-pressure flow path communicated with the dome-shaped high-pressure recess area and is disposed adjoining the stator valve member such as to isolate the high-pressure region from its low-pressure surrounding environs.
  • It should be understood that among methods, devices, systems, etc. of the present invention, those in which constituent elements or representations have been interchanged are valid as modes of the present invention as well.
  • The present invention enables improved reliability in cryocooler rotary-valve mechanisms.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view which schematically shows the entire configuration of a cryocooler according to an embodiment of the present invention and schematically shows a cross section of an expander of the cryocooler.
  • FIG. 2 is an exploded perspective view schematically showing a main portion of a rotary valve which may be used in the cryocooler shown in FIG. 1.
  • FIG. 3 is a perspective view schematically showing a rotor valve member which may be used in the cryocooler shown in FIG. 1.
  • FIG. 4 is a view showing a simulation result of a flow rate of a working gas in a high-pressure flow path with respect to the rotor valve member shown in FIG. 3.
  • FIG. 5 is a perspective view schematically showing a rotor valve member according to an embodiment of the present invention.
  • FIG. 6 is a view showing a simulation result of von Mises stress applied to the rotor valve member shown in FIG. 5.
  • DETAILED DESCRIPTION
  • It is desirable to improve reliability of a rotary valve mechanism of a cryocooler.
  • Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, in descriptions thereof, the same reference numerals are assigned to the same elements, and overlapping descriptions are appropriately omitted. Moreover, configurations described below are exemplified and do not limit the scope of the present invention.
  • In one embodiment, a rotary valve mechanism of a cryocooler includes a stator valve member formed of metal (or a resin) and a rotor valve member which rotationally slides on the stator valve member and is formed of a resin (or metal). The stator valve member and the rotor valve member may be respectively referred to as a stator valve plate and a rotor valve plate.
  • The rotary valve mechanism is installed in a low-pressure chamber which is filled with a relatively low-pressure working gas. A metal member includes a high-pressure flow path for a high-pressure working gas, and the high-pressure flow path is formed to penetrate the metal member. A resin member includes a dome-shaped high-pressure recessed portion for a high-pressure working gas. A dome-shaped recessed portion is formed in which a cross section perpendicular in a depth direction of the recessed portion gradually decreases in the depth direction. The dome-shaped recessed portion is formed by an arbitrary processing method. For example, the dome-shaped recessed portion may be formed by fillet processing or chamfering processing. The rotor valve member seals a high-pressure region in which the high-pressure flow path of metal communicates with the dome-shaped high-pressure recessed portion of a resin, and is disposed to be adjacent to the stator valve member to separate the high-pressure region from the a low-pressure surrounding environment. The dome-shaped recessed portion may communicate with the high-pressure flow path in at least a portion of a rotation of one period of the rotary valve mechanism and may block the high-pressure flow path in other portions of the rotation.
  • Accordingly, at least a portion (particularly, a portion facing the high-pressure region) of solid portions of the rotor valve member and the stator valve member functions as a pressure partition wall which receives a load of a differential pressure between a high pressure and a low pressure. In the dome-shaped recessed portion, the thickness of the partition wall portion gradually increases in the depth direction. Accordingly, stress which is applied to the surface of the dome-shaped recessed portion or the inside of the partition wall decreases. Particularly, a decrease of stress in a thin portion of the resin member reduces damage risk at the location and improves reliability of the rotary valve mechanism. In addition, since the surface of the dome-shaped recessed portion does not have a sharp corner portion which significantly influences the flow of the working gas, a decrease in pressure loss of the flow of the working gas and improvement in refrigeration performance are realized.
  • FIG. 1 is a view schematically showing a cryocooler 10 according to an embodiment of the present invention. The cryocooler 10 includes a compressor 12 which compresses a working gas and an expander 14 which cools the working gas by adiabatic expansion. For example, the working gas is helium gas. The expander 14 may be also referred to as a cold head. A regenerator 16 which pre-cools the working gas is included in the expander 14. The cryocooler 10 includes a gas pipe 18 which includes a first pipe 18 a and a second pipe 18 b which are respectively connected to the compressor 12 and the expander 14. The shown cryocooler 10 is a single-staged GM cryocooler.
  • As is well known, a working gas having a first high pressure is supplied from a discharging port 12 a of the compressor 12 to the expander 14 through the first pipe 18 a. The pressure of the working gas is decreased from the first high pressure to a second high pressure which is lower than the first high pressure due to adiabatic expansion in the expander 14. The working gas having the second high pressure is returned from the expander 14 to a suction port 12 b of the compressor 12 through the second pipe 18 b. The compressor 12 compresses the returned working gas having the second high pressure. Accordingly, the pressure of the working gas increases to the first high pressure again. In general, the first high pressure and the second high pressure are significantly higher than the atmospheric pressure. For convenience of descriptions, the first high pressure and the second high pressure are simply referred to as a high pressure and a low pressure, respectively. Typically, for example, the high pressure is 2 to 3 MPa, and the low pressure is 0.5 to 1.5 MPa. For example, a difference between the high pressure and the low pressure is approximately 1.2 to 2 MPa.
  • The expander 14 includes an expander movable portion 20 and an expander stationary portion 22. The expander movable portion 20 is configured so as to reciprocate in an axial direction (up-down direction in FIG. 1) with respect to the expander stationary portion 22. The movement direction of the expander movable portion 20 is indicated by an arrow A in FIG. 1. The expander stationary portion 22 is configured so as to support the expander movable portion 20 to be reciprocated in the axial direction. In addition, the expander stationary portion 22 is configured of an airtight container in which the expander movable portion 20 is accommodated along with a high-pressure gas (including first high-pressure gas and second high-pressure gas).
