US20170183412A1 - Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor - Google Patents

Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor Download PDF

Info

Publication number
US20170183412A1
US20170183412A1 US15/400,800 US201715400800A US2017183412A1 US 20170183412 A1 US20170183412 A1 US 20170183412A1 US 201715400800 A US201715400800 A US 201715400800A US 2017183412 A1 US2017183412 A1 US 2017183412A1
Authority
US
United States
Prior art keywords
antigen binding
antibody
seq
sequence
klotho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/400,800
Inventor
Yang Li
Jennitte LeAnn STEVENS
Chadwick Terence King
Ian Nevin Foltz
Gunasekaran Kannan
Junming Yie
Shaw-Fen Sylvia Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc filed Critical Amgen Inc
Priority to US15/400,800 priority Critical patent/US20170183412A1/en
Assigned to AMGEN INC. reassignment AMGEN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOLTZ, IAN, KING, CHADWICK TERENCE, LI, YANG, HU, SHAW-FEN SYLVIA, KANNAN, GUNASEKARAN, STEVENS, Jennitte, YIE, JUNMING
Publication of US20170183412A1 publication Critical patent/US20170183412A1/en
Priority to US16/282,834 priority patent/US11248052B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01031Beta-glucuronidase (3.2.1.31)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present disclosure relates to nucleic acid molecules encoding antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, and methods for treating metabolic disorders using such nucleic acids, polypeptides, or pharmaceutical compositions. Diagnostic methods using the antigen binding proteins are also provided.
  • Fibroblast Growth Factor 21 is a secreted polypeptide that belongs to a subfamily of Fibroblast Growth Factors (FGFs) that includes FGF19, FGF21, and FGF23 (Itoh et al., (2004) Trend Genet. 20:563-69).
  • FGF21 is an atypical FGF in that it is heparin independent and functions as a hormone in the regulation of glucose, lipid, and energy metabolism.
  • FGF21 farnesoid GF21
  • Transgenic mice overexpressing FGF21 exhibit metabolic phenotypes of slow growth rate, low plasma glucose and triglyceride levels, and an absence of age-associated type 2 diabetes, islet hyperplasia, and obesity.
  • Pharmacological administration of recombinant FGF21 protein in rodent and primate models results in normalized levels of plasma glucose, reduced triglyceride and cholesterol levels, and improved glucose tolerance and insulin sensitivity.
  • FGF21 reduces body weight and body fat by increasing energy expenditure, physical activity, and metabolic rate.
  • Experimental research provides support for the pharmacological administration of FGF21 for the treatment of type 2 diabetes, obesity, dyslipidemia, and other metabolic conditions or disorders in humans.
  • FGF21 is a liver derived endocrine hormone that stimulates glucose uptake in adipocytes and lipid homeostasis through the activation of its receptor.
  • the FGF21 receptor also comprises the membrane associated ⁇ -Klotho as an essential cofactor. Activation of the FGF21 receptor leads to multiple effects on a variety of metabolic parameters.
  • FGFs mediate their action via a set of four FGF receptors, FGFR1-4, that in turn are expressed in multiple spliced variants, e.g., FGFR1c, FGFR2c, FGFR3c and FGFR4.
  • Each FGF receptor contains an intracellular tyrosine kinase domain that is activated upon ligand binding, leading to downstream signaling pathways involving MAPKs (Erk1/2), RAF1, AKT1 and STATs. (Kharitonenkov et al., (2008) BioDrugs 22:37-44).
  • FGFR1 is by far the most abundant receptor, and it is therefore most likely that FGF21's main functional receptors in this tissue are the ⁇ -Klotho/FGFR1c complexes.
  • the present disclosure provides a human (or humanized) antigen binding protein, such as a monoclonal antibody, that induces FGF21-like signaling, e.g., an agonistic antibody that mimics the function of FGF21.
  • a human (or humanized) antigen binding protein such as a monoclonal antibody
  • FGF21-like signaling e.g., an agonistic antibody that mimics the function of FGF21.
  • an antibody is a molecule with FGF21-like activity and selectivity but with added therapeutically desirable characteristics typical for an antibody such as protein stability, lack of immunogenicity, ease of production and long half-life in vivo.
  • the instant disclosure provides antigen binding proteins that bind a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling.
  • expression vectors and host cells transformed or transfected with the expression vectors that comprise the aforementioned isolated nucleic acid molecules that encode the antigen binding proteins disclosed herein are provided in Tables 1A and 1B; representative variable region heavy chain and light chain sequences are provided in Tables 2A and 2B; coding sequences for the variable region of the heavy and light chains are provided in Tables 2C and 2D; Tables 3A and 3B provide CDR regions of the disclosed variable heavy and light chains, and Tables 3C and 3D provide coding sequences for the disclosed CDRs.
  • methods of preparing antigen binding proteins that specifically or selectively bind a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and comprise the step of preparing the antigen binding protein from a host cell that secretes the antigen binding protein.
  • inventions provide a method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of a pharmaceutical composition provided herein to a subject, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels.
  • the condition is type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.
  • FIG. 1 a -1 b is an alignment showing the sequence homology between human FGFR1c (GenBank Accession No P11362; SEQ ID NO: 4) and murine FGFR1c (GenBank Accession No NP 034336; SEQ ID NO: 1832); various features are highlighted, including the signal peptide, transmembrane sequence, heparin binding region, and a consensus sequence (SEQ ID NO: 1833) is provided.
  • FIG. 2 a -2 c is an alignment showing the sequence homology between human ⁇ -Klotho (GenBank Accession No NP_783864; SEQ ID NO: 7) and murine ⁇ -Klotho (GenBank Accession No NP_112457; SEQ ID NO: 10); various features are highlighted, including the transmembrane sequence and two glycosyl hydrolase domains, and a consensus sequence (SEQ ID NO: 1834) is provided.
  • FIG. 3 is a plot showing the representative data from Luciferase reporter activity screens of the antibodies disclosed herein with FGF21 and a reference antibody 16H7.1 as positive controls (insert); these hybridomas were generated by immunization with cell-bound receptor of 293T transfectants expressing full length human ⁇ -Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO:4.
  • FIG. 4 shows a schematic representation of the chimeras constructed in relation to present invention.
  • FIG. 5 shows the ability of the antigen binding proteins, as well as human FGF21, to activate chimeras in L6 cells.
  • FIGS. 6 a - e show the amino acid alignment of heavy and light chains of the antibodies compared to the corresponding germline V-gene sequence.
  • an “antigen binding protein” is a protein comprising a portion that binds to an antigen or target and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen.
  • antigen binding proteins examples include a human antibody, a humanized antibody; a chimeric antibody; a recombinant antibody; a single chain antibody; a diabody; a triabody; a tetrabody; a Fab fragment; a F(ab′) 2 fragment; an IgD antibody; an IgE antibody; an IgM antibody; an IgG1 antibody; an IgG2 antibody; an IgG3 antibody; or an IgG4 antibody, and fragments thereof.
  • the antigen binding protein can comprise, for example, an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives.
  • Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, e.g., Korndorfer et al., (2003) Proteins: Structure, Function, and Bioinformatics, 53(1):121-129; Roque et al., (2004) Biotechnol. Prog. 20:639-654.
  • PAMs peptide antibody mimetics
  • An antigen binding protein can have, for example, the structure of a naturally occurring immunoglobulin.
  • An “immunoglobulin” is a tetrameric molecule. In a naturally occurring immunoglobulin, each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa).
  • the amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
  • the carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains.
  • Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively.
  • the variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids. See generally, Fundamental Immunology 2 nd ed. Ch. 7 (Paul, W., ed., Raven Press, N.Y. (1989)), incorporated by reference in its entirety for all purposes.
  • the variable regions of each light/heavy chain pair form the antibody binding site such that an intact immunoglobulin has two binding sites.
  • Naturally occurring immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. From N-terminus to C-terminus, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain can be done in accordance with the definitions of Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5 th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242.
  • an antigen binding protein is said to “specifically bind” or “selectively bind” its target antigen when the dissociation constant (K D ) is ⁇ 10 ⁇ 8 M.
  • the antibody specifically binds antigen with “high affinity” when the K D is ⁇ 5 ⁇ 10 ⁇ 9 M, and with “very high affinity” when the K D is ⁇ 5 ⁇ 10 ⁇ 10 M.
  • the antibodies will bind to a complex comprising ⁇ -Klotho and an FGFR, including a complex comprising both human FGFR1c and human ⁇ -Klotho, with a K D of between about 10 ⁇ 7 M and 10 ⁇ 12 M, and in yet another embodiment the antibodies will bind with a K D ⁇ 5 ⁇ 10 ⁇ 9 .
  • an “antibody” refers to an intact immunoglobulin or to an antigen binding portion thereof that competes with the intact antibody for specific binding, unless otherwise specified.
  • Antigen binding portions can be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies.
  • Antigen binding portions include, inter alia, Fab, Fab′, F(ab′) 2 , Fv, domain antibodies (dAbs), fragments including complementarity determining regions (CDRs), single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide.
  • a Fab fragment is a monovalent fragment having the V L , V H , C L and C H 1 domains; a F(ab′) 2 fragment is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment has the V H and C H 1 domains; an Fv fragment has the V L and V H domains of a single arm of an antibody; and a dAb fragment has a V H domain, a V L domain, or an antigen-binding fragment of a V H or V L domain (U.S. Pat. Nos. 6,846,634, and 6,696,245; and US App. Pub. Nos. 05/0202512, 04/0202995, 04/0038291, 04/0009507, 03/0039958, Ward et al., Nature 341:544-546 (1989)).
  • a single-chain antibody is an antibody in which a V L and a V H region are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain wherein the linker is long enough to allow the protein chain to fold back on itself and form a monovalent antigen binding site (see, e.g., Bird et al., (1988) Science 242:423-26 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-83).
  • a linker e.g., a synthetic sequence of amino acid residues
  • Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises V H and V L domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary domain on another polypeptide chain (see, e.g., Holliger et al., (1993) Proc. Natl. Acad. Sci. USA 90:6444-48, and Poljak et al., (1994) Structure 2:1121-23). If the two polypeptide chains of a diabody are identical, then a diabody resulting from their pairing will have two identical antigen binding sites.
  • Polypeptide chains having different sequences can be used to make a diabody with two different antigen binding sites.
  • tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different.
  • Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5 th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol.
  • One or more CDRs can be incorporated into a molecule either covalently or noncovalently to make it an antigen binding protein.
  • An antigen binding protein can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently.
  • the CDRs permit the antigen binding protein to specifically bind to a particular antigen of interest.
  • An antigen binding protein can but need not have one or more binding sites. If there is more than one binding site, the binding sites can be identical to one another or can be different. For example, a naturally occurring human immunoglobulin typically has two identical binding sites, while a “bispecific” or “bifunctional” antibody has two different binding sites. Antigen binding proteins of this bispecific form (e.g., those comprising various heavy and light chain CDRs provided herein) comprise aspects of the instant disclosure.
  • human antibody includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). These antibodies can be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain-encoding genes, such as a mouse derived from a XENOMOUSE®, ULTIMABTM, HUMAB-MOUSE®, VELOCIMOUSE®, VELOCIMMUNE®, KYMOUSE, or ALIVAMAB system, or derived from human heavy chain transgenic mouse, transgenic rat human antibody repertoire, transgenic rabbit human antibody repertoire or cow human antibody repertoire or HUTARGTM technology. Phage-based approaches can also be employed.
  • a humanized antibody has a sequence that differs from the sequence of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions, such that the humanized antibody is less likely to induce an immune response, and/or induces a less severe immune response, as compared to the non-human species antibody, when it is administered to a human subject.
  • certain amino acids in the framework and constant domains of the heavy and/or light chains of the non-human species antibody are mutated to produce the humanized antibody.
  • the constant domain(s) from a human antibody are fused to the variable domain(s) of a non-human species.
  • one or more amino acid residues in one or more CDR sequences of a non-human antibody are changed to reduce the likely immunogenicity of the non-human antibody when it is administered to a human subject, wherein the changed amino acid residues either are not critical for immunospecific binding of the antibody to its antigen, or the changes to the amino acid sequence that are made are conservative changes, such that the binding of the humanized antibody to the antigen is not significantly worse than the binding of the non-human antibody to the antigen. Examples of how to make humanized antibodies can be found in U.S. Pat. Nos. 6,054,297, 5,886,152 and 5,877,293.
  • chimeric antibody refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies.
  • one or more of the CDRs are derived from a human antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • all of the CDRs are derived from a human antibody that binds to a complex ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the CDRs from more than one human antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are mixed and matched in a chimeric antibody.
  • a chimeric antibody can comprise a CDR1 from the light chain of a first human antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, a CDR2 and a CDR3 from the light chain of a second human antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and the CDRs from the heavy chain from a third antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the framework regions can be derived from one of the same antibodies that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, from one or more different antibodies, such as a human antibody, or from a humanized antibody.
  • a portion of the heavy and/or light chain is identical with, homologous to, or derived from an antibody from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with, homologous to, or derived from an antibody or antibodies from another species or belonging to another antibody class or subclass.
  • fragments of such antibodies that exhibit the desired biological activity (e.g., the ability to specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c).
  • light chain includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity.
  • a full-length light chain includes a variable region domain, V L , and a constant region domain, C L .
  • the variable region domain of the light chain is at the amino-terminus of the polypeptide.
  • Light chains include kappa (“ ⁇ ”) chains and lambda (“ ⁇ ”) chains.
  • heavy chain includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity.
  • a full-length heavy chain includes a variable region domain, V H , and three constant region domains, C H 1, C H 2, and C H 3.
  • the V H domain is at the amino-terminus of the polypeptide
  • the C H domains are at the carboxyl-terminus, with the C H 3 being closest to the carboxy-terminus of the polypeptide.
  • Heavy chains can be of any isotype, including IgG (including IgG1, IgG2, IgG3 and IgG4 subtypes), IgA (including IgA1 and IgA2 subtypes), IgM and IgE.
  • an antigen binding protein e.g., an antibody or immunoglobulin chain (heavy or light chain)
  • an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen.
  • Such fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope.
  • such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof.
  • These biologically active fragments can be produced by recombinant DNA techniques, or can be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies.
  • Immunologically functional immunoglobulin fragments include, but are not limited to, Fab, Fab′, F(ab′) 2 , Fv, domain antibodies and single-chain antibodies, and can be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit.
  • a functional portion of the antigen binding proteins disclosed herein could be covalently bound to a second protein or to a small molecule to create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged serum half-life.
  • An “Fc” region contains two heavy chain fragments comprising the C H 2 and C H 3 domains of an antibody.
  • the two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the C H 3 domains.
  • Fab′ fragment contains one light chain and a portion of one heavy chain that contains the V H domain and the C H 1 domain and also the region between the C H 1 and C H 2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab′ fragments to form an F(ab′) 2 molecule.
  • F(ab′) 2 fragment contains two light chains and two heavy chains containing a portion of the constant region between the C H 1 and C H 2 domains, such that an interchain disulfide bond is formed between the two heavy chains.
  • a F(ab′) 2 fragment thus is composed of two Fab′ fragments that are held together by a disulfide bond between the two heavy chains.
  • the “Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
  • a “domain antibody” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain.
  • two or more V H regions are covalently joined with a peptide linker to create a bivalent domain antibody.
  • the two V H regions of a bivalent domain antibody can target the same or different antigens.
  • a “hemibody” is an immunologically-functional immunoglobulin construct comprising a complete heavy chain, a complete light chain and a second heavy chain Fc region paired with the Fc region of the complete heavy chain.
  • a linker can, but need not, be employed to join the heavy chain Fc region and the second heavy chain Fc region.
  • a hemibody is a monovalent form of an antigen binding protein disclosed herein.
  • pairs of charged residues can be employed to associate one Fc region with the second Fc region.
  • a “bivalent antigen binding protein” or “bivalent antibody” comprises two antigen binding sites. In some instances, the two binding sites have the same antigen specificities. Bivalent antigen binding proteins and bivalent antibodies can be bispecific, as described herein, and form aspects of the instant disclosure.
  • a “multispecific antigen binding protein” or “multispecific antibody” is one that targets more than one antigen or epitope, and forms another aspect of the instant disclosure.
  • a “bispecific,” “dual-specific” or “bifunctional” antigen binding protein or antibody is a hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites.
  • Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein or multispecific antibody and can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai and Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553.
  • the two binding sites of a bispecific antigen binding protein or antibody will bind to two different epitopes, which can reside on the same (e.g., ⁇ -Klotho, FGFR1c, FGFR2c, or FGFR3c) or different protein targets (e.g., ⁇ -Klotho and one of (i) FGFR1c, (ii) FGFR2c, and (iii) FGFR3c).
  • FGF21-like signaling and “induces FGF21-like signaling,” when applied to an antigen binding protein of the present disclosure, means that the antigen binding protein mimics, or modulates, an in vivo biological effect induced by the binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and induces a biological response that otherwise would result from FGF21 binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo.
  • an antibody or fragment is deemed to induce a biological response when the response is equal to or greater than 5%, and preferably equal to or greater than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, of the activity of a wild type FGF21 standard comprising the mature form of SEQ ID NO: 2 (i.e., the mature form of the human FGF21 sequence) and has the following properties: exhibiting an efficacy level of equal to or more than 5% of an FGF21 standard, with an EC 50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM or 10 nM in (1) the recombinant FGF21 receptor
  • the “potency” of an antigen binding protein is defined as exhibiting an EC50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM and preferably less than 10 nM of the antigen binding protein in the following assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in Example 4.
  • antigen binding proteins of the present disclosure induce FGF21-mediated signaling (e.g., that induce agonistic activity), nor is this property desirable in all circumstances. Nevertheless, antigen binding proteins that do not induce FGF21-mediated signaling form aspects of the present disclosure and may be useful as diagnostic reagents or other applications.
  • FGF21R means a multimeric receptor complex that FGF21 is known or suspected to form in vivo.
  • FGF21R comprises (i) an FGFR, e.g., FGFR1c, FGFR2c, FGFR3c or FGFR4, and (ii) ⁇ -Klotho.
  • polynucleotide or “nucleic acid” includes both single-stranded and double-stranded nucleotide polymers.
  • the nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide.
  • Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2′, 3′-dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.
  • oligonucleotide means a polynucleotide comprising 200 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides can be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides can be sense or antisense oligonucleotides.
  • An oligonucleotide can include a label, including a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides can be used, for example, as PCR primers, cloning primers or hybridization probes.
  • isolated nucleic acid molecule means a DNA or RNA of genomic, mRNA, cDNA, or synthetic origin or some combination thereof which is not associated with all or a portion of a polynucleotide in which the isolated polynucleotide is found in nature, or is linked to a polynucleotide to which it is not linked in nature.
  • a nucleic acid molecule comprising a particular nucleotide sequence does not encompass intact chromosomes.
  • Isolated nucleic acid molecules “comprising” specified nucleic acid sequences can include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or can include operably linked regulatory sequences that control expression of the coding region of the recited nucleic acid sequences, and/or can include vector sequences.
  • the left-hand end of any single-stranded polynucleotide sequence discussed herein is the 5′ end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5′ direction.
  • the direction of 5′ to 3′ addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5′ to the 5′ end of the RNA transcript are referred to as “upstream sequences;” sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3′ to the 3′ end of the RNA transcript are referred to as “downstream sequences.”
  • control sequence refers to a polynucleotide sequence that can affect the expression and processing of coding sequences to which it is ligated. The nature of such control sequences can depend upon the host organism.
  • control sequences for prokaryotes can include a promoter, a ribosomal binding site, and a transcription termination sequence.
  • control sequences for eukaryotes can include promoters comprising one or a plurality of recognition sites for transcription factors, transcription enhancer sequences, and transcription termination sequence.
  • Control sequences can include leader sequences and/or fusion partner sequences.
  • vector means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) used to transfer protein coding information into a host cell.
  • expression vector refers to a vector that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto.
  • An expression construct can include, but is not limited to, sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto.
  • operably linked means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions under suitable conditions.
  • a control sequence in a vector that is “operably linked” to a protein coding sequence is ligated thereto so that expression of the protein coding sequence is achieved under conditions compatible with the transcriptional activity of the control sequences.
  • the term “host cell” means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest.
  • the term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present.
  • transduction means the transfer of genes from one bacterium to another, usually by bacteriophage. “Transduction” also refers to the acquisition and transfer of eukaryotic cellular sequences by replication-defective retroviruses.
  • transfection means the uptake of foreign or exogenous DNA by a cell, and a cell has been “transfected” when the exogenous DNA has been introduced inside the cell membrane.
  • transfection techniques are well known in the art and are disclosed herein. See, e.g., Graham et al., (1973) Virology 52:456; Sambrook et al., (2001), supra; Davis et al., (1986) Basic Methods in Molecular Biology , Elsevier; Chu et al., (1981) Gene 13:197.
  • Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
  • transformation refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain new DNA or RNA.
  • a cell is transformed where it is genetically modified from its native state by introducing new genetic material via transfection, transduction, or other techniques.
  • the transforming DNA can recombine with that of the cell by physically integrating into a chromosome of the cell, or can be maintained transiently as an episomal element without being replicated, or can replicate independently as a plasmid.
  • a cell is considered to have been “stably transformed” when the transforming DNA is replicated with the division of the cell.
  • polypeptide or “protein” are used interchangeably herein to refer to a polymer of amino acid residues.
  • the terms also apply to amino acid polymers in which one or more amino acid residues is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
  • the terms can also encompass amino acid polymers that have been modified, e.g., by the addition of carbohydrate residues to form glycoproteins, or phosphorylated.
  • Polypeptides and proteins can be produced by a naturally-occurring and non-recombinant cell, or polypeptides and proteins can be produced by a genetically-engineered or recombinant cell.
  • Polypeptides and proteins can comprise molecules having the amino acid sequence of a native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence.
  • the terms “polypeptide” and “protein” encompass antigen binding proteins that specifically or selectively bind to a complex comprising ⁇ -Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), or sequences that have deletions from, additions to, and/or substitutions of one or more amino acids of an antigen binding protein that specifically or selectively binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • polypeptide fragment refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length protein. Such fragments can also contain modified amino acids as compared with the full-length protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long.
  • Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains.
  • useful fragments include but are not limited to a CDR region, a variable domain of a heavy or light chain, a portion of an antibody chain or just its variable region including two CDRs, and the like.
  • isolated protein means that a subject protein (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature.
  • an “isolated protein” constitutes at least about 5%, at least about 10%, at least about 25%, or at least about 50% of a given sample.
  • Genomic DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode such an isolated protein.
  • the isolated protein is substantially free from proteins or polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use.
  • a “variant” of a polypeptide comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence.
  • Variants include fusion proteins.
  • a “derivative” of a polypeptide is a polypeptide (e.g., an antigen binding protein, or an antibody) that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., by conjugation to another chemical moiety.
  • Antigen binding region means a protein, or a portion of a protein, that specifically binds a specified antigen, e.g., a complex comprising ⁇ -Klotho and an ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • an antigen binding region typically includes one or more “complementary binding regions” (“CDRs”).
  • CDRs complementary binding regions
  • Certain antigen binding regions also include one or more “framework” regions.
  • a “CDR” is an amino acid sequence that contributes to antigen binding specificity and affinity. “Framework” regions can aid in maintaining the proper conformation of the CDRs to promote binding between the antigen binding region and an antigen.
  • recombinant antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, are provided.
  • a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art.
  • antigen binding proteins e.g., neutralizing antigen binding proteins, neutralizing antibodies, agonistic antigen binding proteins, agonistic antibodies and binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) that compete for the same epitope or binding site on a target
  • a reference molecule e.
  • ⁇ assays Numerous types of competitive binding assays can be used to determine if a test molecule competes with a reference molecule for binding.
  • assays include solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., (1983) Methods in Enzymology 9:242-253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., (1986) J. Immunol.
  • RIA solid phase direct or indirect radioimmunoassay
  • EIA enzyme immunoassay
  • sandwich competition assay see, e.g., Stahli et al., (1983) Methods in Enzymology 9:242-253
  • solid phase direct biotin-avidin EIA see, e.g., Kirkland et al., (1986) J. Immunol.
  • solid phase direct labeled assay solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, (1988) supra); solid phase direct label RIA using 1-125 label (see, e.g., Morel et al., (1988) Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., (1990) Virology 176:546-552); and direct labeled RIA (Moldenhauer et al., (1990) Scand. J. Immunol. 32:77-82).
  • such an assay involves the use of a purified antigen bound to a solid surface or cells bearing either of an unlabelled test antigen binding protein or a labeled reference antigen binding protein.
  • Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein.
  • the test antigen binding protein is present in excess.
  • Antigen binding proteins identified by competition assay include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Additional details regarding methods for determining competitive binding are provided in the examples herein.
  • a competing antigen binding protein when present in excess, it will inhibit specific binding of a reference antigen binding protein to a common antigen by at least 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%. In some instance, binding is inhibited by at least 80%, 85%, 90%, 95%, or 97% or more.
  • antigen refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antigen binding protein (including, e.g., an antibody or immunological functional fragment thereof), and may also be capable of being used in an animal to produce antibodies capable of binding to that antigen.
  • a selective binding agent such as an antigen binding protein (including, e.g., an antibody or immunological functional fragment thereof)
  • an antigen can possess one or more epitopes that are capable of interacting with different antigen binding proteins, e.g., antibodies.
  • epitope means the amino acids of a target molecule that are contacted by an antigen binding protein (for example, an antibody) when the antigen binding protein is bound to the target molecule.
  • an antigen binding protein for example, an antibody
  • the term includes any subset of the complete list of amino acids of the target molecule that are contacted when an antigen binding protein, such as an antibody, is bound to the target molecule.
  • An epitope can be contiguous or non-contiguous (e.g., (i) in a single-chain polypeptide, amino acid residues that are not contiguous to one another in the polypeptide sequence but that within in context of the target molecule are bound by the antigen binding protein, or (ii) in a multimeric receptor comprising two or more individual components, e.g., a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, amino acid residues that are present on one or more of the individual components, but which are still bound by the antigen binding protein).
  • epitopes can be mimetic in that they comprise a three dimensional structure that is similar to an antigenic epitope used to generate the antigen binding protein, yet comprise none or only some of the amino acid residues found in that epitope used to generate the antigen binding protein.
  • epitopes reside on proteins, but in some instances can reside on other kinds of molecules, such as nucleic acids.
  • Epitope determinants can include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and can have specific three dimensional structural characteristics, and/or specific charge characteristics.
  • antigen binding proteins specific for a particular target molecule will preferentially recognize an epitope on the target molecule in a complex mixture of proteins and/or macromolecules.
  • identity refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent identity” means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared. For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an “algorithm”). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology , (Lesk, A.
  • the sequences being compared are aligned in a way that gives the largest match between the sequences.
  • the computer program used to determine percent identity is the GCG program package, which includes GAP (Devereux et al., (1984) Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.).
  • GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined.
  • the sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span”, as determined by the algorithm).
  • a gap opening penalty (which is calculated as 3 ⁇ the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm.
  • a standard comparison matrix (see, Dayhoff et al., (1978) Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., (1992) Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.
  • Certain alignment schemes for aligning two amino acid sequences can result in matching of only a short region of the two sequences, and this small aligned region can have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (e.g., the GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.
  • the selected alignment method e.g., the GAP program
  • substantially pure means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture.
  • a substantially pure molecule is a composition wherein the object species comprises at least 50% (on a molar basis) of all macromolecular species present.
  • a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of all macromolecular species present in the composition.
  • the object species is purified to essential homogeneity wherein contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of a single detectable macromolecular species.
  • treat and “treating” refer to any indicia of success in the treatment or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the injury, pathology or condition more tolerable to the patient; slowing in the rate of degeneration or decline; making the final point of degeneration less debilitating; improving a patient's physical or mental well-being.
  • the treatment or amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination, neuropsychiatric exams, and/or a psychiatric evaluation.
  • certain methods presented herein can be employed to treat Type 2 diabetes, obesity and/or dyslipidemia, either prophylactically or as an acute treatment, to decrease plasma glucose levels, to decrease circulating triglyceride levels, to decrease circulating cholesterol levels and/or ameliorate a symptom associated with type 2 diabetes, obesity and dyslipidemia.
  • an “effective amount” is generally an amount sufficient to reduce the severity and/or frequency of symptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with diabetes, obesity and dyslipidemia.
  • the effective amount is a therapeutically effective amount or a prophylactically effective amount.
  • a “therapeutically effective amount” is an amount sufficient to remedy a disease state (e.g., diabetes, obesity or dyslipidemia) or symptoms, particularly a state or symptoms associated with the disease state, or otherwise prevent, hinder, retard or reverse the progression of the disease state or any other undesirable symptom associated with the disease in any way whatsoever.
  • a “prophylactically effective amount” is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the onset (or reoccurrence) of diabetes, obesity or dyslipidemia, or reducing the likelihood of the onset (or reoccurrence) of diabetes, obesity or dyslipidemia or associated symptoms.
  • the full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
  • a therapeutically or prophylactically effective amount can be administered in one or more administrations.
  • amino acid takes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology—A Synthesis, 2nd Edition, (E. S. Golub and D. R. Green, eds.), Sinauer Associates: Sunderland, Mass. (1991), incorporated herein by reference for any purpose.
  • Stereoisomers e.g., D-amino acids of the twenty conventional amino acids, unnatural or non-naturally occurring or encoded amino acids such as ⁇ -, ⁇ -disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids can also be suitable components for polypeptides and are included in the phrase “amino acid.”
  • non-natural and non-naturally encoded amino acids include: 4-hydroxyproline, ⁇ -carboxyglutamate, ⁇ -N,N,N-trimethyllysine, ⁇ -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ⁇ -N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
  • the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention.
  • a non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include ⁇ -amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains.
  • Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), N ⁇ -methylcitrulline (NMeCit), N ⁇ -methylhomocitrulline (N ⁇ -MeHoCit), ornithine (Om), N ⁇ -Methylomithine (N ⁇ -MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), N ⁇ -methylarginine (NMeR), N ⁇ -methylleucine (N ⁇ -MeL or NMeL), N-methylhomolysine (NMeHoK), N ⁇ -methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-car
  • Antigen-binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided herein.
  • a unique property of the antigen binding proteins disclosed herein is the agonistic nature of these proteins, specifically the ability to mimic the in vivo effect of FGF21 and to induce FGF21-like signaling.
  • the antigen binding proteins disclosed herein induce FGF21-like signaling in several in vitro cell-based assay, including the ELK-luciferase reporter assay of Example 4 under the following conditions: (1) the binding to and activity of the FGF21 receptor is ⁇ -Klotho dependent; (2) the activity is selective to the FGFR/ ⁇ -Klotho complex; (3) the binding to the FGFR1c/ ⁇ Klotho complex triggers FGF21-like signaling pathways; and (4) the potency (EC50) is comparable to a wild-type FGF21 standard comprising the mature form of SEQ ID NO: 2, as measured in the following cell-based assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in more details in Example 6.
  • the disclosed antigen binding proteins therefore, are expected to exhibit activities in vivo that are consistent with the natural biological function of FGF21. This property makes the disclosed antigen binding proteins viable therapeutics for the treatment of metabolic diseases such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.
  • metabolic diseases such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.
  • the antigen binding proteins provided can comprise polypeptides into which one or more complementary determining regions (CDRs) can be embedded and/or joined.
  • CDRs complementary determining regions
  • the CDRs can be embedded into a “framework” region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved.
  • such antigen binding proteins that are provided can facilitate or enhance the interaction between an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) and ⁇ -Klotho, and can substantially induce FGF21-like signaling.
  • the antigen binding proteins provided herein mimic the in vivo role of FGF21 and are thus “agonistic” and offer potential therapeutic benefit for the range of conditions which benefit from FGF21 therapy, including type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.
  • antigen binding proteins described herein are antibodies or are derived from antibodies.
  • the polypeptide structure of the antigen binding proteins is based on antibodies, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), hemibodies and fragments thereof.
  • the antigen binding proteins provided herein have been demonstrated to bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and particularly to a complex comprising human ⁇ -Klotho and a human FGFR (e.g., a human FGFR1c, a human FGFR2c or a human FGFR3c).
  • antigen binding proteins As described and shown in the Examples presented herein, based Western blot results, known commercially-available anti- ⁇ -Klotho or anti-FGFR1c antibodies bind to denatured ⁇ -Klotho or FGFR1c whereas the antigen binding protein (which are agonistic antibodies) do not. Conversely, the provided antigen binding proteins recognize the native structure of the FGFR1c and ⁇ -Klotho on the cell surface whereas the commercial antibodies do not. The antigen binding proteins that are provided therefore mimic the natural in vivo biological activity of FGF21. As a consequence, the antigen binding proteins provided herein are capable of activating FGF21-like signaling activity.
  • the disclosed antigen binding proteins can have one or more of the following activities in vivo: induction of FGF21-like signal transduction pathways, lowering blood glucose levels, lowering circulating lipid levels, improving metabolic parameters and other physiological effects induced in vivo by the formation of the ternary complex of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), ⁇ -Klotho and FGF21, for example conditions such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • FGFR e.g., FGFR1c, FGFR2c or FGFR3c
  • FGF21 for example conditions such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • the antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein have a variety of utilities. Some of the antigen binding proteins, for instance, are useful in specific binding assays, in the affinity purification of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these disclosed proteins, and in screening assays to identify other agonists of FGF21-like signaling activity.
  • antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein can be used in a variety of treatment applications, as explained herein.
  • certain antigen binding proteins are useful for treating conditions associated with FGF21-like signaling processes in a patient, such as reducing, alleviating, or treating type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • antigen binding proteins include, for example, diagnosis of diseases or conditions associated with ⁇ -Klotho, FGFR1c, FGFR2c, FGFR3c, FGFR4 or FGF21, and screening assays to determine the presence or absence of these molecules.
  • Some of the antigen binding proteins described herein can be useful in treating conditions, symptoms and/or the pathology associated with decreased FGF21-like signaling activity.
  • Exemplary conditions include, but are not limited to, diabetes, obesity, NASH and dyslipidemia.
  • the antigen binding proteins disclosed herein induce FGF21-mediated signaling, as defined herein.
  • the mature form of FGF21 is the active form of the molecule.
  • the nucleotide sequence encoding full length FGF21 is provided; the nucleotides encoding the signal sequence are underlined.
  • the amino acid sequence of full length FGF21 is provided; the amino acids that make up the signal sequence are underlined:
  • the antigen binding proteins disclosed herein bind to FGFR1c, in particular human FGFR1c, when associated with ⁇ -Klotho.
  • the nucleotide sequence encoding human FGFR1c (GenBank Accession Number NM_023110) is provided:
  • the antigen binding proteins described herein bind the extracellular portion of FGFR1c.
  • An example of an extracellular region of FGFR1c is:
  • FGFR1c proteins can also include fragments.
  • the terms are used interchangeably to mean a receptor, in particular and unless otherwise specified, a human receptor, that upon association with ⁇ -Klotho and FGF21 induces FGF21-like signaling activity.
  • FGFR1c also includes post-translational modifications of the FGFR1c amino acid sequence, for example, possible N-linked glycosylation sites.
  • the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.
  • the antigen binding proteins disclosed herein bind to ⁇ -Klotho, in particular human ⁇ -Klotho.
  • the nucleotide sequence encoding human ⁇ -Klotho (GenBank Accession Number NM_175737) is provided:
  • the antigen binding proteins described herein bind the extracellular portion of ⁇ -Klotho.
  • An example of an extracellular region of ⁇ -Klotho is:
  • the murine form of ⁇ -Klotho, and fragments and subsequences thereof, can be of use in studying and/or constructing the molecules provided herein.
  • the nucleotide sequence encoding murine ⁇ -Klotho (GenBank Accession Number NM_031180) is provided:
  • amino acid sequence of full length murine ⁇ -Klotho (GenBank Accession Number NP_112457) is provided:
  • ⁇ -Klotho proteins can also include fragments.
  • the terms are used interchangeably to mean a co-receptor, in particular and unless otherwise specified, a human co-receptor, that upon association with FGFR1c and FGF21 induces FGF21-like signaling activity.
  • ⁇ -Klotho also includes post-translational modifications of the ⁇ -Klotho amino acid sequence, for example, possible N-linked glycosylation sites.
  • the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.
  • Antigen Binding Proteins that Specifically Bind to a Complex Comprising ⁇ -Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c)
  • FGFR e.g., FGFR1c, FGFR2c or FGFR3c
  • a variety of selective binding agents useful for modulating FGF21-like signaling are provided. These agents include, for instance, antigen binding proteins that contain an antigen binding domain (e.g., single chain antibodies, domain antibodies, hemibodies, immunoadhesions, and polypeptides with an antigen binding region) and specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, in particular a complex comprising human ⁇ -Klotho and a human FGFR (e.g., human FGFR1c, human FGFR2c or human FGFR3c).
  • an antigen binding domain e.g., single chain antibodies, domain antibodies, hemibodies, immunoadhesions, and polypeptides with an antigen binding region
  • agents are useful in mimicking the signaling effect generated in vivo by the association of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) with ⁇ -Klotho and with FGF21, and can thus be used to enhance or modulate one or more activities associated with FGF21-like signaling.
  • FGFR e.g., FGFR1c, FGFR2c or FGFR3c
  • the antigen binding proteins that are provided typically comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5 or 6 CDRs).
  • the antigen binding proteins are naturally expressed by clones, while in other embodiments, the antigen binding protein can comprise (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure.
  • a CDR forms a component of a heavy or light chains expressed by the clones described herein; in other embodiments a CDR can be inserted into a framework in which the CDR is not naturally expressed.
  • a polypeptide framework structure can take a variety of different forms.
  • a polypeptide framework structure can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or it can be completely synthetic in nature. Examples of various antigen binding protein structures are further described below.
  • the polypeptide framework structure of an antigen binding protein is an antibody or is derived from an antibody, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, antibody fusions (sometimes referred to as “antibody conjugates”), and portions or fragments of each, respectively.
  • the antigen binding protein is an immunological fragment of an antibody (e.g., a Fab, a Fab′, a F(ab′) 2 , or a scFv).
  • an antigen binding protein specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these proteins.
  • an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4, and human ⁇ -Klotho comprising the amino acid sequence of SEQ ID NO: 7, and in another embodiment an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4 and human ⁇ -Klotho having the amino acid sequence of SEQ ID NO: 7 and induces FGF21-like signaling.
  • an antigen binding protein can, but need not, induce FGF21-like signaling.
  • the structural units of these antibodies typically comprise one or more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain.
  • each pair or couplet includes one full-length “light” chain (in certain embodiments, about 25 kDa) and one full-length “heavy” chain (in certain embodiments, about 50-70 kDa).
  • Each individual immunoglobulin chain is composed of several “immunoglobulin domains,” each consisting of roughly 90 to 110 amino acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed.
  • the amino-terminal portion of each chain typically includes a variable domain that is responsible for antigen recognition.
  • the carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and is referred to as the “constant region” or “C region”.
  • Human light chains generally are classified as kappa (“ ⁇ ”) and lambda (“ ⁇ ”) light chains, and each of these contains one variable domain and one constant domain.
  • Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively.
  • IgG has several subtypes, including, but not limited to, IgG1, IgG2, IgG3, and IgG4.
  • IgM subtypes include IgM, and IgM2.
  • IgA subtypes include IgA1 and IgA2.
  • the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five heavy chains and five light chains.
  • the heavy chain C region typically comprises one or more domains that can be responsible for effector function.
  • the number of heavy chain constant region domains will depend on the isotype.
  • IgG heavy chains for example, each contain three C region domains known as C H 1, C H 2 and C H 3.
  • the antibodies that are provided can have any of these isotypes and subtypes.
  • an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is an antibody of the IgG1, IgG2, or IgG4 subtype.
  • variable and constant regions are joined by a “J” region of about twelve or more amino acids, with the heavy chain also including a “D” region of about ten more amino acids.
  • J Fundamental Immunology
  • the variable regions of each light/heavy chain pair typically form the antigen binding site.
  • IgG2 heavy constant domain of an exemplary monoclonal antibody that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • One example of a kappa light constant domain of an exemplary monoclonal antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • a lambda light constant domain of an exemplary monoclonal antibody that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • Variable regions of immunoglobulin chains generally exhibit the same overall structure, comprising relatively conserved framework regions (FR) joined by three hypervariable regions, more often called “complementarity determining regions” or CDRs.
  • the CDRs from the two chains of each heavy chain/light chain pair mentioned above typically are aligned by the framework regions to form a structure that binds specifically with a specific epitope on the target protein (e.g., a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the various heavy chain and light chain variable regions of antigen binding proteins provided herein are depicted in Table 2. Each of these variable regions can be attached to the disclosed heavy and light chain constant regions to form a complete antibody heavy and light chain, respectively. Further, each of the so-generated heavy and light chain sequences can be combined to form a complete antibody structure. It should be understood that the heavy chain and light chain variable regions provided herein can also be attached to other constant domains having different sequences than the exemplary sequences listed above.
  • Tables 1A and 1B Specific examples of some of the full length light and heavy chains of the antibodies that are provided and their corresponding amino acid sequences are summarized in Tables 1A and 1B.
  • Table 1A shows exemplary light chain sequences
  • Table 1B shows exemplary heavy chain sequences.
  • Each of the exemplary heavy chains (H1, H2, H3 etc.) listed in Table 1B, infra, can be combined with any of the exemplary light chains shown in Table 1A, infra, to form an antibody. Examples of such combinations include H1 combined with any of L1 through L100; H2 combined with any of L1 through L100; H3 combined with any of L1 through L100, and so on.
  • the antibodies include at least one heavy chain and one light chain from those listed in Tables 1A and 1B, infra; particular examples pairings of light chains and heavy chains include L1 with H1, L2 with H1, L3 with H2 or H3, L4 with H4, L5 with H5, L6 with H6, L7 with H6, L8 with H7 or H8, L9 with H9, L10 with H9, L11 with H10, L12 with H11, L13 with H12, L13 with H14, L14 with H13, L15 with H14, L16 with H15, L17 with H16, L18 with H17, L19 with H18, L20 with H19, L21 with H20, L22 with H21, L23 with H22, L24 with H23, L25 with H24, L26 with H25, L27 with H26, L28 with H27, L29 with H28, L30 with H29, L31 with H30, L32 with H31, L33 with H32, L34 with H33, L35 with
  • a heavy chain from a first clone can be paired with a light chain from a second clone (e.g., a heavy chain from a first clone paired with a light chain from a second clone or a heavy chain from a first clone paired with a light chain from a second clone).
  • a second clone e.g., a heavy chain from a first clone paired with a light chain from a second clone or a heavy chain from a first clone paired with a light chain from a second clone.
  • such pairings can include V L with 90% or greater homology can be paired with the heavy chain of the naturally occurring clone.
  • an antibody or immunologically functional fragment can include two L1 light chains with two H1 heavy chains, two L2 light chains with two H1 heavy chains, two L3 light chains with two H2 heavy chains or two H3 heavy chains, two L4 light chains with two H4 heavy chains, two L5 light chains with two H5 heavy chains, two L6 light chains with two H6 heavy chains, two L7 light chains with two H6 heavy chains, two L8 light chains with two H7 heavy chains or two H8 heavy chains, two L9 light chains with two H9 heavy chains, two L10 light chains with two H9 heavy chains, two L11 light chains with two H10 heavy chains, two L12 light chains with two H11 heavy chains, two L13 light chains with two H12 heavy chains, two L13 light chains with two H14 heavy chains, two L14 light chains with two H13 heavy chains, two
  • a hemibody is a monovalent antigen binding protein comprising (i) an intact light chain, and (ii) a heavy chain fused to an Fc region (e.g., an IgG2 Fc region of SEQ ID NO: 11), optionally via a linker,
  • the linker can be a (G4S) x linker (SEQ ID NO: 207) where “x” is a non-zero integer (e.g., (G4S) 2 , (G4S) 3 , (G4S) 4 , (G4S) 5 , (G4S) 6 , (G4S) 7 , (G4S) 8 , (G4S) 9 , (G4S) 10 ; SEQ ID NOs: 208-216, respectively).
  • Hemibodies can be constructed using the provided heavy and light chain components.
  • antigen binding proteins that are provided are variants of antibodies formed by combination of the heavy and light chains shown in Tables 1A and 1B, infra and comprise light and/or heavy chains that each have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequences of these chains.
  • such antibodies include at least one heavy chain and one light chain, whereas in other instances the variant forms contain two identical light chains and two identical heavy chains.
  • antigen binding proteins that contain an antibody heavy chain variable region selected from the group consisting of V H 1, V H 2, V H 3, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H 57, V H 58, V H 59, V H 60, V H 61, V H 62, V H 63, V H 64, V H
  • V L Antibody Variable Light Chains Contained SEQ ID in Clone Designation NO.
  • Amino Acid Sequence 63E6 V L 6 217 DIQMTQSPSSLSASVGDRVTITCRTSQSISSYLNWY QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR 66F7 V L 7 218 DIQMTQSPSSLSASVGDRVTITCRTSQSISNYLNWY QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR 66D4 V L 18 219 DIQMTQSPSSLSASVGDRITITCRASQIISRYLNWY QQNPGKAPKLLISAASSLQSGVPSRFSGSGSGSGPDFT LTISSLQPEDFTTYYCQQSYSSPLTFGGGTK
  • V H Antibody Variable Heavy Chains Contained SEQ ID in Clone Designation NO.
  • Amino Acid Sequence 63E6 V H 6 316 QVQLMQSGAEVKKPGASVKVSCKASGYTFTGY 66F7 YMHWVRQAPGQGLEWMGWMNPNSGATKYA QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY YCARELGDYPFFDYWGQGTLGIVSS 66D4 V H 17 317 QVQLVQSGAEVKKPGASVKVSCRASGYTFTGY YIHWMRQAPGHGLEWMGWINPPSGATNYAQK FRGRVAVTRDTSISTVYMELSRLRSDDTAVYYC ARETGTWNFFDYWGQGTLVTVSS 66B4 V H 10 318 QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY YLHWVRQAPGQGLEWMGWINPNSGGTDYAQK FQGRVTMTRDTS
  • V L Variable Light Chains Contained SEQ ID in Clone Designation NO. Coding Sequence 63E6 V L 6 410 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT CTGCATCTGTAGGAGACAGAGTCACCATCACTT GCCGGACAAGTCAGAGTATTAGCAGCTATTTAA ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA ACCTCCTGATCTATGCTGCATCCAGTTTGCAAAG TGGGGTCCCATCAAGATTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCGGTCTG CAACCTGAAGATTTTTCAACTTACTACTGTCAAC AGAGTTACAGTACCTCGCTCACTTTCGGCGGAG GGACCAAGGTGGATCAAACGA 66D4 V L 18 411 GACATCCAGATGACCCAGTCGCCATCCTCCCTGT CTGCATCTGTAGGAGACAGGATCACCATCACTT GCCG
  • Each of the heavy chain variable regions listed in Table 2B can be combined with any of the light chain variable regions shown in Table 2A to form an antigen binding protein.
  • Examples of such combinations include V H 1 combined with any of V L 1, V L 2, V L 3, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, V L 41, V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L 57, V L 58, V
  • the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in Tables 2A and 2B. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from those listed in Table 2B.
  • an antigen binding protein comprises (a) one V H 1, and (b) one of V H 2, V H 3, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H 57, V H 58, V H 59, V H 60, V H 61, V H 62, V H 63, V H 64, V H 65,
  • Another example comprises (a) one V H 2, and (b) one of V H 1, V H 3, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H 57, V H 58, V H 59, V H 60, V H 61, V H 62, V H 63, V H 64, V H 65, V H 66, V
  • Yet another example comprises (a) one V H 3, and (b) one of V H 1, V H 2, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H 57, V H 58, V H 59, V H 60, V H 61, V H 62, V H 63, V H 64, V H 65, V H 66,
  • Still another example of such an antigen binding protein comprises (a) one V L 1, and (b) one of V L 2, V L 3, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, V L 41, V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L 57, V L 58, V L 59, V L 60, V L 61, V L 62, V L 63, V L 64, V L
  • V L 2 comprises (a) one V L 2, and (b) one of V L 1, V L 3, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, V L 41, V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L 57, V L 58, V L 59, V L 60, V L 61, V L 62, V L 63, V L 64, V L 65
  • V L 3 comprises (a) one V L 3, and (b) one of V L 1, V L 2, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, V L 41, V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L 57, V L 58, V L 59, V L 60, V L 61, V L 62, V L 63, V L 64, V L 65
  • the various combinations of heavy chain variable regions can be combined with any of the various combinations of light chain variable regions.
  • an antigen binding protein comprises two identical light chain variable regions and/or two identical heavy chain variable regions.
  • the antigen binding protein can be an antibody or immunologically functional fragment thereof that includes two light chain variable regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in Tables 2A and 2B.
  • Some antigen binding proteins that are provided comprise a heavy chain variable domain comprising a sequence of amino acids that differs from the sequence of a heavy chain variable domain selected from V H 1, V H 2, V H 3, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H 57, V H 58, V H 59, V H 60, V H 61
  • the heavy chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the heavy chain variable region of V H 1, V H 2, V H 3, V H 4, V H 5, V H 6, V H 7, V H 8, V H 9, V H 10, V H 11, V H 12, V H 13, V H 14, V H 15, V H 16, V H 17, V H 18, V H 19, V H 20, V H 21 V H 22, V H 23, V H 24, V H 25, V H 26, V H 27, V H 28, V H 29, V H 30, V H 31, V H 32, V H 33, V H 34, V H 35, V H 36, V H 37, V H 38, V H 39, V H 40, V H 41, V H 42, V H 43, V H 44, V H 45, V H 46, V H 47, V H 48, V H 49, V H 50, V H 51, V H 52, V H 53, V H 54, V H 55, V H 56, V H
  • Certain antigen binding proteins comprise a light chain variable domain comprising a sequence of amino acids that differs from the sequence of a light chain variable domain selected from V L 1, V L 2, V L 3, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, VAL V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L 57, V L 58, V L 59, V L 60, V L 61, V L 62
  • the light chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the light chain variable region of V L 1, V L 2, V L 3, V L 4, V L 5, V L 6, V L 7, V L 8, V L 9, V L 10, V L 11, V L 12, V L 13, V L 14, V L 15, V L 16, V L 17, V L 18, V L 19, V L 20, V L 21, V L 22, V L 23, V L 24, V L 25, V L 26, V L 27, V L 28, V L 29, V L 30, V L 31, V L 32, V L 33, V L 34, V L 35, V L 36, V L 37, V L 38, V L 39, V L 40, V L 41, V L 42, V L 43, V L 44, V L 45, V L 46, V L 47, V L 48, V L 49, V L 50, V L 51, V L 52, V L 53, V L 54, V L 55, V L 56, V L
  • antigen binding proteins comprise the following pairings of light chain and heavy chain variable domains: V L 1 with V H 1, V L 2 with V H 1, V L 3 with V H 2 or V H 3, V L 4 with V H 4, V L 5 with V H 5, V L 6 with V H 6, V L 7 with V H 6, V L 8 with V H 7 or V H 8, V L 9 with V H 9, V L 10 with V H 9, V L 11 with V H 10, V L 12 with V H 11, V L 13 with V H 12, V L 13 with V H 14, V L 14 with V H 13, V L 15 with V H 14, V L 16 with V H 15, V L 17 with V H 16, V L 18 with V H 17, V L 19 with V H 18, V L 20 with V H 19, V L 21 with V H 20, V L 22 with V H 21, V L 23 with V H 22, V L 24 with V H 23, V L 25 with V H 24, V L 26 with V H 25, V L 27 with V H 26, V L 28 with V H 27, V L 29 with V H 28, V L 30 with V H 29, V L 31 with V H 30,
  • the antigen binding proteins in the above pairings can comprise amino acid sequences that have 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with the specified variable domains.
  • antigen binding proteins e.g., antibodies or immunologically functional fragments
  • antibodies or immunologically functional fragments include variant forms of a variant heavy chain and a variant light chain as just described.
  • the antigen binding proteins disclosed herein can comprise polypeptides into which one or more CDRs are grafted, inserted and/or joined.
  • An antigen binding protein can have 1, 2, 3, 4, 5 or 6 CDRs.
  • An antigen binding protein thus can have, for example, one heavy chain CDR1 (“CDRH1”), and/or one heavy chain CDR2 (“CDRH2”), and/or one heavy chain CDR3 (“CDRH3”), and/or one light chain CDR1 (“CDRL1”), and/or one light chain CDR2 (“CDRL2”), and/or one light chain CDR3 (“CDRL3”).
  • Some antigen binding proteins include both a CDRH3 and a CDRL3. Specific heavy and light chain CDRs are identified in Tables 3A and 3B, respectively, infra.
  • Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented in the Kabat nomenclature scheme, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol.
  • Certain antibodies that are disclosed herein comprise one or more amino acid sequences that are identical or have substantial sequence identity to the amino acid sequences of one or more of the CDRs presented in Table 3A (CDRHs) and Table 3B (CDRLs), infra.
  • CDRL Sequences SEQ Contained ID in Desig- Amino Acid Clone NO: Reference nation Sequence 48C9 814 V L 78 CDRL1-1 RASQNIRTYLN 49A12 V L 78 51E2 V L 78 48F3 815 V L 77 CDRL1-2 RASQRISSYLN 48F8 816 V L 49 CDRL1-3 RASQDIGNSLH 53B9 V L 49 56B4 V L 49 57E7 V L 49 57F11 V L 49 48H11 817 V L 40 CDRL1-4 RASQNIRSYLN 49A10 818 V L 65 CDRL1-5 RSSQSLLDSDDGNTYLD 48D4 V L 65 49C8 819 V L 45 CDRL1-6 QASQDINIYLN 52H1 V L 45 49G2 820 V L 66 CDRL1-7 RSSQSLLDSDDGDTYLD 50C12 V L 66 55G11 V L 66 60D7 V L 69 50G1 V L 90 49G
  • CDRs within a naturally occurring antibody has been described, supra. Briefly, in a traditional antibody, the CDRs are embedded within a framework in the heavy and light chain variable region where they constitute the regions responsible for antigen binding and recognition.
  • a variable region comprises at least three heavy or light chain CDRs, see, e.g., Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242; see also Chothia and Lesk, (1987) J. Mol. Biol.
  • CDRs can not only be used to define the antigen binding domain of a traditional antibody structure, but can be embedded in a variety of other polypeptide structures, as described herein.
  • the CDRs provided are (a) a CDRH selected from the group consisting of (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, two, or one amino acids; (B) a CDRL selected from the group consisting of (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 selected from the group consisting of SEQ ID NOS 894-946; (iii) a CDRL3 selected from the group consisting of SEQ ID NOS 947-1020; and (
  • an antigen binding protein comprises 1, 2, 3, 4, 5, or 6 variant forms of the CDRs listed in Tables 3A and 3B, infra, each having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a CDR sequence listed in Tables 3A and 3B, infra.
  • Some antigen binding proteins comprise 1, 2, 3, 4, 5, or 6 of the CDRs listed in Tables 3A and 3B, infra, each differing by no more than 1, 2, 3, 4 or 5 amino acids from the CDRs listed in these tables.
  • an antigen binding protein includes the following associations of CDRL1, CDRL2 and CDRL3, presented for convenience in tabular form and in reference to the clone source of the association:
  • an antigen binding protein includes the following associations of CDRH1, CDRH2 and CDRH3, presented for convenience in tablular form and in reference to the clone source of the association:
  • an antigen binding protein includes the following associations of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3 presented for convenience in tablular form and in reference to the clone source of the association:
  • the CDRs disclosed herein include consensus sequences derived from groups of related monoclonal antibodies.
  • a “consensus sequence” refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within a given amino acid sequences.
  • the CDR consensus sequences provided include CDRs corresponding to each of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3.
  • Consensus sequences were determined using standard analyses of the CDRs corresponding to the V H and V L of the disclosed antigen binding proteins shown in Tables 3A and 3B, some of which specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the consensus sequences can be determined by keeping the CDRs contiguous within the same sequence corresponding to a V H or V L .
  • Group 1 (SEQ ID NO: 1439) QQFGSSLT Group 2 (SEQ ID NO: 1440) QQS Y S T S LT (SEQ ID NO: 1441) QQS Y S S P LT (SEQ ID NO: 1442) QQS F S T P LT (SEQ ID NO: 1443) QQS X 1 S X 2 X 3 LT wherein X 1 is Y or F; X 2 is T or S; and X 3 is P or S.
  • Group 7 (SEQ ID NO: 1462) QVWDSS S D H V V (SEQ ID NO: 1463) QVWDSS S D V V (SEQ ID NO: 1464) QVWDSS C D G V (SEQ ID NO: 1465) QVWDSS S D G V (SEQ ID NO: 1466) QVWDSS X 14 D X 15 V X 16 wherein X 14 is S or C; X 15 is H, V or G; and X 16 is V or absent.
  • Group 8 (SEQ ID NO: 1467) QQSS S IPWT (SEQ ID NO: 1468) QQSS T IPWT (SEQ ID NO: 1469) QQSS X 17 IPWT wherein X 17 is S or T.
  • Group 9 (SEQ ID NO: 1470) QQTNSFPPWT Group 10 (SEQ ID NO: 1471) GTWDSSLS A V V (SEQ ID NO: 1472) GTWDSSLS V V V (SEQ ID NO: 1473) GTWDSSLS A M V (SEQ ID NO: 1474) GTWDSSLS X 18 X 19 V wherein X 18 is A or V; and X 19 is V or M.
  • Group 11 (SEQ ID NO: 1475) QQYDNLP L T (SEQ ID NO: 1476) QQYDNLP F T (SEQ ID NO: 1477) QQYDNLP X 20 T wherein X 20 is L or F.
  • Group 12 (SEQ ID NO: 1478) QQYGSS P PWT (SEQ ID NO: 1479) QQYGSS PWT (SEQ ID NO: 1480) QQYGSS X 21 PWT wherein X 21 is P or absent.
  • Group 13 (SEQ ID NO: 1481) QQYG R S L FT (SEQ ID NO: 1482) QQYG T S P FT (SEQ ID NO: 1483) QQYG X 22 S X 23 FT wherein X 22 is R or T; and X 23 is L or P.
  • Group 15 (SEQ ID NO: 1489) QADWSS T T W V (SEQ ID NO: 1490) QADWSS T A V (SEQ ID NO: 1491) QADWSS T W V (SEQ ID NO: 1492) QAWDSS X 27 T X 28 V wherein X 27 is T or absent; and X 28 is W or A.
  • Group 16 (SEQ ID NO: 1493) QADWS G TV V (SEQ ID NO: 1494) QADWS T TV V (SEQ ID NO: 1495) QAWDS A TV I (SEQ ID NO: 1496) QAWDS X 29 TV X 30 wherein X 29 is G, T, A or absent; and X 30 is V or I.
  • Group 17 (SEQ ID NO: 1497) QQ S YSA T FT (SEQ ID NO: 1498) QQ T YSA P FT (SEQ ID NO: 1499) QQ X 31 YSA X 32 FT wherein X 31 is S or T; and X 32 is T or P.
  • Group 18 (SEQ ID NO: 1500) QQYN I YPRT (SEQ ID NO: 1501) QQYN T YPRT (SEQ ID NO: 1502) QQYN X 33 YPRT wherein X 33 is I or T.
  • Group 19 (SEQ ID NO: 1503) HQ S S DLPLT (SEQ ID NO: 1504) HQ Y D DLPLT (SEQ ID NO: 1505) HQ X 34 X 35 DLPLT wherein X 34 is S or Y; and X 35 is S or D.
  • Group 20 (SEQ ID NO: 1506) MQALQT P F T (SEQ ID NO: 1507) MQALQT L I T (SEQ ID NO: 1508) MQALQT X 36 X 37 T wherein X 36 is P or L; and X 37 is F or I.
  • Group 21 (SEQ ID NO: 1509) QQFGRSFT Group 22 (SEQ ID NO: 1510) YSTDSS V NHVV (SEQ ID NO: 1511) YSTDSS G NHVV (SEQ ID NO: 1512) YSTDSS X 38 NHVV wherein X 38 is V or G.
  • Group 3 (SEQ ID NO: 1526) GAFSRA S (SEQ ID NO: 1527) GAFSRA T (SEQ ID NO: 1528) GAFSRA X 45 wherein X 45 is S or T.
  • Group 4 (SEQ ID NO: 1529) Q D T KRPS (SEQ ID NO: 1530) R D S KRPS (SEQ ID NO: 1531) E D S KRPS (SEQ ID NO: 1532) Q D S KRPS (SEQ ID NO: 1533) X 46 D X 47 KRPS wherein X 46 is Q, R or E; and X 47 is T or S.
  • Group 5 (SEQ ID NO: 1534) TLS Y RAS (SEQ ID NO: 1535) TLS F RAS (SEQ ID NO: 1536) TLS X 48 RAS wherein X 48 is Y or F.
  • Group 6 (SEQ ID NO: 1537) AASNLQ R (SEQ ID NO: 1538) AASNLQ S (SEQ ID NO: 1539) AASNLQ X 49 wherein X49 is R or S.
  • Group 7 (SEQ ID NO: 1540) G A SNRA I (SEQ ID NO: 1541) G S SNRA I (SEQ ID NO: 1542) G S SNRA T (SEQ ID NO: 1543) G X 50 SNRA X 51 wherein X 50 is A or S; and X 51 is I or T.
  • Group 8 (SEQ ID NO: 1544) D A S S LQS (SEQ ID NO: 1545) D A S T LQS (SEQ ID NO: 1546) G A S S LQS (SEQ ID NO: 1547) G A S N LQS (SEQ ID NO: 1548) X 52 A S X 53 LQS wherein X 52 is D or G; and X 53 is S, T or N.
  • Group 9 (SEQ ID NO: 1549) DN N KRPS (SEQ ID NO: 1550) DN D KRPS (SEQ ID NO: 1551) DN X 53 KRPS wherein X 53 is N or D.
  • Group 10 (SEQ ID NO: 1552) D A SNLET (SEQ ID NO: 1553) D V SNLET (SEQ ID NO: 1554) D X 54 SNLET wherein X 54 is A or V.
  • Group 11 (SEQ ID NO: 1555) L G SNRAS (SEQ ID NO: 1556) L D SNRAS (SEQ ID NO: 1557) L X 55 SNRAS wherein X 55 is G or D.
  • Group 12 (SEQ ID NO: 1558) Q D N K RPS (SEQ ID NO: 1559) Q N N K RPS (SEQ ID NO: 1560) Q D N E RPS (SEQ ID NO: 1561) Q X 56 N X 57 RPS wherein X 56 is D or N; and X 57 is K or E.
  • Group 13 (SEQ ID NO: 1562) RDRNRPS Group 14 (SEQ ID NO: 1563) S DSNRPS (SEQ ID NO: 1564) C DSNRPS (SEQ ID NO: 1565) X 58 DSNRPS wherein X 58 is S or C.
  • Group 15 (SEQ ID NO: 1566) DDSDRPS Group 16 (SEQ ID NO: 1567) A V SSLQS (SEQ ID NO: 1568) A S SSLQS (SEQ ID NO: 1569) A X 59 SSLQS wherein X 59 is S or V.
  • Group 17 (SEQ ID NO: 1570) T A SSLQS (SEQ ID NO: 1571) T T SSLQS (SEQ ID NO: 1572) T X 60 SSLQS wherein X 60 is A or T.
  • Group 18 (SEQ ID NO: 1573) K V SNWDS (SEQ ID NO: 1574) K G SNWDS (SEQ ID NO: 1575) K X 61 SNWDS wherein X 61 is V or G.
  • Group 4 (SEQ ID NO: 1613) RASQ D IRNDL G (SEQ ID NO: 1614) RASQ D IRNDL A (SEQ ID NO: 1615) RASQ G IRNDL G (SEQ ID NO: 1616) RASQ X 77 IRNDL X 78 wherein X 77 is D or G; and X 78 is G or A.
  • Group 9 (SEQ ID NO: 1641) SGSSSNIG N NYV A (SEQ ID NO: 1642) SGSSSNIG I NYV S (SEQ ID NO: 1643) SGSSSNIG D NYV S (SEQ ID NO: 1644) SGSSSNIG N NYV S (SEQ ID NO: 1645) SGSSSNIG X 96 NYV X 97 wherein X 96 is N, I or D; and X 97 is A or S.
  • Group 10 (SEQ ID NO: 1646) RAS Q DISNYLA (SEQ ID NO: 1647) RAS H DISNYLA (SEQ ID NO: 1648) RAS X 98 DISNYLA wherein X 98 is Q or H.
  • RSSQSL L HSNG Y NYLD SEQ ID NO: 1653
  • RSSQSL L HSNG F NYLD SEQ ID NO: 1655
  • RSSQSL Q HSNG Y NYLD SEQ ID NO: 1656
  • RSSQSL X 102 HSNG X 103 NYLD wherein X 102 is L or Q; and X 103 is Y or F.
  • Group 13 (SEQ ID NO: 1657) RASQT V RN N YLA (SEQ ID NO: 1658) RASQT I RN S YLA (SEQ ID NO: 1659) RASQT X 104 RN X 105 YLA wherein X 104 is V or I; and X 105 is N or S.
  • Group 14 (SEQ ID NO: 1660) RSS Q R LVYSDGNTYLN (SEQ ID NO: 1661) RSS P S LVYSDGNTYLN (SEQ ID NO: 1662) RSS X 106 X 107 LVYSDGNTYLN wherein X 106 is Q or P; and X 107 is R or S.
  • Group 15 (SEQ ID NO: 1663) SGDA L PKKYA Y (SEQ ID NO: 1664) SGDA V PKKYA N (SEQ ID NO: 1665) SGDA X 108 PKKYA X 109 wherein X 108 is L or V; and X 109 is Y or N.
  • Group 3 (SEQ ID NO: 1676) VTGTDAFDF Group 4 (SEQ ID NO: 1677) TVTKEDYYYYGMDV Group 5 (SEQ ID NO: 1678) DSSGSYYVEDYFDY Group 6 (SEQ ID NO: 1679) D W S IAVAG T FDY (SEQ ID NO: 1680) D L R IAVAG S FDY (SEQ ID NO: 1681) D X 119 X 120 IAVAG X 121 FDY wherein X 119 is W or L; X 120 is S or R; and X 121 is T or S.
  • Group 7 (SEQ ID NO: 1682) EYYYGSGSYYP Group 8 (SEQ ID NO: 1683) ELGDYPFFDY Group 9 (SEQ ID NO: 1684) EYVAEAGFDY Group 10 (SEQ ID NO: 1685) VAAVYWYFDL Group 11 (SEQ ID NO: 1686) YNWNYGAFDF Group 12 (SEQ ID NO: 1687) RASRGYR F GLAFAI (SEQ ID NO: 1688) RASRGYR Y GLAFAI (SEQ ID NO: 1689) RASRGYR X 122 GLAFAI wherein X 122 is F or Y.
  • Group 13 (SEQ ID NO: 1690) DGITMVRGVTHYYGMDV Group 14 (SEQ ID NO: 1691) DH S SGWYYYGMDV (SEQ ID NO: 1692) DH T SCWYYYGMDV (SEQ ID NO: 1693) DH X 123 SCWYYYGMDV wherein X 123 is S or T.
  • Group 15 (SEQ ID NO: 1694) Y S T WDYYYG V DV (SEQ ID NO: 1695) Y R D WDYYYG M DV (SEQ ID NO: 1696) Y X 124 X 125 WDYYYG X 126 DV wherein X 124 is S or R; X 125 is T or D; and X 126 is V or M.
  • Group 4 (SEQ ID NO: 1742) EINHS E N TNYNPSLKS (SEQ ID NO: 1743) EINHS G T TNYNPSLKS (SEQ ID NO: 1744) EINHS X 152 X 153 TNYNPSLKS wherein X 152 is E or G; and X 153 is N or T.
  • Group 5 IIYPGDS D TRYSPSFQG (SEQ ID NO: 1746) IIYPGDS E TRYSPSFQG (SEQ ID NO: 1747) IIYPGDS X 154 TRYSPSFQG wherein X 154 is D or E.
  • Group 7 (SEQ ID NO: 1752) RI K S KTDGGTT D YAAPVKG (SEQ ID NO: 1753) RI K S KTDGGTT E YAAPVKG (SEQ ID NO: 1754) RI I G KTDGGTT D YAAPVKG (SEQ ID NO: 1755) RI X 159 X 160 KTDGGTT X 161 YAAPVKG wherein X 159 is K or I; X 160 is S or G; and X 161 is D or E.
  • Group 8 (SEQ ID NO: 1756) GISGSSAGTYYADSVGK Group 9 (SEQ ID NO: 1757) VIS D SGG S TYYADSVKG (SEQ ID NO: 1758) VIS G SGG D TYYADSVKG (SEQ ID NO: 1759) VIS X 162 SGG X 163 TYYADSVKG wherein X 162 is D or G; and X 163 is S or D.
  • Group 10 (SEQ ID NO: 1760) RTYYRSKWYNDYAVSVKS Group 11 (SEQ ID NO: 1761) RIY I SGSTNYNPSL E N (SEQ ID NO: 1762) RIY T SGSTNYNPSL K S (SEQ ID NO: 1763) RIY X 164 SGSTNYNPSL X 165 X 166 wherein X 164 is I or T; X 165 is E or K; and X 166 is N or S.
  • Group 12 (SEQ ID NO: 1764) WMNPYSGSTG Y AQ N FQ G (SEQ ID NO: 1765) WMNPYSGSTG L AQ R FQ D (SEQ ID NO: 1766) WMNPYSGSTG X 167 AQ X 168 FQ X 169 wherein X 167 is Y or L; X 168 is N or R; and X 169 is G or D.
  • Group 1 (SEQ ID NO: 1767) SG V Y YW N (SEQ ID NO: 1768) SG V Y YW S (SEQ ID NO: 1769) SG G Y YW N (SEQ ID NO: 1770) SG G Y YW S (SEQ ID NO: 1771) SG D N TW S (SEQ ID NO: 1772) SG N Y TW S (SEQ ID NO: 1773) SG D Y TW T (SEQ ID NO: 1774) SG D Y TW S (SEQ ID NO: 1775) SG X 170 X 171 TW X 172 wherein X 170 is V, G, N or D; X 171 is Y or N; and X 172 is N, S or T.
  • Group 2 (SEQ ID NO: 1776) T YYW S (SEQ ID NO: 1777) Y YYW S (SEQ ID NO: 1778) S YYW S (SEQ ID NO: 1779) G YYW S (SEQ ID NO: 1780) G YYW T (SEQ ID NO: 1781) X 173 YYW X 174 wherein X 173 is T, S or G; and X 174 is S or T.
  • Group 3 SEQ ID NO: 1782) S Y GMH (SEQ ID NO: 1783) S F GMH (SEQ ID NO: 1784) T Y GMH (SEQ ID NO: 1785) F Y GMH (SEQ ID NO: 1786) X 175 X 176 GMH wherein X 175 is S, T or F; and X 176 is Y or F.
  • Group 4 SEQ ID NO: 1787) SY A M S (SEQ ID NO: 1788) SY S M N (SEQ ID NO: 1789) SY S M S (SEQ ID NO: 1790) SY X 177 M X 178 wherein X 177 is A or S; and X 178 is S, N or M.
  • Group 5 (SEQ ID NO: 1791) Y YY I H (SEQ ID NO: 1792) G YY L H (SEQ ID NO: 1793) G YY K H (SEQ ID NO: 1794) G YY T H (SEQ ID NO: 1795) G YY I H (SEQ ID NO: 1796) X 179 YY X 180 H wherein X 179 is Y or G; and X 180 is I, L, K or T.
  • Group 6 (SEQ ID NO: 1797) SYG I H (SEQ ID NO: 1798) SYG L H (SEQ ID NO: 1799) SYG X 181 H wherein X 181 is L or I.
  • Group 7 (SEQ ID NO: 1800) NY G M H (SEQ ID NO: 1801) NY G M R (SEQ ID NO: 1802) NY N M H (SEQ ID NO: 1803) NY X 182 M X 183 wherein X 182 is G or N; and X 183 is H, R or M.
  • Group 8 (SEQ ID NO: 1804) S YWIG (SEQ ID NO: 1805) G YWIG (SEQ ID NO: 1806) X 184 YWIG wherein X 184 is S or G.
  • Group 9 (SEQ ID NO: 1807) GY Y MH (SEQ ID NO: 1808) GY F MH (SEQ ID NO: 1809) GY X 185 MH wherein X 185 is Y or F.
  • Group 10 SEQ ID NO: 1810
  • S Y DI N SEQ ID NO: 1811
  • S H DI N SEQ ID NO: 1812
  • S Y DI D SEQ ID NO: 1813
  • X 187 is N or D.
  • Group 11 SEQ ID NO: 1814) N YAMS (SEQ ID NO: 1815) H YAMS (SEQ ID NO: 1816) X 188 YAMS wherein X 188 is N or H.
  • Group 12 (SEQ ID NO: 1817) NAWMS Group 13 (SEQ ID NO: 1818) SSSYYWG Group 14 (SEQ ID NO: 1819) D YYWN (SEQ ID NO: 1820) S YYWN (SEQ ID NO: 1821) X 189 YYWN wherein X 189 is D or S.
  • Group 15 (SEQ ID NO: 1822) SNSA T WN (SEQ ID NO: 1823) SNSA A WN (SEQ ID NO: 1824) SNSA X 190 WN wherein X 190 is T or A.
  • Group 16 (SEQ ID NO: 1825) S YDMH (SEQ ID NO: 1826) T YDMH (SEQ ID NO: 1827) X 191 YDMH wherein X 191 is S or T.
  • an antigen binding protein comprises at least one heavy chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In some cases, an antigen binding protein comprises at least one light chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In other cases, the antigen binding protein comprises at least two heavy chain CDRs according to the determined consensus sequences, and/or at least two light chain CDRs according to the determined consensus sequences. In still other cases, the antigen binding protein comprises at least three heavy chain CDRs according to the determined consensus sequences, and/or at least three light chain CDRs according to the determined consensus sequences.
  • an isolated antigen binding protein comprising (a) one or more heavy chain complementary determining regions (CDRHs) comprising one or more of: (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more light chain complementary determining regions (CDRLs) comprising one or more of: (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 comprising one or more of SEQ ID NOS 894-946; (ii
  • the CDRHs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 603-813, and/or the CDRLs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 814-1020.
  • the VH is selected from the group consisting of SEQ ID NOS 316-409
  • the V L is selected from the group consisting of SEQ ID NOS 217-315.
  • an isolated antigen binding protein comprising (a) one or more variable heavy chains (V H s) comprising one or more of: (i) SEQ ID NOS 316-409; and (ii) a V H of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more variable light chains (V L s) selected from the group consisting of: (i) SEQ ID NOS 217-315, and (ii) a V L of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; or (c) one or more variable heavy chains of (a) and one or more variable light chains of (b).
  • V H s variable heavy chains
  • V L s variable light chains
  • variable heavy chain (V H ) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 36-409
  • variable light chain (V L ) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%. 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 217-315.
  • an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from FGFR1c, FGRF2c and FGFR3c.
  • an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from ⁇ -Klotho.
  • an isolated antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from both ⁇ -Klotho and one or more amino acid residues from FGFR1c, FGFR2c and FGFR3c.
  • the isolated antigen binding protein described hereinabove comprises a first amino acid sequence comprising at least one of the CDRH consensus sequences disclosed herein, and a second amino acid sequence comprising at least one of the CDRL consensus sequences disclosed herein.
  • the first amino acid sequence comprises at least two of the CDRH consensus sequences, and/or the second amino acid sequence comprises at least two of the CDRL consensus sequences. In certain embodiments, the first and the second amino acid sequence are covalently bonded to each other.
  • the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3, the CDRH2 and the CDRH1 parings shown in Table 5 for each clone
  • the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3, the CDRL2 and the CDRL1 pairings shown in Table 4 or each clone.
  • the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79,
  • the antigen binding protein comprises at least two CDRL sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79,
  • the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79
  • the antigen binding protein comprises the CDRH1, CDRH2, and CDRH3 sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77
  • the antigen binding protein comprises the CDRL1, CDRL2, and CDRL3 sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78
  • the antigen binding protein comprises all six CDRs of an antigen binding protein comprising the following V H and V L pairs: V L 1 with V H 1; V L 2 with V H 1; V L 3 with V H 2 or V H 3; V L 4 with V H 4; V L 5 with V H 5; V L 6 with V H 6; V L 7 with V H 6; V L 8 with V H 7 or V H 8; V L 9 with V H 9; V L 10 with V H 9; V L 11 with V H 10; V L 12 with V H 11; V L 13 with V H 12; V L 13 with V H 14; V L 14 with V H 13; V L 15 with V H 14; V L 16 with V H 15; V L 17 with V H 16; V L 18 with V H 17; V L 19 with V H 18; V L 20 with V H 19; V L 21 with V H 20; V L 22 with V H 21; V L 23 with V H 22; V L 24 with V H 23; V L 25 with V H 24; V L 26 with V H
  • the isolated antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof.
  • the antibody fragment of the isolated antigen-binding proteins provided herein can be a Fab fragment, a Fab′ fragment, an F(ab) 2 fragment, an Fv fragment, a diabody, or a single chain antibody molecule.
  • an isolated antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein is a human antibody and can be of the IgG1-, IgG2-IgG3- or IgG4-type.
  • an isolated antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a light or a heavy chain polypeptide as set forth in Tables 1A-1B.
  • an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a variable light or variable heavy domain such as those listed in Tables 2A-2B.
  • an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one, two or three CDRHs or one, two or three CDRLs as set forth in Tables 3A-3B, 4A-4B, infra.
  • Such antigen binding proteins, and indeed any of the antigen binding proteins disclosed herein, can be PEGylated with one or more PEG molecules, for examples PEG molecules having a molecular weight selected from the group consisting of 5K, 10K, 20K, 40K, 50K, 60K, 80K, 100K or greater than 100K.
  • any antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be coupled to a labeling group and can compete for binding to the extracellular portion of the individual protein components of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with an antigen binding protein of one of the isolated antigen binding proteins provided herein.
  • the isolated antigen binding protein provided herein can reduce blood glucose levels, decrease triglyceride and cholesterol levels or improve other glycemic parameters and cardiovascular risk factors when administered to a patient.
  • any antigen binding protein comprising more than one CDR provided in Tables 3A-3B, and 4A-4B
  • any combination of CDRs independently selected from the depicted sequences may be useful.
  • antigen binding proteins with one, two, three, four, five or six of independently selected CDRs can be generated.
  • specific embodiments generally utilize combinations of CDRs that are non-repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions, etc.
  • antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided herein are discussed in more detail below.
  • an antigen binding protein When an antigen binding protein is said to bind an epitope on a complex ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of a protein component of such a complex, what is meant is that the antigen binding protein specifically binds to a specified portion of the complex comprising ⁇ -Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) or to the extracellular domain of such a complex.
  • an FGFR e.g., FGFR1c, FGFR2c or FGFR3c
  • the antigen binding protein can specifically bind to a polypeptide consisting of specified residues (e.g., a specified segment of ⁇ -Klotho).
  • the antigen binding protein in certain cases where an antigen binding protein interacts with both ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, can bind residues, sequences of residues, or regions in both ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, depending on which receptor the antigen binding protein recognizes.
  • the antigen binding protein will bind residues, sequences or residues or regions of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, for example FGFR1c.
  • such an antigen binding protein does not need to contact every residue of ⁇ -Klotho or a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes.
  • every single amino acid substitution or deletion within ⁇ -Klotho or a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes necessarily significantly affect binding affinity.
  • Epitope specificity and the binding domain(s) of an antigen binding protein can be determined by a variety of methods. Some methods, for example, can use truncated portions of an antigen. Other methods utilize antigen mutated at one or more specific residues, such as by employing an alanine scanning or arginine scanning-type approach or by the generation and study of chimeric proteins in which various domains, regions or amino acids are swapped between two proteins (e.g., mouse and human forms of one or more of the antigens or target proteins), or by protease protection assays.
  • antigen binding proteins are provided that compete with one of the exemplified antibodies or functional fragments for binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • Such antigen binding proteins can also bind to the same epitope as one of the herein exemplified antigen binding proteins, or an overlapping epitope.
  • Antigen binding proteins and fragments that compete with or bind to the same epitope as the exemplified antigen binding proteins are expected to show similar functional properties.
  • antigen binding proteins and fragments include those with the heavy and light chains H1-H94 and L1-L100, variable region domains V L 1-V L 100 and V H 1-V H 94, and CDRs provided herein, including those in Tables 1, 2, 3, and 4.
  • the antigen binding proteins that are provided include those that compete with an antibody comprising:
  • V H and a V L selected from V L 1-V L 100 and V H 1-V H 94 and listed for an antigen binding protein listed in Tables 2A and 2B; or
  • the present disclosure provides antigen binding proteins, including human antibodies, that competes for binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody comprises a combination of light chain and heavy chain variable domain sequences selected from the group consisting of V L 1 with V H 1, V L 2 with V H 1, V L 3 with V H 2 or V H 3, V L 4 with V H 4, V L 5 with V H 5, V L 6 with V H 6, V L 7 with V H 6, V L 8 with V H 7 or V H 8, V L 9 with V H 9, V L 10 with V H 9, V L 11 with V H 10, V L 12 with V H 11, V L 13 with V H 12, V L 13 with V H 14, V L 14 with V H 13, V L 15 with V H 14, V L 16 with V H 15, V L 17 with V H 16, V L 18 with V H 17, V L 19 with V H 18, V L 20 with
  • the present disclosure provides antigen binding proteins, including human antibodies, that compete for binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody is 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F
  • an isolated antigen binding protein such as a human antibody, that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with substantially the same Kd as a reference antibody; initiates FGF21-like signaling in an in vitro ELK-Luciferase assay to the same degree as a reference antibody; lowers blood glucose; lowers serum lipid levels; and/or competes for binding with said reference antibody to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, wherein the reference antibody is selected from the group consisting of 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7,
  • the ability to compete with an antibody can be determined using any suitable assay, such as those described herein, in which antigen binding proteins 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B
  • the antigen binding proteins that are provided include monoclonal antibodies that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and induce FGF21-like signaling to various degrees.