  • The expander movable portion 20 includes a displacer 24 and a displacer drive shaft 26 which reciprocates the displacer 24. A regenerator 16 is built in the displacer 24. The displacer 24 includes a displacer member 24 a which surrounds the regenerator 16. An internal space of the displacer member 24 a is filled with a regenerator material. Accordingly, the regenerator 16 is formed inside the displacer 24. For example, the displacer 24 has a substantially columnar shape which extends in the axial direction. The displacer member 24 a includes an outer diameter and an inner diameter which are substantially constant in the axial direction. Accordingly, the regenerator 16 also has a substantially columnar shape which extends in the axial direction.
  • The expander stationary portion 22 approximately has two configurations which includes a cylinder 28 and a drive mechanism housing 30. The upper portion of the expander stationary portion 22 in the axial direction is the drive mechanism housing 30, the lower portion of the expander stationary portion 22 in the axial direction is the cylinder 28, and the drive mechanism housing 30 and the cylinder 28 are firmly connected to each other. The cylinder 28 is configured to guide the reciprocation of the displacer 24. The cylinder 28 extends in the axial direction from the drive mechanism housing 30. The cylinder 28 has an inner diameter which is substantially constant in the axial direction. Accordingly, the cylinder 28 has a substantially cylindrical inner surface which extends in the axial direction. The inner diameter is slightly greater than the outer diameter of the displacer member 24 a.
  • Moreover, the expander stationary portion 22 includes a cooling stage 32. The cooling stage 32 is fixed to the terminal of the cylinder 28 on the side opposite to the drive mechanism housing 30 in the axial direction. The cooling stage 32 is provided so as to transfer coldness generated by the expander 14 to other objects. The objects are attached to the cooling stage 32, and are cooled by the cooling stage 32 during the operation of the cryocooler 10.
  • During the operation of the cryocooler 10, the regenerator 16 includes a regenerator high-temperature portion 16 a on one side (upper side in the drawing) in the axial direction, and a regenerator low-temperature portion 16 b on the side (lower side in the drawing) opposite to the regenerator high-temperature portion 16 a. In this way, the regenerator 16 has a temperature distribution in the axial direction. Similarly, other components (for example, displacer 24 and cylinder 28) of the expander 14 which surrounds the regenerator 16 also have axial temperature distributions. Accordingly, the expander 14 includes a high-temperature portion on one side in the axial direction and a low-temperature portion on the other side in the axial direction during the operation of the expander 14. For example, the high-temperature portion has a temperature such as an approximately room temperature. The cooling temperatures of the low-temperature portion are different from each other according to the use of the cryocooler 10, and for example, the low-temperature portion is cooled to a temperature which is included in a range from approximately 10 K to approximately 10 0 K. The cooling stage 32 is fixed to the cylinder 28 to enclose the low-temperature portion of the cylinder 28.
  • In the present specification, for convenience of the description, terms such as an axial direction, a radial direction, and a circumferential direction are used. As shown by an arrow A, the axial direction indicates the movement direction of the expander movable portion 20 with respect to the expander stationary portion 22. The radial direction indicates a direction (horizontal direction in the drawing) perpendicular to the axial direction, and the circumferential direction indicates a direction which surrounds the axial direction. An element of the expander 14 being close to the cooling stage 32 in the axial direction may be referred to “down”, and the element being far from the cooling stage 32 in the axial direction may be referred to as “up.” Accordingly, the high-temperature portion and the low-temperature portion of the expander 14 are respectively positioned on the upper portion and the lower portion in the axial direction. The expressions are used so as to only assist understanding of a relative positional relationship between elements of the expander 14. Accordingly, the expressions are not related to the disposition of the expander 14 when the expander 14 is installed in site. For example, in the expander 14, the cooling stage 32 may be installed upward and the drive mechanism housing 30 may be installed downward. Alternatively, the expander 14 may be installed such that the axial direction coincides with the horizontal direction.
  • In addition, terms such as the axial direction, the radial direction, and the circumferential direction are used with respect to the rotary valve mechanism. In this case, the axial direction indicates the direction of the rotary shaft of the rotary valve mechanism.
  • The configuration of the flow path of the working gas in the expander 14 is described. The expander 14 includes a valve portion 34, a housing gas flow path 36, an upper gas chamber 37, a displacer upper-lid gas flow path 38, a displacer lower-lid gas flow path 39, a gas expansion chamber 40, and a low-pressure gas chamber 42. A high-pressure gas flows from the first pipe 18 a to the gas expansion chamber 40 via the valve portion 34, the housing gas flow path 36, the upper gas chamber 37, the displacer upper-lid gas flow path 38, the regenerator 16, and the displacer lower-lid gas flow path 39. The gas returned to the gas expansion chamber 40 flows to the low-pressure gas chamber 42 via the displacer lower-lid gas flow path 39, the regenerator 16, the displacer upper-lid gas flow path 38, the upper gas chamber 37, the housing gas flow path 36, and the valve portion 34.
  • Although it is described below in detail, the valve portion 34 is configured to control the pressure of the gas expansion chamber 40 to be synchronized with the reciprocation of the displacer 24. The valve portion 34 functions as a portion of a supply path for supplying a high-pressure gas to the gas expansion chamber 40, and function as a portion of a discharging path for discharging a low-pressure gas from the gas expansion chamber 40. The valve portion 34 is configured to end the discharging of the low-pressure gas and to start the supply of the high-pressure gas when the displacer 24 passes a bottom dead center or the vicinity thereof. The valve portion 34 is configured to end the supply of the high-pressure gas and to start the discharging of the low-pressure gas when the displacer 24 passes a top dead center or the vicinity thereof. In this way, the valve portion 34 is configured to switch the supply function and the discharging function of the working gas to be synchronized with the reciprocation of the displacer 24.
  • The housing gas flow path 36 is formed so as to penetrate the drive mechanism housing 30 such that gas flows between the expander stationary portion 22 and the upper gas chamber 37.
  • The upper gas chamber 37 is formed between the expander stationary portion 22 and the displacer 24 on the regenerator high-temperature portion 16 a side. More specifically, the upper gas chamber 37 is interposed between the drive mechanism housing 30 and the displacer 24 in the axial direction, and is surrounded by the cylinder 28 in the circumferential direction. The upper gas chamber 37 is adjacent to the low-pressure gas chamber 42. The upper gas chamber 37 is also referred to as a room temperature chamber. The upper gas chamber 37 is a variable volume which is formed between the expander movable portion 20 and the expander stationary portion 22.
  • The displacer upper-lid gas flow path 38 is at least one opening of the displacer member 24 a which is formed to allow the regenerator high-temperature portion 16 a to communicate with the upper gas chamber 37. The displacer lower-lid gas flow path 39 is at least one opening of the displacer member 24 a which is formed to allow the regenerator low-temperature portion 16 b to communicate with the gas expansion chamber 40. A seal portion 44 which seals a clearance between the displacer 24 and the cylinder 28 is provided on the side surface of the displacer member 24 a. The seal portion 44 may be attached to the displacer member 24 a so as to surround the displacer upper-lid gas flow path 38 in the circumferential direction.
  • The gas expansion chamber 40 is formed between the cylinder 28 and the displacer 24 on the regenerator low-temperature portion 16 b side. Similarly to the upper gas chamber 37, the gas expansion chamber 40 is a variable volume which is formed between the expander movable portion 20 and the expander stationary portion 22, and the volume of the gas expansion chamber 40 is complementarily changed with the volume of the upper gas chamber 37 by the relative movement of the displacer 24 with respect to the cylinder 28. Since the seal portion 44 is provided, a direct gas flow (that is, the flow of gas which bypasses the regenerator 16) between the upper gas chamber 37 and the gas expansion chamber 40 is not generated.
  • The low-pressure gas chamber 42 defines the inside of the drive mechanism housing 30. The second pipe 18 b is connected to the drive mechanism housing 30. Accordingly, the low-pressure gas chamber 42 communicates with the suction port 12 b of the compressor 12 through the second pipe 18 b. Therefore, the low-pressure gas chamber 42 is always maintained to a low pressure.
  • The displacer drive shaft 26 protrudes from the displacer 24 to the low-pressure gas chamber 42 through the upper gas chamber 37. The expander stationary portion 22 includes a pair of drive shaft guides 46 a and 46 b which support the displacer drive shaft 26 in the axial direction in a movable manner. Each of the drive shaft guides 46 a and 46 b is provided in the drive mechanism housing 30 so as to surround the displacer drive shaft 26. The drive shaft guide 46 b positioned on the lower side in the axial direction or the lower end section of the drive mechanism housing 30 is airtightly configured. Accordingly, the low-pressure gas chamber 42 is separated from the upper gas chamber 37. The direct gas flow between the low-pressure gas chamber 42 and the upper gas chamber 37 is not generated.
  • The expander 14 includes a drive mechanism 48 which is accommodated in the low-pressure gas chamber 42 and drives the displacer 24. The drive mechanism 48 includes a motor 48 a and a scotch yoke mechanism 48 b. The displacer drive shaft 26 forms a portion of the scotch yoke mechanism 48 b. In addition, the scotch yoke mechanism 48 b includes a crank pin 49 which extends to be parallel to the output shaft of the motor 48 a and is eccentric to the output shaft. The displacer drive shaft 26 is connected to the scotch yoke mechanism 48 b to be driven in the axial direction by the scotch yoke mechanism 48 b. Accordingly, the displacer 24 is reciprocated in the axial direction by the rotation of the motor 48 a. The scotch yoke mechanism 48 b is interposed between the drive shaft guides 46 a and 46 b, and the drive shaft guides 46 a and 46 b are positioned at different positions from each other in the axial direction.
  • The valve portion 34 is connected to the drive mechanism 48 and is accommodated in the drive mechanism housing 30. The valve portion 34 is a rotary valve type. The valve portion 34 includes a rotor valve resin member (hereinafter, may be simply referred to as a rotor valve member) 34 a and a stator valve metal member (hereinafter, may be simply referred to as a stator valve member) 34 b. That is, the rotor valve member 34 a is formed of a resin material (for example, engineering plastic material or fluoropolymer material), and the stator valve member 34 b is formed of metal (for example, aluminum material or steel material). Conversely, the rotor valve member 34 a may be formed of metal and the stator valve member 34 b is formed of a resin.
  • The rotor valve member 34 a is connected to the output shaft of the motor 48 a so as to be rotated by the rotation of the motor 48 a. The rotor valve member 34 a is in surface-contact with the stator valve member 34 b so as to rotationally slide on the stator valve member 34 b. The stator valve member 34 b is fixed to the drive mechanism housing 30. The stator valve member 34 b is configured so as to receive the high-pressure gas which enters the drive mechanism housing 30 from the first pipe 18 a.
  • The operation of the cryocooler 10 having the above-described configuration is described. When the displacer 24 moves to the bottom dead center of the cylinder 28 or the position around the bottom dead center, the valve portion 34 is switched to connect the discharging port 12 a of the compressor 12 to the gas expansion chamber 40. An intake process of the cryocooler 10 starts. The high-pressure gas enters the regenerator high-temperature portion 16 a through the housing gas flow path 36, the upper gas chamber 37, and the displacer upper-lid gas flow path 38 from the valve portion 34. The gas is cooled while passing through the regenerator 16 and enters the gas expansion chamber 40 through the displacer lower-lid gas flow path 39 from the regenerator low-temperature portion 16 b. While the gas flows into the gas expansion chamber 40, the displacer 24 moves toward the top dead center of the cylinder 28. Accordingly, the volume of the gas expansion chamber 40 increases. In this way, the gas expansion chamber 40 is filled with a high-pressure gas.