  • Monoclonal antibodies can be produced using any technique known in the art, e.g., by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule.
  • the spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myeloma cells to produce hybridomas.
  • Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).
  • suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul;
  • examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210.
  • Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6.
  • a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with an immunogen comprising (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and ⁇ -Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 and cDNA encoding a human ⁇ -Klotho polypeptide of SEQ ID NO: 7 with cells incubated with FGF21 prior to freezing (as shown in Example 2); or (2) cell-bound receptor of 293T transfectants expressing full length human ⁇ -Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO: 4 (as shown in Example 2); harvesting spleen cells from the immunized animal; fusing the harvested
  • Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art.
  • Hybridomas or mAbs can be further screened to identify mAbs with particular properties, such as the ability to induce FGF21-like signaling. Examples of such screens are provided herein.
  • Chimeric and humanized antibodies based upon the foregoing sequences can readily be generated.
  • a chimeric antibody which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof.
  • a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass.
  • chimeric antibodies see, for example, U.S. Pat. No.
  • a goal of making a chimeric antibody is to create a chimera in which the number of amino acids from the intended patient/recipient species is maximized.
  • One example is the “CDR-grafted” antibody, in which the antibody comprises one or more complementarity determining regions (CDRs) from a particular species or belonging to a particular antibody class or subclass, while the remainder of the antibody chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass.
  • CDR-grafted antibody in which the antibody comprises one or more complementarity determining regions (CDRs) from a particular species or belonging to a particular antibody class or subclass, while the remainder of the antibody chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass.
  • the variable region or selected CDRs from a rodent antibody often are grafted into a human antibody, replacing the naturally-occurring variable regions
  • a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to corresponding residues in a human antibody of corresponding isotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., U.S. Pat. No. 5,585,089, and U.S. Pat. No.
  • the CDRs of the light and heavy chain variable regions of the antibodies provided herein are grafted to framework regions (FRs) from antibodies from the same, or a different, phylogenetic species.
  • FRs from several human heavy chain or light chain amino acid sequences can be aligned to identify a consensus amino acid sequence.
  • the FRs of a heavy chain or light chain disclosed herein are replaced with the FRs from a different heavy chain or light chain.
  • rare amino acids in the FRs of the heavy and light chains of an antigen binding protein e.g., an antibody
  • an antigen binding protein e.g., an antibody
  • a “rare amino acid” is a specific amino acid that is in a position in which this particular amino acid is not usually found in an FR.
  • the grafted variable regions from the one heavy or light chain can be used with a constant region that is different from the constant region of that particular heavy or light chain as disclosed herein.
  • the grafted variable regions are part of a single chain Fv antibody.
  • constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.
  • Fully human antibodies are provided by the instant disclosure. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen (“fully human antibodies”).
  • One specific means provided for implementing the production of fully human antibodies is the “humanization” of the mouse humoral immune system.
  • Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen.
  • mAbs monoclonal antibodies
  • Using fully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derived mAbs to humans as therapeutic agents.
  • Fully human antibodies can be produced by immunizing transgenic animals (typically mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production.
  • Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten.
  • a carrier such as a hapten.
  • transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins.
  • Partially modified animals which have less than the full complement of human immunoglobulin loci, are then cross-bred to obtain an animal having all of the desired immune system modifications.
  • these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions.
  • antibodies of the invention can be prepared through the utilization of a transgenic mouse that has a substantial portion of the human antibody producing genome inserted but that is rendered deficient in the production of endogenous, murine antibodies. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving this result are disclosed in the patents, applications and references disclosed in the specification, herein. In certain embodiments, one can employ methods such as those disclosed in PCT Published Application No. WO 98/24893 or in Mendez et al., (1997) Nature Genetics, 15:146-156, which are hereby incorporated by reference for any purpose.
  • Fully human monoclonal antibodies specific for a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c can be produced as follows.
  • Transgenic mice containing human immunoglobulin genes are immunized with the antigen of interest, e.g. those described herein, lymphatic cells (such as B-cells) from the mice that express antibodies are obtained.
  • lymphatic cells such as B-cells
  • Such recovered cells are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to the antigen of interest.
  • the production of a hybridoma cell line that produces antibodies specific to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c is provided.
  • fully human antibodies can be produced by exposing human splenocytes (B or T cells) to an antigen in vitro, and then reconstituting the exposed cells in an immunocompromised mouse, e.g. SCID or nod/SCID.
  • SCID immunocompromised mouse
  • engraftment of human fetal tissue into SCID mice results in long-term hematopoiesis and human T-cell development.
  • transplanted cells when such transplanted cells are treated either with a priming agent, such as Staphylococcal Enterotoxin A (SEA), or with anti-human CD40 monoclonal antibodies, higher levels of B cell production is detected.
  • SEA Staphylococcal Enterotoxin A
  • SEA Staphylococcal Enterotoxin A
  • Fully human antibodies can be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells.
  • antibodies can be produced using the phage display techniques described herein.
  • mice were prepared through the utilization of the XENOMOUSE® technology, as described herein. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving the same are disclosed in the patents, applications, and references disclosed in the background section herein. In particular, however, a preferred embodiment of transgenic production of mice and antibodies therefrom is disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, published Jun. 11, 1998 and WO 00/76310, published Dec. 21, 2000, the disclosures of which are hereby incorporated by reference. See also Mendez et al., Nature Genetics, 15:146-156 (1997), the disclosure of which is hereby incorporated by reference.
  • XENOMOUSE® lines of mice are immunized with an antigen of interest (e.g. an antigen provided herein), lymphatic cells (such as B-cells) are recovered from the hyper-immunized mice, and the recovered lymphocytes are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines.
  • lymphatic cells such as B-cells
  • myeloid-type cell line to prepare immortal hybridoma cell lines.
  • FGFR1c FGFR1c
  • FGFR2c FGFR1c
  • FGFR1c FGFR1c
  • FGFR1c FGFR2c
  • FGFR1c FGFR1c
  • characterization of the antibodies produced by such cell lines including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.
  • antigen-specific human mAbs with the desired specificity can be produced and selected from the transgenic mice such as those described herein.
  • Such antibodies can be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells.
  • Fully human antibodies can also be derived from phage-display libraries (as described in Hoogenboom et al., (1991) J. Mol. Biol. 227:381; and Marks et al., (1991) J. Mol. Biol. 222:581).
  • Phage display techniques mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice.
  • One such technique is described in PCT Publication No. WO 99/10494 (hereby incorporated by reference), which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk-receptors using such an approach.
  • bispecific and bifunctional antibodies that include one or more CDRs or one or more variable regions as described above.
  • a bispecific or bifunctional antibody in some instances can be an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • Bispecific antibodies can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553.
  • an antigen binding protein of the instant disclosure binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c
  • the binding may lead to the activation of FGF21-like activity as measured by the FGF21-like functional and signaling assays described in Examples 4-6; when such an antigen binding protein is an antibody it is referred to as an agonistic antibody.
  • antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided in the present disclosure include variant forms of the antigen binding proteins disclosed herein (e.g., those having the sequences listed in Tables 1-4 and 6-23).
  • the antigen binding proteins disclosed herein can comprise one or more non-naturally occurring/encoded amino acids.
  • some of the antigen binding proteins have one or more non-naturally occurring/encoded amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-23.
  • non-naturally occurring/encoded amino acids which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired
  • examples of non-naturally occurring/encoded amino acids include: 4-hydroxyproline, ⁇ -carboxyglutamate, ⁇ -N,N,N-trimethyllysine, ⁇ -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ⁇ -N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
  • the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention.
  • a non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include ⁇ -amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains.
  • Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), N ⁇ -methylcitrulline (NMeCit), N ⁇ -methylhomocitrulline (N ⁇ -MeHoCit), ornithine (Orn), N ⁇ -Methylornithine (N ⁇ -MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), N ⁇ -methylarginine (NMeR), N ⁇ -methylleucine (N ⁇ -MeL or NMeL), N-methylhomolysine (NMeHoK), N ⁇ -methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2
  • antigen binding proteins can have one or more conservative amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-4 and 6-23.
  • Naturally-occurring amino acids can be divided into classes based on common side chain properties:
  • Conservative amino acid substitutions can involve exchange of a member of one of these classes with another member of the same class.
  • Conservative amino acid substitutions can encompass non-naturally occurring/encoded amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. See Table 8, infra. These include peptidomimetics and other reversed or inverted forms of amino acid moieties.
  • Non-conservative substitutions can involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues can be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule.
  • the hydropathic index of amino acids can be considered.
  • the hydropathic profile of a protein is calculated by assigning each amino acid a numerical value (“hydropathy index”) and then repetitively averaging these values along the peptide chain.
  • Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics.
  • hydropathic profile in conferring interactive biological function on a protein is understood in the art (see, e.g., Kyte et al., 1982 , J. Mol. Biol. 157:105-131). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ⁇ 2 is included. In some aspects, those which are within ⁇ 1 are included, and in other aspects, those within ⁇ 0.5 are included.
  • the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case.
  • the greatest local average hydrophilicity of a protein as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen-binding or immunogenicity, that is, with a biological property of the protein.
  • hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ⁇ 1); glutamate (+3.0 ⁇ 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 ⁇ 1); alanine ( ⁇ 0.5); histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine ( ⁇ 1.8); isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5) and tryptophan ( ⁇ 3.4).
  • the substitution of amino acids whose hydrophilicity values are within ⁇ 2 is included, in other embodiments, those which are within ⁇ 1 are included, and in still other embodiments, those within ⁇ 0.5 are included.
  • a skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques coupled with the information provided herein.
  • One skilled in the art can identify suitable areas of the molecule that can be changed without destroying activity by targeting regions not believed to be important for activity.
  • the skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides.
  • even areas that can be important for biological activity or for structure can be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.
  • One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art can predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art can choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues can be involved in important interactions with other molecules. Moreover, one skilled in the art can generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for FGF21-like signaling, (including those described in the Examples provided herein) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations.
  • One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% can have similar structural topologies.
  • the growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., (1999) Nucl. Acid. Res. 27:244-247. It has been suggested (Brenner et al., (1997) Curr. Op. Struct. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate.
  • Additional methods of predicting secondary structure include “threading” (Jones, (1997) Curr. Opin. Struct. Biol. 7:377-387; Sippl et al., (1996) Structure 4:15-19), “profile analysis” (Bowie et al., (1991) Science 253:164-170; Gribskov et al., (1990) Meth. Enzym. 183:146-159; Gribskov et al., (1987) Proc. Nat. Acad. Sci. 84:4355-4358), and “evolutionary linkage” (See, Holm, (1999) supra; and Brenner, (1997) supra).
  • amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides.
  • single or multiple amino acid substitutions can be made in the naturally-occurring sequence.
  • substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts.
  • conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein).
  • conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton, Proteins: Structures and Molecular Properties 2nd edition, 1992, W. H. Freeman & Company; Creighton, Proteins: Structures and Molecular Principles, 1984, W. H.
  • Additional preferred antibody variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, inter alia when antibodies must be refolded into a biologically active conformation. Cysteine variants can have fewer cysteine residues than the native antibody, and typically have an even number to minimize interactions resulting from unpaired cysteines.
  • the heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling.
  • one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an immunoadhesion.
  • An immunoadhesion can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently.
  • the CDR(s) enable the immunoadhesion to bind specifically to a particular antigen of interest (e.g., to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or an epitope thereon).
  • the heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling.
  • one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) that is structurally similar to a “half” antibody comprising the heavy chain, the light chain of an antigen binding protein paired with a Fc fragment so that the antigen binding region is monovalent (like a Fab fragment) but with a dimeric Fc moiety.
  • a molecule e.g., a polypeptide
  • a half” antibody comprising the heavy chain, the light chain of an antigen binding protein paired with a Fc fragment so that the antigen binding region is monovalent (like a Fab fragment) but with a dimeric Fc moiety.
  • Mimetics e.g., “peptide mimetics” or “peptidomimetics” based upon the variable region domains and CDRs that are described herein are also provided. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, (1986) Adv. Drug Res. 15:29; Veber and Freidinger, (1985) TINS p. 392; and Evans et al., (1987) J. Med. Chem. 30:1229, which are incorporated herein by reference for any purpose. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce a similar therapeutic or prophylactic effect.
  • peptidomimetics are proteins that are structurally similar to an antibody displaying a desired biological activity, such as here the ability to specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, but have one or more peptide linkages optionally replaced by a linkage selected from: —CH 2 NH—, —CH 2 S—, —CH 2 —CH 2 —, —CH—CH-(cis and trans), —COCH 2 —, —CH(OH)CH 2 —, and —CH 2 SO—, by methods well known in the art.
  • Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type can be used in certain embodiments to generate more stable proteins.
  • constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation can be generated by methods known in the art (Rizo and Gierasch, (1992) Ann. Rev. Biochem. 61:387), incorporated herein by reference), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
  • the derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antibody or fragment, such as increased half-life in a particular use.
  • the derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or streptavidin), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses).
  • a detectable (or labeling) moiety e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold)
  • an antigen binding protein examples include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. Certain antigen binding proteins include a PEGylated single chain polypeptide as described herein. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (“TTR”) or a TTR variant.
  • TTR transthyretin
  • the TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.
  • conjugated peptide can be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag.
  • An antigen binding protein-containing fusion protein of the present disclosure can comprise peptides added to facilitate purification or identification of an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c (e.g., a poly-His tag) and that can induce FGF21-like signaling.
  • An antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c also can be linked to the FLAG peptide as described in Hopp et al., (1988) Bio/Technology 6:1204; and U.S. Pat. No. 5,011,912.
  • the FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein.
  • Reagents useful for preparing fusion proteins in which the FLAG peptide is fused to a given polypeptide are commercially available (Sigma, St. Louis, Mo.).
  • Multimers that comprise one or more antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c form another aspect of the present disclosure.
  • Multimers can take the form of covalently-linked or non-covalently-linked dimers, trimers, or higher multimers.
  • Multimers comprising two or more antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and which may induce FGF21-like signaling are contemplated for use as therapeutics, diagnostics and for other uses as well, with one example of such a multimer being a homodimer.
  • Other exemplary multimers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc.
  • One embodiment is directed to multimers comprising multiple antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c joined via covalent or non-covalent interactions between peptide moieties fused to an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • Such peptides can be peptide linkers (spacers), or peptides that have the property of promoting multimerization.
  • Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote multimerization of antigen binding proteins attached thereto, as described in more detail herein.
  • the multimers comprise from two to four antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the antigen binding protein moieties of the multimer can be in any of the forms described above, e.g., variants or fragments.
  • the multimers comprise antigen binding proteins that have the ability to specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • an oligomer is prepared using polypeptides derived from immunoglobulins.
  • Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., (1991) Proc. Natl. Acad. Sci. USA 88:10535; Byrn et al., (1990) Nature 344:677; and Hollenbaugh et al., (1992) Current Protocols in Immunology , Suppl. 4, pages 10.19.1-10.19.11.
  • One embodiment comprises a dimer comprising two fusion proteins created by fusing an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c to the Fc region of an antibody.
  • the dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer.
  • Fc polypeptide as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.
  • Fc polypeptide is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG1 antibody.
  • Another useful Fc polypeptide is the Fc mutein described in U.S. Pat. No. 5,457,035, and in Baum et al., (1994) EMBO J. 13:3992-4001.
  • amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala.
  • the mutein exhibits reduced affinity for Fc receptors.
  • variable portion of the heavy and/or light chains of a antigen binding protein such as disclosed herein can be substituted for the variable portion of an antibody heavy and/or light chain.
  • the oligomer is a fusion protein comprising multiple antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with or without peptide linkers (spacer peptides).
  • suitable peptide linkers are those described in U.S. Pat. No. 4,751,180 and U.S. Pat. No. 4,935,233.
  • Another method for preparing oligomeric derivatives comprising that antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c involves use of a leucine zipper.
  • Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschultz et al., (1988) Science 240:1759-64), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize.
  • leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al., (1994) FEBS Letters 344:191, hereby incorporated by reference.
  • SPD lung surfactant protein D
  • the use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in Fanslow et al., (1994) Semin. Immunol. 6:267-278.
  • recombinant fusion proteins comprising an antigen binding protein fragment or derivative that specifically binds to a complex comprising ⁇ -Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) is fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric antigen binding protein fragments or derivatives that form are recovered from the culture supernatant.
  • the antigen binding protein has a K D (equilibrium binding affinity) of less than 1 pM, 10 pM, 100 pM, 1 nM, 2 nM, 5 nM, 10 nM, 25 nM or 50 nM.
  • the instant disclosure provides an antigen binding protein having a half-life of at least one day in vitro or in vivo (e.g., when administered to a human subject).
  • the antigen binding protein has a half-life of at least three days.
  • the antibody or portion thereof has a half-life of four days or longer.
  • the antibody or portion thereof has a half-life of eight days or longer.
  • the antibody or portion thereof has a half-life of ten days or longer.
  • the antibody or portion thereof has a half-life of eleven days or longer.
  • the antibody or portion thereof has a half-life of fifteen days or longer.
  • the antibody or antigen-binding portion thereof is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antibody.
  • an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c contains point mutations to increase serum half life, such as described in WO 00/09560, published Feb. 24, 2000, incorporated by reference.
  • An antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can have a glycosylation pattern that is different or altered from that found in the native species.
  • glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine can also be used.
  • Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites).
  • the alteration can also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites).
  • the antigen binding protein amino acid sequence can be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation.
  • the sugar(s) can be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (0 the amide group of glutamine.
  • Removal of carbohydrate moieties present on the starting antigen binding protein can be accomplished chemically or enzymatically.
  • Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact.
  • Chemical deglycosylation is described by Hakimuddin et al., (1987) Arch. Biochem. Biophys. 259:52-57 and by Edge et al., (1981) Anal. Biochem. 118:131-37.
  • Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., (1987) Meth. Enzymol. 138:350-59. Glycosylation at potential glycosylation sites can be prevented by the use of the compound tunicamycin as described by Duskin et al., (1982) J. Biol. Chem. 257:3105-09. Tunicamycin blocks the formation of protein-N-glycoside linkages.
  • aspects of the present disclosure include glycosylation variants of antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide.
  • antibody protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the native antibody.
  • An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X can be any amino acid residue except proline.
  • substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain.
  • substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the native polypeptide.
  • the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid.
  • one or more new N-linked sites are created.
  • Antibodies typically have a N-linked glycosylation site in the Fc region.
  • an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one or more labels.
  • labeling group or “label” means any detectable label.
  • labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I) fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags).
  • the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.
  • Various methods for labeling proteins are known in the art and can be used as
  • effector group means any group coupled to an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and that acts as a cytotoxic agent.
  • suitable effector groups are radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I)
  • suitable groups include toxins, therapeutic groups, or chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and cantansine.
  • the effector group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.
  • labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which can be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.).
  • the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.
  • optical dyes including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances.
  • Fluorophores can be either “small molecule” fluores, or proteinaceous fluores.
  • fluorescent label any molecule that can be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, Oreg.),
  • Suitable optical dyes including fluorophores, are described in Molecular Probes Handbook by Richard P. Haugland and in subsequent editions, including Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 11 th edition, Johnson and Spence (eds), hereby expressly incorporated by reference.
  • Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus , or Aequorea species of GFP (Chalfie et al., (1994) Science 263:802-805), eGFP (Clontech Labs., Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc., Quebec, Canada; Stauber, (1998) Biotechniques 24:462-71; Heim et al., (1996) Curr. Biol. 6:178-82), enhanced yellow fluorescent protein (EYFP, Clontech Labs., Inc.), luciferase (Ichiki et al., (1993) J. Immunol.
  • green fluorescent protein including a Renilla, Ptilosarcus , or Aequorea species of GFP (Chalfie et al., (1994) Science 263:802-805), eGFP (Clontech Labs.
  • Non-human antibodies that are provided can be, for example, derived from any antibody-producing animal, such as a mouse, rat, rabbit, goat, donkey, or non-human primate (such as a monkey, (e.g., cynomolgus or rhesus monkey) or an ape (e.g., chimpanzee)).
  • Non-human antibodies can be used, for instance, in in vitro cell culture and cell-culture based applications, or any other application where an immune response to the antibody does not occur or is insignificant, can be prevented, is not a concern, or is desired.
  • the antibodies can be produced by immunizing with cell bound receptor from CHO transfectants expressing full length human FGFR1c and ⁇ -Klotho at the cell surface following incubated with FGF21; or with cell bound receptor of 293T transfectants expressing full length human ⁇ -Klotho and an N-terminal truncated version of human FGFR1c encompassing amino acid residues 141 to 822 of the polypeptide of SEQ ID NO: 4; or with full-length ⁇ -Klotho, FGFR1c, FGFR2c or FGFR3c; or with the extracellular domain of ⁇ -Klotho, FGFR1c, FGFR2c or FGFR3c; or with two of ⁇ -Klotho, FGFR1c, FGFR2c, and FGFR3c; or with whole cells expressing FGFR1c, ⁇ -Klotho or both FGFR1c and ⁇ -Klotho; or with membrane
  • the certain non-human antibodies can be raised by immunizing with amino acids which are segments of one or more of ⁇ -Klotho, FGFR1c, FGFR2c or FGFR3c that form part of the epitope to which certain antibodies provided herein bind.
  • the antibodies can be polyclonal, monoclonal, or can be synthesized in host cells by expressing recombinant DNA.
  • Fully human antibodies can be prepared as described above by immunizing transgenic animals containing human immunoglobulin loci or by selecting a phage display library that is expressing a repertoire of human antibodies.
  • the monoclonal antibodies can be produced by a variety of techniques, including conventional monoclonal antibody methodology, e.g., the standard somatic cell hybridization technique of Kohler & Milstein, (1975) Nature 256:495-97. Alternatively, other techniques for producing monoclonal antibodies can be employed, for example, the viral or oncogenic transformation of B-lymphocytes.
  • One suitable animal system for preparing hybridomas is the murine system, which is a very well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. For such procedures, B cells from immunized mice are fused with a suitable immortalized fusion partner, such as a murine myeloma cell line.
  • mice can be immunized instead of mice and B cells from such animals can be fused with the murine myeloma cell line to form hybridomas.
  • a myeloma cell line from a source other than mouse can be used. Fusion procedures for making hybridomas also are well known.
  • SLAM technology can also be employed in the production of antibodies.
  • the single chain antibodies that are provided can be formed by linking heavy and light chain variable domain (Fv region) fragments via an amino acid bridge (short peptide linker), resulting in a single polypeptide chain.
  • Such single-chain Fvs can be prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (V L and V H ).
  • the resulting polypeptides can fold back on themselves to form antigen-binding monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et al., (1997) Prot. Eng.
  • Single chain antibodies derived from antibodies provided herein include, but are not limited to scFvs comprising the variable domain combinations of the heavy and light chain variable regions depicted in Table 2, or combinations of light and heavy chain variable domains which include the CDRs depicted in Tables 3-4 and 6-23.
  • Antibodies provided herein that are of one subclass can be changed to antibodies from a different subclass using subclass switching methods.
  • IgG antibodies can be derived from an IgM antibody, for example, and vice versa.
  • Such techniques allow the preparation of new antibodies that possess the antigen binding properties of a given antibody (the parent antibody), but also exhibit biological properties associated with an antibody isotype or subclass different from that of the parent antibody.
  • Recombinant DNA techniques can be employed. Cloned DNA encoding particular antibody polypeptides can be employed in such procedures, e.g., DNA encoding the constant domain of an antibody of the desired isotype. See, e.g., Lantto et al., (2002) Methods Mol. Biol. 178:303-16.
  • the antibodies that are provided include those comprising, for example, the variable domain combinations described, supra., having a desired isotype (for example, IgA, IgG1, IgG2, IgG3, IgG4, IgE, and IgD) as well as Fab or F(ab′) 2 fragments thereof.
  • a desired isotype for example, IgA, IgG1, IgG2, IgG3, IgG4, IgE, and IgD
  • an IgG4 it can also be desired to introduce a point mutation (e.g., a mutation from CPSCP to CPPCP (SEQ ID NOs 1828 and 1829, respectively, in order of appearance) in the hinge region as described in Bloom et al., (1997) Protein Science 6:407-15, incorporated by reference herein) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies.
  • a point mutation e.g., a mutation from CPSCP to CPPCP (SEQ ID NOs 1828 and 1829, respectively, in order of appearance
  • chain shuffling involves displaying immunoglobulin variable domain gene repertoires on the surface of filamentous bacteriophage, often referred to as phage display. Chain shuffling has been used to prepare high affinity antibodies to the hapten 2-phenyloxazol-5-one, as described by Marks et al., (1992) Nature Biotechnology 10:779-83.
  • Antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be further modified in various ways. For example, if they are to be used for therapeutic purposes, they can be conjugated with polyethylene glycol (PEGylated) to prolong the serum half-life or to enhance protein delivery. PEG can be attached directly to the antigen binding protein or it can be attached via a linker, such as a glycosidic linkage.
  • PEGylated polyethylene glycol
  • the V region of the subject antibodies or fragments thereof can be fused with the Fc region of a different antibody molecule.
  • the Fc region used for this purpose can be modified so that it does not bind complement, thus reducing the likelihood of inducing cell lysis in the patient when the fusion protein is used as a therapeutic agent.
  • the subject antibodies or functional fragments thereof can be conjugated with human serum albumin to enhance the serum half-life of the antibody or fragment thereof.
  • Another useful fusion partner for the antigen binding proteins or fragments thereof is transthyretin (TTR). TTR has the capacity to form a tetramer, thus an antibody-TTR fusion protein can form a multivalent antibody which can increase its binding avidity.
  • any native residue in the polypeptide can also be substituted with alanine, as has been previously described for alanine scanning mutagenesis.
  • Amino acid substitutions (whether conservative or non-conservative) of the subject antibodies can be implemented by those skilled in the art by applying routine techniques. Amino acid substitutions can be used to identify important residues of the antibodies provided herein, or to increase or decrease the affinity of these antibodies for a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or for modifying the binding affinity of other antigen-binding proteins described herein.
  • Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs.
  • antigen binding proteins can be prepared by any of a number of conventional techniques.
  • antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be produced by recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses , (Kennet et al., eds.) Plenum Press (1980) and subsequent editions; and Harlow & Lane, (1988) supra.
  • Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies can be expressed in hybridomas) or in cell lines other than hybridomas.
  • Expression constructs encoding the antibodies can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216; 4,912,040; 4,740,461; and 4,959,455.
  • heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct microinjection of the DNA into nuclei.
  • Recombinant expression constructs typically comprise a nucleic acid molecule encoding a polypeptide comprising one or more of the following: one or more CDRs provided herein; a light chain constant region; a light chain variable region; a heavy chain constant region (e.g., C H 1, C H 2 and/or C H 3); and/or another scaffold portion of an antigen binding protein.
  • CDRs provided herein
  • a light chain constant region e.g., a light chain variable region
  • a heavy chain constant region e.g., C H 1, C H 2 and/or C H 3
  • another scaffold portion of an antigen binding protein e.g., C H 1, C H 2 and/or C H 3
  • the heavy or light chain constant region is appended to the C-terminus of the anti- ⁇ -Klotho/FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) complex-specific heavy or light chain variable region and is ligated into an expression vector.
  • the vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery, permitting amplification and/or expression of the gene can occur).
  • vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964, which is hereby incorporated by reference).
  • Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies or BD Biosciences. Other useful vectors for cloning and expressing the antibodies and fragments include those described in Bianchi and McGrew, (2003) Biotech. Biotechnol. Bioeng. 84:439-44, which is hereby incorporated by reference. Additional suitable expression vectors are discussed, for example, in “Gene Expression Technology,” Methods Enzymol., vol. 185, (Goeddel et al., ed.), (1990), Academic Press.
  • expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences.
  • sequences collectively referred to as “flanking sequences” in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element.
  • an expression vector can contain a “tag”-encoding sequence, i.e., an oligonucleotide molecule located at the 5′ or 3′ end of an antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis, HHHHHH (SEQ ID NO: 1830)), or another “tag” such as FLAG, HA (hemaglutinin influenza virus), or myc, for which commercially available antibodies exist.
  • This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification or detection of the antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix.
  • the tag can subsequently be removed from the purified antigen binding protein by various means such as using certain peptidases for cleavage.
  • Flanking sequences can be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), synthetic or native.
  • the source of a flanking sequence can be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.
  • Flanking sequences useful in the vectors can be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence can be known. Here, the flanking sequence can be synthesized using the methods described herein for nucleic acid synthesis or cloning.
  • flanking sequence can be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species.
  • PCR polymerase chain reaction
  • a fragment of DNA containing a flanking sequence can be isolated from a larger piece of DNA that can contain, for example, a coding sequence or even another gene or genes. Isolation can be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, column chromatography or other methods known to the skilled artisan. The selection of suitable enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.
  • An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one can be chemically synthesized based on a known sequence, and ligated into the vector.
  • the origin of replication from the plasmid pBR322 (GenBank Accession # J01749, New England Biolabs, Beverly, Mass.) is suitable for most gram-negative bacteria, and various viral origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells.
  • viral origins e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV
  • the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter).
  • a transcription termination sequence is typically located 3′ to the end of a polypeptide coding region and serves to terminate transcription.
  • a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.
  • a selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium.
  • Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex or defined media.
  • Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene.
  • a neomycin resistance gene can also be used for selection in both prokaryotic and eukaryotic host cells.
  • selectable genes can be used to amplify the gene that will be expressed. Amplification is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector.
  • DHFR dihydrofolate reductase
  • promoterless thymidine kinase genes Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector.
  • Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • an antigen binding protein that binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • a ribosome-binding site is usually necessary for translation initiation of mRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes).
  • the element is typically located 3′ to the promoter and 5′ to the coding sequence of the polypeptide to be expressed.
  • the final protein product can have, in the ⁇ 1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed.
  • the final protein product can have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus.
  • use of some enzyme cleavage sites can result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide.
  • Expression and cloning will typically contain a promoter that is recognized by the host organism and operably linked to the molecule encoding an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • Promoters are untranscribed sequences located upstream (i.e., 5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of the structural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters.
  • Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature.
  • Constitutive promoters uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression.
  • a large number of promoters, recognized by a variety of potential host cells, are well known.
  • a suitable promoter is operably linked to the DNA encoding heavy chain or light chain comprising an antigen binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector.
  • Suitable promoters for use with yeast hosts are also well known in the art.
  • Yeast enhancers are advantageously used with yeast promoters.
  • Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40).
  • viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40).
  • Other suitable mammalian promoters include heterologous
  • Additional promoters which can be of interest include, but are not limited to: SV40 early promoter (Benoist & Chambon, (1981) Nature 290:304-310); CMV promoter (Thomsen et al., (1984) Proc. Natl. Acad. U.S.A. 81:659-663); the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto et al., (1980) Cell 22:787-97); herpes thymidine kinase promoter (Wagner et al., (1981) Proc. Natl. Acad. Sci. U.S.A.
  • promoter and regulatory sequences from the metallothionine gene (Prinster et al., (1982) Nature 296:39-42); and prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et al., (1978) Proc. Natl. Acad. Sci. U.S.A. 75:3727-31); or the tac promoter (DeBoer et al., (1983) Proc. Natl. Acad. Sci. U.S.A. 80:21-25).
  • prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et al., (1978) Proc. Natl. Acad. Sci. U.S.A. 75:3727-31); or the tac promoter (DeBoer et al., (1983) Proc. Natl. Acad. Sci. U.S.A. 80:21-25).
  • elastase I gene control region that is active in pancreatic acinar cells (Swift et al., (1984) Cell 38:639-46; Ornitz et al., (1986) Cold Spring Harbor Symp. Quant. Biol.
  • the beta-globin gene control region that is active in myeloid cells (Mogram et al., (1985) Nature 315:338-40; Kollias et al., (1986) Cell 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., (1987) Cell 48:703-12); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani, (1985) Nature 314:283-86); and the gonadotropic releasing hormone gene control region that is active in the hypothalamus (Mason et al., (1986) Science 234:1372-78).
  • An enhancer sequence can be inserted into the vector to increase transcription of DNA encoding light chain or heavy chain comprising an antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c by higher eukaryotes, e.g., a human antigen binding protein that specifically binds to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription.
  • Enhancers are relatively orientation and position independent, having been found at positions both 5′ and 3′ to the transcription unit.
  • enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin).
  • an enhancer from a virus is used.
  • the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer can be positioned in the vector either 5′ or 3′ to a coding sequence, it is typically located at a site 5′ from the promoter.
  • a sequence encoding an appropriate native or heterologous signal sequence can be incorporated into an expression vector, to promote extracellular secretion of the antibody.
  • the choice of signal peptide or leader depends on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence.
  • Examples of signal peptides that are functional in mammalian host cells include the following: the signal sequence for interleukin-7 (IL-7) described in U.S. Pat. No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., (1984) Nature 312:768-71; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; the type II interleukin-1 receptor signal peptide described in EP Patent No. 0 460 846.
  • Expression vectors can be constructed from a starting vector such as a commercially available vector. Such vectors can but need not contain all of the desired flanking sequences. Where one or more of the flanking sequences are not already present in the vector, they can be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art.
  • the completed vector can be inserted into a suitable host cell for amplification and/or polypeptide expression.
  • transformation of an expression vector for an antigen binding protein into a selected host cell can be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection, lipofection, DEAE-dextran mediated transfection, or other known techniques.
  • the method selected will in part be a function of the type of host cell to be used.
  • a host cell when cultured under appropriate conditions, synthesizes an antigen binding protein that can subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted).
  • the selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule.
  • Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to HeLa cells, Human Embryonic Kidney 293 cells (HEK293 cells), Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.
  • ATCC American Type Culture Collection
  • HEK293 cells Human Embryonic Kidney 293 cells
  • CHO Chinese hamster ovary
  • HeLa cells HeLa cells
  • BHK baby hamster kidney
  • COS monkey kidney cells
  • human hepatocellular carcinoma cells e.g., Hep G2
  • cell lines can be selected through determining which cell lines have high expression levels and constitutively produce antigen binding proteins with desirable binding properties (e.g., the ability to bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c).
  • a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be selected.
  • the ability to induce FGF21-like signaling can also form a selection criterion.
  • the antigen binding proteins disclosed herein are useful for detecting to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in biological samples and identification of cells or tissues that produce one or more of ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the antigen binding proteins disclosed herein can be used in diagnostic assays, e.g., binding assays to detect and/or quantify a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c expressed in a tissue or cell.
  • Antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can also be used in treatment of diseases related to FGF21-like signaling in a patient in need thereof, such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • a signaling complex comprising an antigen binding protein and a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c
  • the natural in vivo activity of FGF21 which associates with a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo to initiate signaling, can be mimicked and/or enhanced, leading to therapeutic effects.
  • a disease or condition associated with human FGF21 includes any disease or condition whose onset in a patient is influenced by, at least in part, the lack of or therapeutically insufficient induction of FGF21-like signaling, which is initiated in vivo by the formation of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the severity of the disease or condition can also be decreased by the induction of FGF21-like signaling.
  • diseases and conditions that can be treated with the antigen binding proteins provided herein include type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • the antigen binding proteins described herein can be used to treat type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome, or can be employed as a prophylactic treatment administered, e.g., daily, weekly, biweekly, monthly, bimonthly, biannually, etc to prevent or reduce the frequency and/or severity of symptoms, e.g., elevated plasma glucose levels, elevated triglycerides and/or cholesterol levels, thereby providing an improved glycemic and cardiovascular risk factor profile.
  • a prophylactic treatment administered e.g., daily, weekly, biweekly, monthly, bimonthly, biannually, etc to prevent or reduce the frequency and/or severity of symptoms, e.g., elevated plasma glucose levels, elevated triglycerides and/or cholesterol levels, thereby providing an improved glycemic and cardiovascular risk factor profile.
  • the antigen binding proteins described herein can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or conditions associated with FGFR1c, FGFR2c, FGFR3c, ⁇ -Klotho, FGF21 and/or complexes comprising combinations thereof.
  • the detection of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be performed in vivo or in vitro.
  • Diagnostic applications provided herein include use of the antigen binding proteins to detect expression/formation of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and/or binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • Examples of methods useful in the detection of the presence of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • immunoassays such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • the antigen binding protein typically will be labeled with a detectable labeling group.
  • Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags).
  • the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential
  • an antigen binding protein can be used to identify a cell or cells that express a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • the antigen binding protein is labeled with a labeling group and the binding of the labeled antigen binding protein to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is detected.
  • the antigen binding protein is isolated and measured using techniques known in the art. See, for example, Harlow & Lane, (1988) supra; Current Protocols In Immunology (John E. Coligan, ed), John Wiley & Sons (1993 ed., and supplements and/or updates).
  • Another aspect provides for detecting the presence of a test molecule that competes for binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding proteins provided, as disclosed herein.
  • An example of one such assay could involve detecting the amount of free antigen binding protein in a solution containing an amount of a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in the presence or absence of the test molecule.
  • an increase in the amount of free antigen binding protein i.e., the antigen binding protein not bound to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) would indicate that the test molecule is capable of competing for binding to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding protein.
  • the antigen binding protein is labeled with a labeling group.
  • the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.
  • an antigen binding protein is provided to a patient, which induces FGF21-like signaling.
  • compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are also provided.
  • methods of treating a patient by administering such pharmaceutical composition are included.
  • patient includes human patients.
  • compositions comprising a therapeutically effective amount of human antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided.
  • acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed.
  • the pharmaceutical composition can contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition.
  • suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents;
  • amino acids
  • the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, Remington's Pharmaceutical Sciences , supra.
  • such compositions can influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antigen binding proteins disclosed.
  • the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature.
  • a suitable vehicle or carrier can be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
  • Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles.
  • pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and can further include sorbitol or a suitable substitute.
  • compositions comprising antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (see, Remington's Pharmaceutical Sciences , supra for examples of suitable formulation agents) in the form of a lyophilized cake or an aqueous solution.
  • optional formulation agents see, Remington's Pharmaceutical Sciences , supra for examples of suitable formulation agents
  • antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be formulated as a lyophilizate using appropriate excipients such as sucrose.
  • the pharmaceutical compositions can be selected for parenteral delivery.
  • compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. Preparation of such pharmaceutically acceptable compositions is within the skill of the art.
  • the formulation components are present preferably in concentrations that are acceptable to the site of administration.
  • buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.
  • the therapeutic compositions can be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antigen binding protein in a pharmaceutically acceptable vehicle.
  • a particularly suitable vehicle for parenteral injection is sterile distilled water in which the antigen binding protein is formulated as a sterile, isotonic solution, properly preserved.
  • the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that can provide controlled or sustained release of the product which can be delivered via depot injection.
  • hyaluronic acid can also be used, which can have the effect of promoting sustained duration in the circulation.
  • implantable drug delivery devices can be used to introduce the desired antigen binding protein.
  • antigen binding proteins that bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are formulated as a dry, inhalable powder.
  • antigen binding protein inhalation solutions can also be formulated with a propellant for aerosol delivery.
  • solutions can be nebulized. Pulmonary administration and formulation methods therefore are further described in International Patent Application No. PCT/US94/001875, which is incorporated by reference and describes pulmonary delivery of chemically modified proteins. Some formulations can be administered orally.
  • Antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are administered in this fashion can be formulated with or without carriers customarily used in the compounding of solid dosage forms such as tablets and capsules.
  • a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized.
  • Additional agents can be included to facilitate absorption of an antigen binding protein. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed.
  • compositions comprise an effective quantity of one or a plurality of human antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a mixture with non-toxic excipients that are suitable for the manufacture of tablets.
  • a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a mixture with non-toxic excipients that are suitable for the manufacture of tablets.
  • Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.
  • inert diluents such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate
  • binding agents such as starch, gelatin, or acacia
  • lubricating agents such as magnesium stearate, stearic acid, or talc.
  • compositions will be evident to those skilled in the art, including formulations involving antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in sustained- or controlled-delivery formulations.
  • Techniques for formulating a variety of other sustained- or controlled-delivery means such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which is incorporated by reference and describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions.
  • Sustained-release preparations can include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules.
  • Sustained release matrices can include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481, each of which is incorporated by reference), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., (1983) Biopolymers 2:547-556), poly (2-hydroxyethyl-inethacrylate) (Langer et al., (1981) J. Biomed. Mater. Res.
  • Sustained release compositions can also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036676; EP 088046 and EP 143949, incorporated by reference.
  • compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method can be conducted either prior to or following lyophilization and reconstitution.
  • Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • cells expressing a recombinant antigen binding protein as disclosed herein are encapsulated for delivery (see, Tao et al., Invest. Ophthalmol Vis Sci (2002) 43:3292-3298 and Sieving et al., Proc. Natl. Acad. Sciences USA (2006) 103:3896-3901).
  • an antigen binding protein has a concentration of between 10 mg/ml and 150 mg/ml.
  • Some formulations contain a buffer, sucrose and polysorbate.
  • An example of a formulation is one containing 50-100 mg/ml of antigen binding protein, 5-20 mM sodium acetate, 5-10% w/v sucrose, and 0.002-0.008% w/v polysorbate.
  • Certain, formulations, for instance, contain 1-100 mg/ml of an antigen binding protein in 9-11 mM sodium acetate buffer, 8-10% w/v sucrose, and 0.005-0.006% w/v polysorbate.
  • the pH of certain such formulations is in the range of 4.5-6.
  • Other formulations can have a pH of 5.0-5.5.
  • kits for producing a single-dose administration unit are also provided. Certain kits contain a first container having a dried protein and a second container having an aqueous formulation. In certain embodiments, kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided.
  • an antigen binding protein-containing pharmaceutical composition to be employed will depend, for example, upon the therapeutic context and objectives.
  • One skilled in the art will appreciate that the appropriate dosage levels for treatment will vary depending, in part, upon the molecule delivered, the indication for which the antigen binding protein is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient.
  • the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.
  • a typical dosage can range from about 1 ⁇ g/kg to up to about 30 mg/kg or more, depending on the factors mentioned above.
  • the dosage can range from 10 ⁇ g/kg up to about 35 mg/kg, optionally from 0.1 mg/kg up to about 35 mg/kg, alternatively from 0.3 mg/kg up to about 20 mg/kg.
  • the dosage is from 0.5 mg/kg to 20 mg/kg and in other applications the dosage is from 21-100 mg/kg.
  • an antigen binding protein is dosed at 0.3-20 mg/kg.
  • the dosage schedule in some treatment regimes is at a dose of 0.3 mg/kg qW-20 mg/kg qW.
  • Dosing frequency will depend upon the pharmacokinetic parameters of the particular antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect.
  • the composition can therefore be administered as a single dose, or as two or more doses (which can but need not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Appropriate dosages can be ascertained through use of appropriate dose-response data.
  • the antigen binding proteins can be administered to patients throughout an extended time period.
  • an antigen binding protein minimizes the adverse immune or allergic response commonly associated with antigen binding proteins that are not fully human, for example an antibody raised against a human antigen in a non-human animal, for example, a non-fully human antibody or non-human antibody produced in a non-human species.
  • the route of administration of the pharmaceutical composition is in accord with known methods, e.g., orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices.
  • the compositions can be administered by bolus injection or continuously by infusion, or by implantation device.
  • composition also can be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated.
  • the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration.
  • antigen binding protein pharmaceutical compositions ex vivo.
  • cells, tissues or organs that have been removed from the patient are exposed to antigen binding protein pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.
  • antigen binding proteins that specifically bind to a complex comprising ⁇ -Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein and known in the art, to express and secrete the polypeptide.
  • such cells can be animal or human cells, and can be autologous, heterologous, or xenogeneic.
  • the cells can be immortalized.
  • the cells in order to decrease the chance of an immunological response, the cells can be encapsulated to avoid infiltration of surrounding tissues.
  • the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
  • the present disclosure provides a method of treating a subject for diabetes with a therapeutic antigen binding protein of the present disclosure, such as the fully human therapeutic antibodies described herein, together with one or more other treatments.
  • a therapeutic antigen binding protein of the present disclosure such as the fully human therapeutic antibodies described herein
  • such a combination therapy achieves an additive or synergistic effect.
  • the antigen binding proteins can be administered in combination with one or more of the type 2 diabetes or obesity treatments currently available. These treatments for diabetes include biguanide (metaformin), and sulfonylureas (such as glyburide, glipizide).
  • Additional treatments directed at maintaining glucose homeostasis include PPAR gamma agonists (pioglitazone, rosiglitazone); glinides (meglitinide, repaglinide, and nateglinide); DPP-4 inhibitors (Januvia® and Onglyza®) and alpha glucosidase inhibitors (acarbose, voglibose).
  • Additional combination treatments for diabetes include injectable treatments such as insulin and incretin mimetics (Byetta®, Exenatide®), other GLP-1 (glucagon-like peptide) analogs such as Victoza® (liraglutide), other GLP-1R agonists and Symlin® (pramlintide).
  • injectable treatments such as insulin and incretin mimetics (Byetta®, Exenatide®), other GLP-1 (glucagon-like peptide) analogs such as Victoza® (liraglutide), other GLP-1R agonists and Symlin® (pramlintide).
  • Additional combination treatments directed at weight loss include Meridia® and Xenical®.
  • Nucleic acid sequences encoding the full length human FGFR1c polypepetide (SEQ ID NO: 4; FIGS. 1A-1B ) and a separate sequence encoding the full length human ⁇ -Klotho polypeptide (SEQ ID NO: 7; FIGS. 2A-2C ) were subcloned into suitable mammalian cell expression vectors (e.g., pcDNA3.1 Zeo, pcDNA3.1 Hyg (Invitrogen, Carlsbad, Calif.) or pDSRa24.
  • suitable mammalian cell expression vectors e.g., pcDNA3.1 Zeo, pcDNA3.1 Hyg (Invitrogen, Carlsbad, Calif.) or pDSRa24.
  • the pDSRa24 vector contains SV40 early promoter/enhancer for expressing the gene of interest and a mouse DHFR expression cassette for selection in CHO DHFR ( ⁇ ) host cells such as AM1/D CHO (a derivative of DG44, CHO DHFR ( ⁇ )).
  • AM-1/D CHO cells were transfected with linearized DNAs of huFGFR1c and huf ⁇ -Klotho in standard mammalian cell expression vectors e.g. pcDNA3.1 puro and pcDNA3.1 Hyg with Lipofectamine 2000 (Invitrogen, Carlsbad Calif.).
  • the transfected cells were trypsinized 2 days after transfection and seeded into media containing the corresponding selection drugs i.e. puromycin and hygromycin. After 2 weeks, the resulting transfected colonies were trypsinized and pooled. Single cell clones from the pools were isolated and screened with antibodies to huFGFR1c and hu ⁇ Klotho in FACS and Clone 16 was selected due to the high level and balanced expression of the two receptor components.
  • 2 ⁇ 10e9 fresh cells from Clone 16 were harvested from roller bottles into a smaller volume in PBS and incubated with 10 ⁇ g/ml recombinant FGF21 (Amgen, Thousand Oaks Calif.) at 4 C for 1 hours to form complex with the cell surface receptors.
  • the cells were washed twice with cold PBS, pelleted by centrifugation and frozen in individual vials at 2 ⁇ 10e8 cells for immunization.
  • HEK 293T cells were transfected with DNA expressing a truncated version of huFGFR1c (a signal peptide V H 21 was joined to the remaining FGFR1c from amino acid residue #141 to #822 (in SEQ ID NO: 4) with a deletion that removed both the D1 domain and the acidic box (AB) and DNA expressing the full length hu ⁇ -Klotho in pcDNA3.1 series or pTT5 (an expression vector developed by Durocher, NRCC, with CMV promoter and EBV ori) based vector for transient expression.
  • a signal peptide V H 21 was joined to the remaining FGFR1c from amino acid residue #141 to #822 (in SEQ ID NO: 4) with a deletion that removed both the D1 domain and the acidic box (AB) and DNA expressing the full length hu ⁇ -Klotho in pcDNA3.1 series or pTT5 (an expression vector developed by Durocher, NRCC, with CMV promoter
  • ⁇ -Klotho and truncated FGFR1c in the transfected 293T cells was verified by the respective specific antibodies in FACS and cells were harvested on day 3 post-transfection and frozen as cell pellet into aliquots for immunization.
  • Stable CHO or transiently transfected HEK 293T cells expressing FGFR1c and ⁇ -Klotho individually or together were also generated and used for titering mouse sera by FACS after immunization and for binding screens of the hybridoma supernatants by FMAT (see Example 3).
  • Immunizations were conducted using one or more suitable forms of FGF21 receptor antigen, including: (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and ⁇ -Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 (see also FIGS. 1 a - b ) and cDNA encoding a human ⁇ -Klotho polypeptide of SEQ ID NO: 7 (see also FIGS.
  • a suitable amount of immunogen i.e., 3-4 ⁇ 10 6 cells/mouse of stably transfected CHO cells or transiently transfected 293T cells mentioned above was used for initial immunization in XENOMOUSE® according to the methods disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, and WO 00/76310, the disclosures of which are incorporated by reference.
  • boost immunizations of immunogen 1.7 ⁇ 10 6 FGF21R transfected cells/mouse
  • Titers were determined by a suitable method, for example, by enzyme immunoassay, fluorescence activated cell sorting (FACS), or by other methods (including combinations of enzyme immunoassays and FACS).
  • lymphocytes were obtained from draining lymph nodes and, if necessary, pooled for each cohort. Lymphocytes were dissociated from lymphoid tissue by grinding in a suitable medium (for example, Dulbecco's Modified Eagle Medium; DMEM; obtainable from Invitrogen, Carlsbad, Calif.) to release the cells from the tissues, and suspended in DMEM. B cells were selected and/or expanded using standard methods, and fused with suitable fusion partner, for example, nonsecretory myeloma P3X63Ag8.653 cells (American Type Culture Collection CRL 1580; Kearney et al, (1979) J. Immunol. 123:1548-1550), using techniques that were known in the art.
  • suitable medium for example, Dulbecco's Modified Eagle Medium; DMEM; obtainable from Invitrogen, Carlsbad, Calif.
  • lymphocytes were mixed with fusion partner cells at a ratio of 1:4.
  • the cell mixture was gently pelleted by centrifugation at 400 ⁇ g for 4 minutes, the supernatant decanted, and the cell mixture gently mixed (for example, by using a 1 ml pipette).
  • Fusion was induced with PEG/DMSO (polyethylene glycol/dimethyl sulfoxide; obtained from Sigma-Aldrich, St. Louis Mo.; 1 ml per million of lymphocytes).
  • PEG/DMSO polyethylene glycol/dimethyl sulfoxide; obtained from Sigma-Aldrich, St. Louis Mo.; 1 ml per million of lymphocytes).
  • PEG/DMSO was slowly added with gentle agitation over one minute followed, by one minute of mixing.
  • IDMEM DMEM without glutamine; 2 ml per million of B cells
  • IDMEM 8 ml per million B-cells
  • the fused cells were pelleted (400 ⁇ g 6 minutes) and resuspended in 20 ml Selection media (for example, DMEM containing Azaserine and Hypoxanthine [HA] and other supplemental materials as necessary) per million B-cells. Cells were incubated for 20-30 minutes at 37° C. and then resuspended in 200 ml selection media and cultured for three to four days in T175 flasks prior to 96 well plating.
  • Selection media for example, DMEM containing Azaserine and Hypoxanthine [HA] and other supplemental materials as necessary
  • mice were immunized with cells expressing full length FGF21R cells mixed with FGF21, or cells expressing a truncated FGFR1c and full length ⁇ -Klotho, with a range of 11-17 immunizations over a period of approximately one to three and one-half months.
  • FGF21R-specific antibodies were obtained, and the antibodies were further characterized. The sequences thereof are presented herein and in the Sequence Listing, and results of various tests using these antibodies are provided.
  • hybridoma supernatants were screened for FGF21R-specific monoclonal antibodies by Fluorometric Microvolume Assay Technology (FMAT) by screening against either the CHO AM1/D/huFGF21R cell line or recombinant HEK293 cells that were transfected with human FGF21R and counter-screening against parental CHO or HEK293 cells. Briefly the cells in Freestyle media (Invitrogen) were seeded into 384-well FMAT plates in a volume of 50 ⁇ L/well at a density of 4,000 cells/well for the stable transfectants, and at a density of 16,000 cells/well for the parental cells, and cells were incubated overnight at 37° C.
  • FMAT Fluorometric Microvolume Assay Technology
  • FGF21 reporter assay measures activation of FGFR signaling via a MAPK pathway readout.
  • ⁇ -Klotho is a co-receptor for FGF21 signaling, and although it is believed not to have any inherent signaling capability due to its very short cytoplasmic domain, it is required for FGF21 to induce signaling through FGFRs.
  • ELK-luciferase assays were performed using a recombinant human 293T kidney cell or CHO cell system. Specifically, the host cells were engineered to over-express ⁇ -Klotho and luciferase reporter constructs.
  • the reporter constructs contain sequences encoding GAL4-ELK1 and 5 ⁇ UAS-Luc, a luciferase reporter driven by a promoter containing five tandem copies of the Gal4 binding site. Activation of the FGF21 receptor complex in these recombinant reporter cell lines induces intracellular signal transduction, which in turn leads to ERK and ELK phosphorylation. Luciferase activity is regulated by the level of phosphorylated ELK, and is used to indirectly monitor and quantify FGF21 activity.
  • CHO cells were transfected sequentially using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol with the receptor constructs expressing ⁇ -Klotho, FGFR1c and the reporter plasmids: 5 ⁇ Gal4-Luciferase (minimal TK promoter with 5 ⁇ Gal4 binding sites upstream of luciferase) and Gal4-ELK1.
  • Gal4-ELK1 binds to the Gal4 binding sites and activates transcription when it is phosphorylated by ERK. Luciferase transcription, and thereby the corresponding enzymatic activity in this context is regulated by the level of phosphorylated ELK1, and is used to indirectly monitor and quantify FGF21 activity.
  • Clone 16 was selected as the FGF21 luciferase reporter cell line based on the optimal assay window of 10-20 fold with native FGF21 exhibiting an EC50 in the single nM range.
  • the ELK-luciferase reporter cells were plated in 96 well assay plates, and serum starved overnight. FGF21 or test samples were added for 6 hours at 37 degrees. The plates were then allowed to cool to room temperature and the luciferase activity in the cell lysates was measured with Bright-Glo (Promega).
  • L6 a rat myoblastic cell line
  • the rat L6 cell line is a desirable host cell line for the activity assay because it is known to express minimal levels of endogeneous FGF receptors.
  • the L6 cells do not respond to FGF21 even when transfected with ⁇ -Klotho expression vector and therefore provides a cleaner background.
  • L6 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cells were transfected with plasmids expressing ⁇ -Klotho and individual FGFR using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol.
  • factor-dependent mouse BaF3 cell-based proliferation assay used frequently for cytokine receptors can also be developed and applied.
  • Antibodies can be purified from the conditioned media of the hybridoma cultures of these positives and tested again in the CHO cell based ELK-luciferase reporter assay to assess the potency of the representative antibodies in the dose-responsive assay and determine the EC50. The activities and potency can be confirmed in the L6 cell based ERK1/2-phosphrylation assay. The EC50 is expected to be consistent to the ELK-luciferase assay in the CHO stable cell line Clone 16.
  • FGF21 has been reported to signal through multiple receptor complexes including FGFR1c, 2c, 3c, and 4 when paired with ⁇ -Klotho.
  • the selectivity of the FGF21 agonistic antibodies can be determined in the rat myoblastic L6 cells transfected with vectors expressing the respective FGFRs and ⁇ -Klotho as described in Example 4.2.
  • Binding Specificity is Exclusively ⁇ -Klotho Dependent
  • the binding specificity of the reporter assay positive antibodies in the hybridoma supernatants was determined by FACS using 293T cells transiently transfected to express full length FGFR1c alone, ⁇ -Klotho alone or FGFR1c and ⁇ -Klotho together. Over 98% (141 out of 143 hybridomas) bind ⁇ -Klotho alone whereas none bind FGFR1c alone.
  • FGF21 stimulates glucose uptake and lipolysis in cultured adipocytes, and adipocytes are considered to be more physiologically relevant than the recombinant reporter cell system.
  • a panel of the antibodies were tested in the human adipocyte assay for Erk-phosphorylation activity as described in Example 4.2 and compared with FGF21 for their EC50. The results are set forth below in Table 10 below.
  • a series of competition binding experiments can be performed and measured by Biacore.
  • representative agonistic FGF21 receptor antibodies (and any controls) can be immobilized on the sensor chip surface.
  • Soluble human FGFR1c/ ⁇ -Klotho ECD-Fc complex or ⁇ -Klotho can then be captured on the immobilized antibody surfaces.
  • several of the test FGF21 receptor antibodies can be injected individually over the captured soluble human FGF21 receptor or ⁇ -Klotho. If the injected antibody recognizes a distinct binding site relative to that recognized by the immobilized antibody, a second binding event will be observed. If the antibodies recognize very similar binding site, no more binding will be observed.
  • a Biacore analysis can be carried out with biotinylated-FGF21 immobilized on the sensor ship. 10 nM soluble ⁇ -Klotho is then passed over the chip alone or mixed with the individual test antibodies at 100 nM. The results are set forth below in Table 11 below.
  • Cell lysates from CHO cells stably expressing FGF21 receptor (FGFR1c and ⁇ -Klotho) or CHO parental cells were diluted with sample buffer without beta-mercaptoethanol (non-reducing conditions). 20 ⁇ l of cell lysate were loaded per lane on adjacent lanes separated with a molecular weight marker lane on 4-20% SDS-PAGE gels. Following electrophoresis, the gels were blotted onto 0.2 ⁇ nitrocellulose filters. The blots were treated with Tris-buffered saline/Triton-X (TBST) plus 5% non-fat milk (blocking buffer) for 30 minutes. The blots were then cut along the molecular weight marker lanes.
  • TST Tris-buffered saline/Triton-X
  • the strips were probed with commercial goat anti-murine ⁇ Klotho or mouse anti-huFGFR1 (R&D Diagnostics) in TBST/5% milk. Blots were incubated with the antibodies for one hour at room temperature, followed by three washes with TBST+1% milk. The blots were then probed with anti-human or anti-goat IgG-HRP secondary antibodies for 20 min. Blots were given three 15 minute washes with TBST followed by treatment with Pierce Supersignal West Dura developing reagent (1 minute) and exposure to Kodak Biomax X-ray film.
  • the commercial anti- ⁇ -Klotho and anti-FGFR1 antibodies detected the corresponding receptor proteins in the SDS-PAGE indicating they bind to denatured receptor proteins.
  • a FACS binding assay was performed with several commercially available FGFR1c and ⁇ -Klotho antibodies, and several of the disclosed FGF21 receptor agonistic antibodies. The experiments were performed as follows.
  • CHO cells stably expressing FGF21 receptor were treated with R&D Systems mouse anti-huFGFR1, goat anti-mu ⁇ -Klotho (1 ⁇ g per 1 ⁇ 10 6 cells in 100 ⁇ l PBS/0.5% BSA). Cells were incubated with the antibodies at 4° C. followed by two washes with PBS/BSA. Cells were then treated with FITC-labeled secondary antibodies at 4° C. followed by two washes. The cells were resuspended in 1 ml PBS/BSA and antibody binding was analyzed using a FACSCaliburTM instrument.
  • antigen binding proteins that bind a complex comprising b-Klotho and one of FGFR1c, FGFR2c and FGFR3c can be created and characterized.
  • a number of mutant FGFR1c and/or ⁇ -Klotho proteins can be constructed having arginine substitutions at select amino acid residues of human FGFR1c and/or ⁇ -Klotho.
  • Arginine scanning is an art-recognized method of evaluating where antibodies, or other proteins, bind to another protein, see, e.g., Nanevicz et al., (1995) J. Biol. Chem., 270:37, 21619-25 and Zupnick et al., (2006) J. Biol. Chem., 281:29, 20464-73.
  • the arginine sidechain is positively charged and relatively bulky as compared to other amino acids, which can disrupt antibody binding to a region of the antigen where the mutation is introduced.
  • Arginine scanning is a method that determines if a residue is part of a neutralizing determinant and/or an epitope.
  • Various amino acids distributed throughout the human FGFR1c and/or ⁇ -Klotho extracellular domains can be selected for mutation to arginine.
  • the selection can be biased towards charged or polar amino acids to maximize the possibility of the residue being on the surface and reduce the likelihood of the mutation resulting in misfolded protein.
  • sense and anti-sense oligonucleotides containing the mutated residues can be designed based on criteria provided by Stratagene Quickchange® II protocol kit (Stratagene/Agilent, Santa Clara, Calif.). Mutagenesis of the wild-type (WT) FGFR1c and/or ⁇ -Klotho sequences can be performed using a Quickchange® II kit (Stratagene).
  • Chimeric constructs can be engineered to encode a FLAG-histidine tag (six histidines (SEQ ID NO: 1830)) on the carboxy terminus of the extracellular domain to facilitate purification via the poly-His tag.
  • Multiplex analysis using the Bio-Plex Workstation and software can be performed to determine neutralizing determinants on human FGFR1c and/or ⁇ -Klotho by analyzing exemplary human FGFR1c and/or ⁇ -Klotho mAbs differential binding to arginine mutants versus wild-type FGFR1c and/or ⁇ -Klotho proteins.
  • Any number of bead codes of pentaHis-coated beads (“penta-His” disclosed as SEQ ID NO: 1831) (Qiagen, Valencia, Calif.) can be used to capture histidine-tagged protein.
  • the bead codes can allow the multiplexing of FGFR1c and/or ⁇ -Klotho arginine mutants and wild-type human FGFR1c and/or ⁇ -Klotho.
  • 100 ⁇ l anti-FGFR1c and/or anti- ⁇ -Klotho antibodies in 4-fold dilutions are added to the wells, incubated for 1 hour at room temperature, and washed.
  • 100 ⁇ l of a 1:100 dilution of PE-conjugated anti-human IgG Fc (Jackson Labs., Bar Harbor, Me.) is added to each well, incubated for 1 hour at room temperature and washed. Beads are resuspended in 1% BSA, shaken for 3 minutes, and read on the Bio-Plex workstation.
  • Antibody binding to FGFR1c and/or ⁇ -Klotho arginine mutant protein is compared to antibody binding to the human FGFR1c and/or ⁇ -Klotho wild-type from the same pool. A titration of antibody over approximately a 5 log scale can be performed. Median Fluorescence Intensity (MFI) of FGFR1c and/or ⁇ -Klotho arginine mutant proteins can be graphed as a percent of maximum wild-type human FGFR1c and/or ⁇ -Klotho signal.
  • MFI Median Fluorescence Intensity
  • Mutations i.e., arginine substitutions
  • a cut-off value e.g., 3-fold or greater
  • a cut-off value e.g., 3-fold or greater
  • Regions of the human FGF21 receptor bound by the antigen binding proteins that bind human FGF21 receptor can be identified by fragmenting human FGF21 receptor into peptides with specific proteases, e.g., AspN, Lys-C, chymotrypsin or trypsin.
  • the sequence of the resulting human FGF21 receptor peptides i.e., both disulfide- and non-disulfide-containing peptide fragments from FGFR1c and ⁇ -Klotho portions) can then be determined.
  • soluble forms of a human FGF21 receptor e.g., a complex comprising the FGFR1c ECD-Fc and ⁇ -Klotho ECD-Fc heterodimer described herein can be digested with AspN (which cleaves after aspartic acid and some glutamic acid residues at the amino end) by incubating about 100 ⁇ g of soluble FGF21 receptor at 1.0 mg/ml in 0.1M sodium phosphate (pH 6.5) for 20 hrs at 37° C. with 2 ⁇ g of AspN.
  • AspN which cleaves after aspartic acid and some glutamic acid residues at the amino end
  • a peptide profile of the AspN digests can then be generated on HPLC chromatography while a control digestion with a similar amount of antibody is expected to be essentially resistant to AspN endoprotease.
  • a protease protection assay can then be performed to determine the proteolytic digestion of human FGF21 receptor in the presence of the antigen binding proteins.
  • the general principle of this assay is that binding of an antigen binding protein to the FGF21 receptor can result in protection of certain specific protease cleavage sites and this information can be used to determine the region or portion of FGF21 receptor where the antigen binding protein binds.
  • the peptide digests can be subjected to HPLC peptide mapping; the individual peaks are collected, and the peptides are identified and mapped by on-line electrospray ionization LC-MS (ESI-LC-MS) analyses and/or by N-terminal sequencing.
  • HPLC analyses for these studies can be performed using a narrow bore reverse-phase C18 column (Agilent Technologies) for off-line analysis and using a capillary reverse phase C18 column (The Separation Group) for LC-MS.
  • HPLC peptide mapping can be performed with a linear gradient from 0.05% trifluoroacetic acid (mobile phase A) to 90% acetonitrile in 0.05% trifluoroacetic acid. Columns can be developed at desirable flow rate for narrow bore HPLC for off-line or on-line LC-MS analyses, and for capillary HPLC for on-line LC-MS analyses.
  • Sequence analyses can be conducted by on-line LC-MS/MS and by Edman sequencing on the peptide peaks recovered from HPLC.
  • On-line ESI LC-MS analyses of the peptide digest can be performed to determine the precise mass and sequence of the peptides that are separated by HPLC. The identities of selected peptides present in the peptide peaks from the protease digestion can thus be determined.
  • FGFR1c and/or ⁇ -Klotho proteins between human and mouse species can be constructed, expressed in transient or stable 293 or CHO cells (as described herein) and tested.
  • a chimeric FGF21 receptor can be constructed comprising native human FGFR1c, FGFR2c, FGFR3c or FGFR4 receptors.
  • FGFR1c can be paired with chimeric human/mouse ⁇ -Klotho in which selected regions or sequences on the human ⁇ -Klotho are systematically replaced by the corresponding mouse-specific residues (see, e.g., FIG.
  • native human ⁇ -Klotho can be paired with chimeric human/mouse FGFR1c, FGFR2c, FGFR3c or FGFR4.
  • selected regions or sequences on the human FGFR1c are systematically replaced by the corresponding mouse-specific residues (see, e.g., the alignments of FIGS. 1A-1B ).
  • the critical sequences involved in the binding and/or activity of the antigen binding proteins can be derived through binding assay or activity measurements described in previous Examples 4, 5, 6, and 7 based on the chimeric FGF21 receptors.
  • Human-mouse ⁇ -Klotho chimeras were constructed using the methodology described above. A schematic of the chimeras constructed is presented in FIG. 4 .
  • the chimeras generated comprised (from N- to C-terminus) a fusion of a human ⁇ -Klotho sequence fused to a murine ⁇ -Klotho sequence fused to a human ⁇ -Klotho sequence.
  • Human ⁇ -Klotho Klotho (SEQ ID NO: 7) was used as a framework into which regions of murine ⁇ -Klotho (full length sequence shown in SEQ ID NO:468) were inserted. The regions of murine ⁇ -Klotho that were inserted were as follows:
  • Murine Residues 82P-520P (amino acids 82 to 520 of SEQ ID NO: 10) PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS LVLRNIEPIVTLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGD RVKYWITIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVW HNYDKNFRPHQKGWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWFA NPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSN TVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTEDTTAI YMMKNFLNQVLQAIKFDEIRVFGY
  • the chimeras that were generated using the murine ⁇ -Klotho sequences comprised the following:
  • FIG. 5 shows the observed results with each tested molecule.
  • the anti- ⁇ -Klotho antibody 2G10 (which binds both human and mouse ⁇ -Klotho) was used as the positive control for expression of each human/mouse chimera. Using this positive control it was determine the expression level of chimeras 7 and 8 were not high enough to provide robust data and therefore they were eliminated from the analysis.
  • One antibody, 26H11 was found to bind to full-length mouse ⁇ -Klotho and therefore could not be assigned an epitope in this analysis.
  • Other antibodies which did not cross-bind to mouse ⁇ -Klotho could be group into epitope clusters.
  • the first cluster included antibodies 16H7, 46D11, and 49G3.3, which antibodies did not bind to chimera #3 and chimera #12, indicating that the epitope includes the 1-81 region. Additionally, this group of antibodies also lacked observed binding to chimeras 1, 5, 6 and 14, which indicates that the epitope also includes the 294-506 region. Taken together, this data suggests that these antibodies have a complex non-linear type of epitope.
  • a second cluster included only antibody 65C3.1. This antibody lacked binding to chimeras #2, #11, and #14, indicating an epitope in the region of 849-936.
  • a third cluster including antibodies 49H12.1, 54A1.1, 49C8.1, 51A8.1, 63A10.1, 64B10.1, 68C8.1 and 39F7, lacked binding to chimera #1, #5, and #6, indicating that their epitope is in the 302-416 region.
  • the forth cluster included antibodies 67C10.1, 51E5.1, 52A8.1, 66G2, 167F5.1, which lacked binding on chimeras #2, #8, #9, #10, #11, and #14 indicating that the epitope for these antibodies lies within region 506-1045.
  • a “+” or “ ⁇ ” symbol in the chart below indicates binding of the respective antibody (“+”), or lack of binding (“ ⁇ ”) to the chimera and/or the respective ortholog of ⁇ -Klotho, or Mock Cells (negative control).
  • a panel of FGF21 receptor agonistic antibodies were assayed using flow cytometry for the binding to human FGFR1/human ⁇ -klotho transiently co-transfected HEK293T cells, human FGFR1c transiently transfected HEK293T cells and ⁇ -klotho transiently transfected HEK293T cells.
  • binding was also tested on HEK-293T cells transiently transfected with cynomologous monkey orthologs of FGFR1c and ⁇ -klotho.
  • Cells were transfected by preparing bug plasmid DNA in 500 ul OptiMEMTM media (InvitrogenTM) and mixing this with 10 ul of 293fectinTM in 500 ul OptiMEMTM media, and then incubating the solution for 5 minutes at room temperature. This solution was then added dropwise to 10 million HEK293T cells in 10 ml of media. 24 hours following transfection, the cells were washed and 50,000 cells were stained with each primary antibody, 50 ul of unpurified hybridoma supernatant was diluted 1:2 and used for staining cells. After a one hour incubation at 4° c., the cells were washed and an anti-Human Fc-specific secondary was added.
  • MHC class II binding site Immune responses against proteins are enhanced by antigen processing and presentation in the major histocompatability complex (MHC) class II binding site. This interaction is required for T cell help in maturation of antibodies that recognize the protein. Since the binding sites of MHC class II molecules have been characterized, it is possible to predict whether proteins have specific sequences that can bind to a series of common human alleles. Computer algorithms have been created based on literature references and MHC class II crystal structures to determine whether linear 9 amino acid peptide sequences have the potential to break immune tolerance. We used the TEPITOPETM program called to determine if point mutations of FGF21 are predicted to increase antigen specific T-cells in a majority of humans. Based on the linear protein sequence, none of the mutations examined are expected enhance immunogenicity. Results are shown in Table 17A and Table 17B below.

Abstract

The present invention provides compositions and methods relating to or derived from antigen binding proteins capable of inducing B-Klotho, and or FGF21-like mediated signaling. In embodiments, the antigen binding proteins specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In some embodiments the antigen binding proteins induce FGF21-like signaling. In some embodiments, an antigen binding protein is a fully human, humanized, or chimeric antibodies, binding fragments and derivatives of such antibodies, and polypeptides that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Other embodiments provide nucleic acids encoding such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, cells comprising such polynucleotides, methods of making such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, and methods of using such antigen binding proteins, fragments and derivatives thereof, and polypeptides, including methods of treating or diagnosing subjects suffering from type 2 diabetes, obesity, NASH, metabolic syndrome and related disorders or conditions.

Description

  • This application is a division of U.S. application Ser. No. 13/487,061 (filed Jun. 1, 2012), which claims the benefit of U.S. Provisional Application Nos. 61/493,933 (filed Jun. 6, 2011), 61/501,133 (filed Jun. 24, 2011), and 61/537,998 (filed Sep. 22, 2011), the contents of each of which are hereby incorporated in their entirety.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 10, 2016, is named A-1650-US—NP_SEQ_LIST_2094_08 10 2016. txt and is 1,661 KB in size.
  • FIELD OF THE INVENTION
  • The present disclosure relates to nucleic acid molecules encoding antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, and methods for treating metabolic disorders using such nucleic acids, polypeptides, or pharmaceutical compositions. Diagnostic methods using the antigen binding proteins are also provided.
  • BACKGROUND
  • Fibroblast Growth Factor 21 (FGF21) is a secreted polypeptide that belongs to a subfamily of Fibroblast Growth Factors (FGFs) that includes FGF19, FGF21, and FGF23 (Itoh et al., (2004) Trend Genet. 20:563-69). FGF21 is an atypical FGF in that it is heparin independent and functions as a hormone in the regulation of glucose, lipid, and energy metabolism.
  • It is highly expressed in liver and pancreas and is the only member of the FGF family to be primarily expressed in liver. Transgenic mice overexpressing FGF21 exhibit metabolic phenotypes of slow growth rate, low plasma glucose and triglyceride levels, and an absence of age-associated type 2 diabetes, islet hyperplasia, and obesity. Pharmacological administration of recombinant FGF21 protein in rodent and primate models results in normalized levels of plasma glucose, reduced triglyceride and cholesterol levels, and improved glucose tolerance and insulin sensitivity. In addition, FGF21 reduces body weight and body fat by increasing energy expenditure, physical activity, and metabolic rate. Experimental research provides support for the pharmacological administration of FGF21 for the treatment of type 2 diabetes, obesity, dyslipidemia, and other metabolic conditions or disorders in humans.
  • FGF21 is a liver derived endocrine hormone that stimulates glucose uptake in adipocytes and lipid homeostasis through the activation of its receptor. Interestingly, in addition to the canonical FGF receptor, the FGF21 receptor also comprises the membrane associated β-Klotho as an essential cofactor. Activation of the FGF21 receptor leads to multiple effects on a variety of metabolic parameters.
  • In mammals, FGFs mediate their action via a set of four FGF receptors, FGFR1-4, that in turn are expressed in multiple spliced variants, e.g., FGFR1c, FGFR2c, FGFR3c and FGFR4. Each FGF receptor contains an intracellular tyrosine kinase domain that is activated upon ligand binding, leading to downstream signaling pathways involving MAPKs (Erk1/2), RAF1, AKT1 and STATs. (Kharitonenkov et al., (2008) BioDrugs 22:37-44). Several reports suggested that the “c”-reporter splice variants of FGFR1-3 exhibit specific affinity to β-Klotho and could act as endogenous receptor for FGF21 (Kurosu et al., (2007) 1 Biol. Chem. 282:26687-95); Ogawa et al., (2007) Proc. Natl. Acad. Sci. USA 104:7432-37); Kharitonenkov et al., (2008) J. Cell Physiol. 215:1-7). In the liver, which abundantly expresses both β-Klotho and FGFR4, FGF21 does not induce phosphorylation of MAPK albeit the strong binding of FGF21 to the β-Klotho-FGFR4 complex. In 3T3-L1 cells and white adipose tissue, FGFR1 is by far the most abundant receptor, and it is therefore most likely that FGF21's main functional receptors in this tissue are the β-Klotho/FGFR1c complexes.
  • The present disclosure provides a human (or humanized) antigen binding protein, such as a monoclonal antibody, that induces FGF21-like signaling, e.g., an agonistic antibody that mimics the function of FGF21. Such an antibody is a molecule with FGF21-like activity and selectivity but with added therapeutically desirable characteristics typical for an antibody such as protein stability, lack of immunogenicity, ease of production and long half-life in vivo.
  • SUMMARY
  • The instant disclosure provides antigen binding proteins that bind a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling. In another aspect, also provided are expression vectors and host cells transformed or transfected with the expression vectors that comprise the aforementioned isolated nucleic acid molecules that encode the antigen binding proteins disclosed herein. Representative heavy and light chains are provided in Tables 1A and 1B; representative variable region heavy chain and light chain sequences are provided in Tables 2A and 2B; coding sequences for the variable region of the heavy and light chains are provided in Tables 2C and 2D; Tables 3A and 3B provide CDR regions of the disclosed variable heavy and light chains, and Tables 3C and 3D provide coding sequences for the disclosed CDRs.
  • In another aspect, also provided are methods of preparing antigen binding proteins that specifically or selectively bind a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and comprise the step of preparing the antigen binding protein from a host cell that secretes the antigen binding protein.
  • Other embodiments provide a method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of a pharmaceutical composition provided herein to a subject, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels. In embodiments, the condition is type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.
  • These and other aspects are described in greater detail herein. Each of the aspects provided can encompass various embodiments provided herein. It is therefore anticipated that each of the embodiments involving one element or combinations of elements can be included in each aspect described, and all such combinations of the above aspects and embodiments are expressly considered. Other features, objects, and advantages of the disclosed antigen binding proteins and associated methods and compositions are apparent in the detailed description that follows.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1a-1b is an alignment showing the sequence homology between human FGFR1c (GenBank Accession No P11362; SEQ ID NO: 4) and murine FGFR1c (GenBank Accession No NP 034336; SEQ ID NO: 1832); various features are highlighted, including the signal peptide, transmembrane sequence, heparin binding region, and a consensus sequence (SEQ ID NO: 1833) is provided.
  • FIG. 2a-2c is an alignment showing the sequence homology between human β-Klotho (GenBank Accession No NP_783864; SEQ ID NO: 7) and murine β-Klotho (GenBank Accession No NP_112457; SEQ ID NO: 10); various features are highlighted, including the transmembrane sequence and two glycosyl hydrolase domains, and a consensus sequence (SEQ ID NO: 1834) is provided.
  • FIG. 3 is a plot showing the representative data from Luciferase reporter activity screens of the antibodies disclosed herein with FGF21 and a reference antibody 16H7.1 as positive controls (insert); these hybridomas were generated by immunization with cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO:4. X- and Y-axis in the plot are % FGF21 activity from two independent assays (n=1 and n=2) of the same set of hybridoma samples (gray circles) showing the consistency of the assays; several hybridoma samples were also included as negative controls (black circles);
  • FIG. 4 shows a schematic representation of the chimeras constructed in relation to present invention.
  • FIG. 5 shows the ability of the antigen binding proteins, as well as human FGF21, to activate chimeras in L6 cells.
  • FIGS. 6a-e show the amino acid alignment of heavy and light chains of the antibodies compared to the corresponding germline V-gene sequence.
  • DETAILED DESCRIPTION
  • The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
  • Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.
  • Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present application are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and subsequent editions, Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow & Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988), which are incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
  • It should be understood that the instant disclosure is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure.
  • Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term “about.” The term “about” when used in connection with percentages can mean±5%, e.g., 1%, 2%, 3%, or 4%.
  • I. Definitions
  • As used herein, the terms “a” and “an” mean “one or more” unless specifically stated otherwise.
  • As used herein, an “antigen binding protein” is a protein comprising a portion that binds to an antigen or target and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen. Examples of antigen binding proteins include a human antibody, a humanized antibody; a chimeric antibody; a recombinant antibody; a single chain antibody; a diabody; a triabody; a tetrabody; a Fab fragment; a F(ab′)2 fragment; an IgD antibody; an IgE antibody; an IgM antibody; an IgG1 antibody; an IgG2 antibody; an IgG3 antibody; or an IgG4 antibody, and fragments thereof. The antigen binding protein can comprise, for example, an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, e.g., Korndorfer et al., (2003) Proteins: Structure, Function, and Bioinformatics, 53(1):121-129; Roque et al., (2004) Biotechnol. Prog. 20:639-654. In addition, peptide antibody mimetics (“PAMs”) can be used, as well as scaffolds based on antibody mimetics utilizing fibronectin components as a scaffold.
  • An antigen binding protein can have, for example, the structure of a naturally occurring immunoglobulin. An “immunoglobulin” is a tetrameric molecule. In a naturally occurring immunoglobulin, each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids. See generally, Fundamental Immunology 2nd ed. Ch. 7 (Paul, W., ed., Raven Press, N.Y. (1989)), incorporated by reference in its entirety for all purposes. The variable regions of each light/heavy chain pair form the antibody binding site such that an intact immunoglobulin has two binding sites.
  • Naturally occurring immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. From N-terminus to C-terminus, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain can be done in accordance with the definitions of Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented herein using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670).
  • In the context of the instant disclosure an antigen binding protein is said to “specifically bind” or “selectively bind” its target antigen when the dissociation constant (KD) is ≦10−8 M. The antibody specifically binds antigen with “high affinity” when the KD is ≦5×10−9 M, and with “very high affinity” when the KD is ≦5×10−10 M. In one embodiment, the antibodies will bind to a complex comprising β-Klotho and an FGFR, including a complex comprising both human FGFR1c and human β-Klotho, with a KD of between about 10−7 M and 10−12 M, and in yet another embodiment the antibodies will bind with a KD≦5×10−9.
  • An “antibody” refers to an intact immunoglobulin or to an antigen binding portion thereof that competes with the intact antibody for specific binding, unless otherwise specified. Antigen binding portions can be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen binding portions include, inter alia, Fab, Fab′, F(ab′)2, Fv, domain antibodies (dAbs), fragments including complementarity determining regions (CDRs), single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide.
  • A Fab fragment is a monovalent fragment having the VL, VH, CL and C H1 domains; a F(ab′)2 fragment is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment has the VH and C H1 domains; an Fv fragment has the VL and VH domains of a single arm of an antibody; and a dAb fragment has a VH domain, a VL domain, or an antigen-binding fragment of a VH or VL domain (U.S. Pat. Nos. 6,846,634, and 6,696,245; and US App. Pub. Nos. 05/0202512, 04/0202995, 04/0038291, 04/0009507, 03/0039958, Ward et al., Nature 341:544-546 (1989)).