  • When the displacer 24 moves to the top dead center of the cylinder 28 or the position around the top dead center, the valve portion 34 is switched so as to connect the suction port 12 b of the compressor 12 to the gas expansion chamber 40. The intake process ends and an exhaust process starts. The high-pressure gas is expanded in the gas expansion chamber 40. The expanded gas enters the regenerator 16 through the displacer lower-lid gas flow path 39 from the gas expansion chamber 40. The gas is cooled while passing through the regenerator 16. The gas is returned from the regenerator 16 to the compressor 12 via the housing gas flow path 36, the valve portion 34, and the low-pressure gas chamber 42. While the gas flows out from the gas expansion chamber 40, the displacer 24 moves toward the bottom dead center of the cylinder 28. Accordingly, the volume of the gas expansion chamber 40 decreases and a low-pressure gas is discharged from the gas expansion chamber 40. If the exhaust process ends, the intake process starts again.
  • The above-described process is one-time cooling cycle in the cryocooler 10. The cryocooler 10 repeats the cooling cycle and cools the cooling stage 32 to a desired temperature. Accordingly, the cryocooler 10 can cool an object which is thermally connected to the cooling stage 32 to a cryogenic temperature.
  • FIG. 2 is an exploded perspective view schematically showing a main portion of an exemplary rotary valve used in the cryocooler 10 shown in FIG. 1. A dashed line Y shown in FIG. 2 indicates a rotary shaft of the valve portion 34.
  • The stator valve member 34 b has a flat stator-side rotary sliding surface 50, and similarly to the stator valve member 34 b and a rotor valve member 134 a has a flat rotor-side rotary sliding surface 52. The stator-side rotary sliding surface 50 and the rotor-side rotary sliding surface 52 are perpendicular to the rotation axis Y. Since the stator-side rotary sliding surface 50 and the rotor-side rotary sliding surface 52 are in surface-contact with each other, leakage of a refrigerant gas is prevented.
  • The stator valve member 34 b is fixed to the inside of the drive mechanism housing 30 by a stator valve fixing pin 54. The stator valve fixing pin 54 engages with a stator valve end surface 51 which is positioned on the side opposite to the stator-side rotary sliding surface 50 of the stator valve member 34 b in the rotation axis direction, and regulates the rotation of the stator valve member 34 b.
  • The rotor valve member 134 a is rotatably supported by a rotor valve bearing 56 shown in FIG. 1. An engagement hole (not shown) which engages with the crank pin 49 is formed on a rotor valve end surface 58 which is positioned on the rotor-side rotary sliding surface 52 of the rotor valve member 134 a in the rotation axis direction. The motor 48 a rotates the crank pin 49, and thereby, the rotor valve member 134 a rotates so as to be synchronized with the scotch yoke mechanism 48 b. Moreover, the rotor valve member 134 a includes a rotor valve outer peripheral surface 60 which connects the rotor-side rotary sliding surface 52 to the rotor valve end surface 58. The rotor valve outer peripheral surface 60 is supported by the rotor valve bearing 56 and faces the low-pressure gas chamber 42.
  • The stator valve member 34 b includes a high-pressure gas inlet port 62 and a gas flow port 64. The high-pressure gas inlet port 62 is opened to the center portion of the stator-side rotary sliding surface 50, and is formed to penetrate the center portion of the stator valve member 34 b in the rotation axis direction. The high-pressure gas inlet port 62 communicates with the discharging port 12 a of the compressor 12 through the first pipe 18 a. The gas flow port 64 is opened outside the high-pressure gas inlet port 62 in the radial direction on the stator-side rotary sliding surface 50. The gas flow port 64 is formed in an approximately arc-shaped groove with the high-pressure gas inlet port 62 as a center.
  • The stator valve member 34 b includes a communication path 66 which is formed so as to penetrate the stator valve member 34 b to connect the gas flow port 64 to the housing gas flow path 36. Accordingly, the gas flow port 64 finally communicates with the gas expansion chamber 40 via the communication path 66 and the housing gas flow path 36. One end of the communication path 66 is opened to the gas flow port 64 and the other end thereof is opened to the side surface of the stator valve member 34 b. While the portion of the communication path 66 on the gas flow port 64 side extends in the rotation axis direction, the portion of the communication path 66 on the housing gas flow path 36 side which is orthogonal to the portion of communication path 66 on the gas flow port 64 side extends in the radial direction.
  • The low-pressure returned gas flows from the gas expansion chamber 40 to the gas flow port 64 in the exhaust process while the high-pressure gas flows to the gas flow port 64 in the intake process of the cryocooler 10.
  • The rotor valve member 134 a includes a rotor valve high-pressure recessed portion 68 and a rotor valve opening portion 70. The rotor-side rotary sliding surface 52 is in surface-contact with the stator-side rotary sliding surface 50 around the rotor valve high-pressure recessed portion 68. Similarly, the rotor-side rotary sliding surface 52 is in surface-contact with the stator-side rotary sliding surface 50 around the rotor valve opening portion 70.
  • The rotor valve high-pressure recessed portion 68 is opened to the rotor-side rotary sliding surface 52 and is formed in an elliptical groove. The rotor valve high-pressure recessed portion 68 extends from the center portion of the rotor-side rotary sliding surface 52 to the outside in the radial direction. The depth of the rotor valve high-pressure recessed portion 68 is smaller than the length of the rotor valve member 134 a in the rotation axis direction, and the rotor valve high-pressure recessed portion 68 does not penetrate the rotor valve member 134 a. One end of the rotor valve high-pressure recessed portion 68 in the radial direction is positioned at the location corresponding to the high-pressure gas inlet port 62 on the rotor-side rotary sliding surface 52. Accordingly, the rotor valve high-pressure recessed portion 68 is connected to the high-pressure gas inlet port 62 always. The other end in the radial direction of the rotor valve high-pressure recessed portion 68 is formed so as to be positioned on approximately the same circumference as that of the gas flow port 64 of the stator valve member 34 b.
  • In this way, the intake valve is configured in the valve portion 34. The rotor valve high-pressure recessed portion 68 is configured so as to allow the high-pressure gas inlet port 62 to communicate with the gas flow port 64 in a portion (for example, intake process) of one period of the rotation of the rotor valve member 134 a, and allow the high-pressure gas inlet port 62 not to communicate with the gas flow port 64 in a remaining portion (for example, exhaust process) of the one period. Two areas configured of the rotor valve high-pressure recessed portion 68 and the high-pressure gas inlet port 62, or three areas configured of the rotor valve high-pressure recessed portion 68, the high-pressure gas inlet port 62, and the gas flow port 64 form high-pressure regions (or high-pressure flow paths) which communicate with each other in the valve portion 34. The rotor valve member 134 a seals the high-pressure region and is disposed to be adjacent to the stator valve member 34 b so as to separate the high-pressure region from the low-pressure surrounding environment (that is, low-pressure gas chamber 42). The rotor valve high-pressure recessed portion 68 is provided as a flow direction changing portion or a flow path folding portion in the high-pressure flow path of the valve portion 34.
  • Meanwhile, the rotor valve opening portion 70 is an arc-shaped hole which penetrates from the rotor-side rotary sliding surface 52 of the rotor valve member 134 a to the rotor valve end surface 58, and forms a low-pressure flow path which communicates with the low-pressure gas chamber 42. The rotor valve opening portion 70 is positioned on approximately the side opposite to the outer end section of the rotor valve high-pressure recessed portion 68 in the radial direction with respect to the center portion of the rotor-side rotary sliding surface 52. The rotor valve opening portion 70 is formed so as to be positioned on approximately the same circle as that of the gas flow port 64 of the stator valve member 34 b. In this way, the exhaust valve is configured in the valve portion 34. The rotor valve member 134 a is configured to allow the gas flow port 64 to communicate with the low-pressure gas chamber 42 in at least a portion (for example, exhaust process) of the period in which the high-pressure gas inlet port 62 does not communicate with the gas flow port 64.
  • FIG. 3 is a perspective view schematically showing a rotor valve member 234 a which is used in the cryocooler 10 shown in FIG. 1. Similarly to the rotor valve member 134 a shown in FIG. 2, the rotor valve member 234 a includes the rotor valve high-pressure recessed portion 68 and the rotor valve opening portion 70 and functions as an intake/exhaust valve.
  • The rotor valve member 234 a includes a recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74. The recessed portion bottom wall surface 72 faces the rotor valve high-pressure recessed portion 68 and determines the depth of the rotor valve high-pressure recessed portion 68. The recessed portion bottom wall surface 72 is parallel to the rotor-side rotary sliding surface 52 and is perpendicular to the rotation axis direction. The recessed portion peripheral wall surface 74 forms an elliptical recessed portion outline 76 on the rotor-side rotary sliding surface 52 and extends from the recessed portion outline 76 to the recessed portion bottom wall surface 72. The recessed portion peripheral wall surface 74 intersects the recessed portion bottom wall surface 72 so as to be perpendicular to the recessed portion bottom wall surface 72, and forms an edge line 78. Accordingly, the edge line 78 has the same dimension and shape as those of the recessed portion outline 76. The rotor valve opening portion 70 is formed in a fan-shaped through hole.
  • The resin thickness of the rotor valve member 234 a is changed along the recessed portion outline 76 from the recessed portion peripheral wall surface 74 to the rotor valve outer peripheral surface 60, and the rotor valve member 234 a includes a first thinned-wall resin portion 80 and a second thinned-wall resin portion 82. The first thinned-wall resin portion 80 has a first minimum resin thickness 84 from the recessed portion peripheral wall surface 74 to the rotor valve outer peripheral surface 60. The second thinned-wall resin portion 82 has a second minimum resin thickness 86 from the recessed portion peripheral wall surface 74 to the rotor valve opening portion 70. The first minimum resin thickness 84 and the second minimum resin thickness 86 may be the same as each other or may be different from each other. The first minimum resin thickness 84 may be larger than or may be smaller than the second minimum resin thickness 86.
  • The recessed portion outline 76 includes a first arc-shaped portion 76 a, a second arc-shaped portion 76 b, a first linear portion 76 c, and a second linear portion 76 d. The first arc-shaped portion 76 a and the second arc-shaped portion 76 b are respectively positioned on the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82. The first linear portion 76 c and the second linear portion 76 d connect the first arc-shaped portion 76 a to the second arc-shaped portion 76 b. The first linear portion 76 c and the second linear portion 76 d extends from the center portion on the rotor-side rotary sliding surface 52 to the outside in the radial direction, and the gap between the first linear portion 76 c and the second linear portion 76 d gradually increases from the center portion toward the outside in the radial direction. The width of the outer portion of the rotor valve high-pressure recessed portion 68 in the radial direction is wider than that of the center portion. Since the gas flow port 64 of the stator valve member 34 b is positioned on the outside in the radial direction, according to the shape of the rotor valve high-pressure recessed portion 68, it is possible to extend the intake period of the cryocooler 10 to some extent.
  • FIG. 4 is a view showing a simulation result of a flow rate of a working gas in the high-pressure flow path in the valve portion 34 with respect to the rotor valve member 234 a shown in FIG. 3. In the drawing, a region in which the flow rate is small is indicated by a dark gray, and a region in which the flow rate is great is indicated by a light gray.
  • As understood from the drawing, the flow of the working gas from the high-pressure gas inlet port 62 of the stator valve member 34 b to the gas flow port 64 is folded at the rotor valve high-pressure recessed portion 68, a region 92 having a small flow rate is generated in the vicinity of the edge line 78. The region 92 is little used as a flow path, and generates pressure loss in the flow. A fillet surface-shaped boundary 94 is formed between the region 92 and the gas flow region inside the rotor valve high-pressure recessed portion 68.
  • FIG. 5 is a perspective view schematically showing the rotor valve member 34 a according to an embodiment of the present invention. Similarly to the rotor valve member 134 a shown in FIG. 2 and the rotor valve member 234 a shown in FIG. 3, the rotor valve member 34 a includes the rotor valve high-pressure recessed portion 68 and the rotor valve opening portion 70, and functions as an intake/exhaust valve.