  • A single-chain antibody (scFv) is an antibody in which a VL and a VH region are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain wherein the linker is long enough to allow the protein chain to fold back on itself and form a monovalent antigen binding site (see, e.g., Bird et al., (1988) Science 242:423-26 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-83). Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises VH and VL domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary domain on another polypeptide chain (see, e.g., Holliger et al., (1993) Proc. Natl. Acad. Sci. USA 90:6444-48, and Poljak et al., (1994) Structure 2:1121-23). If the two polypeptide chains of a diabody are identical, then a diabody resulting from their pairing will have two identical antigen binding sites. Polypeptide chains having different sequences can be used to make a diabody with two different antigen binding sites. Similarly, tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different.
  • Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670). One or more CDRs can be incorporated into a molecule either covalently or noncovalently to make it an antigen binding protein. An antigen binding protein can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDRs permit the antigen binding protein to specifically bind to a particular antigen of interest.
  • An antigen binding protein can but need not have one or more binding sites. If there is more than one binding site, the binding sites can be identical to one another or can be different. For example, a naturally occurring human immunoglobulin typically has two identical binding sites, while a “bispecific” or “bifunctional” antibody has two different binding sites. Antigen binding proteins of this bispecific form (e.g., those comprising various heavy and light chain CDRs provided herein) comprise aspects of the instant disclosure.
  • The term “human antibody” includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). These antibodies can be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain-encoding genes, such as a mouse derived from a XENOMOUSE®, ULTIMAB™, HUMAB-MOUSE®, VELOCIMOUSE®, VELOCIMMUNE®, KYMOUSE, or ALIVAMAB system, or derived from human heavy chain transgenic mouse, transgenic rat human antibody repertoire, transgenic rabbit human antibody repertoire or cow human antibody repertoire or HUTARG™ technology. Phage-based approaches can also be employed.
  • A humanized antibody has a sequence that differs from the sequence of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions, such that the humanized antibody is less likely to induce an immune response, and/or induces a less severe immune response, as compared to the non-human species antibody, when it is administered to a human subject. In one embodiment, certain amino acids in the framework and constant domains of the heavy and/or light chains of the non-human species antibody are mutated to produce the humanized antibody. In another embodiment, the constant domain(s) from a human antibody are fused to the variable domain(s) of a non-human species. In another embodiment, one or more amino acid residues in one or more CDR sequences of a non-human antibody are changed to reduce the likely immunogenicity of the non-human antibody when it is administered to a human subject, wherein the changed amino acid residues either are not critical for immunospecific binding of the antibody to its antigen, or the changes to the amino acid sequence that are made are conservative changes, such that the binding of the humanized antibody to the antigen is not significantly worse than the binding of the non-human antibody to the antigen. Examples of how to make humanized antibodies can be found in U.S. Pat. Nos. 6,054,297, 5,886,152 and 5,877,293.
  • The term “chimeric antibody” refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. In one embodiment, one or more of the CDRs are derived from a human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In another embodiment, all of the CDRs are derived from a human antibody that binds to a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In another embodiment, the CDRs from more than one human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are mixed and matched in a chimeric antibody. For instance, a chimeric antibody can comprise a CDR1 from the light chain of a first human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, a CDR2 and a CDR3 from the light chain of a second human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and the CDRs from the heavy chain from a third antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Further, the framework regions can be derived from one of the same antibodies that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, from one or more different antibodies, such as a human antibody, or from a humanized antibody. In one example of a chimeric antibody, a portion of the heavy and/or light chain is identical with, homologous to, or derived from an antibody from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with, homologous to, or derived from an antibody or antibodies from another species or belonging to another antibody class or subclass. Also included are fragments of such antibodies that exhibit the desired biological activity (e.g., the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c).
  • The term “light chain” includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length light chain includes a variable region domain, VL, and a constant region domain, CL. The variable region domain of the light chain is at the amino-terminus of the polypeptide. Light chains include kappa (“κ”) chains and lambda (“λ”) chains.
  • The term “heavy chain” includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length heavy chain includes a variable region domain, VH, and three constant region domains, C H1, C H2, and C H3. The VH domain is at the amino-terminus of the polypeptide, and the CH domains are at the carboxyl-terminus, with the C H3 being closest to the carboxy-terminus of the polypeptide. Heavy chains can be of any isotype, including IgG (including IgG1, IgG2, IgG3 and IgG4 subtypes), IgA (including IgA1 and IgA2 subtypes), IgM and IgE.
  • The term “immunologically functional fragment” (or simply “fragment”) of an antigen binding protein, e.g., an antibody or immunoglobulin chain (heavy or light chain), as used herein, is an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen. Such fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope. In one aspect, such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof. These biologically active fragments can be produced by recombinant DNA techniques, or can be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies. Immunologically functional immunoglobulin fragments include, but are not limited to, Fab, Fab′, F(ab′)2, Fv, domain antibodies and single-chain antibodies, and can be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit. It is contemplated further that a functional portion of the antigen binding proteins disclosed herein, for example, one or more CDRs, could be covalently bound to a second protein or to a small molecule to create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged serum half-life.
  • An “Fc” region contains two heavy chain fragments comprising the C H2 and C H3 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the C H3 domains.
  • An “Fab′ fragment” contains one light chain and a portion of one heavy chain that contains the VH domain and the C H1 domain and also the region between the C H1 and C H2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab′ fragments to form an F(ab′)2 molecule.
  • An “F(ab′)2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the C H1 and C H2 domains, such that an interchain disulfide bond is formed between the two heavy chains. A F(ab′)2 fragment thus is composed of two Fab′ fragments that are held together by a disulfide bond between the two heavy chains.
  • The “Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
  • A “domain antibody” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain. In some instances, two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two VH regions of a bivalent domain antibody can target the same or different antigens.
  • A “hemibody” is an immunologically-functional immunoglobulin construct comprising a complete heavy chain, a complete light chain and a second heavy chain Fc region paired with the Fc region of the complete heavy chain. A linker can, but need not, be employed to join the heavy chain Fc region and the second heavy chain Fc region. In particular embodiments a hemibody is a monovalent form of an antigen binding protein disclosed herein. In other embodiments, pairs of charged residues can be employed to associate one Fc region with the second Fc region.
  • A “bivalent antigen binding protein” or “bivalent antibody” comprises two antigen binding sites. In some instances, the two binding sites have the same antigen specificities. Bivalent antigen binding proteins and bivalent antibodies can be bispecific, as described herein, and form aspects of the instant disclosure.
  • A “multispecific antigen binding protein” or “multispecific antibody” is one that targets more than one antigen or epitope, and forms another aspect of the instant disclosure.
  • A “bispecific,” “dual-specific” or “bifunctional” antigen binding protein or antibody is a hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites. Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein or multispecific antibody and can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai and Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553. The two binding sites of a bispecific antigen binding protein or antibody will bind to two different epitopes, which can reside on the same (e.g., β-Klotho, FGFR1c, FGFR2c, or FGFR3c) or different protein targets (e.g., β-Klotho and one of (i) FGFR1c, (ii) FGFR2c, and (iii) FGFR3c).
  • The terms “FGF21-like signaling” and “induces FGF21-like signaling,” when applied to an antigen binding protein of the present disclosure, means that the antigen binding protein mimics, or modulates, an in vivo biological effect induced by the binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and induces a biological response that otherwise would result from FGF21 binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo. In assessing the binding and specificity of an antigen binding protein, e.g., an antibody or immunologically functional fragment thereof, an antibody or fragment is deemed to induce a biological response when the response is equal to or greater than 5%, and preferably equal to or greater than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, of the activity of a wild type FGF21 standard comprising the mature form of SEQ ID NO: 2 (i.e., the mature form of the human FGF21 sequence) and has the following properties: exhibiting an efficacy level of equal to or more than 5% of an FGF21 standard, with an EC50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM or 10 nM in (1) the recombinant FGF21 receptor-mediated luciferase reporter cell assay of Example 4; (2) ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in Example 4. The “potency” of an antigen binding protein is defined as exhibiting an EC50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM and preferably less than 10 nM of the antigen binding protein in the following assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in Example 4.
  • It is noted that not all of the antigen binding proteins of the present disclosure induce FGF21-mediated signaling (e.g., that induce agonistic activity), nor is this property desirable in all circumstances. Nevertheless, antigen binding proteins that do not induce FGF21-mediated signaling form aspects of the present disclosure and may be useful as diagnostic reagents or other applications.
  • As used herein, the term “FGF21R” means a multimeric receptor complex that FGF21 is known or suspected to form in vivo. In various embodiments, FGF21R comprises (i) an FGFR, e.g., FGFR1c, FGFR2c, FGFR3c or FGFR4, and (ii) β-Klotho.
  • The term “polynucleotide” or “nucleic acid” includes both single-stranded and double-stranded nucleotide polymers. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2′, 3′-dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.
  • The term “oligonucleotide” means a polynucleotide comprising 200 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides can be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides can be sense or antisense oligonucleotides. An oligonucleotide can include a label, including a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides can be used, for example, as PCR primers, cloning primers or hybridization probes.
  • An “isolated nucleic acid molecule” means a DNA or RNA of genomic, mRNA, cDNA, or synthetic origin or some combination thereof which is not associated with all or a portion of a polynucleotide in which the isolated polynucleotide is found in nature, or is linked to a polynucleotide to which it is not linked in nature. For purposes of this disclosure, it is understood that “a nucleic acid molecule comprising” a particular nucleotide sequence does not encompass intact chromosomes. Isolated nucleic acid molecules “comprising” specified nucleic acid sequences can include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or can include operably linked regulatory sequences that control expression of the coding region of the recited nucleic acid sequences, and/or can include vector sequences.
  • Unless specified otherwise, the left-hand end of any single-stranded polynucleotide sequence discussed herein is the 5′ end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5′ direction. The direction of 5′ to 3′ addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5′ to the 5′ end of the RNA transcript are referred to as “upstream sequences;” sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3′ to the 3′ end of the RNA transcript are referred to as “downstream sequences.”
  • The term “control sequence” refers to a polynucleotide sequence that can affect the expression and processing of coding sequences to which it is ligated. The nature of such control sequences can depend upon the host organism. In particular embodiments, control sequences for prokaryotes can include a promoter, a ribosomal binding site, and a transcription termination sequence. For example, control sequences for eukaryotes can include promoters comprising one or a plurality of recognition sites for transcription factors, transcription enhancer sequences, and transcription termination sequence. “Control sequences” can include leader sequences and/or fusion partner sequences.
  • The term “vector” means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) used to transfer protein coding information into a host cell.
  • The term “expression vector” or “expression construct” refers to a vector that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto. An expression construct can include, but is not limited to, sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto.
  • As used herein, “operably linked” means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions under suitable conditions. For example, a control sequence in a vector that is “operably linked” to a protein coding sequence is ligated thereto so that expression of the protein coding sequence is achieved under conditions compatible with the transcriptional activity of the control sequences.
  • The term “host cell” means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present.
  • The term “transduction” means the transfer of genes from one bacterium to another, usually by bacteriophage. “Transduction” also refers to the acquisition and transfer of eukaryotic cellular sequences by replication-defective retroviruses.
  • The term “transfection” means the uptake of foreign or exogenous DNA by a cell, and a cell has been “transfected” when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art and are disclosed herein. See, e.g., Graham et al., (1973) Virology 52:456; Sambrook et al., (2001), supra; Davis et al., (1986) Basic Methods in Molecular Biology, Elsevier; Chu et al., (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.
  • The term “transformation” refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain new DNA or RNA. For example, a cell is transformed where it is genetically modified from its native state by introducing new genetic material via transfection, transduction, or other techniques. Following transfection or transduction, the transforming DNA can recombine with that of the cell by physically integrating into a chromosome of the cell, or can be maintained transiently as an episomal element without being replicated, or can replicate independently as a plasmid. A cell is considered to have been “stably transformed” when the transforming DNA is replicated with the division of the cell.
  • The terms “polypeptide” or “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms also apply to amino acid polymers in which one or more amino acid residues is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms can also encompass amino acid polymers that have been modified, e.g., by the addition of carbohydrate residues to form glycoproteins, or phosphorylated. Polypeptides and proteins can be produced by a naturally-occurring and non-recombinant cell, or polypeptides and proteins can be produced by a genetically-engineered or recombinant cell. Polypeptides and proteins can comprise molecules having the amino acid sequence of a native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence. The terms “polypeptide” and “protein” encompass antigen binding proteins that specifically or selectively bind to a complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), or sequences that have deletions from, additions to, and/or substitutions of one or more amino acids of an antigen binding protein that specifically or selectively binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The term “polypeptide fragment” refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length protein. Such fragments can also contain modified amino acids as compared with the full-length protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of an antigen binding protein that binds to a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, useful fragments include but are not limited to a CDR region, a variable domain of a heavy or light chain, a portion of an antibody chain or just its variable region including two CDRs, and the like.
  • The term “isolated protein” referred means that a subject protein (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature. Typically, an “isolated protein” constitutes at least about 5%, at least about 10%, at least about 25%, or at least about 50% of a given sample. Genomic DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode such an isolated protein. Preferably, the isolated protein is substantially free from proteins or polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use.
  • A “variant” of a polypeptide (e.g., an antigen binding protein, or an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence. Variants include fusion proteins.
  • A “derivative” of a polypeptide is a polypeptide (e.g., an antigen binding protein, or an antibody) that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., by conjugation to another chemical moiety.
  • The term “naturally occurring” as used throughout the specification in connection with biological materials such as polypeptides, nucleic acids, host cells, and the like, refers to materials which are found in nature.
  • “Antigen binding region” means a protein, or a portion of a protein, that specifically binds a specified antigen, e.g., a complex comprising β-Klotho and an β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. For example, that portion of an antigen binding protein that contains the amino acid residues that interact with an antigen and confer on the antigen binding protein its specificity and affinity for the antigen is referred to as “antigen binding region.” An antigen binding region typically includes one or more “complementary binding regions” (“CDRs”). Certain antigen binding regions also include one or more “framework” regions. A “CDR” is an amino acid sequence that contributes to antigen binding specificity and affinity. “Framework” regions can aid in maintaining the proper conformation of the CDRs to promote binding between the antigen binding region and an antigen.
  • In certain aspects, recombinant antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, are provided. In this context, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art.
  • The term “compete” when used in the context of antigen binding proteins (e.g., neutralizing antigen binding proteins, neutralizing antibodies, agonistic antigen binding proteins, agonistic antibodies and binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) that compete for the same epitope or binding site on a target means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or immunologically functional fragment thereof) under study prevents or inhibits the specific binding of a reference molecule (e.g., a reference ligand, or reference antigen binding protein, such as a reference antibody) to a common antigen (e.g., FGFR1c, FGFR2c, FGFR3c, β-Klotho or a fragment thereof, or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c). Numerous types of competitive binding assays can be used to determine if a test molecule competes with a reference molecule for binding. Examples of assays that can be employed include solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., (1983) Methods in Enzymology 9:242-253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., (1986) J. Immunol. 137:3614-3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, (1988) supra); solid phase direct label RIA using 1-125 label (see, e.g., Morel et al., (1988) Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., (1990) Virology 176:546-552); and direct labeled RIA (Moldenhauer et al., (1990) Scand. J. Immunol. 32:77-82). Typically, such an assay involves the use of a purified antigen bound to a solid surface or cells bearing either of an unlabelled test antigen binding protein or a labeled reference antigen binding protein. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Additional details regarding methods for determining competitive binding are provided in the examples herein. Usually, when a competing antigen binding protein is present in excess, it will inhibit specific binding of a reference antigen binding protein to a common antigen by at least 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%. In some instance, binding is inhibited by at least 80%, 85%, 90%, 95%, or 97% or more.
  • The term “antigen” refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antigen binding protein (including, e.g., an antibody or immunological functional fragment thereof), and may also be capable of being used in an animal to produce antibodies capable of binding to that antigen. An antigen can possess one or more epitopes that are capable of interacting with different antigen binding proteins, e.g., antibodies.
  • The term “epitope” means the amino acids of a target molecule that are contacted by an antigen binding protein (for example, an antibody) when the antigen binding protein is bound to the target molecule. The term includes any subset of the complete list of amino acids of the target molecule that are contacted when an antigen binding protein, such as an antibody, is bound to the target molecule. An epitope can be contiguous or non-contiguous (e.g., (i) in a single-chain polypeptide, amino acid residues that are not contiguous to one another in the polypeptide sequence but that within in context of the target molecule are bound by the antigen binding protein, or (ii) in a multimeric receptor comprising two or more individual components, e.g., a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, amino acid residues that are present on one or more of the individual components, but which are still bound by the antigen binding protein). In certain embodiments, epitopes can be mimetic in that they comprise a three dimensional structure that is similar to an antigenic epitope used to generate the antigen binding protein, yet comprise none or only some of the amino acid residues found in that epitope used to generate the antigen binding protein. Most often, epitopes reside on proteins, but in some instances can reside on other kinds of molecules, such as nucleic acids. Epitope determinants can include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and can have specific three dimensional structural characteristics, and/or specific charge characteristics. Generally, antigen binding proteins specific for a particular target molecule will preferentially recognize an epitope on the target molecule in a complex mixture of proteins and/or macromolecules.
  • The term “identity” refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent identity” means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared. For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an “algorithm”). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology, (Lesk, A. M., ed.), (1988) New York: Oxford University Press; Biocomputing Informatics and Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer Analysis of Sequence Data, Part I, (Griffin, A. M., and Griffin, H. G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., (1987) Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo et al., (1988) J. Applied Math. 48:1073.
  • In calculating percent identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. The computer program used to determine percent identity is the GCG program package, which includes GAP (Devereux et al., (1984) Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span”, as determined by the algorithm). A gap opening penalty (which is calculated as 3× the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et al., (1978) Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., (1992) Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.
  • Recommended parameters for determining percent identity for polypeptides or nucleotide sequences using the GAP program are the following:
  • Algorithm: Needleman et al., 1970, J. Mol. Biol. 48:443-453;
  • Comparison matrix: BLOSUM 62 from Henikoff et al., 1992, supra;
  • Gap Penalty: 12 (but with no penalty for end gaps)
  • Gap Length Penalty: 4
  • Threshold of Similarity: 0
  • Certain alignment schemes for aligning two amino acid sequences can result in matching of only a short region of the two sequences, and this small aligned region can have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (e.g., the GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.
  • As used herein, “substantially pure” means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture. In certain embodiments, a substantially pure molecule is a composition wherein the object species comprises at least 50% (on a molar basis) of all macromolecular species present. In other embodiments, a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of all macromolecular species present in the composition. In other embodiments, the object species is purified to essential homogeneity wherein contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of a single detectable macromolecular species.
  • The terms “treat” and “treating” refer to any indicia of success in the treatment or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the injury, pathology or condition more tolerable to the patient; slowing in the rate of degeneration or decline; making the final point of degeneration less debilitating; improving a patient's physical or mental well-being. The treatment or amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination, neuropsychiatric exams, and/or a psychiatric evaluation. For example, certain methods presented herein can be employed to treat Type 2 diabetes, obesity and/or dyslipidemia, either prophylactically or as an acute treatment, to decrease plasma glucose levels, to decrease circulating triglyceride levels, to decrease circulating cholesterol levels and/or ameliorate a symptom associated with type 2 diabetes, obesity and dyslipidemia.
  • An “effective amount” is generally an amount sufficient to reduce the severity and/or frequency of symptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with diabetes, obesity and dyslipidemia. In some embodiments, the effective amount is a therapeutically effective amount or a prophylactically effective amount. A “therapeutically effective amount” is an amount sufficient to remedy a disease state (e.g., diabetes, obesity or dyslipidemia) or symptoms, particularly a state or symptoms associated with the disease state, or otherwise prevent, hinder, retard or reverse the progression of the disease state or any other undesirable symptom associated with the disease in any way whatsoever. A “prophylactically effective amount” is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the onset (or reoccurrence) of diabetes, obesity or dyslipidemia, or reducing the likelihood of the onset (or reoccurrence) of diabetes, obesity or dyslipidemia or associated symptoms. The full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically or prophylactically effective amount can be administered in one or more administrations.
  • “Amino acid” takes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology—A Synthesis, 2nd Edition, (E. S. Golub and D. R. Green, eds.), Sinauer Associates: Sunderland, Mass. (1991), incorporated herein by reference for any purpose. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural or non-naturally occurring or encoded amino acids such as α-,α-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids can also be suitable components for polypeptides and are included in the phrase “amino acid.” Examples of non-natural and non-naturally encoded amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include β-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), Nα-methylcitrulline (NMeCit), Nα-methylhomocitrulline (Nα-MeHoCit), ornithine (Om), Nα-Methylomithine (Nα-MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), Nα-methylarginine (NMeR), Nα-methylleucine (Nα-MeL or NMeL), N-methylhomolysine (NMeHoK), Nα-methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthy)alanine (1-Nal), 3-(2-naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (IgI), para-iodophenylalanine (pI-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated “K(Nε-glycyl)” or “K(glycyl)” or “K(gly)”), nitrophenylalanine (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), γ-carboxyglutamic acid (γ-carboxyglu), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), α-aminoadipic acid (Aad), Nα-methyl valine (NMeVal), N-α-methyl leucine (NMeLeu), Nα-methylnorleucine (NMeNle), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), α, β-diaminopropionoic acid (Dpr), α, γ-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohexylalanine (Cha), 4-methyl-phenylalanine (MePhe), β, β-diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4-phenyl-phenylalanine (or biphenylalanine; 4Bip), α-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid, N-ethylglycine, N-ethylaspargine, hydroxylysine, allo-hydroxylysine, isodesmosine, allo-isoleucine, N-methylglycine, N-methylisoleucine, N-methylvaline, 4-hydroxyproline (Hyp), γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ω-methylarginine, 4-Amino-O-Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed.
  • II. General Overview
  • Antigen-binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided herein. A unique property of the antigen binding proteins disclosed herein is the agonistic nature of these proteins, specifically the ability to mimic the in vivo effect of FGF21 and to induce FGF21-like signaling. More remarkably and specifically, some of the antigen binding proteins disclosed herein induce FGF21-like signaling in several in vitro cell-based assay, including the ELK-luciferase reporter assay of Example 4 under the following conditions: (1) the binding to and activity of the FGF21 receptor is β-Klotho dependent; (2) the activity is selective to the FGFR/β-Klotho complex; (3) the binding to the FGFR1c/βKlotho complex triggers FGF21-like signaling pathways; and (4) the potency (EC50) is comparable to a wild-type FGF21 standard comprising the mature form of SEQ ID NO: 2, as measured in the following cell-based assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in more details in Example 6. The disclosed antigen binding proteins, therefore, are expected to exhibit activities in vivo that are consistent with the natural biological function of FGF21. This property makes the disclosed antigen binding proteins viable therapeutics for the treatment of metabolic diseases such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.
  • In some embodiments of the present disclosure the antigen binding proteins provided can comprise polypeptides into which one or more complementary determining regions (CDRs) can be embedded and/or joined. In such antigen binding proteins, the CDRs can be embedded into a “framework” region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved. In general, such antigen binding proteins that are provided can facilitate or enhance the interaction between an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) and β-Klotho, and can substantially induce FGF21-like signaling. Accordingly, the antigen binding proteins provided herein mimic the in vivo role of FGF21 and are thus “agonistic” and offer potential therapeutic benefit for the range of conditions which benefit from FGF21 therapy, including type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.
  • Certain antigen binding proteins described herein are antibodies or are derived from antibodies. In certain embodiments, the polypeptide structure of the antigen binding proteins is based on antibodies, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), hemibodies and fragments thereof. The various structures are further described herein below.
  • The antigen binding proteins provided herein have been demonstrated to bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and particularly to a complex comprising human β-Klotho and a human FGFR (e.g., a human FGFR1c, a human FGFR2c or a human FGFR3c). As described and shown in the Examples presented herein, based Western blot results, known commercially-available anti-β-Klotho or anti-FGFR1c antibodies bind to denatured β-Klotho or FGFR1c whereas the antigen binding protein (which are agonistic antibodies) do not. Conversely, the provided antigen binding proteins recognize the native structure of the FGFR1c and β-Klotho on the cell surface whereas the commercial antibodies do not. The antigen binding proteins that are provided therefore mimic the natural in vivo biological activity of FGF21. As a consequence, the antigen binding proteins provided herein are capable of activating FGF21-like signaling activity. In particular, the disclosed antigen binding proteins can have one or more of the following activities in vivo: induction of FGF21-like signal transduction pathways, lowering blood glucose levels, lowering circulating lipid levels, improving metabolic parameters and other physiological effects induced in vivo by the formation of the ternary complex of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), β-Klotho and FGF21, for example conditions such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • The antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein have a variety of utilities. Some of the antigen binding proteins, for instance, are useful in specific binding assays, in the affinity purification of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these disclosed proteins, and in screening assays to identify other agonists of FGF21-like signaling activity.
  • The antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein can be used in a variety of treatment applications, as explained herein. For example, certain antigen binding proteins are useful for treating conditions associated with FGF21-like signaling processes in a patient, such as reducing, alleviating, or treating type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. Other uses for the antigen binding proteins include, for example, diagnosis of diseases or conditions associated with β-Klotho, FGFR1c, FGFR2c, FGFR3c, FGFR4 or FGF21, and screening assays to determine the presence or absence of these molecules. Some of the antigen binding proteins described herein can be useful in treating conditions, symptoms and/or the pathology associated with decreased FGF21-like signaling activity. Exemplary conditions include, but are not limited to, diabetes, obesity, NASH and dyslipidemia.
  • FGF21
  • The antigen binding proteins disclosed herein induce FGF21-mediated signaling, as defined herein. In vivo, the mature form of FGF21 is the active form of the molecule. The nucleotide sequence encoding full length FGF21 is provided; the nucleotides encoding the signal sequence are underlined.
  • (SEQ ID NO: 1)
    ATG GAC TCG GAC GAG ACC GGG TTC GAG CAC TCA GGA
    CTG TGG GTT TCT GTG CTG GCT GGT CTT CTG CTG GGA
    GCC TGC CAG GCA CAC CCC ATC CCT GAC TCC AGT CCT
    CTC CTG CAA TTC GGG GGC CAA GTC CGG CAG CGG TAC
    CTC TAC ACA GAT GAT GCC CAG CAG ACA GAA GCC CAC
    CTG GAG ATC AGG GAG GAT GGG ACG GTG GGG GGC GCT
    GCT GAC CAG AGC CCC GAA AGT CTC CTG CAG CTG AAA
    GCC TTG AAG CCG GGA GTT ATT CAA ATC TTG GGA GTC
    AAG ACA TCC AGG TTC CTG TGC CAG CGG CCA GAT GGG
    GCC CTG TAT GGA TCG CTC CAC TTT GAC CCT GAG GCC
    TGC AGC TTC CGG GAG CTG CTT CTT GAG GAC GGA TAC
    AAT GTT TAC CAG TCC GAA GCC CAC GGC CTC CCG CTG
    CAC CTG CCA GGG AAC AAG TCC CCA CAC CGG GAC CCT
    GCA CCC CGA GGA CCA GCT CGC TTC CTG CCA CTA CCA
    GGC CTG CCC CCC GCA CCC CCG GAG CCA CCC GGA ATC
    CTG GCC CCC CAG CCC CCC GAT GTG GGC TCC TCG GAC
    CCT CTG AGC ATG GTG GGA CCT TCC CAG GGC CGA AGC
    CCC AGC TAC GCT TCC TGA
  • The amino acid sequence of full length FGF21 is provided; the amino acids that make up the signal sequence are underlined:
  • (SEQ ID NO: 2)
    M D S D E T G F E H S G L W V S V L A G L L L G A
    C Q A H P I P D S S P L L Q F G G Q V R Q R Y L Y
    T D D A Q Q T E A H L E I R E D G T V G G A A D Q
    S P E S L L Q L K A L K P G V I Q I L G V K T S R
    F L C Q R P D G A L Y G S L H F D P E A C S F R E
    L L L E D G Y N V Y Q S E A H G L P L H L P G N K
    S P H R D P A P R G P A R F L P L P G L P P A P P
    E P P G I L A P Q P P D V G S S D P L S M V G P S
    Q G R S P S Y A S
  • FGFR1c
  • The antigen binding proteins disclosed herein bind to FGFR1c, in particular human FGFR1c, when associated with β-Klotho. The nucleotide sequence encoding human FGFR1c (GenBank Accession Number NM_023110) is provided:
  • (SEQ ID NO: 3)
    ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAG
    CCACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGC
    CCAGCCCTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCAC
    CCCGGTGACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGC
    AGAGCATCAACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCA
    ACCGCACCCGCATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCG
    TGCCCGCAGACTCCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTC
    GGGCAGTGACACCACCTACTTCTCCGTCAATGTTTCAGATGCTCTCC
    CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGA
    GAAAGAAACAGATAACACCAAACCAAACCGTATGCCCGTAGCTCC
    ATATTGGACATCACCAGAAAAGATGGAAAAGAAATTGCATGCAGT
    GCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACA
    CCAAACCCAACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA
    CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGA
    GCATCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACAC
    CTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCA
    GCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCA
    GGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAG
    TTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGC
    TAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACC
    TGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCACCGA
    CAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGAC
    GCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCC
    ATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCC
    GGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGC
    ACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCT
    ACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGA
    TGGCTGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGT
    AACAGTGTCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTT
    CTGGTTCGGCCATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAG
    CAGGGGTCTCTGAGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCT
    GCCTCGGGACAGACTGGTCTTAGGCAAACCCCTGGGAGAGGGCTG
    CTTTGGGCAGGTGGTGTTGGCAGAGGCTATCGGGCTGGACAAGGA
    CAAACCCAACCGTGTGACCAAAGTGGCTGTGAAGATGTTGAAGTC
    GGACGCAACAGAGAAAGACTTGTCAGACCTGATCTCAGAAATGGA
    GATGATGAAGATGATCGGGAAGCATAAGAATATCATCAACCTGCT
    GGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTAT
    GCCTCCAAGGGCAACCTGCGGGAGTACCTGCAGGCCCGGAGGCCC
    CCAGGGCTGGAATACTGCTACAACCCCAGCCACAACCCAGAGGAG
    CAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAGGTGGCCC
    GAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACC
    TGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGTGATGAAGA
    TAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGACTACTA
    TAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGGCACC
    CGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGTGG
    TCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCC
    ATACCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAG
    GGTCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTAC
    ATGATGATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCA
    CCTTCAAGCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGAC
    CTCCAACCAGGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTAC
    TCCCCCAGCTTTCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGG
    AGGATTCCGTCTTCTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCT
    GCCCCGACACCCAGCCCAGCTTGCCAATGGCGGACTCAAACGCCGC
    TGA.
  • The amino acid sequence of human FGFR1c (GenBank Accession Number NP_075598) is provided:
  • (SEQ ID NO: 4)
    MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHP
    GDLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPA
    DSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETD
    NTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR
    WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEY
    GSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQ
    PHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVS
    FEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLYLEIIIYC
    TGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVT
    VSADSSASMNSGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRD
    RLVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATE
    KDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLR
    EYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASK
    KCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPV
    KWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLGGSPYPGVPVEELFKL
    LKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRIV
    ALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGEDSVFSHEPLPEEPCLP
    RHPAQLANGGLKRR.
  • The antigen binding proteins described herein bind the extracellular portion of FGFR1c. An example of an extracellular region of FGFR1c is:
  • (SEQ ID NO: 5)
    MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHP
    GDLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPA
    DSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETD
    NTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR
    WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEY
    GSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQ
    PHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVS
    FEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLY.
  • As described herein, FGFR1c proteins can also include fragments. As used herein, the terms are used interchangeably to mean a receptor, in particular and unless otherwise specified, a human receptor, that upon association with β-Klotho and FGF21 induces FGF21-like signaling activity.
  • The term FGFR1c also includes post-translational modifications of the FGFR1c amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.
  • β-Klotho
  • The antigen binding proteins disclosed herein bind to β-Klotho, in particular human β-Klotho. The nucleotide sequence encoding human β-Klotho (GenBank Accession Number NM_175737) is provided:
  • (SEQ ID NO: 6)
    ATGAAGCCAGGCTGTGCGGCAGGATCTCCAGGGAATGAATGGATT
    TTCTTCAGCACTGATGAAATAACCACACGCTATAGGAATACAATGT
    CCAACGGGGGATTGCAAAGATCTGTCATCCTGTCAGCACTTATTCT
    GCTACGAGCTGTTACTGGATTCTCTGGAGATGGAAGAGCTATATGG
    TCTAAAAATCCTAATTTTACTCCGGTAAATGAAAGTCAGCTGTTTCT
    CTATGACACTTTCCCTAAAAACTTTTTCTGGGGTATTGGGACTGGA
    GCATTGCAAGTGGAAGGGAGTTGGAAGAAGGATGGAAAAGGACCT
    TCTATATGGGATCATTTCATCCACACACACCTTAAAAATGTCAGCA
    GCACGAATGGTTCCAGTGACAGTTATATTTTTCTGGAAAAAGACTT
    ATCAGCCCTGGATTTTATAGGAGTTTCTTTTTATCAATTTTCAATTT
    CCTGGCCAAGGCTTTTCCCCGATGGAATAGTAACAGTTGCCAACGC
    AAAAGGTCTGCAGTACTACAGTACTCTTCTGGACGCTCTAGTGCTT
    AGAAACATTGAACCTATAGTTACTTTATACCACTGGGATTTGCCTTT
    GGCACTACAAGAAAAATATGGGGGGTGGAAAAATGATACCATAAT
    AGATATCTTCAATGACTATGCCACATACTGTTTCCAGATGTTTGGG
    GACCGTGTCAAATATTGGATTACAATTCACAACCCATATCTAGTGG
    CTTGGCATGGGTATGGGACAGGTATGCATGCCCCTGGAGAGAAGG
    GAAATTTAGCAGCTGTCTACACTGTGGGACACAACTTGATCAAGGC
    TCACTCGAAAGTTTGGCATAACTACAACACACATTTCCGCCCACAT
    CAGAAGGGTTGGTTATCGATCACGTTGGGATCTCATTGGATCGAGC
    CAAACCGGTCGGAAAACACGATGGATATATTCAAATGTCAACAAT
    CCATGGTTTCTGTGCTTGGATGGTTTGCCAACCCTATCCATGGGGAT
    GGCGACTATCCAGAGGGGATGAGAAAGAAGTTGTTCTCCGTTCTAC
    CCATTTTCTCTGAAGCAGAGAAGCATGAGATGAGAGGCACAGCTG
    ATTTCTTTGCCTTTTCTTTTGGACCCAACAACTTCAAGCCCCTAAAC
    ACCATGGCTAAAATGGGACAAAATGTTTCACTTAATTTAAGAGAAG
    CGCTGAACTGGATTAAACTGGAATACAACAACCCTCGAATCTTGAT
    TGCTGAGAATGGCTGGTTCACAGACAGTCGTGTGAAAACAGAAGA
    CACCACGGCCATCTACATGATGAAGAATTTCCTCAGCCAGGTGCTT
    CAAGCAATAAGGTTAGATGAAATACGAGTGTTTGGTTATACTGCCT
    GGTCTCTCCTGGATGGCTTTGAATGGCAGGATGCTTACACCATCCG
    CCGAGGATTATTTTATGTGGATTTTAACAGTAAACAGAAAGAGCGG
    AAACCTAAGTCTTCAGCACACTACTACAAACAGATCATACGAGAA
    AATGGTTTTTCTTTAAAAGAGTCCACGCCAGATGTGCAGGGCCAGT
    TTCCCTGTGACTTCTCCTGGGGTGTCACTGAATCTGTTCTTAAGCCC
    GAGTCTGTGGCTTCGTCCCCACAGTTCAGCGATCCTCATCTGTACGT
    GTGGAACGCCACTGGCAACAGACTGTTGCACCGAGTGGAAGGGGT
    GAGGCTGAAAACACGACCCGCTCAATGCACAGATTTTGTAAACATC
    AAAAAACAACTTGAGATGTTGGCAAGAATGAAAGTCACCCACTAC
    CGGTTTGCTCTGGATTGGGCCTCGGTCCTTCCCACTGGCAACCTGTC
    CGCGGTGAACCGACAGGCCCTGAGGTACTACAGGTGCGTGGTCAG
    TGAGGGGCTGAAGCTTGGCATCTCCGCGATGGTCACCCTGTATTAT
    CCGACCCACGCCCACCTAGGCCTCCCCGAGCCTCTGTTGCATGCCG
    ACGGGTGGCTGAACCCATCGACGGCCGAGGCCTTCCAGGCCTACGC
    TGGGCTGTGCTTCCAGGAGCTGGGGGACCTGGTGAAGCTCTGGATC
    ACCATCAACGAGCCTAACCGGCTAAGTGACATCTACAACCGCTCTG
    GCAACGACACCTACGGGGCGGCGCACAACCTGCTGGTGGCCCACG
    CCCTGGCCTGGCGCCTCTACGACCGGCAGTTCAGGCCCTCACAGCG
    CGGGGCCGTGTCGCTGTCGCTGCACGCGGACTGGGCGGAACCCGCC
    AACCCCTATGCTGACTCGCACTGGAGGGCGGCCGAGCGCTTCCTGC
    AGTTCGAGATCGCCTGGTTCGCCGAGCCGCTCTTCAAGACCGGGGA
    CTACCCCGCGGCCATGAGGGAATACATTGCCTCCAAGCACCGACGG
    GGGCTTTCCAGCTCGGCCCTGCCGCGCCTCACCGAGGCCGAAAGGA
    GGCTGCTCAAGGGCACGGTCGACTTCTGCGCGCTCAACCACTTCAC
    CACTAGGTTCGTGATGCACGAGCAGCTGGCCGGCAGCCGCTACGAC
    TCGGACAGGGACATCCAGTTTCTGCAGGACATCACCCGCCTGAGCT
    CCCCCACGCGCCTGGCTGTGATTCCCTGGGGGGTGCGCAAGCTGCT
    GCGGTGGGTCCGGAGGAACTACGGCGACATGGACATTTACATCAC
    CGCCAGTGGCATCGACGACCAGGCTCTGGAGGATGACCGGCTCCG
    GAAGTACTACCTAGGGAAGTACCTTCAGGAGGTGCTGAAAGCATA
    CCTGATTGATAAAGTCAGAATCAAAGGCTATTATGCATTCAAACTG
    GCTGAAGAGAAATCTAAACCCAGATTTGGATTCTTCACATCTGATT
    TTAAAGCTAAATCCTCAATACAATTTTACAACAAAGTGATCAGCAG
    CAGGGGCTTCCCTTTTGAGAACAGTAGTTCTAGATGCAGTCAGACC
    CAAGAAAATACAGAGTGCACTGTCTGCTTATTCCTTGTGCAGAAGA
    AACCACTGATATTCCTGGGTTGTTGCTTCTTCTCCACCCTGGTTCTA
    CTCTTATCAATTGCCATTTTTCAAAGGCAGAAGAGAAGAAAGTTTT
    GGAAAGCAAAAAACTTACAACACATACCATTAAAGAAAGGCAAGA
    GAGTTGTTAGCTAA.
  • The amino acid sequence of full length human β-Klotho (GenBank Accession Number NP_783864) is provided:
  • (SEQ ID NO: 7)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRA
    VTGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVE
    GSWKKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGV
    SFYQFSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYH
    WDLPLALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNP
    YLVAWHGYGTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTH
    FRPHQKGWLSITLGSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIH
    GDGDYPEGMRKKLFSVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLN
    TMAKMGQNVSLNLREALNWIKLEYNNPRILIAENGWFTDSRVKTEDT
    TAIYMMKNFLSQVLQAIRLDEIRVFGYTAWSLLDGFEWQDAYTIRRGL
    FYVDFNSKQKERKPKSSAHYYKQIIRENGFSLKESTPDVQGQFPCDFS
    WGVTESVLKPESVASSPQFSDPHLYVWNATGNRLLHRVEGVRLKTRP
    AQCTDFVNIKKQLEMLARMKVTHYRFALDWASVLPTGNLSAVNRQA
    LRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLPEPLLHADGWLNPST
    AEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYNRSGNDTYGAAHN
    LLVAHALAWRLYDRQFRPSQRGAVSLSLHADWAEPANPYADSHWRA
    AERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSALPRLTEA
    ERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQDITRLS
    SPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRLRK
    YYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK
    SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC
    CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS.
  • The antigen binding proteins described herein bind the extracellular portion of β-Klotho. An example of an extracellular region of β-Klotho is:
  • (SEQ ID NO: 8)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRA
    VTGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVE
    GSWKKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGV
    SFYQFSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYH
    WDLPLALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNP
    YLVAWHGYGTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTH
    FRPHQKGWLSITLGSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIH
    GDGDYPEGMRKKLFSVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLN
    TMAKMGQNVSLNLREALNWIKLEYNNPRILIAENGWFTDSRVKTEDT
    TAIYMMKNFLSQVLQAIRLDEIRVFGYTAWSLLDGFEWQDAYTIRRGL
    FYVDFNSKQKERKPKSSAHYYKQIIRENGFSLKESTPDVQGQFPCDFS
    WGVTESVLKPESVASSPQFSDPHLYVWNATGNRLLHRVEGVRLKTRP
    AQCTDFVNIKKQLEMLARMKVTHYRFALDWASVLPTGNLSAVNRQA
    LRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLPEPLLHADGWLNPST
    AEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYNRSGNDTYGAAHN
    LLVAHALAWRLYDRQFRPSQRGAVSLSLHADWAEPANPYADSHWRA
    AERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSALPRLTEA
    ERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQDITRLS
    SPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRLRK
    YYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK
    SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKP.
  • The murine form of β-Klotho, and fragments and subsequences thereof, can be of use in studying and/or constructing the molecules provided herein. The nucleotide sequence encoding murine β-Klotho (GenBank Accession Number NM_031180) is provided:
  • (SEQ ID NO: 9)
    ATGAAGACAGGCTGTGCAGCAGGGTCTCCGGGGAATGAATGGATT
    TTCTTCAGCTCTGATGAAAGAAACACACGCTCTAGGAAAACAATGT
    CCAACAGGGCACTGCAAAGATCTGCCGTGCTGTCTGCGTTTGTTCT
    GCTGCGAGCTGTTACCGGCTTCTCCGGAGACGGGAAAGCAATATGG
    GATAAAAAACAGTACGTGAGTCCGGTAAACCCAAGTCAGCTGTTCC
    TCTATGACACTTTCCCTAAAAACTTTTCCTGGGGCGTTGGGACCGG
    AGCATTTCAAGTGGAAGGGAGTTGGAAGACAGATGGAAGAGGACC
    CTCGATCTGGGATCGGTACGTCTACTCACACCTGAGAGGTGTCAAC
    GGCACAGACAGATCCACTGACAGTTACATCTTTCTGGAAAAAGACT
    TGTTGGCTCTGGATTTTTTAGGAGTTTCTTTTTATCAGTTCTCAATCT
    CCTGGCCACGGTTGTTTCCCAATGGAACAGTAGCAGCAGTGAATGC
    GCAAGGTCTCCGGTACTACCGTGCACTTCTGGACTCGCTGGTACTT
    AGGAATATCGAGCCCATTGTTACCTTGTACCATTGGGATTTGCCTCT
    GACGCTCCAGGAAGAATATGGGGGCTGGAAAAATGCAACTATGAT
    AGATCTCTTCAACGACTATGCCACATACTGCTTCCAGACCTTTGGA
    GACCGTGTCAAATATTGGATTACAATTCACAACCCTTACCTTGTTGC
    TTGGCATGGGTTTGGCACAGGTATGCATGCACCAGGAGAGAAGGG
    AAATTTAACAGCTGTCTACACTGTGGGACACAACCTGATCAAGGCA
    CATTCGAAAGTGTGGCATAACTACGACAAAAACTTCCGCCCTCATC
    AGAAGGGTTGGCTCTCCATCACCTTGGGGTCCCATTGGATAGAGCC
    AAACAGAACAGACAACATGGAGGACGTGATCAACTGCCAGCACTC
    CATGTCCTCTGTGCTTGGATGGTTCGCCAACCCCATCCACGGGGAC
    GGCGACTACCCTGAGTTCATGAAGACGGGCGCCATGATCCCCGAGT
    TCTCTGAGGCAGAGAAGGAGGAGGTGAGGGGCACGGCTGATTTCT
    TTGCCTTTTCCTTCGGGCCCAACAACTTCAGGCCCTCAAACACCGTG
    GTGAAAATGGGACAAAATGTATCACTCAACTTAAGGCAGGTGCTG
    AACTGGATTAAACTGGAATACGATGACCCTCAAATCTTGATTTCGG
    AGAACGGCTGGTTCACAGATAGCTATATAAAGACAGAGGACACCA
    CGGCCATCTACATGATGAAGAATTTCCTAAACCAGGTTCTTCAAGC
    AATAAAATTTGATGAAATCCGCGTGTTTGGTTATACGGCCTGGACT
    CTCCTGGATGGCTTTGAGTGGCAGGATGCCTATACGACCCGACGAG
    GGCTGTTTTATGTGGACTTTAACAGTGAGCAGAAAGAGAGGAAAC
    CCAAGTCCTCGGCTCATTACTACAAGCAGATCATACAAGACAACGG
    CTTCCCTTTGAAAGAGTCCACGCCAGACATGAAGGGTCGGTTCCCC
    TGTGATTTCTCTTGGGGAGTCACTGAGTCTGTTCTTAAGCCCGAGTT
    TACGGTCTCCTCCCCGCAGTTTACCGATCCTCACCTGTATGTGTGGA
    ATGTCACTGGCAACAGATTGCTCTACCGAGTGGAAGGGGTAAGGCT
    GAAAACAAGACCATCCCAGTGCACAGATTATGTGAGCATCAAAAA
    ACGAGTTGAAATGTTGGCAAAAATGAAAGTCACCCACTACCAGTTT
    GCTCTGGACTGGACCTCTATCCTTCCCACTGGCAATCTGTCCAAAGT
    TAACAGACAAGTGTTAAGGTACTATAGGTGTGTGGTGAGCGAAGG
    ACTGAAGCTGGGCGTCTTCCCCATGGTGACGTTGTACCACCCAACC
    CACTCCCATCTCGGCCTCCCCCTGCCACTTCTGAGCAGTGGGGGGT
    GGCTAAACATGAACACAGCCAAGGCCTTCCAGGACTACGCTGAGC
    TGTGCTTCCGGGAGTTGGGGGACTTGGTGAAGCTCTGGATCACCAT
    CAATGAGCCTAACAGGCTGAGTGACATGTACAACCGCACGAGTAA
    TGACACCTACCGTGCAGCCCACAACCTGATGATCGCCCATGCCCAG
    GTCTGGCACCTCTATGATAGGCAGTATAGGCCGGTCCAGCATGGGG
    CTGTGTCGCTGTCCTTACATTGCGACTGGGCAGAACCTGCCAACCC
    CTTTGTGGATTCACACTGGAAGGCAGCCGAGCGCTTCCTCCAGTTT
    GAGATCGCCTGGTTTGCAGATCCGCTCTTCAAGACTGGCGACTATC
    CATCGGTTATGAAGGAATACATCGCCTCCAAGAACCAGCGAGGGC
    TGTCTAGCTCAGTCCTGCCGCGCTTCACCGCGAAGGAGAGCAGGCT
    GGTGAAGGGTACCGTCGACTTCTACGCACTGAACCACTTCACTACG
    AGGTTCGTGATACACAAGCAGCTGAACACCAACCGCTCAGTTGCAG
    ACAGGGACGTCCAGTTCCTGCAGGACATCACCCGCCTAAGCTCGCC
    CAGCCGCCTGGCTGTAACACCCTGGGGAGTGCGCAAGCTCCTTGCG
    TGGATCCGGAGGAACTACAGAGACAGGGATATCTACATCACAGCC
    AATGGCATCGATGACCTGGCTCTAGAGGATGATCAGATCCGAAAGT
    ACTACTTGGAGAAGTATGTCCAGGAGGCTCTGAAAGCATATCTCAT
    TGACAAGGTCAAAATCAAAGGCTACTATGCATTCAAACTGACTGAA
    GAGAAATCTAAGCCTAGATTTGGATTTTTCACCTCTGACTTCAGAG
    CTAAGTCCTCTGTCCAGTTTTACAGCAAGCTGATCAGCAGCAGTGG
    CCTCCCCGCTGAGAACAGAAGTCCTGCGTGTGGTCAGCCTGCGGAA
    GACACAGACTGCACCATTTGCTCATTTCTCGTGGAGAAGAAACCAC
    TCATCTTCTTCGGTTGCTGCTTCATCTCCACTCTGGCTGTACTGCTAT
    CCATCACCGTTTTTCATCATCAAAAGAGAAGAAAATTCCAGAAAGC
    AAGGAACTTACAAAATATACCATTGAAGAAAGGCCACAGCAGAGT
    TTTCAGCTAA.
  • The amino acid sequence of full length murine β-Klotho (GenBank Accession Number NP_112457) is provided:
  • (SEQ ID NO: 10)
    MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLR
    AVTGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQ
    VEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALD
    FLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIV
    TLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWI
    TIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHN
    YDKNFRPHQKGWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWF
    ANPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRP
    SNTVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTED
    TTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTRR
    GLFYVDFNSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDMKGRFPCD
    FSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGVRLKT
    RPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQ
    VLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMN
    TAKAFQDYAELCFRELGDLVKLWITINEPNRLSDMYNRTSNDTYRAA
    HNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPANPFVDSH
    WKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSVLPR
    FTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDI
    TRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQI
    RKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR
    AKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFF
    GCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS.
  • As described herein, β-Klotho proteins can also include fragments. As used herein, the terms are used interchangeably to mean a co-receptor, in particular and unless otherwise specified, a human co-receptor, that upon association with FGFR1c and FGF21 induces FGF21-like signaling activity.
  • The term β-Klotho also includes post-translational modifications of the β-Klotho amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.
  • Antigen Binding Proteins that Specifically Bind to a Complex Comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c)
  • A variety of selective binding agents useful for modulating FGF21-like signaling are provided. These agents include, for instance, antigen binding proteins that contain an antigen binding domain (e.g., single chain antibodies, domain antibodies, hemibodies, immunoadhesions, and polypeptides with an antigen binding region) and specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, in particular a complex comprising human β-Klotho and a human FGFR (e.g., human FGFR1c, human FGFR2c or human FGFR3c). Some of the agents, for example, are useful in mimicking the signaling effect generated in vivo by the association of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) with β-Klotho and with FGF21, and can thus be used to enhance or modulate one or more activities associated with FGF21-like signaling.
  • In general, the antigen binding proteins that are provided typically comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5 or 6 CDRs). In some embodiments the antigen binding proteins are naturally expressed by clones, while in other embodiments, the antigen binding protein can comprise (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure. In some of these embodiments a CDR forms a component of a heavy or light chains expressed by the clones described herein; in other embodiments a CDR can be inserted into a framework in which the CDR is not naturally expressed. A polypeptide framework structure can take a variety of different forms. For example, a polypeptide framework structure can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or it can be completely synthetic in nature. Examples of various antigen binding protein structures are further described below.
  • In some embodiments in which the antigen binding protein comprises (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure, the polypeptide framework structure of an antigen binding protein is an antibody or is derived from an antibody, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, antibody fusions (sometimes referred to as “antibody conjugates”), and portions or fragments of each, respectively. In some instances, the antigen binding protein is an immunological fragment of an antibody (e.g., a Fab, a Fab′, a F(ab′)2, or a scFv).
  • Certain of the antigen binding proteins as provided herein specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these proteins. In one embodiment, an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4, and human β-Klotho comprising the amino acid sequence of SEQ ID NO: 7, and in another embodiment an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4 and human β-Klotho having the amino acid sequence of SEQ ID NO: 7 and induces FGF21-like signaling. Thus, an antigen binding protein can, but need not, induce FGF21-like signaling.
  • Antigen Binding Protein Structure
  • Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these proteins, provided herein have a structure typically associated with naturally occurring antibodies. The structural units of these antibodies typically comprise one or more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain. In a typical antibody, each pair or couplet includes one full-length “light” chain (in certain embodiments, about 25 kDa) and one full-length “heavy” chain (in certain embodiments, about 50-70 kDa). Each individual immunoglobulin chain is composed of several “immunoglobulin domains,” each consisting of roughly 90 to 110 amino acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed. The amino-terminal portion of each chain typically includes a variable domain that is responsible for antigen recognition. The carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and is referred to as the “constant region” or “C region”. Human light chains generally are classified as kappa (“κ”) and lambda (“λ”) light chains, and each of these contains one variable domain and one constant domain. Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subtypes, including, but not limited to, IgG1, IgG2, IgG3, and IgG4. IgM subtypes include IgM, and IgM2. IgA subtypes include IgA1 and IgA2. In humans, the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five heavy chains and five light chains. The heavy chain C region typically comprises one or more domains that can be responsible for effector function. The number of heavy chain constant region domains will depend on the isotype. IgG heavy chains, for example, each contain three C region domains known as C H1, C H2 and C H3. The antibodies that are provided can have any of these isotypes and subtypes. In certain embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is an antibody of the IgG1, IgG2, or IgG4 subtype.
  • In full-length light and heavy chains, the variable and constant regions are joined by a “J” region of about twelve or more amino acids, with the heavy chain also including a “D” region of about ten more amino acids. See, e.g., Fundamental Immunology, 2nd ed., Ch. 7 (Paul, W., ed.) 1989, New York: Raven Press (hereby incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair typically form the antigen binding site.
  • One example of an IgG2 heavy constant domain of an exemplary monoclonal antibody that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • (SEQ ID NO: 11)
    ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG
    VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT
    VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
    HEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW
    LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK.
  • One example of a kappa light constant domain of an exemplary monoclonal antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • (SEQ ID NO: 12)
    TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP
    VTKSFNRGEC.
  • One example of a lambda light constant domain of an exemplary monoclonal antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:
  • (SEQ ID NO: 13)
    QPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKA
    GVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA
    PTECS.
  • Variable regions of immunoglobulin chains generally exhibit the same overall structure, comprising relatively conserved framework regions (FR) joined by three hypervariable regions, more often called “complementarity determining regions” or CDRs. The CDRs from the two chains of each heavy chain/light chain pair mentioned above typically are aligned by the framework regions to form a structure that binds specifically with a specific epitope on the target protein (e.g., a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. From N-terminal to C-terminal, naturally-occurring light and heavy chain variable regions both typically conform with the following order of these elements: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. A numbering system has been devised for assigning numbers to amino acids that occupy positions in each of these domains. This numbering system is defined in Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670).
  • The various heavy chain and light chain variable regions of antigen binding proteins provided herein are depicted in Table 2. Each of these variable regions can be attached to the disclosed heavy and light chain constant regions to form a complete antibody heavy and light chain, respectively. Further, each of the so-generated heavy and light chain sequences can be combined to form a complete antibody structure. It should be understood that the heavy chain and light chain variable regions provided herein can also be attached to other constant domains having different sequences than the exemplary sequences listed above.