  • The first thinned-wall resin portion 80 and the second thinned-wall resin portion 82 respectively include a first inclination joint region 88 and the second inclination joint region 90. The first inclination joint region 88 connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 and is inclined with respect to each of the recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74. The second inclination joint region 90 connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 and is inclined with respect to each of the recessed portion bottom wall surface 72 and the recessed portion peripheral wall surface 74.
  • As shown in the drawing, the rotor valve member 34 a includes a fillet surface which connects the recessed portion bottom wall surface 72 to the recessed portion peripheral wall surface 74 over the entire periphery of the recessed portion peripheral wall surface 74. The first inclination joint region 88 and the second inclination joint region 90 form a portion of the fillet surface. In this way, the recessed portion bottom wall surface 72 of the rotor valve member 34 a is formed in a dome shape. The rotor valve high-pressure recessed portion 68 does not have the edge line 78 which is included in the rotor valve member 234 a shown in FIG. 3, and is smoothly curved from the recessed portion peripheral wall surface 74 to the recessed portion bottom wall surface 72.
  • The dome-shaped recessed portion bottom wall surface 72 determines the maximum depth of the rotor valve high-pressure recessed portion 68 from the rotor-side rotary sliding surface 52. The first minimum resin thickness 84 and the second minimum resin thickness 86 is smaller than the maximum depth. In this way, the resin thickness of the rotor valve member 34 a is relatively thin. This contributes to a decrease in the size of the rotor valve member 34 a.
  • From the viewpoint of easiness of fillet processing, the fillet surface has a fillet radius which is smaller than the radius of the first arc-shaped portion 76 a or the second arc-shaped portion 76 b. In addition, the fillet radius is greater than 1/10 of the radius of the arc-shaped portion. Accordingly, it is possible to obtain stress alleviation effects in the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82. It is possible to obtain greater stress alleviation effects by increasing the fillet radius.
  • Similarly to the rotor valve member 234 a shown in FIG. 3, the first linear portion 76 c and the second linear portion 76 d extends from the center portion on the rotor-side rotary sliding surface 52 to the outside in the radial direction, and the gap between the first linear portion 76 c and the second linear portion 76 d gradually increases from the center portion toward the outside in the radial direction.
  • As described above, the rotor valve member 34 a may be formed of a fluoropolymer material. In this case, the fillet surface may have a fillet radius which is determined such that the maximum value of von Mises Stress applied to the recessed portion peripheral wall surface 74 is smaller than ⅓ (or ⅕) of the tensile strength of the fluoropolymer material. The fillet radius may be determined such that the maximum value of von Mises stress applied to the recessed portion peripheral wall surface 74 is smaller than ⅕ of the tensile strength of the fluoropolymer material. In this way, it is possible to sufficiently decrease a damage risk of the rotor valve member 34 a in the first thinned-wall resin portion 80 and the second thinned-wall resin portion 82 in the practical use by designing the rotor valve high-pressure recessed portion 68 as described above. In addition, the fillet radius may be determined such that the maximum value of von Mises stress applied to the recessed portion peripheral wall surface 74 is larger than ⅙ (or ⅛) of the tensile strength of the fluoropolymer material.
  • FIG. 6 is a view showing a simulation result of the von Mises stress applied to the rotor valve member 34 a shown in FIG. 5. FIG. 6 shows the simulation result during the operation of the cryocooler 10 (that is, a state where the pressure of the region inside the rotor valve high-pressure recessed portion 68 is high and the pressure of the region (low-pressure gas chamber 42) around the rotor valve member 34 a is low). In the drawing, a region in which the stress is great is indicated by dark gray, and a region in which the stress is small is indicated by light gray. In this simulation model, the rotor valve opening portion 70 is omitted.
  • As understood from the drawing, the maximum value of the von Mises stress is generated in the inner surface of the first thinned-wall resin portion 80 facing the rotor valve high-pressure recessed portion 68. The maximum value is approximately 6.66 MPa. Here, the tensile strength of the used fluoropolymer material is approximately 37 MPa. Accordingly, the maximum value of the von Mises stress is smaller than ⅕ of the tensile strength of the used material.
  • Meanwhile, according to the simulation result under the same conditions, in the rotor valve member 234 a shown in FIG. 3 having the edge line 78, similarly, the maximum value of the von Mises stress is generated on the inner surface of the first thinned-wall resin portion 80, and the value is approximately 8.5 MPa.
  • In this way, according to the present embodiment, it is possible to decrease the stress applied to the thin portion by providing the inclination joint region on the thinned-wall resin portion of the rotor valve member 34 a. The damage risk is decreased by the thin portion, and it is possible to improve reliability of the rotary valve mechanism. In addition, the dome-shaped recessed portion bottom wall surface 72 is formed along the boundary 94 shown in FIG. 4. The region 92 contributing to the pressure loss is embedded in the material so as to form a smooth curved surface. Accordingly, it is possible to decrease the pressure loss of the flow of the working gas and improve refrigeration performance of the cryocooler 10.
  • Hereinbefore, the present invention is described based on the embodiment. The present invention is not limited to the embodiment, and a person skilled in the art understands various design modifications can be applied, various modification examples can be applied, and the modification examples are also included in the scope of the present invention.
  • In the above-described embodiment, the first inclination joint region 88 and the second inclination joint region 90 are formed on the fillet surface. However, the present invention is not limited to this. The first inclination joint region 88 and/or the second inclination joint region 90 may be a flat inclined surface (for example, a surface which is chamfered by 45°, or a surface which is chamfered by an arbitrary angle).
  • In the above-described example, the embodiment is described in which the cryocooler is a single-stage GM cryocooler. However, the present invention is not limited to this, and the configuration of the flow path of the working gas according to the embodiment can be applied to a two-stage or a multiple-stage GM cryocooler, or can be applied to other cryocoolers such as a pulse tube cryocooler.