  • Specific examples of some of the full length light and heavy chains of the antibodies that are provided and their corresponding amino acid sequences are summarized in Tables 1A and 1B. Table 1A shows exemplary light chain sequences, and Table 1B shows exemplary heavy chain sequences.
  • TABLE 1A
    Exemplary Antibody Light Chain Sequences
    Contained SEQ ID
    in Clone Designation NO: Amino Acid Sequence
    63E6 L6 14 DIQMTQSPSSLSASVGDRVTITCRTSQSISSYL
    NWYQQKPGKAPNLLIYAASSLQSGVPSRFSG
    SGSGTDFTLTISGLQPEDFSTYYCQQSYSTSL
    TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    66F7 L7 15 DIQMTQSPSSLSASVGDRVTITCRTSQSISNY
    LNVVYQQKPGKAPNLLIYAASSLQSGVPSRFS
    GSGSGTDFTLTISGLQPEDFSTYYCQQSYSTS
    LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    66D4 L18 16 DIQMTQSPSSLSASVGDRITITCRASQIISRYL
    NWYQQNPGKAPKLLISAASSLQSGVPSRFSG
    SGSGPDFTLTISSLQPEDFTTYYCQQSYSSPLT
    FGGGTKVEVKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    66B4 L11 17 DIQMTQSPSSVSSSVGDRVTITCRASQGISRW
    LAWYQQKPGKAPKLLIYAASSLKSGVPSRFS
    GSGSGTDFTLTISSLQPEDFATYYCQQANSFP
    PTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    65B1 L19 18 DIQMTQSPSSLSASVGDRVTITCRASQNINNY
    LNWYRQKPGKAPELLIYTTSSLQSGVPSRFS
    GSGSGTDFTLTISSLETEDFETYYCQQSYSTP
    LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    65B4 L21 19 SYVLTQPPSVSVAPGQTARITCGGNNIGSKSV
    QWYQQKPGQAPVLVVYDDSDRPSGIPERFS
    GSNSGNTASLTISRVEAGDEADYYCQVWDS
    SSDHVVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    67A4 L20 20 SYVLTQPPSVSVAPGQTARITCGGNNIGSKSV
    HWYQQKPGQAPVLVVYDDSDRPSGIPERFS
    GSNSGNTATLTISRVEAGDEADYYCQVWDS
    SSDHVVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    63A10v1 L22 21 SYELTQPHSVSVATAQMARITCGGNNIGSKA
    VHWYQQKPGQDPVLVIYCDSNRPSGIPER
    FSGSNPGNTATLTISRIEAGDEADYYCQVWD
    SSSDGVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    63A10v2 L101 1835 SYELTQPHSVSVATAQMARITCGGNNIGSKA
    VHWYQQKPGQDPVLVIYCDSNRPSGIPER
    FSGSNPGNTATLTISRIEAGDEADYYCQAWD
    STTVVFGGGTKLTVLGQPKANPTVTLFPPSS
    EELQANKATLVCLISDFYPGAVTVAWKADG
    SPVKAGVETTKPSKQSNNKYAASSYLSLTPE
    QWKSHRSYSCQVTHEGSTVEKTVAPTECS
    63A10v3 L102 1836 SYELTQPPSVSVSPGQTANITCSGDKLGNRY
    TCWYQQKSGQSPVLVIYQDSERPSGIPER
    FSGSNSGNTATLTISGTQAMDEADYYCQAW
    DSTTVVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    65H11v1 L23 22 SYELTQPHSVSVATAQMARITCGGNNIGSKT
    VHWFQQKPGQDPVLVIYSDSNRPSGIPERFS
    GSNPGNTATLTISRIEAGDEADYYCQVWDSS
    CDGVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    65H11v2 L103 1837 SYELTQPPSVSVSPGQTANITCSGDKLGDRY
    VCWYQQKPGQSPVLVIYQDSKRPSGIPEQFS
    GSNSGNTATLTISGTQAIDEADYYCQAWDSI
    TVVFGGGTKLTVLGQPKANPTVTLFPPSSEE
    LQANKATLVCLISDFYPGAVTVAWKADGSP
    VKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    67G10v1 L9 23 SYELTQPHSVSVATAQMARITCGGNNIGSKA
    VHWYQQKPGQDPVLVIYSDSNRPSGIPERFS
    GSNPGNTATLTISRIEAGDEADYYCQVWDSS
    SDGVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    67G10v2 L10 24 SYELTQPPSVSVSPGQTASITCSGDKLGDKY
    ACWYQQKPGQSPVLVIYQDNERPSGIPERFS
    GSNSGNTATLTISGTQAMDEADYYCQAWDS
    TTVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    64C8 L24 25 DVVMTQSPLSLPVTLGQPASISRRSSPSLVYS
    DGNTYLNCFQQRPGHSPRRLIYKGSNWDSG
    VPDRFSGSGSGTDFTLKISRVEAEDVGIYYCI
    QDTHWPTCSFGQGTKLEIKRTVAAPSVFIFPP
    SDEQLKSGTASVVCLLNNFYPREAKVQWKV
    DNALQSGNSQESVTEQDSKDSTYSLSSTLTL
    SKADYEKHKVYACEVTHQGLSSPVTKSFNR
    GEC
    64A8 L1 26 DIQMTQSPSSLSASVGDRVTITCRASQDIRND
    67B4 LGWYQQKPGKAPKRLIYAASNLQRGVPSRF
    SGSGSGTEFTLTISTLQPEDFATYSCLQHNSY
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    63G8v1 L104 1838 DIQMTQSPSSLSASVGDRVTITCRASQDIRND
    LGWYQQKPGKAPKRLIYAASNLQRGVPSRF
    SGSGSGTEFTLTISTLQPDDFATYSCLQHNSY
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    63G8v2 L105 1839 DIQMTQSPSSLSASVGDRVTITCRASQGIRSG
    LGWYQQKPGKAPKRLIYAASNLQRGVPSRF
    SGSGSGTEFTLTVSSLQPEDFATYSCLQHNSY
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    63G8v3 L106 1840 DIQMTQSPSSLSASVGDRVTITCRASQGIRSG
    LGWYQQKPGKAPKRLIYAASNLQRGVPSRF
    SGSGSGTEFTLTVSSLQPEDFATYSCLQHNTY
    PLTFGGGTKGEIRRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    66G2 L12 27 DIQMTQSPSSLSASVGDRVTITCRASQGIRND
    LGWYQQKPGKAPKRLIYAASNLQSGVPSRFS
    GSGSGTKFTLTINSLQPEDFATYYCLQLNGY
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    68D3v1 L2 28 DIQMTQSPSSLSASVGDRVTITCRASQDIRND
    68D3v2 LGWYQQKPGKAPKRLIYAASNLQRGVPSRF
    SGSGSGTEFTLTISTLQPDDFATYSCLQHNSY
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    65D1 L27 29 SYDLTQPPSVSVSPGQTASITCSGDKLGDKY
    VCWYQQKPGQSPVLVIYQDSKRPSGIPERFS
    GSNSGNTATLTISGIQAMDEADYYCQAWDS
    RVFGGGTKLTVLGQPKANPTVTLFPPSSEEL
    QANKATLVCLISDFYPGAVTVAWKADGSPV
    KAGVETTKPSKQSNNKYAASSYLSLTPEQW
    KSHRSYSCQVTHEGSTVEKTVAPTECS
    64H5 L8 30 SYEMTQPLSVSVALGQTARITCGGNNIGSKN
    65G4 VHWYQQKPGQAPVLVIYRDSKRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYYCQVWDS
    SSVVFGGGTKLTVLGQPKANPTVTLFPPSSEE
    LQANKATLVCLISDFYPGAVTVAWKADGSP
    VKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    65D4 L26 31 SYELTQPLSVSVALGQTARIPCGGNDIGSKN
    VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYYCQVWDS
    NPVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    65E3 L25 32 SYELTQPLSVSVALGQTARITCGGNNIGSKN
    VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYYCQVWDS
    STVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    67G8 L28 33 SYELTQPLSVSVALGQTARITCGGNNIGSYN
    VFWYQQKPGQAPVLVIYRDSKRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYHCQVWDS
    STVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    65B7v1 L29 34 EIVLTQSPGTLSLSPGERATLSCRASQSVSSIY
    LAWYQQKPGQAPRLLIYGASSRATGIPDRFS
    GSGSGTDFTLTISRLEPEDFAVYYCQQYGSSC
    SFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    65B7v2 L107 1841 DVVMTQSPLSLPVTLGQPASISYRSSQSLVYS
    DGDTYLNWFQQRPGQSPRRLIYKVSNWDSG
    VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
    MQGTHWRGWTFGQGTKVEIKRTVAAPSVFI
    FPPSDEQLKSGTASVVCLLNNFYPREAKVQ
    WKVDNALQSGNSQESVTEQDSKDSTYSLSS
    TLTLSKADYEKHKVYACEVTHQGLSSPVTK
    SFNRGEC
    63B6 L4 35 EIVLTQSPGTLSLSPGERATLSCRASQSVSNS
    64D4 YLAWYQQKPGQAPRLLIYGAFSRATGIPDRF
    SGSGSGTDFTLTISRLEPEDFAVYYCQQFGRS
    FTFGGGTKVEIRRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    63F5 L14 36 EVVLTQSPGTLSLSPGERATLSCRASQTVRN
    NYLAWYQQQPGQAPRLLIFGASSRATGIPDR
    FSGSGSGTDFTLTISRLEPEDFAVYYCQQFGS
    SLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    65E8 L3 37 EIVLTQSPGTLSLSPGERATLSCRASQSVRNS
    63H11 YLAWYQQQPGQAPRLLIYGAFSRASGIPDRF
    64E6 SGSGSGTDFTLTISRLEPEDFAVYYCQQFGSS
    67G7 LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    65F11 GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    65C1 L16 38 EIVLTQSPGTLSLSPGERATLSCRASQTIRNSY
    LAWYQQQPGQAPRLLIYGAFSRATGIPDRFS
    GGGSGTDFTLTISRLEPEDFAVYYCQQFGSSL
    TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    66F6 L15 39 EIVLTQSPGTLSLSPGERATLSCRASQSVRNS
    YLAWYQQQPGQAPRLLIYGAFSRATGIPDRF
    SGSGSGTDFTLTISRLEPEDFAVYYCQQFGSS
    LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    64A6 L30 40 EILMTQSPATLSVSPGERATLSCRASQSVNSN
    LAWYQQKPGQAPRLLIYGTSTRATGVPARF
    GGSGSGTEFTLTISSLQSEDFAFYYCQQYNT
    WPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQ
    LKSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    65F9 L31 41 EILMTQSPATLSVSPGERATLSCRASQSVSSN
    LAWYQQKPGQSPRLLIYGASTRATGIPARFG
    GSGSGTDFTLTISSLQSEDFAFYYCQQYNTW
    PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    64A7 L17 42 EIVLTQSPGTLSLSPGERATLSCRASQSVSRN
    YLAWYQQKPGQAPRLLIYGASSRATGVPDR
    FSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
    SSLCSFGQGTNLDIRRTVAAPSVFIFPPSDEQL
    KSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    65C3 L5 43 EMVMTQSPATLSVSPGERATLSCRASQSVSS
    68D5 QLAWYQEKPGRAPRLLIYGASNRAIDIPARL
    SGSGSGTEFTLTISSLQSEDFAVYYCQQYNN
    WPWTFGQGTKVEFKRTVAAPSVFIFPPSDEQ
    LKSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    67F5 L32 44 EIVMTQSPATLSVSPGERVTLSCRASQSVSSN
    LAWYQQKPGQAPRLLIHGSSNRAIGIPARFS
    GSGSGTEFTLTISSLQSADFAVYNCQQYEIWP
    WTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    64B10v1 L33 45 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNN
    64B10v2 YVAWYQQLPGTAPKLLIYDNDKRPSGIPDRF
    SGSKSGTSATLGITGLQTGDEADYYCGTWDS
    SLSAVVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    68C8 L34 46 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNN
    YVSWYQQLPGTAPKLLIYDNNKRPSGIPDRF
    SGSKSGTSATLGITGLQTGDEADYYCGTWDS
    SLSAVVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    67A5 L35 47 DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSD
    DGNTYLDWYLQKPGQSPQLLIYTLSYRASG
    VPDRFSGTGSGTEFTLKISRVEAEDVGVYYC
    MQRLEFPITFGQGTRLEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    67C10 L36 48 DFVMTQTPLSLPVTPGEPASISCRSSQSLLNS
    DDGNTYLDWYLQKPGQSPQLLIYTLSYRAS
    GVPDRFSGSGSGTDFTLKISRVEAEDVGVYY
    CMQRIEFPITFGQGTRLEIKRTVAAPSVFIFPP
    SDEQLKSGTASVVCLLNNFYPREAKVQWKV
    DNALQSGNSQESVTEQDSKDSTYSLSSTLTL
    SKADYEKHKVYACEVTHQGLSSPVTKSFNR
    GEC
    64H6 L37 49 SYELTQPLSVSVALGQTARITCGGNNIGSKN
    VHWYQQKPGQAPVVVIYRDSKRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYYCQVWDS
    SPVVFGGGTKLTVLGQPKANPTVTLFPPSSEE
    LQANKATLVCLISDFYPGAVTVAWKADGSP
    VKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    63F9 L38 50 DIQMTQSPSSLSVSVGDRVTITCRASQDIRND
    LAWYQQTPGKAPKRLIYASSSLQSGVPSRFS
    GTGSGTEFTLTISSLQPEDFATYFCLQRNSYP
    LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    67F6v1 L39 51 DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSD
    AGTTYLDWYLQKPGQSPQLLIYTLSFRASGV
    PDRFSGSGSGTDFTLKITRVEAEDVGVYYCM
    QRIEFPITFGQGTRLEIKRTVAAPSVFIFPPSDE
    QLKSGTASVVCLLNNFYPREAKVQWKVDN
    ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
    ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    67F6v2 L108 1842 DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSD
    AGTTYLDWYLQKPGRSPQLLIYTLSFRASGV
    PDRFSGSGSGTDFTLKITRVEAEDVGVYYCM
    QRIEFPITFGQGTRLEIKRTVAAPSVFIFPPSDE
    QLKSGTASVVCLLNNFYPREAKVQWKVDN
    ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
    ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    48C9 L78 52 DIQMTQSPSSLSASIGDRVTITCRASQNIRTYL
    49A12 NWYQQKPGKAPKLLIYVASSLESGVPSRFSG
    51E2 TGSGTDFALTISSLQPEDFATYYCQQSDSIPR
    TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    48F3 L77 53 DIQMTQSPSSLSASVGDRVTITCRASQRISSY
    LNWYQQKPGKAPKFLIYAVSSLQSGVPSRFS
    GSGSGTDFTLTISSLEPEDFATYYCQQSYSAT
    FTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    48F8 L49 54 EIVLTQSPDFQSVTPKEKVTITCRASQDIGNS
    53B9 LHWYQQKPDQSPKLLIKFASQSFSGVPSRFS
    56B4 GSGSGTDFALTINSLEAEDAATYYCHQSSDL
    57E7 PLTFGGGTKVDIKRTVAAPSVFIFPPSDEQLK
    57F11 SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    48H11 L40 55 DIQMTQSPSSLSTSVGDRVTITCRASQNIRSY
    LNWYQLKPGKAPKVLIYGASNLQSGVPSRFS
    GSGSGTDFTLTISNLQSEDFAIYYCQQSYNTP
    CSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    49A10 L65 56 DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSD
    48D4 DGNTYLDWYLQKPGQSPQLLIYTLSYRASG
    VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
    MQRIEFPITFGQGTRLEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    49C8 L45 57 DIQMTQSPSSLSASVGDRVTFTCQASQDINIY
    52H1 LNWYQQKPGKAPKLLIYDVSNLETGVPSRFS
    GSGSGTDFTFTISSLQPEDIATYFCQQYDNLP
    FTFGPGTKVDLKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    49G2 L66 58 DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSD
    50C12 DGDTYLDWYLQKPGQSPQLLIYTLSYRASG
    55G11 VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
    MQHIEFPSTFGQGTRLEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    49G3 L47 59 DIQMTQSPSSLSASIGDRVTITCQASQGISNYL
    NWYQQKPGKAPKLLIYDASNLETGVPSRFSG
    SGSGTDFTFTISSLQPEDIATYYCHQYDDLPL
    TFGGGTKVEIRRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    49H12 L43 60 DIQMTQSPSSLSASVGDRVTITCQASQDITKY
    LNVVYQQKPGKAPKLLIYDTFILETGVPSRFS
    GSGSGTDFTFTISSLQPEDIATYYCQQYDNLP
    LTFGQGTRLEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    51A8 L61 61 NFILTQPHSVSESPGKTVTISCTRSSGSIASDY
    VQWYQQRPGSSPTTVIYEDKERSSGVPDRFS
    GSIDSSSNSASLTISGLKTEDEADYYCQSYDR
    NNHVVFGGGTKLTVLGQPKANPTVTLFPPSS
    EELQANKATLVCLISDFYPGAVTVAWKADG
    SPVKAGVETTKPSKQSNNKYAASSYLSLTPE
    QWKSHRSYSCQVTHEGSTVEKTVAPTECS
    51C10.1 L55 62 SYELTQPPSVSVSPGQTARITCSGDALPKKYA
    YWYQQKSGQAPVLVIYEDSKRPSGIPERFSG
    SISGTMATLTISGAQVEDEADYYCYSTDSSV
    NHVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    51C10.2 L70 63 SYDLTQPPSVSVSPGQTASITCSGDELGDKY
    ACWYQQKPGQSPVLVIYQDTKRPSGIPERFS
    GSNSGNTATLTISGTQAMDEADYYCQAWDS
    GTVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    51E5 L79 64 DIQMTQSPSSLSASVGDRVTITCRASQDIRND
    LGWYQQKPGKAPNRLIYAASSLQFGVPSRFS
    GSGSGTEFTLTISSLQPEDFATYYCLQHSSYP
    LTFGGGTRVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    51G2 L51 65 DIQMTQSPSSVSASVGDRVTITCRASQGISSW
    LAWYQQKPGKAPKLLIYDASSLQSGVPSRFS
    GSGSGTDFTLTISSLQPEDFATYYCQQTNSFP
    PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    52A8 L41 66 DIQMTQSPSFLSASVGDRVTITCRASQTISSY
    LNWHQQKPGKAPKLLIYAASSLQSGVPSRFS
    GSGSGTDFSLTISSLQPEDFATYYCQQSYSTP
    LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    52B8 L82 67 EVVLTQSPATLSVSPGGRATLSCRASQSVSDI
    LAWYQQKPGQAPRLLIYGASTRATGIPARFS
    GGGSGTEFTLTISSLQSEDFAVYFCQQYNNW
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    52C1 L67 68 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGINY
    VSWYQQLPGTAPKLLIYDNNKRPSGIPDRFS
    GSKSGTSATLGITGLQTGDEADYCCGTWDSS
    LSAVVFGGGTKLTVLGQPKANPTVTLFPPSS
    EELQANKATLVCLISDFYPGAVTVAWKADG
    SPVKAGVETTKPSKQSNNKYAASSYLSLTPE
    QWKSHRSYSCQVTHEGSTVEKTVAPTECS
    52F8 L42 69 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN
    GYNYLDWYLQKPGQSPQLLIYLGSNRASGV
    PDRFSGRGSGTDFSLKISRVEAEDVGIYYCM
    QALQTPFTFGPGTNVDIKQTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    52H2 L84 70 ENVLTQSPGTLSLSPGERATLSCRASQSVRSS
    YLAWYQQRPGQAPRLLIFGASRRATGIPDRF
    SGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS
    PRSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    53F6 L63 71 DIVMTQSPLSLPVTPGEPASISCRSSQSLQHSN
    GYNYLDWYLQKPGQSPQLLIYLDSNRASGV
    PDRFSGSGSGTDFTLKISRVEAEDIGVYYCM
    QGLQTPPTFGGGTKVEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    53H5.2 L62 72 DIQMTQSPSSLSASVGDRVTITCRASQGIRND
    LGWYQQKPGKAPKRLIYAASSLQSGVPSRFS
    GSGSGTEFTLTISSLQPEDFATYYCLQHKSYP
    FTFGPGTKMDIKGTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    53H5.3 L80 73 EIVMTQSPVTLSVSPGERAIISCRASQSVSSNV
    AWYQQKPGQTPRLLIYGASTRATGLPTRFSG
    SGSGTVFTLTISSLQPEDFAVYYCQQFSNSITF
    GQGTRLEIKRTVAAPSVFIFPPSDEQLKSGTA
    SVVCLLNNFYPREAKVQWKVDNALQSGNS
    QESVTEQDSKDSTYSLSSTLTLSKADYEKHK
    VYACEVTHQGLSSPVTKSFNRGEC
    54A1 L44 74 DIQMAQSPSSLSASVGDRVTITCQASQDISIY
    55G9 LNWYQLKPGKAPKLLIYDVSNLETGVPSRFS
    GGGSGTDFTFTISSLQPEDIATYYCQQYDNLP
    LTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    54H10.1 L53 75 EIVVTQSPGTLSLSVGERAILSCRASQSFSSSY
    55D1 LAWYQQKPGQAPRLLIYGASSRATGIPDRFS
    48H3 GSGSGTDFTLTISRLEPEDFAVYYCQQYGSSR
    53C11 TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    55D3 L71 76 DIQMTQSPSSLSVSVGDRVTITCRASQDISNY
    LAWFQQKPGKAPKSLIYAASSLQSGVPSKFS
    GSGSGTDFTLTISSLQPEDFATYYCQQYNIYP
    RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    55E4 L75 77 DIQMTQSPSSLSTSIGDRITITCRASQSISNYLN
    49B11 WFQQIPGKAPRLLIYTASSLQSGVPSRFSGSG
    50H10 SGTDFTLTISSLQPEDFATYYCQQSSSIPWTF
    53C1 GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA
    SVVCLLNNFYPREAKVQWKVDNALQSGNS
    QESVTEQDSKDSTYSLSSTLTLSKADYEKHK
    VYACEVTHQGLSSPVTKSFNRGEC
    55E9 L68 78 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN
    GFNYLDWYLQKPGQSPQVLIYLGSNRASGV
    PDRFSGSGSGTDFTLKISRVEAEDVGIYYCM
    QALQTLITFGQGTRLEIKRTVAAPSVFIFPPSD
    EQLKSGTASVVCLLNNFYPREAKVQWKVDN
    ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
    ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
    55G5 L83 79 SYELTQPPSVSVSPGQTASITCSGDNLGDKY
    AFWYQQKPGQSPVLVIYQDNKRPSGIPERFS
    GSNSGNTATLTISGTQAVDEADYYCQAWDS
    ATVIFGGGTKLTVLGQPKANPTVTLFPPSSEE
    LQANKATLVCLISDFYPGAVTVAWKADGSP
    VKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    56A7 L52 80 DIQMTQSPSSVSASVGDRVTITCRASQDISSW
    56E4 LAWYQQKPGKAPKFLIYDASTLQSGVPSRFS
    GSGSGADFTLTINNLQPEDFATYYCQQTNSF
    PPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQL
    KSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    56C11 L64 81 SYVLTQPPSVSVAPGQAARITCGGNDIGSKS
    VHWYQQKPGQAPVLVVYDDSDRPSGIPERF
    SGSKSGNTATLIISRVEAGEEADYYCQVWDS
    SSDVVFGGGTKLTVLGQPKANPTVTLFPPSS
    EELQANKATLVCLISDFYPGAVTVAWKADG
    SPVKAGVETTKPSKQSNNKYAASSYLSLTPE
    QWKSHRSYSCQVTHEGSTVEKTVAPTECS
    56E7 L86 82 DLQMTQSPSSLSASVGDRVTITCQASQDIKK
    FLNWYQQKPGKAPNLLIYDASNLETGVPSRF
    SGSGSGTDFTFTISSLQPEDIATYYCQQYAILP
    FTFGPGTTVDIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    56G1 L76 83 DIQMTQSPSSLSASVGDRVTITCRASQSISNY
    LNWFLQIPGKAPKLLIYAASSLQSGVPSRFSG
    SGSGTDFTLTINSLQPEDFGTYYCQQSSTIPW
    TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    56G3.3 L81 84 EIVLTQSPGTLSLSPGERATLSCRASQSVSRD
    55B10 YLAWYRQKPGQAPRLLVYGASARATGIPDR
    FSGSGSGTDFTLTISRLEPEDFAVYYCQQYGR
    SLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQL
    KSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    57B12 L72 85 DIQMTQSPSSLSVSVGDRVTITCRASHDISNY
    LAWFQQKPGKAPKSLIYAASSLQSGVPSKFS
    GSGSGTDFTLTISSLQPEDFATYYCQQYNTYP
    RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    57D9 L87 86 EIVLTQSPGTLSLSPGERATLSCRASPSVSSSY
    LAWYQQKPAQAPRLLIYGASSRATGIPDRFS
    GSGSGTDFTLTISRLEPEDFAVYYCHQYGTSP
    CSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    59A10 L48 87 DIQMTQSPSSVSASVGDRVTITCRASQGISSW
    49H4 LAWYQQKPGKAPKLLIYGASSLQSGVPSRFS
    GSGSGTDFTLTISSLQPEDFATYYCQQTNSFP
    PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    59C9 L50 88 DIQMTQSPSSVSASVGDRVTITCRASQDIDS
    58A5 WLVWYQQKPGKAPNLLIYAASNLQRGVPSR
    57A4 FSGSGSGTDFTLTIASLQPEDFATYYCQQTNS
    57F9 FPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQ
    LKSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    59G10.2 L60 89 SYELSQPPSVSVSPGQTVSITCSGDNLGDKYA
    CWYQQRPGQSPVLVIYQDTKRPSGIPERFSG
    SNSGNTATLTISGTQAMDEADYYCQAWDSS
    TTWVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    59G10.3 L54 90 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGDN
    YVSWYQQFPGTAPKLLIYDNNKRPSGIPDRF
    SGSKSGTSATLGITGLQTGDEADYYCGTWDS
    SLSVMVFGGGTKLTVLGQPKANPTVTLFPPS
    SEELQANKATLVCLISDFYPGAVTVAWKAD
    GSPVKAGVETTKPSKQSNNKYAASSYLSLTP
    EQWKSHRSYSCQVTHEGSTVEKTVAPTECS
    60D7 L69 91 DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSD
    DGDTYLDWYLQKPGQSPQLLIYTLSYRASG
    VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
    MQRIEFPLTFGGGTKVEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    60F9 L58 92 EIMLTQSPGTLSLSPGERATLSCRASQRVPSS
    48B4 YIVWYQQKPGQAPRLLIYGSSNRATGIPDRF
    52D6 SGSGSGTDFTLTIGRLEPEDFAVYYCQQYGS
    SPPWTFGQGTKVAIKRTVAAPSVFIFPPSDEQ
    LKSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    60G5.2 L46 93 SYELTQPPSVSVSPGQTASITCSGNKLGDKY
    VCWYQQKPGQSPVLVIYQDSKRPSGIPERFS
    GSNSGNTATLTISGTQALDEADYYCQAWDS
    STWVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    61G5 L59 94 EIMLTQSPGTLSLSPGERATLSCRASQRVPSS
    YLVWYQQKPGQAPRLLIYGASNRATGIPDRF
    SGSGSGTDFTLTIGRLEPEDFAVYYCQQYGS
    SPPWTFGQGTKVAIKRTVAAPSVFIFPPSDEQ
    LKSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    52C5 L73 95 DIQMTQSPSSLSASIGDRVTITCRASQSISNYL
    NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS
    GSGTDFTLTISSLQPEDFAIYYCQQSSSIPWTF
    GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA
    SVVCLLNNFYPREAKVQWKVDNALQSGNS
    QESVTEQDSKDSTYSLSSTLTLSKADYEKHK
    VYACEVTHQGLSSPVTKSFNRGEC
    61H5 L88 96 EIVLTQSPGTLSLSPGERATLSCRASQSVSRD
    52B9 YLAWYRQKPGQAPRLLIYGASSRATGIPDRF
    SGSGSGTDFTLTISRLEPEDFAVYYCQQYGRS
    LFTFGPGTTVDIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    59D10v1 L56 97 SYELTQPPSVSVSPGQTARITCSGDAVPKKY
    ANWYQQKSGQAPVLVIYEDSKRPSGIPERFS
    GSSSGTMATLTISGAQVEDEADYYCYSTDSS
    GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS
    EELQANKATLVCLISDFYPGAVTVAWKADG
    SPVKAGVETTKPSKQSNNKYAASSYLSLTPE
    QWKSHRSYSCQVTHEGSTVEKTVAPTECS
    59D10v2 L57 98 SYELTQPPSVSVSPGQTASITCSGDKLGDKY
    VCWYQQMPGQSPVLVIHQNNKRPSGIPERFS
    GSNSGNTATLTISGTQAMDEADYYCQAWDS
    STAVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    56G3.2 L85 99 ETVMTQSPATLSVSPGERATLSCRARQSVGS
    NLIWYQQKPGQAPRLLIFGASSRDTGIPARFS
    GSGSGTEFTLTISSLQSEDFAVYYCQQYNNW
    PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    68G5 L13 100 SYELTQPLSVSVALGQTARLTCGGNNIGSIN
    VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS
    GSNSGNTATLTISRAQAGDEADYYCQLWDS
    STVVFGGGTKLTVLGQPKANPTVTLFPPSSE
    ELQANKATLVCLISDFYPGAVTVAWKADGS
    PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ
    WKSHRSYSCQVTHEGSTVEKTVAPTECS
    60G5.1 L74 1843 DIQMTQSPSSLSASIGDRVTITCRASQSISNYL
    NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS
    GSGTDFTLTISSLQPEDFATYYCQQSSSIPWT
    FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGT
    ASVVCLLNNFYPREAKVQWKVDNALQSGN
    SQESVTEQDSKDSTYSLSSTLTLSKADYEKH
    KVYACEVTHQGLSSPVTKSFNRGEC
    48G4 L89 101 EIVLTQSPGTLSLSPGERATLSCRASQSVASS
    53C3.1 YLVWYQQKPGQAPRLLIYGAFSRATGIPDRF
    SGSGSGTDFTLTIRRLEPEDFAVYYCQQYGT
    SPFTFGPGTKVDLKRTVAAPSVFIFPPSDEQL
    KSGTASVVCLLNNFYPREAKVQWKVDNAL
    QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
    YEKHKVYACEVTHQGLSSPVTKSFNRGEC
    50G1 L90 102 DIVMTQTPLSLPVSPGEPASISCRSSQSLLDSD
    DGDTYLDWYLQKPGQSPQLLIYTLSYRASG
    VPDRFSVSGSGTDFTLKISRVEAEDVGVYYC
    MQRIEFPLTFGGGTKVEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    58C2 L91 103 EIVMTQTPLSLPVTPGEPASISCRSSQSLFDND
    DGDTYLDWYLQKPGQSPQLLIYTLSYRASG
    VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
    MQRLEFPITFGQGTRLEIKRTVAAPSVFIFPPS
    DEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLS
    KADYEKHKVYACEVTHQGLSSPVTKSFNRG
    EC
    50D4 L92 104 DIQMTQSPSSLSASVGDRVTITCRASQDISNY
    LAWYQQKPGKVPTLLIYAASTLLSGVPSRFS
    GSGSGTDFTLTISSLQPEDVAAYYCQKYYSA
    PFTFGPGTKVDINRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    50G5v1 L93 105 DIQMTQSPSSLSASVGDRVTITCRASQGIRND
    LGWYQQKPGKAPNRLIYAASSLQSGVPSRFS
    GSGSGTEFTLTISSLQPEDFATYYCLQHNSYP
    RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
    GTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    50G5v2 L94 106 DVVMTQCPLSLPVTLGQPASISCRSSQRLVY
    SDGNTYLNWVQQRPGQSPRRLIYKVSNWDS
    GVPDRFSGSGSGTDFTLKISRVEAEDVGVNY
    CMEGTHWPRDFGQGTRLEIKRTVAAPSVFIF
    PPSDEQLKSGTASVVCLLNNFYPREAKVQW
    KVDNALQSGNSQESVTEQDSKDSTYSLSSTL
    TLSKADYEKHKVYACEVTHQGLSSPVTKSF
    NRGEC
    51C1 L95 107 DIQMTQSPSSLSASIGDRVTITCRASQSISNYL
    NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS
    GSGTDFTLTISSLQPEDFATYYCQQSSSIPWT
    FGQGTTVEIKRTVAAPSVFIFPPSDEQLKSGT
    ASVVCLLNNFYPREAKVQWKVDNALQSGN
    SQESVTEQDSKDSTYSLSSTLTLSKADYEKH
    KVYACEVTHQGLSSPVTKSFNRGEC
    53C3.2 L96 108 DIVMTQSPATLSVSPGERATLSCRASQSISSN
    LAWYQQTPGQAPRLLIYGTSIRASTIPARFSG
    SGSGTEFTLTISSLQSEDFAIYYCHQYTNWPR
    TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    54H10.3 L97 109 DIQMTQSPSSLSASVGDRVTITCRASQTISIYL
    NWYQQKPGKAPKFLIYSASSLQSGVPSRFSG
    SGSGTDFTLTISSLQPEDFSTYFCQQSYSSPLT
    FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGT
    ASVVCLLNNFYPREAKVQWKVDNALQSGN
    SQESVTEQDSKDSTYSLSSTLTLSKADYEKH
    KVYACEVTHQGLSSPVTKSFNRGEC
    55A7 L98 110 DIQMTQSPSSLSASVGDRVTITCRASQSISSYL
    NWYQQKPGKAPKLLIYAASSLQSGVPSRFSG
    SGSGTDFTLTISSLQPEDFATYYCQQTYSAPF
    TFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSG
    TASVVCLLNNFYPREAKVQWKVDNALQSG
    NSQESVTEQDSKDSTYSLSSTLTLSKADYEK
    HKVYACEVTHQGLSSPVTKSFNRGEC
    55E6 L99 111 EIVLTQSPGTLSLSPGERATLSCRASQSVSRS
    HLAWYQQNSGQAPRLLIYGASSRATGIPDRF
    SGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS
    PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK
    SGTASVVCLLNNFYPREAKVQWKVDNALQS
    GNSQESVTEQDSKDSTYSLSSTLTLSKADYE
    KHKVYACEVTHQGLSSPVTKSFNRGEC
    61E1 L100 112 DIQMTQSPSSLSASIRDRVTITCRASQSIGTFL
    NWYQQKPGTAPKLLIYAASSLQSGVPSRFSG
    SGSGTDFTLTISSLHPEDFASYYCQQSFSTPLT
    FGGGTKVEITRTVAAPSVFIFPPSDEQLKSGT
    ASVVCLLNNFYPREAKVQWKVDNALQSGN
    SQESVTEQDSKDSTYSLSSTLTLSKADYEKH
    KVYACEVTHQGLSSPVTKSFNRGEC
  • TABLE 1B
    Exemplary Antibody Heavy Chain Sequences
    Contained SEQ ID
    in Clone Designation NO: Amino Acid Sequence
    63E6 H6 113 QVQLMQSGAEVKKPGASVKVSCKASGYTFTG
    66F7 YYMHWVRQAPGQGLEWMGWMNPNSGATKY
    AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA
    VYYCARELGDYPFFDYWGQGTLGIVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    66D4 H17 114 QVQLVQSGAEVKKPGASVKVSCRASGYTFTG
    YYIHWMRQAPGHGLEWMGWINPPSGATNYA
    QKFRGRVAVTRDTSISTVYMELSRLRSDDTAV
    YYCARETGTWNFFDYWGQGTLVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    66B4 H10 115 QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
    YYLHWVRQAPGQGLEWMGWINPNSGGTDYA
    QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV
    YYCVGDAATGRYYFDNWGQGTLVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    65B1 H18 116 QVQLVQSGAEVKRPGASVKVSCKASGYTFTG
    YFMHWVRQAPGQGLEWMGWINPNSGATNYA
    QKFHGRVTMTRDTSITTVYMELSRLRSDDTAV
    YYCTRELGIFNWFDPWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    65B4 H20 117 EVQLVESGGGLVQPGGSLRLSCAASGFAFSSY
    DMHWVRQATGKGLEWVSTIDTAGDAYYPGSV
    KGRFTISRENAKTSLYLQMNSLRAGDTAVYYC
    TRDRSSGRFGDFYGMDVWGQGTAVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    67A4 H19 118 EVQLEESGGGLVQPGGSLRLSCAASGFTFRTYD
    MHWVRQVTGKGLEWVSAIGIAGDTYYSDSVK
    GRFTISRENAKNSLYLQMNSLRVGDTAVYYCA
    RDRSSGRFGDYYGMDVWGQGTTVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    63A10v1 H21 119 EVQLVESGGDLVKPGGSLRLSCAVSGITFSNA
    63A10v2 WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY
    63A10v3 AAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTA
    VYYCTTDSSGSYYVEDYFDYWGQGTLVTVSS
    ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF
    PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
    SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV
    ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV
    HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN
    GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV
    YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    65H11v1 H22 120 EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
    65H11v2 WMSWVRQAPGKGLEWVGRIIGKTDGGTTDYA
    APVKGRFTISRDDSKNTLYLQMNSLKTEDTAV
    YYCTSDSSGSYYVEDYFDYWGQGTLVAVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    67G10v1 H9 121 EVQLVESGGGLVKPGGSLRLACAASGITFNNA
    67G10v2 WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY
    AAPVKGRFTISRDDSKSILYLQMNSLKSEDTAV
    YYCTTDSSGSYYVEDYFDYWGQGTLVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    64C8 H23 122 QVQLVESGGGVVQPGRSLRLSCVASGFTFSSY
    GMHWVRQDPGKGLEWVAVISYDGSNKHYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARELLWFGEYGVDHGMDVWGQGTTVTVS
    SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY
    FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT
    VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL
    MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE
    VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL
    NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ
    VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    63G8v1 H1 123 QAQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    63G8v2 GIHWVRQAPGKGLEWVAVISYDGSNKYYADS
    63G8v3 VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    68D3v1 CATTVTKEDYYYYGMDVWGQGTTVTVSSAST
    64A8 KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    67B4 VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    68D3v2 H95 1844 QAQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAFISYAGSNKYY
    ADSVKGRFTISRDNSKNTLYLQMSSLRAEDTA
    VYYCATTVTEEDYYYYGMDVWGQGTTVT
    VSSASTKGPSVFPLAPCSRSTSESTAALGCLVK
    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
    DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD
    GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD
    WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR
    EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
    LSLSPGK
    66G2 H11 124 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAGISYDGSNKNYAD
    SVKGRITISRDNPKNTLYLQMNSLRAEDTAVY
    YCATTVTKEDYYYYGMDVWGQGTTVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    65D1 H26 125 QVQLVESGGGVVQPGRSLRLSCAASGFTFSYY
    YIHWVRQAPGKGLEWVALIWYDGSNKDYADS
    VKGRFTISRDNSKNTLYLHVNSLRAEDTAVYY
    CAREGTTRRGFDYWGQGTLVTVSSASTKGPSV
    FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW
    NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS
    NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    64H5 H7 126 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVIWDDGSNKYYAD
    SVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
    YCAREYVAEAGFDYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    65D4 H25 127 QEQLVESGGGVVQPGRSLRLSCAVSGFTFSFYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CTRALNWNFFDYWGQGTLVTVSSASTKGPSVF
    PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN
    SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN
    FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP
    PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV
    VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE
    EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS
    NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM
    TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
    YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV
    FSCSVMHEALHNHYTQKSLSLSPGK
    65E3 H24 128 QVQLVESGGGVVQPGRSLRLSCAASGFTLSNY
    NMHWVRQAPGKGLEWVAVLWYDGNTKYYA
    DSVKGRVTISRDNSKNTLYLQMNSLRAEDTAV
    YYCARDVYGDYFAYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    65G4 H8 129 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVIWDDGSNKYY
    ADSVKGRFTISRDNSKNTLSLQMNSLRAEDTA
    VYYCAREYVAEAGFDYWGQGTLVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    68G5 H12 130 QVQLVESGGGVVQPGRSLRLSCTASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYHADS
    VKGRFTISRDDSKNALYLQMNSLRAEDTAVYY
    CVRDPGYSYGHFDYWGQGTLVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    67G8 H27 131 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVIWYDGSNKDYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARSAVALYNWFDPWGQGTLVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    65B7v1 H28 132 QVQLQESGPGLVNPSQTLSLTCTVSGGSISSDA
    65B7v2 YYWSWIRQHPGKGLEWIGYIFYSGSTYYNPSL
    KSRVTISVDTSKNRFSLKLSSVTAADTAVYYCA
    RESRILYFNGYFQHWGQGTLVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    63B6 H4 133 QVQLQESGPGLVKPSQTLSLTCAVSGGSISSGD
    64D4 YYWSWIRQHPGKGLEWIGYIYYSGTTYYNPSL
    KSRVTISVDTSKNQFSLKLTSVTAADTAVYYC
    ARMTTPYWYFGLWGRGTLVTVSSASTKGPSVF
    PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN
    SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN
    FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP
    PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV
    VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE
    EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS
    NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM
    TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
    YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV
    FSCSVMHEALHNHYTQKSLSLSPGK
    63F5 H13 134 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD
    YYWTWIRQHPGKDLEWITYIYYSGSAYYNPSL
    KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA
    RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP
    LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    63H11 H3 135 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD
    YYWTWIRQHPGKGLEWIAYIYYSGSTYYNPSL
    KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA
    RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP
    LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    64E6 H2 136 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD
    65E8 YYWTWIRQHPGKGLEWIAYIYYTGSTYYNPSL
    65F11 KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA
    67G7 RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP
    LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    65C1 H15 137 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD
    YYWTWIRQHPGKGLEWIAYIFYSGSTYYNPSL
    KSRVTISLDTSKNQFSLKLNSVTAADTAVYYC
    ARMTSPYWYFDLWGRGTLVTVSSASTKGPSVF
    PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN
    SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN
    FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP
    PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV
    VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE
    EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS
    NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM
    TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
    YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV
    FSCSVMHEALHNHYTQKSLSLSPGK
    66F6 H14 138 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD
    YYWTWIRHHPGKGLEWIAYIYYSGSTYYNPSL
    KSRVTISVDTSKNQFSLKLNSVTAADTAVYYC
    ARMTTPYWYFDLWGRGTLVTVSSASTKGPSVF
    PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN
    SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN
    FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP
    PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV
    VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE
    EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS
    NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM
    TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
    YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV
    FSCSVMHEALHNHYTQKSLSLSPGK
    64A6 H29 139 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
    YYWSWIRQRPGKGLEWVGYIYYSGGTHYNPS
    LKSRVTISIDTSENQFSLKLSSVTAADTAVYYC
    ARVLHYSDSRGYSYYSDFWGQGTLVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    65F9 H30 140 QVQLQESGPGLVKPSQTLSLTCTLSGGSFSSGD
    YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL
    KSRVTISIDTSKNQFSLKLTSVTAADTAVYYCA
    RVLHYYDSSGYSYYFDYWGQGTLVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    64A7 H16 141 QLQLQESGPGLVKPSETLSLTCTVSGGSISSDTS
    YWGWIRQPPGKGLEWIGNIYYSGTTYFNPSLK
    SRVSVSVDTSKNQFSLKLSSVTAADTAVFYCA
    RLRGVYWYFDLWGRGTLVTVSSASTKGPSVFP
    LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    65C3 H5 142 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
    68D5 WSWIRQPPGKGLEWIGYIYYTGSTNYNPSLKSR
    VTISVDTSKNQFSLKLSSVTAADTAVYYCARE
    YYYGSGSYYPWGQGTLVTVSSASTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG
    ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG
    TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC
    PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    67F5 H31 143 QVQLKESGPGLVKPSETLSLTCTVSGGSISSYY
    WSWIRQPPGKGLEWIGYIYYSGNTNYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCARE
    YYYGSGSYYPWGQGTLVTVSSASTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG
    ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG
    TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC
    PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    64B10v1 H32 144 QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDY
    YWSWIRQPPGKGLEWIGFIYYSGGTNYNPSLKS
    RVTISIDTSKNQFSLKLNSVTAADTAVYYCARY
    SSTWDYYYGVDVWGQGTTVTVSSASTKGPSV
    FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW
    NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS
    NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    64B10v2 H96 1845 QVQLLESGPGLVKPSETLSLTCTVSGGSVSSGD
    YYWSWIRQPPGKGLEWIGFIYYSGGTNYNPPL
    KSRVTISIDTSKNQFSLKLSSVTAADTAVYYCA
    RYSSTWDYYYGVDVWGQGTTVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    68C8 H33 145 QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGD
    NYWSWIRQPPGKGLEWIGFMFYSGSTNYNPSL
    KSRVTISLHTSKNQFSLRLSSVTAADTAVYYCG
    RYRSDWDYYYGMDVWGQGTTVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    67A5 H34 146 EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
    WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF
    QGQVTISADKSINTAYLQWSSLKASDTAIYFCA
    RRASRGYRFGLAFAIWGQGTMVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    67C10 H35 147 EVQLVQSGAEVKKPGESLKISCQGSGYSFSSY
    WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF
    QGQVTISADKSINTAYLQWSSLKASDTAIYYCA
    RRASRGYRYGLAFAIWGQGTMVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    64H6 H36 148 EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
    WIGWVRQMPGKGLEWMGIIYPGDSETRYSPSF
    QGQVTISADKSISTAYLQWNSLKTSDTAMYFC
    ATVAVSAFNWFDPWGQGTLVTVSSASTKGPSV
    FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW
    NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS
    NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    63F9 H37 149 QVQLKESGPGLVKPSQTLSLTCTVSGGSISSGG
    YYWNWIRQHPGKGLEWIGYIYDSGSTYYNPSL
    KSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC
    ARDVLMVYTKGGYYYYGVDVWGQGTTVTVS
    SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY
    FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT
    VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL
    MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE
    VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL
    NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ
    VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    67F6v1 H38 150 EVQLVQSGAEVKKPGESLKISCKGSGYSFTGY
    67F6v2 WIGWVRQLPGKGLEWMGIIYPGDSDTRYSPSF
    QGQVTISVDKSINTAYLQWSSLKASDTAMYYC
    ARRASRGYSYGHAFDFWGQGTMVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    48C9 H73 151 QVQLQQWGAGLLKPSETLSLTCSVYGGSFSGY
    49A12 YWTWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    51E2 RVTISIDTSKNQFSLKLSSVTAADTAVYYCARE
    SGNFPFDYWGQGTLVTVSSASTKGPSVFPLAPC
    SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT
    SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT
    YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP
    PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
    SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN
    STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL
    PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ
    VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
    PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS
    VMHEALHNHYTQKSLSLSPGK
    48F3 H72 152 QVQLQQWGAGPLKPSETLSLTCAVYGGSISGY
    YWSWIRQPPGKGLEWIGEITHTGSSNYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
    GGILWFGEQAFDIWGQGTMVTVSSASTKGPSV
    FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW
    NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS
    NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    48F8 H48 153 EVQLVESGGGLVKPGGSLRLSCTASGFTFRSYS
    53B9 MNWVRQAPGKGLEWVSSISSSSSYEYYVDSVK
    56B4 GRFTISRDIAKSSLWLQMNSLRAEDTAVYYCA
    57E7 RSLSIAVAASDYWGKGTLVTVSSASTKGPSVFP
    57F11 LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    48H11 H39 154 QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
    YYKHWVRQAPGQGLEWMGWINPNSGATKYA
    QKFQGRVTMTRDTSISTVYMELSRLRSVDTAL
    YYCAREVPDGIVVAGSNAFDFWGQGTMVTVS
    SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY
    FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT
    VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL
    MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE
    VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL
    NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ
    VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    49A10 H62 155 QVHLVESGGGVVQPGRSLRLSCAASGFTFSNY
    48D4 GMHWVRQAPGKGLEWVAIIWYDGSNKNYAD
    SVKGRFTISRDNSKNTLYLEMNSLRAEDTAVY
    YCARDQDYDFWSGYPYFYYYGMDVWGQGTT
    VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV
    KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
    LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
    DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD
    GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD
    WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR
    EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
    LSLSPGK
    49C8 H44 156 QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
    52H1 DIDWVRQATGQGLEWMGWMNPNGGNTGYA
    QKFQGRVTMTRNTSINTAYMELSSLRSEDTAIY
    YCARGKEFSRAEFDYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    49G2 H63 157 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
    50C12 GMRWVRQAPGKGLEWVALIWYDGSNKFYAD
    55G11 SVKGRFTISRDNSKNTLNLQMNSLRAEDTAVY
    YCARDRYYDFWSGYPYFFYYGLDVWGQGTTV
    TVSSASTKGPSVFPLAPCSRSTSESTAALGCLVK
    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
    YSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
    DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD
    GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD
    WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR
    EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
    LSLSPGK
    49G3 H46 158 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPR
    MGVSWIRQPPGKALEWLTHIFSNDEKSYSTSLK
    SRLTISKDTSKSQVVLSMTNMDPVDTATYYCV
    RVDTLNYHYYGMDVWGQGTTVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    49H12 H42 159 QVQLVQSGAEVKKPGASVKVSCMASGYIFTSY
    DINWVRQATGQGPEWMGWMNPYSGSTGYAQ
    NFQGRVTMTRNTSINTAYMELSSLRSEDTAVY
    YCAKYNWNYGAFDFWGQGTMVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    51A8 H58 160 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVISYDGSNKYYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARADGDYPYYYYYYGMDVWGQGTTVTVS
    SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY
    FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
    SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT
    VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL
    MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE
    VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL
    NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ
    VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    51C10.2 H67 161 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
    YYWSWIRQHPGKGLEWIGYIYYNGSPYDNPSL
    KRRVTISIDASKNQFSLKLSSMTAADTAVYYCA
    RGALYGMDVWGQGTTVTVSSASTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG
    ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG
    TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC
    PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    51E5 H74 162 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGELDHSGSINYNPSLKS
    RVTISVDTSKNQFSLKLTSVTAADTAVYYCAR
    VLGSTLDYWGQGTLVTVSSASTKGPSVFPLAP
    CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL
    TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ
    TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA
    PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
    VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF
    NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG
    LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
    TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC
    SVMHEALHNHYTQKSLSLSPGK
    51G2 H50 163 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK
    GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA
    RDTYISGWNYGMDVWGQGTTVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    52A8 H40 164 QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
    YYLHWVRQAPGQGLEWMGWINPNSAATNYA
    PKFQGRVTVTRDTSISTAYMELSRLRSDDTAVY
    YCAREGGTYNWFDPWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    52B8 H77 165 QVQLQESGPGLMKPSETLSLTCTVSGGSISYYY
    WSWIRQSPGKGLEWIGYIYYSGSTNYNPSLKSR
    VTMSVDTSKNQFSLKLSSVTAADTAVYYCASG
    TRAFDIWGQGTMVTVSSASTKGPSVFPLAPCSR
    STSESTAALGCLVKDYFPEPVTVSWNSGALTSG
    VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT
    CNVDHKPSNTKVDKTVERKCCVECPPCPAPPV
    AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH
    EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF
    RVVSVLTVVHQDWLNGKEYKCKVSNKGLPAP
    IEKTISKTKGQPREPQVYTLPPSREEMTKNQVS
    LTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
    MLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
    MHEALHNHYTQKSLSLSPGK
    52C1 H64 166 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVIWYDGSNNYYAD
    SVKGRFTISRDNSKSTLFLQMNSLRAEDTAIYY
    CARDRAGASPGMDVWGQGTTVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    52F8 H41 167 QVQLVQSGAEVKKPGASVKVSCKASGFTFIGY
    YTHWVRQAPGQGLEWMGWINPSSGDTKYAQ
    KFQGRVTLARDTSISTAYMELSRLRSDDTAVY
    YCANSGWYPSYYYGMDVWGQGTTVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    52H2 H79 168 QVQLQESGPGLVKPSETLSLTCTVSGGSISTYY
    WSWIRQPPGTGLEWIGYIFYNGNANYSPSLKSR
    VTFSVDTSKNQFSLKLSSVTAADTAVYFCARET
    DYGDYARPFEYWGQGTLVTVSSASTKGPSVFP
    LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS
    GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF
    GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP
    CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    53F6 H60 169 QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
    GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARGHYDSSGPRDYWGQGTLVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    53H5.2 H59 170 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGQGLEWVALISYDGSNKYYAD
    SVKGRFTISRDKSKNTLYLQMNSLRAEDTAVY
    YCAREANWGYNYYGMDVWGQGTTVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    53H5.3 H75 171 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDY
    YWNWIRQPPGKGPEWIGEINHSGTTNYNPSLK
    SRVTISVDTSKNQFSLKLSSVTAADTAVYYCVG
    ILRYFDWLEYYFDYWGQGTLVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    54A1 H43 172 QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
    55G9 DINWVRQATGQGLEWMGWMNPHSGNTGYAQ
    KFQGRVTMTRNTSINTAYMELSSLRSEDTAVY
    YCAKYNWNYGAFDFWGQGTMVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    54H10.1 H52 173 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    55D1 MSWVRQAPGKGLEWVSAISGSGRTTYSADSV
    48H3 KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    53C11 AKEQQWLVYFDYWGQGTLVTVSSASTKGPSV
    FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW
    NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS
    NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    55D3 H68 174 QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGV
    YYWNWIRQHPGKGLEWIGYLYYSGSTYYNPS
    LKSRLTISADMSKNQFSLKLSSVTVADTAVYY
    CARDGITMVRGVTHYYGMDVWGQGTTVTVSS
    ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF
    PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
    SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV
    ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV
    HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN
    GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV
    YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    55E4 H70 175 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    52C5 YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    60G5.1 RVTISLDTSNDQFSLRLTSVTAADTAVYYCARV
    49B11 TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP
    50H10 CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL
    53C1 TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ
    TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA
    PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
    VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF
    NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG
    LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
    TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC
    SVMHEALHNHYTQKSLSLSPGK
    55E9 H65 176 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFG
    MHWVRQAPGKGLEWVALIWYDGDNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARNSGWDYFYYYGMDVWGQGTTVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    55G5 H78 177 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
    WSWIRQPAGKGLEWIGRIYISGSTNYNPSLENR
    VTMSGDTSKNQFSLKLNSVTAADTAVYYCAG
    SGSYSFDYWGQGTLVTVSSASTKGPSVFPLAPC
    SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT
    SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT
    YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP
    PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
    SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN
    STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL
    PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ
    VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
    PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS
    VMHEALHNHYTQKSLSLSPGK
    50G1 H84 178 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GLHWVRQAPGKGLEWVAVIWNDGSNKLYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARDQYYDFWSGYPYYHYYGMDVWGQGTT
    VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV
    KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
    LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
    DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD
    GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD
    WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR
    EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
    LSLSPGK
    56A7 H51 179 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    56E4 MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK
    GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA
    RDIYSSGWSYGMDVWGQGTTVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    56C11 H61 180 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
    GMHWVRQAPGKGLEWVAVIWYDGSYQFYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCARDHVWRTYRYIFDYWGQGTLVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    56E7 H81 181 EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYW
    IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ
    GQVTISADTSISTAYLQWSRLKASDTAVYYCA
    RAQLGIFDYWGQGTLVTVSSASTKGPSVFPLAP
    CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL
    TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ
    TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA
    PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
    VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF
    NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG
    LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
    TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC
    SVMHEALHNHYTQKSLSLSPGK
    56G1 H71 182 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    RVTISLDTSNKQFSLRLTSVTAADTAVYYCARV
    TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP
    CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL
    TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ
    TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA
    PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
    VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF
    NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG
    LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
    TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC
    SVMHEALHNHYTQKSLSLSPGK
    56G3.3 H76 183 QLQLQESGPGLVKPSETLSLTCTVSGDSISSSSY
    55B10 YWGWIRQPPGKGLEWIGMIYYSGTTYYNPSLK
    SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
    VAAVYWYFDLWGRGTLVTVSSASTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG
    ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG
    TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC
    PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    57B12 H69 184 QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGV
    YYWSWIRQLPGKGLEWIGYIYYSGSTYYNPSL
    KSRLTISADTSKNQFSLKLSSVTVADTAVYYCA
    RDGITMVRGVTHYYGMDVWGQGTTVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    57D9 H82 185 QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS
    ATWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVY
    YCVGIVVVPAVLFDYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    58C2 H85 186 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
    GMHWVRQAPGKGLEWVAVIWNDGNNKYYA
    DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV
    YYCARDQNYDFWNGYPYYFYYGMDVWGQG
    TTVTVSSASTKGPSVFPLAPCSRSTSESTAALGC
    LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
    SGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNT
    KVDKTVERKCCVECPPCPAPPVAGPSVFLFPPK
    PKDTLMISRTPEVTCVVVDVSHEDPEVQFNWY
    VDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH
    QDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQ
    PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS
    DIAVEWESNGQPENNYKTTPPMLDSDGSFFLY
    SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
    KSLSLSPGK
    59A10 H47 187 QVQVVESGGGLVKPGGSLRLSCAASGFTFSDS
    49H4 YMSWIRQAPGKGLEWISSISSSGSIVYFADSVK
    GRFTISRDIAKNSLYLHMNSLRAEDTAVYYCA
    RETFSSGWFDAFDIWGQGTMVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    59C9 H49 188 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    58A5 MSWVRQAPGKGLEWVSSISSSSTYIYYADSLK
    57A4 GRFTISRDNAKNSLFLQVNSLRAEDSAVYYCA
    57F9 RDRWSSGWNEGFDYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    59G10.2 H57 189 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
    GMHWVRQAPGKGLEWVAITSYGGSNKNYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
    YCAREAGYSFDYWGQGTLVTVSSASTKGPSVF
    PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN
    SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN
    FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP
    PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV
    VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE
    EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS
    NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM
    TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
    YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV
    FSCSVMHEALHNHYTQKSLSLSPGK
    59G10.3 H53 190 EVQLLGSGGGLVQPGGSLRLSCAASGFTFNHY
    AMSWVRQAPGKGLEWVSAISGSGAGTFYADS
    MKGRFTISRDNSENTLHLQMNSLRAEDTAIYY
    CAKDLRIAVAGSFDYWGQGTLVTVSSASTKGP
    SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
    60D7 H66 191 QVQLVESGGGVVQPGRSLRLSCAASGFNFSSY
    GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD
    SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVF
    YCARDQYFDFWSGYPFFYYYGMDVWGQGTT
    VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV
    KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
    LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
    DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK
    DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD
    GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD
    WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR
    EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
    AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK
    LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
    LSLSPGK
    60F9 H55 192 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    48B4 MSWVRQAPGKGLEWVSVISDSGGSTYYADSV
    52D6 KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    AKDHSSGWYYYGMDVWGQGTTVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    60G5.2 H45 193 QVQLVQSGAEVKTPGASVRVSCKASGYTFTNY
    GISWVRQAPGQGLEWMGWISAYNGYSNYAQK
    FQDRVTMTTDTSTSTAYMELRSLRSDDTAVYY
    CAREEKQLVKDYYYYGMDVWGQGSTVTVSS
    ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF
    PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
    SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV
    ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV
    HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN
    GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV
    YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    61G5 H56 194 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    MSWVRQSPGKGLEWVSVISGSGGDTYYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    AKDHTSGWYYYGMDVWGQGTTVTVSSASTK
    GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT
    VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
    VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC
    CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP
    EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK
    TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK
    CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS
    REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ
    PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ
    QGNVFSCSVMHEALHNHYTQKSLSLSPGK
    59D10v1 H54 195 EVQLLESGGGLVQPGGSLRLSCAASGFTFRNY
    59D10v2 AMSWVRQAPGKGLEWVSGISGSSAGTYYADS
    51C10.1 VKGRFTISRDNSKNTLFLQMDSLRAEDTAVYY
    CAQDWSIAVAGTFDYWGQGTLVTVSSASTKG
    PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV
    SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
    SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV
    ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV
    TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK
    PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC
    KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR
    EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP
    ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ
    GNVFSCSVMHEALHNHYTQKSLSLSPGK
    56G3.2 H80 196 QVQLQESGPGLVKPSETLSLTCTVSDGSISSYY
    WNWIRQPAGKGLEWIGRIYTSGSTNYNPSLKS
    RVTMSVDTSKNQFSLNLTSVTAADTAVYYCAR
    GPLWFDYWGQGTLVTVSSASTKGPSVFPLAPC
    SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT
    SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT
    YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP
    PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
    SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN
    STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL
    PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ
    VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
    PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS
    VMHEALHNHYTQKSLSLSPGK
    48G4 H83 197 QVQLVQSGAEVKKPGASVKVSCKVSGYTLTEL
    53C3.1 SIHWVRQAPGKGLEWMGGFDPEDGETIYAQKF
    QGRVTMTEDTSTDTAYMELSSLRSEDTAVYYC
    ATHSGSGRFYYYYYGMDVWGQGTTVTVSSAS
    TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    61H5 H86 198 QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
    52B9 YWGWIRQPPGKGLEWIGSIYYSGTTYYNPSLK
    SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
    VAAVYWYFDLWGRGTLVTVSSASTKGPSVFPL
    APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG
    ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG
    TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC
    PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV
    VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE
    QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN
    KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT
    KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
    KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF
    SCSVMHEALHNHYTQKSLSLSPGK
    50D4 H87 199 QVQLVQSGAEVKKTGASVKVSCKASGYTFTSH
    DINWVRQATGHGLEWMGWMNPYSGSTGLAQ
    RFQDRVTMTRNTSISTAYMELSSLRSEDTAVY
    YCARDLSSGYYYYGLDVWGQGTTVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    50G5v1 H88 200 QVQLVQSGAEVKKPGASVKVSCKASGYPFIGY
    50G5v2 YMHWVRQAPGQGLEWMGWINPDSGGTNYAQ
    KFQGRVTMTRDTSITTAYMELSRLRSDDTAVF
    YCARGGYSYGYEDYYGMDVWGQGTTVTVSS
    ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF
    PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
    SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV
    ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI
    SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV
    HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN
    GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV
    YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
    WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV
    DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
    SPGK
    51C1 H89 201 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    RVTISLDTSHDQFSLRLTSVTAADTAVYYCARV
    TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP
    CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL
    TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ
    TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA
    PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
    VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF
    NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG
    LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN
    QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT
    TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC
    SVMHEALHNHYTQKSLSLSPGK
    53C3.2 H90 202 QVQLQESGPGLVKPSQTLSLTCTVSNGSINSGN
    YYWSWIRQHPGKGLEWIGYIYHSGSAYYNPSL
    KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA
    RTTGASDIWGQGIMVTVSSASTKGPSVFPLAPC
    SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT
    SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT
    YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP
    PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
    SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN
    STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL
    PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ
    VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
    PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS
    VMHEALHNHYTQKSLSLSPGK
    54H10.3 H91 203 QVQVVQSGTEVKKPGASVKVSCKASGYTFTG
    YYIHWVRQAPGQGLEWMGWINPNSGGTNYA
    QKFRGRVTMTRDTSISTAYMELSRLRSDDTAV
    YYCAREEDYSDHHYFDYWGQGTLVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    55A7 H92 204 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
    WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR
    VTISVDTSKNQFSLRLSSVTAADTAVYYCARGI
    TGTIDFWGQGTLVTVSSASTKGPSVFPLAPCSR
    STSESTAALGCLVKDYFPEPVTVSWNSGALTSG
    VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT
    CNVDHKPSNTKVDKTVERKCCVECPPCPAPPV
    AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH
    EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF
    RVVSVLTVVHQDWLNGKEYKCKVSNKGLPAP
    IEKTISKTKGQPREPQVYTLPPSREEMTKNQVS
    LTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
    MLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
    MHEALHNHYTQKSLSLSPGK
    55E6 H93 205 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
    MNWVRQAPGKGLEWISYISSGSSTIYHADSVK
    GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA
    REGYYDSSGYYYNGMDVWGQGTTVTVSSAST
    KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP
    VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
    VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER
    KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR
    TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN
    AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE
    YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL
    PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
    GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR
    WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    61E1 H94 206 QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS
    AAWNWIRQSPSRGLEWLGRTYYRSKWYNDY
    AVSVKSRITITPDTSKNQFSLQLKSVTPEDTAIY
    YCAREGSWSSFFDYWGQGTLVTVSSASTKGPS
    VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
    WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS
    SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE
    CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT
    CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP
    REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK
    VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE
    EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
    NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG
    NVFSCSVMHEALHNHYTQKSLSLSPGK
  • Each of the exemplary heavy chains (H1, H2, H3 etc.) listed in Table 1B, infra, can be combined with any of the exemplary light chains shown in Table 1A, infra, to form an antibody. Examples of such combinations include H1 combined with any of L1 through L100; H2 combined with any of L1 through L100; H3 combined with any of L1 through L100, and so on. In some instances, the antibodies include at least one heavy chain and one light chain from those listed in Tables 1A and 1B, infra; particular examples pairings of light chains and heavy chains include L1 with H1, L2 with H1, L3 with H2 or H3, L4 with H4, L5 with H5, L6 with H6, L7 with H6, L8 with H7 or H8, L9 with H9, L10 with H9, L11 with H10, L12 with H11, L13 with H12, L13 with H14, L14 with H13, L15 with H14, L16 with H15, L17 with H16, L18 with H17, L19 with H18, L20 with H19, L21 with H20, L22 with H21, L23 with H22, L24 with H23, L25 with H24, L26 with H25, L27 with H26, L28 with H27, L29 with H28, L30 with H29, L31 with H30, L32 with H31, L33 with H32, L34 with H33, L35 with H34, L36 with H35, L37 with H36, L38 with H37, L39 with H38, L40 with H39, L41 with H40, L42 with H41, L43 with H42, L44 with H43, L45 with H44, L46 with H45, L47 with H46, L48 with H47, L49 with H48, L50 with H49, L51 with H50, L52 with H51, L53 with H52, L54 with H53, L55 with H54, and L56 with H54, L57 with H54, L58 with H55, L59 with H56, L60 with H57, L61 with H58, L62 with H59, L63 with H60, L64 with H1, L65 with H62, L66 with H63, L67 with H64, L68 with H65, L69 with H66, L70 with H67, L71 with H68, L72 with H69, L73 with H70, L74 with H70, and L75 with H70, L76 with H71, L77 with H72, L78 with H73, L79 with H74, L80 with H75, L81 with H76, L82 with H77, L83 with H78, L84 with H79, L85 with H80, L86 with H81, L87 with H82, L88 with H86, L89 with H83, L90 with H84, L91 with H85, L92 with H87, L93 with H88, L94 with H88, L95 with H89, L96 with H90, L97 with H91, L98 with H92, L99 with H93, and L100 with H94. In addition to antigen binding proteins comprising a heavy and a light chain from the same clone, a heavy chain from a first clone can be paired with a light chain from a second clone (e.g., a heavy chain from a first clone paired with a light chain from a second clone or a heavy chain from a first clone paired with a light chain from a second clone). Generally, such pairings can include VL with 90% or greater homology can be paired with the heavy chain of the naturally occurring clone.
  • In some instances, the antibodies comprise two different heavy chains and two different light chains listed in Tables 1A and 1B, infra. In other instances, the antibodies contain two identical light chains and two identical heavy chains. As an example, an antibody or immunologically functional fragment can include two L1 light chains with two H1 heavy chains, two L2 light chains with two H1 heavy chains, two L3 light chains with two H2 heavy chains or two H3 heavy chains, two L4 light chains with two H4 heavy chains, two L5 light chains with two H5 heavy chains, two L6 light chains with two H6 heavy chains, two L7 light chains with two H6 heavy chains, two L8 light chains with two H7 heavy chains or two H8 heavy chains, two L9 light chains with two H9 heavy chains, two L10 light chains with two H9 heavy chains, two L11 light chains with two H10 heavy chains, two L12 light chains with two H11 heavy chains, two L13 light chains with two H12 heavy chains, two L13 light chains with two H14 heavy chains, two L14 light chains with two H13 heavy chains, two L15 light chains with two H14 heavy chains, two L16 light chains with two H15 heavy chains, two L17 light chains with two H16 heavy chains, two L18 light chains with two H17 heavy chains, two L19 light chains with two H18 heavy chains, two L20 light chains with two H19 heavy chains, two L21 light chains with two H20 heavy chains, two L22 light chains with two H21 heavy chains, two L23 light chains with two H22 heavy chains, two L24 light chains with two H23 heavy chains, two L25 light chains with two H24 heavy chains, two L26 light chains with two H25 heavy chains, two L27 light chains with two H26 heavy chains, two L28 light chains with two H27 heavy chains, two L29 light chains with two H28 heavy chains, two L30 light chains with two H29 heavy chains, two L31 light chains with two H30 heavy chains, two L32 light chains with two H31 heavy chains, two L33 light chains with two H32 heavy chains, two L34 light chains with two H33 heavy chains, two L35 chains with two H34 heavy chains, two L36 chains with two H35 heavy chains, two L37 light chains with two H36 heavy chains, two L38 light chains with two H37 heavy chains, two L39 light chains with two H38 heavy chains, two L40 light chains with two H39 heavy chains, two L41 light chains with two H40 heavy chains, two L42 light chains with two H41 heavy chains, two L43 light chains with two H42 heavy chains, two L44 light chains with two H43 heavy chains, two L45 light chains with two H44 heavy chains, two L46 light chains with two H45 heavy chains, two L47 light chains with two H46 heavy chains, two L48 light chains with two H47 heavy chains, two L49 light chains with two H48 heavy chains, two L50 light chains with two H49 heavy chains, two L51 light chains with two H50 heavy chains, two L52 light chains with two H51 heavy chains, two L53 light chains with two H52 heavy chains, two L54 light chains with two H53 heavy chains, two L55 light chains with two H54 heavy chains, and two L56 light chains with two H54 heavy chains, two L57 light chains with two H54 heavy chains, two L58 light chains with two H55 heavy chains, two L59 light chains with two H56 heavy chains, two L60 light chains with two H57 heavy chains, two L61 light chains with two H58 heavy chains, two L62 light chains with two H59 heavy chains, two L63 light chains with two H60 heavy chains, two L64 light chains with two H1 heavy chains, two L65 light chains with two H62 heavy chains, two L66 light chains with two H63 heavy chains, two L67 light chains with two H64 heavy chains, two L68 light chains with two H65 heavy chains, two L69 light chains with two H66 heavy chains, two L70 light chains with two H67 heavy chains, two L71 light chains with two H68 heavy chains, two L72 light chains with two H69 heavy chains, two L73 light chains with two H70 heavy chains, two L74 light chains with two H70 heavy chains, and two L75 light chains with two H70 heavy chains, two L76 light chains with two H71 heavy chains, two L77 light chains with two H72 heavy chains, two L78 light chains with two H73 heavy chains, two L79 light chains with two H74 heavy chains, two L80 light chains with two H75 heavy chains, two L81 light chains with two H76 heavy chains, two L82 light chains with two H77 heavy chains, two L83 light chains with two H78 heavy chains, two L84 light chains with two H79 heavy chains, two L85 light chains with two H80 heavy chains, two L86 light chains with two H81 heavy chains, two L87 light chains with two H82 heavy chains, two L88 light chains with two H86 heavy chains, two L89 light chains with two H83 heavy chains, two L90 light chains with two H84 heavy chains, two L91 light chains with two H85 heavy chains, two L92 light chains with two H87 heavy chains, two L93 light chains with two H88 heavy chains, two L94 light chains with two H88 heavy chains, two L95 light chains with two H89 heavy chains, two L96 light chains with two H90 heavy chains, two L97 light chains with two H91 heavy chains, two L98 light chains with two H92 heavy chains, two L99 light chains with two H93 heavy chains, and two L100 light chains with two H94 heavy chains, as well as other similar combinations of pairs comprising the light chains and pairs of heavy chains as listed in Tables 1A and 1B, infra.
  • In another aspect of the instant disclosure, “hemibodies” are provided. A hemibody is a monovalent antigen binding protein comprising (i) an intact light chain, and (ii) a heavy chain fused to an Fc region (e.g., an IgG2 Fc region of SEQ ID NO: 11), optionally via a linker, The linker can be a (G4S)x linker (SEQ ID NO: 207) where “x” is a non-zero integer (e.g., (G4S)2, (G4S)3, (G4S)4, (G4S)5, (G4S)6, (G4S)7, (G4S)8, (G4S)9, (G4S)10; SEQ ID NOs: 208-216, respectively). Hemibodies can be constructed using the provided heavy and light chain components.
  • Other antigen binding proteins that are provided are variants of antibodies formed by combination of the heavy and light chains shown in Tables 1A and 1B, infra and comprise light and/or heavy chains that each have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequences of these chains. In some instances, such antibodies include at least one heavy chain and one light chain, whereas in other instances the variant forms contain two identical light chains and two identical heavy chains.
  • Variable Domains of Antigen Binding Proteins
  • Also provided are antigen binding proteins that contain an antibody heavy chain variable region selected from the group consisting of V H1, V H2, V H3, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94 as shown in Table 2B and/or an antibody light chain variable region selected from the group consisting of V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100 as shown in Table 2A, and immunologically functional fragments, derivatives, muteins and variants of these light chain and heavy chain variable regions.
  • TABLE 2A
    Exemplary Antibody Variable Light (VL) Chains
    Contained SEQ ID
    in Clone Designation NO. Amino Acid Sequence
    63E6 V L6 217 DIQMTQSPSSLSASVGDRVTITCRTSQSISSYLNWY
    QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR
    66F7 V L7 218 DIQMTQSPSSLSASVGDRVTITCRTSQSISNYLNWY
    QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR
    66D4 VL18 219 DIQMTQSPSSLSASVGDRITITCRASQIISRYLNWY
    QQNPGKAPKLLISAASSLQSGVPSRFSGSGSGPDFT
    LTISSLQPEDFTTYYCQQSYSSPLTFGGGTKVEVKR
    66B4 V L11 220 DIQMTQSPSSVSSSVGDRVTITCRASQGISRWLAW
    YQQKPGKAPKLLIYAASSLKSGVPSRFSGSGSGTD
    FTLTISSLQPEDFATYYCQQANSFPPTFGQGTKVEI
    KR
    65B1 VL19 221 DIQMTQSPSSLSASVGDRVTITCRASQNINNYLNW
    YRQKPGKAPELLIYTTSSLQSGVPSRFSGSGSGTDF
    TLTISSLETEDFETYYCQQSYSTPLTFGGGTKVEIKR
    65B4 VL21 222 SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVQWY
    QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA
    SLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTK
    LTVLG
    67A4 V L20 223 SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWY
    QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA
    TLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTK
    LTVLG
    63A10v1 VL22 224 SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW
    YQQKPGQDPVLVIYCDSNRPSGIPER
    FSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSD
    GVFGGGTKLTVLG
    63A10v2 VL101 1846 SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW
    YQQKPGQDPVLVIYCDSNRPSGIPER
    FSGSNPGNTATLTISRIEAGDEADYYCQAWDSTTV
    VFGGGTKLTVLG
    63A10v3 VL102 1847 SYELTQPPSVSVSPGQTANITCSGDKLGNRYTCWY
    QQKSGQSPVLVIYQDSERPSGIPER
    FSGSNSGNTATLTISGTQAMDEADYYCQAWDSTT
    VVFGGGTKLTVLG
    65H11v1 V L23 225 SYELTQPHSVSVATAQMARITCGGNNIGSKTVHW
    FQQKPGQDPVLVIYSDSNRPSGIPERFSGSNPGNTA
    TLTISRIEAGDEADYYCQVWDSSCDGVFGGGTKLT
    VLG
    65H11v2 VL103 1848 SYELTQPPSVSVSPGQTANITCSGDKLGDRYVCWY
    QQKPGQSPVLVIYQDSKRPSGIPEQFSGSNSGNTAT
    LTISGTQAIDEADYYCQAWDSITVVFGGGTKLTVLG
    67G10v1 V L9 226 SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW
    YQQKPGQDPVLVIYSDSNRPSGIPERFSGSNPGNTA
    TLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLT
    VLG
    67G10v2 V L10 227 SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWY
    QQKPGQSPVLVIYQDNERPSGIPERFSGSNSGNTAT
    LTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTV
    LG
    64C8 V L24 228 DVVMTQSPLSLPVTLGQPASISRRSSPSLVYSDGNT
    YLNCFQQRPGHSPRRLIYKGSNWDSGVPDRFSGSG
    SGTDFTLKISRVEAEDVGIYYCIQDTHWPTCSFGQ
    GTKLEIKR
    64A8 V L1 229 DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW
    67B4 YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE
    FTLTISTLQPEDFATYSCLQHNSYPLTFGGGTKVEI
    KR
    63G8v1 VL104 1849 DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW
    YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE
    FTLTISTLQPDDFATYSCLQHNSYPLTFGGGTKVEI
    KR
    63G8v2 VL105 1850 DIQMTQSPSSLSASVGDRVTITCRASQGIRSGLGW
    YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE
    FTLTVSSLQPEDFATYSCLQHNSYPLTFGGGTKVEI
    KR
    63G8v3 VL106 1851 DIQMTQSPSSLSASVGDRVTITCRASQGIRSGLGW
    YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE
    FTLTVSSLQPEDFATYSCLQHNTYPLTFGGGTKGEI
    RR
    66G2 V L12 230 DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW
    YQQKPGKAPKRLIYAASNLQSGVPSRFSGSGSGTK
    FTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEI
    KR
    68D3v1 V L2 231 DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW
    68D3v2 YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE
    FTLTISTLQPDDFATYSCLQHNSYPLTFGGGTKVEI
    KR
    65D1 V L27 232 SYDLTQPPSVSVSPGQTASITCSGDKLGDKYVCWY
    QQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTAT
    LTISGIQAMDEADYYCQAWDSRVFGGGTKLTVLG
    64H5 V L8 233 SYEMTQPLSVSVALGQTARITCGGNNIGSKNVHW
    65G4 YQQKPGQAPVLVIYRDSKRPSGIPERFSGSNSGNT
    ATLTISRAQAGDEADYYCQVWDSSSVVFGGGTKL
    TVLG
    65D4 V L26 234 SYELTQPLSVSVALGQTARIPCGGNDIGSKNVHWY
    QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA
    TLTISRAQAGDEADYYCQVWDSNPVVFGGGTKLT
    VLG
    65E3 V L25 235 SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWY
    QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA
    TLTISRAQAGDEADYYCQVWDSSTVVFGGGTKLT
    VLG
    68G5 V L13 236 SYELTQPLSVSVALGQTARLTCGGNNIGSINVHWY
    QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA
    TLTISRAQAGDEADYYCQLWDSSTVVFGGGTKLT
    VLG
    67G8 VL28 237 SYELTQPLSVSVALGQTARITCGGNNIGSYNVFWY
    QQKPGQAPVLVIYRDSKRPSGIPERFSGSNSGNTAT
    LTISRAQAGDEADYHCQVWDSSTVVFGGGTKLTV
    LG
    65B7v1 VL29 238 EIVLTQSPGTLSLSPGERATLSCRASQSVSSIYLAW
    YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCQQYGSSCSFGQGTKLEIKR
    65B7v2 VL107 1852 DVVMTQSPLSLPVTLGQPASISYRSSQSLVYSDGD
    TYLNWFQQRPGQSPRRLIYKVSNWDSGVPDRFSG
    SGSGTDFTLKISRVEAEDVGVYYCMQGTHWRGW
    TFGQGTKVEIKR
    63B6 V L4 239 EIVLTQSPGTLSLSPGERATLSCRASQSVSNSYLAW
    64D4 YQQKPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCQQFGRSFTFGGGTKVEIRR
    63F5 V L14 240 EVVLTQSPGTLSLSPGERATLSCRASQTVRNNYLA
    WYQQQPGQAPRLLIFGASSRATGIPDRFSGSGSGT
    DFTLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEI
    KR
    65E8 V L3 241 EIVLTQSPGTLSLSPGERATLSCRASQSVRNSYLAW
    63H11 YQQQPGQAPRLLIYGAFSRASGIPDRFSGSGSGTDF
    64E6 TLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR
    65F11
    67G7
    65C1 V L16 242 EIVLTQSPGTLSLSPGERATLSCRASQTIRNSYLAW
    YQQQPGQAPRLLIYGAFSRATGIPDRFSGGGSGTD
    FTLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR
    66F6 V L15 243 EIVLTQSPGTLSLSPGERATLSCRASQSVRNSYLAW
    YQQQPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR
    64A6 V L30 244 EILMTQSPATLSVSPGERATLSCRASQSVNSNLAW
    YQQKPGQAPRLLIYGTSTRATGVPARFGGSGSGTE
    FTLTISSLQSEDFAFYYCQQYNTWPWTFGQGTKVE
    IKR
    65F9 V L31 245 EILMTQSPATLSVSPGERATLSCRASQSVSSNLAW
    YQQKPGQSPRLLIYGASTRATGIPARFGGSGSGTDF
    TLTISSLQSEDFAFYYCQQYNTWPWTFGQGTKVEI
    KR
    64A7 V L17 246 EIVLTQSPGTLSLSPGERATLSCRASQSVSRNYLAW
    YQQKPGQAPRLLIYGASSRATGVPDRFSGSGSGTD
    FTLTISRLEPEDFAVYYCQQYGSSSLCSFGQGTNLD
    IRR
    65C3 V L5 247 EMVMTQSPATLSVSPGERATLSCRASQSVSSQLA
    68D5 WYQEKPGRAPRLLIYGASNRAIDIPARLSGSGSGTE
    FTLTISSLQSEDFAVYYCQQYNNWPWTFGQGTKV
    EFKR
    67F5 VL32 248 EIVMTQSPATLSVSPGERVTLSCRASQSVSSNLAW
    YQQKPGQAPRLLIHGSSNRAIGIPARFSGSGSGTEF
    TLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEI
    KR
    64B10v1 VL33 249 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVA
    64B10v2 WYQQLPGTAPKLLIYDNDKRPSGIPDRFSGSKSGT
    SATLGITGLQTGDEADYYCGTWDSSLSAVVFGGG
    TKLTVLG
    68C8 VL34 250 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVS
    WYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGT
    SATLGITGLQTGDEADYYCGTWDSSLSAVVFGGG
    TKLTVLG
    67A5 VL35 251 DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGN
    TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGT
    GSGTEFTLKISRVEAEDVGVYYCMQRLEFPITFGQ
    GTRLEIKR
    67C10 VL36 252 DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGN
    TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS
    GSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQ
    GTRLEIKR
    64H6 VL37 253 SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWY
    QQKPGQAPVVVIYRDSKRPSGIPERFSGSNSGNTA
    TLTISRAQAGDEADYYCQVWDSSPVVFGGGTKLT
    VLG
    63F9 V L38 254 DIQMTQSPSSLSVSVGDRVTITCRASQDIRNDLAW
    YQQTPGKAPKRLIYASSSLQSGVPSRFSGTGSGTEF
    TLTISSLQPEDFATYFCLQRNSYPLTFGGGTKVEIKR
    67F6v1 VL39 255 DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSDAGTT
    YLDWYLQKPGQSPQLLIYTLSFRASGVPDRFSGSG
    SGTDFTLKITRVEAEDVGVYYCMQRIEFPITFGQGT
    RLEIKR
    67F6v2 VL108 1853 DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSDAGTT
    YLDWYLQKPGRSPQLLIYTLSFRASGVPDRFSGSG
    SGTDFTLKITRVEAEDVGVYYCMQRIEFPITFGQGT
    RLEIKR
    48C9 VL78 256 DIQMTQSPSSLSASIGDRVTITCRASQNIRTYLNWY
    49A12 QQKPGKAPKLLIYVASSLESGVPSRFSGTGSGTDF
    51E2 ALTISSLQPEDFATYYCQQSDSIPRTFGQGTKVEIKR
    48F3 VL77 257 DIQMTQSPSSLSASVGDRVTITCRASQRISSYLNWY
    QQKPGKAPKFLIYAVSSLQSGVPSRFSGSGSGTDFT
    LTISSLEPEDFATYYCQQSYSATFTFGPGTKVDIKR
    48F8 VL49 258 EIVLTQSPDFQSVTPKEKVTITCRASQDIGNSLHWY
    53B9 QQKPDQSPKLLIKFASQSFSGVPSRFSGSGSGTDFA
    56B4 LTINSLEAEDAATYYCHQSSDLPLTFGGGTKVDIKR
    57E7
    57F11
    48H11 V L40 259 DIQMTQSPSSLSTSVGDRVTITCRASQNIRSYLNWY
    QLKPGKAPKVLIYGASNLQSGVPSRFSGSGSGTDF
    TLTISNLQSEDFAIYYCQQSYNTPCSFGQGTKLEIKR
    49A10 V L65 260 DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSDDGN
    48D4 TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS
    GSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQ
    GTRLEIKR
    49C8 VL45 261 DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNW
    52H1 YQQKPGKAPKLLIYDVSNLETGVPSRFSGSGSGTD
    FTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDL
    KR
    49G2 V L66 262 DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDT
    50C12 YLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSG
    55G11 SGTDFTLKISRVEAEDVGVYYCMQHIEFPSTFGQG
    TRLEIKR
    49G3 VL47 263 DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWY
    QQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDF
    TFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR
    49H12 V L43 264 DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNW
    YQQKPGKAPKLLIYDTFILETGVPSRFSGSGSGTDF
    TFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR
    51A8 VL61 265 NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQW
    YQQRPGSSPTTVIYEDKERSSGVPDRFSGSIDSSSNS
    ASLTISGLKTEDEADYYCQSYDRNNHVVFGGGTK
    LTVLG
    51C10.1 VL55 266 SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWY
    QQKSGQAPVLVIYEDSKRPSGIPERFSGSISGTMAT
    LTISGAQVEDEADYYCYSTDSSVNHVVFGGGTKL
    TVLG
    51C10.2 V L70 267 SYDLTQPPSVSVSPGQTASITCSGDELGDKYACWY
    QQKPGQSPVLVIYQDTKRPSGIPERFSGSNSGNTAT
    LTISGTQAMDEADYYCQAWDSGTVVFGGGTKLT
    VLG
    51E5 VL79 268 DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW
    YQQKPGKAPNRLIYAASSLQFGVPSRFSGSGSGTE
    FTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEI
    KR
    51G2 VL51 269 DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAW
    YQQKPGKAPKLLIYDASSLQSGVPSRFSGSGSGTD
    FTLTISSLQPEDFATYYCQQTNSFPPWTFGQGTKVE
    IKR
    52A8 VL41 270 DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWH
    QQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFS
    LTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR
    52B8 VL82 271 EVVLTQSPATLSVSPGGRATLSCRASQSVSDILAW
    YQQKPGQAPRLLIYGASTRATGIPARFSGGGSGTE
    FTLTISSLQSEDFAVYFCQQYNNWPLTFGGGTKVE
    IKR
    52C1 VL67 272 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGINYVSW
    YQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSA
    TLGITGLQTGDEADYCCGTWDSSLSAVVFGGGTK
    LTVLG
    52F8 VL42 273 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYN
    YLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGR
    GSGTDFSLKISRVEAEDVGIYYCMQALQTPFTFGP
    GTNVDIKQ
    52H2 VL84 274 ENVLTQSPGTLSLSPGERATLSCRASQSVRSSYLA
    WYQQRPGQAPRLLIFGASRRATGIPDRFSGSGSGT
    DFTLTISRLEPEDFAVYYCQQYGSSPRSFGQGTKLE
    IKR
    53F6 VL63 275 DIVMTQSPLSLPVTPGEPASISCRSSQSLQHSNGYN
    YLDWYLQKPGQSPQLLIYLDSNRASGVPDRFSGSG
    SGTDFTLKISRVEAEDIGVYYCMQGLQTPPTFGGG
    TKVEIKR
    53H5.2 VL62 276 DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW
    YQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTE
    FTLTISSLQPEDFATYYCLQHKSYPFTFGPGTKMDI
    KG
    53H5.3 V L80 277 EIVMTQSPVTLSVSPGERAIISCRASQSVSSNVAWY
    QQKPGQTPRLLIYGASTRATGLPTRFSGSGSGTVFT
    LTISSLQPEDFAVYYCQQFSNSITFGQGTRLEIKR
    54A1 VL44 278 DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWY
    55G9 QLKPGKAPKLLIYDVSNLETGVPSRFSGGGSGTDF
    TFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR
    54H10.1 V L53 279 EIVVTQSPGTLSLSVGERAILSCRASQSFSSSYLAW
    55D1 YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF
    48H3 TLTISRLEPEDFAVYYCQQYGSSRTFGQGTKVEIKR
    53C11
    55D3 V L71 280 DIQMTQSPSSLSVSVGDRVTITCRASQDISNYLAWF
    QQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFT
    LTISSLQPEDFATYYCQQYNIYPRTFGQGTKVEIKR
    55E4 VL75 281 DIQMTQSPSSLSTSIGDRITITCRASQSISNYLNWFQ
    49B11 QIPGKAPRLLIYTASSLQSGVPSRFSGSGSGTDFTLT
    50H10 ISSLQPEDFATYYCQQSSSIPWTFGQGTKVEIKR
    53C1
    55E9 VL68 282 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGFN
    YLDWYLQKPGQSPQVLIYLGSNRASGVPDRFSGS
    GSGTDFTLKISRVEAEDVGIYYCMQALQTLITFGQ
    GTRLEIKR
    55G5 VL83 283 SYELTQPPSVSVSPGQTASITCSGDNLGDKYAFWY
    QQKPGQSPVLIYQDNKRPSGIPERFSGSNSGNTAT
    LTISGTQAVDEADYYCQAWDSATVIFGGGTKLTV
    LG
    56A7 V L52 284 DIQMTQSPSSVSASVGDRVTITCRASQDISSWLAW
    56E4 YQQKPGKAPKFLIYDASTLQSGVPSRFSGSGSGAD
    FTLTINNLQPEDFATYYCQQTNSFPPWTFGQGTKV
    EIKR
    56C11 V L64 285 SYVLTQPPSVSVAPGQAARITCGGNDIGSKSVHWY
    QQKPGQAPVLVVYDDSDRPSGIPERFSGSKSGNTA
    TLIISRVEAGEEADYYCQVWDSSSDVVFGGGTKLT
    VLG
    56E7 VL86 286 DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNW
    YQQKPGKAPNLLIYDASNLETGVPSRFSGSGSGTD
    FTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR
    56G1 VL76 287 DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWF
    LQIPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTINSLQPEDFGTYYCQQSSTIPWTFGQGTKVEIKR
    56G3.3 V L81 288 EIVLTQSPGTLSLSPGERATLSCRASQSVSRDYLAW
    55B10 YRQKPGQAPRLLVYGASARATGIPDRFSGSGSGTD
    FTLTISRLEPEDFAVYYCQQYGRSLFTFGPGTKVDI
    KR
    57B12 V L72 289 DIQMTQSPSSLSVSVGDRVTITCRASHDISNYLAWF
    QQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFT
    LTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIKR
    57D9 VL87 290 EIVLTQSPGTLSLSPGERATLSCRASPSVSSSYLAW
    YQQKPAQAPRLLIYGASSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCHQYGTSPCSFGQGTKLEIKR
    59A10 VL48 291 DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAW
    49H4 YQQKPGKAPKLLIYGASSLQSGVPSRFSGSGSGTD
    FTLTISSLQPEDFATYYCQQTNSFPPWTFGQGTKVE
    IKR
    59C9 V L50 292 DIQMTQSPSSVSASVGDRVTITCRASQDIDSWLVW
    58A5 YQQKPGKAPNLLIYAASNLQRGVPSRFSGSGSGTD
    57A4 FTLTIASLQPEDFATYYCQQTNSFPPWTFGQGTKV
    57F9 EIKR
    59G10.2 V L60 293 SYELSQPPSVSVSPGQTVSITCSGDNLGDKYACWY
    QQRPGQSPVLVIYQDTKRPSGIPERFSGSNSGNTAT
    LTISGTQAMDEADYYCQAWDSSTTWVFGGGTKL
    TVLG
    59G10.3 VL54 294 QSVLTQPPSVSAAPGQKVTISCSGSSSNIGDNYVS
    WYQQFPGTAPKLLIYDNNKRPSGIPDRFSGSKSGT
    SATLGITGLQTGDEADYYCGTWDSSLSVMVFGGG
    TKLTVLG
    60D7 VL69 295 DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDT
    YLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSG
    SGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGG
    TKVEIKR
    60F9 VL58 296 EIMLTQSPGTLSLSPGERATLSCRASQRVPSSYIVW
    48B4 YQQKPGQAPRLLIYGSSNRATGIPDRFSGSGSGTDF
    52D6 TLTIGRLEPEDFAVYYCQQYGSSPPWTFGQGTKVA
    IKR
    60G5.2 VL46 297 SYELTQPPSVSVSPGQTASITCSGNKLGDKYVCWY
    QQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTAT
    LTISGTQALDEADYYCQAWDSSTWVFGGGTKLTV
    LG
    61G5 VL59 298 EIMLTQSPGTLSLSPGERATLSCRASQRVPSSYLVW
    YQQKPGQAPRLLIYGASNRATGIPDRFSGSGSGTD
    FTLTIGRLEPEDFAVYYCQQYGSSPPWTFGQGTKV
    AIKR
    52C5 V L73 299 DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF
    QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISSLQPEDFAIYYCQQSSSIPWTFGQGTKVEIKR
    61H5 VL88 300 EIVLTQSPGTLSLSPGERATLSCRASQSVSRDYLAW
    52B9 YRQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCQQYGRSLFTFGPGTTVDIKR
    59D10v1 V L56 301 SYELTQPPSVSVSPGQTARITCSGDAVPKKYANWY
    QQKSGQAPVLVIYEDSKRPSGIPERFSGSSSGTMAT
    LTISGAQVEDEADYYCYSTDSSGNHVVFGGGTKL
    TVLG
    59D10v2 VL57 302 SYELTQPPSVSVSPGQTASITCSGDKLGDKYVCWY
    QQMPGQSPVLVIHQNNKRPSGIPERFSGSNSGNTA
    TLTISGTQAMDEADYYCQAWDSSTAVFGGGTKLT
    VLG
    56G3.2 V L85 303 ETVMTQSPATLSVSPGERATLSCRARQSVGSNLIW
    YQQKPGQAPRLLIFGASSRDTGIPARFSGSGSGTEF
    TLTISSLQSEDFAVYYCQQYNNWPLTFGGGTKVEI
    KR
    48G4 VL89 304 EIVLTQSPGTLSLSPGERATLSCRASQSVASSYLVW
    53C3.1 YQQKPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF
    TLTIRRLEPEDFAVYYCQQYGTSPFTFGPGTKVDL
    KR
    50G1 V L90 305 DIVMTQTPLSLPVSPGEPASISCRSSQSLLDSDDGD
    TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSVS
    GSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGG
    GTKVEIKR
    58C2 VL91 306 EIVMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGD
    TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS
    GSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQ
    GTRLEIKR
    60G5.1 V L74 1854 DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF
    QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISSLQPEDFATYYCQQSSSIPWTFGQGTKVEIKR
    50D4 VL92 307 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLAW
    YQQKPGKVPTLLIYAASTLLSGVPSRFSGSGSGTDF
    TLTISSLQPEDVAAYYCQKYYSAPFTFGPGTKVDI
    NR
    50G5 v1 VL93 308 DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW
    YQQKPGKAPNRLIYAASSLQSGVPSRFSGSGSGTE
    FTLTISSLQPEDFATYYCLQHNSYPRTFGQGTKVEI
    KR
    50G5 v2 VL94 309 DVVMTQCPLSLPVTLGQPASISCRSSQRLVYSDGN
    TYLNWVQQRPGQSPRRLIYKVSNWDSGVPDRFSG
    SGSGTDFTLKISRVEAEDVGVNYCMEGTHWPRDF
    GQGTRLEIKR
    51C1 VL95 310 DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF
    QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISSLQPEDFATYYCQQSSSIPWTFGQGTTVEIKR
    53C3.2 VL96 311 DIVMTQSPATLSVSPGERATLSCRASQSISSNLAWY
    QQTPGQAPRLLIYGTSIRASTIPARFSGSGSGTEFTL
    TISSLQSEDFAIYYCHQYTNWPRTFGQGTKVEIKR
    54H10.3 VL97 312 DIQMTQSPSSLSASVGDRVTITCRASQTISIYLNWY
    QQKPGKAPKFLIYSASSLQSGVPSRFSGSGSGTDFT
    LTISSLQPEDFSTYFCQQSYSSPLTFGGGTKVEIKR
    55A7 VL98 313 DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWY
    QQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISSLQPEDFATYYCQQTYSAPFTFGPGTKVDIKR
    55E6 VL99 314 EIVLTQSPGTLSLSPGERATLSCRASQSVSRSHLAW
    YQQNSGQAPRLLIYGASSRATGIPDRFSGSGSGTDF
    TLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEI
    KR
    61E1 V L100 315 DIQMTQSPSSLSASIRDRVTITCRASQSIGTFLNWY
    QQKPGTAPKLLIYAASSLQSGVPSRFSGSGSGTDFT
    LTISSLHPEDFASYYCQQSFSTPLTFGGGTKVEITR
  • TABLE 2B
    Exemplary Antibody Variable Heavy (VH) Chains
    Contained SEQ ID
    in Clone Designation NO. Amino Acid Sequence
    63E6 V H 6 316 QVQLMQSGAEVKKPGASVKVSCKASGYTFTGY
    66F7 YMHWVRQAPGQGLEWMGWMNPNSGATKYA
    QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY
    YCARELGDYPFFDYWGQGTLGIVSS
    66D4 V H17 317 QVQLVQSGAEVKKPGASVKVSCRASGYTFTGY
    YIHWMRQAPGHGLEWMGWINPPSGATNYAQK
    FRGRVAVTRDTSISTVYMELSRLRSDDTAVYYC
    ARETGTWNFFDYWGQGTLVTVSS
    66B4 V H10 318 QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY
    YLHWVRQAPGQGLEWMGWINPNSGGTDYAQK
    FQGRVTMTRDTSISTAYMELSRLRSDDTAVYYC
    VGDAATGRYYFDNWGQGTLVTVSS
    65B1 VH18 319 QVQLVQSGAEVKRPGASVKVSCKASGYTFTGY
    FMHWVRQAPGQGLEWMGWINPNSGATNYAQ
    KFHGRVTMTRDTSITTVYMELSRLRSDDTAVY
    YCTRELGIFNWFDPWGQGTLVTVSS
    65B4 V H20 320 EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYD
    MHWVRQATGKGLEWVSTIDTAGDAYYPGSVK
    GRFTISRENAKTSLYLQMNSLRAGDTAVYYCTR
    DRSSGRFGDFYGMDVWGQGTAVTVSS
    67A4 VH19 321 EVQLEESGGGLVQPGGSLRLSCAASGFTFRTYD
    MHWVRQVTGKGLEWVSAIGIAGDTYYSDSVK
    GRFTISRENAKNSLYLQMNSLRVGDTAVYYCA
    RDRSSGRFGDYYGMDVWGQGTTVTVSS
    63A10v1 VH21 322 EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAW
    63A10v2 MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAA
    63A10v3 PVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVY
    YCTTDSSGSYYVEDYFDYWGQGTLVTVSS
    65H11v1 VH22 323 EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
    65H11v2 MSWVRQAPGKGLEWVGRIIGKTDGGTTDYAAP
    VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYY
    CTSDSSGSYYVEDYFDYWGQGTLVAVSS
    67G10v1 V H9 324 EVQLVESGGGLVKPGGSLRLACAASGITFNNA
    67G10v2 WMSWVRQAPGKGLEWVGRIKSKTDGGTTDYA
    APVKGRFTISRDDSKSILYLQMNSLKSEDTAVY
    YCTTDSSGSYYVEDYFDYWGQGTLVTVSS
    64C8 V H23 325 QVQLVESGGGVVQPGRSLRLSCVASGFTFSSYG
    MHWVRQDPGKGLEWVAVISYDGSNKHYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    ARELLWFGEYGVDHGMDVWGQGTTVTVSS
    63G8v1 V H1 326 QAQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    63G8v2 IHWVRQAPGKGLEWVAVISYDGSNKYYADSVK
    63G8v3 GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAT
    68D3v1 TVTKEDYYYYGMDVWGQGTTVTVSS
    64A8
    67B4
    68D3v2 VH95 1855 QAQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAFISYAGSNKYY
    ADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAV
    YYCATTVTEEDYYYYGMDVWGQGTTVT
    VSS
    66G2 V H11 327 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAGISYDGSNKNYADSV
    KGRITISRDNPKNTLYLQMNSLRAEDTAVYYCA
    TTVTKEDYYYYGMDVWGQGTTVTVSS
    65D1 V H26 328 QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYY
    IHWVRQAPGKGLEWVALIWYDGSNKDYADSV
    KGRFTISRDNSKNTLYLHVNSLRAEDTAVYYCA
    REGTTRRGFDYWGQGTLVTVSS
    64H5 V H7 329 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWDDGSNKYYADS
    VKGRFTISRDNSKNTLSLQMNSLRAEDTAVYYC
    AREYVAEAGFDYWGQGTLVTVSS
    65D4 V H25 330 QEQLVESGGGVVQPGRSLRLSCAVSGFTFSFYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CTRALNWNFFDYWGQGTLVTVSS
    65E3 V H24 331 QVQLVESGGGVVQPGRSLRLSCAASGFTLSNYN
    MHWVRQAPGKGLEWVAVLWYDGNTKYYADS
    VKGRVTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARDVYGDYFAYWGQGTLVTVSS
    65G4 V H8 332 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWDDGSNKYY
    ADSVKGRFTISRDNSKNTLSLQMNSLRAEDTAV
    YYCAREYVAEAGFDYWGQGTLVTVSS
    68G5 V H12 333 QVQLVESGGGVVQPGRSLRLSCTASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYHADS
    VKGRFTISRDDSKNALYLQMNSLRAEDTAVYY
    CVRDPGYSYGHFDYWGQGTLVTVSS
    67G8 V H27 334 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSNKDYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARSAVALYNWFDPWGQGTLVTVSS
    65B7v1 VH28 335 QVQLQESGPGLVNPSQTLSLTCTVSGGSISSDAY
    65B7v2 YWSWIRQHPGKGLEWIGYIFYSGSTYYNPSLKS
    RVTISVDTSKNRFSLKLSSVTAADTAVYYCARE
    SRILYFNGYFQHWGQGTLVTVSS
    63B6 V H4 336 QVQLQESGPGLVKPSQTLSLTCAVSGGSISSGDY
    64D4 YWSWIRQHPGKGLEWIGYIYYSGTTYYNPSLKS
    RVTISVDTSKNQFSLKLTSVTAADTAVYYCARM
    TTPYWYFGLWGRGTLVTVSS
    63F5 V H13 337 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY
    YWTWIRQHPGKDLEWITYIYYSGSAYYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM
    TTPYWYFDLWGRGTLVTVSS
    63H11 V H3 338 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY
    YWTWIRQHPGKGLEWIAYIYYSGSTYYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM
    TTPYWYFDLWGRGTLVTVSS
    65E8 V H2 339 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY
    64E6 YWTWIRQHPGKGLEWIAYIYYTGSTYYNPSLKS
    65F11 RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM
    67G7 TTPYWYFDLWGRGTLVTVSS
    65C1 V H15 340 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY
    YWTWIRQHPGKGLEWIAYIFYSGSTYYNPSLKS
    RVTISLDTSKNQFSLKLNSVTAADTAVYYCARM
    TSPYWYFDLWGRGTLVTVSS
    66F6 V H14 341 QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY
    YWTWIRHHPGKGLEWIAYIYYSGSTYYNPSLKS
    RVTISVDTSKNQFSLKLNSVTAADTAVYYCAR
    MTTPYWYFDLWGRGTLVTVSS
    64A6 VH29 342 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
    YWSWIRQRPGKGLEWVGYIYYSGGTHYNPSLK
    SRVTISIDTSENQFSLKLSSVTAADTAVYYCARV
    LHYSDSRGYSYYSDFWGQGTLVTVSS
    65F9 V H30 343 QVQLQESGPGLVKPSQTLSLTCTLSGGSFSSGDY
    YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS
    RVTISIDTSKNQFSLKLTSVTAADTAVYYCARV
    LHYYDSSGYSYYFDYWGQGTLVTVSS
    64A7 V H16 344 QLQLQESGPGLVKPSETLSLTCTVSGGSISSDTS
    YWGWIRQPPGKGLEWIGNIYYSGTTYFNPSLKS
    RVSVSVDTSKNQFSLKLSSVTAADTAVFYCARL
    RGVYWYFDLWGRGTLVTVSS
    65C3 V H5 345 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
    68D5 SWIRQPPGKGLEWIGYIYYTGSTNYNPSLKSRV
    TISVDTSKNQFSLKLSSVTAADTAVYYCAREYY
    YGSGSYYPWGQGTLVTVSS
    67F5 V H31 346 QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYW
    SWIRQPPGKGLEWIGYIYYSGNTNYNPSLKSRV
    TISVDTSKNQFSLKLSSVTAADTAVYYCAREYY
    YGSGSYYPWGQGTLVTVSS
    64B10v1 VH32 347 QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDY
    YWSWIRQPPGKGLEWIGFIYYSGGTNYNPSLKS
    RVTISIDTSKNQFSLKLNSVTAADTAVYYCARY
    SSTWDYYYGVDVWGQGTTVTVSS
    64B10v2 VH96 1856 QVQLLESGPGLVKPSETLSLTCTVSGGSVSSGD
    YYWSWIRQPPGKGLEWIGFIYYSGGTNYNPPLK
    SRVTISIDTSKNQFSLKLSSVTAADTAVYYCARY
    SSTWDYYYGVDVWGQGTTVTVSS
    68C8 VH33 348 QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGD
    NYWSWIRQPPGKGLEWIGFMFYSGSTNYNPSL
    KSRVTISLHTSKNQFSLRLSSVTAADTAVYYCG
    RYRSDWDYYYGMDVWGQGTTVTVSS
    67A5 VH34 349 EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
    IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG
    QVTISADKSINTAYLQWSSLKASDTAIYFCARR
    ASRGYRFGLAFAIWGQGTMVTVSS
    67C10 VH35 350 EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYW
    IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG
    QVTISADKSINTAYLQWSSLKASDTAIYYCARR
    ASRGYRYGLAFAIWGQGTMVTVSS
    64H6 VH36 351 EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
    IGWVRQMPGKGLEWMGIIYPGDSETRYSPSFQG
    QVTISADKSISTAYLQWNSLKTSDTAMYFCATV
    AVSAFNWFDPWGQGTLVTVSS
    63F9 VH37 352 QVQLKESGPGLVKPSQTLSLTCTVSGGSISSGGY
    YWNWIRQHPGKGLEWIGYIYDSGSTYYNPSLKS
    RVTMSVDTSKNQFSLKLSSVTAADTAVYYCAR
    DVLMVYTKGGYYYYGVDVWGQGTTVTVSS
    67F6v1 V H38 353 EVQLVQSGAEVKKPGESLKISCKGSGYSFTGYW
    67F6v2 IGWVRQLPGKGLEWMGIIYPGDSDTRYSPSFQG
    QVTISVDKSINTAYLQWSSLKASDTAMYYCAR
    RASRGYSYGHAFDFWGQGTMVTVSS
    48C9 V H73 354 QVQLQQWGAGLLKPSETLSLTCSVYGGSFSGY
    49A12 YWTWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    51E2 RVTISIDTSKNQFSLKLSSVTAADTAVYYCARES
    GNFPFDYWGQGTLVTVSS
    48F3 V H72 355 QVQLQQWGAGPLKPSETLSLTCAVYGGSISGYY
    WSWIRQPPGKGLEWIGEITHTGSSNYNPSLKSR
    VTISVDTSKNQFSLKLSSVTAADTAVYYCARGG
    ILWFGEQAFDIWGQGTMVTVSS
    48F8 VH48 356 EVQLVESGGGLVKPGGSLRLSCTASGFTFRSYS
    53B9 MNWVRQAPGKGLEWVSSISSSSSYEYYVDSVK
    56B4 GRFTISRDIAKSSLWLQMNSLRAEDTAVYYCAR
    57E7 SLSIAVAASDYWGKGTLVTVSS
    57F11
    48H11 VH39 357 QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY
    YKHWVRQAPGQGLEWMGWINPNSGATKYAQ
    KFQGRVTMTRDTSISTVYMELSRLRSVDTALYY
    CAREVPDGIVVAGSNAFDFWGQGTMVTVSS
    49A10 VH62 358 QVHLVESGGGVVQPGRSLRLSCAASGFTFSNYG
    48D4 MHWVRQAPGKGLEWVAIIWYDGSNKNYADSV
    KGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCA
    RDQDYDFWSGYPYFYYYGMDVWGQGTTVTVSS
    49C8 VH44 359 QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
    52H1 DIDWVRQATGQGLEWMGWMNPNGGNTGYAQ
    KFQGRVTMTRNTSINTAYMELSSLRSEDTAIYY
    CARGKEFSRAEFDYWGQGTLVTVSS
    49G2 VH63 360 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
    50C12 MRWVRQAPGKGLEWVALIWYDGSNKFYADSV
    55G11 KGRFTISRDNSKNTLNLQMNSLRAEDTAVYYC
    ARDRYYDFWSGYPYFFYYGLDVWGQGTTVTV
    SS
    49G3 VH46 361 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRM
    GVSWIRQPPGKALEWLTHIFSNDEKSYSTSLKSR
    LTISKDTSKSQVVLSMTNMDPVDTATYYCVRV
    DTLNYHYYGMDVWGQGTTVTVSS
    49H12 VH42 362 QVQLVQSGAEVKKPGASVKVSCMASGYIFTSY
    DINWVRQATGQGPEWMGWMNPYSGSTGYAQ
    NFQGRVTMTRNTSINTAYMELSSLRSEDTAVYY
    CAKYNWNYGAFDFWGQGTMVTVSS
    51A8 VH58 363 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVISYDGSNKYYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    ARADGDYPYYYYYYGMDVWGQGTTVTVSS
    51C10.1 VH54 364 EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYA
    59D10v1 MSWVRQAPGKGLEWVSGISGSSAGTYYADSVK
    59D10v2 GRFTISRDNSKNTLFLQMDSLRAEDTAVYYCAQ
    DWSIAVAGTFDYWGQGTLVTVSS
    51C10.2 VH67 365 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
    YWSWIRQHPGKGLEWIGYIYYNGSPYDNPSLK
    RRVTISIDASKNQFSLKLSSMTAADTAVYYCAR
    GALYGMDVWGQGTTVTVSS
    51E5 V H74 366 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGELDHSGSINYNPSLKS
    RVTISVDTSKNQFSLKLTSVTAADTAVYYCARV
    LGSTLDYWGQGTLVTVSS
    51G2 V H50 367 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK
    GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA
    RDTYISGWNYGMDVWGQGTTVTVSS
    52A8 V H40 368 QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY
    YLHWVRQAPGQGLEWMGWINPNSAATNYAPK
    FQGRVTVTRDTSISTAYMELSRLRSDDTAVYYC
    AREGGTYNWFDPWGQGTLVTVSS
    52B8 VH77 369 QVQLQESGPGLMKPSETLSLTCTVSGGSISYYY
    WSWIRQSPGKGLEWIGYIYYSGSTNYNPSLKSR
    VTMSVDTSKNQFSLKLSSVTAADTAVYYCASG
    TRAFDIWGQGTMVTVSS
    52C1 V H64 370 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSNNYYADS
    VKGRFTISRDNSKSTLFLQMNSLRAEDTAIYYC
    ARDRAGASPGMDVWGQGTTVTVSS
    52F8 VH41 371 QVQLVQSGAEVKKPGASVKVSCKASGFTFIGY
    YTHWVRQAPGQGLEWMGWINPSSGDTKYAQK
    FQGRVTLARDTSISTAYMELSRLRSDDTAVYYC
    ANSGWYPSYYYGMDVWGQGTTVTVSS
    52H2 VH79 372 QVQLQESGPGLVKPSETLSLTCTVSGGSISTYY
    WSWIRQPPGTGLEWIGYIFYNGNANYSPSLKSR
    VTFSVDTSKNQFSLKLSSVTAADTAVYFCARET
    DYGDYARPFEYWGQGTLVTVSS
    53F6 V H60 373 QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARGHYDSSGPRDYWGQGTLVTVSS
    53H5.2 VH59 374 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGQGLEWVALISYDGSNKYYADSV
    KGRFTISRDKSKNTLYLQMNSLRAEDTAVYYC
    AREANWGYNYYGMDVWGQGTTVTVSS
    53H5.3 VH75 375 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDY
    YWNWIRQPPGKGPEWIGEINHSGTTNYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCVGI
    LRYFDWLEYYFDYWGQGTLVTVSS
    54A1 V H43 376 QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
    55G9 DINWVRQATGQGLEWMGWMNPHSGNTGYAQ
    KFQGRVTMTRNTSINTAYMELSSLRSEDTAVYY
    CAKYNWNYGAFDFWGQGTMVTVSS
    54H10.1 V H52 377 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    55D1 MSWVRQAPGKGLEWVSAISGSGRTTYSADSVK
    48H3 GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA
    53C11 KEQQWLVYFDYWGQGTLVTVSS
    55D3 VH68 378 QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGVY
    YWNWIRQHPGKGLEWIGYLYYSGSTYYNPSLK
    SRLTISADMSKNQFSLKLSSVTVADTAVYYCAR
    DGITMVRGVTHYYGMDVWGQGTTVTVSS
    55E4 V H70 379 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    49B11 YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    50H10 RVTISLDTSNDQFSLRLTSVTAADTAVYYCARV
    53C1 TGTDAFDFWGQGTMVTVSS
    52C5
    60G5.1
    55E9 V H65 380 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFG
    MHWVRQAPGKGLEWVALIWYDGDNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARNSGWDYFYYYGMDVWGQGTTVTVSS
    55G5 VH78 381 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
    SWIRQPAGKGLEWIGRIYISGSTNYNPSLENRVT
    MSGDTSKNQFSLKLNSVTAADTAVYYCAGSGS
    YSFDYWGQGTLVTVSS
    50G1 VH84 382 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    LHWVRQAPGKGLEWVAVIWNDGSNKLYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    ARDQYYDFWSGYPYYHYYGMDVWGQGTTVT
    VSS
    56A7 VH51 383 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    56E4 MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK
    GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA
    RDIYSSGWSYGMDVWGQGTTVTVSS
    56C11 VH61 384 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSYQFYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARDHVWRTYRYIFDYWGQGTLVTVSS
    56E7 V H81 385 EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWI
    GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG
    QVTISADTSISTAYLQWSRLKASDTAVYYCARA
    QLGIFDYWGQGTLVTVSS
    56G1 V H71 386 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    RVTISLDTSNKQFSLRLTSVTAADTAVYYCARV
    TGTDAFDFWGQGTMVTVSS
    56G3.3 VH76 387 QLQLQESGPGLVKPSETLSLTCTVSGDSISSSSY
    55B10 YWGWIRQPPGKGLEWIGMIYYSGTTYYNPSLK
    SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
    VAAVYWYFDLWGRGTLVTVSS
    57B12 VH69 388 QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGVY
    YWSWIRQLPGKGLEWIGYIYYSGSTYYNPSLKS
    RLTISADTSKNQFSLKLSSVTVADTAVYYCARD
    GITMVRGVTHYYGMDVWGQGTTVTVSS
    57D9 VH82 389 QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSA
    TWNWIRQSPSRGLEWLGRTYYRSKWYNDYAV
    SVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYC
    VGIVVVPAVLFDYWGQGTLVTVSS
    58C2 V H85 390 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
    MHWVRQAPGKGLEWVAVIWNDGNNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY
    CARDQNYDFWNGYPYYFYYGMDVWGQGTTV
    TVSS
    59A10 VH47 391 QVQVVESGGGLVKPGGSLRLSCAASGFTFSDSY
    49H4 MSWIRQAPGKGLEWISSISSSGSIVYFADSVKGR
    FTISRDIAKNSLYLHMNSLRAEDTAVYYCARET
    FSSGWFDAFDIWGQGTMVTVSS
    59C9 VH49 392 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
    58A5 MSWVRQAPGKGLEWVSSISSSSTYIYYADSLKG
    57A4 RFTISRDNAKNSLFLQVNSLRAEDSAVYYCARD
    57F9 RWSSGWNEGFDYWGQGTLVTVSS
    59G10.2 VH57 393 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
    MHWVRQAPGKGLEWVAITSYGGSNKNYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
    AREAGYSFDYWGQGTLVTVSS
    59G10.3 V H53 394 EVQLLGSGGGLVQPGGSLRLSCAASGFTFNHYA
    MSWVRQAPGKGLEWVSAISGSGAGTFYADSM
    KGRFTISRDNSENTLHLQMNSLRAEDTAIYYCA
    KDLRIAVAGSFDYWGQGTLVTVSS
    60D7 V H66 395 QVQLVESGGGVVQPGRSLRLSCAASGFNFSSYG
    MHWVRQAPGKGLEWVAVIWYDGSNKYYADS
    VKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYC
    ARDQYFDFWSGYPFFYYYGMDVWGQGTTVTV
    SS
    60F9 VH55 396 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    48B4 MSWVRQAPGKGLEWVSVISDSGGSTYYADSVK
    52D6 GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA
    KDHSSGWYYYGMDVWGQGTTVTVSS
    60G5.2 VH45 397 QVQLVQSGAEVKTPGASVRVSCKASGYTFTNY
    GISWVRQAPGQGLEWMGWISAYNGYSNYAQK
    FQDRVTMTTDTSTSTAYMELRSLRSDDTAVYY
    CAREEKQLVKDYYYYGMDVWGQGSTVTVSS
    61G5 V H56 398 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
    MSWVRQSPGKGLEWVSVISGSGGDTYYADSVK
    GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA
    KDHTSGWYYYGMDVWGQGTTVTVSS
    56G3.2 V H80 399 QVQLQESGPGLVKPSETLSLTCTVSDGSISSYYW
    NWIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRV
    TMSVDTSKNQFSLNLTSVTAADTAVYYCARGP
    LWFDYWGQGTLVTVSS
    48G4 VH83 400 QVQLVQSGAEVKKPGASVKVSCKVSGYTLTEL
    53C3.1 SIHWVRQAPGKGLEWMGGFDPEDGETIYAQKF
    QGRVTMTEDTSTDTAYMELSSLRSEDTAVYYC
    ATHSGSGRFYYYYYGMDVWGQGTTVTVSS
    61H5 VH86 401 QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
    52B9 YWGWIRQPPGKGLEWIGSIYYSGTTYYNPSLKS
    RVTISVDTSKNQFSLKLSSVTAADTAVYYCARV
    AAVYWYFDLWGRGTLVTVSS
    50D4 VH87 402 QVQLVQSGAEVKKTGASVKVSCKASGYTFTSH
    DINWVRQATGHGLEWMGWMNPYSGSTGLAQR
    FQDRVTMTRNTSISTAYMELSSLRSEDTAVYYC
    ARDLSSGYYYYGLDVWGQGTTVTVSS
    50G5v1 VH88 403 QVQLVQSGAEVKKPGASVKVSCKASGYPFIGY
    50G5v2 YMHWVRQAPGQGLEWMGWINPDSGGTNYAQ
    KFQGRVTMTRDTSITTAYMELSRLRSDDTAVFY
    CARGGYSYGYEDYYGMDVWGQGTTVTVSS
    51C1 VH89 404 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
    YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS
    RVTISLDTSHDQFSLRLTSVTAADTAVYYCARV
    TGTDAFDFWGQGTMVTVSS
    53C3.2 V H90 405 QVQLQESGPGLVKPSQTLSLTCTVSNGSINSGN
    YYWSWIRQHPGKGLEWIGYIYHSGSAYYNPSL
    KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA
    RTTGASDIWGQGIMVTVSS
    54H10.3 VH91 406 DIQMTQSPSSLSASVGDRVTITCRASQTISIYLN
    WYQQKPGKAPKFLIYSASSLQSGVPSRFSGSGS
    GTDFTLTISSLQPEDFSTYFCQQSYSSPLTFGGGT
    KVEIKR
    55A7 VH92 407 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
    SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT
    ISVDTSKNQFSLRLSSVTAADTAVYYCARGITGT
    IDFWGQGTLVTVSS
    55E6 VH93 408 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
    MNWVRQAPGKGLEWISYISSGSSTIYHADSVKG
    RFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR
    EGYYDSSGYYYNGMDVWGQGTTVTVSS
    61E1 VH94 409 QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSA
    AWNWIRQSPSRGLEWLGRTYYRSKWYNDYAV
    SVKSRITITPDTSKNQFSLQLKSVTPEDTAIYYCA
    REGSWSSFFDYWGQGTLVTVSS
  • TABLE 2C
    Coding Sequence for Antibody Variable Light (VL) Chains
    Contained SEQ ID
    in Clone Designation NO. Coding Sequence
    63E6 VL6 410 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGACAAGTCAGAGTATTAGCAGCTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    ACCTCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGATTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCGGTCTG
    CAACCTGAAGATTTTTCAACTTACTACTGTCAAC
    AGAGTTACAGTACCTCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCAAACGA
    66D4 VL18 411 GACATCCAGATGACCCAGTCGCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGGATCACCATCACTT
    GCCGGGCAAGTCAGATCATTAGCAGGTATTTAA
    ATTGGTATCAGCAGAACCCAGGGAAAGCCCCTA
    AGCTCCTGATCTCTGCTGCATCCAGTTTGCAAAG
    TGGAGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGCCAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTACAACTTACTACTGTCAAC
    AGAGTTACAGTTCCCCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGGTCAAACGA
    66B4 VL11 412 GACATCCAGATGACCCAGTCTCCATCTTCCGTGT
    CTTCATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCAGGGTATTAGCAGGTGGTTAG
    CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTATGCTGCATCCAGTTTGAAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA
    CAGGCTAACAGTTTCCCTCCGACGTTCGGCCAA
    GGGACCAAGGTGGAAATCAAACGA
    65B1 VL19 413 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAACATTAACAACTATTTAA
    ATTGGTATCGGCAGAAACCAGGGAAAGCCCCTG
    AACTCCTGATCTATACTACATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    GAAACTGAAGATTTTGAAACTTACTACTGTCAA
    CAGAGTTACAGTACCCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    65B4 VL21 414 TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG
    TGGCCCCAGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTAAAAGTGTGCAGT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC
    TGGTCGTCTACGATGATAGCGACCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACGGCCTCCCTGACCATCAGCAGGGTCGA
    AGCCGGGGATGAGGCCGACTATTACTGTCAGGT
    GTGGGATAGTAGTAGTGATCATGTGGTATTCGG
    CGGAGGGACCAAGCTGACCGTCCTAGGT
    67A4 V L20 415 TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG
    TGGCCCCAGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTAAAAGTGTGCACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC
    TGGTCGTCTATGATGATAGCGACCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACGGCCACCCTGACCATCAGCAGGGTCGA
    AGCCGGGGATGAGGCCGACTATTACTGTCAGGT
    GTGGGATAGTAGTAGTGATCATGTGGTATTCGG
    CGGAGGGACCAAGCTGACCGTCCTAGGT
    63A10v1 VL22 416 TCCTATGAGCTGACTCAGCCACACTCAGTGTCA
    GTGGCCACAGCACAGATGGCCAGGATC
    ACCTGTGGGGGAAACAACATTGGAAGTAAAGCT
    GTGCACTGGTACCAGCAAAAGCCAGGC
    CAGGACCCTGTGCTGGTCATCTATTGCGATAGC
    AACCGGCCCTCAGGGATCCCTGAGCGA
    TTCTCTGGCTCCAACCCAGGGAACACCGCCACC
    CTAACCATCAGCAGGATCGAGGCTGGG
    GATGAGGCTGACTATTACTGTCAGGTGTGGGAC
    AGTAGTAGTGATGGGGTATTCGGCGGA
    GGGACCAAGCTGACCGTCCTAGGT
    63A10v2 VL101 1857 TCCTATGAGCTGACTCAGCCACACTCAGTGTCA
    GTGGCCACAGCACAGATGGCCAGGATC
    ACCTGTGGGGGAAACAACATTGGAAGTAAAGCT
    GTGCACTGGTACCAGCAAAAGCCAGGC
    CAGGACCCTGTGCTGGTCATCTATTGCGATAGC
    AACCGGCCCTCAGGGATCCCTGAGCGA
    TTCTCTGGCTCCAACCCAGGGAACACCGCCACC
    CTAACCATCAGCAGGATCGAGGCTGGG
    GATGAGGCTGACTATTACTGTCAGGCGTGGGAC
    AGCACCACTGTGGTATTCGGCGGAGGG
    ACCAAGTTGACCGTCCTAGGT
    63A10v3 VL102 1858 ACCTGCTCTGGAGATAAATTGGGGAATAGATAT
    ACTTGCTGGTATCAGCAGAAGTCAGGC
    CAGTCCCCTGTGCTGGTCATCTATCAAGATAGCG
    AGCGGCCCTCAGGGATCCCTGAGCGA
    TTCTCTGGCTCCAACTCTGGGAACACAGCCACTC
    TGACCATCAGCGGGACCCAGGCTATG
    GATGAGGCTGACTATTACTGTCAGGCGTGGGAC
    AGCACCACTGTGGTATTCGGCGGAGGG
    ACCAAGTTGACCGTCCTAGGT
    65H11v1 V L23 417 TCCTATGAGCTGACTCAGCCACACTCAGTGTCA
    GTGGCCACAGCACAGATGGCCAGGATCACCTGT
    GGGGGAAACAACATTGGAAGTAAAACTGTGCAC
    TGGTTCCAGCAAAAGCCAGGCCAGGACCCTGTG
    CTGGTCATCTATAGCGATAGCAACCGGCCCTCA
    GGGATCCCTGAGCGATTCTCTGGCTCCAACCCA
    GGGAACACCGCCACCCTAACCATCAGCAGGATC
    GAGGCTGGGGATGAGGCTGACTATTACTGTCAG
    GTGTGGGACAGTAGTTGTGATGGGGTATTCGGC
    GGAGGGACCAAGCTGACCGTCCTAGGT
    65H11v2 VL103 1859 TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAACATC
    ACCTGCTCTGGAGATAAATTGGGGGATAGATAT
    GTTTGTTGGTATCAGCAGAAGCCAGGC
    CAGTCCCCTGTGCTGGTCATCTATCAAGATAGCA
    AGCGGCCCTCAGGGATCCCTGAACAA
    TTCTCTGGCTCCAACTCTGGGAACACAGCCACTC
    TGACCATCAGCGGGACCCAGGCTATA
    GATGAGGCTGACTATTACTGTCAGGCGTGGGAC
    AGCATCACTGTGGTATTCGGCGGAGGG
    ACCAAGCTGACCGTCCTAGGT
    67G10v1 V L9 418 TCCTATGAGCTGACTCAGCCACACTCAGTGTCA
    GTGGCCACAGCACAGATGGCCAGGATCACCTGT
    GGGGGAAACAACATTGGAAGTAAAGCTGTGCAC
    TGGTACCAGCAAAAGCCAGGCCAGGACCCTGTG
    CTGGTCATCTATAGCGATAGCAACCGGCCCTCA
    GGGATCCCTGAGCGATTCTCTGGCTCCAACCCA
    GGGAACACCGCCACCCTAACCATCAGCAGGATC
    GAGGCTGGGGATGAGGCTGACTATTACTGTCAG
    GTGTGGGACAGTAGTAGTGATGGGGTATTCGGC
    GGAGGGACCAAGCTGACCGTCCTAGGT
    67G10v2 V L10 419 TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAGATAAATTGGGGGATAAATATGCTTGCT
    GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC
    TGGTCATCTATCAAGATAACGAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTATGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCACCACTGTGGTATTCGGCGGAGG
    GACCAAGCTGACCGTCCTAGGT
    64C8 V L24 420 GATGTTGTGATGACTCAGTCTCCGCTCTCCCTGC
    CCGTCACCCTTGGACAGCCGGCCTCCATCTCCCG
    CAGGTCTAGTCCAAGCCTCGTATACAGTGATGG
    AAACACCTACTTGAATTGCTTTCAGCAGAGGCC
    AGGCCACTCTCCAAGGCGCCTAATTTATAAGGG
    TTCTAACTGGGACTCAGGGGTCCCAGACAGATT
    CAGCGGCAGTGGGTCAGGCACTGATTTCACTCT
    GAAAATCAGCAGGGTGGAGGCTGAGGATGTTGG
    TATTTATTACTGCATACAAGATACACACTGGCCC
    ACGTGCAGTTTTGGCCAGGGGACCAAGCTGGAG
    ATCAAACGA
    64A8 V L1 421 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    67B4 CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGACATTAGAAATGATTTAG
    GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCGCCTGATCTATGCTGCATCCAATTTGCAAA
    GGGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT
    CTGGGACAGAATTCACTCTCACAATCAGCACCC
    TGCAGCCTGAAGATTTTGCAACTTATTCCTGTCT
    CCAGCATAATAGTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    63G8v1 VL104 1860 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACC
    ATCACTTGCCGGGCAAGTCAGGACATTAGAAAT
    GATTTAGGCTGGTATCAACAGAAACCA
    GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA
    TCCAATTTGCAAAGGGGGGTCCCATCA
    AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC
    ACTCTCACAATCAGCACCCTGCAGCCT
    GACGATTTTGCAACTTATTCCTGTCTCCAGCATA
    ATAGTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    63G8v2 VL105 1861 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACC
    ATCACTTGCCGGGCAAGTCAGGGCATTAGAAGT
    GGTTTAGGCTGGTATCAGCAGAAACCA
    GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA
    TCCAATTTGCAAAGGGGGGTCCCATCA
    AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC
    ACTCTCACAGTCAGCAGTCTGCAGCCT
    GAAGATTTTGCAACTTATTCCTGTCTCCAGCATA
    ATAGTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    63G8v3 VL106 1862 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACC
    ATCACTTGCCGGGCAAGTCAGGGCATTAGAAGT
    GGTTTAGGCTGGTATCAACAGAAACCA
    GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA
    TCCAATTTGCAAAGGGGGGTCCCATCA
    AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC
    ACTCTCACAGTCAGCAGTCTGCAGCCT
    GAAGATTTTGCAACTTATTCCTGTCTCCAACATA
    ATACTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGGGGAGATCAGACGA
    66G2 V L12 422 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG
    GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCGCCTGATCTATGCTGCATCCAATTTGCAAA
    GTGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT
    CTGGGACAAAATTCACTCTCACAATCAACAGCC
    TGCAGCCTGAAGATTTTGCAACTTATTACTGTCT
    ACAACTTAATGGTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    68D3v1 V L2 423 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    68D3v2 CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGACATTAGAAATGATTTAG
    GCTGGTATCAACAGAAACCAGGGAAAGCCCCTA
    AGCGCCTGATCTATGCTGCATCCAATTTGCAAA
    GGGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT
    CTGGGACAGAATTCACTCTCACAATCAGCACCC
    TGCAGCCTGACGATTTTGCAACTTATTCCTGTCT
    CCAGCATAATAGTTACCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    65D1 V L27 424 TCCTATGACCTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAGATAAATTGGGGGATAAATATGTTTGCT
    GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC
    TGGTCATCTATCAAGATAGTAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGATCCA
    GGCTATGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCAGGGTATTCGGCGGAGGGACCA
    AGCTGACCGTCCTAGGT
    65G4 V L8 425 TCCTATGAGATGACTCAGCCACTCTCAGTGTCAG
    64H5 TGGCCCTGGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTAAAAATGTACACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGT
    TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GGAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATTACTGTCAGG
    TGTGGGACAGCAGTAGTGTGGTATTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    65D4 V L26 426 TCCTATGAGCTGACTCAGCCACTCTCAGTGTCTG
    TGGCCCTGGGCCAGACGGCCAGGATTCCCTGTG
    GGGGAAATGACATTGGAAGTAAAAATGTGCACT
    GGTACCAGCAGAAACCAGGCCAGGCCCCTGTGC
    TGGTCATCTATAGGGATCGCAACCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GGAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATTACTGTCAGG
    TGTGGGACAGCAACCCTGTGGTATTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    65E3 V L25 427 TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG
    TGGCCCTGGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTAAAAATGTGCACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC
    TGGTCATCTATAGGGATAGAAACCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GGAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATTACTGTCAGG
    TGTGGGACAGCAGCACTGTGGTCTTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    68G5 V L13 428 TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG
    TGGCCCTGGGACAGACGGCCAGGCTTACCTGTG
    GGGGTAACAACATTGGAAGTATAAATGTGCACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGT
    TGGTCATCTATAGGGATAGGAACCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GTAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATTACTGTCAGT
    TGTGGGACAGCAGCACTGTGGTTTTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    67G8 VL28 429 TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG
    TGGCCCTGGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTTACAATGTGTTCT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC
    TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GGAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATCACTGTCAGG
    TGTGGGACAGCAGCACTGTGGTATTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    65B7v1 VL29 430 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACC
    CTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGC
    ATCTACTTAGCCTGGTACCAGCAGAAA
    CCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTG
    CATCCAGCAGGGCCACTGGCATCCCA
    GACAGGTTCAGTGGCAGTGGGTCTGGGACAGAC
    TTCACTCTCACCATCAGCAGACTGGAG
    CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGT
    ATGGTAGCTCGTGCAGTTTTGGCCAG
    GGGACCAAGCTGGAGATCAAACGA
    65B7v2 VL107 1863 GATGTTGTGATGACTCAGTCTCCACTCTCCCTGC
    CCGTCACCCTTGGACAGCCGGCCTCC
    ATCTCCTACAGGTCTAGTCAAAGCCTCGTATACA
    GTGATGGAGACACCTACTTGAATTGG
    TTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGC
    CTAATTTATAAGGTTTCTAACTGGGAC
    TCTGGGGTCCCAGACAGATTCAGCGGCAGTGGG
    TCAGGCACTGATTTCACACTGAAAATC
    AGCAGGGTGGAGGCTGAGGATGTTGGGGTTTAT
    TACTGCATGCAAGGTACACACTGGCGG
    GGTTGGACGTTCGGCCAAGGGACCAAGGTGGAA
    ATCAAACGA
    63B6 V L4 431 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    64D4 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGTAACAGCTACT
    TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATTCAGTAGGGC
    CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG
    GTCTGGGACAGACTTCACTCTCACCATCAGCAG
    ACTGGAGCCTGAAGATTTTGCAGTATATTACTGT
    CAGCAGTTTGGTAGGTCATTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAGACGA
    63F5 V L14 432 GAAGTTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGACTGTTAGGAACAACTACT
    TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTTTGGTGCGTCCAGCAGGGC
    CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG
    GTCTGGGACAGACTTCACTCTCACCATCAGCAG
    ACTGGAGCCTGAAGATTTTGCAGTGTATTACTGT
    CAGCAGTTTGGTAGTTCACTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCAAACGA
    65E8 V L3 433 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    63H11 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    64E6 GCAGGGCCAGTCAGAGTGTTAGGAACAGCTACT
    65F11 TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC
    67G7 CCAGGCTCCTCATCTATGGTGCATTTAGCAGGGC
    CTCTGGCATCCCAGACAGGTTCAGTGGCAGTGG
    GTCTGGGACAGACTTCACTCTCACCATCAGCAG
    ACTGGAGCCTGAAGATTTTGCAGTGTATTACTGT
    CAGCAGTTTGGAAGCTCACTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    65C1 VL16 434 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGACTATTAGGAACAGCTACT
    TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCGGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTTTGGTAGCTCACTCACTTTCGGCGG
    AGGGACCAAGGTGGAGATCAAACGA
    66F6 VL15 435 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGGAACAGCTACT
    TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTTTGGTAGCTCACTCACTTTCGGCGG
    AGGGACCAAGGTGGAGATCAAACGA
    64A6 VL30 436 GAAATACTGATGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAACAGCAACTTAG
    CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA
    GGCTCCTCATCTATGGTACATCCACCAGGGCCA
    CTGGTGTCCCAGCCAGGTTCGGTGGCAGTGGGT
    CTGGGACAGAATTCACTCTCACCATCAGCAGCC
    TGCAGTCTGAAGATTTTGCATTTTATTACTGTCA
    GCAATATAATACCTGGCCGTGGACGTTCGGCCA
    AGGGACCAAGGTGGAAATCAAACGA
    65F9 VL31 437 GAAATACTGATGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAG
    CCTGGTACCAGCAGAAACCTGGCCAGTCTCCCA
    GGCTCCTCATCTATGGTGCATCCACCAGGGCCA
    CTGGTATCCCAGCCAGGTTCGGTGGCAGTGGGT
    CTGGGACAGACTTCACTCTCACCATCAGCAGCC
    TGCAGTCTGAAGATTTTGCATTTTATTACTGTCA
    GCAGTATAATACCTGGCCGTGGACGTTCGGCCA
    AGGGACCAAGGTGGAAATCAAACGA
    64A7 V L17 438 GAAATTGTATTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGTCGCAACTACT
    TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG
    CCACTGGCGTCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTAGTTCATCTCTGTGCAGTTT
    TGGCCAGGGGACCAACCTGGACATCAGACGA
    65C3 V L5 439 GAAATGGTGATGACGCAGTCCCCAGCCACCCTG
    68D5 TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGCCAGTTAG
    CCTGGTACCAGGAGAAACCTGGCCGGGCTCCCA
    GGCTCCTCATCTATGGTGCCTCCAACAGGGCCAT
    TGATATCCCAGCCAGGTTAAGTGGCAGTGGGTC
    TGGGACAGAGTTCACTCTCACCATCAGCAGCCT
    GCAGTCTGAAGATTTTGCTGTTTATTACTGTCAG
    CAGTATAATAACTGGCCGTGGACGTTCGGCCAA
    GGGACCAAGGTGGAATTCAAACGA
    67F5 VL32 440 GAAATAGTGATGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGAAAGAGTCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAG
    CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA
    GGCTCCTCATACATGGTTCATCCAACAGGGCCA
    TTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGT
    CTGGGACAGAGTTCACTCTCACCATCAGCAGCC
    TGCAGTCTGCAGATTTTGCTGTTTATAACTGTCA
    GCAGTATGAAATTTGGCCGTGGACGTTCGGCCA
    AGGGACCAAGGTGGAAATCAAACGA
    64B10v1 VL33 441 CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG
    64B10v2 CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT
    CTGGAAGCAGCTCCAATATTGGGAATAATTATG
    TAGCCTGGTACCAGCAGCTCCCAGGAACAGCCC
    CCAAACTCCTCATTTATGACAATGATAAGCGAC
    CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA
    GTCTGGCACGTCAGCCACCCTGGGCATCACCGG
    ACTCCAGACTGGGGACGAGGCCGATTATTACTG
    CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT
    ATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT
    68C8 VL34 442 CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG
    CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT
    CTGGAAGCAGTTCCAACATTGGAAATAATTATG
    TATCCTGGTACCAGCAGCTCCCAGGAACAGCCC
    CCAAACTCCTCATTTATGACAATAATAAGCGAC
    CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA
    GTCTGGCACGTCAGCCACCCTGGGCATCACCGG
    ACTCCAGACTGGGGACGAGGCCGATTATTACTG
    CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT
    ATTCGGCGGAGGGACCAAACTGACCGTCCTAGGT
    67A5 VL35 443 GATATTGTGATGACCCAGACTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGA
    TGGAAATACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAACTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCACTGGGTCAGGCACTGAATTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTCTAGAGTTT
    CCTATTACCTTCGGCCAAGGGACACGACTGGAG
    ATTAAACGA
    67C10 VL36 444 GATTTTGTGATGACCCAGACTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGA
    TGGAAACACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTATAGAGTTT
    CCTATCACCTTCGGCCAAGGGACACGACTGGAG
    ATTAAACGA
    64H6 VL37 445 TCCTACGAGCTGACTCAGCCACTCTCAGTGTCAG
    TGGCCCTGGGACAGACGGCCAGGATTACCTGTG
    GGGGAAACAACATTGGAAGTAAAAATGTGCACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGG
    TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG
    GGAACACGGCCACCCTGACCATCAGCAGAGCCC
    AAGCCGGGGATGAGGCTGACTATTACTGTCAGG
    TGTGGGACAGCAGTCCTGTGGTATTCGGCGGAG
    GGACCAAGCTGACCGTCCTAGGT
    63F9 V L38 446 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGTATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGACATTAGAAATGATTTAG
    CCTGGTATCAGCAGACACCAGGGAAAGCCCCTA
    AGCGCCTGATCTATGCTTCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCACTGGATC
    TGGGACAGAATTCACTCTCACAATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTTCTGTCTA
    CAGCGTAATAGTTACCCGCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    67F6v1 VL39 447 GATATTGTAATGACCCAGACCCCACTCTCCCTGC
    CCGTCATCCCTGGAGAGCCGGCCTCCATCTTCTG
    CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGC
    TGGTACCACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAACTCCTGATCTATAC
    GCTTTCCTTTCGGGCCTCTGGAGTCCCAGACAGG
    TTCAGTGGCAGTGGGTCAGGCACTGATTTCACA
    CTGAAAATCACTAGGGTGGAGGCTGAGGATGTT
    GGAGTTTATTATTGCATGCAACGTATAGAGTTCC
    CTATCACCTTCGGCCAAGGGACACGACTGGAGA
    TTAAACGA
    67F6v2 VL108 1864 GATATTGTAATGACCCAGACCCCACTCTCCCTGC
    CCGTCATCCCTGGAGAGCCGGCCTCCATCTTCTG
    CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGC
    TGGTACCACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCGGTCTCCACAACTCCTGATCTATAC
    GCTTTCCTTTCGGGCCTCTGGAGTCCCAGACAGG
    TTCAGTGGCAGTGGGTCAGGCACTGATTTCACA
    CTGAAAATCACTAGGGTGGAGGCTGAGGATGTT
    GGAGTTTATTATTGCATGCAACGTATAGAGTTCC
    CTATCACCTTCGGCCAAGGGACACGACTGGAGA
    TTAAACGA
    48C9 VL78 448 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    49A12 CTGCATCTATAGGAGACAGAGTCACCATCACTT
    51E2 GCCGGGCAAGTCAGAACATTAGGACCTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATTTATGTTGCATCCAGTTTGGAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCACTGGATC
    TGGGACAGATTTCGCTCTCACCATCAGCAGTCTC
    CAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGAGTGACAGTATCCCTCGGACGTTCGGCCAAG
    GGACCAAGGTGGAAATCAAACGA
    48F3 VL77 449 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGGATTAGCAGTTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGTTCTTGATATATGCTGTATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    GAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGAGTTACAGTGCTACATTCACTTTCGGCCCTGG
    GACCAAAGTGGATATCAAACGA
    48F8 VL49 450 GAAATTGTGCTGACTCAGTCTCCAGACTTTCAGT
    53B9 CTGTGACTCCAAAGGAGAAAGTCACCATCACCT
    56B4 GCCGGGCCAGTCAGGACATTGGTAATAGCTTAC
    57E7 ACTGGTACCAGCAGAAACCAGATCAGTCTCCAA
    57F11 AGCTCCTCATCAAGTTTGCTTCCCAGTCCTTCTC
    AGGGGTCCCCTCGAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCGCCCTCACCATCAATAGCCT
    GGAAGCTGAAGATGCTGCAACGTATTACTGTCA
    TCAGAGTAGTGATTTACCGCTCACTTTCGGCGGA
    GGGACCAAGGTGGACATCAAACGA
    48H11 V L40 451 GACATCCAGATGACCCAGTCTCCATCCTCTCTGT
    CTACATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAACATTAGGAGCTATTTAA
    ATTGGTATCAACTGAAACCAGGGAAAGCCCCTA
    AGGTCCTGATCTATGGTGCATCTAATTTACAGAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAATCTG
    CAATCTGAAGATTTTGCAATTTACTACTGTCAAC
    AGAGTTACAATACCCCGTGCAGTTTTGGCCAGG
    GGACCAAGCTGGAGATCAAACGA
    49A10 V L65 452 GATATTGTGATGACCCAGACTCCACTCTCCCTGC
    48D4 CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA
    TGGAAACACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTATAGAGTTT
    CCGATCACCTTCGGCCAAGGGACACGACTGGAG
    ATTAAACGA
    49C8 VL45 453 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    52H1 CTGCATCTGTAGGAGACAGAGTCACCTTCACTT
    GCCAGGCGAGTCAGGACATTAACATCTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTACGATGTATCCAATTTGGAAAC
    AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC
    TGGGACAGATTTTACTTTCACCATCAGCAGCCTG
    CAGCCTGAAGATATTGCAACATATTTCTGTCAAC
    AATATGATAATCTCCCATTCACTTTCGGCCCTGG
    GACCAAAGTGGATCTCAAACGA
    49G2 V L66 454 GATATTGTGTTGACCCAGACTCCACTCTCCCTGC
    50C12 CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    55G11 CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA
    TGGAGACACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACATATAGAATTT
    CCTTCGACCTTCGGCCAAGGGACACGACTGGAG
    ATTAAACGA
    49G3 VL47 455 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTATAGGAGACAGAGTCACCATCACTT
    GCCAGGCGAGTCAGGGCATTAGCAACTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTACGATGCATCCAATTTGGAAA
    CAGGGGTCCCATCAAGGTTCAGTGGAAGTGGAT
    CTGGGACAGATTTTACTTTCACCATCAGCAGCCT
    GCAGCCTGAAGATATTGCTACATATTACTGTCAC
    CAGTATGATGATCTCCCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCAGACGA
    49H12 V L43 456 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCAGGCGAGTCAAGACATTACCAAATATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTACGATACATTCATTTTGGAAAC
    AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC
    TGGGACAGATTTTACTTTCACCATCAGCAGCCTG
    CAGCCTGAAGATATTGCAACATATTACTGTCAA
    CAGTATGACAATTTACCGCTCACCTTCGGCCAA
    GGGACACGACTGGAGATTAAACGA
    51A8 VL61 457 AATTTTATACTGACTCAGCCCCACTCTGTGTCGG
    AGTCTCCGGGGAAGACGGTAACCATCTCCTGCA
    CCCGCAGCAGTGGCAGCATTGCCAGCGACTATG
    TGCAGTGGTACCAGCAGCGCCCGGGCAGTTCCC
    CCACCACTGTGATCTATGAGGATAAAGAAAGAT
    CCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCAT
    CGACAGTTCCTCCAACTCTGCCTCCCTCACCATC