  • It should be understood that the invention is not limited to the above-described embodiment, but may be modified into various forms on the basis of the spirit of the invention. Additionally, the modifications are included in the scope of the invention.

Claims (10)

What is claimed is:
1. A cryocooler comprising:
a working gas compressor provided with a compressor expulsion port and a compressor suction port;
an expander provided with a gas expansion chamber and a low-pressure gas chamber communicated with the compressor suction port;
a stator valve member disposed in the low-pressure gas chamber, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface and communicated with the compressor expulsion port, and a gas venting port opening on the stator-side rotary sliding surface and communicated with the gas expansion chamber; and
a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of a single cycle of rotation of the rotor-valve polymer member and to cut off the high-pressure gas inlet port from the gas venting port in the remainder of the single cycle; wherein
the rotor-valve polymer member includes
a rotor-valve outer peripheral surface facing the low-pressure gas chamber,
a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface,
a recess-area bottom wall surface facing the rotor valve high-pressure recess area,
a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and
a first thin-walled polymer portion having a first minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined with respect to both the recess-area bottom wall surface and the recess-area peripheral wall surface.
2. The cryocooler according to claim 1, wherein:
the rotor-valve polymer member is configured such as to isolate the rotor-valve high-pressure recess area from a rotor-valve opening area, the rotor valve opening area being formed such that the gas venting port is communicated with the low-pressure gas chamber in at least a portion of the remainder of the single cycle; and
the rotor-valve polymer member is furnished with a second thin-walled polymer portion having a second minimum polymer thickness from the recess-area peripheral wall surface to the rotor-valve opening area, and includes a second inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and is inclined with respect to both the recess-area bottom wall surface and the recess-area peripheral wall surface.
3. The cryocooler according to claim 2, wherein the rotor valve polymer member includes a fillet surface connecting the recess-area bottom wall surface to the recess-area peripheral wall surface over the entire periphery of the recess-area peripheral wall surface, and the first inclination joint region and the second inclination joint region each configure a portion of the fillet surface.
4. The cryocooler according to claim 3, wherein the recess-are contour line includes at least one arcuate section, and the fillet surface has a fillet radius that is smaller than the arcuate section's radius.
5. The cryocooler according to claim 4, wherein the fillet radius is greater than 1/10 of the radius of the arcuate section.
6. The cryocooler according to claim 3, wherein:
the rotor valve polymer member is formed of a fluoropolymer material; and
the fillet surface has a fillet radius determined such that the maximum value of von Mises stress acting on the recess-area peripheral wall surface is less than ⅓ of tensile strength of the fluoropolymer material.
7. The cryocooler according to claim 1, wherein the recess-area bottom wall surface determines the maximum depth of the rotor-valve high-pressure recess area from the rotor-side rotary sliding surface, and the first minimum polymer thickness is less than the maximum depth.
8. The cryocooler according to claim 1, wherein:
the high-pressure gas inlet port is located in a central area along the stator-side rotary sliding surface, and the gas venting port is located radially outward with respect to the high-pressure gas inlet port along the stator-side rotary sliding surface; and
the recess-area contour line includes two linear sections extending radially outward from the central area along the rotor-side rotary sliding surface, and an interval between the two linear sections gradually widens radially outward from the central area.
9. A cryocooler rotary valve mechanism comprising:
a stator valve member disposed in a low-pressure gas chamber of a cryocooler, and provided with a stator-side rotary sliding surface, a high-pressure gas inlet port opening on the stator-side rotary sliding surface, and a gas venting port opening on the stator-side rotary sliding surface; and
a rotor-valve polymer member disposed in the low-pressure gas chamber such as to rotate about an axis with respect to the stator valve member and configured such as to isolate a rotor valve high-pressure recess area from the low-pressure gas chamber, the rotor valve high-pressure recess area being formed such as to communicate the high-pressure gas inlet port with the gas venting port in a portion of a single cycle of rotation of the rotor-valve polymer member and to cutoff the high-pressure gas inlet port from the gas venting port in the remainder of the single cycle; wherein
the rotor-valve polymer member includes
a rotor-valve outer peripheral surface facing the low-pressure gas chamber,
a rotor-side rotary sliding surface surrounding the rotor valve high-pressure recess area, and in surface-contact with the stator-side rotary sliding surface,
a recess-area bottom wall surface facing the rotor valve high-pressure recess area,
a recess-area peripheral wall surface forming a recess-area contour line on the rotor-side rotary sliding surface and extending from the recess-area contour line and directed toward the recess-area bottom wall surface, the polymer's thickness toward the rotor-valve outer peripheral surface varies running along the recess-area contour line, and
a thin-walled polymer portion having a minimum polymer thickness from the recess-area peripheral wall surface to the rotor valve outer peripheral surface, and including a first inclination join region connecting the recess-area bottom wall surface to the recess-area peripheral wall surface and being inclined with respect to both the recess-area bottom wall surface and the recess-area peripheral wall surface.
10. A rotary valve mechanism comprising:
a stator valve member furnished with one of either a dome-shaped high-pressure recess area made of a polymer or a high-pressure flow path made of metal; and
a rotor valve member furnished with the other of either the dome-shaped high-pressure recess area made of a polymer or the high-pressure flow path made of metal, and seals a high-pressure region being the high-pressure flow path communicated with the dome-shaped high-pressure recess area and is disposed adjoining the stator valve member such as to isolate the high-pressure region from its low-pressure surrounding environs.