    TCTGGACTGAAGACTGAGGACGAGGCTGACTAC
    TACTGTCAGTCTTATGATCGCAACAATCATGTGG
    TTTTCGGCGGAGGGACCAAGCTGACCGTCCTAG
    GT
    51C10.1 VL55 458 TCCTATGAGTTGACACAGCCGCCCTCGGTGTCTG
    TGTCCCCAGGCCAAACGGCCAGGATCACCTGCT
    CTGGAGATGCATTGCCAAAAAAATATGCTTATT
    GGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGC
    TGGTCATCTATGAGGACAGCAAACGACCCTCCG
    GGATCCCTGAGAGATTCTCTGGCTCCATCTCAGG
    GACAATGGCCACCTTGACTATCAGTGGGGCCCA
    GGTGGAGGATGAAGCTGACTACTACTGTTACTC
    AACAGACAGCAGTGTTAATCATGTGGTATTCGG
    CGGAGGGACCAAGCTGACCGTCCTAGGT
    51C10.2 V L70 459 TCCTATGACCTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAGACGAATTGGGGGATAAATATGCTTGCT
    GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC
    TGGTCATCTATCAAGATACCAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTATGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCGGCACTGTGGTATTCGGCGGAGG
    GACCAAACTGACCGTCCTAGGT
    51E5 VL79 460 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGACATTAGAAATGATTTAG
    GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    ACCGCCTGATCTATGCTGCATCCAGTTTGCAATT
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGAATTCACTCTCACAATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTACTGTCTA
    CAACATAGTAGTTACCCGCTCACTTTCGGCGGA
    GGGACCAGGGTGGAGATCAAACGA
    51G2 VL51 461 GACATCCAGATGACCCAGTCTCCATCTTCCGTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAG
    CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTATGATGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA
    CAGACTAACAGTTTCCCTCCGTGGACGTTCGGCC
    AAGGGACCAAGGTGGAAATCAAACGA
    52A8 VL41 462 GACATCCAGATGACCCAGTCTCCATCCTTCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGACTATTAGCAGTTATTTAA
    ATTGGCATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCAGTCTCACCATCAGCAGTCT
    GCAACCTGAAGATTTTGCAACTTACTACTGTCAG
    CAGAGTTACAGTACCCCGCTCACTTTCGGCGGC
    GGGACCAAGGTGGAGATCAAACGA
    52B8 VL82 463 GAAGTTGTGCTGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGGAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCGACATCTTAG
    CCTGGTACCAACAGAAACCTGGCCAGGCTCCCA
    GGCTCCTCATCTATGGTGCATCCACCAGGGCCA
    CTGGTATCCCAGCCAGGTTCAGTGGCGGTGGGT
    CTGGGACAGAGTTCACTCTCACCATCAGTAGCC
    TGCAGTCTGAAGATTTTGCAGTTTATTTCTGTCA
    GCAGTATAATAACTGGCCGCTCACTTTCGGCGG
    AGGGACCAAGGTGGAGATCAAACGA
    52C1 VL67 464 CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG
    CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT
    CTGGAAGCAGCTCCAACATTGGGATTAATTATG
    TATCCTGGTACCAGCAGCTCCCAGGAACAGCCC
    CCAAACTCCTCATTTATGACAATAATAAGCGAC
    CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA
    GTCTGGCACGTCAGCCACCCTGGGCATCACCGG
    ACTCCAGACTGGGGACGAGGCCGATTATTGCTG
    CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT
    ATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT
    52F8 VL42 465 GATATTGTGATGACTCAGTCTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCCTGCATAGTAATGG
    ATACAACTATTTGGATTGGTACCTGCAGAAGCC
    AGGGCAGTCTCCACAGCTCCTGATCTATTTGGGT
    TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC
    AGTGGCAGGGGGTCAGGCACAGATTTTTCACTG
    AAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG
    ATTTATTACTGCATGCAAGCTCTACAAACTCCAT
    TCACTTTCGGCCCTGGGACCAATGTGGATATCA
    AACAA
    52H2 VL84 466 GAAAATGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCTT
    GTAGGGCCAGTCAGAGTGTTAGAAGCAGCTACT
    TAGCCTGGTACCAGCAGAGACCTGGCCAGGCTC
    CCAGGCTCCTCATCTTTGGTGCATCCAGGAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTAGTTCACCTCGCAGTTTTGG
    CCAGGGGACCAAGCTGGAGATCAAACGA
    53F6 VL63 467 GATATTGTGATGACTCAGTCTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCCAGCATAGTAATGG
    ATACAACTATTTGGATTGGTACCTGCAGAAGCC
    AGGACAGTCTCCACAGTTATTGATCTATTTGGAT
    TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC
    AGTGGCAGTGGATCAGGCACAGATTTTACACTG
    AAAATCAGCAGAGTGGAGGCTGAGGATATTGGG
    GTTTATTACTGCATGCAAGGTCTACAAACTCCTC
    CCACTTTCGGCGGAGGGACCAAGGTGGAGATCA
    AACGA
    53H5.2 VL62 468 GACATCCAGATGACCCAGTCTCCATCTTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG
    GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCGCCTGATCTATGCTGCATCCAGTTTGCAAA
    GTGGGGTCCCATCAAGGTTCAGCGGCAGCGGAT
    CTGGGACAGAATTCACTCTCACAATCAGCAGCC
    TGCAGCCTGAAGATTTTGCAACTTATTACTGTCT
    ACAGCATAAGAGTTACCCATTCACTTTCGGCCCT
    GGGACCAAAATGGATATCAAAGGA
    53H5.3 V L80 469 GAAATAGTGATGACGCAGTCTCCAGTCACCTTG
    TCTGTGTCTCCAGGGGAAAGAGCCATCATCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGCAACGTCG
    CCTGGTACCAGCAGAAACCTGGCCAGACTCCCA
    GGCTCCTCATCTATGGTGCATCCACCAGGGCCA
    CTGGTCTCCCAACCAGGTTTAGTGGCAGTGGGT
    CTGGGACAGTGTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAGTTTATTACTGTCAG
    CAGTTTAGTAACTCAATCACCTTCGGCCAAGGG
    ACACGACTGGAGATTAAACGA
    54A1 VL44 470 GACATCCAGATGGCCCAGTCTCCATCCTCCCTGT
    55G9 CTGCATCTGTTGGAGACAGAGTCACCATCACTT
    GCCAGGCGAGTCAGGACATTAGCATCTATTTAA
    ATTGGTATCAGCTGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTACGATGTATCCAATTTGGAAAC
    AGGGGTCCCATCAAGGTTCAGTGGAGGTGGATC
    TGGGACAGATTTTACTTTCACCATCAGCAGCCTG
    CAGCCTGAAGATATTGCAACATATTACTGTCAA
    CAGTATGATAATCTCCCTCTCACTTTCGGCCCTG
    GGACCAAAGTGGATATCAAACGA
    54H10.1 V L53 471 GAAATTGTGGTGACGCAGTCTCCAGGCACCCTG
    55D1 TCTTTGTCTGTAGGGGAAAGAGCCATCCTCTCCT
    48H3 GCAGGGCCAGTCAGAGTTTTAGCAGCAGTTACT
    53C11 TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG
    CCACTGGCATCCCAGACAGGTTCAGCGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGTA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTAGCTCACGGACGTTCGGCC
    AAGGGACCAAGGTGGAAATCAAACGA
    55D3 V L71 472 GACATCCAGATGACCCAGTCTCCATCCTCACTGT
    CTGTATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCAGGACATTAGCAATTATTTAG
    CCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTA
    AGTCCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAAGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTACTGCCAA
    CAGTATAATATTTACCCTCGGACGTTCGGCCAA
    GGGACCAAGGTGGAAATCAAGCGA
    55E4 VL75 473 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    49B11 CTACATCTATAGGAGACAGAATCACCATCACTT
    50H10 GCCGGGCAAGTCAGAGCATTAGTAACTATTTAA
    53C1 ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA
    GGCTCCTGATCTATACAGCTTCCAGTTTGCAAAG
    TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG
    GGACCAAGGTGGAAATCAAACGA
    55E9 VL68 474 GATATTGTGATGACTCAGTCTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCCTGCATAGTAACGG
    ATTCAACTATTTGGATTGGTACCTGCAGAAGCC
    AGGGCAGTCTCCACAGGTCCTGATCTATTTGGGT
    TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC
    AGTGGCAGTGGATCAGGCACAGATTTTACACTG
    AAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG
    ATTTATTACTGCATGCAAGCTCTACAAACTCTCA
    TCACCTTCGGCCAAGGGACACGACTGGAGATTA
    AACGA
    55G5 VL83 475 TCCTATGAACTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAGATAATTTGGGGGATAAATATGCTTTCT
    GGTATCAACAGAAGCCAGGCCAGTCCCCTGTAT
    TGGTCATCTATCAAGATAACAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTGTGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCGCCACTGTGATTTTCGGCGGAGG
    GACCAAGTTGACCGTCCTAGGT
    56A7 V L52 476 GACATCCAAATGACCCAGTCTCCATCTTCCGTGT
    56E4 CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCAGGATATTAGCAGTTGGTTAG
    CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AATTCCTGATCTATGATGCATCCACTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGGCAGATTTCACTCTCACCATCAACAACCT
    GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA
    CAGACTAACAGTTTTCCTCCGTGGACGTTCGGCC
    AAGGGACCAAGGTGGAAATCAAACGA
    56C11 VL64 477 TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG
    TGGCCCCAGGACAGGCGGCCAGGATTACCTGTG
    GGGGAAACGACATTGGAAGTAAAAGTGTGCACT
    GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC
    TGGTCGTCTATGATGATAGCGACCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAAGTCTGG
    GAACACGGCCACCCTGATTATCAGCAGGGTCGA
    AGCCGGGGAAGAGGCCGACTATTATTGTCAGGT
    GTGGGATAGTAGTAGTGATGTGGTATTCGGCGG
    AGGGACCAAGTTGACCGTCCTAGGT
    56E7 VL86 478 GACCTCCAGATGACCCAGTCTCCTTCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCAGGCGAGTCAGGACATTAAAAAATTTTTAA
    ATTGGTATCAGCAGAAACCAGGTAAAGCCCCTA
    ACCTCCTGATCTACGATGCATCCAATTTGGAAAC
    AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC
    TGGGACAGATTTTACTTTCACCATCAGCAGCCTG
    CAGCCTGAAGATATTGCAACATATTACTGTCAA
    CAATATGCTATTCTCCCATTCACTTTCGGCCCTG
    GGACCACAGTGGATATCAAACGA
    56G1 VL76 479 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA
    ATTGGTTTCTGCAGATACCAGGGAAAGCCCCTA
    AACTCCTGATCTATGCAGCTTCCAGTTTACAAAG
    TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAACAGTCTG
    CAACCTGAAGATTTTGGAACTTACTACTGCCAA
    CAGAGTTCCACTATCCCTTGGACGTTCGGCCAA
    GGGACCAAGGTGGAAATCAAACGA
    56G3.3 V L81 480 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    55B10 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGAGACTACT
    TAGCCTGGTATCGGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCGTCTATGGTGCATCCGCCAGGG
    CCACTGGCATCCCAGACAGATTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAATATGGTAGATCACTATTCACTTTCGG
    CCCTGGGACCAAAGTGGATATCAAACGA
    57B12 V L72 481 GACATCCAGATGACCCAGTCTCCATCCTCACTGT
    CTGTATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCATGACATTAGCAATTATTTAG
    CCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTA
    AGTCCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAAGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTACTGCCAA
    CAATATAATACTTACCCTCGGACGTTCGGCCAA
    GGGACCAAGGTGGAAATCAAGCGA
    57D9 VL87 482 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCCGAGTGTTAGCAGCAGCTACT
    TAGCCTGGTACCAGCAGAAACCTGCCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAGTAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCATCAGTATGGTACCTCACCGTGCAGTTTTGG
    CCAGGGGACCAAGCTGGAGATCAAACGA
    59A10 VL48 483 GACATCCAGATGACCCAGTCTCCATCTTCCGTGT
    49H4 CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAG
    CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AACTCCTGATCTATGGTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTATTGTCAA
    CAGACTAACAGTTTCCCTCCGTGGACGTTCGGCC
    AAGGGACCAAGGTGGAAATCAAACGA
    59C9 V L50 484 GACATCCAGATGACCCAGTCTCCATCTTCCGTGT
    58A5 CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    57A4 GTCGGGCGAGTCAGGATATTGACAGCTGGTTAG
    57F9 TCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    ACCTCCTGATCTATGCTGCATCCAATTTGCAAAG
    AGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCGCCAGCCTG
    CAGCCTGAAGATTTTGCAACTTACTATTGTCAGC
    AGACTAACAGTTTCCCTCCGTGGACGTTCGGCC
    AAGGGACCAAGGTGGAAATCAAACGA
    59G10.2 V L60 485 TCCTATGAGCTGTCTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGTCAGCATCACCTGCT
    CTGGAGATAATTTGGGGGATAAATATGCTTGCT
    GGTATCAGCAGAGGCCAGGCCAGTCCCCTGTCC
    TGGTCATCTATCAAGATACCAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAATTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTATGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCAGCACTACATGGGTGTTCGGCGG
    AGGGACCAAGCTGACCGTCCTAGGT
    59G10.3 VL54 486 CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG
    CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT
    CTGGAAGCAGCTCCAACATTGGGGATAATTATG
    TATCCTGGTACCAGCAGTTCCCAGGAACAGCCC
    CCAAACTCCTCATTTATGACAATAATAAGCGAC
    CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA
    GTCTGGCACGTCAGCCACCCTGGGCATCACCGG
    ACTCCAGACTGGGGACGAGGCCGATTATTACTG
    CGGAACATGGGACAGCAGCCTGAGTGTTATGGT
    TTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT
    60D7 VL69 487 GATATTGTGCTGACCCAGACTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA
    TGGAGACACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTATAGAGTTT
    CCGCTCACTTTCGGCGGAGGGACCAAGGTGGAG
    ATCAAACGA
    60F9 VL58 488 GAAATTATGTTGACGCAGTCTCCAGGCACCCTG
    48B4 TCTTTGTCTCCAGGGGAAAGGGCCACCCTCTCCT
    52D6 GCAGGGCCAGTCAGAGGGTTCCCAGCAGCTACA
    TAGTCTGGTACCAGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTTCATCCAACAGGGC
    CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG
    GTCTGGGACAGACTTCACTCTCACCATCGGCAG
    ACTGGAGCCTGAAGATTTTGCAGTGTACTACTGT
    CAGCAGTATGGTAGCTCACCTCCGTGGACGTTC
    GGCCAAGGGACCAAGGTGGCAATCAAACGA
    60G5.2 VL46 489 TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAAATAAATTGGGGGATAAATATGTTTGCT
    GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTCT
    TGGTCATCTATCAAGATAGCAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTTTGGATGAGGCTGACTATTACTGTCAGGC
    GTGGGACAGCAGCACTTGGGTGTTCGGCGGAGG
    GACCAAGCTGACCGTCCTAGGT
    61G5 VL59 490 GAAATTATGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGAGTTCCCAGCAGCTACT
    TAGTCTGGTACCAGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAACAGGG
    CCACAGGCATCCCAGACAGGTTCAGCGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCGGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTAGTTCACCTCCGTGGACGTT
    CGGCCAAGGGACCAAGGTGGCAATCAAACGA
    52C5 V L73 491 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTATAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA
    ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA
    GGCTCCTGATCTATGCAGCTTCCAGTTTGCAAAG
    TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTGCAATTTACTACTGTCAAC
    AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG
    GGACCAAGGTGGAAATCAAACGA
    61H5 VL88 492 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    52B9 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGCAGAGACTACT
    TAGCCTGGTACCGGCAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG
    CCACTGGCATCCCAGACAGATTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAATATGGTAGATCACTATTCACTTTCGG
    CCCTGGGACCACAGTGGATATCAAACGA
    59D10v1 V L56 493 TCCTATGAGCTGACACAGCCACCCTCGGTGTCTG
    TGTCCCCAGGCCAAACGGCCAGGATCACCTGCT
    CTGGAGATGCAGTGCCAAAAAAATATGCTAATT
    GGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGC
    TGGTCATCTATGAGGACAGCAAACGACCCTCCG
    GGATCCCTGAGAGATTCTCTGGCTCCAGCTCAG
    GGACAATGGCCACCTTGACTATCAGTGGGGCCC
    AGGTGGAGGATGAAGCTGACTACTACTGTTACT
    CAACAGACAGCAGTGGTAATCATGTGGTATTCG
    GCGGAGGGACCAAGCTGACCGTCCTAGGT
    59D10v2 VL57 494 TCCTATGAGTTGACTCAGCCACCCTCAGTGTCCG
    TGTCCCCAGGACAGACAGCCAGCATCACCTGCT
    CTGGAGATAAATTGGGGGATAAATACGTTTGCT
    GGTATCAGCAGATGCCAGGCCAGTCCCCTGTGT
    TGGTCATCCATCAAAATAACAAGCGGCCCTCAG
    GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG
    GAACACAGCCACTCTGACCATCAGCGGGACCCA
    GGCTATGGATGAGGCTGACTATTATTGTCAGGC
    GTGGGATAGTAGTACTGCGGTATTCGGCGGAGG
    GACCAAGCTGACCGTCCTAGGT
    56G3.2 V L85 495 GAAACAGTGATGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGGCAGAGTGTTGGCAGTAACTTAA
    TCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA
    GGCTCCTCATCTTTGGTGCATCCAGCAGGGACA
    CTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGT
    CTGGGACAGAGTTCACTCTCACCATCAGCAGCC
    TGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA
    GCAGTATAATAATTGGCCTCTCACTTTCGGCGGA
    GGGACCAAGGTGGAGATCAAACGA
    66F7 V L7 496 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGACAAGTCAGAGCATTAGCAACTATTTAA
    ATTGGTATCAGCAGAAACCAGGAAAAGCCCCTA
    ACCTCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGATTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCGGTCTG
    CAACCTGAGGATTTTTCAACTTACTACTGTCAAC
    AGAGTTACAGTACCTCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCAAACGA
    48G4 VL89 497 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    53C3.1 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTGCCAGCAGTTACT
    TAGTCTGGTACCAACAGAAACCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGGA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTACCTCACCATTTACTTTCGG
    CCCTGGGACCAAAGTGGATCTCAAACGA
    50G1 V L90 498 GACATTGTGATGACCCAGACTCCACTCTCCCTGC
    CCGTCAGCCCTGGAGAGCCGGCCTCCATCTCCT
    GCAGGTCTAGTCAGAGCCTCTTGGATAGTGATG
    ATGGAGACACCTATTTGGACTGGTACCTGCAGA
    AGCCAGGGCAGTCTCCACAGCTCCTGATCTATA
    CGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGTCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTATAGAGTTT
    CCGCTCACTTTCGGCGGAGGGACCAAGGTGGAG
    ATCAAACGA
    58C2 VL91 499 GAAATTGTGATGACCCAGACTCCACTCTCCCTGC
    CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAGAGCCTCTTCGATAATGATGA
    TGGAGACACCTATTTGGACTGGTACCTGCAGAA
    GCCAGGGCAGTCTCCACAACTCCTGATCTATAC
    GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG
    GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC
    ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT
    TGGAGTTTATTACTGCATGCAACGTTTAGAGTTT
    CCGATCACCTTCGGGCAAGGGACACGACTGGAG
    ATTAAACGA
    60G5.1 V L74 1865 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTATAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA
    ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA
    GGCTCCTGATCTATGCAGCTTCCAGTTTGCAAAG
    TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG
    GGACCAAGGTGGAAATCAAACGA
    50D4 VL92 500 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCGAGTCAGGACATTAGCAATTATTTAG
    CCTGGTATCAGCAGAAACCAGGGAAAGTTCCTA
    CGCTCCTGATCTATGCTGCATCCACTTTGCTATC
    AGGGGTCCCATCTCGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGCCT
    GCAGCCTGAAGATGTTGCAGCTTATTACTGTCA
    AAAGTATTACAGTGCCCCTTTCACTTTCGGCCCT
    GGGACCAAAGTGGATATCAACCGA
    50G5v1 VL93 501 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACTATCACTT
    GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG
    GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    ACCGCCTGATCTATGCTGCGTCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC
    TGGGACAGAATTCACTCTCACAATCAGCAGCCT
    GCAGCCTGAAGATTTTGCAACTTATTACTGTCTA
    CAGCATAATAGTTACCCTCGGACGTTCGGCCAA
    GGGACCAAGGTGGAAATCAAACGA
    50G5v2 VL94 502 GATGTTGTGATGACTCAGTGTCCACTCTCCCTGC
    CCGTCACCCTTGGACAGCCGGCCTCCATCTCCTG
    CAGGTCTAGTCAAAGACTCGTATACAGTGATGG
    AAACACCTACTTGAATTGGGTTCAGCAGAGGCC
    AGGCCAATCTCCAAGGCGCCTAATTTATAAGGT
    TTCTAACTGGGACTCTGGGGTCCCAGACAGATT
    CAGCGGCAGTGGGTCAGGCACTGATTTCACACT
    GAAAATCAGCAGGGTGGAGGCTGAGGATGTTGG
    GGTTAATTACTGCATGGAAGGTACACACTGGCC
    TCGGGACTTCGGCCAAGGGACACGACTGGAGAT
    TAAACGA
    51C1 VL95 503 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTATAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA
    ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA
    GACTCCTGATCTATGCAGCTTCCAGTTTGCAAAG
    TGGGGTCCCATCGAGGTTTAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG
    GGACCACGGTGGAAATCAAACGA
    53C3.2 VL96 504 GACATAGTGATGACGCAGTCTCCAGCCACCCTG
    TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTATTAGCAGCAATTTAG
    CCTGGTACCAGCAGACACCTGGCCAGGCTCCCA
    GGCTCCTCATCTATGGTACATCCATCAGGGCCA
    GTACTATCCCAGCCAGGTTCAGTGGCAGTGGGT
    CTGGGACAGAGTTCACTCTCACCATCAGCAGCC
    TGCAGTCTGAAGATTTTGCAATTTATTACTGTCA
    CCAGTATACTAACTGGCCTCGGACGTTCGGCCA
    AGGGACCAAGGTGGAAATCAAACGA
    54H10.3 VL97 505 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGACCATTAGCATCTATTTAA
    ATTGGTATCAGCAAAAACCAGGGAAAGCCCCTA
    AGTTCCTGATCTATTCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTTCAACTTACTTCTGTCAAC
    AGAGTTACAGTTCCCCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCAAACGA
    55A7 VL98 506 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTGTAGGAGACAGAGTCACCATCACTT
    GCCGGGCAAGTCAGAGCATTAGCAGCTATTTAA
    ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA
    AGCTCCTGATCTATGCTGCATCCAGTTTGCAAAG
    TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC
    TGGGACAGATTTCACTCTCACCATCAGCAGTCTG
    CAACCTGAAGATTTTGCAACTTACTACTGTCAAC
    AGACTTACAGTGCCCCATTCACTTTCGGCCCTGG
    GACCAAAGTGGATATCAAACGA
    55E6 VL99 507 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG
    TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT
    GCAGGGCCAGTCAGAGTGTTAGTCGCAGCCACT
    TAGCCTGGTACCAGCAGAACTCTGGCCAGGCTC
    CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG
    CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG
    GGTCTGGGACAGACTTCACTCTCACCATCAGCA
    GACTGGAGCCTGAAGATTTTGCAGTGTATTACT
    GTCAGCAGTATGGTAGTTCACCGTGGACGTTCG
    GCCAAGGGACCAAGGTGGAAATCAAACGA
    61E1 V L100 508 GACATCCAGATGACCCAGTCTCCATCCTCCCTGT
    CTGCATCTATTAGAGACCGAGTCACCATCACTTG
    CCGGGCAAGTCAGAGCATTGGCACCTTTTTAAA
    TTGGTATCAGCAGAAACCAGGGACAGCCCCTAA
    GCTCCTGATCTATGCTGCGTCCAGTTTGCAAAGT
    GGGGTCCCATCAAGGTTCAGTGGCAGTGGATCT
    GGGACAGATTTCACTCTCACCATCAGCAGTCTA
    CATCCTGAAGATTTTGCGTCTTACTATTGTCAAC
    AGAGTTTCAGTACCCCGCTCACTTTCGGCGGAG
    GGACCAAGGTGGAGATCACACGA
  • TABLE 2D
    Coding Sequence for Antibody Variable Heavy (VH) Chains
    Contained SEQ ID
    in Clone Designation NO. Coding Sequence
    63E6 V H 6 509 CAGGTGCAGCTTATGCAGTCTGGGGCTGAGGTG
    66F7 AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCGGCTACTATA
    TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATGAACCCTAATAGTG
    GTGCCACAAAGTATGCACAGAAGTTTCAGGGCA
    GGGTCACCATGACCAGGGACACGTCCATCAGCA
    CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTGCGAGAGAAC
    TCGGTGACTACCCCTTTTTTGACTACTGGGGCCA
    GGGAACCCTGGGCATCGTCTCCTCA
    66D4 V H17 510 CAGGTGCAACTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTC
    TCCTGCAGGGCTTCTGGGTACACCTTCACCGGCT
    ACTATATACACTGGATGCGACAGGCC
    CCTGGCCATGGGCTGGAGTGGATGGGATGGATC
    AACCCTCCCAGTGGTGCCACAAACTAT
    GCACAGAAGTTTCGGGGCAGGGTCGCCGTGACC
    AGGGACACGTCCATCAGCACAGTCTAC
    ATGGAACTGAGCAGGCTGAGATCTGACGACACG
    GCCGTATATTACTGTGCGAGAGAGACT
    GGAACTTGGAACTTCTTTGACTACTGGGGCCAG
    GGAACCCTGGTCACCGTCTCCTCA
    66B4 V H10 511 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCATCTGGATACACCTTCACCGGCTACTATT
    TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTAACAGTG
    GTGGCACAGACTATGCACAGAAGTTTCAGGGCC
    GGGTCACCATGACCAGGGACACGTCCATCAGTA
    CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTGTGGGAGACG
    CAGCAACTGGTCGCTACTACTTTGACAACTGGG
    GCCAGGGAACCCTGGTCACCGTCTCCTCA
    65B1 VH18 512 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    AAGAGGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCGGCTACTTTA
    TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTAACAGTG
    GTGCCACAAACTATGCACAGAAGTTTCACGGCA
    GGGTCACCATGACCAGGGACACGTCCATCACCA
    CAGTCTACATGGAGCTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTACGAGAGAAC
    TGGGGATCTTCAACTGGTTCGACCCCTGGGGCC
    AGGGAACCCTGGTCACCGTCTCCTCA
    65B4 V H20 513 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTG
    GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCGCCTTCAGTAGTTACGACA
    TGCACTGGGTCCGCCAAGCTACAGGAAAAGGTC
    TGGAGTGGGTCTCAACTATTGATACTGCTGGTG
    ACGCTTACTATCCAGGCTCCGTGAAGGGCCGAT
    TCACCATCTCCAGAGAAAATGCCAAGACCTCCT
    TGTATCTTCAAATGAACAGCCTGAGAGCCGGGG
    ACACGGCTGTGTATTACTGTACAAGAGATCGGA
    GCAGTGGCCGGTTCGGGGACTTCTACGGTATGG
    ACGTCTGGGGCCAAGGGACCGCGGTCACCGTCT
    CCTCA
    67A4 VH19 514 GAGGTGCAGCTGGAGGAGTCTGGGGGAGGCTTG
    GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGGACCTACGAC
    ATGCACTGGGTCCGCCAAGTTACAGGAAAAGGT
    CTGGAGTGGGTCTCAGCTATTGGTATTGCTGGTG
    ACACATACTATTCAGACTCCGTGAAGGGCCGAT
    TCACCATCTCCAGAGAAAATGCCAAGAACTCCC
    TGTATCTTCAAATGAACAGTCTAAGAGTCGGGG
    ACACGGCTGTGTATTACTGTGCAAGAGATCGGA
    GCAGTGGCCGGTTCGGGGACTACTACGGTATGG
    ACGTCTGGGGCCAAGGGACCACGGTCACCGTCT
    CCTCA
    63A10v1 VH21 515 GAGGTGCAGCTGGTGGAGTCTGGGGGAGACTTG
    63A10v2 GTAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT
    63A10v3 GCAGTCTCTGGAATCACTTTCAGTAACGCCTGG
    ATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGG
    CTGGAGTGGGTTGGCCGTATTAAAAGCAAAACT
    GATGGTGGGACAACAGACTACGCTGCACCCGTG
    AAAGGCAGATTCACCGTCTCAAGAGATGGTTCA
    AAAAATACGCTGTATCTGCAAATGAACAGCCTG
    AAAACCGAGGACACAGCCGTGTATTACTGTACC
    ACAGATAGTAGTGGGAGCTACTACGTGGAGGAC
    TACTTTGACTACTGGGGCCAGGGAACCCTGGTC
    ACCGTCTCCTCA
    65H11v1 VH22 516 GAGGTGCAACTGGTGGAGTCTGGGGGAGGCTTG
    65H11v2 GTAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT
    GCAGCCTCTGGATTCACTTTCAGTAACGCCTGGA
    TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTTGGCCGTATTATAGGCAAAACTG
    ATGGTGGGACAACAGACTACGCTGCACCCGTGA
    AAGGCAGATTCACCATTTCAAGAGATGATTCAA
    AAAACACGCTGTATCTGCAAATGAACAGCCTGA
    AAACCGAGGACACAGCCGTGTATTACTGTACCT
    CAGATAGTAGTGGGAGCTACTACGTGGAGGACT
    ACTTTGACTACTGGGGCCAGGGAACCCTGGTCG
    CCGTCTCCTCA
    67G10v1 V H9 517 GAGGTGCAACTGGTGGAGTCTGGGGGAGGCTTG
    67G10v2 GTAAAGCCGGGGGGGTCCCTTAGACTCGCCTGT
    GCAGCCTCTGGAATCACTTTCAATAACGCCTGG
    ATGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGG
    CTGGAATGGGTTGGCCGTATTAAAAGCAAAACT
    GATGGTGGGACAACAGACTACGCTGCACCCGTG
    AAAGGCAGATTCACCATCTCAAGAGATGATTCA
    AAAAGTATACTGTATCTGCAAATGAACAGCCTG
    AAATCCGAGGACACAGCCGTGTATTATTGTACC
    ACAGATAGTAGTGGGAGCTACTACGTGGAGGAC
    TACTTTGACTACTGGGGCCAGGGAACCCTG
    GTCACCGTCTCCTCA
    64C8 V H23 518 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GTAGCCTCTGGATTCACCTTCAGTAGCTATGGCA
    TGCACTGGGTCCGCCAGGATCCAGGCAAGGGGC
    TGGAGTGGGTGGCAGTTATATCATATGATGGAA
    GTAACAAACACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG
    AGGACACGGCTGTGTATTACTGTGCGAGGGAAT
    TACTATGGTTCGGGGAGTATGGGGTAGACCACG
    GTATGGACGTCTGGGGCCAAGGGACCACGGTCA
    CCGTCTCCTCA
    63G8v1 V H1 519 CAGGCGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    63G8v2 GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    63G8v3 GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA
    68D3v1 TACACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    64A8 TGGAGTGGGTGGCAGTTATATCATATGATGGAA
    67B4 GTAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG
    AGGACACGGCTGTGTATTACTGTGCGACTACGG
    TGACTAAGGAGGACTACTACTACTACGGTATGG
    ACGTCTGGGGCCAAGGGACCACGGTCACCGTCT
    CCTCA
    68D3v2 VH95 1866 CAGGCGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTC
    TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCT
    ATGGCATGCACTGGGTCCGCCAGGCT
    CCAGGCAAGGGGCTGGAGTGGGTGGCATTTATA
    TCATATGCTGGAAGTAATAAATACTAT
    GCAGACTCCGTGAAGGGCCGATTCACCATCTCC
    AGAGACAATTCCAAGAACACGCTGTAT
    CTGCAAATGAGCAGCCTGAGAGCTGAGGACACG
    GCTGTGTATTACTGTGCGACTACGGTG
    ACTGAGGAGGACTACTACTACTACGGTATGGAC
    GTCTGGGGCCAAGGGACCACGGTCACC
    GTCTCCTCA
    66G2 V H11 520 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCCTCAGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGGTATATCATATGATGGA
    AGTAATAAAAACTATGCAGACTCCGTGAAGGGC
    CGAATCACCATCTCCAGAGACAATCCCAAGAAC
    ACGCTGTATCTGCAAATGAACAGCCTGAGAGCT
    GAGGACACGGCTGTGTATTACTGTGCGACTACG
    GTGACTAAGGAGGACTACTACTACTACGGTATG
    GACGTCTGGGGCCAAGGGACCACGGTCACCGTC
    TCCTCA
    65D1 V H26 521 CAGGTGCAACTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTTACTATTACA
    TTCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCACTTATATGGTATGATGGAA
    GTAATAAAGACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCATGTGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAGAAG
    GGACAACTCGACGGGGATTTGACTACTGGGGCC
    AGGGAACCCTGGTCACCGTCTCCTCA
    64H5 V H7 522 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGAGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGGATGATGGA
    AGTAATAAATACTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGTCTCTGCAAATGAACAGCCTGAGGGCC
    GAGGACACGGCTGTTTATTACTGTGCGAGAGAA
    TACGTAGCAGAAGCTGGTTTTGACTACTGGGGC
    CAGGGAACCCTGGTCACCGTCTCCTCA
    65D4 V H25 523 CAGGAGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGTGTCTGGATTCACCTTCAGTTTCTATGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCAGTTATATGGTATGATGGAA
    GTAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATTTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTACGAGAGCCC
    TCAACTGGAACTTTTTTGACTACTGGGGCCAGG
    GAACCCTGGTCACCGTCTCCTCA
    65E3 V H24 524 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCCTCAGTAACTATAAC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTTTATGGTATGATGGA
    AATACTAAATACTATGCAGACTCCGTGAAGGGC
    CGAGTCACCATCTCTAGAGACAATTCCAAGAAC
    ACGCTGTATCTTCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGAGAT
    GTCTACGGTGACTATTTTGCGTACTGGGGCCAG
    GGAACCCTGGTCACCGTCTCCTCA
    65G4 V H8 525 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGGATGATGGA
    AGTAATAAATACTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGTCTCTGCAAATGAACAGCCTGAGGGCC
    GAGGACACGGCTGTTTATTACTGTGCGAGAGAA
    TACGTAGCAGAAGCTGGTTTTGACTACTGGGGC
    CAGGGAACCCTGGTCACCGTCTCCTCA
    68G5 V H12 526 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    ACAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGTATGATGGA
    AGTAATAAATACCATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACGATTCCAAGAAC
    GCGCTTTATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGTGAGAGAT
    CCTGGATACAGCTATGGTCACTTTGACTACTGGG
    GCCAGGGAACCCTGGTCACCGTCTCCTCA
    67G8 V H27 527 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGTATGATGGA
    AGTAATAAAGACTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGTATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGATCA
    GCAGTGGCTTTGTACAACTGGTTCGACCCCTGG
    GGCCAGGGAACCCTGGTCACCGTCTCCTCA
    65B7v1 VH28 528 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    65B7v2 GTGAACCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCAGCAGTGATGCTTA
    CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTTTTACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATTTCAGTAGACACGTCTAAGAA
    CCGGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGAG
    TCTAGGATATTGTACTTCAACGGGTACTTCCAGC
    ACTGGGGCCAGGGCACCCTGGTCACCGTCTCCT
    CA
    63B6 V H4 529 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    64D4 GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCG
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTATTACAG
    TGGGACCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTAGACACGTCCAAGAA
    CCAGTTCTCCCTGAAGCTGACCTCTGTGACTGCC
    GCGGACACGGCCGTATATTACTGTGCGAGAATG
    ACTACTCCTTACTGGTACTTCGGTCTCTGGGGCC
    GTGGCACCCTGGTCACTGTCTCCTCA
    63F5 V H13 530 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    TTACTGGACCTGGATCCGCCAGCACCCAGGGAA
    GGACCTGGAGTGGATTACATACATCTATTACAG
    TGGGAGCGCCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTAGACACGTCTAAGAA
    CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC
    GCGGACACGGCCGTATATTATTGTGCGAGGATG
    ACTACCCCTTATTGGTACTTCGATCTCTGGGGCC
    GTGGCACCCTGGTCACTGTCTCCTCA
    63H11 V H3 531 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    CTACTGGACCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGCATACATCTATTACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTAGACACGTCTAAGAA
    CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC
    GCGGACACGGCCGTATATTACTGTGCGAGGATG
    ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC
    GTGGCACCCTGGTCACTGTCTCCTCA
    65E8 V H2 532 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    64E6 GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC
    65F11 CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    67G7 CTACTGGACCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGCATACATCTATTACAC
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTAGACACGTCTAAGAA
    CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC
    GCGGACACGGCCGTATATTACTGTGCGAGGATG
    ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC
    GTGGCACCCTGGTCACTGTCTCCTCA
    65C1 V H15 533 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    CTACTGGACCTGGATCCGCCAACACCCAGGGAA
    GGGCCTGGAGTGGATTGCATACATTTTTTACAGT
    GGGAGCACCTACTACAACCCGTCCCTCAAGAGT
    CGAGTTACCATATCACTTGACACGTCTAAGAAC
    CAGTTCTCCCTGAAGCTGAACTCTGTGACTGCCG
    CGGACACGGCCGTATATTACTGTGCGAGGATGA
    CTTCCCCTTACTGGTACTTCGATCTCTGGGGCCG
    TGGCACCCTGGTCACTGTCTCCTCA
    66F6 V H14 534 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA
    CTACTGGACCTGGATCCGCCATCACCCAGGGAA
    GGGCCTGGAGTGGATTGCATACATTTATTACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTTGACACGTCTAAGAA
    CCAGTTTTCCCTGAAGCTGAACTCTGTGACTGCC
    GCGGACACGGCCGTTTATTACTGTGCGAGGATG
    ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC
    GTGGCACCCTGGTCACTGTCTCCTCA
    64A6 VH29 535 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA
    TTACTGGAGCTGGATCCGCCAGCGCCCAGGGAA
    GGGCCTGGAGTGGGTTGGGTACATCTATTACAG
    TGGGGGCACCCACTACAACCCGTCCCTCAAAAG
    TCGAGTTACCATATCAATAGACACGTCTGAGAA
    CCAGTTCTCCCTGAAGCTGAGTTCTGTGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGTC
    CTCCATTACTCTGATAGTCGTGGTTACTCGTACT
    ACTCTGACTTCTGGGGCCAGGGAACCCTGGTCA
    CCGTCTCCTCA
    65F9 V H30 536 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTCTCTCTGGTGGCTCCTTCAGCAGTGGTGATTA
    CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTATTACAG
    TGGGAGCACCTACTACAACCCATCCCTCAAGAG
    TCGAGTTACCATATCAATAGACACGTCTAAGAA
    CCAGTTCTCCCTGAAACTGACCTCTGTGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGTC
    CTCCATTACTATGATAGTAGTGGTTACTCGTACT
    ACTTTGACTACTGGGGCCAGGGAACCCTGGTCA
    CCGTCTCCTCA
    64A7 V H16 537 CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGCAGTGATACTT
    CCTACTGGGGCTGGATCCGCCAGCCCCCAGGAA
    AGGGGCTGGAGTGGATTGGGAATATCTATTATA
    GTGGGACCACCTACTTCAACCCGTCCCTCAAGA
    GTCGAGTCAGCGTATCCGTAGACACATCCAAGA
    ACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC
    CGCAGACACGGCTGTGTTTTATTGTGCGAGACTC
    CGAGGGGTCTACTGGTACTTCGATCTCTGGGGC
    CGTGGCACCCTGGTCACTGTCTCCTCA
    65C3 V H5 538 CAGGTGCAGCTACAGGAGTCGGGTCCAGGACTG
    68D5 GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT
    GGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA
    CTGGAGTGGATTGGGTATATCTATTACACTGGG
    AGCACCAACTACAACCCCTCCCTCAAGAGTCGA
    GTCACCATATCAGTAGACACGTCCAAGAACCAG
    TTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGG
    ACACGGCCGTGTATTACTGTGCGAGAGAATATT
    ACTATGGTTCGGGGAGTTATTATCCTTGGGGCCA
    GGGAACCCTGGTCACCGTCTCCTCA
    67F5 V H31 539 CAGGTGCAGCTGAAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTC
    ACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTT
    ACTACTGGAGCTGGATCCGGCAGCCC
    CCAGGGAAGGGACTGGAGTGGATTGGGTATATC
    TATTACAGTGGGAACACCAACTACAAC
    CCCTCCCTCAAGAGTCGAGTCACCATATCAGTA
    GACACGTCCAAGAACCAGTTCTCCCTG
    AAGCTGAGCTCTGTGACCGCTGCGGACACGGCC
    GTGTATTACTGTGCGAGAGAATATTAC
    TATGGTTCGGGGAGTTATTATCCTTGGGGCCAG
    GGAACCCTGGTCACCGTCTCCTCA
    64B10v1 VH32 540 CAGATTCAGCTGCTGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCGTCAGTAGTGGTGATT
    ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA
    AGGGACTGGAGTGGATTGGGTTTATCTATTACA
    GTGGGGGCACCAACTACAACCCCTCCCTCAAGA
    GTCGAGTCACCATATCAATAGACACGTCCAAGA
    ACCAGTTCTCCCTGAAGCTGAACTCTGTGACCGC
    TGCGGACACGGCCGTGTATTACTGTGCGAGATA
    TAGCAGCACCTGGGACTACTATTACGGTGTGGA
    CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC
    CTCA
    64B10v2 VH96 1867 CAGGTGCAGCTGCTGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCGTCAGCAGTGGTGATT
    ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA
    AGGGACTGGAGTGGATTGGGTTTATTTATTACA
    GTGGGGGCACCAACTACAACCCCCCCCTCAAGA
    GTCGAGTCACCATATCAATAGACACGTCCAAGA
    ACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
    TGCGGACACGGCCGTGTATTACTGTGCGAGATA
    TAGCAGCACCTGGGACTACTATTACGGTGTGGA
    CGTCTGGGGCCAAGGGACCACGGTCACC
    GTCTCCTCA
    68C8 VH33 541 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGACTCTGTCAGCAGTGGTGATA
    ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA
    AGGGACTGGAGTGGATTGGGTTCATGTTTTACA
    GTGGGAGTACCAACTACAACCCCTCCCTCAAGA
    GTCGAGTCACCATATCACTACACACGTCCAAGA
    ACCAGTTCTCCCTGAGGCTGAGCTCTGTGACCGC
    TGCGGACACGGCCGTGTATTACTGTGGGAGATA
    TAGGAGTGACTGGGACTACTACTACGGTATGGA
    CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC
    CTCA
    67A5 VH34 542 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG
    AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT
    AAGGGTTCTGGATACAGCTTTACCAGTTACTGG
    ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC
    CTGGAGTGGATGGGGATCATCTATCCTGGTGAC
    TCTGATACCAGATACAGCCCGTCCTTCCAAGGC
    CAGGTCACCATCTCAGCCGACAAGTCCATCAAC
    ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC
    TCGGACACCGCCATATACTTCTGTGCGAGACGG
    GCCTCACGTGGATACAGATTTGGTCTTGCTTTTG
    CGATCTGGGGCCAAGGGACAATGGTCACCGTCT
    CCTCA
    67C10 VH35 543 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG
    AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT
    CAGGGTTCTGGATACAGCTTTAGCAGTTACTGG
    ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC
    CTGGAGTGGATGGGGATCATCTATCCTGGTGAC
    TCTGATACCAGATACAGCCCGTCCTTCCAAGGC
    CAGGTCACCATCTCAGCCGACAAGTCCATCAAT
    ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC
    TCGGACACCGCCATATATTACTGTGCGAGACGG
    GCCTCACGTGGATACAGATATGGTCTTGCTTTTG
    CTATCTGGGGCCAAGGGACAATGGTCACCGTCT
    CTTCA
    64H6 VH36 544 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG
    AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT
    AAGGGTTCTGGATACAGTTTTACCAGTTATTGGA
    TCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCC
    TGGAGTGGATGGGGATCATCTATCCTGGTGACT
    CTGAAACCAGATACAGCCCGTCCTTTCAAGGCC
    AGGTCACCATCTCAGCCGACAAGTCCATCAGCA
    CCGCCTACCTGCAGTGGAACAGCCTGAAGACCT
    CGGACACCGCCATGTATTTCTGTGCGACCGTAG
    CAGTGTCTGCCTTCAACTGGTTCGACCCCTGGGG
    CCAGGGAACCCTGGTCACCGTCTCCTCC
    63F9 VH37 545 CAGGTGCAGCTGAAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA
    CTACTGGAACTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTATGACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATGTCAGTAGACACGTCTAAGAA
    CCAGTTCTCCCTGAAGTTGAGCTCTGTGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGAT
    GTTCTAATGGTGTATACTAAAGGGGGCTACTAC
    TATTACGGTGTGGACGTCTGGGGCCAAGGGACC
    ACGGTCACCGTCTCCTCA
    67F6v1 V H38 546 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG
    67F6v2 AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT
    AAGGGTTCTGGATACAGCTTTACCGGCTACTGG
    ATCGGCTGGGTGCGCCAGCTGCCCGGGAAAGGC
    CTGGAGTGGATGGGGATCATCTATCCTGGTGAC
    TCTGATACCAGATACAGCCCGTCCTTCCAAGGC
    CAGGTCACCATCTCAGTCGACAAGTCCATCAAC
    ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC
    TCGGACACCGCCATGTATTACTGTGCGAGACGG
    GCCTCACGTGGATACAGCTATGGTCATGCTTTTG
    ATTTCTGGGGCCAAGGGACAATGGTCACCGTGT
    CTTCA
    48C9 V H73 547 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG
    49A12 TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCT
    51E2 CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG
    GACCTGGATCCGCCAGCCCCCAGGGAAGGGGCT
    GGAGTGGATTGGGGAAATCAATCATAGTGAAAA
    CACCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCAATAGACACGTCCAAGAACCAGTT
    CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA
    CACGGCTGTGTATTACTGTGCGAGAGAGAGTGG
    GAACTTCCCCTTTGACTACTGGGGCCAGGGAAC
    CCTGGTCACCGTCTCCTCA
    48F3 V H72 548 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACCG
    TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCG
    CTGTCTATGGTGGGTCCATCAGTGGTTACTACTG
    GAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCT
    GGAGTGGATTGGGGAAATCACTCATACTGGAAG
    CTCCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCAGTAGACACGTCCAAGAACCAGTT
    CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA
    CACGGCTGTGTATTACTGTGCGAGAGGCGGGAT
    TTTATGGTTCGGGGAGCAGGCTTTTGATATCTGG
    GGCCAAGGGACAATGGTCACCGTCTCTTCA
    48F8 VH48 549 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG
    53B9 GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    56B4 ACAGCCTCTGGATTCACCTTCAGAAGCTATAGC
    57E7 ATGAACTGGGTCCGCCAGGCTCCGGGGAAGGGG
    57F11 CTGGAGTGGGTCTCATCCATTAGTAGTAGTAGT
    AGTTACGAATACTACGTAGACTCAGTGAAGGGC
    CGATTCACCATCTCCAGAGACATCGCCAAGAGC
    TCACTGTGGCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGATCC
    CTAAGTATAGCAGTGGCTGCCTCTGACTACTGG
    GGCAAGGGAACCCTGGTCACCGTCTCCTCA
    48H11 VH39 550 CAGGTGCAACTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCGGCTACTATA
    AGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTAACAGTG
    GTGCCACAAAGTATGCACAGAAGTTTCAGGGCA
    GGGTCACCATGACCAGGGACACGTCCATCAGCA
    CAGTGTACATGGAGCTGAGCAGGCTGAGATCTG
    TCGACACGGCCCTGTATTACTGTGCGAGAGAGG
    TACCCGACGGTATAGTAGTGGCTGGTTCAAATG
    CTTTTGATTTCTGGGGCCAAGGGACAATGGTCA
    CCGTCTCTTCA
    49A10 VH62 551 CAGGTGCACCTGGTGGAGTCTGGGGGAGGCGTG
    48D4 GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAACTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAATTATATGGTATGATGGA
    AGTAATAAAAACTATGCAGACTCCGTGAAGGGC
    CGCTTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGTATCTGGAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGAGAT
    CAGGATTACGATTTTTGGAGTGGTTATCCTTACT
    TCTACTACTACGGTATGGACGTCTGGGGCCAAG
    GGACCACGGTCACCGTCTCCTCA
    49C8 VH44 552 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    52H1 AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCAGTTATGATA
    TCGACTGGGTGCGACAGGCCACTGGACAAGGGC
    TTGAGTGGATGGGATGGATGAACCCTAACGGTG
    GTAACACAGGCTATGCACAGAAGTTCCAGGGCA
    GAGTCACCATGACCAGGAACACCTCCATAAACA
    CGGCCTATATGGAACTGAGCAGCCTGAGATCTG
    AGGACACGGCCATATATTACTGTGCGAGAGGGA
    AGGAATTTAGCAGGGCGGAGTTTGACTACTGGG
    GCCAGGGAACCCTGGTCACCGTCTCCTCA
    49G2 VH63 553 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    50C12 GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    55G11 GCAGCGTCTGGATTCACCTTCAGTAACTATGGC
    ATGCGCTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCACTTATATGGTATGATGGA
    AGTAATAAGTTCTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGAATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGAGAT
    CGGTATTACGATTTTTGGAGTGGTTATCCATACT
    TCTTCTACTACGGTCTGGACGTCTGGGGCCAAG
    GGACCACGGTCACCGTCTCCTCA
    49G3 VH46 554 CAGGTCACCTTGAAGGAGTCTGGTCCTGTGCTG
    GTGAAACCCACAGAGACCCTCACGCTGACCTGC
    ACCGTCTCTGGGTTCTCACTCAGTAATCCTAGAA
    TGGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA
    AGGCCCTGGAGTGGCTTACACACATTTTTTCGAA
    TGACGAAAAATCCTACAGCACATCTCTGAAGAG
    CAGGCTCACCATCTCCAAGGACACCTCCAAAAG
    CCAGGTGGTCCTTTCCATGACCAACATGGACCCT
    GTGGACACAGCCACATATTACTGTGTACGGGTA
    GATACCTTGAACTACCACTACTACGGTATGGAC
    GTCTGGGGCCAAGGGACCACGGTCACCGTCTCC
    TCA
    49H12 VH42 555 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    ATGGCATCTGGATACATTTTCACCAGTTACGATA
    TCAACTGGGTGCGACAGGCCACTGGACAAGGGC
    CTGAGTGGATGGGATGGATGAACCCCTACAGTG
    GGAGCACAGGCTATGCACAGAATTTCCAGGGCA
    GAGTCACCATGACCAGGAATACCTCCATAAACA
    CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG
    AGGACACGGCCGTGTATTACTGTGCGAAGTATA
    ATTGGAACTATGGGGCTTTTGATTTCTGGGGCCA
    AGGGACAATGGTCACCGTCTCTTCA
    51A8 VH58 556 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCAGTTATATCATATGATGGAA
    GTAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGTTGTATCTGCAAATGAACAGCCTGAGAGCTG
    AGGACACGGCTGTGTATTACTGTGCGAGAGCGG
    ACGGTGACTACCCATATTACTACTACTACTACGG
    TATGGACGTCTGGGGCCAAGGGACCACGGTCAC
    CGTCTCCTCA
    51C10.1 VH54 557 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG
    59D10v1 GTACAGCCGGGGGGGTCCCTGAGACTCTCCTGT
    59D10v2 GCAGCCTCTGGATTCACCTTTCGCAACTATGCCA
    TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCAGGTATTAGTGGTAGTAGTG
    CTGGCACATACTACGCAGACTCCGTGAAGGGCC
    GGTTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTTTCTGCAAATGGACAGCCTGAGAGCCG
    AGGACACGGCCGTATATTACTGTGCGCAAGATT
    GGAGTATAGCAGTGGCTGGTACTTTTGACTACT
    GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
    51C10.2 VH67 558 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA
    CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTATTACAA
    TGGGAGTCCCTACGACAACCCGTCCCTCAAGAG
    GCGAGTTACCATCTCAATAGATGCGTCTAAGAA
    CCAGTTCTCCCTGAAGCTGAGCTCTATGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGGG
    GCCCTCTACGGTATGGACGTCTGGGGCCAAGGG
    ACCACGGTCACCGTCTCCTCA
    51E5 V H74 559 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG
    TTGAAGCCTTCGGAGACCCTTTCCCTCACCTGCG
    CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG
    GAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCT
    GGAGTGGATTGGGGAACTCGATCATAGTGGAAG
    TATCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCAGTAGACACGTCCAAGAACCAGTT
    CTCCCTGAAGCTGACCTCTGTGACCGCCGCGGA
    CACGGCTGTGTATTACTGTGCGAGAGTCCTGGG
    ATCTACTCTTGACTATTGGGGCCAGGGAACCCT
    GGTCACCGTCTCCTCA
    51G2 V H50 560 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG
    GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAGTTATAGCA
    TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA
    CTTACATATACTACGCAGACTCAGTGAAGGGCC
    GATTCACCATCTCCAGAGACAACGCCAAGAACT
    CACTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAGATA
    CTTATATCAGTGGCTGGAACTACGGTATGGACG
    TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    52A8 V H40 561 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCGGCTACTATT
    TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTAACAGTG
    CTGCCACAAACTATGCACCGAAGTTTCAGGGCA
    GGGTCACCGTGACCAGGGACACGTCCATCAGCA
    CAGCCTACATGGAACTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTGCGAGAGAGG
    GTGGAACTTACAACTGGTTCGACCCCTGGGGCC
    AGGGAACCCTGGTCACCGTCTCCTCA
    52B8 VH77 562 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    ATGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGTTATTATTACT
    GGAGTTGGATCCGGCAGTCCCCAGGGAAGGGAC
    TGGAGTGGATTGGGTATATCTATTATAGTGGGA
    GCACCAACTACAACCCCTCCCTCAAGAGTCGAG
    TCACCATGTCAGTAGACACGTCCAAGAACCAGT
    TCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGG
    ACACGGCCGTGTATTACTGTGCGTCTGGAACTA
    GGGCTTTTGATATCTGGGGCCAAGGGACAATGG
    TCACCGTCTCTTCA
    52C1 V H64 563 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGC
    CTGGAGTGGGTGGCAGTTATATGGTATGATGGA
    AGTAATAACTATTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAGC
    ACGCTGTTTCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTATATATTACTGTGCGAGAGAT
    CGGGCGGGAGCCTCTCCCGGAATGGACGTCTGG
    GGCCAAGGGACCACGGTCACCGTCTCCTCA
    52F8 VH41 564 CAGGTGCAACTGGTGCAGTCTGGGGCGGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATTCACCTTCATCGGCTACTATA
    CACACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTAGCAGTG
    GTGACACAAAGTATGCACAGAAGTTTCAGGGCA
    GGGTCACCTTGGCCAGGGACACGTCCATCAGCA
    CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTGCGAACAGTG
    GCTGGTACCCGTCCTACTACTACGGTATGGACGT
    CTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
    52H2 VH79 565 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGTACTTACTACT
    GGAGCTGGATCCGGCAGCCCCCAGGGACGGGAC
    TGGAATGGATTGGGTATATCTTTTACAATGGGA
    ACGCCAACTACAGCCCCTCCCTGAAGAGTCGAG
    TCACCTTTTCAGTGGACACGTCCAAGAACCAGTT
    CTCCCTGAAACTGAGTTCTGTGACCGCTGCGGA
    CACGGCCGTGTATTTTTGTGCGAGAGAAACGGA
    CTACGGTGACTACGCACGTCCTTTTGAATACTGG
    GGCCAGGGAACCCTGGTCACCGTCTCCTCA
    53F6 V H60 566 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTACCTATGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCAGTTATATGGTATGATGGAA
    GTAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAGGCC
    ACTATGATAGTAGTGGTCCCAGGGACTACTGGG
    GCCAGGGAACCCTGGTCACCGTCTCCTCA
    53H5.2 VH59 567 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCCAGGGGC
    TGGAGTGGGTGGCACTTATATCATATGATGGAA
    GTAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAAATCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG
    AGGACACGGCTGTATATTACTGTGCGAGAGAGG
    CTAACTGGGGCTACAACTACTACGGTATGGACG
    TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    53H5.3 VH75 568 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG
    TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCG
    CTGTCTATGGTGGGTCCTTCAGTGATTACTACTG
    GAACTGGATCCGCCAGCCCCCAGGGAAGGGGCC
    AGAGTGGATTGGGGAAATCAATCATAGTGGAAC
    CACCAACTACAATCCGTCCCTCAAGAGTCGAGT
    CACCATATCAGTAGACACGTCCAAGAACCAGTT
    CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA
    CACGGCTGTATATTACTGTGTGGGGATATTACG
    ATATTTTGACTGGTTAGAATACTACTTTGACTAC
    TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
    54A1 V H43 569 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    55G9 AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCAGTTATGATA
    TCAACTGGGTGCGACAGGCCACTGGACAAGGGC
    TTGAGTGGATGGGATGGATGAACCCTCACAGTG
    GTAACACAGGCTATGCACAGAAGTTCCAGGGCA
    GAGTCACCATGACCAGGAACACCTCCATAAATA
    CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG
    AGGACACGGCCGTGTATTACTGTGCGAAATATA
    ACTGGAACTACGGCGCTTTTGATTTCTGGGGCCA
    AGGGACAATGGTCACCGTCTCTTCA
    54H10.1 V H52 570 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG
    55D1 GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    48H3 GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA
    53C11 TGAGCTGGGTCCGCCAGGCTCCGGGGAAGGGGC
    TGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTC
    GTACCACATACTCCGCAGACTCCGTGAAGGGCC
    GGTTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCCGTATATTACTGTGCGAAAGAAC
    AGCAGTGGCTGGTTTATTTTGACTACTGGGGCCA
    GGGAACCCTGGTCACCGTCTCCTCA
    55D3 VH68 571 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCACCAGTGGTGTTTA
    CTACTGGAACTGGATCCGCCAGCACCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACCTCTATTACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGCCTTACCATTTCAGCAGACATGTCTAAGAAC
    CAGTTCTCCCTAAAGCTGAGCTCTGTGACTGTCG
    CGGACACGGCCGTGTATTACTGTGCGAGAGATG
    GTATTACTATGGTTCGGGGAGTTACTCACTACTA
    CGGTATGGACGTCTGGGGCCAAGGGACCACGGT
    CACCGTCTCCTCA
    55E4 V
    H70 572 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG
    49B11 TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG
    50H10 CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG
    53C1 GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT
    52C5 GGAGTGGATTGGGGAAATCAATCATAGTGAAAA
    60G5.1 CACCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCACTAGACACGTCCAATGACCAGTT
    CTCCCTAAGACTAACCTCAGTGACCGCCGCGGA
    CACGGCTGTCTATTACTGTGCGAGAGTAACTGG
    AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC
    AATGGTCACCGTCTCTTCA
    55E9 V H65 573 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTTTGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCACTTATATGGTATGATGGAG
    ATAATAAATACTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAAACA
    GTGGCTGGGATTACTTCTACTACTACGGTATGGA
    CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC
    CTCA
    55G5 VH78 574 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT
    GGAGCTGGATCCGGCAGCCCGCCGGGAAGGGA
    CTGGAGTGGATTGGGCGTATCTATATCAGTGGG
    AGCACCAACTACAACCCCTCCCTCGAGAATCGA
    GTCACCATGTCAGGAGACACGTCCAAGAACCAG
    TTCTCCCTGAAGCTGAATTCTGTGACCGCCGCGG
    ACACGGCCGTATATTACTGTGCGGGAAGTGGGA
    GCTACTCCTTTGACTACTGGGGCCAGGGAACCC
    TGGTCACCGTCTCCTCA
    50G1 VH84 575 CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGCC
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCAGTTATATGGAATGATGGAA
    GTAATAAGCTTTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAGATC
    AGTATTACGATTTTTGGAGCGGTTACCCATACTA
    TCACTACTACGGTATGGACGTCTGGGGCCAAGG
    GACCACGGTCACCGTCTCCTCA
    56A7 VH51 576 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG
    56E4 GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAGTTATAGCA
    TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA
    CTTACATATACTACGCAGACTCAGTGAAGGGCC
    GATTCACCATCTCCAGAGACAACGCCAAGAACT
    CACTGTATCTGCAAATGAACAGCCTGAGAGCCG
    AGGACACGGCTGTGTATTACTGTGCGAGAGATA
    TCTATAGCAGTGGCTGGAGCTACGGTATGGACG
    TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    56C11 VH61 577 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGA
    CTGGAGTGGGTGGCAGTTATATGGTATGATGGA
    AGTTATCAATTCTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGTTGTATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGAGAT
    CACGTTTGGAGGACTTATCGTTATATCTTTGACT
    ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT
    CA
    56E7 V H81 578 GAGGTGCAGCTGGTGCAGTCTGGACCAGAGGTG
    AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT
    AAGGGTTCGGGATACAGTTTAACCAGCTACTGG
    ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC
    CTGGAGTGGATGGGGATCATCTATCCTGGTGAC
    TCTGATACCAGATACAGCCCGTCCTTCCAAGGC
    CAGGTCACCATCTCAGCCGACACGTCCATCAGC
    ACCGCCTACCTGCAGTGGAGCAGGTTGAAGGCC
    TCGGACACCGCCGTATATTACTGTGCGAGGGCA
    CAACTGGGGATCTTTGACTACTGGGGCCAGGGA
    ACCCTGGTCACCGTCTCCTCA
    56G1 V H71 579 CAGGTGCAACTACAGCAGTGGGGCGCAGGACTG
    TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG
    CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG
    GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT
    GGAGTGGATTGGGGAAATCAATCATAGTGAAAA
    CACCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCACTAGACACGTCCAATAAGCAGTT
    CTCCCTAAGACTAACCTCTGTGACCGCCGCGGA
    CACGGCTGTCTATTACTGTGCGAGAGTAACTGG
    AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC
    AATGGTCACCGTCTCTTCA
    56G3.3 VH76 580 CAGTTGCAGTTGCAGGAATCGGGCCCAGGACTG
    55B10 GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGACTCCATCAGTAGTAGTAGTT
    ACTACTGGGGCTGGATCCGCCAGCCCCCAGGGA
    AGGGGCTGGAGTGGATTGGGATGATCTATTATA
    GTGGGACCACCTACTACAACCCGTCCCTCAAGA
    GTCGAGTCACCATATCCGTAGACACGTCCAAGA
    ATCAGTTTTCCCTGAAGCTGAGTTCTGTGACCGC
    CGCAGACACGGCTGTGTATTATTGTGCGAGAGT
    GGCAGCAGTTTACTGGTATTTCGATCTCTGGGGC
    CGTGGCACCCTGGTCACTGTCTCCTCA
    57B12 VH69 581 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTGGTGGCTCCATCACCAGTGGTGTTTA
    CTACTGGAGCTGGATCCGCCAGCTCCCAGGGAA
    GGGCCTGGAGTGGATTGGGTACATCTATTACAG
    TGGGAGCACCTACTACAACCCGTCCCTCAAGAG
    TCGCCTTACCATATCAGCAGACACGTCTAAGAA
    CCAGTTCTCCCTAAAGCTGAGCTCTGTGACTGTC
    GCGGACACGGCCGTGTATTACTGTGCGAGAGAT
    GGTATTACTATGGTTCGGGGAGTTACTCACTACT
    ACGGTATGGACGTCTGGGGCCAAGGGACCACGG
    TCACCGTCTCCTCA
    57D9 VH82 582 CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTG
    GTGAAGCCCTCGCAGACCCTCTCACTCACCTGTG
    CCATCTCCGGGGACAGTGTCTCTAGCAACAGTG
    CTACTTGGAACTGGATCAGGCAGTCCCCATCGA
    GAGGCCTTGAGTGGCTGGGAAGGACATACTACA
    GGTCCAAGTGGTATAATGATTATGCAGTATCTGT
    GAAAAGTCGAATAACCATCAACCCAGACACATC
    CAAGAACCAGTTCTCCCTGCAGCTGAACTCTGT
    GACTCCCGAGGACACGGCTGTGTATTACTGTGT
    GGGTATTGTAGTAGTACCAGCTGTTCTCTTTGAC
    TACTGGGGCCAGGGAACCCTGGTCACCGTCTCC
    TCA
    58C2 V H85 583 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCACCTTCAGTAACTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGAATGATGGA
    AATAACAAATACTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTATATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTATTACTGTGCGAGAGAT
    CAGAATTACGATTTTTGGAATGGTTATCCCTACT
    ACTTCTACTACGGTATGGACGTCTGGGGCCAAG
    GGACCACGGTCACCGTCTCCTCA
    59A10 VH47 584 CAGGTGCAGGTGGTGGAGTCTGGGGGAGGCTTG
    49H4 GTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTGACTCCTACA
    TGAGCTGGATCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGATTTCTTCCATTAGTAGTAGTGGTAG
    TATCGTATACTTCGCAGACTCTGTGAAGGGCCG
    ATTCACCATCTCCAGGGACATCGCCAAGAACTC
    ACTGTATCTGCACATGAACAGCCTGAGAGCCGA
    GGACACGGCCGTGTATTACTGTGCGAGAGAGAC
    GTTTAGCAGTGGCTGGTTCGATGCTTTTGATATC
    TGGGGCCAAGGGACAATGGTCACCGTCTCTTCA
    59C9 VH49 585 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG
    58A5 GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    57A4 GCAGCCTCTGGATTCACCTTCAGTAGCTATAGCA
    57F9 TGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA
    CTTACATATACTACGCAGACTCACTGAAGGGCC
    GATTCACCATCTCCAGAGACAACGCCAAGAACT
    CACTGTTTCTGCAAGTGAACAGCCTGAGAGCCG
    AAGACTCGGCTGTGTATTACTGTGCGAGAGATC
    GATGGAGCAGTGGCTGGAACGAAGGTTTTGACT
    ATTGGGGCCAGGGAACCCTGGTCACCGTCTCCT
    CA
    59G10.2 VH57 586 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAACTATGGCA
    TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC
    TGGAGTGGGTGGCAATTACATCATATGGAGGAA
    GTAATAAAAATTATGCAGACTCCGTGAAGGGCC
    GATTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG
    AGGACACGGCTGTGTATTATTGTGCGAGAGAGG
    CCGGGTATAGCTTTGACTACTGGGGCCAGGGAA
    CCCTGGTCACCGTCTCCTCA
    59G10.3 V H53 587 GAGGTGCAACTGTTGGGATCTGGGGGAGGCTTG
    GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTTAACCACTATGCCA
    TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTG
    CTGGCACATTCTACGCGGACTCCATGAAGGGCC
    GGTTCACCATCTCCAGAGACAATTCCGAGAACA
    CGCTGCATCTGCAGATGAACAGCCTGAGAGCCG
    AGGACACGGCCATATATTACTGTGCGAAAGATC
    TTAGAATAGCAGTGGCTGGTTCATTTGACTACTG
    GGGCCAGGGAACCCTGGTCACCGTCTCCTCA
    60D7 V H66 588 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG
    GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT
    GCAGCGTCTGGATTCAACTTCAGTAGCTATGGC
    ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG
    CTGGAGTGGGTGGCAGTTATATGGTATGATGGA
    AGTAATAAATACTATGCAGACTCCGTGAAGGGC
    CGATTCACCATCTCCAGAGACAATTCCAAGAAC
    ACGCTGTATCTGCAAATGAACAGCCTGAGAGCC
    GAGGACACGGCTGTGTTTTACTGTGCGAGAGAT
    CAGTATTTCGATTTTTGGAGTGGTTATCCTTTCTT
    CTACTACTACGGTATGGACGTCTGGGGCCAAGG
    GACCACGGTCACCGTCTCCTCA
    60F9 VH55 589 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG
    48B4 GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    52D6 GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA
    TGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCAGTTATTAGTGACAGTGGTG
    GTAGCACATACTACGCAGACTCCGTGAAGGGCC
    GGTTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTACAAATGAACAGCCTGAGAGCCG
    AGGATACGGCCGTATATTACTGTGCGAAAGATC
    ATAGCAGTGGCTGGTACTACTACGGTATGGACG
    TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    60G5.2 VH45 590 CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTG
    AAGACGCCCGGGGCCTCAGTGAGGGTCTCCTGC
    AAGGCTTCTGGTTACACCTTTACCAACTATGGTA
    TCAGCTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAGCGCTTACAATG
    GTTACTCAAACTATGCACAGAAGTTCCAGGACA
    GAGTCACCATGACCACAGACACATCCACGAGCA
    CAGCCTACATGGAGCTGAGGAGCCTGAGATCTG
    ACGACACGGCCGTGTATTACTGTGCGAGAGAGG
    AGAAGCAGCTCGTCAAAGACTATTACTACTACG
    GTATGGACGTCTGGGGCCAGGGGTCCACGGTCA
    CCGTCTCCTCA
    61G5 V H56 591 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG
    GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA
    TGAGCTGGGTCCGCCAGTCTCCAGGGAAGGGGC
    TGGAGTGGGTCTCAGTTATTAGTGGTAGTGGTG
    GTGACACATACTACGCAGACTCCGTGAAGGGCC
    GGTTCACCATCTCCAGAGACAATTCCAAGAACA
    CGCTGTATCTACAAATGAACAGCCTGAGAGCCG
    AGGATACGGCCGTATATTACTGTGCGAAAGATC
    ATACCAGTGGCTGGTACTACTACGGTATGGACG
    TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    56G3.2 V H80 592 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGATGGCTCCATCAGTAGTTACTACT
    GGAACTGGATCCGGCAGCCCGCCGGGAAGGGA
    CTGGAGTGGATTGGGCGTATCTATACCAGTGGG
    AGCACCAACTACAATCCCTCCCTCAAGAGTCGA
    GTCACCATGTCAGTAGACACGTCCAAGAACCAG
    TTCTCCCTGAACCTGACCTCTGTGACCGCCGCGG
    ACACGGCCGTGTATTACTGTGCGAGAGGCCCTC
    TTTGGTTTGACTACTGGGGCCAGGGAACCCTGG
    TCACCGTCTCCTCA
    48G4 VH83 593 CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTG
    53C3.1 AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGTTTCCGGATACACCCTCACTGAATTATCCA
    TACACTGGGTGCGACAGGCTCCTGGAAAAGGGC
    TTGAGTGGATGGGAGGTTTTGATCCTGAAGATG
    GTGAAACAATCTACGCACAGAAGTTCCAGGGCA
    GAGTCACCATGACCGAGGACACATCTACAGACA
    CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG
    AGGACACGGCCGTGTATTACTGTGCAACACATT
    CTGGTTCGGGGAGGTTTTACTACTACTACTACGG
    TATGGACGTCTGGGGCCAAGGGACCACGGTCAC
    CGTCTCCTCA
    61H5 VH86 594 CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    52B9 GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGCAGTAGTAGTT
    ACTACTGGGGCTGGATCCGCCAGCCCCCAGGGA
    AGGGGCTGGAGTGGATTGGGAGTATCTATTATA
    GTGGGACCACCTACTACAACCCGTCCCTCAAGA
    GTCGAGTCACCATATCCGTAGACACGTCCAAGA
    ACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC
    CGCAGACACGGCTGTGTATTACTGTGCGAGAGT
    GGCAGCAGTTTACTGGTACTTCGATCTCTGGGGC
    CGTGGCACCCTGGTCACTGTCTCCTCA
    50D4 VH87 595 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    AAGAAGACTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACCAGTCATGAT
    ATCAACTGGGTGCGACAGGCCACTGGACACGGG
    CTTGAGTGGATGGGATGGATGAACCCTTACAGT
    GGTAGCACAGGCCTCGCACAGAGGTTCCAGGAC
    AGAGTCACCATGACCAGGAACACCTCCATAAGC
    ACAGCCTACATGGAGCTGAGCAGCCTGAGATCT
    GAGGACACGGCCGTGTATTACTGTGCGAGAGAC
    CTTAGCAGTGGCTACTACTACTACGGTTTGGACG
    TGTGGGGCCAAGGGACCACGGTCACCGTCTCCT
    CA
    50G5v1 VH88 596 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG
    50G5v2 AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCCTCTGGATACCCCTTCATCGGCTACTATA
    TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC
    TTGAGTGGATGGGATGGATCAACCCTGACAGTG
    GTGGCACAAACTATGCACAGAAGTTTCAGGGCA
    GGGTCACCATGACCAGGGACACGTCCATCACCA
    CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG
    ACGACACGGCCGTTTTTTACTGTGCGAGAGGCG
    GATACAGCTATGGTTACGAGGACTACTACGGTA
    TGGACGTCTGGGGCCAAGGGACCACGGTCACCG
    TCTCCTCA
    51C1 VH89 597 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG
    TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG
    CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG
    GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT
    GGAGTGGATTGGGGAAATCAATCATAGTGAAAA
    CACCAACTACAACCCGTCCCTCAAGAGTCGAGT
    CACCATATCACTAGACACGTCCCATGACCAGTT
    CTCCCTAAGACTAACCTCTGTGACCGCCGCGGA
    CACGGCTGTCTATTACTGTGCGAGAGTAACTGG
    AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC
    AATGGTCACCGTCTCTTCA
    53C3.2 V H90 598 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA
    CTGTCTCTAATGGCTCCATCAATAGTGGTAATTA
    CTACTGGAGCTGGATCCGCCAGCACCCAGGAAA
    GGGCCTGGAGTGGATTGGGTACATCTATCACAG
    TGGGAGCGCCTACTACAACCCGTCCCTCAAGAG
    TCGAGTTACCATATCAGTGGACACGTCTAAGAA
    CCAGTTCTCCCTAAAGCTGAGTTCTGTGACTGCC
    GCGGACACGGCCGTGTATTACTGTGCGAGAACT
    ACGGGTGCTTCTGATATCTGGGGCCAAGGGATA
    ATGGTCACCGTCTCTTCA
    54H10.3 VH91 599 CAGGTGCAGGTAGTGCAGTCTGGGACTGAGGTG
    AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC
    AAGGCTTCTGGATACACCTTCACAGGCTACTAT
    ATACATTGGGTGCGACAGGCCCCTGGACAAGGG
    CTTGAGTGGATGGGATGGATCAACCCTAACAGT
    GGTGGCACAAACTATGCACAGAAGTTTCGGGGC
    AGGGTCACCATGACCAGGGACACGTCCATCAGC
    ACAGCCTACATGGAGCTGAGCAGGCTGAGATCT
    GACGACACGGCCGTGTATTACTGTGCGAGAGAG
    GAAGACTACAGTGACCACCACTACTTTGACTAC
    TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
    55A7 VH92 600 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG
    GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC
    ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT
    GGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA
    CTGGAGTGGATTGGGTATATCTATTACAGTGGG
    AGCACCAACTACAACCCCTCCCTCAAGAGTCGA
    GTCACCATATCAGTAGACACGTCCAAGAACCAG
    TTCTCCCTGAGGCTGAGCTCTGTGACCGCTGCGG
    ACACGGCCGTGTATTACTGTGCGAGAGGGATAA
    CTGGAACTATTGACTTCTGGGGCCAGGGAACCC
    TGGTCACCGTCTCCTCA
    55E6 VH93 601 GAAGTGCAGTTGGTGGAGTCTGGGGGAGGCTTG
    GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT
    GCAGCCTCTGGATTCACCTTCAGTAGCTATAGCA
    TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC
    TGGAGTGGATTTCATACATTAGTAGTGGTAGTA
    GTACCATATACCACGCAGACTCTGTGAAGGGCC
    GATTCACCATTTCCAGAGACAATGCCAAGAACT
    CACTGTATCTGCAAATGAACAGCCTGAGAGACG
    AGGACACGGCTGTGTATTACTGTGCGAGAGAAG
    GGTACTATGATAGTAGTGGTTATTACTACAACG
    GTATGGACGTCTGGGGCCAAGGGACCACGGTCA
    CCGTCTCCTCA
    61E1 VH94 602 CAGGTACAGCTACAGCAGTCAGGTCCAGGACTG
    GTGAAGCCCTCGCAGACCCTCTCACTCACCTGTG
    CCATCTCCGGGGACAGTGTCTCTAGCAACAGTG
    CTGCTTGGAACTGGATCAGGCAGTCCCCATCGA
    GAGGCCTTGAGTGGCTGGGAAGGACATACTACA
    GGTCCAAGTGGTATAATGATTATGCAGTATCTGT
    GAAAAGTCGAATAACCATCACCCCAGACACATC
    CAAGAACCAGTTCTCCCTGCAGCTGAAGTCTGT
    GACTCCCGAGGACACGGCTATTTATTACTGTGC
    AAGAGAGGGCAGCTGGTCCTCCTTCTTTGACTA
    CTGGGGCCAGGGAACCCTGGTCACCGTTTCCTCA
  • Each of the heavy chain variable regions listed in Table 2B can be combined with any of the light chain variable regions shown in Table 2A to form an antigen binding protein. Examples of such combinations include V H1 combined with any of V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100; V H2 combined with any of V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100; V H3 combined with any of V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100; and so on.
  • In some instances, the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in Tables 2A and 2B. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from those listed in Table 2B. An example of such an antigen binding protein comprises (a) one V H1, and (b) one of V H2, V H3, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94. Another example comprises (a) one V H2, and (b) one of V H1, V H3, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94. Yet another example comprises (a) one V H3, and (b) one of V H1, V H2, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94, etc. Still another example of such an antigen binding protein comprises (a) one V L1, and (b) one of V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100. Again another example of such an antigen binding protein comprises (a) one V L2, and (b) one of V L1, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100. Again another example of such an antigen binding protein comprises (a) one V L3, and (b) one of V L1, V L2, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100, etc.
  • The various combinations of heavy chain variable regions can be combined with any of the various combinations of light chain variable regions.
  • In other embodiments, an antigen binding protein comprises two identical light chain variable regions and/or two identical heavy chain variable regions. As an example, the antigen binding protein can be an antibody or immunologically functional fragment thereof that includes two light chain variable regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in Tables 2A and 2B.
  • Some antigen binding proteins that are provided comprise a heavy chain variable domain comprising a sequence of amino acids that differs from the sequence of a heavy chain variable domain selected from V H1, V H2, V H3, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid, with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The heavy chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the heavy chain variable region of V H1, V H2, V H3, V H4, V H5, V H6, V H7, V H8, V H9, V H10, V H11, V H12, V H13, V H14, V H15, V H16, V H17, VH18, VH19, V H20, VH21 VH22, V H23, V H24, V H25, V H26, V H27, VH28, VH29, V H30, V H31, VH32, VH33, VH34, VH35, VH36, VH37, V H38, VH39, V H40, VH41, VH42, V H43, VH44, VH45, VH46, VH47, VH48, VH49, V H50, VH51, V H52, V H53, VH54, VH55, V H56, VH57, VH58, VH59, V H60, VH61, VH62, VH63, V H64, V H65, V H66, VH67, VH68, VH69, V H70, V H71, V H72, V H73, V H74, VH75, VH76, VH77, VH78, VH79, V H80, 81, VH82, VH83, VH84, V H85, VH 86, VH 87, VH88, VH89, V H90, VH91, VH92, VH93, and VH94.
  • Certain antigen binding proteins comprise a light chain variable domain comprising a sequence of amino acids that differs from the sequence of a light chain variable domain selected from V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VAL VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid, with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The light chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the light chain variable region of V L1, V L2, V L3, V L4, V L5, V L6, V L7, V L8, V L9, V L10, V L11, V L12, V L13, V L14, V L15, V L16, V L17, VL18, VL19, V L20, VL21, VL22, V L23, V L24, V L25, V L26, V L27, VL28, VL29, V L30, V L31, VL32, VL33, VL34, VL35, VL36, VL37, V L38, VL39, V L40, VL41, VL42, V L43, VL44, VL45, VL46, VL47, VL48, VL49, V L50, VL51, V L52, V L53, VL54, VL55, V L56, VL57, VL58, VL59, V L60, VL61, VL62, VL63, V L64, V L65, V L66, VL67, VL68, VL69, V L70, V L71, V L72, V L73, V L74, VL75, VL76, VL77, VL78, VL79, V L80, V L81, VL82, VL83, VL84, V L85, VL86, VL87, VL88, VL89, V L90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and V L100.
  • In additional instances, antigen binding proteins comprise the following pairings of light chain and heavy chain variable domains: V L1 with V H1, V L2 with V H1, V L3 with V H2 or V H3, V L4 with V H4, V L5 with V H5, V L6 with V H6, V L7 with V H6, V L8 with V H7 or V H8, V L9 with V H9, V L10 with V H9, V L11 with V H 10, V L12 with V H11, V L13 with V H12, V L13 with V H14, V L14 with V H13, V L15 with V H14, V L16 with V H15, V L17 with V H16, VL18 with V H17, VL19 with VH18, V L20 with VH19, VL21 with V H20, VL22 with VH21, V L23 with VH22, V L24 with V H23, V L25 with V H24, V L26 with V H25, V L27 with V H26, VL28 with V H27, VL29 with VH28, V L30 with VH29, V L31 with V H30, VL32 with V H31, VL33 with VH32, VL34 with VH33, VL35 with VH34, VL36 with VH35, VL37 with VH36, V L38 with VH37, VL39 with V H38, V L40 with VH39, VL41 with V H40, VL42 with VH41, V L43 with VH42, VL44 with V H43, VL45 with VH44, VL46 with VH45, VL47 with VH46, VL48 with VH47, VL49 with VH48, V L50 with VH49, VL51 with V H50, 52 with VH51, V L53 with V H52, VL54 with V H53, VL55 with 54, and V L56 with VH54, VL57 with VH54, VL58 with VH55, VL59 with V H56, V L60 with VH57, VL61 with VH58, VL62 with VH59, VL63 with V H60, V L64 with V H1, V L65 with VH62, V L66 with VH63, VL67 with V H64, VL68 with V H65, VL69 with V H66, V L70 with VH67, V L71 with VH68, V L72 with VH69, V L73 with V H70, V L74 with V H70, and VL75 with V H70, VL76 with V H71, VL77 with V H72, VL78 with V H73, VL79 with V H74, V L80 with VH75, V L81 with VH76, VL82 with VH77, VL83 with VH78, VL84 with VH79, V L85 with V H80, VL86 with V H81, VL87 with VH82, VL88 with VH86, VL89 with VH83, V L90 with VH84, VL91 with V H85, VL 92 with VH 87, VL 93 with VH 88, VL 94 with VH 88, VL 95 with VH 89, VL 96 with V H 90, VL 97 with VH 91, VL 98 with VH 92, VL 99 with VH 93, and V L 100 with VH 94.
  • In some instances, the antigen binding proteins in the above pairings can comprise amino acid sequences that have 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with the specified variable domains.
  • Still other antigen binding proteins, e.g., antibodies or immunologically functional fragments, include variant forms of a variant heavy chain and a variant light chain as just described.
  • Antigen Binding Protein CDRs
  • In various embodiments, the antigen binding proteins disclosed herein can comprise polypeptides into which one or more CDRs are grafted, inserted and/or joined. An antigen binding protein can have 1, 2, 3, 4, 5 or 6 CDRs. An antigen binding protein thus can have, for example, one heavy chain CDR1 (“CDRH1”), and/or one heavy chain CDR2 (“CDRH2”), and/or one heavy chain CDR3 (“CDRH3”), and/or one light chain CDR1 (“CDRL1”), and/or one light chain CDR2 (“CDRL2”), and/or one light chain CDR3 (“CDRL3”). Some antigen binding proteins include both a CDRH3 and a CDRL3. Specific heavy and light chain CDRs are identified in Tables 3A and 3B, respectively, infra.
  • Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented in the Kabat nomenclature scheme, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670). Certain antibodies that are disclosed herein comprise one or more amino acid sequences that are identical or have substantial sequence identity to the amino acid sequences of one or more of the CDRs presented in Table 3A (CDRHs) and Table 3B (CDRLs), infra.
  • TABLE 3A
    Exemplary CDRH Sequences
    Con-
    tained
    SEQ in
    ID Refer- Designa-
    Clone NO: ence tion Sequence
    48C9 603 V H73 CDRH1-1 GYYWT
    49A12 V H73
    51E2 V H73
    48F3 604 V H72 CDRH1-2 GYYWS
    51E5 V H74
    52C5 V H70
    55E4 V H70
    60G5.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    56G1 V H71
    51C1 VH89
    48F8 605 VH48 CDRH1-3 SYSMN
    51G2 V H50
    56A7 VH51
    53B9 VH48
    56B4 VH48
    57E7 VH48
    57F11 VH48
    56E4 VH51
    55E6 VH93
    48H11 606 VH39 CDRH1-4 GYYKH
    48G4 607 VH83 CDRH1-5 ELSIH
    53C3.1 VH83
    49A10 608 VH62 CDRH1-6 NYGMH
    58C2 V H85
    59G10.2 VH57
    48D4 VH62
    49C8 609 VH44 CDRH1-7 SYDID
    52H1 VH44
    49G2 610 VH63 CDRH1-8 NYGMR
    50C12 VH63
    55G11 VH63
    49G3 611 VH46 CDRH1-9 NPRMGVS
    49H12 612 VH42 CDRH1-10 SYDIN
    54A1 V H43
    55G9 V H43
    50G1 613 VH84 CDRH1-11 SYGLH
    51A8 614 VH58 CDRH1-12 SYGMH
    52C1 V H64
    53H5.2 VH59
    56C11 VH61
    60D7 V H66
    64H5 V H7
    65G4 V H8
    66G2 V H11
    68G5 V H12
    64C8 V H23
    67G8 V H27
    68D3v2
    51C10.1 615 VH54 CDRH1-13 NYAMS
    59D10v1 VH54
    59D10v2 VH54
    51C10.2 616 VH67 CDRH1-14 SGGYYWS
    64A6 VH29
    52A8 617 V H40 CDRH1-15 GYYLH
    66B4 V H10
    52B8 618 VH77 CDRH1-16 YYYWS
    52F8 619 VH41 CDRH1-17 GYYTH
    52H2 620 VH79 CDRH1-18 TYYWS
    53F6 621 V H60 CDRH1-19 TYGMH
    53H5.3 622 VH75 CDRH1-20 DYYWN
    54H10.1 623 V H52 CDRH1-21 SYAMS
    60F9 VH55
    61G5 V H56
    55D1 V H52
    48H3 V H52
    53C11 V H52
    48B4 VH55
    52D6 VH55
    55D3 624 VH68 CDRH1-22 SGVYYWN
    55E9 625 V H65 CDRH1-23 SFGMH
    55G5 626 VH78 CDRH1-24 SYYWS
    65C3 V H5
    68D5 V H5
    67F5 V H31
    55A7 VH92
    56E7 627 V H81 CDRH1-25 SYWIG
    67A5 VH34
    67C10 VH35
    64H6 VH36
    56G3.2 628 V H80 CDRH1-26 SYYWN
    56G3.3 629 VH76 CDRH1-27 SSSYYWG
    55B10 VH76
    61H5 VH86
    52B9 VH86
    57B12 630 VH69 CDRH1-28 SGVYYWS
    57D9 631 VH82 CDRH1-29 SNSATWN
    59A10 632 VH47 CDRH1-30 DSYMS
    49H4 VH47
    59C9 633 VH49 CDRH1-31 SYSMS
    58A5 VH49
    57A4 VH49
    57F9 VH49
    59G10.3 634 V H53 CDRH1-32 HYAMS
    60G5.2 635 VH45 CDRH1-33 NYGIS
    63G8 636 V H1 CDRH1-34 SYGIH
    64A8 V H1
    67B4 V H1
    68D3 V H1
    64E6 637 V H2 CDRH1-35 SGDYYWT
    65E8 V H2
    65F11 V H2
    67G7 V H2
    63H11 V H3
    63F5 V H13
    65C1 V H15
    66F6 V H14
    63B6 638 V H4 CDRH1-36 SGDYYWS
    64D4 V H4
    65F9 V H30
    64B10 VH32
    64B10v2
    63E6 639 V H6 CDRH1-37 GYYMH
    66F7 V H6
    50G5 v1 VH88
    50G5 v2 VH88
    67G10v1 640 V H9 CDRH1-38 NAWMS
    67G10v2 VH9VH21
    63A10 VH22
    65H11
    53C3.2 641 V H90 CDRH1-39 SGNYYWS
    64A7 642 V H16 CDRH1-40 SDTSYWG
    50D4 643 VH87 CDRH1-41 SHDIN
    61E1 644 VH94 CDRH1-42 SNSAAWN
    66D4 645 V H17 CDRH1-43 GYYIH
    54H10.3 VH91
    65B1 646 VH18 CDRH1-44 GYFMH
    67A4 647 VH19 CDRH1-45 TYDMH
    65B4 648 V H20 CDRH1-46 SYDMH
    65E3 649 V H24 CDRH1-47 NYNMH
    65D4 650 V H25 CDRH1-48 FYGMH
    65D1 651 V H26 CDRH1-49 YYYIH
    65B7 652 VH28 CDRH1-50 SDAYYWS
    68C8 653 VH33 CDRH1-51 SGDNYWS
    63F9 654 VH37 CDRH1-52 SGGYYWN
    67F6v1 655 V H38 CDRH1-53 GYWIG
    67F6v2 V H38
    48C9 656 V H73 CDRH2-1 EINHSENTNYNPSLKS
    52C5 V H70
    55E4 V H70
    56G1 V H71
    49A12 V H73
    51E2 V H73
    60G5.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    51C1 VH89
    48F3 657 V H72 CDRH2-2 EITHTGSSNYNPSLKS
    48F8 658 VH48 CDRH2-3 SISSSSSYEYYVDSVKG
    53B9 VH48
    56B4 VH48
    57E7 VH48
    57F11 VH48
    48H11 659 VH39 CDRH2-4 WINPNSGATKYAQKFQG
    48G4 660 VH83 CDRH2-5 GFDPEDGETIYAQKFQG
    53C3.1 VH83
    49A10 661 VH62 CDRH2-6 IIWYDGSNKNYADSVKG
    48D4 VH62
    49C8 662 VH44 CDRH2-7 WMNPNGGNTGYAQKFQG
    52H1 VH44
    49G2 663 VH63 CDRH2-8 LIWYDGSNKFYADSVKG
    50C12 VH63
    55G11 VH63
    49G3 664 VH46 CDRH2-9 HIFSNDEKSYSTSLKS
    49H12 665 VH42 CDRH2-10 WMNPYSGSTGYAQNFQG
    50G1 666 VH84 CDRH2-11 VIWNDGSNKLYADSVKG
    51A8 667 VH58 CDRH2-12 VISYDGSNKYYADSVKG
    63G8 V H1
    64A8 V H1
    67B4 V H1
    68D3 V H1
    51C10.1 668 VH54 CDRH2-13 GISGSSAGTYYADSVKG
    59D10v1 VH54
    59D10v2 VH54
    51C10.2 669 VH67 CDRH2-14 YIYYNGSPYDNPSLKR
    51E5 670 V H74 CDRH2-15 ELDHSGSINYNPSLKS
    51G2 671 V H50 CDRH2-16 SISSSSTYIYYADSVKG
    56A7 VH51
    56E4 VH51
    52A8 672 V H40 CDRH2-17 WINPNSAATNYAPKFQG
    52B8 673 VH77 CDRH2-18 YIYYSGSTNYNPSLKS
    55A7 VH92
    52C1 674 V H64 CDRH2-19 VIWYDGSNNYYADSVKG
    52F8 675 VH41 CDRH2-20 WINPSSGDTKYAQKFQG
    52H2 676 VH79 CDRH2-21 YIFYNGNANYSPSLKS
    53F6 677 V H60 CDRH2-22 VIWYDGSNKYYADSVKG
    60D7 V H66
    65D4 V H25
    53H5.2 678 VH59 CDRH2-23 LISYDGSNKYYADSVKG
    53H5.3 679 VH75 CDRH2-24 EINHSGTTNYNPSLKS
    54A1 680 V H43 CDRH2-25 WMNPHSGNTGYAQKFQG
    55G9 V H43
    54H10.1 681 V H52 CDRH2-26 AISGSGRTTYSADSVKG
    55D1 V H52
    48H3 V H52
    53C11 V H52
    55D3 682 VH68 CDRH2-27 YLYYSGSTYYNPSLKS
    55E9 683 V H65 CDRH2-28 LIWYDGDNKYYADSVKG
    55G5 684 VH78 CDRH2-29 RIYISGSTNYNPSLEN
    56C11 685 VH61 CDRH2-30 VIWYDGSYQFYADSVKG
    56E7 686 V H81 CDRH2-31 IIYPGDSDTRYSPSFQG
    67A5 VH34
    67C10 VH35
    67F6v1 V H38
    67F6v2 V H38
    56G3.2 687 V H80 CDRH2-32 RIYTSGSTNYNPSLKS
    56G3.3 688 VH76 CDRH2-33 MIYYSGTTYYNPSLKS
    55B10 VH76
    56G3.3 VH76
    57B12 689 VH69 CDRH2-34 YIYYSGSTYYNPSLKS
    63H11 V H3
    66F6 V H14
    65F9 V H30
    57D9 690 VH82 CDRH2-35 RTYYRSKWYNDYAVSVKS
    61E1 VH94
    58C2 691 V H85 CDRH2-36 VIWNDGNNKYYADSVKG
    59A10 692 VH47 CDRH2-37 SISSSGSIVYFADSVKG
    49H4 VH47
    59C9 693 VH49 CDRH2-38 SISSSSTYIYYADSLKG
    58A5 VH49
    57A4 VH49
    57F9 VH49
    59G10.2 694 VH57 CDRH2-39 ITSYGGSNKNYADSVKG
    59G10.3 695 V H53 CDRH2-40 AISGSGAGTFYADSMKG
    60F9 696 VH55 CDRH2-41 VISDSGGSTYYADSVKG
    48B4 VH55
    52D6 VH55
    60G5.2 697 VH45 CDRH2-42 WISAYNGYSNYAQKFQD
    61G5 698 V H56 CDRH2-43 VISGSGGDTYYADSVKG
    64E6 699 V H2 CDRH2-44 YIYYTGSTYYNPSLKS
    65E8 V H2
    65F11 V H2
    67G7 V H2
    63B6 700 V H4 CDRH2-45 YIYYSGTTYYNPSLKS
    64D4 V H4
    65C3 701 V H5 CDRH2-46 YIYYTGSTNYNPSLKS
    68D5 V H5
    63E6 702 V H6 CDRH2-47 WMNPNSGATKYAQKFQG
    66F7 V H6
    64H5 703 V H7 CDRH2-48 VIWDDGSNKYYADSVKG
    65G4 V H8
    67G10v1 704 V H9 CDRH2-49 RIKSKTDGGTTEYAAPVKG
    67G10v2 V H9
    63F5 705 V H13 CDRH2-50 YIYYSGSAYYNPSLKS
    64A7 706 V H16 CDRH2-51 NIYYSGTTYFNPSLKS
    65C1 707 V H15 CDRH2-52 YIFYSGSTYYNPSLKS
    65B7 VH28
    66B4 708 V H10 CDRH2-53 WINPNSGGTDYAQKFQG
    66G2 709 V H11 CDRH2-54 GISYDGSNKNYADSVKG
    68G5 710 V H12 CDRH2-55 VIWYDGSNKYHADSVKG
    66D4 711 V H17 CDRH2-56 WINPPSGATNYAQKFRG
    65B1 712 VH18 CDRH2-57 WINPNSGATNYAQKFHG
    67A4 713 VH19 CDRH2-58 AIGIAGDTYYSDSVKG
    65B4 714 V H20 CDRH2-59 TIDTAGDAYYPGSVKG
    63A10 715 VH21 CDRH2-60 RIKSKTDGGTTDYAAPVKG
    67G10v1
    67G10v2
    65H11 716 VH22 CDRH2-61 RIIGKTDGGTTDYAAPVKG
    64C8 717 V H23 CDRH2-62 VISYDGSNKHYADSVKG
    65E3 718 V H24 CDRH2-63 VLWYDGNTKYYADSVKG
    65D1 719 V H26 CDRH2-64 LIWYDGSNKDYADSVKG
    67G8 720 V H27 CDRH2-65 VIWYDGSNKDYADSVKG
    64A6 721 VH29 CDRH2-66 YIYYSGGTHYNPSLKS
    67F5 722 V H31 CDRH2-67 YIYYSGNTNYNPSLKS
    64B10 723 VH32 CDRH2-68 FIYYSGGTNYNPSLKS
    68C8 724 VH33 CDRH2-69 FMFYSGSTNYNPSLKS
    64H6 725 VH36 CDRH2-70 IIYPGDSETRYSPSFQG
    63F9 726 VH37 CDRH2-71 YIYDSGSTYYNPSLKS
    61H5 727 VH86 CDRH2-72 SIYYSGTTYYNPSLKS
    52B9 VH86
    50G5v1 728 VH88 CDRH2-73 WINPDSGGTNYAQKFQG
    50G5v2 VH88
    54H10.3 729 VH91 CDRH2-74 WINPNSGGTNYAQKFRG
    50D4 730 VH87 CDRH2-75 WMNPYSGSTGLAQRFQD
    55E6 731 VH93 CDRH2-76 YISSGSSTIYHADSVKG
    53C3.2 732 V H90 CDRH2-77 YIYHSGSAYYNPSLKS
    64B10v2 1868 VH96 CDRH2-78 FIYYSGGTNYNPPLKS
    68D3v2 1869 VH95 CDRH2-79 FISYAGSNKYYADSVKG
    48C9 733 V H73 CDRH3-1 ESGNFPFDY
    49A12 V H73
    51E2 V H73
    48F3 734 V H72 CDRH3-2 GGILWFGEQAFDI
    48F8 735 VH48 CDRH3-3 SLSIAVAASDY
    53B9 VH48
    56B4 VH48
    57E7 VH48
    57F11 VH48
    48H11 736 VH39 CDRH3-4 EVPDGIVVAGSNAFDF
    48G4 737 VH83 CDRH3-5 HSGSGRFYYYYYGMDV
    53C3.1 VH83
    49A10 738 VH62 CDRH3-6 DQDYDFWSGYPYFYYYGMDV
    48D4 VH62
    49C8 739 VH44 CDRH3-7 GKEFSRAEFDY
    52H1 VH44
    49G2 740 VH63 CDRH3-8 DRYYDFWSGYPYFFYYGLDV
    50C12 VH63
    55G11 VH63
    49G3 741 VH46 CDRH3-9 VDTLNYHYYGMDV
    49H12 742 VH42 CDRH3-10 YNWNYGAFDF
    54A1 V H43
    55G9 V H43
    50G1 743 VH84 CDRH3-11 DQYYDFWSGYPYYHYYGMDV
    51A8 744 VH58 CDRH3-12 ADGDYPYYYYYYGMDV
    51C10.1 745 VH54 CDRH3-13 DWSIAVAGTFDY
    59D10v1 VH54
    59D10v2 VH54
    51C10.2 746 VH67 CDRH3-14 GALYGMDV
    51E5 747 V H74 CDRH3-15 VLGSTLDY
    51G2 748 V H50 CDRH3-16 DTYISGWNYGMDV
    52A8 749 V H40 CDRH3-17 EGGTYNWFDP
    52B8 750 VH77 CDRH3-18 GTRAFDI
    52C1 751 V H64 CDRH3-19 DRAGASPGMDV
    52C5 752 V H70 CDRH3-20 VTGTDAFDF
    60G5.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    51C1 VH89
    55E4 V H70
    56G1 V H71
    52F8 753 VH41 CDRH3-21 SGWYPSYYYGMDV
    52H2 754 VH79 CDRH3-22 ETDYGDYARPFEY
    53F6 755 V H60 CDRH3-23 GHYDSSGPRDY
    53H5.2 756 VH59 CDRH3-24 EANWGYNYYGMDV
    53H5.3 757 VH75 CDRH3-25 ILRYFDWLEYYFDY
    61E1 758 VH94 CDRH3-26 EGSWSSFFDY
    54H10 759 V H52 CDRH3-27 EQQWLVYFDY
    55D1 V H52
    48H3 V H52
    53C11 V H52
    55D3 760 VH68 CDRH3-28 DGITMVRGVTHYYGMDV
    57B12 VH69
    55E6 761 VH93 CDRH3-29 EGYYDSSGYYYNGMDV
    55E9 762 V H65 CDRH3-30 NSGWDYFYYYGMDV
    55G5 763 VH78 CDRH3-31 SGSYSFDY
    56A7 764 VH51 CDRH3-32 DIYSSGWSYGMDV
    56E4 VH51
    56C11 765 VH61 CDRH3-33 DHVWRTYRYIFDY
    56E7 766 V H81 CDRH3-34 AQLGIFDY
    50G5v1 767 VH88 CDRH3-35 GGYSYGYEDYYGMDV
    50G5v2 VH88
    56G3.2 768 V H80 CDRH3-36 GPLWFDY
    56G3.3 769 VH76 CDRH3-37 VAAVYWYFDL
    55B10 VH76
    61H5 VH86
    52B9 VH86
    55A7 770 VH92 CDRH3-38 GITGTIDF
    57D9 771 VH82 CDRH3-39 IVVVPAVLFDY
    58C2 772 V H85 CDRH3-40 DQNYDFWNGYPYYFYYGMDV
    59A10 773 VH47 CDRH3-41 ETFSSGWFDAFDI
    49H4 VH47
    59C9 774 VH49 CDRH3-42 DRWSSGWNEGFDY
    58A5 VH49
    57A4 VH49
    57F9 VH49
    53C3.2 775 V H90 CDRH3-43 TTGASDI
    59G10.2 776 VH57 CDRH3-44 EAGYSFDY
    59G10.3 777 V H53 CDRH3-45 DLRIAVAGSFDY
    60D7 778 V H66 CDRH3-46 DQYFDFWSGYPFFYYYGMDV
    60F9 779 VH55 CDRH3-47 DHSSGWYYYGMDV
    48B4 VH55
    52D6 VH55
    60G5.2 780 VH45 CDRH3-48 EEKQLVKDYYYYGMDV
    61G5 781 V H56 CDRH3-49 DHTSGWYYYGMDV
    63G8 782 V H1 CDRH3-50 TVTKEDYYYYGMDV
    64A8 V H1
    67B4 V H1
    68D3 V H1
    66G2 V H11
    64E6 783 V H2 CDRH3-51 MTTPYWYFDL
    65E8 V H2
    65F11 V H2
    67G7 V H2
    63H11 V H3
    63F5 V H13
    66F6 V H14
    63B6 784 V H4 CDRH3-52 MTTPYWYFGL
    64D4 V H4
    65C3 785 V H5 CDRH3-53 EYYYGSGSYYP
    68D5 V H5
    67F5 V H31
    63E6 786 V H6 CDRH3-54 ELGDYPFFDY
    66F7 V H6
    64H5 787 V H7 CDRH3-55 EYVAEAGFDY
    65G4 V H8
    67G10v1 788 V H9 CDRH3-56 DSSGSYYVEDYFDY
    67G10 v2 V H9
    63A10 VH21
    65H11 VH22
    64A7 789 V H16 CDRH3-57 LRGVYWYFDL
    65C1 790 V H15 CDRH3-58 MTSPYWYFDL
    66B4 791 V H10 CDRH3-59 DAATGRYYFDN
    68G5 792 V H12 CDRH3-60 DPGYSYGHFDY
    66D4 793 V H17 CDRH3-61 ETGTWSFFDY
    65B1 794 VH18 CDRH3-62 ELGIFNWFDP
    67A4 795 VH19 CDRH3-63 DRSSGRFGDYYGMDV
    65B4 796 V H20 CDRH3-64 DRSSGRFGDFYGMDV
    64C8 797 V H23 CDRH3-65 ELLWFGEYGVDHGMDV
    65E3 798 V H24 CDRH3-66 DVYGDYFAY
    65D4 799 V H25 CDRH3-67 ALNWNFFDY
    65D1 800 V H26 CDRH3-68 EGTTRRGFDY
    67G8 801 V H27 CDRH3-69 SAVALYNWFDP
    65B7 802 VH28 CDRH3-70 ESRILYFNGYFQH
    64A6 803 VH29 CDRH3-71 VLHYSDSRGYSYYSDF
    65F9 804 V H30 CDRH3-72 VLHYYDSSGYSYYFDY
    64B10v1 805 VH32 CDRH3-73 YSSTWDYYYGVDV
    64B10v2 VH32
    68C8 806 VH33 CDRH3-74 YRSDWDYYYGMDV
    67A5 807 VH34 CDRH3-75 RASRGYRFGLAFAI
    67C10 808 VH35 CDRH3-76 RASRGYRYGLAFAI
    64H6 809 VH36 CDRH3-77 VAVSAFNWFDP
    63F9 810 VH37 CDRH3-78 DVLMVYTKGGYYYYGVDV
    67F6v1 811 V H38 CDRH3-79 RASRGYSYGHAFDF
    67F6v2 V H38
    50D4 812 VH87 CDRH3-80 DLSSGYYYYGLDV
    54H10.3 813 VH91 CDRH3-81 EEDYSDHHYFDY
    66D4 1870 V H17 CDRH3-82 ETGTWNFFDY
    68D3v2 1871 VH95 CDRH3-83 TVTEEDYYYYGMDV
  • TABLE 3B
    Exemplary CDRL Sequences
    SEQ Contained
    ID in Desig- Amino Acid
    Clone NO: Reference nation Sequence
    48C9 814 VL78 CDRL1-1 RASQNIRTYLN
    49A12 VL78
    51E2 VL78
    48F3 815 VL77 CDRL1-2 RASQRISSYLN
    48F8 816 VL49 CDRL1-3 RASQDIGNSLH
    53B9 VL49
    56B4 VL49
    57E7 VL49
    57F11 VL49
    48H11 817 V L40 CDRL1-4 RASQNIRSYLN
    49A10 818 V L65 CDRL1-5 RSSQSLLDSDDGNTYLD
    48D4 V L65
    49C8 819 VL45 CDRL1-6 QASQDINIYLN
    52H1 VL45
    49G2 820 V L66 CDRL1-7 RSSQSLLDSDDGDTYLD
    50C12 V L66
    55G11 V L66
    60D7 VL69
    50G1 V L90
    49G3 821 VL47 CDRL1-8 QASQGISNYLN
    49H12 822 V L43 CDRL1-9 QASQDITKYLN
    51A8 823 VL61 CDRL1-10 TRSSGSIASDYVQ
    51C10.1 824 VL55 CDRL1-11 SGDALPKKYAY
    51C10.2 825 V L70 CDRL1-12 SGDELGDKYAC
    51E5 826 VL79 CDRL1-13 RASQDIRNDLG
    63G8v1 VL104
    64A8 V L1
    67B4 V L1
    68D3 V L2
    51G2 827 VL51 CDRL1-14 RASQGISSWLA
    59A10 VL48
    49H4 VL48
    52A8 828 VL41 CDRL1-15 RASQTISSYLN
    52B8 829 VL82 CDRL1-16 RASQSVSDILA
    52C1 830 VL67 CDRL1-17 SGSSSNIGINYVS
    52C5 831 V L73 CDRL1-18 RASQSISNYLN
    55E4 VL75
    49B11 VL75
    50H10 VL75
    53C1 VL75
    56G1 VL76
    51C1 VL95
    60G5.1 V L74
    52F8 832 VL42 CDRL1-19 RSSQSLLHSNGYNYLD
    52H2 833 VL84 CDRL1-20 RASQSVRSSYLA
    53F6 834 VL63 CDRL1-21 RSSQSLQHSNGYNYLD
    53H5.2 835 VL62 CDRL1-22 RASQGIRNDLG
    50G5 v1 VL93
    66G2 V L12
    53H5.3 836 V L80 CDRL1-23 RASQSVSSNVA
    54A1 837 VL44 CDRL1-24 QASQDISIYLN
    55G9 VL44
    54H10.1 838 V L53 CDRL1-25 RASQSFSSSYLA
    55D1 V L53
    48H3 V L53
    53C11 V L53
    55D3 839 V L71 CDRL1-26 RASQDISNYLA
    50D4 VL92
    55E9 840 VL68 CDRL1-27 RSSQSLLHSNGFNYLD
    55G5 841 VL83 CDRL1-28 SGDNLGDKYAF
    56A7 842 V L52 CDRL1-29 RASQDISSWLA
    56E4 V L52
    56C11 843 V L64 CDRL1-30 GGNDIGSKSVH
    56E7 844 VL86 CDRL1-31 QASQDIKKFLN
    56G3.2 845 V L85 CDRL1-32 RARQSVGSNLI
    56G3.3 846 V L81 CDRL1-33 RASQSVSRDYLA
    55B10 V L81
    61H5 VL88
    52B9 VL88
    57B12 847 V L72 CDRL1-34 RASHDISNYLA
    57D9 848 VL87 CDRL1-35 RASPSVSSSYLA
    53C3.2 849 VL96 CDRL1-36 RASQSISSNLA
    59C9 850 V L50 CDRL1-37 RASQDIDSWLV
    58A5 V L50
    57A4 V L50
    57F9 V L50
    59D10 v1 851 V L56 CDRL1-38 SGDAVPKKYAN
    59D10 v2 852 VL57 CDRL1-39 SGDKLGDKYVC
    65D1 V L27
    59G10.2 853 V L60 CDRL1-40 SGDNLGDKYAC
    59G10.3 854 VL54 CDRL1-41 SGSSSNIGDNYVS
    54H10.3 855 VL97 CDRL1-84 RASQTISIYLN
    60F9 856 VL58 CDRL1-43 RASQRVPSSYIV
    48B4 VL58
    52D6 VL58
    60G5.2 857 VL46 CDRL1-44 SGNKLGDKYVC
    61G5 858 VL59 CDRL1-45 RASQRVPSSYLV
    64E6 859 V L3 CDRL1-46 RASQSVRNSYLA
    65E8 V L3
    65F11 V L3
    67G7 V L3
    63H11 V L3
    66F6 V L15
    63B6 860 V L4 CDRL1-47 RASQSVSNSYLA
    64D4 V L4
    65C3 861 V L5 CDRL1-48 RASQSVSSQLA
    68D5 V L5
    63E6 862 V L6 CDRL1-49 RTSQSISSYLN
    66F7 863 V L7 CDRL1-50 RTSQSISNYLN
    64H5 864 V L8 CDRL1-51 GGNNIGSKNVH
    65G4 V L8
    65E3 V L25
    64H6 VL37
    67G10 v1 865 V L9 CDRL1-52 GGNNIGSKAVH
    63A10 v1 VL22
    63A10v2 VL101
    67G10 v2 866 V L10 CDRL1-53 SGDKLGDKYAC
    63F5 867 V L14 CDRL1-54 RASQTVRNNYLA
    64A7 868 V L17 CDRL1-55 RASQSVSRNYLA
    65C1 869 VL16 CDRL1-56 RASQTIRNSYLA
    66B4 870 V L11 CDRL1-57 RASQGISRWLA
    55A7 871 VL98 CDRL1-58 RASQSISSYLN
    68G5 872 V L13 CDRL1-59 GGNNIGSINVH
    66D4 873 VL18 CDRL1-60 RASQIISRYLN
    65B1 874 VL19 CDRL1-61 RASQNINNYLN
    67A4 875 V L20 CDRL1-62 GGNNIGSKSVH
    65B4 876 VL21 CDRL1-63 GGNNIGSKSVQ
    55E6 877 VL99 CDRL1-64 RASQSVSRSHLA
    65H11 878 V L23 CDRL1-65 GGNNIGSKTVH
    64C8 879 V L24 CDRL1-66 RSSPSLVYSDGNTYLN
    65D4 880 V L26 CDRL1-67 GGNDIGSKNVH
    61E1 881 V L100 CDRL1-68 RASQSIGTFLN
    67G8 882 VL28 CDRL1-69 GGNNIGSYNVF
    65B7 883 VL29 CDRL1-70 RASQSVSSMYLA
    64A6 884 V L30 CDRL1-71 RASQSVNSNLA
    65F9 885 V L31 CDRL1-72 RASQSVSSNLA
    67F5 VL32
    64B10 886 VL33 CDRL1-73 SGSSSNIGNNYVA
    68C8 887 VL34 CDRL1-74 SGSSSNIGNNYVS
    67A5 888 VL35 CDRL1-75 RSSQSLLNSDDGNTYLD
    67C10 VL36
    63F9 889 V L38 CDRL1-76 RASQDIRNDLA
    67F6v1 890 VL39 CDRL1-77 RSSQSLLNSDAGTTYLD
    50G5v2 891 VL94 CDRL1-78 RSSQRLVYSDGNTYLN
    48G4 892 VL89 CDRL1-79 RASQSVASSYLV
    53C3.1 VL89
    58C2 893 VL91 CDRL1-81 RSSQSLFDNDDGDTYLD
    68G8v2 1872 VL105 CDRL1-82 RASQGIRSGLG
    68G8v3 VL106
    65B7v1 1873 VL29 CDRL1-83 RASQSVSSIYLA
    67F6v2 1874 VL108 CDRL1-84 RSSQSLLNSDAGTTYLD
    65B7v2 1875 VL107 CDRL1-85 RSSQSLVYSDGDTYLN
    65H11v2 1876 VL103 CDRL1-86 SGDKLGDRYVC
    63A10v3 1877 VL102 CDRL1-87 SGDKLGNRYTC
    48C9 894 VL78 CDRL2-1 VASSLES
    49A12 VL78
    51E2 VL78
    48F3 895 VL77 CDRL2-2 AVSSLQS
    48F8 896 VL49 CDRL2-3 FASQSFS
    53B9 VL49
    56B4 VL49
    57E7 VL49
    57F11 VL49
    48H11 897 V L40 CDRL2-4 GASNLQS
    49A10 898 V L65 CDRL2-5 TLSYRAS
    48D4 V L65
    49G2 V L66
    50C12 V L66
    55G11 V L66
    60D7 VL69
    67A5 VL35
    67C10 VL36
    50G1 V L90
    58C2 VL91
    49C8 899 VL45 CDRL2-6 DVSNLET
    52H1 VL45
    54A1 VL44
    55G9 VL44
    49G3 900 VL47 CDRL2-7 DASNLET
    56E7 VL86
    49H12 901 V L43 CDRL2-8 DTFILET
    51A8 902 VL61 CDRL2-9 EDKERSS
    51C10.1 903 VL55 CDRL2-10 EDSKRPS
    59D10v1 V L56
    51C10.2 904 V L70 CDRL2-11 QDTKRPS
    59G10.2 V L60
    51E5 905 VL79 CDRL2-12 AASSLQF
    51G2 906 VL51 CDRL2-13 DASSLQS
    52A8 907 VL41 CDRL2-14 AASSLQS
    52C5 V L73
    53H5.2 VL62
    55D3 V L71
    56G1 VL76
    57B12 V L72
    63E6 V L6
    66F7 V L7
    66D4 VL18
    50G5 v1 VL93
    51C1 VL95
    55A7 VL98
    61E1 V L100
    60G5.1 V L74
    52B8 908 VL82 CDRL2-15 GASTRAT
    53H5.3 V L80
    65F9 V L31
    52C1 909 VL67 CDRL2-16 DNNKRPS
    59G10.3 VL54
    68C8 VL34
    52F8 910 VL42 CDRL2-17 LGSNRAS
    55E9 VL68
    52H2 911 VL84 CDRL2-18 GASRRAT
    53F6 912 VL63 CDRL2-19 LDSNRAS
    54H10.1 913 V L53 CDRL2-20 GASSRAT
    55D1 V L53
    48H3 V L53
    53C11 V L53
    57D9 VL87
    61H5 VL88
    52B9 VL88
    63F5 V L14
    64A7 V L17
    65B7 VL29
    55E6 VL99
    55E4 914 VL75 CDRL2-21 TASSLQS
    49B11 VL75
    50H10 VL75
    53C1 VL75
    50G5v2 915 VL94 CDRL2-22 KVSNWDS
    65B7v2
    55G5 916 VL83 CDRL2-23 QDNKRPS
    56A7 917 V L52 CDRL2-24 DASTLQS
    56E4 V L52
    56C11 918 V L64 CDRL2-25 DDSDRPS
    67A4 V L20
    65B4 VL21
    56G3.2 919 V L85 CDRL2-26 GASSRDT
    56G3.3 920 V L81 CDRL2-27 GASARAT
    55B10 V L81
    59A10 921 VL48 CDRL2-28 GASSLQS
    49H4 VL48
    59C9 922 V L50 CDRL2-29 AASNLQR
    58A5 V L50
    57A4 V L50
    57F9 V L50
    63G8v1 V L1
    63G8v2 V L1
    63G8v3 V L1
    64A8 V L2
    67B4
    68D3
    59D10 v2 923 VL57 CDRL2-30 QNNKRPS
    60F9 924 VL58 CDRL2-31 GSSNRAT
    48B4 VL58
    52D6 VL58
    60G5.2 925 VL46 CDRL2-32 QDSKRPS
    65D1 V L27
    65H11v2
    61G5 926 VL59 CDRL2-33 GASNRAT
    64E6 927 V L3 CDRL2-34 GAFSRAS
    65E8 V L3
    65F11 V L3
    67G7 V L3
    63H11 V L3
    63B6 928 V L4 CDRL2-35 GAFSRAT
    64D4 V L4
    65C1 V L16
    66F6 V L15
    48G4 VL89
    53C3.1 VL89
    65C3 929 V L5 CDRL2-36 GASNRAI
    68D5 V L5
    64H5 930 V L8 CDRL2-37 RDSKRPS
    65G4 V L8
    67G8 VL28
    64H6 VL37
    67G10 v1 931 V L9 CDRL2-38 SDSNRPS
    65H11 V L23
    67G10 v2 932 V L10 CDRL2-39 QDNERPS
    66B4 933 V L11 CDRL2-40 AASSLKS
    66G2 934 V L12 CDRL2-41 AASNLQS
    68G5 935 V L13 CDRL2-42 RDRNRPS
    65E3 V L25
    65D4 V L26
    65B1 936 VL19 CDRL2-43 TTSSLQS
    53C3.2 937 VL96 CDRL2-44 GTSIRAS
    63A10v1 938 VL22 CDRL2-45 CDSNRPS
    63A10v2 VL101
    54H10.3 939 VL97 CDRL2-46 SASSLQS
    64C8 940 V L24 CDRL2-47 KGSNWDS
    64A6 941 V L30 CDRL2-48 GTSTRAT
    67F5 942 VL32 CDRL2-49 GSSNRAI
    64B10 943 VL33 CDRL2-50 DNDKRPS
    63F9 944 V L38 CDRL2-51 ASSSLQS
    67F6 945 VL39 CDRL2-52 TLSFRAS
    67F6v2
    50D4 946 VL92 CDRL2-53 AASTLLS
    63A10v3 1878 VL102 CDRL2-54 QDSERPS
    48C9 947 VL78 CDRL3-1 QQSDSIPRT
    49A12
    51E2
    48F3 948 VL77 CDRL3-2 QQSYSATFT
    48F8 949 VL49 CDRL3-3 HQSSDLPLT
    53B9 VL49
    56B4 VL49
    57E7 VL49
    57F11 VL49
    48H11 950 V L40 CDRL3-4 QQSYNTPCS
    49A10 951 V L65 CDRL3-5 MQRIEFPIT
    48D4 V L65
    67C10 VL36
    67F6v1 VL39
    67F6v1 VL39
    49C8 952 VL45 CDRL3-6 QQYDNLPFT
    52H1 VL45
    49G2 953 V L66 CDRL3-7 MQHIEFPST
    50C12 V L66
    55G11 V L66
    49G3 954 VL47 CDRL3-8 HQYDDLPLT
    49H12 955 V L43 CDRL3-9 QQYDNLPLT
    54A1 VL44
    55G9 VL44
    51A8 956 VL61 CDRL3-10 QSYDRNNHVV
    51C10.1 957 VL55 CDRL3-11 YSTDSSVNHVV
    51C10.2 958 V L70 CDRL3-12 QAWDSGTVV
    51E5 959 VL79 CDRL3-13 LQHSSYPLT
    51G2 960 VL51 CDRL3-14 QQTNSFPPWT
    56A7 V L52
    56E4 V L52
    59A10 VL48
    49H4 VL48
    59C9 V L50
    58A5 V L50
    57A4 V L50
    57F9 V L50
    52A8 961 VL41 CDRL3-15 QQSYSTPLT
    65B1 VL19
    52B8 962 VL82 CDRL3-16 QQYNNWPLT
    56G3.2 V L85
    52C1 963 VL67 CDRL3-17 GTWDSSLSAVV
    64B10 VL33
    68C8 VL34
    52C5 964 V L73 CDRL3-18 QQSSSIPWT
    55E4 VL75
    49B11 VL75
    50H10 VL75
    53C1 VL75
    51C1 VL95
    60G5.1 V L74
    52F8 965 VL42 CDRL3-19 MQALQTPFT
    52H2 966 VL84 CDRL3-20 QQYGSSPRS
    53F6 967 VL63 CDRL3-21 MQGLQTPPT
    53H5.2 968 VL62 CDRL3-22 LQHKSYPFT
    53H5.3 969 V L80 CDRL3-23 QQFSNSIT
    54H10.1 970 V L53 CDRL3-24 QQYGSSRT
    55D1 V L53
    48H3 V L53
    53C11 V L53
    55D3 971 V L71 CDRL3-25 QQYNIYPRT
    55E9 972 VL68 CDRL3-26 MQALQTLIT
    55G5 973 VL83 CDRL3-27 QAWDSATVI
    56C11 974 V L64 CDRL3-28 QVWDSSSDVV
    56E7 975 VL86 CDRL3-29 QQYAILPFT
    56G1 976 VL76 CDRL3-30 QQSSTIPWT
    56G3.3 977 V L81 CDRL3-31 QQYGRSLFT
    55B10 V L81
    61H5 VL88
    52B9 VL88
    57B12 978 V L72 CDRL3-32 QQYNTYPRT
    57D9 979 VL87 CDRL3-33 HQYGTSPCS
    59D10 v1 980 V L56 CDRL3-34 YSTDSSGNHVV
    59D10 v2 981 VL57 CDRL3-35 QAWDSSTAV
    59G10.2 982 V L60 CDRL3-36 QAWDSSTTWV
    59G10.3 983 VL54 CDRL3-37 GTWDSSLSVMV
    60D7 984 VL69 CDRL3-38 MQRIEFPLT
    50G1 V L90
    60F9 985 VL58 CDRL3-39 QQYGSSPPWT
    48B4 VL58
    52D6 VL58
    61G5 VL59
    60G5.2 986 VL46 CDRL3-40 QAWDSSTWV
    63G8v1 987 V L1 CDRL3-41 LQHNSYPLT
    63G8v2 V L1
    64A8 V L1
    67B4 V L1
    68D3 V L2
    64E6 988 V L3 CDRL3-42 QQFGSSLT
    65E8 V L3
    65F11 V L3
    67G7 V L3
    63H11 VL3
    63F5 V L14
    65C1 V L16
    66F6 V L15
    63B6 989 V L4 CDRL3-43 QQFGRSFT
    64D4 V L4
    65C3 990 V L5 CDRL3-44 QQYNNWPWT
    68D5 V L5
    63E6 991 V L6 CDRL3-45 QQSYSTSLT
    66F7 V L7
    64H5 992 V L8 CDRL3-46 QVWDSSSVV
    65G4 V L8
    67G10 v1 993 V L9 CDRL3-47 QVWDSSSDGV
    67G10 v2 994 V L10 CDRL3-48 QAWDSTTVV
    64A10v3
    64A7 995 V L17 CDRL3-49 QQYGSSSLCS
    66B4 996 V L11 CDRL3-50 QQANSFPPT
    66G2 997 V L12 CDRL3-51 LQLNGYPLT
    68G5 998 V L13 CDRL3-52 QLWDSSTVV
    66D4 999 VL18 CDRL3-53 QQSYSSPLT
    54H10.3 VL97
    55A7 1000 VL98 CDRL3-54 QQTYSAPFT
    67A4 1001 V L20 CDRL3-55 QVWDSSSDHVV
    65B4 VL21
    63A10 1002 VL22 CDRL3-56 HACGSSSSDGV
    65H11 1003 V L23 CDRL3-57 QVWDSSCDGV
    64C8 1004 V L24 CDRL3-58 IQDTHWPTCS
    65E3 1005 V L25 CDRL3-59 QVWDSSTVV
    67G8 VL28
    65D4 1006 V L26 CDRL3-60 QVWDSNPVV
    65D1 1007 V L27 CDRL3-61 QAWDSRV
    65B7v1 1008 VL29 CDRL3-62 QQYGSSCS
    64A6 1009 V L30 CDRL3-63 QQYNTWPWT
    65F9 V L31
    67F5 1010 VL32 CDRL3-64 QQYEIWPWT
    55E6 1011 VL99 CDRL3-65 QQYGSSPWT
    67A5 1012 VL35 CDRL3-66 MQRLEFPIT
    58C2 VL91
    61E1 1013 V L100 CDRL3-67 QQSFSTPLT
    64H6 1014 VL37 CDRL3-68 QVWDSSPVV
    63F9 1015 V L38 CDRL3-69 LQRNSYPLT
    53C3.2 1016 VL96 CDRL3-70 HQYTNWPRT
    48G4 1017 VL89 CDRL3-71 QQYGTSPFT
    53C3.1 VL89
    50G5 v1 1018 VL93 CDRL3-72 LQHNSYPRT
    50D4 1019 VL92 CDRL3-74 QKYYSAPFT
    50G5 v2 1020 VL94 CDRL3-75 MEGTHWPRD
    63G8v3 1879 VL106 CDRL3-76 LQHNTYPLT
    65B7v2 1880 VL107 CDRL3-77 MQGTHWRGWT
    65H11v2 1881 VL103 CDRL3-78 QAWDSITVV
    63A10v1 1882 VL22 CDRL3-79 QVWDSSSDGV
  • TABLE 3C
    Coding Sequences for CDRHs
    SEQ Contained
    ID in
    Clone NO: Reference Designation Coding Sequences
    48C9 1021 V H73 CDRH1-1 GGTTACTACTGGACC
    49A12 V H73
    51E2 V H73
    48F3 1022 V H72 CDRH1-2 GGTTACTACTGGAGC
    51E5 V H74
    52C5 V H70
    55E4 V H70
    60G50.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    56G1 V H71
    51C1 VH89
    48F8 1023 VH48 CDRH1-3 AGCTATAGCATGAAC
    51G2 V H50
    56A7 VH51
    53B9 VH48
    56B4 VH48
    57E7 VH48
    57F11 VH48
    56E4 VH51
    55E6 VH93
    48H11 1024 VH39 CDRH1-4 GGCTACTATAAGCAC
    48G4 1025 VH83 CDRH1-5 GAATTATCCATACAC
    49A10 1026 VH62 CDRH1-6 AACTATGGCATGCAC
    58C2 V H85
    59G10.2 VH57
    48D4 VH62
    49C8 1027 VH44 CDRH1-7 AGTTATGATATCGAC
    52H1
    49G2 1028 VH63 CDRH1-8 AACTATGGCATGCGC
    50C12 VH63
    55G11 VH63
    49G3 1029 VH46 CDRH1-9 AATCCTAGAATGGGTGTGAGC
    49H12 1030 VH42 CDRH1-10 AGTTACGATATCAAC
    54A1 V H43
    55G9 V H43
    50G1 1031 VH84 CDRH1-11 AGCTATGGCCTGCAC
    51A8 1032 VH58 CDRH1-12 AGCTATGGCATGCAC
    52C1 V H64
    53H5.2 VH59
    56C11 VH61
    60D7 V H66
    64H5 V H7
    65G4 V H8
    66G2 V H11
    68G5 V H12
    64C8 V H23
    67G8 V H27
    68D3v2 V H8
    51C10.1 1033 VH54 CDRH1-13 AACTATGCCATGAGC
    59D10v1 VH54
    59D10v2 VH54
    51C10.2 1034 VH67 CDRH1-14 AGTGGTGGTTACTACTGGAGC
    64A6 VH29
    52A8 1035 V H40 CDRH1-15 GGCTACTATTTGCAC
    66B4 V H10
    52B8 1036 VH77 CDRH1-16 TATTATTACTGGAGT
    52F8 1037 VH41 CDRH1-17 GGCTACTATACACAC
    52H2 1038 VH79 CDRH1-18 ACTTACTACTGGAGC
    53F6 1039 V H60 CDRH1-19 ACCTATGGCATGCAC
    53H5.3 1040 VH75 CDRH1-20 GATTACTACTGGAAC
    54H10.1 1041 V H52 CDRH1-21 AGCTATGCCATGAGC
    60F9 VH55
    61G5 V H56
    55D1 V H52
    48H3 V H52
    53C11 V H52
    48B4 VH55
    52D6 VH55
    55D3 1042 VH68 CDRH1-22 AGTGGTGTTTACTACTGGAAC
    55E9 1043 V H65 CDRH1-23 AGCTTTGGCATGCAC
    55G5 1044 VH78 CDRH1-24 AGTTACTACTGGAGC
    65C3 V H5
    68D5 V H5
    67F5 V H31
    55A7 VH92
    56E7 1045 V H81 CDRH1-25 AGCTACTGGATCGGC
    67A5 VH34
    67C10 VH35
    64H6 VH36
    56G3.2 1046 V H80 CDRH1-26 AGTTACTACTGGAAC
    56G3.3 1047 VH76 CDRH1-27 AGTAGTAGTTACTACTGGGGC
    55B10 VH76
    61H5 VH86
    52B9 VH86
    57B12 1048 VH69 CDRH1-28 AGTGGTGTTTACTACTGGAGC
    57D9 1049 VH82 CDRH1-29 AGCAACAGTGCTACTTGGAAC
    59A10 1050 VH47 CDRH1-30 GACTCCTACATGAGC
    49H4
    59C9 1051 VH49 CDRH1-31 AGCTATAGCATGAGT
    58A5 VH49
    57A4 VH49
    57F9 VH49
    59G10.3 1052 V H53 CDRH1-32 CACTATGCCATGAGC
    60G5.2 1053 VH45 CDRH1-33 AACTATGGTATCAGC
    63G8 1054 V H1 CDRH1-34 AGCTATGGCATACAC
    64A8 V H1
    67B4 V H1
    68D3 V H1
    64E6 1055 V H2 CDRH1-35 AGTGGTGATTACTACTGGACC
    65E8 V H2
    65F11 V H2
    67G7 V H2
    63H11 V H3
    63F5 V H13
    65C1 V H15
    66F6 V H14
    63B6 1056 V H4 CDRH1-36 AGTGGTGATTACTACTGGAGC
    64D4 V H4
    65F9 V H30
    64B10v1 VH32
    64B10v1 VH32
    63E6 1057 V H6 CDRH1-37 AGTGGTGATTACTACTGGACC
    66F7 V H6
    50G5 v1 VH88
    50G5 v2 VH88
    67G10v1 1058 V H9 CDRH1-38 AACGCCTGGATGAGT
    67G10v2 V H9
    63A10 VH21
    65H11 VH22
    53C3.2 1059 V H90 CDRH1-39 AGTGGTAATTACTACTGGAGC
    64A7 1060 V H16 CDRH1-40 AGTGATACTTCCTACTGGGGC
    50D4 1061 VH87 CDRH1-41 AGTCATGATATCAAC
    61E1 1062 VH94 CDRH1-42 AGCAACAGTGCTGCTTGGAAC
    66D4 1063 V H17 CDRH1-43 GGCTACTATATACAC
    54H10.3 VH91
    65B1 1064 VH18 CDRH1-44 GGCTACTTTATGCAC
    67A4 1065 VH19 CDRH1-45 ACCTACGACATGCAC
    65B4 1066 V H20 CDRH1-46 AGTTACGACATGCAC
    65E3 1067 V H24 CDRH1-47 AACTATAACATGCAC
    65D4 1068 V H25 CDRH1-48 TTCTATGGCATGCAC
    65D1 1069 V H26 CDRH1-49 TACTATTACATTCAC
    65B7 1070 VH28 CDRH1-50 AGTGATGCTTACTACTGGAGC
    68C8 1071 VH33 CDRH1-51 AGTGGTGATAACTACTGGAGC
    63F9 1072 VH37 CDRH1-52 AGTGGTGGTTACTACTGGAAC
    67F6 1073 V H38 CDRH1-53 GGCTACTGGATCGGC
    48C9 1074 V H73 CDRH2-1 GAAATCAATCATAGTGAAAACACCAACT
    52C5 V H70 ACAACCCGTCCCTCAAGAGT
    55E4 V H70
    56G1 V H71
    49A12 V H73
    51E2 V H73
    60G5.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    51C1 VH89
    48F3 1075 V H72 CDRH2-2 GAAATCACTCATACTGGAAGCTCCAACT
    ACAACCCGTCCCTCAAGAGT
    48F8 1076 VH48 CDRH2-3 TCCATTAGTAGTAGTAGTAGTTACGAATA
    53B9 VH48 CTACGTAGACTCAGTGAAGGGC
    56B4 VH48
    57E7 VH48
    57F11 VH48
    48H11 1077 VH39 CDRH2-4 TGGATCAACCCTAACAGTGGTGCCACAA
    AGTATGCACAGAAGTTTCAGGGC
    48G4 1078 VH83 CDRH2-5 GGTTTTGATCCTGAAGATGGTGAAACAA
    53C3.1 TCTACGCACAGAAGTTCCAGGGC
    49A10 1079 VH62 CDRH2-6 ATTATATGGTATGATGGAAGTAATAAAA
    48D4 VH62 ACTATGCAGACTCCGTGAAGGGC
    49C8 1080 VH44 CDRH2-7 TGGATGAACCCTAACGGTGGTAACACAG
    GCTATGCACAGAAGTTCCAGGGC
    49G2 1081 VH63 CDRH2-8 CTTATATGGTATGATGGAAGTAATAAGTT
    50C12 VH63 CTATGCAGACTCCGTGAAGGGC
    55G11 VH63
    49G3 1082 VH46 CDRH2-9 CACATTTTTTCGAATGACGAAAAATCCTA
    CAGCACATCTCTGAAGAGC
    49H12 1083 VH42 CDRH2-10 TGGATGAACCCCTACAGTGGGAGCACAG
    GCTATGCACAGAATTTCCAGGGC
    50G1 1084 VH84 CDRH2-11 GTTATATGGAATGATGGAAGTAATAAGC
    TTTATGCAGACTCCGTGAAGGGC
    51A8 1085 VH58 CDRH2-12 GTTATATCATATGATGGAAGTAATAAAT
    63G8 V H1 ACTATGCAGACTCCGTGAAGGGC
    64A8 V H1
    67B4 V H1
    68D3 V H1
    51C10.1 1086 VH54 CDRH2-13 GGTATTAGTGGTAGTAGTGCTGGCACAT
    59D10v1 VH54 ACTACGCAGACTCCGTGAAGGGC
    59D10v2 VH54
    51C10.2 1087 VH67 CDRH2-14 TACATCTATTACAATGGGAGTCCCTACGA
    CAACCCGTCCCTCAAGAGG
    51E5 1088 V H74 CDRH2-15 GAACTCGATCATAGTGGAAGTATCAACT
    ACAACCCGTCCCTCAAGAGT
    51G2 1089 V H50 CDRH2-16 TCCATTAGTAGTAGTAGTACTTACATATA
    56A7 VH51 CTACGCAGACTCAGTGAAGGGC
    56E4 VH51
    52A8 1090 V H40 CDRH2-17 TGGATCAACCCTAACAGTGCTGCCACAA
    ACTATGCACCGAAGTTTCAGGGC
    52B8 1091 VH77 CDRH2-18 TATATCTATTATAGTGGGAGCACCAACTA
    55A7 VH92 CAACCCCTCCCTCAAGAGT
    52C1 1092 V H64 CDRH2-19 GTTATATGGTATGATGGAAGTAATAACT
    ATTATGCAGACTCCGTGAAGGGC
    52F8 1093 VH41 CDRH2-20 TGGATCAACCCTAGCAGTGGTGACACAA
    AGTATGCACAGAAGTTTCAGGGC
    52H2 1094 VH79 CDRH2-21 TATATCTTTTACAATGGGAACGCCAACTA
    CAGCCCCTCCCTGAAGAGT
    53F6 1095 V H60 CDRH2-22 GTTATATGGTATGATGGAAGTAATAAAT
    60D7 V H66 ACTATGCAGACTCCGTGAAGGGC
    65D4 V H25
    53H5.2 1096 VH59 CDRH2-23 CTTATATCATATGATGGAAGTAATAAATA
    CTATGCAGACTCCGTGAAGGGC
    53H5.3 1097 VH75 CDRH2-24 GAAATCAATCATAGTGGAACCACCAACT
    ACAATCCGTCCCTCAAGAGT
    54A1 1098 V H43 CDRH2-25 TGGATGAACCCTCACAGTGGTAACACAG
    55G9 V H43 GCTATGCACAGAAGTTCCAGGGC
    54H10.1 1099 V H52 CDRH2-26 GCTATTAGTGGTAGTGGTCGTACCACATA
    55D1 V H52 CTCCGCAGACTCCGTGAAGGGC
    48H3 V H52
    53C11 V H52
    55D3 1100 VH68 CDRH2-27 TACCTCTATTACAGTGGGAGCACCTACTA
    CAACCCGTCCCTCAAGAGT
    55E9 1101 V H65 CDRH2-28 CTTATATGGTATGATGGAGATAATAAAT
    ACTATGCAGACTCCGTGAAGGGC
    55G5 1102 VH78 CDRH2-29 CGTATCTATATCAGTGGGAGCACCAACT
    ACAACCCCTCCCTCGAGAAT
    56C11 1103 VH61 CDRH2-30 GTTATATGGTATGATGGAAGTTATCAATT
    CTATGCAGACTCCGTGAAGGGC
    56E7 1104 V H81 CDRH2-31 ATCATCTATCCTGGTGACTCTGATACCAG
    67A5 VH34 ATACAGCCCGTCCTTCCAAGGC
    67C10 VH35
    67F6 V H38
    56G3.2 1105 V H80 CDRH2-32 CGTATCTATACCAGTGGGAGCACCAACT
    ACAATCCCTCCCTCAAGAGT
    56G3.3 1106 VH76 CDRH2-33 ATGATCTATTATAGTGGGACCACCTACTA
    CAACCCGTCCCTCAAGAGT
    57B12 1107 VH69 CDRH2-34 TACATCTATTACAGTGGGAGCACCTACTA
    63H11 V H3 CAACCCGTCCCTCAAGAGT
    66F6 V H14
    65F9 V H30
    57D9 1108 VH82 CDRH2-35 AGGACATACTACAGGTCCAAGTGGTATA
    61E1 VH94 ATGATTATGCAGTATCTGTGAAAAGT
    58C2 1109 V H85 CDRH2-36 GTTATATGGAATGATGGAAATAACAAAT
    ACTATGCAGACTCCGTGAAGGGC
    59A10 1110 VH47 CDRH2-37 TCCATTAGTAGTAGTGGTAGTATCGTATA
    49H4 CTTCGCAGACTCTGTGAAGGGC
    59C9 1111 VH49 CDRH2-38 TCCATTAGTAGTAGTAGTACTTACATATA
    58A5 VH49 CTACGCAGACTCACTGAAGGGC
    57A4 VH49
    57F9 VH49
    59G10.2 1112 VH57 CDRH2-39 ATTACATCATATGGAGGAAGTAATAAAA
    ATTATGCAGACTCCGTGAAGGGC
    59G10.3 1113 V H53 CDRH2-40 GCTATTAGTGGTAGTGGTGCTGGCACATT
    CTACGCGGACTCCATGAAGGGC
    60F9 1114 VH55 CDRH2-41 GTTATTAGTGACAGTGGTGGTAGCACAT
    48B4 VH55 ACTACGCAGACTCCGTGAAGGGC
    52D6 VH55
    60G5.2 1115 VH45 CDRH2-42 TGGATCAGCGCTTACAATGGTTACTCAAA
    CTATGCACAGAAGTTCCAGGAC
    61G5 1116 V H56 CDRH2-43 GTTATTAGTGGTAGTGGTGGTGACACATA
    CTACGCAGACTCCGTGAAGGGC
    64E6 1117 V H2 CDRH2-44 TACATCTATTACACTGGGAGCACCTACTA
    65E8 V H2 CAACCCGTCCCTCAAGAGT
    65F11 V H2
    67G7 V H2
    63B6 1118 V H4 CDRH2-45 TACATCTATTACAGTGGGACCACCTACTA
    64D4 V H4 CAACCCGTCCCTCAAGAGT
    65C3 1119 V H5 CDRH2-46 TATATCTATTACACTGGGAGCACCAACTA
    68D5 V H5 CAACCCCTCCCTCAAGAGT
    63E6 1120 V H6 CDRH2-47 TGGATGAACCCTAATAGTGGTGCCACAA
    66F7 V H6 AGTATGCACAGAAGTTTCAGGGC
    64H5 1121 V H7 CDRH2-48 GTTATATGGGATGATGGAAGTAATAAAT
    65G4 V H8 ACTATGCAGACTCCGTGAAGGGC
    67G10v1 1122 V H9 CDRH2-49 CGTATTAAAAGCAAAACTGATGGTGGGA
    67G10v2 V H9 CAACAGAGTACGCTGCACCCGTGAAAGGC
    63F5 1123 V H13 CDRH2-50 TACATCTATTACAGTGGGAGCGCCTACTA
    CAACCCGTCCCTCAAGAGT
    64A7 1124 V H16 CDRH2-51 AATATCTATTATAGTGGGACCACCTACTT
    CAACCCGTCCCTCAAGAGT
    65C1 1125 V H15 CDRH2-52 TACATTTTTTACAGTGGGAGCACCTACTA
    65B7 VH28 CAACCCGTCCCTCAAGAGT
    66B4 1126 V H10 CDRH2-53 TGGATCAACCCTAACAGTGGTGGCACAG
    ACTATGCACAGAAGTTTCAGGGC
    66G2 1127 V H11 CDRH2-54 GGTATATCATATGATGGAAGTAATAAAA
    ACTATGCAGACTCCGTGAAGGGC
    68G5 1128 V H12 CDRH2-55 GTTATATGGTATGATGGAAGTAATAAAT
    ACCATGCAGACTCCGTGAAGGGC
    66D4 1129 V H17 CDRH2-56 TGGATCAACCCTCCCAGTGGTGCCACAA
    ACTATGCACAGAAGTTTCGGGGC
    65B1 1130 VH18 CDRH2-57 TGGATCAACCCTAACAGTGGTGCCACAA
    ACTATGCACAGAAGTTTCACGGC
    67A4 1131 VH19 CDRH2-58 GCTATTGGTATTGCTGGTGACACATACTA
    TTCAGACTCCGTGAAGGGC
    65B4 1132 V H20 CDRH2-59 ACTATTGATACTGCTGGTGACGCTTACTA
    TCCAGGCTCCGTGAAGGGC
    63A10 1133 VH21 CDRH2-60 CGTATTAAAAGCAAAACTGATGGTGGGA
    67G10v1 V H9 CAACAGACTACGCTGCACCCGTGAAAGGC
    67G10v2 V H9
    65H11 1134 VH22 CDRH2-61 CGTATTATAGGCAAAACTGATGGTGGGA
    CAACAGACTACGCTGCACCCGTGAAAGGC
    64C8 1135 V H23 CDRH2-62 GTTATATCATATGATGGAAGTAACAAAC
    ACTATGCAGACTCCGTGAAGGGC
    65E3 1136 V H24 CDRH2-63 GTTTTATGGTATGATGGAAATACTAAATA
    CTATGCAGACTCCGTGAAGGGC
    65D1 1137 V H26 CDRH2-64 CTTATATGGTATGATGGAAGTAATAAAG
    ACTATGCAGACTCCGTGAAGGGC
    67G8 1138 V H27 CDRH2-65 GTTATATGGTATGATGGAAGTAATAAAG
    ACTATGCAGACTCCGTGAAGGGC
    64A6 1139 VH29 CDRH2-66 TACATCTATTACAGTGGGGGCACCCACTA
    CAACCCGTCCCTCAAGAGT
    67F5 1140 V H31 CDRH2-67 TATATCTATTACAGTGGGAACACCAACTA
    CAACCCCTCCCTCAAGAGT
    64B10 1141 VH32 CDRH2-68 TTTATCTATTACAGTGGGGGCACCAACTA
    CAACCCCTCCCTCAAGAGT
    68C8 1142 VH33 CDRH2-69 TTCATGTTTTACAGTGGGAGTACCAACTA
    CAACCCCTCCCTCAAGAGT
    64H6 1143 VH36 CDRH2-70 ATCATCTATCCTGGTGACTCTGAAACCAG
    ATACAGCCCGTCCTTTCAAGGC
    63F9 1144 VH37 CDRH2-71 TACATCTATGACAGTGGGAGCACCTACT
    ACAACCCGTCCCTCAAGAGT
    61H5 1145 VH86 CDRH2-72 AGTATCTATTATAGTGGGACCACCTACTA
    52B9 VH86 CAACCCGTCCCTCAAGAGT
    50G5 v1 1146 VH88 CDRH2-73 TGGATCAACCCTGACAGTGGTGGCACAA
    50G5 v2 VH88 ACTATGCACAGAAGTTTCAGGGC
    54H10.3 1147 VH91 CDRH2-74 TGGATCAACCCTAACAGTGGTGGCACAA
    ACTATGCACAGAAGTTTCGGGGC
    50D4 1148 VH87 CDRH2-75 TGGATGAACCCTTACAGTGGTAGCACAG
    GCCTCGCACAGAGGTTCCAGGAC
    55E6 1149 VH93 CDRH2-76 TACATTAGTAGTGGTAGTAGTACCATATA
    CCACGCAGACTCTGTGAAGGGC
    53C3.2 1150 V H90 CDRH2-77 TACATCTATCACAGTGGGAGCGCCTACTA
    CAACCCGTCCCTCAAGAGT
    64B10v2 1883 VH96 CDRH2-78 TTTATTTATTACAGTGGGGGCACCAACTA
    CAACCCCCCCCTCAAGAGT
    68D3v2 1884 VH95 CDRH2-79 TTTATATCATATGCTGGAAGTAATAAATA
    CTATGCAGACTCCGTGAAGGGC
    48C9 1151 V H73 CDRH3-1 GAGAGTGGGAACTTCCCCTTTGACTAC
    49A12 V H73
    51E2 V H73
    48F3 1152 V H72 CDRH3-2 GGCGGGATTTTATGGTTCGGGGAGCAGG
    CTTTTGATATC
    48F8 1153 VH48 CDRH3-3 TCCCTAAGTATAGCAGTGGCTGCCTCTGA
    53B9 VH48 CTAC
    56B4 VH48
    57E7 VH48
    57F11 VH48
    48H11 1154 VH39 CDRH3-4 GAGGTACCCGACGGTATAGTAGTGGCTG
    GTTCAAATGCTTTTGATTTC
    48G4 1155 VH83 CDRH3-5 CATTCTGGTTCGGGGAGGTTTTACTACTA
    53C3.1 CTACTACGGTATGGACGTC
    49A10 1156 VH62 CDRH3-6 GATCAGGATTACGATTTTTGGAGTGGTTA
    48D4 VH62 TCCTTACTTCTACTACTACGGTATGGACG
    TC
    49C8 1157 VH44 CDRH3-7 GGGAAGGAATTTAGCAGGGCGGAGTTTG
    ACTAC
    49G2 1158 VH63 CDRH3-8 GATCGGTATTACGATTTTTGGAGTGGTTA
    50C12 VH63 TCCATACTTCTTCTACTACGGTCTGGACG
    55G11 VH63 TC
    49G3 1159 VH46 CDRH3-9 GTAGATACCTTGAACTACCACTACTACGG
    TATGGACGTC
    49H12 1160 VH42 CDRH3-10 TATAATTGGAACTATGGGGCTTTTGATTTC
    54A1 V H43
    55G9 V H43
    50G1 1161 VH84 CDRH3-11 GATCAGTATTACGATTTTTGGAGCGGTTA
    CCCATACTATCACTACTACGGTATGGACG
    TC
    51A8 1162 VH58 CDRH3-12 GCGGACGGTGACTACCCATATTACTACTA
    CTACTACGGTATGGACGTC
    51C10.1 1163 VH54 CDRH3-13 GATTGGAGTATAGCAGTGGCTGGTACTTT
    59D10 VH54 TGACTAC
    v1
    59D10 VH54
    v2
    51C10.2 1164 VH67 CDRH3-14 GGGGCCCTCTACGGTATGGACGTC
    51E5 1165 V H74 CDRH3-15 GTCCTGGGATCTACTCTTGACTAT
    51G2 1166 V H50 CDRH3-16 GATACTTATATCAGTGGCTGGAACTACG
    GTATGGACGTC
    52A8 1167 V H40 CDRH3-17 GAGGGTGGAACTTACAACTGGTTCGACC
    CC
    52B8 1168 VH77 CDRH3-18 GGAACTAGGGCTTTTGATATC
    52C1 1169 V H64 CDRH3-19 GATCGGGCGGGAGCCTCTCCCGGAATGG
    ACGTC
    52C5 1170 V H70 CDRH3-20 GTAACTGGAACGGATGCTTTTGATTTC
    60G5.1 V H70
    49B11 V H70
    50H10 V H70
    53C1 V H70
    51C1 VH89
    55E4 V H70
    56G1 V H71
    52F8 1171 VH41 CDRH3-21 AGTGGCTGGTACCCGTCCTACTACTACGG
    TATGGACGTC
    52H2 1172 VH79 CDRH3-22 GAAACGGACTACGGTGACTACGCACGTC
    CTTTTGAATAC
    53F6 1173 V H60 CDRH3-23 GGCCACTATGATAGTAGTGGTCCCAGGG
    ACTAC
    53H5.2 1174 VH59 CDRH3-24 GAGGCTAACTGGGGCTACAACTACTACG
    GTATGGACGTC
    53H5.3 1175 VH75 CDRH3-25 ATATTACGATATTTTGACTGGTTAGAATA
    CTACTTTGACTAC
    61E1 1176 VH94 CDRH3-26 GAGGGCAGCTGGTCCTCCTTCTTTGACTAC
    54H10.1 1177 V H52 CDRH3-27 GAACAGCAGTGGCTGGTTTATTTTGACTAC
    55D1 V H52
    48H3 V H52
    53C11 V H52
    55D3 1178 VH68 CDRH3-28 GATGGTATTACTATGGTTCGGGGAGTTAC
    57B12 VH69 TCACTACTACGGTATGGACGTC
    55E6 1179 VH93 CDRH3-29 GAAGGGTACTATGATAGTAGTGGTTATT
    ACTACAACGGTATGGACGTC
    55E9 1180 V H65 CDRH3-30 AACAGTGGCTGGGATTACTTCTACTACTA
    CGGTATGGACGTC
    55G5 1181 VH78 CDRH3-31 AGTGGGAGCTACTCCTTTGACTAC
    56A7 1182 VH51 CDRH3-32 GATATCTATAGCAGTGGCTGGAGCTACG
    56E4 VH51 GTATGGACGTC
    56C11 1183 VH61 CDRH3-33 GATCACGTTTGGAGGACTTATCGTTATAT
    CTTTGACTAC
    56E7 1184 V H81 CDRH3-34 GCACAACTGGGGATCTTTGACTAC
    50G5 v1 1185 VH88 CDRH3-35 GGCGGATACAGCTATGGTTACGAGGACT
    50G5 v2 VH88 ACTACGGTATGGACGTC
    56G3.2 1186 V H80 CDRH3-36 GGCCCTCTTTGGTTTGACTAC
    56G3.3 1187 VH76 CDRH3-37 GTGGCAGCAGTTTACTGGTATTTCGATCTC
    55B10 VH76
    61H5 VH86
    52B9 VH86
    55A7 1188 VH92 CDRH3-38 GGGATAACTGGAACTATTGACTTC
    57D9 1189 VH82 CDRH3-39 ATTGTAGTAGTACCAGCTGTTCTCTTTGA
    CTAC
    58C2 1190 V H85 CDRH3-40 GATCAGAATTACGATTTTTGGAATGGTTA
    TCCCTACTACTTCTACTACGGTATGGACG
    TC
    59A10 1191 VH47 CDRH3-41 GAGACGTTTAGCAGTGGCTGGTTCGATG
    49H4 CTTTTGATATC
    59C9 1192 VH49 CDRH3-42 GATCGATGGAGCAGTGGCTGGAACGAAG
    58A5 VH49 GTTTTGACTAT
    57A4 VH49
    57F9 VH49
    53C3.2 1193 V H90 CDRH3-43 ACTACGGGTGCTTCTGATATC
    59G10.2 1194 VH57 CDRH3-44 GAGGCCGGGTATAGCTTTGACTAC
    59G10.3 1195 V H53 CDRH3-45 GATCTTAGAATAGCAGTGGCTGGTTCATT
    TGACTAC
    60D7 1196 V H66 CDRH3-46 GATCTTAGAATAGCAGTGGCTGGTTCATT
    TGACTAC
    60F9 1197 VH55 CDRH3-47 GATCAGTATTTCGATTTTTGGAGTGGTTA
    48B4 VH55 TCCTTTCTTCTACTACTACGGTATGGACG
    52D6 VH55 TC
    60G5.2 1198 VH45 CDRH3-48 GATCATAGCAGTGGCTGGTACTACTACG
    GTATGGACGTC
    61G5 1199 V H56 CDRH3-49 GATCATACCAGTGGCTGGTACTACTACG
    GTATGGACGTC
    63G8 1200 V H1 CDRH3-50 ACGGTGACTAAGGAGGACTACTACTACT
    64A8 V H1 ACGGTATGGACGTC
    67B4 V H1
    68D3 V H1
    66G2 V H11
    64E6 1201 V H2 CDRH3-51 ATGACTACCCCTTACTGGTACTTCGATCTC
    65E8 V H2
    65F11 V H2
    67G7 V H2
    63H11 V H3
    63F5 V H13
    66F6 V H14
    63B6 1202 V H4 CDRH3-52 ATGACTACTCCTTACTGGTACTTCGGTCTC
    64D4 V H4
    65C3 1203 V H5 CDRH3-53 GAATATTACTATGGTTCGGGGAGTTATTA
    68D5 V H5 TCCT
    67F5 V H5
    63E6 1204 V H6 CDRH3-54 GAACTCGGTGACTACCCCTTTTTTGACTAC
    66F7 V H6
    64H5 1205 V H7 CDRH3-55 GAATACGTAGCAGAAGCTGGTTTTGACT
    65G4 V H8 AC
    67G10v1 1206 V H9 CDRH3-56 GATAGTAGTGGGAGCTACTACGTGGAGG
    67G10v2 V H9 ACTACTTTGACTAC
    63A10 VH21
    65H11 VH22
    64A7 1207 V H16 CDRH3-57 CTCCGAGGGGTCTACTGGTACTTCGATCTC
    65C1 1208 V H15 CDRH3-58 ATGACTTCCCCTTACTGGTACTTCGATCTC
    66B4 1209 V H10 CDRH3-59 GACGCAGCAACTGGTCGCTACTACTTTGA
    CAAC
    68G5 1210 V H12 CDRH3-60 GATCCTGGATACAGCTATGGTCACTTTGA
    CTAC
    66D4 1211 V H17 CDRH3-61 GAGACTGGAACTTGGAGCTTCTTTGACTAC
    65B1 1212 VH18 CDRH3-62 GAACTGGGGATCTTCAACTGGTTCGACCCC
    67A4 1213 VH19 CDRH3-63 GATCGGAGCAGTGGCCGGTTCGGGGACT
    ACTACGGTATGGACGTC
    65B4 1214 V H20 CDRH3-64 GATCGGAGCAGTGGCCGGTTCGGGGACT
    TCTACGGTATGGACGTC
    64C8 1215 V H23 CDRH3-65 GAATTACTATGGTTCGGGGAGTATGGGG
    TAGACCACGGTATGGACGTC
    65E3 1216 V H24 CDRH3-66 GATGTCTACGGTGACTATTTTGCGTAC
    65D4 1217 V H25 CDRH3-67 GCCCTCAACTGGAACTTTTTTGACTAC
    65D1 1218 V H26 CDRH3-68 GAAGGGACAACTCGACGGGGATTTGACT
    AC
    67G8 1219 V H27 CDRH3-69 TCAGCAGTGGCTTTGTACAACTGGTTCGA
    CCCC
    65B7 1220 VH28 CDRH3-70 GAGTCTAGGATATTGTACTTCAACGGGTA
    CTTCCAGCAC
    64A6 1221 VH29 CDRH3-71 GTCCTCCATTACTCTGATAGTCGTGGTTA
    CTCGTACTACTCTGACTTC
    65F9 1222 V H30 CDRH3-72 GTCCTCCATTACTATGATAGTAGTGGTTA
    CTCGTACTACTTTGACTAC
    64B10 1223 VH32 CDRH3-73 TATAGCAGCACCTGGGACTACTATTACG
    GTGTGGACGTC
    68C8 1224 VH33 CDRH3-74 TATAGGAGTGACTGGGACTACTACTACG
    GTATGGACGTC
    67A5 1225 VH34 CDRH3-75 CGGGCCTCACGTGGATACAGATTTGGTCT
    TGCTTTTGCGATC
    67C10 1226 VH35 CDRH3-76 CGGGCCTCACGTGGATACAGATATGGTC
    TTGCTTTTGCTATC
    64H6 1227 VH36 CDRH3-77 GTAGCAGTGTCTGCCTTCAACTGGTTCGA
    CCCC
    63F9 1228 VH37 CDRH3-78 GATGTTCTAATGGTGTATACTAAAGGGG
    GCTACTACTATTACGGTGTGGACGTC
    67F6 1229 V H38 CDRH3-79 CGGGCCTCACGTGGATACAGCTATGGTC
    ATGCTTTTGATTTC
    50D4 1230 VH87 CDRH3-80 GACCTTAGCAGTGGCTACTACTACTACGG
    TTTGGACGTG
    54H10.3 1231 VH91 CDRH3-81 GAGGAAGACTACAGTGACCACCACTACT
    TTGACTAC
    66D4 1885 V H17 CDRH3-82 GAGACTGGAACTTGGAACTTCTTTGACTAC
    68D3v2 1886 VH95 CDRH3-83 ACGGTGACTGAGGAGGACTACTACTACT
    ACGGTATGGACGTC
  • TABLE 3D
    Coding Sequences for CDRLs
    SEQ Contained
    ID in
    Clone NO: Reference Designation Coding Sequence
    48C9 1232 VL78 CDRL1-1 CGGGCAAGTCAGAACATTAGGACCT
    49A12 ATTTAAAT
    51E2
    48F3 1233 VL77 CDRL1-2 CGGGCAAGTCAGAGGATTAGCAGTT
    ATTTAAAT
    48F8 1234 VL49 CDRL1-3 CGGGCCAGTCAGGACATTGGTAATA
    53B9 GCTTACAC
    56B4
    57E7
    57F11
    48H11 1235 V L40 CDRL1-4 CGGGCAAGTCAGAACATTAGGAGCT
    ATTTAAAT
    49A10 1236 V L65 CDRL1-5 AGGTCTAGTCAGAGCCTCTTGGATAG
    48D4 TGATGATGGAAACACCTATTTGGAC
    49C8 1237 VL45 CDRL1-6 CAGGCGAGTCAGGACATTAACATCTA
    52H1 TTTAAAT
    49G2 1238 V L66 CDRL1-7 AGGTCTAGTCAGAGCCTCTTGGATAG
    50C12 V L66 TGATGATGGAGACACCTATTTGGAC
    55G11 V L66
    50G1 V L90
    60D7 VL69
    49G3 1239 VL47 CDRL1-8 CAGGCGAGTCAGGGCATTAGCAACT
    ATTTAAAT
    49H12 1240 V L43 CDRL1-9 CAGGCGAGTCAAGACATTACCAAAT
    ATTTAAAT
    51A8 1241 VL61 CDRL1-10 ACCCGCAGCAGTGGCAGCATTGCCA
    GCGACTATGTGCAG
    51C10.1 1242 VL55 CDRL1-11 TCTGGAGATGCATTGCCAAAAAAATA
    TGCTTAT
    51C10.2 1243 V L70 CDRL1-12 TCTGGAGATAAATTGGGGGATAAAT
    ACGTTTGC
    51E5 1244 VL79 CDRL1-13 CGGGCAAGTCAGGACATTAGAAATG
    63G8v1 V L1 ATTTAGGC
    64A8 V L1
    67B4 V L1
    68D3 V L2
    51G2 1245 VL51 CDRL1-14 CGGGCGAGTCAGGGTATTAGCAGCT
    GGTTAGCC
    52A8 1246 VL41 CDRL1-15 CGGGCAAGTCAGACTATTAGCAGTTA
    TTTAAAT
    52B8 1247 VL82 CDRL1-16 AGGGCCAGTCAGAGTGTTAGCGACA
    TCTTAGCC
    52C1 1248 VL67 CDRL1-17 TCTGGAAGCAGCTCCAACATTGGGAT
    TAATTATGTATCC
    52C5 1249 V L73 CDRL1-18 CGGGCAAGTCAGAGCATTAGCAACT
    55E4 VL75 ATTTAAAT
    49B11 VL75
    50H10 VL75
    53C1 VL75
    56G1 VL76
    51C1 VL95
    60G5.1 V L74
    52F8 1250 VL42 CDRL1-19 AGGTCTAGTCAGAGCCTCCTGCATAG
    TAATGGATACAACTATTTGGAT
    52H2 1251 VL84 CDRL1-20 AGGGCCAGTCAGAGTGTTAGAAGCA
    GCTACTTAGCC
    53F6 1252 VL63 CDRL1-21 AGGTCTAGTCAGAGCCTCCAGCATAG
    TAATGGATACAACTATTTGGAT
    53H5.2 1253 VL62 CDRL1-22 CGGGCAAGTCAGGGCATTAGAAATG
    50G5 v1 VL93 ATTTAGGC
    53H5.3 1254 V L80 CDRL1-23 AGGGCCAGTCAGAGTGTTAGCAGCA
    ACGTCGCC
    54A1 1255 VL44 CDRL1-24 CAGGCGAGTCAGGACATTAGCATCTA
    55G9 VL44 TTTAAAT
    54H10.1 1256 V L53 CDRL1-25 AGGGCCAGTCAGAGTTTTAGCAGCA
    55D1 V L53 GTTACTTAGCC
    48H3 V L53
    53C11 V L53
    55D3 1257 V L71 CDRL1-26 CGGGCGAGTCAGGACATTAGCAATT
    50D4 VL92 ATTTAGCC
    55E9 1258 VL68 CDRL1-27 AGGTCTAGTCAGAGCCTCCTGCATAG
    TAACGGATTCAACTATTTGGAT
    55G5 1259 VL83 CDRL1-28 TCTGGAGACGAATTGGGGGATAAAT
    ATGCTTGC
    56A7 1260 V L52 CDRL1-29 CGGGCGAGTCAGGATATTAGCAGTTG
    56E4 V L52 GTTAGCC
    56C11 1261 V L64 CDRL1-30 GGGGGAAACGACATTGGAAGTAAAA
    GTGTGCAC
    56E7 1262 VL86 CDRL1-31 CAGGCGAGTCAGGACATTAAAAAAT
    TTTTAAAT
    56G3.2 1263 V L85 CDRL1-32 CAGGGCCAGGCAGAGTGTTGGCAGT
    AACTTAATC
    56G3.3 1264 V L81 CDRL1-33 AGGGCCAGTCAGAGTGTTAGCAGAG
    55B10 V L81 ACTACTTAGCC
    61H5 VL88
    52B9
    57B12 1265 V L72 CDRL1-34 CGGGCGAGTCATGACATTAGCAATTA
    TTTAGCC
    57D9 1266 VL87 CDRL1-35 AGGGCCAGTCCGAGTGTTAGCAGCA
    GCTACTTAGCC
    53C3.2 1267 VL96 CDRL1-36 AGGGCCAGTCAGAGTATTAGCAGCA
    ATTTAGCC
    59C9 1268 V L50 CDRL1-37 CGGGCGAGTCAGGATATTGACAGCT
    58A5 V L50 GGTTAGTC
    57A4 V L50
    57F9 V L50
    59D10 1269 V L56 CDRL1-38 TCTGGAGATGCAGTGCCAAAAAAAT
    v1 ATGCTAAT
    59D10 1270 VL57 CDRL1-39 TCTGGAGATAATTTGGGGGATAAATA
    v2 V L27 TGCTTGC
    65D1
    59G10.2 1271 V L60 CDRL1-40 TCTGGAGATAATTTGGGGGATAAATA
    TGCTTTC
    59G10.3 1272 VL54 CDRL1-41 TCTGGAAGCAGCTCCAACATTGGGGA
    TAATTATGTATCC
    54H10.3 1273 VL97 CDRL1-42 CGGGCAAGTCAGACCATTAGCATCTA
    TTTAAAT
    60F9 1274 VL58 CDRL1-43 AGGGCCAGTCAGAGGGTTCCCAGCA
    48B4 VL58 GCTACATAGTC
    52D6 VL58
    60G5.2 1275 VL46 CDRL1-44 TCTGGAAATAAATTGGGGGATAAAT
    ATGTTTGC
    61G5 1276 VL59 CDRL1-45 AGGGCCAGTCAGAGAGTTCCCAGCA
    GCTACTTAGTC
    64E6 1277 V L3 CDRL1-46 AGGGCCAGTCAGAGTGTTAGGAACA
    65E8 V L3 GCTACTTAGCC
    65F11 V L3
    67G7 V L3
    63H11 V L3
    66F6 V L15
    63B6 1278 V L4 CDRL1-47 AGGGCCAGTCAGAGTGTTAGTAACA
    64D4 V L4 GCTACTTAGCC
    65C3 1279 V L5 CDRL1-48 AGGGCCAGTCAGAGTGTTAGCAGCC
    68D5 V L5 AGTTAGCC
    63E6 1280 V L6 CDRL1-49 CGGACAAGTCAGAGTATTAGCAGCT
    ATTTAAAT
    66F7 1281 V L7 CDRL1-50 CGGACAAGTCAGAGCATTAGCAACT
    ATTTAAAT
    64H5 1282 V L8 CDRL1-51 GGGGGAAACAACATTGGAAGTAAAA
    65G4 V L8 ATGTACAC
    65E3 V L25
    64H6 VL37
    67G10 1283 V L9 CDRL1-52 GGGGGAAACAACATTGGAAGTAAAG
    v1 CTGTGCAC
    63A10 VL22
    63A10v2 VL101
    67G10 1284 V L10 CDRL1-53 TCTGGAGATAAATTGGGGGATAAAT
    v2 ATGCTTGC
    63F5 1285 V L14 CDRL1-54 AGGGCCAGTCAGACTGTTAGGAACA
    ACTACTTAGCC
    64A7 1286 V L17 CDRL1-55 AGGGCCAGTCAGAGTGTTAGTCGCA
    ACTACTTAGCC
    65C1 1287 V L16 CDRL1-56 AGGGCCAGTCAGACTATTAGGAACA
    GCTACTTAGCC
    66B4 1288 V L11 CDRL1-57 CGGGCGAGTCAGGGTATTAGCAGGT
    GGTTAGCC
    55A7 1289 VL98 CDRL1-58 CGGGCAAGTCAGAGCATTAGCAGCT
    ATTTAAAT
    68G5 1290 V L13 CDRL1-59 GGGGGTAACAACATTGGAAGTATAA
    ATGTGCAC
    66D4 1291 VL18 CDRL1-60 CGGGCAAGTCAGATCATTAGCAGGT
    ATTTAAAT
    65B1 1292 VL19 CDRL1-61 CGGGCAAGTCAGAACATTAACAACT
    ATTTAAAT
    67A4 1293 V L20 CDRL1-62 GGGGGAAACAACATTGGAAGTAAAA
    GTGTGCAC
    65B4 1294 VL21 CDRL1-63 GGGGGAAACAACATTGGAAGTAAAA
    GTGTGCAG
    55E6 1295 VL99 CDRL1-64 AGGGCCAGTCAGAGTGTTAGTCGCA
    GCCACTTAGCC
    65H11 1296 V L23 CDRL1-65 GGGGGAAACAACATTGGAAGTAAAA
    CTGTGCAC
    64C8 1297 V L24 CDRL1-66 AGGTCTAGTCCAAGCCTCGTATACAG
    TGATGGAAACACCTACTTGAAT
    65D4 1298 V L26 CDRL1-67 GGGGGAAATGACATTGGAAGTAAAA
    ATGTGCAC
    61E1 1299 V L100 CDRL1-68 CGGGCAAGTCAGAGCATTGGCACCTT
    TTTAAAT
    67G8 1300 VL28 CDRL1-69 GGGGGAAACAACATTGGAAGTTACA
    ATGTGTTC
    65B7 1301 VL29 CDRL1-70 AGGGCCAGTCAGAGTGTTAGCAGCA
    TGTACTTAGCC
    64A6 1302 V L30 CDRL1-71 AGGGCCAGTCAGAGTGTTAACAGCA
    ACTTAGCC
    65F9 1303 V L31 CDRL1-72 AGGGCCAGTCAGAGTGTTAGCAGCA
    67F5 VL32 ACTTAGCC
    64B10 1304 VL33 CDRL1-73 TCTGGAAGCAGCTCCAATATTGGGAA
    TAATTATGTAGCC
    68C8 1305 VL34 CDRL1-74 TCTGGAAGCAGTTCCAACATTGGAAA
    TAATTATGTATCC
    67A5 1306 VL35 CDRL1-75 AGGTCTAGTCAGAGCCTCTTAAATAG
    67C10 VL36 TGATGATGGAAATACCTATTTGGAC
    63F9 1307 V L38 CDRL1-76 CGGGCAAGTCAGGACATTAGAAATG
    ATTTAGCC
    67F6v1 1308 VL39 CDRL1-77 AGGTCTAGTCAGAGCCTCTTAAATAG
    67F6v2 VL39 TGATGCTGGTACCACCTATTTGGAC
    50G5 v2 1309 VL94 CDRL1-78 AGGTCTAGTCAAAGACTCGTATACAG
    TGATGGAAACACCTACTTGAAT
    48G4 1310 VL89 CDRL1-79 AGGGCCAGTCAGAGTGTTGCCAGCA
    53C3.1 VL89 GTTACTTAGTC
    58C2 1311 VL91 CDRL1-81 AGGTCTAGTCAGAGCCTCTTCGATAA
    TGATGATGGAGACACCTATTTGGAC
    65B7v1 1887 VL29 CDRL1-82 AGGGCCAGTCAGAGTGTTAGCAGCA
    TCTACTTAGCC
    65B7v2 1888 VL107 CDRL1-83 AGGTCTAGTCAAAGCCTCGTATACAG
    TGATGGAGACACCTACTTGAAT
    63G8v3 1889 VL106 CDRL1-84 CGGGCAAGTCAGGGCATTAGAAGTG
    63G8v2 VL105 GTTTAGGC
    63A10v3 1890 VL102 CDRL1-85 TCTGGAGATAAATTGGGGAATAGAT
    ATACTTGC
    65H11v2 1891 V L23 CDRL1-86 TCTGGAGATAAATTGGGGGATAGAT
    ATGTTTGT
    48C9 1312 VL78 CDRL2-1 GTTGCATCCAGTTTGGAAAGT
    49A12 VL78
    51E2 VL78
    48F3 1313 VL77 CDRL2-2 GCTGTATCCAGTTTGCAAAGT
    48F8 1314 VL49 CDRL2-3 TTTGCTTCCCAGTCCTTCTCA
    53B9 VL49
    56B4 VL49
    57E7 VL49
    57F11 VL49
    48H11 1315 V L40 CDRL2-4 GGTGCATCTAATTTACAGAGT
    49A10 1316 V L65 CDRL2-5 ACGCTTTCCTATCGGGCCTCT
    48D4 V L65
    49G2 V L66
    50C12 V L66
    55G11 V L66
    60D7 VL69
    67A5 VL35
    67C10 VL36
    50G1 V L90
    60D7 VL36
    58C2 VL91
    49C8 1317 VL45 CDRL2-6 GATGTATCCAATTTGGAAACA
    52H1 VL45
    54A1 VL44
    55G9 VL44
    49G3 1318 VL47 CDRL2-7 GATGCATCCAATTTGGAAACA
    56E7 VL86
    49H12 1319 V L43 CDRL2-8 GATACATTCATTTTGGAAACA
    51A8 1320 VL61 CDRL2-9 GAGGATAAAGAAAGATCCTCT
    51C10.1 1321 VL55 CDRL2-10 GAGGACAGCAAACGACCCTCC
    59D10 V L56
    v1
    51C10.2 1322 V L70 CDRL2-11 CAAAATAACAAGCGGCCCTCA
    59G10.2 V L60
    51E5 1323 VL79 CDRL2-12 GCTGCATCCAGTTTGCAATTT
    51G2 1324 VL51 CDRL2-13 GATGCATCCAGTTTGCAAAGT
    52A8 1325 VL41 CDRL2-14 GCTGCATCCAGTTTGCAAAGT
    52C5 V L73
    53H5.2 VL62
    55D3 V L71
    56G1 VL76
    57B12 V L72
    63E6 V L6
    66F7 V L7
    66D4 VL18
    50G5 v1 VL93
    51C1 VL95
    55A7 VL98
    61E1 V L100
    60G5.1 V L74
    52B8 1326 VL82 CDRL2-15 GGTGCATCCACCAGGGCCACT
    53H5.3 V L80
    65F9 V L31
    52C1 1327 VL67 CDRL2-16 GACAATAATAAGCGACCCTCA
    59G10.3 VL54
    68C8 VL34
    52F8 1328 VL42 CDRL2-17 TTGGGTTCTAATCGGGCCTCC
    55E9 VL68
    52H2 1329 VL84 CDRL2-18 GGTGCATCCAGGAGGGCCACT
    53F6 1330 VL63 CDRL2-19 TTGGATTCTAATCGGGCCTCC
    54H10.1 1331 V L53 CDRL2-20 GGTGCATCCAGCAGGGCCACT
    55D1 V L53
    48H3 V L53
    53C11 V L53
    57D9 VL87
    61H5 VL88
    52B9 VL88
    63F5 V L14
    64A7 V L17
    65B7v1 VL29
    55E6 VL99
    55E4 1332 VL75 CDRL2-21 ACAGCTTCCAGTTTGCAAAGT
    49BG11 VL75
    50H10 VL75
    53C1 VL75
    50G5v2 1333 VL94 CDRL2-22 AAGGTTTCTAACTGGGACTCT
    65B7v2 VL107
    55G5 1334 VL83 CDRL2-23 CAAGATACCAAGCGGCCCTCA
    56A7 1335 V L52 CDRL2-24 GATGCATCCACTTTGCAAAGT
    56E4 V L52
    56C11 1336 V L64 CDRL2-25 GATGATAGCGACCGGCCCTCA
    67A4 V L20
    65B4 VL21
    56G3.2 1337 V L85 CDRL2-26 GGTGCATCCAGCAGGGACACT
    56G3.3 1338 V L81 CDRL2-27 GGTGCATCCGCCAGGGCCACT
    55B10 VL81
    59A10 1339 VL48 CDRL2-28 GGTGCATCCAGTTTGCAAAGT
    49H4 VL48
    59C9 1340 V L50 CDRL2-29 GCTGCATCCAATTTGCAAAGA
    58A5 V L50
    57A4 V L50
    57F9 V L50
    63G8v1 VL104
    63GBv2 VL105
    63G8v3 VL106
    64A8 V L1
    67B4 V L1
    68D3 V L1
    59D10 1341 VL57 CDRL2-30 CAAGATACCAAGCGGCCCTCA
    v2
    60F9 1342 VL58 CDRL2-31 GGTTCATCCAACAGGGCCACT
    48B4 VL58
    52D6 VL58
    60G5.2 1343 VL46 CDRL2-32 CAAGATAGCAAGCGGCCCTCA
    65D1 V L27
    65H11v2 VL103
    61G5 1344 VL59 CDRL2-33 GGTGCATCCAACAGGGCCACA
    64E6 1345 V L3 CDRL2-34 GGTGCATTTAGCAGGGCCTCT
    65E8 V L3
    65F11 V L3
    67G7 V L3
    63H11 V L3
    63B6 1346 V L4 CDRL2-35 GGTGCATTCAGTAGGGCCACT
    64D4 V L4
    65C1 V L16
    66F6 V L15
    48G4 VL83
    53C3.1 VL83
    65C3 1347 V L5 CDRL2-36 GGTGCCTCCAACAGGGCCATT
    68D5 V L5
    64H5 1348 V L8 CDRL2-37 AGGGATAGCAAGCGGCCCTCT
    65G4 V L8
    67G8 VL28
    64H6 VL37
    67G10 1349 V L9 CDRL2-38 AGCGATAGCAACCGGCCCTCA
    v1
    65H11 V L23
    67G10 1350 V L10 CDRL2-39 CAAGATAACGAGCGGCCCTCA
    v2
    66B4 1351 V L11 CDRL2-40 GCTGCATCCAGTTTGAAAAGT
    66G2 1352 V L12 CDRL2-41 GCTGCATCCAATTTGCAAAGT
    68G5 1353 V L13 CDRL2-42 AGGGATAGGAACCGGCCCTCT
    65E3 V L25
    65D4 V L26
    65B1 1354 VL19 CDRL2-43 ACTACATCCAGTTTGCAAAGT
    53C3.2 1355 VL96 CDRL2-44 GGTACATCCATCAGGGCCAGT
    63A10v1 1356 VL22 CDRL2-45 TGTGATAGCAACCGGCCCTCA
    63A10v2 VL101
    54H10.3 1357 VL97 CDRL2-46 TCTGCATCCAGTTTGCAAAGT
    64C8 1358 V L24 CDRL2-47 AAGGGTTCTAACTGGGACTCA
    64A6 1359 V L30 CDRL2-48 GGTACATCCACCAGGGCCACT
    67F5 1360 VL32 CDRL2-49 GGTTCATCCAACAGGGCCATT
    64B10 1361 VL33 CDRL2-50 GACAATGATAAGCGACCCTCA
    63F9 1362 V L38 CDRL2-51 GCTTCATCCAGTTTGCAAAGT
    67F6v2 1363 VL39 CDRL2-52 ACGCTTTCCTTTCGGGCCTCT
    50D4 1364 VL92 CDRL2-53 GCTGCATCCACTTTGCTATCA
    68A10v3 1892 VL102 CDRL2-54 CAAGATAGCGAGCGGCCCTCA
    48C9 1365 VL78 CDRL3-1 CAACAGAGTGACAGTATCCCTCGGACG
    49A12
    51E2
    48F3 1366 VL77 CDRL3-2 CAACAGAGTTACAGTGCTACATTCACT
    48F8 1367 VL49 CDRL3-3 CATCAGAGTAGTGATTTACCGCTCACT
    53B9 VL49
    56B4 VL49
    57E7 VL49
    57F11 VL49
    48H11 1368 V L40 CDRL3-4 CAACAGAGTTACAATACCCCGTGCAGT
    49A10 1369 V L65 CDRL3-5 ATGCAACGTATAGAGTTTCCGATCACC
    48D4 V L65
    67F6v2 VL108
    49C8 1370 VL45 CDRL3-6 CAACAATATGATAATCTCCCATTCACT
    52H1 VL45
    67C10 VL36
    67F6v1 VL39
    49G2 1371 V L66 CDRL3-7 ATGCAACATATAGAATTTCCTTCGACC
    50C12 V L66
    55G11 V L66
    49G3 1372 VL47 CDRL3-8 CACCAGTATGATGATCTCCCGCTCACT
    49H12 1373 V L43 CDRL3-9 CAACAGTATGACAATTTACCGCTCACC
    54A1 VL44
    55G9 VL44
    51A8 1374 VL61 CDRL3-10 CAGTCTTATGATCGCAACAATCATGT
    GGTT
    51C10.1 1375 VL55 CDRL3-11 TACTCAACAGACAGCAGTGTTAATCA
    TGTGGTA
    51C10.2 1376 V L70 CDRL3-12 CAGGCGTGGGATAGTAGTACTGCGGTA
    51E5 1377 VL79 CDRL3-13 CTACAACATAGTAGTTACCCGCTCACT
    51G2 1378 VL51 CDRL3-14 CAACAGACTAACAGTTTCCCTCCGTG
    56A7 V L52 GACG
    56E4 V L52
    59A10 VL48
    49H4 VL48
    59C9 V L50
    58A5 V L50
    57A4 V L50
    57F9 V L50
    52A8 1379 VL41 CDRL3-15 CAGCAGAGTTACAGTACCCCGCTCACT
    65B1 VL19
    52B8 1380 VL82 CDRL3-16 CAGCAGTATAATAACTGGCCGCTCACT
    56G3.2 V L85
    52C1 1381 VL67 CDRL3-17 GGAACATGGGATAGCAGCCTGAGTG
    64B10 VL33 CTGTGGTA
    68C8 VL34
    52C5 1382 V L73 CDRL3-18 CAACAGAGTTCCAGTATCCCTTGGACG
    55E4 VL75
    49B11 VL75
    50H10 VL75
    53C1 VL75
    51C1 VL95
    60G5.1 V L74
    52F8 1383 VL42 CDRL3-19 ATGCAAGCTCTACAAACTCCATTCACT
    52H2 1384 VL84 CDRL3-20 CAGCAGTATGGTAGTTCACCTCGCAGT
    53F6 1385 VL63 CDRL3-21 ATGCAAGGTCTACAAACTCCTCCCACT
    53H5.2 1386 VL62 CDRL3-22 CTACAGCATAAGAGTTACCCATTCACT
    53H5.3 1387 V L80 CDRL3-23 CAGCAGTTTAGTAACTCAATCACC
    54H10.1 1388 V L53 CDRL3-24 CAGCAGTATGGTAGCTCACGGACG
    55D1 V L53
    48H3 V L53
    53C11 V L53
    55D3 1389 V L71 CDRL3-25 CAACAGTATAATATTTACCCTCGGACG
    55E9 1390 VL68 CDRL3-26 ATGCAAGCTCTACAAACTCTCATCACC
    55G5 1391 VL83 CDRL3-27 CAGGCGTGGGACAGCGGCACTGTGG
    TA
    56C11 1392 V L64 CDRL3-28 CAGGTGTGGGATAGTAGTAGTGATGT
    GGTA
    56E7 1393 VL86 CDRL3-29 CAACAATATGCTATTCTCCCATTCACT
    56G1 1394 VL76 CDRL3-30 CAACAGAGTTCCACTATCCCTTGGACG
    56G3.3 1395 V L81 CDRL3-31 CAGCAATATGGTAGATCACTATTCACT
    55B10 V L81
    61H5 VL88
    52B9 VL88
    57B12 1396 V L72 CDRL3-32 CAACAATATAATACTTACCCTCGGACG
    57D9 1397 VL87 CDRL3-33 CATCAGTATGGTACCTCACCGTGCAGT
    59D10 1398 V L56 CDRL3-34 TACTCAACAGACAGCAGTGGTAATCA
    v1 TGTGGTA
    59D10 1399 VL57 CDRL3-35 CAGGCGTGGGACAGCAGCACTACAT
    v2 GGGTG
    59G10.2 1400 V L60 CDRL3-36 CAGGCGTGGGACAGCGCCACTGTGA
    TT
    59G10.3 1401 VL54 CDRL3-37 GGAACATGGGACAGCAGCCTGAGTG
    TTATGGTT
    60D7 1402 VL69 CDRL3-38 ATGCAACGTATAGAGTTTCCGCTCACT
    50G1 V L90
    60F9 1403 VL58 CDRL3-39 CAGCAGTATGGTAGCTCACCTCCGTG
    48B4 VL58 GACG
    52D6 VL58
    61G5 VL59
    60G5.2 1404 VL46 CDRL3-40 CAGGCGTGGGACAGCAGCACTTGGG
    TG
    63G8v1 1405 VL104 CDRL3-41 CTCCAGCATAATAGTTACCCTCTCACT
    63G8v2 VL105
    64A8 V L1
    67B4 V L1
    68D3 V L2
    64E6 1406 V L3 CDRL3-42 CAGCAGTTTGGAAGCTCACTCACT
    65E8 V L3
    65F11 V L3
    67G7 V L3
    63H11 VL
    63F5 V L14
    65C1 V L16
    66F6 V L15
    63B6 1407 V L4 CDRL3-43 CAGCAGTTTGGTAGGTCATTCACT
    64D4 V L4
    65C3 1408 V L5 CDRL3-44 CAGCAGTATAATAACTGGCCGTGGACG
    68D5 V L5
    63E6 1409 V L6 CDRL3-45 CAACAGAGTTACAGTACCTCGCTCACT
    66F7 V L7
    64H5 1410 V L8 CDRL3-46 CAGGTGTGGGACAGCAGTAGTGTGG
    65G4 V L8 TA
    67G10 1411 V L9 CDRL3-47 CAGGTGTGGGACAGTAGTAGTGATG
    v1 GGGTA
    67G10 1412 V L10 CDRL3-48 CAGGCGTGGGACAGCACCACTGTGG
    v2 TA
    63A10v2 VL101
    63A10v3 VL102
    64A7 1413 V L17 CDRL3-49 CAGCAGTATGGTAGTTCATCTCTGTG
    CAGT
    66B4 1414 V L11 CDRL3-50 CAACAGGCTAACAGTTTCCCTCCGACG
    66G2 1415 V L12 CDRL3-51 CTACAACTTAATGGTTACCCTCTCACT
    68G5 1416 V L13 CDRL3-52 CAGTTGTGGGACAGCAGCACTGTGGTT
    66D4 1417 VL18 CDRL3-53 CAACAGAGTTACAGTTCCCCGCTCACT
    54H10.3 VL97
    55A7 1418 VL98 CDRL3-54 CAACAGACTTACAGTGCCCCATTCACT
    67A4 1419 V L20 CDRL3-55 CAGGTGTGGGATAGTAGTAGTGATCA
    65B4 VL21 TGTGGTA
    63A10 1420 VL22 CDRL3-56 CATGCGTGTGGGAGCAGTAGTAGCG
    ATGGGGTA
    65H11 1421 V L23 CDRL3-57 CAGGTGTGGGACAGTAGTTGTGATGG
    GGTA
    64C8 1422 V L24 CDRL3-58 ATACAAGATACACACTGGCCCACGTG
    CAGT
    65E3 1423 V L25 CDRL3-59 CAGGTGTGGGACAGCAGCACTGTGG
    67G8 VL28 TC
    65D4 1424 V L26 CDRL3-60 CAGGTGTGGGACAGCAACCCTGTGGTA
    65D1 1425 V L27 CDRL3-61 CAGGCGTGGGACAGCAGGGTA
    65B7v1 1426 VL29 CDRL3-62 CAGCAGTATGGTAGCTCGTGCAGT
    64A6 1427 V L30 CDRL3-63 CAGCAATATAATACCTGGCCGTGGACG
    65F9 V L31
    67F5 1428 VL32 CDRL3-64 CAGCAGTATGAAATTTGGCCGTGGACG
    55E6 1429 VL99 CDRL3-65 CAGCAGTATGGTAGTTCACCGTGGACG
    67A5 1430 VL35 CDRL3-66 ATGCAACGTCTAGAGTTTCCTATTACC
    58C2 VL91
    61E1 1431 V L100 CDRL3-67 CAACAGAGTTTCAGTACCCCGCTCACT
    64H6 1432 VL37 CDRL3-68 CAGGTGTGGGACAGCAGTCCTGTGGTA
    63F9 1433 V L38 CDRL3-69 CTACAGCGTAATAGTTACCCGCTCACT
    53C3.2 1434 VL96 CDRL3-70 CACCAGTATACTAACTGGCCTCGGACG
    48G4 1435 VL89 CDRL3-71 CAGCAGTATGGTACCTCACCATTTACT
    53C3.1 VL89
    50G5 v1 1436 VL93 CDRL3-72 CTACAGCATAATAGTTACCCTCGGACG
    64B10v2 1893 VL33 CDRL3-73 TATAGCAGCACCTGGGACTACTATTA
    CGGTGTGGACGTC
    50D4 1437 VL92 CDRL3-74 CAAAAGTATTACAGTGCCCCTTTCACT
    50G5 v2 1438 VL94 CDRL3-75 ATGGAAGGTACACACTGGCCTCGGG
    AC
    63G8v3 1894 VL106 CDRL3-76 CTCCAACATAATACTTACCCTCTCACT
    65B7v2 1895 VL107 CDRL3-77 ATGCAAGGTACACACTGGCGGGGTT
    GGACG
    65H11v2 1896 VL103 CDRL3-78 CAGGCGTGGGACAGCATCACTGTGGTA
    63A10v1 1897 VH21 CDRL3-79 CAGGTGTGGGACAGTAGTAGTGATG
    GGGTA
  • The structure and properties of CDRs within a naturally occurring antibody has been described, supra. Briefly, in a traditional antibody, the CDRs are embedded within a framework in the heavy and light chain variable region where they constitute the regions responsible for antigen binding and recognition. A variable region comprises at least three heavy or light chain CDRs, see, e.g., Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242; see also Chothia and Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342: 877-883), within a framework region (designated framework regions 1-4, FR1, FR2, FR3, and FR4, by Kabat et al., (1991); see also Chothia and Lesk, (1987) supra). The CDRs provided herein, however, can not only be used to define the antigen binding domain of a traditional antibody structure, but can be embedded in a variety of other polypeptide structures, as described herein.
  • In one aspect, the CDRs provided are (a) a CDRH selected from the group consisting of (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, two, or one amino acids; (B) a CDRL selected from the group consisting of (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 selected from the group consisting of SEQ ID NOS 894-946; (iii) a CDRL3 selected from the group consisting of SEQ ID NOS 947-1020; and (iv) a CDRL of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than 1, 2, 3, 4, or 5 amino acids amino acids.
  • In another aspect, an antigen binding protein comprises 1, 2, 3, 4, 5, or 6 variant forms of the CDRs listed in Tables 3A and 3B, infra, each having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a CDR sequence listed in Tables 3A and 3B, infra. Some antigen binding proteins comprise 1, 2, 3, 4, 5, or 6 of the CDRs listed in Tables 3A and 3B, infra, each differing by no more than 1, 2, 3, 4 or 5 amino acids from the CDRs listed in these tables.
  • In still another aspect, an antigen binding protein includes the following associations of CDRL1, CDRL2 and CDRL3, presented for convenience in tabular form and in reference to the clone source of the association:
  • TABLE 4
    CDRL Associations
    Clone ID CDRL1 CDRL2 CDRL3
    63G8 CDRL1-13 CDRL2-29 CDRL3-41
    64A8 CDRL1-13 CDRL2-29 CDRL3-41
    67B4 CDRL1-13 CDRL2-29 CDRL3-41
    68D3 CDRL1-13 CDRL2-29 CDRL3-41
    64E6 CDRL1-46 CDRL2-34 CDRL3-42
    65E8 CDRL1-46 CDRL2-34 CDRL3-42
    65F11 CDRL1-46 CDRL2-34 CDRL3-42
    67G7 CDRL1-46 CDRL2-34 CDRL3-42
    63B6 CDRL1-47 CDRL2-3 CDRL3-43
    64D4 CDRL1-47 CDRL2-3 CDRL3-43
    65C3 CDRL1-48 CDRL2-36 CDRL3-44
    68D5 CDRL1-48 CDRL2-36 CDRL3-44
    63E6 CDRL1-49 CDRL2-14 CDRL3-45
    66F7 CDRL1-50 CDRL2-14 CDRL3-45
    64H5 CDRL1-51 CDRL2-37 CDRL3-46
    65G4 CDRL1-51 CDRL2-37 CDRL3-46
    67G10v1 CDRL1-52 CDRL2-38 CDRL3-47
    67G10v2 CDRL1-53 CDRL2-39 CDRL3-48
    66B4 CDRL1-57 CDRL2-40 CDRL3-50
    66G2 CDRL1-22 CDRL2-41 CDRL3-51
    68G5 CDRL1-59 CDRL2-42 CDRL3-52
    63F5 CDRL1-54 CDRL2-20 CDRL3-42
    66F6 CDRL1-46 CDRL2-35 CDRL3-42
    65C1 CDRL1-56 CDRL2-35 CDRL3-42
    64A7 CDRL1-55 CDRL2-20 CDRL3-49
    66D4 CDRL1-60 CDRL2-14 CDRL3-53
    65B1 CDRL1-61 CDRL2-43 CDRL3-15
    67A4 CDRL1-62 CDRL2-25 CDRL3-55
    65B4 CDRL1-63 CDRL2-25 CDRL3-55
    63A10 CDRL1-52 CDRL2-45 CDRL3-56
    65H11 CDRL1-65 CDRL2-38 CDRL3-57
    64C8 CDRL1-66 CDRL2-47 CDRL3-58
    65E3 CDRL1-51 CDRL2-42 CDRL3-59
    65D4 CDRL1-67 CDRL2-42 CDRL3-60
    65D1 CDRL1-39 CDRL2-32 CDRL3-61
    67G8 CDRL1-69 CDRL2-37 CDRL3-59
    65B7 CDRL1-70 CDRL2-20 CDRL3-62
    64A6 CDRL1-71 CDRL2-48 CDRL3-63
    65F9 CDRL1-72 CDRL2-15 CDRL3-63
    67F5 CDRL1-72 CDRL2-49 CDRL3-64
    64B10 CDRL1-73 CDRL2-50 CDRL3-17
    68C8 CDRL1-74 CDRL2-16 CDRL3-17
    67A5 CDRL1-75 CDRL2-5 CDRL3-66
    67C10 CDRL1-75 CDRL2-5 CDRL3-5
    64H6 CDRL1-51 CDRL2-37 CDRL3-68
    63F9 CDRL1-76 CDRL2-51 CDRL3-69
    67F6 CDRL1-77 CDRL2-52 CDRL3-5
    48H11 CDRL1-4 CDRL2-4 CDRL3-4
    52A8 CDRL1-15 CDRL2-14 CDRL3-15
    52F8 CDRL1-19 CDRL2-17 CDRL3-19
    49H12 CDRL1-9 CDRL2-8 CDRL3-9
    54A1 CDRL1-24 CDRL2-6 CDRL3-9
    55G9 CDRL1-24 CDRL2-6 CDRL3-9
    49C8 CDRL1-6 CDRL2-6 CDRL3-6
    52H1 CDRL1-6 CDRL2-6 CDRL3-6
    60G5.2 CDRL1-44 CDRL2-32 CDRL3-40
    49G3 CDRL1-8 CDRL2-7 CDRL3-8
    59A10 CDRL1-14 CDRL2-28 CDRL3-14
    49H4 CDRL1-14 CDRL2-28 CDRL3-14
    48F8 CDRL1-3 CDRL2-3 CDRL3-3
    53B9 CDRL1-3 CDRL2-3 CDRL3-3
    56B4 CDRL1-3 CDRL2-3 CDRL3-3
    57E7 CDRL1-3 CDRL2-3 CDRL3-3
    57F11 CDRL1-3 CDRL2-3 CDRL3-3
    59C9 CDRL1-37 CDRL2-29 CDRL3-14
    58A5 CDRL1-37 CDRL2-29 CDRL3-14
    57A4 CDRL1-37 CDRL2-29 CDRL3-14
    57F9 CDRL1-37 CDRL2-29 CDRL3-14
    51G2 CDRL1-14 CDRL2-13 CDRL3-14
    56A7 CDRL1-29 CDRL2-24 CDRL3-14
    56E4 CDRL1-29 CDRL2-24 CDRL3-14
    54H10.1 CDRL1-25 CDRL2-20 CDRL3-24
    55D1 CDRL1-25 CDRL2-20 CDRL3-24
    48H3 CDRL1-25 CDRL2-20 CDRL3-24
    53C11 CDRL1-25 CDRL2-20 CDRL3-24
    59G10.3 CDRL1-41 CDRL2-16 CDRL3-37
    51C10.1 CDRL1-12 CDRL2-10 CDRL3-11
    59D10 v1 CDRL1-38 CDRL2-10 CDRL3-34
    59D10 v2 CDRL1-39 CDRL2-30 CDRL3-35
    60F9 CDRL1-43 CDRL2-31 CDRL3-39
    48B4 CDRL1-43 CDRL2-31 CDRL3-39
    52D6 CDRL1-43 CDRL2-31 CDRL3-39
    61G5 CDRL1-45 CDRL2-33 CDRL3-39
    59G10.2 CDRL1-40 CDRL2-11 CDRL3-36
    51A8 CDRL1-10 CDRL2-9 CDRL3-10
    53H5.2 CDRL1-22 CDRL2-14 CDRL3-22
    53F6 CDRL1-21 CDRL2-19 CDRL3-21
    56C11 CDRL1-30 CDRL2-25 CDRL3-28
    49A10 CDRL1-5 CDRL2-5 CDRL3-5
    48D4 CDRL1-5 CDRL2-5 CDRL3-5
    49G2 CDRL1-7 CDRL2-5 CDRL3-7
    50C12 CDRL1-7 CDRL2-5 CDRL3-7
    55G11 CDRL1-7 CDRL2-5 CDRL3-7
    52C1 CDRL1-17 CDRL2-16 CDRL3-17
    55E9 CDRL1-27 CDRL2-17 CDRL3-26
    60D7 CDRL1-1 CDRL2-5 CDRL3-38
    51C10.2 CDRL1-12 CDRL2-11 CDRL3-12
    55D3 CDRL1-26 CDRL2-14 CDRL3-25
    57B12 CDRL1-34 CDRL2-14 CDRL3-32
    52C5 CDRL1-18 CDRL2-14 CDRL3-18
    55E4 CDRL1-18 CDRL2-21 CDRL3-18
    49B11 CDRL1-18 CDRL2-21 CDRL3-18
    50H10 CDRL1-18 CDRL2-21 CDRL3-18
    53C1 CDRL1-18 CDRL2-21 CDRL3-18
    56G1 CDRL1-18 CDRL2-14 CDRL3-30
    48F3 CDRL1-2 CDRL2-2 CDRL3-2
    48C9 CDRL1-1 CDRL2-1 CDRL3-1
    49A12 CDRL1-1 CDRL2-1 CDRL3-1
    51E2 CDRL1-1 CDRL2-1 CDRL3-1
    51E5 CDRL1-13 CDRL2-12 CDRL3-13
    53H5.3 CDRL1-23 CDRL2-15 CDRL3-23
    56G3.3 CDRL1-33 CDRL2-27 CDRL3-31
    55B10 CDRL1-33 CDRL2-27 CDRL3-31
    52B8 CDRL1-16 CDRL2-15 CDRL3-16
    55G5 CDRL1-28 CDRL2-23 CDRL3-27
    52H2 CDRL1-20 CDRL2-18 CDRL3-20
    56G3.2 CDRL1-32 CDRL2-26 CDRL3-16
    56E7 CDRL1-31 CDRL2-7 CDRL3-29
    57D9 CDRL1-35 CDRL2-20 CDRL3-33
    61H5 CDRL1-33 CDRL2-20 CDRL3-31
    52B9 CDRL1-33 CDRL2-20 CDRL3-31
    48G4 CDRL1-79 CDRL2-35 CDRL3-71
    53C3.1 CDRL1-79 CDRL2-35 CDRL3-71
    50G1 CDRL1-7 CDRL2-5 CDRL3-38
    58C2 CDRL1-81 CDRL2-5 CDRL3-66
    60G5.1 CDRL1-18 CDRL2-14 CDRL3-18
    54H10.3 CDRL1-42 CDRL2-46 CDRL3-53
    50G5 v1 CDRL1-22 CDRL2-14 CDRL3-72
    50G5 v2 CDRL1-78 CDRL2-22 CDRL3-75
    51C1 CDRL1-18 CDRL2-14 CDRL3-18
    53C3.2 CDRL1-36 CDRL2-44 CDRL3-70
    50D4 CDRL1-26 CDRL2-53 CDRL3-74
    55A7 CDRL1-58 CDRL2-14 CDRL3-54
    55E6 CDRL1-64 CDRL2-20 CDRL3-65
    61E1 CDRL1-68 CDRL2-14 CDRL3-67
    63H11 CDRL1-46 CDRL2-34 CDRL3-42
  • In an additional aspect, an antigen binding protein includes the following associations of CDRH1, CDRH2 and CDRH3, presented for convenience in tablular form and in reference to the clone source of the association:
  • TABLE 5
    CDRH Associations
    Clone ID CDRH1 CDRH2 CDRH3
    63G8 CDRH1-34 CDRH2-12 CDRH3-50
    64A8 CDRH1-34 CDRH2-12 CDRH3-50
    67B4 CDRH1-34 CDRH2-12 CDRH3-50
    68D3 CDRH1-34 CDRH2-12 CDRH3-50
    64E6 CDRH1-35 CDRH2-44 CDRH3-51
    65E8 CDRH1-35 CDRH2-44 CDRH3-51
    65F11 CDRH1-35 CDRH2-44 CDRH3-51
    67G7 CDRH1-35 CDRH2-44 CDRH3-51
    63B6 CDRH1-36 CDRH2-45 CDRH3-52
    64D4 CDRH1-36 CDRH2-45 CDRH3-52
    65C3 CDRH1-24 CDRH2-46 CDRH3-53
    68D5 CDRH1-24 CDRH2-46 CDRH3-53
    63E6 CDRH1-37 CDRH2-47 CDRH3-54
    66F7 CDRH1-37 CDRH2-47 CDRH3-54
    64H5 CDRH1-12 CDRH2-48 CDRH3-55
    65G4 CDRH1-12 CDRH2-48 CDRH3-55
    67G10v1 CDRH1-38 CDRH2-49 CDRH3-56
    67G10v2 CDRH1-38 CDRH2-49 CDRH3-56
    66B4 CDRH1-15 CDRH2-53 CDRH3-59
    66G2 CDRH1-12 CDRH2-54 CDRH3-50
    68G5 CDRH1-12 CDRH2-55 CDRH3-60
    63F5 CDRH1-35 CDRH2-50 CDRH3-51
    66F6 CDRH1-35 CDRH2-34 CDRH3-51
    65C1 CDRH1-35 CDRH2-52 CDRH3-58
    64A7 CDRH1-40 CDRH2-51 CDRH3-57
    66D4 CDRH1-43 CDRH2-56 CDRH3-61
    65B1 CDRH1-44 CDRH2-57 CDRH3-62
    67A4 CDRH1-45 CDRH2-58 CDRH3-63
    65B4 CDRH1-46 CDRH2-59 CDRH3-64
    63A10 CDRH1-38 CDRH2-60 CDRH3-56
    65H11 CDRH1-38 CDRH2-61 CDRH3-56
    64C8 CDRH1-12 CDRH2-62 CDRH3-65
    65E3 CDRH1-47 CDRH2-63 CDRH3-66
    65D4 CDRH1-48 CDRH2-22 CDRH3-67
    65D1 CDRH1-49 CDRH2-64 CDRH3-68
    67G8 CDRH1-12 CDRH2-65 CDRH3-69
    65B7 CDRH1-50 CDRH2-52 CDRH3-70
    64A6 CDRH1-14 CDRH2-66 CDRH3-71
    65F9 CDRH1-36 CDRH2-34 CDRH3-72
    67F5 CDRH1-24 CDRH2-67 CDRH3-53
    64B10 CDRH1-36 CDRH2-68 CDRH3-73
    68C8 CDRH1-51 CDRH2-69 CDRH3-74
    67A5 CDRH1-25 CDRH2-31 CDRH3-75
    67C10 CDRH1-25 CDRH2-31 CDRH3-76
    64H6 CDRH1-25 CDRH2-70 CDRH3-77
    63F9 CDRH1-52 CDRH2-71 CDRH3-78
    67F6 CDRH1-53 CDRH2-31 CDRH3-79
    48H11 CDRH1-4 CDRH2-4 CDRH3-4
    52A8 CDRH1-15 CDRH2-17 CDRH3-17
    52F8 CDRH1-17 CDRH2-20 CDRH3-21
    49H12 CDRH1-10 CDRH2-10 CDRH3-10
    54A1 CDRH1-10 CDRH2-25 CDRH3-10
    55G9 CDRH1-10 CDRH2-25 CDRH3-10
    49C8 CDRH1-7 CDRH2-7 CDRH3-7
    52H1 CDRH1-7 CDRH2-7 CDRH3-7
    60G5.2 CDRH1-33 CDRH2-42 CDRH3-48
    49G3 CDRH1-9 CDRH2-9 CDRH3-9
    59A10 CDRH1-30 CDRH2-37 CDRH3-41
    49H4 CDRH1-30 CDRH2-37 CDRH3-41
    48F8 CDRH1-3 CDRH2-3 CDRH3-3
    53B9 CDRH1-3 CDRH2-3 CDRH3-3
    56B4 CDRH1-3 CDRH2-3 CDRH3-3
    57E7 CDRH1-3 CDRH2-3 CDRH3-3
    57F11 CDRH1-3 CDRH2-3 CDRH3-3
    59C9 CDRH1-31 CDRH2-38 CDRH3-42
    58A5 CDRH1-31 CDRH2-38 CDRH3-42
    57A4 CDRH1-31 CDRH2-38 CDRH3-42
    57F9 CDRH1-31 CDRH2-38 CDRH3-42
    51G2 CDRH1-3 CDRH2-16 CDRH3-16
    56A7 CDRH1-3 CDRH2-16 CDRH3-32
    56E4 CDRH1-3 CDRH2-16 CDRH3-32
    54H10.1 CDRH1-21 CDRH2-26 CDRH3-27
    55D1 CDRH1-21 CDRH2-26 CDRH3-27
    48H3 CDRH1-21 CDRH2-26 CDRH3-27
    53C11 CDRH1-21 CDRH2-26 CDRH3-27
    59G10.3 CDRH1-32 CDRH2-40 CDRH3-45
    51C10.1 CDRH1-13 CDRH2-13 CDRH3-13
    59D10 v1 CDRH1-13 CDRH2-13 CDRH3-13
    59D10 v2 CDRH1-13 CDRH2-13 CDRH3-13
    60F9 CDRH1-21 CDRH2-41 CDRH3-47
    48B4 CDRH1-21 CDRH2-41 CDRH3-47
    52D6 CDRH1-21 CDRH2-41 CDRH3-47
    61G5 CDRH1-21 CDRH2-43 CDRH3-49
    59G10.2 CDRH1-6 CDRH2-39 CDRH3-44
    51A8 CDRH1-12 CDRH2-12 CDRH3-12
    53H5.2 CDRH1-12 CDRH2-23 CDRH3-24
    53F6 CDRH1-19 CDRH2-22 CDRH3-23
    56C11 CDRH1-12 CDRH2-30 CDRH3-33
    49A10 CDRH1-6 CDRH2-6 CDRH3-6
    48D4 CDRH1-6 CDRH2-6 CDRH3-6
    49G2 CDRH1-8 CDRH2-8 CDRH3-8
    50C12 CDRH1-8 CDRH2-8 CDRH3-8
    55G11 CDRH1-8 CDRH2-8 CDRH3-8
    52C1 CDRH1-12 CDRH2-19 CDRH3-19
    55E9 CDRH1-23 CDRH2-28 CDRH3-30
    60D7 CDRH1-12 CDRH2-22 CDRH3-46
    51C10.2 CDRH1-14 CDRH2-14 CDRH3-14
    55D3 CDRH1-22 CDRH2-27 CDRH3-28
    57B12 CDRH1-28 CDRH2-34 CDRH3-28
    52C5 CDRH1-2 CDRH2-1 CDRH3-20
    60G5.1 CDRH1-2 CDRH2-1 CDRH3-20
    55E4 CDRH1-2 CDRH2-1 CDRH3-20
    49B11 CDRH1-2 CDRH2-1 CDRH3-20
    50H10 CDRH1-2 CDRH2-1 CDRH3-20
    53C1 CDRH1-2 CDRH2-1 CDRH3-20
    56G1 CDRH1-2 CDRH2-1 CDRH3-20
    48F3 CDRH1-2 CDRH2-2 CDRH3-2
    48C9 CDRH1-1 CDRH2-1 CDRH3-1
    49A12 CDRH1-1 CDRH2-1 CDRH3-1
    51E2 CDRH1-1 CDRH2-1 CDRH3-1
    51E5 CDRH1-2 CDRH2-15 CDRH3-15
    53H5.3 CDRH1-20 CDRH2-24 CDRH3-25
    56G3.3 CDRH1-27 CDRH2-33 CDRH3-37
    55B10 CDRH1-27 CDRH2-33 CDRH3-37
    52B8 CDRH1-16 CDRH2-18 CDRH3-18
    55G5 CDRH1-24 CDRH2-29 CDRH3-31
    52H2 CDRH1-18 CDRH2-21 CDRH3-22
    56G3.2 CDRH1-26 CDRH2-32 CDRH3-36
    56E7 CDRH1-25 CDRH2-31 CDRH3-34
    57D9 CDRH1-29 CDRH2-35 CDRH3-39
    48G4 CDRH1-5 CDRH2-5 CDRH3-5
    53C3.1 CDRH1-5 CDRH2-5 CDRH3-5
    50G1 CDRH1-11 CDRH2-11 CDRH3-11
    58C2 CDRH1-6 CDRH2-36 CDRH3-40
    63H11 CDRH1-35 CDRH2-34 CDRH3-51
    61H5 CDRH1-27 CDRH2-72 CDRH3-37
    52B9 CDRH1-27 CDRH2-72 CDRH3-37
    54H10.3 CDRH1-43 CDRH2-74 CDRH3-81
    50G5 v1 CDRH1-37 CDRH2-73 CDRH3-35
    50G5 v2 CDRH1-37 CDRH2-73 CDRH3-35
    51C1 CDRH1-2 CDRH2-1 CDRH3-20
    53C3.2 CDRH1-39 CDRH2-77 CDRH3-43
    50D4 CDRH1-41 CDRH2-75 CDRH3-80
    55A7 CDRH1-24 CDRH2-18 CDRH3-38
    55E6 CDRH1-3 CDRH2-76 CDRH3-29
    61E1 CDRH1-42 CDRH2-35 CDRH3-26
  • In an additional aspect, an antigen binding protein includes the following associations of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3 presented for convenience in tablular form and in reference to the clone source of the association:
  • TABLE 6
    CDRH and CDRL Associations
    Clone ID CDRL1 CDRL2 CDRL3 CDRH1 CDRH2 CDRH3
    63G8 CDRL1-13 CDRL2-29 CDRL3-41 CDRH1-34 CDRH2-12 CDRH3-50
    64A8 CDRL1-13 CDRL2-29 CDRL3-41 CDRH1-34 CDRH2-12 CDRH3-50
    67B4 CDRL1-13 CDRL2-29 CDRL3-41 CDRH1-34 CDRH2-12 CDRH3-50
    68D3 CDRL1-13 CDRL2-29 CDRL3-41 CDRH1-34 CDRH2-12 CDRH3-50
    64E6 CDRL1-46 CDRL2-34 CDRL3-42 CDRH1-35 CDRH2-44 CDRH3-51
    65E8 CDRL1-46 CDRL2-34 CDRL3-42 CDRH1-35 CDRH2-44 CDRH3-51
    65F11 CDRL1-46 CDRL2-34 CDRL3-42 CDRH1-35 CDRH2-44 CDRH3-51
    67G7 CDRL1-46 CDRL2-34 CDRL3-42 CDRH1-35 CDRH2-44 CDRH3-51
    63B6 CDRL1-47 CDRL2-3 CDRL3-43 CDRH1-36 CDRH2-45 CDRH3-52
    64D4 CDRL1-47 CDRL2-3 CDRL3-43 CDRH1-36 CDRH2-45 CDRH3-52
    65C3 CDRL1-48 CDRL2-36 CDRL3-44 CDRH1-24 CDRH2-46 CDRH3-53
    68D5 CDRL1-48 CDRL2-36 CDRL3-44 CDRH1-24 CDRH2-46 CDRH3-53
    63E6 CDRL1-49 CDRL2-14 CDRL3-45 CDRH1-37 CDRH2-47 CDRH3-54
    66F7 CDRL1-50 CDRL2-14 CDRL3-45 CDRH1-37 CDRH2-47 CDRH3-54
    64H5 CDRL1-51 CDRL2-37 CDRL3-46 CDRH1-12 CDRH2-48 CDRH3-55
    65G4 CDRL1-51 CDRL2-37 CDRL3-46 CDRH1-12 CDRH2-48 CDRH3-55
    67G10v1 CDRL1-52 CDRL2-38 CDRL3-47 CDRH1-38 CDRH2-49 CDRH3-56
    67G10v2 CDRL1-53 CDRL2-39 CDRL3-48 CDRH1-38 CDRH2-49 CDRH3-56
    66B4 CDRL1-57 CDRL2-40 CDRL3-50 CDRH1-15 CDRH2-53 CDRH3-59
    66G2 CDRL1-22 CDRL2-41 CDRL3-51 CDRH1-12 CDRH2-54 CDRH3-50
    68G5 CDRL1-59 CDRL2-42 CDRL3-52 CDRH1-12 CDRH2-55 CDRH3-60
    63F5 CDRL1-54 CDRL2-20 CDRL3-42 CDRH1-35 CDRH2-50 CDRH3-51
    66F6 CDRL1-46 CDRL2-35 CDRL3-42 CDRH1-35 CDRH2-34 CDRH3-51
    65C1 CDRL1-56 CDRL2-35 CDRL3-42 CDRH1-35 CDRH2-52 CDRH3-58
    64A7 CDRL1-55 CDRL2-20 CDRL3-49 CDRH1-40 CDRH2-51 CDRH3-57
    66D4 CDRL1-60 CDRL2-14 CDRL3-53 CDRH1-43 CDRH2-56 CDRH3-61
    65B1 CDRL1-61 CDRL2-43 CDRL3-15 CDRH1-44 CDRH2-57 CDRH3-62
    67A4 CDRL1-62 CDRL2-25 CDRL3-55 CDRH1-45 CDRH2-58 CDRH3-63
    65B4 CDRL1-63 CDRL2-25 CDRL3-55 CDRH1-46 CDRH2-59 CDRH3-64
    63A10 CDRL1-52 CDRL2-45 CDRL3-56 CDRH1-38 CDRH2-60 CDRH3-56
    65H11 CDRL1-65 CDRL2-38 CDRL3-57 CDRH1-38 CDRH2-61 CDRH3-56
    64C8 CDRL1-66 CDRL2-47 CDRL3-58 CDRH1-12 CDRH2-62 CDRH3-65
    65E3 CDRL1-51 CDRL2-42 CDRL3-59 CDRH1-47 CDRH2-63 CDRH3-66
    65D4 CDRL1-67 CDRL2-42 CDRL3-60 CDRH1-48 CDRH2-22 CDRH3-67
    65D1 CDRL1-39 CDRL2-32 CDRL3-61 CDRH1-49 CDRH2-64 CDRH3-68
    67G8 CDRL1-69 CDRL2-37 CDRL3-59 CDRH1-12 CDRH2-65 CDRH3-69
    65B7 CDRL1-70 CDRL2-20 CDRL3-62 CDRH1-50 CDRH2-52 CDRH3-70
    64A6 CDRL1-71 CDRL2-48 CDRL3-63 CDRH1-14 CDRH2-66 CDRH3-71
    65F9 CDRL1-72 CDRL2-15 CDRL3-63 CDRH1-36 CDRH2-34 CDRH3-72
    67F5 CDRL1-72 CDRL2-49 CDRL3-64 CDRH1-24 CDRH2-67 CDRH3-53
    64B10 CDRL1-73 CDRL2-50 CDRL3-17 CDRH1-36 CDRH2-68 CDRH3-73
    68C8 CDRL1-74 CDRL2-16 CDRL3-17 CDRH1-51 CDRH2-69 CDRH3-74
    67A5 CDRL1-75 CDRL2-5 CDRL3-66 CDRH1-25 CDRH2-31 CDRH3-75
    67C10 CDRL1-75 CDRL2-5 CDRL3-5 CDRH1-25 CDRH2-31 CDRH3-76
    64H6 CDRL1-51 CDRL2-37 CDRL3-68 CDRH1-25 CDRH2-70 CDRH3-77
    63F9 CDRL1-76 CDRL2-51 CDRL3-69 CDRH1-52 CDRH2-71 CDRH3-78
    67F6 CDRL1-77 CDRL2-52 CDRL3-5 CDRH1-53 CDRH2-31 CDRH3-79
    48H11 CDRL1-4 CDRL2-4 CDRL3-4 CDRH1-4 CDRH2-4 CDRH3-4
    52A8 CDRL1-15 CDRL2-14 CDRL3-15 CDRH1-15 CDRH2-17 CDRH3-17
    52F8 CDRL1-19 CDRL2-17 CDRL3-19 CDRH1-17 CDRH2-20 CDRH3-21
    49H12 CDRL1-9 CDRL2-8 CDRL3-9 CDRH1-10 CDRH2-10 CDRH3-10
    54A1 CDRL1-24 CDRL2-6 CDRL3-9 CDRH1-10 CDRH2-25 CDRH3-10
    55G9 CDRL1-24 CDRL2-6 CDRL3-9 CDRH1-10 CDRH2-25 CDRH3-10
    49C8 CDRL1-6 CDRL2-6 CDRL3-6 CDRH1-7 CDRH2-7 CDRH3-7
    52H1 CDRL1-6 CDRL2-6 CDRL3-6 CDRH1-7 CDRH2-7 CDRH3-7
    60G5.2 CDRL1-44 CDRL2-32 CDRL3-40 CDRH1-33 CDRH2-42 CDRH3-48
    49G3 CDRL1-8 CDRL2-7 CDRL3-8 CDRH1-9 CDRH2-9 CDRH3-9
    59A10 CDRL1-14 CDRL2-28 CDRL3-14 CDRH1-30 CDRH2-37 CDRH3-41
    49H4 CDRL1-14 CDRL2-28 CDRL3-14 CDRH1-30 CDRH2-37 CDRH3-41
    48F8 CDRL1-3 CDRL2-3 CDRL3-3 CDRH1-3 CDRH2-3 CDRH3-3
    53B9 CDRL1-3 CDRL2-3 CDRL3-3 CDRH1-3 CDRH2-3 CDRH3-3
    56B4 CDRL1-3 CDRL2-3 CDRL3-3 CDRH1-3 CDRH2-3 CDRH3-3
    57E7 CDRL1-3 CDRL2-3 CDRL3-3 CDRH1-3 CDRH2-3 CDRH3-3
    57F11 CDRL1-3 CDRL2-3 CDRL3-3 CDRH1-3 CDRH2-3 CDRH3-3
    59C9 CDRL1-37 CDRL2-29 CDRL3-14 CDRH1-31 CDRH2-38 CDRH3-42
    58A5 CDRL1-37 CDRL2-29 CDRL3-14 CDRH1-31 CDRH2-38 CDRH3-42
    57A4 CDRL1-37 CDRL2-29 CDRL3-14 CDRH1-31 CDRH2-38 CDRH3-42
    57F9 CDRL1-37 CDRL2-29 CDRL3-14 CDRH1-31 CDRH2-38 CDRH3-42
    51G2 CDRL1-14 CDRL2-13 CDRL3-14 CDRH1-3 CDRH2-16 CDRH3-16
    56A7 CDRL1-29 CDRL2-24 CDRL3-14 CDRH1-3 CDRH2-16 CDRH3-32
    56E4 CDRL1-29 CDRL2-24 CDRL3-14 CDRH1-3 CDRH2-16 CDRH3-32
    54H10.1 CDRL1-25 CDRL2-20 CDRL3-24 CDRH1-21 CDRH2-26 CDRH3-27
    55D1 CDRL1-25 CDRL2-20 CDRL3-24 CDRH1-21 CDRH2-26 CDRH3-27
    48H3 CDRL1-25 CDRL2-20 CDRL3-24 CDRH1-21 CDRH2-26 CDRH3-27
    53C11 CDRL1-25 CDRL2-20 CDRL3-24 CDRH1-21 CDRH2-26 CDRH3-27
    59G10.3 CDRL1-41 CDRL2-16 CDRL3-37 CDRH1-32 CDRH2-40 CDRH3-45
    51C10.1 CDRL1-12 CDRL2-10 CDRL3-11 CDRH1-13 CDRH2-13 CDRH3-13
    59D10v1 CDRL1-38 CDRL2-10 CDRL3-34 CDRH1-13 CDRH2-13 CDRH3-13
    59D10v2 CDRL1-39 CDRL2-30 CDRL3-35 CDRH1-13 CDRH2-13 CDRH3-13
    60F9 CDRL1-43 CDRL2-31 CDRL3-39 CDRH1-21 CDRH2-41 CDRH3-47
    48B4 CDRL1-43 CDRL2-31 CDRL3-39 CDRH1-21 CDRH2-41 CDRH3-47
    52D6 CDRL1-43 CDRL2-31 CDRL3-39 CDRH1-21 CDRH2-41 CDRH3-47
    61G5 CDRL1-45 CDRL2-33 CDRL3-39 CDRH1-21 CDRH2-43 CDRH3-49
    59G10.2 CDRL1-40 CDRL2-11 CDRL3-36 CDRH1-6 CDRH2-39 CDRH3-44
    51A8 CDRL1-10 CDRL2-9 CDRL3-10 CDRH1-12 CDRH2-12 CDRH3-12
    53H5.2 CDRL1-22 CDRL2-14 CDRL3-22 CDRH1-12 CDRH2-23 CDRH3-24
    53F6 CDRL1-21 CDRL2-19 CDRL3-21 CDRH1-19 CDRH2-22 CDRH3-23
    56C11 CDRL1-30 CDRL2-25 CDRL3-28 CDRH1-12 CDRH2-30 CDRH3-33
    49A10 CDRL1-5 CDRL2-5 CDRL3-5 CDRH1-6 CDRH2-6 CDRH3-6
    48D4 CDRL1-5 CDRL2-5 CDRL3-5 CDRH1-6 CDRH2-6 CDRH3-6
    49G2 CDRL1-7 CDRL2-5 CDRL3-7 CDRH1-8 CDRH2-8 CDRH3-8
    50C12 CDRL1-7 CDRL2-5 CDRL3-7 CDRH1-8 CDRH2-8 CDRH3-8
    55G11 CDRL1-7 CDRL2-5 CDRL3-7 CDRH1-8 CDRH2-8 CDRH3-8
    52C1 CDRL1-17 CDRL2-16 CDRL3-17 CDRH1-12 CDRH2-19 CDRH3-19
    55E9 CDRL1-27 CDRL2-17 CDRL3-26 CDRH1-23 CDRH2-28 CDRH3-30
    60D7 CDRL1-1 CDRL2-5 CDRL3-38 CDRH1-12 CDRH2-22 CDRH3-46
    51C10.2 CDRL1-12 CDRL2-11 CDRL3-12 CDRH1-14 CDRH2-14 CDRH3-14
    55D3 CDRL1-26 CDRL2-14 CDRL3-25 CDRH1-22 CDRH2-27 CDRH3-28
    57B12 CDRL1-34 CDRL2-14 CDRL3-32 CDRH1-28 CDRH2-34 CDRH3-28
    52C5 CDRL1-18 CDRL2-14 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    60G5.1 CDRL1-18 CDRL2-14 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    55E4 CDRL1-18 CDRL2-21 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    49B11 CDRL1-18 CDRL2-21 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    50H10 CDRL1-18 CDRL2-21 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    53C1 CDRL1-18 CDRL2-21 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    56G1 CDRL1-18 CDRL2-14 CDRL3-30 CDRH1-2 CDRH2-1 CDRH3-20
    48F3 CDRL1-2 CDRL2-2 CDRL3-2 CDRH1-2 CDRH2-2 CDRH3-2
    48C9 CDRL1-1 CDRL2-1 CDRL3-1 CDRH1-1 CDRH2-1 CDRH3-1
    49A12 CDRL1-1 CDRL2-1 CDRL3-1 CDRH1-1 CDRH2-1 CDRH3-1
    51E2 CDRL1-1 CDRL2-1 CDRL3-1 CDRH1-1 CDRH2-1 CDRH3-1
    51E5 CDRL1-13 CDRL2-12 CDRL3-13 CDRH1-2 CDRH2-15 CDRH3-15
    53H5.3 CDRL1-23 CDRL2-15 CDRL3-23 CDRH1-20 CDRH2-24 CDRH3-25
    56G3.3 CDRL1-33 CDRL2-27 CDRL3-31 CDRH1-27 CDRH2-33 CDRH3-37
    55B10 CDRL1-33 CDRL2-27 CDRL3-31 CDRH1-27 CDRH2-33 CDRH3-37
    52B8 CDRL1-16 CDRL2-15 CDRL3-16 CDRH1-16 CDRH2-18 CDRH3-18
    55G5 CDRL1-28 CDRL2-23 CDRL3-27 CDRH1-24 CDRH2-29 CDRH3-31
    52H2 CDRL1-20 CDRL2-18 CDRL3-20 CDRH1-18 CDRH2-21 CDRH3-22
    56G3.2 CDRL1-32 CDRL2-26 CDRL3-16 CDRH1-26 CDRH2-32 CDRH3-36
    56E7 CDRL1-31 CDRL2-7 CDRL3-29 CDRH1-25 CDRH2-31 CDRH3-34
    57D9 CDRL1-35 CDRL2-20 CDRL3-33 CDRH1-29 CDRH2-35 CDRH3-39
    61H5 CDRL1-33 CDRL2-20 CDRL3-31 CDRH1-27 CDRH2-72 CDRH3-37
    52B9 CDRL1-33 CDRL2-20 CDRL3-31 CDRH1-27 CDRH2-72 CDRH3-37
    48G4 CDRL1-79 CDRL2-35 CDRL3-71 CDRH1-5 CDRH2-5 CDRH3-5
    53C3.1 CDRL1-79 CDRL2-35 CDRL3-71 CDRH1-5 CDRH2-5 CDRH3-5
    50G1 CDRL1-7 CDRL2-5 CDRL3-38 CDRH1-11 CDRH2-11 CDRH3-11
    58C2 CDRL1-81 CDRL2-5 CDRL3-66 CDRH1-6 CDRH2-36 CDRH3-40
    54H10.3 CDRL1-42 CDRL2-46 CDRL3-53 CDRH1-43 CDRH2-74 CDRH3-81
    50G5v1 CDRL1-22 CDRL2-14 CDRL3-72 CDRH1-37 CDRH2-73 CDRH3-35
    50G5v2 CDRL1-78 CDRL2-22 CDRL3-75 CDRH1-37 CDRH2-73 CDRH3-35
    51C1 CDRL1-18 CDRL2-14 CDRL3-18 CDRH1-2 CDRH2-1 CDRH3-20
    53C3.2 CDRL1-36 CDRL2-44 CDRL3-70 CDRH1-39 CDRH2-77 CDRH3-43
    50D4 CDRL1-26 CDRL2-53 CDRL3-74 CDRH1-41 CDRH2-75 CDRH3-80
    55A7 CDRL1-58 CDRL2-14 CDRL3-54 CDRH1-24 CDRH2-18 CDRH3-38
    55E6 CDRL1-64 CDRL2-20 CDRL3-65 CDRH1-3 CDRH2-76 CDRH3-29
    61E1 CDRL1-68 CDRL2-14 CDRL3-67 CDRH1-42 CDRH2-35 CDRH3-26
    63H11 CDRL1-46 CDRL2-34 CDRL3-42 CDRH1-35 CDRH2-34 CDRH3-51
  • Consensus Sequences
  • In yet another aspect, the CDRs disclosed herein include consensus sequences derived from groups of related monoclonal antibodies. As described herein, a “consensus sequence” refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within a given amino acid sequences. The CDR consensus sequences provided include CDRs corresponding to each of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3.
  • Consensus sequences were determined using standard analyses of the CDRs corresponding to the VH and VL of the disclosed antigen binding proteins shown in Tables 3A and 3B, some of which specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The consensus sequences can be determined by keeping the CDRs contiguous within the same sequence corresponding to a VH or VL.
  • Light Chain CDR3
  • Group 1
    (SEQ ID NO: 1439)
    QQFGSSLT
    Group 2
    (SEQ ID NO: 1440)
    QQS Y S T S LT
    (SEQ ID NO: 1441)
    QQS Y S S P LT
    (SEQ ID NO: 1442)
    QQS F S T P LT
    (SEQ ID NO: 1443)
    QQS X 1 S X 2 X 3 LT
    wherein X1 is Y or F; X2 is T or S; and X3
    is P or S.
    Group 3
    (SEQ ID NO: 1444)
    LQ R N SYP L T
    (SEQ ID NO: 1445)
    LQ H N SYP R T
    (SEQ ID NO: 1446)
    LQ H S SYP L T
    (SEQ ID NO: 1447)
    LQ X 4 X 5 SYP X 6 T
    wherein X4 is H or R; X5 is N or S; and X6
    is L or R.
    Group 4
    (SEQ ID NO: 1448)
    MQR I EFP L T
    (SEQ ID NO: 1449)
    MQR I EFP I T
    (SEQ ID NO: 1450)
    MQR L EFP I T
    (SEQ ID NO: 1451)
    MQR X 7 EFP X 8 T
    wherein X7 is I or L; and X8 us I or L.
    Group 5
    (SEQ ID NO: 1452)
    Q V WDS N P VV
    (SEQ ID NO: 1453)
    Q L WDS S T VV
    (SEQ ID NO: 1454)
    Q V WDS S S VV
    (SEQ ID NO: 1455)
    Q V WDS S P VV
    (SEQ ID NO: 1456)
    Q V WDS S T VV
    (SEQ ID NO: 1457)
    Q X 9 WDS X 10 X 11 VV
    wherein X9 is V or L; X10 is S or N; and X11
    is T, P or S.
    Group 6
    (SEQ ID NO: 1458)
    QQYN N WP L T
    (SEQ ID NO: 1459)
    QQYN N WP W T
    (SEQ ID NO: 1460)
    QQYN T WP W T
    (SEQ ID NO: 1461)
    QQYN X 12 WP X 13 T
    wherein X12 is N or T; and X13 is W or L.
    Group 7
    (SEQ ID NO: 1462)
    QVWDSS S D H V V
    (SEQ ID NO: 1463)
    QVWDSS S D V V
    (SEQ ID NO: 1464)
    QVWDSS C D G V
    (SEQ ID NO: 1465)
    QVWDSS S D G V
    (SEQ ID NO: 1466)
    QVWDSS X 14 D X 15 V X 16
    wherein X14 is S or C; X15 is H, V or G; and
    X16 is V or absent.
    Group 8
    (SEQ ID NO: 1467)
    QQSS S IPWT
    (SEQ ID NO: 1468)
    QQSS T IPWT
    (SEQ ID NO: 1469)
    QQSS X 17 IPWT
    wherein X17 is S or T.
    Group 9
    (SEQ ID NO: 1470)
    QQTNSFPPWT
    Group 10
    (SEQ ID NO: 1471)
    GTWDSSLS A V V
    (SEQ ID NO: 1472)
    GTWDSSLS V V V
    (SEQ ID NO: 1473)
    GTWDSSLS A M V
    (SEQ ID NO: 1474)
    GTWDSSLS X 18 X 19 V
    wherein X18 is A or V; and X19 is V or M.
    Group 11
    (SEQ ID NO: 1475)
    QQYDNLP L T
    (SEQ ID NO: 1476)
    QQYDNLP F T
    (SEQ ID NO: 1477)
    QQYDNLP X 20 T
    wherein X20 is L or F.
    Group 12
    (SEQ ID NO: 1478)
    QQYGSS P PWT
    (SEQ ID NO: 1479)
    QQYGSS PWT
    (SEQ ID NO: 1480)
    QQYGSS X 21 PWT
    wherein X21 is P or absent.
    Group 13
    (SEQ ID NO: 1481)
    QQYG R S L FT
    (SEQ ID NO: 1482)
    QQYG T S P FT
    (SEQ ID NO: 1483)
    QQYG X 22 S X 23 FT
    wherein X22 is R or T; and X23 is L or P.
    Group 14
    (SEQ ID NO: 1484)
    QQYGSS R S
    (SEQ ID NO: 1485)
    QQYGSS P R S
    (SEQ ID NO: 1486)
    QQYGSS R T
    (SEQ ID NO: 1487)
    QQYGSS C S
    (SEQ ID NO: 1488)
    QQYGSS X 24 X 25 X 26
    wherein X24 is P or absent; X25 is R or C and
    X26 is S or T.
    Group 15
    (SEQ ID NO: 1489)
    QADWSS T T W V
    (SEQ ID NO: 1490)
    QADWSS T A V
    (SEQ ID NO: 1491)
    QADWSS T W V
    (SEQ ID NO: 1492)
    QAWDSS X 27 T X 28 V
    wherein X27 is T or absent; and X28 is W or A.
    Group 16
    (SEQ ID NO: 1493)
    QADWS G TV V
    (SEQ ID NO: 1494)
    QADWS T TV V
    (SEQ ID NO: 1495)
    QAWDS A TV I
    (SEQ ID NO: 1496)
    QAWDS X 29 TV X 30
    wherein X29 is G, T, A or absent; and X30
    is V or I.
    Group 17
    (SEQ ID NO: 1497)
    QQ S YSA T FT
    (SEQ ID NO: 1498)
    QQ T YSA P FT
    (SEQ ID NO: 1499)
    QQ X 31 YSA X 32 FT
    wherein X31 is S or T; and X32 is T or P.
    Group 18
    (SEQ ID NO: 1500)
    QQYN I YPRT
    (SEQ ID NO: 1501)
    QQYN T YPRT
    (SEQ ID NO: 1502)
    QQYN X 33 YPRT
    wherein X33 is I or T.
    Group 19
    (SEQ ID NO: 1503)
    HQ S S DLPLT
    (SEQ ID NO: 1504)
    HQ Y D DLPLT
    (SEQ ID NO: 1505)
    HQ X 34 X 35 DLPLT
    wherein X34 is S or Y; and X35 is S or D.
    Group 20
    (SEQ ID NO: 1506)
    MQALQT P F T
    (SEQ ID NO: 1507)
    MQALQT L I T
    (SEQ ID NO: 1508)
    MQALQT X 36 X 37 T
    wherein X36 is P or L; and X37 is F or I.
    Group 21
    (SEQ ID NO: 1509)
    QQFGRSFT
    Group 22
    (SEQ ID NO: 1510)
    YSTDSS V NHVV
    (SEQ ID NO: 1511)
    YSTDSS G NHVV
    (SEQ ID NO: 1512)
    YSTDSS X 38 NHVV
    wherein X38 is V or G.
  • Light Chain CDR2
  • Group 1
    (SEQ ID NO: 1513)
    A ASSL Q S
    (SEQ ID NO: 1514)
    S ASSL Q S
    (SEQ ID NO: 1515)
    A ASSL Q F
    (SEQ ID NO: 1516)
    A ASSL K S
    (SEQ ID NO: 1517)
    X 39 ASSL X 40 X 41
    wherein X39 is A or S; X40 is Q or K;
    and X41 is S or F.
    Group 2
    (SEQ ID NO: 1518)
    G A S S R A T
    (SEQ ID NO: 1519)
    G A S S R D T
    (SEQ ID NO: 1520)
    G T S T R A T
    (SEQ ID NO: 1521)
    G A S T R A T
    (SEQ ID NO: 1522)
    G A S A R A T
    (SEQ ID NO: 1523)
    G A S R R A T
    (SEQ ID NO: 1524)
    G A S N R A T
    (SEQ ID NO: 1525)
    G X 42 S X 43 R X 44 T
    wherein X42 is A or T; X43 is S, T, A, R or N;
    and X44 is A or D.
    Group 3
    (SEQ ID NO: 1526)
    GAFSRA S
    (SEQ ID NO: 1527)
    GAFSRA T
    (SEQ ID NO: 1528)
    GAFSRA X 45
    wherein X45 is S or T.
    Group 4
    (SEQ ID NO: 1529)
    Q D T KRPS
    (SEQ ID NO: 1530)
    R D S KRPS
    (SEQ ID NO: 1531)
    E D S KRPS
    (SEQ ID NO: 1532)
    Q D S KRPS
    (SEQ ID NO: 1533)
    X 46 D X 47 KRPS
    wherein X46 is Q, R or E; and X47 is T or S.
    Group 5
    (SEQ ID NO: 1534)
    TLS Y RAS
    (SEQ ID NO: 1535)
    TLS F RAS
    (SEQ ID NO: 1536)
    TLS X 48 RAS
    wherein X48 is Y or F.
    Group 6
    (SEQ ID NO: 1537)
    AASNLQ R
    (SEQ ID NO: 1538)
    AASNLQ S
    (SEQ ID NO: 1539)
    AASNLQ X 49
    wherein X49 is R or S.
    Group 7
    (SEQ ID NO: 1540)
    G A SNRA I
    (SEQ ID NO: 1541)
    G S SNRA I
    (SEQ ID NO: 1542)
    G S SNRA T
    (SEQ ID NO: 1543)
    G X 50 SNRA X 51
    wherein X50 is A or S; and X51 is I or T.
    Group 8
    (SEQ ID NO: 1544)
    D A S S LQS
    (SEQ ID NO: 1545)
    D A S T LQS
    (SEQ ID NO: 1546)
    G A S S LQS
    (SEQ ID NO: 1547)
    G A S N LQS
    (SEQ ID NO: 1548)
    X 52 A S X 53 LQS
    wherein X52 is D or G; and X53 is S, T or N.
    Group 9
    (SEQ ID NO: 1549)
    DN N KRPS
    (SEQ ID NO: 1550)
    DN D KRPS
    (SEQ ID NO: 1551)
    DN X 53 KRPS
    wherein X53 is N or D.
    Group 10
    (SEQ ID NO: 1552)
    D A SNLET
    (SEQ ID NO: 1553)
    D V SNLET
    (SEQ ID NO: 1554)
    D X 54 SNLET
    wherein X54 is A or V.
    Group 11
    (SEQ ID NO: 1555)
    L G SNRAS
    (SEQ ID NO: 1556)
    L D SNRAS
    (SEQ ID NO: 1557)
    L X 55 SNRAS
    wherein X55 is G or D.
    Group 12
    (SEQ ID NO: 1558)
    Q D N K RPS
    (SEQ ID NO: 1559)
    Q N N K RPS
    (SEQ ID NO: 1560)
    Q D N E RPS
    (SEQ ID NO: 1561)
    Q X 56 N X 57 RPS
    wherein X56 is D or N; and X57 is K or E.
    Group 13
    (SEQ ID NO: 1562)
    RDRNRPS
    Group 14
    (SEQ ID NO: 1563)
    S DSNRPS
    (SEQ ID NO: 1564)
    C DSNRPS
    (SEQ ID NO: 1565)
    X 58 DSNRPS
    wherein X58 is S or C.
    Group 15
    (SEQ ID NO: 1566)
    DDSDRPS
    Group 16
    (SEQ ID NO: 1567)
    A V SSLQS
    (SEQ ID NO: 1568)
    A S SSLQS
    (SEQ ID NO: 1569)
    A X 59 SSLQS
    wherein X59 is S or V.
    Group 17
    (SEQ ID NO: 1570)
    T A SSLQS
    (SEQ ID NO: 1571)
    T T SSLQS
    (SEQ ID NO: 1572)
    T X 60 SSLQS
    wherein X60 is A or T.
    Group 18
    (SEQ ID NO: 1573)
    K V SNWDS
    (SEQ ID NO: 1574)
    K G SNWDS
    (SEQ ID NO: 1575)
    K X 61 SNWDS
    wherein X61 is V or G.
  • Light Chain CDR1
  • Group 1
    (SEQ ID NO: 1576)
    RAS Q S V S D I L A
    (SEQ ID NO: 1577)
    RAS P S V S S S Y L A
    (SEQ ID NO: 1578)
    RAS Q S F S S S Y L A
    (SEQ ID NO: 1579)
    RAS Q S V S R S H L A
    (SEQ ID NO: 1580)
    RAS Q S V S R D Y L A
    (SEQ ID NO: 1581)
    RAS Q S V S R N Y L A
    (SEQ ID NO: 1582)
    RAS Q S V S S M Y L A
    (SEQ ID NO: 1583)
    RAS Q S V S S Q L A
    (SEQ ID NO: 1584)
    RAS Q S I S S N L A
    (SEQ ID NO: 1585)
    RAS Q S V S S N L A
    (SEQ ID NO: 1586)
    RAS Q S V S S N V A
    (SEQ ID NO: 1587)
    RAS Q S V N S N L A
    (SEQ ID NO: 1588)
    RAS Q S V R S S S L A
    (SEQ ID NO: 1589)
    RAS Q S V S N S S L A
    (SEQ ID NO: 1590)
    RAS Q S V R N S S L A
    (SEQ ID NO: 1591)
    RAS X 62 S X 63 X 64 X 65 X 66 X 67 X 68 A
    wherein X62 is P or Q; X63 is V, I or F; X64 is S,
    R or absent; X65 is S, R or N; X66 is D, S, N or
    M; X67 is I, Y, H, Q, N or S; and X68 is L or V.
    Group 2
    (SEQ ID NO: 1592)
    R A SQ I I S R YLN
    (SEQ ID NO: 1593)
    R T SQ S I S S YLN
    (SEQ ID NO: 1594)
    R A SQ S I S N YLN
    (SEQ ID NO: 1595)
    R T SQ S I S S YLN
    (SEQ ID NO: 1596)
    R A SQ T I S I YLN
    (SEQ ID NO: 1597)
    R A SQ R I S S YLN
    (SEQ ID NO: 1598)
    R A SQ S I S S YLN
    (SEQ ID NO: 1599)
    R A SQ N I R T YLN
    (SEQ ID NO: 1600)
    R A SQ N I R S YLN
    (SEQ ID NO: 1601)
    R A SQ N I N N YLN
    (SEQ ID NO: 1602)
    R X 69 SQ X 70 I X 71 X 72 YLN
    wherein X69 is A or T; X70 is I, S, T or N;
    X71 is R, S or N; and X72 is R, S, N, or I.
    Group 3
    (SEQ ID NO: 1603)
    GGN N IGS Y N V H
    (SEQ ID NO: 1604)
    GGN N IGS I N V H
    (SEQ ID NO: 1605)
    GGN N IGS K S V Q
    (SEQ ID NO: 1606)
    GGN D IGS K S V H
    (SEQ ID NO: 1607)
    GGN N IGS K S V H
    (SEQ ID NO: 1608)
    GGN N IGS K T V H
    (SEQ ID NO: 1609)
    GGN N IGS K A V H
    (SEQ ID NO: 1610)
    GGN N IGS K N V H
    (SEQ ID NO: 1611)
    GGN D IGS K N V H
    (SEQ ID NO: 1612)
    GGN X 73 IGS X 74 X 75 V X 76
    wherein X73 is N, or D; X74 is Y, I or K;
    X75 is N, S, T or A; and X76 is H or Q.
    Group 4
    (SEQ ID NO: 1613)
    RASQ D IRNDL G
    (SEQ ID NO: 1614)
    RASQ D IRNDL A
    (SEQ ID NO: 1615)
    RASQ G IRNDL G
    (SEQ ID NO: 1616)
    RASQ X 77 IRNDL X 78
    wherein X77 is D or G; and X78 is G or A.
    Group 5
    (SEQ ID NO: 1617)
    RSSQSL L N S D A G T TYLD
    (SEQ ID NO: 1618)
    RSSQSL F D N D D G D TYLD
    (SEQ ID NO: 1619)
    RSSQSL L N S D D G N TYLD
    (SEQ ID NO: 1620)
    RSSQSL L D S D D G D TYLD
    (SEQ ID NO: 1621)
    RSSQSL L D S D D G N TYLD
    (SEQ ID NO: 1622)
    RSSQSL X 79 X 80 X 81 D X 82 G X 83 TYLD
    wherein X79 is L or F; X80 is N or D;
    X81 is S or N; X82 is A or D; and
    X83 is T, D or N.
    Group 6
    (SEQ ID NO: 1623)
    SG N K LGDKY V C
    (SEQ ID NO: 1624)
    SG D K LGDKY V C
    (SEQ ID NO: 1625)
    SG D K LGDKY A C
    (SEQ ID NO: 1626)
    SG D E LGDKY A C
    (SEQ ID NO: 1627)
    SG D N LGDKY A F
    (SEQ ID NO: 1628)
    SG D N LGDKY A C
    (SEQ ID NO: 1629)
    SG X 84 X 85 LGDKY X 86 X 87
    wherein X84 is N or D; X85 is K, E or N;
    X86 is V or A; and X87 is C or F.
    Group 7
    (SEQ ID NO: 1630)
    QASQ G I S N Y LN
    (SEQ ID NO: 1631)
    QASQ D I K K F LN
    (SEQ ID NO: 1632)
    QASQ D I N I Y LN
    (SEQ ID NO: 1633)
    QASQ D I S I Y LN
    (SEQ ID NO: 1634)
    QASQ D I T K Y LN
    (SEQ ID NO: 1635)
    QASQ X 88 I X 89 X 90 X 91 LN
    wherein X88 is G or D; X89 is S, K N or T;
    X90 is N, K or I; and X91 is Y or F.
    Group 8
    (SEQ ID NO: 1636)
    RASQ D I D S WL V
    (SEQ ID NO: 1637)
    RASQ G I S R WL A
    (SEQ ID NO: 1638)
    RASQ D I S S WL A
    (SEQ ID NO: 1639)
    RASQ G I S S WL A
    (SEQ ID NO: 1640)
    RASQ X 92 I X 93 X 94 WL X 95
    wherein X92 is D or G; X93 is D or S;
    X94 is R or S; and X95 is V or A.
    Group 9
    (SEQ ID NO: 1641)
    SGSSSNIG N NYV A
    (SEQ ID NO: 1642)
    SGSSSNIG I NYV S
    (SEQ ID NO: 1643)
    SGSSSNIG D NYV S
    (SEQ ID NO: 1644)
    SGSSSNIG N NYV S
    (SEQ ID NO: 1645)
    SGSSSNIG X 96 NYV X 97
    wherein X96 is N, I or D; and X97 is A or S.
    Group 10
    (SEQ ID NO: 1646)
    RAS Q DISNYLA
    (SEQ ID NO: 1647)
    RAS H DISNYLA
    (SEQ ID NO: 1648)
    RAS X 98 DISNYLA
    wherein X98 is Q or H.
    Group 11
    (SEQ ID NO: 1649)
    RASQ R V P SSY I V
    (SEQ ID NO: 1650)
    RASQ R V P SSY L V
    (SEQ ID NO: 1651)
    RASQ S V A SSY L V
    (SEQ ID NO: 1652)
    RASQ X 99 V X 100 SSY X 101 V
    wherein X99 is R or S; X100 is P or A; and
    X101 is I or L.
    Group 12
    (SEQ ID NO: 1653)
    RSSQSL L HSNG Y NYLD
    (SEQ ID NO: 1654)
    RSSQSL L HSNG F NYLD
    (SEQ ID NO: 1655)
    RSSQSL Q HSNG Y NYLD
    (SEQ ID NO: 1656)
    RSSQSL X 102 HSNG X 103 NYLD
    wherein X102 is L or Q; and X103 is Y or F.
    Group 13
    (SEQ ID NO: 1657)
    RASQT V RN N YLA
    (SEQ ID NO: 1658)
    RASQT I RN S YLA
    (SEQ ID NO: 1659)
    RASQT X 104 RN X 105 YLA
    wherein X104 is V or I; and X105 is N or S.
    Group 14
    (SEQ ID NO: 1660)
    RSS Q R LVYSDGNTYLN
    (SEQ ID NO: 1661)
    RSS P S LVYSDGNTYLN
    (SEQ ID NO: 1662)
    RSS X 106 X 107 LVYSDGNTYLN
    wherein X106 is Q or P; and X107 is R or S.
    Group 15
    (SEQ ID NO: 1663)
    SGDA L PKKYA Y
    (SEQ ID NO: 1664)
    SGDA V PKKYA N
    (SEQ ID NO: 1665)
    SGDA X 108 PKKYA X 109
    wherein X108 is L or V; and X109 is Y or N.
  • Heavy Chain CDR3
  • Group 1
    (SEQ ID NO: 1666)
    MT T PYWYF D L
    (SEQ ID NO: 1667)
    MT S PYWYF D L
    (SEQ ID NO: 1668)
    MT T PYWYF G L
    (SEQ ID NO: 1669)
    MT X 110 PYWYF X 111 L
    wherein X110 is T or S; and X111 is D or G.
    Group 2
    (SEQ ID NO: 1670)
    D R Y Y DFW S GYP Y F R YYG L DV
    (SEQ ID NO: 1671)
    D Q Y F DFW S GYP F F Y YYG M DV
    (SEQ ID NO: 1672)
    D Q D Y DFW S GYP Y F Y YYG M DV
    (SEQ ID NO: 1673)
    D Q N Y DFW N GYP Y Y F YYG M DV
    (SEQ ID NO: 1674)
    D Q Y Y DFW S GYP Y Y H YYG M DV
    (SEQ ID NO: 1675)
    D X 112 X 113 X 114 DFW X 115 GYP X 116 X 117 X 118
    YYG X 119 DV
    wherein X112 is R or Q; X113 is Y, D or N; X114 is
    Y or F; X115 is S or N; X116 is Y or F; X117 is
    F or Y; X118 is R, Y, F or H; and X119 is L or M.
    Group 3
    (SEQ ID NO: 1676)
    VTGTDAFDF
    Group 4
    (SEQ ID NO: 1677)
    TVTKEDYYYYGMDV
    Group 5
    (SEQ ID NO: 1678)
    DSSGSYYVEDYFDY
    Group 6
    (SEQ ID NO: 1679)
    D W S IAVAG T FDY
    (SEQ ID NO: 1680)
    D L R IAVAG S FDY
    (SEQ ID NO: 1681)
    D X 119 X 120 IAVAG X 121 FDY
    wherein X119 is W or L; X120 is S or R; and
    X121 is T or S.
    Group 7
    (SEQ ID NO: 1682)
    EYYYGSGSYYP
    Group 8
    (SEQ ID NO: 1683)
    ELGDYPFFDY
    Group 9
    (SEQ ID NO: 1684)
    EYVAEAGFDY
    Group 10
    (SEQ ID NO: 1685)
    VAAVYWYFDL
    Group 11
    (SEQ ID NO: 1686)
    YNWNYGAFDF
    Group 12
    (SEQ ID NO: 1687)
    RASRGYR F GLAFAI
    (SEQ ID NO: 1688)
    RASRGYR Y GLAFAI
    (SEQ ID NO: 1689)
    RASRGYR X 122 GLAFAI
    wherein X122 is F or Y.
    Group 13
    (SEQ ID NO: 1690)
    DGITMVRGVTHYYGMDV
    Group 14
    (SEQ ID NO: 1691)
    DH S SGWYYYGMDV
    (SEQ ID NO: 1692)
    DH T SCWYYYGMDV
    (SEQ ID NO: 1693)
    DH X 123 SCWYYYGMDV
    wherein X123 is S or T.
    Group 15
    (SEQ ID NO: 1694)
    Y S T WDYYYG V DV
    (SEQ ID NO: 1695)
    Y R D WDYYYG M DV
    (SEQ ID NO: 1696)
    Y X 124 X 125 WDYYYG X 126 DV
    wherein X124 is S or R; X125 is T or D; and
    X126 is V or M.
    Group 16
    (SEQ ID NO: 1697)
    VLHY S DS R GYSYY S D F
    (SEQ ID NO: 1698)
    VLHY Y DS S GYSYY F D Y
    (SEQ ID NO: 1699)
    VLHY X 127 DS X 128 GYSYY X 129 D X 130
    wherein X127 is S or Y; X128 is R or S; X129 is S
    or F; and X130 is F or Y.
  • Heavy Chain CDR2
  • Group 1
    (SEQ ID NO: 1700)
    N I Y Y S G T T Y F NPSLKS
    (SEQ ID NO: 1701)
    F I Y Y S G G T N Y NPSLKS
    (SEQ ID NO: 1702)
    Y I Y Y S G G T H Y NPSLKS
    (SEQ ID NO: 1703)
    Y I Y H S G S A Y Y NPSLKS
    (SEQ ID NO: 1704)
    Y I Y D S G S T Y Y NPSLKS
    (SEQ ID NO: 1705)
    S I Y Y S G T T Y Y NPSLKS
    (SEQ ID NO: 1706)
    M I Y Y S G T T Y Y NPSLKS
    (SEQ ID NO: 1707)
    Y I Y Y S G T T Y Y NPSLKS
    (SEQ ID NO: 1708)
    Y I Y Y S G S A Y Y NPSLKS
    (SEQ ID NO: 1709)
    Y I F Y S G S T Y Y NPSLKS
    (SEQ ID NO: 1710)
    Y L Y Y S G S T Y Y NPSLKS
    (SEQ ID NO: 1711)
    Y I Y Y S G S T Y Y NPSLKS
    (SEQ ID NO: 1712)
    Y I Y Y T G S T Y Y NPSLKS
    (SEQ ID NO: 1713)
    Y I Y Y T G S T N Y NPSLKS
    (SEQ ID NO: 1714)
    Y I Y Y S G N T N Y NPSLKS
    (SEQ ID NO: 1715)
    Y I Y Y S G S T N Y NPSLKS
    (SEQ ID NO: 1716)
    X 131 X 132 X 133 X 134 X 135 G X 136 X 137 X 138 X 139
    NPSLKS
    wherein X131 is N, F, Y, S or M; X132 is I or L;
    X133 is Y or F; X134 is Y, H or D; X135 is S or T;
    X136 is T, G, S or T; X137 is T or A; X138 is Y,
    N or H; and X139 is F or Y.
    Group 2
    (SEQ ID NO: 1717)
    L I W Y DG D N K Y Y ADSVKG
    (SEQ ID NO: 1718)
    G I S Y DG S N K N Y ADSVKG
    (SEQ ID NO: 1719)
    I I W Y DG S N K N Y ADSVKG
    (SEQ ID NO: 1720)
    L I W Y DG S N K N Y ADSVKG
    (SEQ ID NO: 1721)
    L I W Y DG S N K D Y ADSVKG
    (SEQ ID NO: 1722)
    V I W Y DG S N K D Y ADSVKG
    (SEQ ID NO: 1723)
    L I S Y DG S N K Y Y ADSVKG
    (SEQ ID NO: 1724)
    V I S Y DG S N K H Y ADSVKG
    (SEQ ID NO: 1725)
    V I S Y DG S N K Y Y ADSVKG
    (SEQ ID NO: 1726)
    V I W D DG S N K Y Y ADSVKG
    (SEQ ID NO: 1727)
    V I W D DG S N N Y Y ADSVKG
    (SEQ ID NO: 1728)
    V I W Y DG S N K Y H ADSVKG
    (SEQ ID NO: 1729)
    V I W Y DG S N K Y Y ADSVKG
    (SEQ ID NO: 1730)
    V I W N DG N N K Y Y ADSVKG
    (SEQ ID NO: 1731)
    V I W N DG S N K N Y ADSVKG
    (SEQ ID NO: 1732)
    X 140 I X 141 X 142 DG X 143 N X 144 X 145 X 146 ADSVKG
    wherein X140 is L, G, I or V; X141 is W or S;
    X142 is Y, D or N; X143 is S or D; X144 is K
    or N; X145 is Y, N, D, or H; and X146 is Y or H.
    Group 3
    (SEQ ID NO: 1733)
    W I NP P SG A T N YAQKF R G
    (SEQ ID NO: 1734)
    W I NP N SG G T N YAQKF R G
    (SEQ ID NO: 1735)
    W I NP N SG A T N YAQKF H G
    (SEQ ID NO: 1736)
    W I NP S SG D T K YAQKF Q G
    (SEQ ID NO: 1737)
    W M NP N SG A T K YAQKF Q G
    (SEQ ID NO: 1738)
    W I NP N SG A T K YAQKF Q G
    (SEQ ID NO: 1739)
    W I NP D SG G T N YAQKF Q G
    (SEQ ID NO: 1740)
    W I NP N SG G T D YAQKF Q G
    (SEQ ID NO: 1741)
    W X 147 NP X 148 SG X 149 T X 150 YAQKF X 151 G
    wherein X147 is I or M; X148 is P, N, S or D;
    X149 is A, G or D; X150 is N, K, or D; X151
    is R, H or Q.
    Group 4
    (SEQ ID NO: 1742)
    EINHS E N TNYNPSLKS
    (SEQ ID NO: 1743)
    EINHS G T TNYNPSLKS
    (SEQ ID NO: 1744)
    EINHS X 152 X 153 TNYNPSLKS
    wherein X152 is E or G; and X153 is N or T.
    Group 5
    (SEQ ID NO: 1745)
    IIYPGDS D TRYSPSFQG
    (SEQ ID NO: 1746)
    IIYPGDS E TRYSPSFQG
    (SEQ ID NO: 1747)
    IIYPGDS X 154 TRYSPSFQG
    wherein X154 is D or E.
    Group 6
    (SEQ ID NO: 1748)
    SISSSS T Y I YY A DS V KG
    (SEQ ID NO: 1749)
    SISSSS T Y I YY A DS L KG
    (SEQ ID NO: 1750)
    SISSSS S Y E YY V DS V KG
    (SEQ ID NO: 1751)
    SISSSS X 155 Y X 156 YY X 157 DS X 158 KG
    wherein X155 is T or S; X156 is I or E;
    X157 is A or V; and X158 is V or L.
    Group 7
    (SEQ ID NO: 1752)
    RI K S KTDGGTT D YAAPVKG
    (SEQ ID NO: 1753)
    RI K S KTDGGTT E YAAPVKG
    (SEQ ID NO: 1754)
    RI I G KTDGGTT D YAAPVKG
    (SEQ ID NO: 1755)
    RI X 159 X 160 KTDGGTT X 161 YAAPVKG
    wherein X159 is K or I; X160 is S or G;
    and X161 is D or E.
    Group 8
    (SEQ ID NO: 1756)
    GISGSSAGTYYADSVGK
    Group 9
    (SEQ ID NO: 1757)
    VIS D SGG S TYYADSVKG
    (SEQ ID NO: 1758)
    VIS G SGG D TYYADSVKG
    (SEQ ID NO: 1759)
    VIS X 162 SGG X 163 TYYADSVKG
    wherein X162 is D or G;
    and X163 is S or D.
    Group 10
    (SEQ ID NO: 1760)
    RTYYRSKWYNDYAVSVKS
    Group 11
    (SEQ ID NO: 1761)
    RIY I SGSTNYNPSL E N
    (SEQ ID NO: 1762)
    RIY T SGSTNYNPSL K S
    (SEQ ID NO: 1763)
    RIY X 164 SGSTNYNPSL X 165 X 166
    wherein X164 is I or T; X165 is E or K;
    and X166 is N or S.
    Group 12
    (SEQ ID NO: 1764)
    WMNPYSGSTG Y AQ N FQ G
    (SEQ ID NO: 1765)
    WMNPYSGSTG L AQ R FQ D
    (SEQ ID NO: 1766)
    WMNPYSGSTG X 167 AQ X 168 FQ X 169
    wherein X167 is Y or L; X168 is N or R;
    and X169 is G or D.
  • Heavy Chain CDR1
  • Group 1
    (SEQ ID NO: 1767)
    SG V Y YW N
    (SEQ ID NO: 1768)
    SG V Y YW S
    (SEQ ID NO: 1769)
    SG G Y YW N
    (SEQ ID NO: 1770)
    SG G Y YW S
    (SEQ ID NO: 1771)
    SG D N TW S
    (SEQ ID NO: 1772)
    SG N Y TW S
    (SEQ ID NO: 1773)
    SG D Y TW T
    (SEQ ID NO: 1774)
    SG D Y TW S
    (SEQ ID NO: 1775)
    SG X 170 X 171 TW X 172
    wherein X170 is V, G, N or D; X171 is Y or N; and X172 is N, S or T.
    Group 2
    (SEQ ID NO: 1776)
    T YYW S
    (SEQ ID NO: 1777)
    Y YYW S
    (SEQ ID NO: 1778)
    S YYW S
    (SEQ ID NO: 1779)
    G YYW S
    (SEQ ID NO: 1780)
    G YYW T
    (SEQ ID NO: 1781)
    X 173 YYW X 174
    wherein X173 is T, S or G; and X174 is S or T.
    Group 3
    (SEQ ID NO: 1782)
    S Y GMH
    (SEQ ID NO: 1783)
    S F GMH
    (SEQ ID NO: 1784)
    T Y GMH
    (SEQ ID NO: 1785)
    F Y GMH
    (SEQ ID NO: 1786)
    X 175 X 176 GMH
    wherein X175 is S, T or F; and X176 is Y or F.
    Group 4
    (SEQ ID NO: 1787)
    SY A M S
    (SEQ ID NO: 1788)
    SY S M N
    (SEQ ID NO: 1789)
    SY S M S
    (SEQ ID NO: 1790)
    SY X 177 M X 178
    wherein X177 is A or S; and X178 is S, N or M.
    Group 5
    (SEQ ID NO: 1791)
    Y YY I H
    (SEQ ID NO: 1792)
    G YY L H
    (SEQ ID NO: 1793)
    G YY K H
    (SEQ ID NO: 1794)
    G YY T H
    (SEQ ID NO: 1795)
    G YY I H
    (SEQ ID NO: 1796)
    X 179 YY X 180 H
    wherein X179 is Y or G; and X180 is I, L, K or T.
    Group 6
    (SEQ ID NO: 1797)
    SYG I H
    (SEQ ID NO: 1798)
    SYG L H
    (SEQ ID NO: 1799)
    SYG X 181 H
    wherein X181 is L or I.
    Group 7
    (SEQ ID NO: 1800)
    NY G M H
    (SEQ ID NO: 1801)
    NY G M R
    (SEQ ID NO: 1802)
    NY N M H
    (SEQ ID NO: 1803)
    NY X 182 M X 183
    wherein X182 is G or N; and X183 is H, R or M.
    Group 8
    (SEQ ID NO: 1804)
    S YWIG
    (SEQ ID NO: 1805)
    G YWIG
    (SEQ ID NO: 1806)
    X 184 YWIG
    wherein X184 is S or G.
    Group 9
    (SEQ ID NO: 1807)
    GY Y MH
    (SEQ ID NO: 1808)
    GY F MH
    (SEQ ID NO: 1809)
    GY X 185 MH
    wherein X185 is Y or F.
    Group 10
    (SEQ ID NO: 1810)
    S Y DI N
    (SEQ ID NO: 1811)
    S H DI N
    (SEQ ID NO: 1812)
    S Y DI D
    (SEQ ID NO: 1813)
    S X 186 DI X 187
    wherein X186 is Y or H; and X187 is N or D.
    Group 11
    (SEQ ID NO: 1814)
    N YAMS
    (SEQ ID NO: 1815)
    H YAMS
    (SEQ ID NO: 1816)
    X 188 YAMS
    wherein X188 is N or H.
    Group 12
    (SEQ ID NO: 1817)
    NAWMS
    Group 13
    (SEQ ID NO: 1818)
    SSSYYWG
    Group 14
    (SEQ ID NO: 1819)
    D YYWN
    (SEQ ID NO: 1820)
    S YYWN
    (SEQ ID NO: 1821)
    X 189 YYWN
    wherein X189 is D or S.
    Group 15
    (SEQ ID NO: 1822)
    SNSA T WN
    (SEQ ID NO: 1823)
    SNSA A WN
    (SEQ ID NO: 1824)
    SNSA X 190 WN
    wherein X190 is T or A.
    Group 16
    (SEQ ID NO: 1825)
    S YDMH
    (SEQ ID NO: 1826)
    T YDMH
    (SEQ ID NO: 1827)
    X 191 YDMH
    wherein X191 is S or T.
  • In some cases an antigen binding protein comprises at least one heavy chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In some cases, an antigen binding protein comprises at least one light chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In other cases, the antigen binding protein comprises at least two heavy chain CDRs according to the determined consensus sequences, and/or at least two light chain CDRs according to the determined consensus sequences. In still other cases, the antigen binding protein comprises at least three heavy chain CDRs according to the determined consensus sequences, and/or at least three light chain CDRs according to the determined consensus sequences.
  • Exemplary Antigen Binding Proteins
  • According to one aspect, an isolated antigen binding protein comprising (a) one or more heavy chain complementary determining regions (CDRHs) comprising one or more of: (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more light chain complementary determining regions (CDRLs) comprising one or more of: (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 comprising one or more of SEQ ID NOS 894-946; (iii) a CDRL3 comprising one or more of SEQ ID NOS 947-1020; and (iv) a CDRL of (i), (ii) and (iii) that comprises ten, nine, eight, seven, six, five, four, three, four, two or one amino acid substitutions, deletions or insertions and combinations thereof; or (c) one or more heavy chain CDRHs of (a) and one or more light chain CDRLs of (b).
  • In another embodiment, the CDRHs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 603-813, and/or the CDRLs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 814-1020. In a further embodiment, the VH is selected from the group consisting of SEQ ID NOS 316-409, and/or the VL is selected from the group consisting of SEQ ID NOS 217-315.
  • According to one aspect, an isolated antigen binding protein comprising (a) one or more variable heavy chains (VHs) comprising one or more of: (i) SEQ ID NOS 316-409; and (ii) a VH of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more variable light chains (VLs) selected from the group consisting of: (i) SEQ ID NOS 217-315, and (ii) a VL of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; or (c) one or more variable heavy chains of (a) and one or more variable light chains of (b).
  • In another embodiment, the variable heavy chain (VH) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 36-409, and/or the variable light chain (VL) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%. 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 217-315.
  • In one aspect, also provided is an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from FGFR1c, FGRF2c and FGFR3c.
  • In one aspect, also provided is an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from β-Klotho.
  • In another aspect, also provided is an isolated antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from both β-Klotho and one or more amino acid residues from FGFR1c, FGFR2c and FGFR3c.
  • In yet another embodiment, the isolated antigen binding protein described hereinabove comprises a first amino acid sequence comprising at least one of the CDRH consensus sequences disclosed herein, and a second amino acid sequence comprising at least one of the CDRL consensus sequences disclosed herein.
  • In one aspect, the first amino acid sequence comprises at least two of the CDRH consensus sequences, and/or the second amino acid sequence comprises at least two of the CDRL consensus sequences. In certain embodiments, the first and the second amino acid sequence are covalently bonded to each other.
  • In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3, the CDRH2 and the CDRH1 parings shown in Table 5 for each clone, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3, the CDRL2 and the CDRL1 pairings shown in Table 4 or each clone.
  • In a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A.
  • In again a further embodiment, the antigen binding protein comprises at least two CDRL sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.
  • In still a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A, and at least two CDRLs of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.
  • In again another embodiment, the antigen binding protein comprises the CDRH1, CDRH2, and CDRH3 sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A.
  • In yet another embodiment, the antigen binding protein comprises the CDRL1, CDRL2, and CDRL3 sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.
  • In yet another embodiment, the antigen binding protein comprises all six CDRs of an antigen binding protein comprising the following VH and VL pairs: V L1 with V H1; V L2 with V H1; V L3 with V H2 or V H3; V L4 with V H4; V L5 with V H5; V L6 with V H6; V L7 with V H6; V L8 with V H7 or V H8; V L9 with V H9; V L10 with V H9; V L11 with V H 10; V L12 with V H11; V L13 with V H12; V L13 with V H14; VL14 with V H13; V L15 with V H14; VL16 with V H15; VL17 with V H16; VL18 with V H17; VL19 with VH18; VL20 with VH19; VL21 with V H20; VL22 with VH21; VL23 with VH22; VL24 with V H23; VL25 with V H24; VL26 with V H25; VL27 with V H26; VL28 with V H27; VL29 with VH28; VL30 with VH29; VL31 with V H30; VL32 with V H31; VL33 with VH32; VL34 with VH33; VL35 with VH34; VL36 with VH35; VL37 with VH36; VL38 with VH37; VL39 with V H38; VL40 with VH39; VL41 with V H40; VL42 with VH41; VL43 with VH42; VL44 with V H43; VL45 with VH44; VL46 with VH45; VL47 with VH46; VL48 with VH47; VL49 with VH48; V L50 with VH49; VL51 with V H50; VL52 with VH51; V L53 with V H52; VL54 with V H53; VL55 with VH54; V L56 with VH54; VL57 with VH54; VL58 with VH55; VL59 with V H56; VL60 with VH57; VL61 with VH58; VL62 with VH59; VL63 with V H60; VL64 with V H1; VL65 with VH62; VL66 with VH63; VL67 with V H64; VL68 with V H65; VL69 with V H66; VL70 with VH67; VL71 with VH68; VL72 with VH69; VL73 with V H70; VL74 with V H70; VL75 with V H70; VL76 with V H71; VL77 with V H72; VL78 with V H73; VL79 with V H74; VL80 with VH75; VL81 with VH76; VL82 with VH77; VL83 with VH78; VL84 with VH79; V L85 with V H80; VL86 with V H81; VL87 with VH82; VL88 with VH86; VL89 with VH83; VL90 with VH84; VL91 with V H85; VL 92 with VH 87; VL 93 with VH 88; VL 94 with VH 88; VL 95 with VH 89; VL 96 with V H 90; VL 97 with VH 91; VL 98 with VH 92; VL 99 with VH 93; and V L 100 with VH 94; as shown in Tables 2A and 2B and Tables 4A and 4B.
  • TABLE 7A
    Heavy Chain Sequences
    Full Heavy Full Heavy Variable Heavy Variable Heavy CDRH2 SEQ ID CDRH3 SEQ ID
    Ref (H#) SEQ ID NO (VH#) SEQ ID NO CDRH1 SEQ ID NO NO NO
    63G8 H1 123 V H1 326 636 667 782
    68D3
    64A8
    67B4
    64E6 H2 136 V H2 339 637 699 783
    65E8
    65F11
    67G7
    63H11 H3 135 V H3 338 637 689 783
    63B6 H4 133 V H4 336 638 700 784
    64D4
    65C3 H5 142 V H5 345 626 701 785
    68D5
    63E6 H6 113 V H6 316 639 702 786
    66F7
    64H5 H7 126 V H7 329 614 703 787
    65G4 H8 129 V H8 332 614 703 787
    67G10v1 H9 121 V H9 324 640 704 788
    67G10v2
    66B4 H10 115 V H10 318 617 708 791
    66G2 H11 124 V H11 327 614 709 782
    68G5 H12 130 V H12 333 614 710 792
    63F5 H13 134 V H13 337 637 705 783
    66F6 H14 138 V H14 341 637 689 783
    65C1 H15 137 V H15 340 637 707 790
    64A7 H16 141 V H16 344 642 706 789
    66D4 H17 114 V H17 317 645 711 793
    65B1 H18 116 VH18 319 646 712 794
    67A4 H19 118 VH19 321 647 713 795
    65B4 H20 117 V H20 320 648 714 796
    63A10 H21 119 VH21 322 640 715 788
    65H11 H22 120 VH22 323 640 716 788
    64C8 H23 122 V H23 325 614 717 797
    65E3 H24 128 V H24 331 649 718 798
    65D4 H25 127 V H25 330 650 677 799
    65D1 H26 125 V H26 328 651 719 800
    67G8 H27 131 V H27 334 614 720 801
    65B7 H28 132 VH28 335 652 707 802
    64A6 H29 139 VH29 342 616 721 803
    65F9 H30 140 V H30 343 638 689 804
    67F5 H31 143 V H31 346 626 722 785
    64B10 H32 144 VH32 347 638 723 805
    68C8 H33 145 VH33 348 653 724 806
    67A5 H34 146 VH34 349 627 686 807
    67C10 H35 147 VH35 350 627 686 808
    64H6 H36 148 VH36 351 627 725 809
    63F9 H37 149 VH37 352 654 726 810
    67F6 H38 150 V H38 353 655 686 811
    48H11 H39 154 VH39 357 606 659 736
    52A8 H40 164 V H40 368 617 672 749
    52F8 H41 167 VH41 371 619 675 753
    49H12 H42 159 VH42 362 612 665 742
    54A1 H43 172 V H43 376 612 680 742
    55G9
    49C8 H44 156 VH44 359 609 662 739
    52H1
    60G5.2 H45 193 VH45 397 635 697 780
    49G3 H46 158 VH46 361 611 664 741
    59A10 H47 187 VH47 391 632 692 773
    49H4
    48F8 H48 153 VH48 356 605 658 735
    53B9
    56B4
    57E7
    57F11
    59C9 H49 188 VH49 392 633 693 774
    58A5
    57A4
    57F9
    51G2 H50 163 V H50 367 605 671 748
    56A7 H51 179 VH51 383 605 671 764
    56E4
    54H10 H52 173 V H52 377 623 681 759
    55D1
    48H3
    53C11
    59G10.3 H53 190 V H53 394 634 695 777
    59D10v1 H54 195 VH54 364 615 668 745
    59D10v2
    51C10.1
    60F9 H55 192 VH55 396 623 696 779
    48B4
    52D6
    61G5 H56 194 V H56 398 623 698 781
    59G10.2 H57 189 VH57 393 608 694 776
    51A8 H58 160 VH58 363 614 667 744
    53H5.2 H59 170 VH59 374 614 678 756
    53F6 H60 169 V H60 373 621 677 755
    56C11 H61 180 VH61 384 614 685 765
    49A10 H62 155 VH62 358 608 661 738
    48D4
    49G2 H63 157 VH63 360 610 663 740
    50C12
    55G11
    52C1 H64 166 V H64 370 614 674 751
    55E9 H65 176 V H65 380 625 683 762
    60D7 H66 191 V H66 395 614 677 778
    51C10.2 H67 161 VH67 365 616 669 746
    55D3 H68 174 VH68 378 624 682 760
    57B12 H69 184 VH69 388 630 689 760
    55E4 H70 175 V H70 379 604 656 752
    52C5
    60G5.1
    55E4
    49B11
    50H10
    53C1
    56G1 H71 182 V H71 386 604 656 752
    48F3 H72 152 V H72 355 604 657 734
    48C9 H73 151 V H73 354 603 656 733
    49A12
    51E2
    51E5 H74 162 V H74 366 604 670 747
    53H5.3 H75 171 VH75 375 622 679 757
    56G3.3 H76 183 VH76 387 629 688 769
    55B10
    52B8 H77 165 VH77 369 618 673 750
    55G5 H78 177 VH78 381 626 684 763
    52H2 H79 168 VH79 372 620 676 754
    56G3.2 H80 196 V H80 399 628 687 768
    56E7 H81 181 V H81 385 627 686 766
    57D9 H82 185 VH82 389 631 690 771
    48G4 H83 197 VH83 400 607 660 737
    53C3.1
    50G1 H84 178 VH84 382 613 666 743
    58C2 H85 186 V H85 390 608 691 772
    61H5 H86 198 VH86 401 629 727 769
    52B9
    50D4 H87 199 VH87 402 643 730 812
    50G5v1 H88 200 VH88 403 639 728 767
    50G5v2
    51C1 H89 201 VH89 404 604 656 752
    53C3.2 H90 202 V H90 405 641 732 775
    54H10.3 H91 203 VH91 406 645 729 813
    55A7 H92 204 VH92 407 626 673 770
    55E6 H93 205 VH93 408 605 731 761
    61E1 H94 206 VH94 409 644 690 758
  • TABLE 7B
    Light Chain Sequences
    Full Light Full Light Variable Light Variable Light SEQ CDRL1 SEQ ID CDRL2 SEQ ID CDRL3 SEQ ID
    Ref (L#) SEQ ID NO (VH#) ID NO NO NO NO
    63G8 L1 26 V L1 229 826 922 987
    64A8
    67B4
    68D3 L2 28 V L2 231 826 922 987
    65E8 L3 37 V L3 241 859 927 988
    63H11
    64E6
    67G7
    65F11
    63B6 L4 35 V L4 239 860 928 989
    64D4
    65C3 L5 43 V L5 247 861 929 990
    68D5
    63E6 L6 14 V L6 217 862 907 991
    66F7 L7 15 V L7 218 863 907 991
    64H5 L8 30 V L8 233 864 930 992
    65G4
    67G10v1 L9 23 V L9 226 865 931 993
    67G10v2 L10 24 V L10 227 866 932 994
    66B4 L11 17 V L11 220 870 933 996
    66G2 L12 27 V L12 230 835 934 997
    68G5 L13 100 V L13 236 872 935 998
    63F5 L14 36 V L14 240 867 913 988
    66F6 L15 39 V L15 243 859 928 988
    65C1 L16 38 V L16 242 869 928 988
    64A7 L17 42 V L17 246 868 913 995
    66D4 L18 16 VL18 219 873 907 999
    65B1 L19 18 VL19 221 874 936 961
    67A4 L20 20 V L20 223 875 918 1001
    65B4 L21 19 VL21 222 876 918 1001
    63A10 L22 21 VL22 224 865 938 1002
    65H11 L23 22 V L23 225 878 931 1003
    64C8 L24 25 V L24 228 879 940 1004
    65E3 L25 32 V L25 235 864 935 1005
    65D4 L26 31 V L26 234 880 935 1006
    65D1 L27 29 V L27 232 852 925 1007
    67G8 L28 33 VL28 237 882 930 1005
    65B7 L29 34 VL29 238 883 913 1008
    64A6 L30 40 V L30 244 884 941 1009
    65F9 L31 41 V L31 245 885 908 1009
    67F5 L32 44 VL32 248 885 942 1010
    64B10 L33 45 VL33 249 886 943 963
    68C8 L34 46 VL34 250 887 909 963
    67A5 L35 47 VL35 251 888 898 1012
    67C10 L36 48 VL36 252 888 898 951
    64H6 L37 49 VL37 253 864 930 1014
    63F9 L38 50 V L38 254 889 944 1015
    67F6 L39 51 VL39 255 890 945 951
    48H11 L40 55 V L40 259 817 897 950
    52A8 L41 66 VL41 270 828 907 961
    52F8 L42 69 VL42 273 832 910 965
    49H12 L43 60 V L43 264 822 901 955
    54A1 L44 74 VL44 278 837 899 955
    55G9
    49C8 L45 57 VL45 261 819 899 952
    52H1
    60G5.2 L46 93 VL46 297 857 925 986
    49G3 L47 59 VL47 263 821 900 954
    59A10 L48 87 VL48 291 827 921 960
    49H4
    48F8 L49 54 VL49 258 816 896 949
    53B9
    56B4
    57E7
    57F11
    59C9 L50 88 V L50 292 850 922 960
    58A5
    57A4
    57F9
    51G2 L51 65 VL51 269 827 906 960
    56A7 L52 80 V L52 284 842 917 960
    56E4
    54H10.1 L53 75 V L53 279 838 913 970
    55D1
    48H3
    53C11
    59G10.3 L54 90 VL54 294 854 909 983
    51C10.1 L55 62 VL55 266 824 903 957
    59D10v1 L56 97 V L56 301 851 903 980
    59D10v2 L57 98 VL57 302 852 923 981
    60F9 L58 92 VL58 296 856 924 985
    48B4
    52D6
    61G5 L59 94 VL59 298 858 926 985
    59G10.2 L60 89 V L60 293 853 904 982
    51A8 L61 61 VL61 265 823 902 956
    53H5.2 L62 72 VL62 276 835 907 968
    53F6 L63 71 VL63 275 834 912 967
    56C11 L64 81 V L64 285 843 918 974
    49A10 L65 56 V L65 260 818 898 951
    48D4
    49G2 L66 58 V L66 262 820 898 953
    50C12
    55G11
    52C1 L67 68 VL67 272 830 909 963
    55E9 L68 78 VL68 282 840 910 972
    60D7 L69 91 VL69 295 820 898 984
    51C10.2 L70 63 V L70 267 825 904 958
    55D3 L71 76 V L71 280 839 907 971
    57B12 L72 85 V L72 289 847 907 978
    52C5 L73 95 V L73 299 831 907 964
    60G5.1 L74 V L74
    55E4 L75 77 VL75 281 831 914 964
    49B11
    50H10
    53C1
    56G1 L76 83 VL76 287 831 907 976
    48F3 L77 53 VL77 257 815 895 948
    48C9 L78 52 VL78 256 814 894 947
    49A12
    51E2
    51E5 L79 64 VL79 268 826 905 959
    53H5.3 L80 73 V L80 277 836 908 969
    56G3.3 L81 84 V L81 288 846 920 977
    55B10
    52B8 L82 67 VL82 271 829 908 962
    55G5 L83 79 VL83 283 841 916 973
    52H2 L84 70 VL84 274 833 911 966
    56G3.2 L85 99 V L85 303 845 919 962
    56E7 L86 82 VL86 286 844 900 975
    57D9 L87 86 VL87 290 848 913 976
    61H5 L88 96 VL88 300 846 913 977
    52B9
    48G4 L89 101 VL89 304 892 928 1017
    53C3.1
    50G1 L90 102 V L90 305 820 898 984
    58C2 L91 103 VL91 306 893 898 1012
    50D4 L92 104 VL92 307 839 946 1019
    50G5v1 L93 105 VL93 308 835 907 1018
    50G5v2 L94 106 VL94 309 891 915 1020
    51C1 L95 107 VL95 310 831 907 964
    53C3.2 L96 108 VL96 311 849 937 1016
    54H10.3 L97 109 VL97 312 855 939 999
    55A7 L98 110 VL98 313 871 907 1000
    55E6 L99 111 VL99 314 877 913 1011
    61E1 L100 112 V L100 315 881 907 1013
  • In one aspect, the isolated antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof.
  • In another embodiment, the antibody fragment of the isolated antigen-binding proteins provided herein can be a Fab fragment, a Fab′ fragment, an F(ab)2 fragment, an Fv fragment, a diabody, or a single chain antibody molecule.
  • In a further embodiment, an isolated antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein is a human antibody and can be of the IgG1-, IgG2-IgG3- or IgG4-type.
  • In another embodiment, an isolated antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a light or a heavy chain polypeptide as set forth in Tables 1A-1B. In some embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a variable light or variable heavy domain such as those listed in Tables 2A-2B. In still other embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one, two or three CDRHs or one, two or three CDRLs as set forth in Tables 3A-3B, 4A-4B, infra. Such antigen binding proteins, and indeed any of the antigen binding proteins disclosed herein, can be PEGylated with one or more PEG molecules, for examples PEG molecules having a molecular weight selected from the group consisting of 5K, 10K, 20K, 40K, 50K, 60K, 80K, 100K or greater than 100K.
  • In yet another aspect, any antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be coupled to a labeling group and can compete for binding to the extracellular portion of the individual protein components of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with an antigen binding protein of one of the isolated antigen binding proteins provided herein. In one embodiment, the isolated antigen binding protein provided herein can reduce blood glucose levels, decrease triglyceride and cholesterol levels or improve other glycemic parameters and cardiovascular risk factors when administered to a patient.
  • As will be appreciated, for any antigen binding protein comprising more than one CDR provided in Tables 3A-3B, and 4A-4B, any combination of CDRs independently selected from the depicted sequences may be useful. Thus, antigen binding proteins with one, two, three, four, five or six of independently selected CDRs can be generated. However, as will be appreciated by those in the art, specific embodiments generally utilize combinations of CDRs that are non-repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions, etc.
  • Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided herein are discussed in more detail below.
  • Antigen Binding Proteins and Binding Epitopes and Binding Domains
  • When an antigen binding protein is said to bind an epitope on a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of a protein component of such a complex, what is meant is that the antigen binding protein specifically binds to a specified portion of the complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) or to the extracellular domain of such a complex. In some embodiments, e.g., in certain cases where the antigen binding protein binds only β-Klotho, the antigen binding protein can specifically bind to a polypeptide consisting of specified residues (e.g., a specified segment of β-Klotho). In other embodiments, e.g., in certain cases where an antigen binding protein interacts with both β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the antigen binding protein can bind residues, sequences of residues, or regions in both β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, depending on which receptor the antigen binding protein recognizes. In still other embodiments the antigen binding protein will bind residues, sequences or residues or regions of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, for example FGFR1c.
  • In any of the foregoing embodiments, such an antigen binding protein does not need to contact every residue of β-Klotho or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes. Nor does every single amino acid substitution or deletion within β-Klotho or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes, necessarily significantly affect binding affinity.
  • Epitope specificity and the binding domain(s) of an antigen binding protein can be determined by a variety of methods. Some methods, for example, can use truncated portions of an antigen. Other methods utilize antigen mutated at one or more specific residues, such as by employing an alanine scanning or arginine scanning-type approach or by the generation and study of chimeric proteins in which various domains, regions or amino acids are swapped between two proteins (e.g., mouse and human forms of one or more of the antigens or target proteins), or by protease protection assays.
  • Competing Antigen Binding Proteins
  • In another aspect, antigen binding proteins are provided that compete with one of the exemplified antibodies or functional fragments for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Such antigen binding proteins can also bind to the same epitope as one of the herein exemplified antigen binding proteins, or an overlapping epitope. Antigen binding proteins and fragments that compete with or bind to the same epitope as the exemplified antigen binding proteins are expected to show similar functional properties. The exemplified antigen binding proteins and fragments include those with the heavy and light chains H1-H94 and L1-L100, variable region domains VL1-V L100 and VH1-VH94, and CDRs provided herein, including those in Tables 1, 2, 3, and 4. Thus, as a specific example, the antigen binding proteins that are provided include those that compete with an antibody comprising:
  • (a) 1, 2, 3, 4, 5 or all 6 of the CDRs listed for an antigen binding protein listed in Tables 3A and 3B, and 4A and 4B, infra;
  • (b) a VH and a VL selected from VL1-V L100 and VH1-VH94 and listed for an antigen binding protein listed in Tables 2A and 2B; or
  • (c) two light chains and two heavy chains as specified for an antigen binding protein listed in Tables 1A and 1B, infra.
  • Thus, in one embodiment, the present disclosure provides antigen binding proteins, including human antibodies, that competes for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody comprises a combination of light chain and heavy chain variable domain sequences selected from the group consisting of VL1 with VH1, VL2 with VH1, VL3 with VH2 or VH3, VL4 with VH4, VL5 with VH5, VL6 with VH6, VL7 with VH6, VL8 with VH7 or VH8, VL9 with VH9, VL10 with VH9, VL11 with VH 10, VL12 with VH11, VL13 with VH12, VL13 with VH14, VL14 with VH13, VL15 with VH14, VL16 with VH15, VL17 with VH16, VL18 with VH17, VL19 with VH18, VL20 with VH19, VL21 with VH20, VL22 with VH21, VL23 with VH22, VL24 with VH23, VL25 with VH24, VL26 with VH25, VL27 with VH26, VL28 with VH27, VL29 with VH28, VL30 with VH29, VL31 with VH30, VL32 with VH31, VL33 with VH32, VL34 with VH33, VL35 with VH34, VL36 with VH35, VL37 with VH36, VL38 with VH37, VL39 with VH38, VL40 with VH39, VL41 with VH40, VL42 with VH41, VL43 with VH42, VL44 with VH43, VL45 with VH44, VL46 with VH45, VL47 with VH46, VL48 with VH47, VL49 with VH48, VL50 with VH49, VL51 with VH50, 52 with VH51, VL53 with VH52, VL54 with VH53, VL55 with 54, and VL56 with VH54, VL57 with VH54, VL58 with VH55, VL59 with VH56, VL60 with VH57, VL61 with VH58, VL62 with VH59, VL63 with VH60, VL64 with VH1, VL65 with VH62, VL66 with VH63, VL67 with VH64, VL68 with VH65, VL69 with VH66, VL70 with VH67, VL71 with VH68, VL72 with VH69, VL73 with VH70, VL74 with VH70, and VL75 with VH70, VL76 with VH71, VL77 with VH72, VL78 with VH73, VL79 with VH74, VL80 with VH75, VL81 with VH76, VL82 with VH77, VL83 with VH78, VL84 with VH79, VL85 with VH80, VL86 with VH81, VL87 with VH82, VL88 with VH86, VL89 with VH83, VL90 with VH84, VL91 with VH85, VL 92 with VH 87, VL 93 with VH 88, VL 94 with VH 88, VL 95 with VH 89, VL 96 with VH 90, VL 97 with VH 91, VL 98 with VH 92, VL 99 with VH 93, and VL 100 with VH 94.
  • In another embodiment, the present disclosure provides antigen binding proteins, including human antibodies, that compete for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody is 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2.
  • In a further embodiment, an isolated antigen binding protein, such as a human antibody, is provided that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with substantially the same Kd as a reference antibody; initiates FGF21-like signaling in an in vitro ELK-Luciferase assay to the same degree as a reference antibody; lowers blood glucose; lowers serum lipid levels; and/or competes for binding with said reference antibody to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, wherein the reference antibody is selected from the group consisting of 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2.
  • The ability to compete with an antibody can be determined using any suitable assay, such as those described herein, in which antigen binding proteins 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2 can be used as the reference antibody.
  • Monoclonal Antibodies
  • The antigen binding proteins that are provided include monoclonal antibodies that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and induce FGF21-like signaling to various degrees. Monoclonal antibodies can be produced using any technique known in the art, e.g., by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myeloma cells to produce hybridomas. Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210. Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6.
  • In some instances, a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with an immunogen comprising (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 and cDNA encoding a human β-Klotho polypeptide of SEQ ID NO: 7 with cells incubated with FGF21 prior to freezing (as shown in Example 2); or (2) cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO: 4 (as shown in Example 2); harvesting spleen cells from the immunized animal; fusing the harvested spleen cells to a myeloma cell line, thereby generating hybridoma cells; establishing hybridoma cell lines from the hybridoma cells, and identifying a hybridoma cell line that produces an antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and can induce FGF21-like signaling (e.g., as described in Example 4). Such hybridoma cell lines, and the monoclonal antibodies produced by them, form aspects of the present disclosure.
  • Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art. Hybridomas or mAbs can be further screened to identify mAbs with particular properties, such as the ability to induce FGF21-like signaling. Examples of such screens are provided herein.
  • Chimeric and Humanized Antibodies
  • Chimeric and humanized antibodies based upon the foregoing sequences can readily be generated. One example is a chimeric antibody, which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof. Generally, a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For methods relating to chimeric antibodies, see, for example, U.S. Pat. No. 4,816,567; and Morrison et al., (1985) Proc. Natl. Acad. Sci. USA 81:6851-6855, which are hereby incorporated by reference. CDR grafting is described, for example, in U.S. Pat. No. 6,180,370, U.S. Pat. No. 5,693,762, U.S. Pat. No. 5,693,761, U.S. Pat. No. 5,585,