US15/379,589 2015-12-28 2016-12-15 Cryocooler and rotary valve mechanism Abandoned US20170184328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-257052 2015-12-28
JP2015257052A JP2017120162A (en) 2015-12-28 2015-12-28 Cryogenic refrigeration machine and rotary valve mechanism

Publications (1)

Publication Number Publication Date
US20170184328A1 true US20170184328A1 (en) 2017-06-29

Family

ID=59087747

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/379,589 Abandoned US20170184328A1 (en) 2015-12-28 2016-12-15 Cryocooler and rotary valve mechanism

Country Status (3)

Country Link
US (1) US20170184328A1 (en)
JP (1) JP2017120162A (en)
CN (1) CN106996654B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071767A1 (en) * 2018-05-23 2021-03-11 Sumitomo Heavy Industries, Ltd. Rotary valve of cryocooler and cryocooler
US20210270380A1 (en) * 2018-07-02 2021-09-02 Institute of new materials, Guangdong Academy of Sciences Gm type cryogenic refrigerator rotary valve
CN113566469A (en) * 2021-07-30 2021-10-29 安徽万瑞冷电科技有限公司 Liquid nitrogen auxiliary cooling large-cooling-capacity refrigerating machine and refrigerating method
US11971108B2 (en) * 2018-05-23 2024-04-30 Sumitomo Heavy Industries, Ltd. Rotary valve of cryocooler and cryocooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413176B (en) * 2020-11-09 2023-10-10 深圳供电局有限公司 Rotary valve mechanism and cryocooler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361588A (en) * 1991-11-18 1994-11-08 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
US20040040315A1 (en) * 2001-03-27 2004-03-04 Tomohiro Koyama High and low pressure gas selector valve of refrigerator
US20110061404A1 (en) * 2009-04-23 2011-03-17 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator
US20110094244A1 (en) * 2009-10-27 2011-04-28 Sumitomo Heavy Industries Ltd. Rotary valve and a pulse tube refrigerator using a rotary valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205902A (en) * 1997-01-20 1998-08-04 Aisin Seiki Co Ltd Cooler for stirling engine, manufacture thereof, heat transfer tube, and manufacture thereof
JP2001241796A (en) * 2000-03-01 2001-09-07 Sumitomo Heavy Ind Ltd Cryogenic refrigerating device
JP2005054913A (en) * 2003-08-05 2005-03-03 Nsk Ltd Rotary distribution valve, and lubrication device
JP2006112443A (en) * 2004-10-12 2006-04-27 Nok Corp Piston for automatic transmission
EP2320162B1 (en) * 2009-09-14 2016-11-09 Sumitomo Heavy Industries, LTD. Regenerative refrigerator
JP5497404B2 (en) * 2009-10-27 2014-05-21 住友重機械工業株式会社 Rotary valve and pulse tube refrigerator
JP5710602B2 (en) * 2010-04-19 2015-04-30 住友重機械工業株式会社 Rotary valve and cryogenic refrigerator using the same
JP5913142B2 (en) * 2013-01-30 2016-04-27 住友重機械工業株式会社 Cryogenic refrigerator
JP6067477B2 (en) * 2013-05-16 2017-01-25 住友重機械工業株式会社 Cryogenic refrigerator
WO2015019458A1 (en) * 2013-08-08 2015-02-12 株式会社日立製作所 Solution retrieval device, solution retrieval method, and solution retrieval program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361588A (en) * 1991-11-18 1994-11-08 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
US20040040315A1 (en) * 2001-03-27 2004-03-04 Tomohiro Koyama High and low pressure gas selector valve of refrigerator
US20110061404A1 (en) * 2009-04-23 2011-03-17 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator
US20110094244A1 (en) * 2009-10-27 2011-04-28 Sumitomo Heavy Industries Ltd. Rotary valve and a pulse tube refrigerator using a rotary valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
General Design Principles for DuPont Engineering Polymers. du Pont de Nemours and Co. 2000. http://www.dupont.com/content/dam/dupont/products-and-services/plastics-polymers-and-resins/thermoplastics/documents/General%20Design%20Principles/General%20Design%20Principles%20for%20Engineering%20Polymers.pdf *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071767A1 (en) * 2018-05-23 2021-03-11 Sumitomo Heavy Industries, Ltd. Rotary valve of cryocooler and cryocooler
US11971108B2 (en) * 2018-05-23 2024-04-30 Sumitomo Heavy Industries, Ltd. Rotary valve of cryocooler and cryocooler
US20210270380A1 (en) * 2018-07-02 2021-09-02 Institute of new materials, Guangdong Academy of Sciences Gm type cryogenic refrigerator rotary valve
CN113566469A (en) * 2021-07-30 2021-10-29 安徽万瑞冷电科技有限公司 Liquid nitrogen auxiliary cooling large-cooling-capacity refrigerating machine and refrigerating method

Also Published As

Publication number Publication date
JP2017120162A (en) 2017-07-06
CN106996654B (en) 2019-07-30
CN106996654A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US10018380B2 (en) Cryogenic refrigerator
US9657970B2 (en) Cryogenic refrigerator
US11022353B2 (en) Pulse tube cryocooler and rotary valve unit for pulse tube cryocooler
US11221079B2 (en) Cryocooler and rotary valve unit for cryocooler
US20170184328A1 (en) Cryocooler and rotary valve mechanism
JPWO2008044456A1 (en) Rotary expander
US10371417B2 (en) Cryocooler and rotary valve mechanism
US9759455B2 (en) Cryogenic refrigerator
US10345013B2 (en) Cryocooler and rotary valve mechanism
US10378797B2 (en) Cryocooler
WO2019188170A1 (en) Cryogenic refrigerator
US10876769B2 (en) Cryocooler
US10551093B2 (en) Cryocooler and rotary valve mechanism
US11243014B2 (en) Cryocooler
JP7164371B2 (en) cryogenic refrigerator
JP6773872B2 (en) GM freezer
US11371754B2 (en) GM cryocooler
JP6532392B2 (en) Cryogenic refrigerator
JP2017048937A (en) Cryogenic refrigeration machine
JP2022140969A (en) cryogenic refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORIE, TAKAAKI;XU, MINGYAO;BAO, QIAN;REEL/FRAME:040740/0082

Effective date: 20161201

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION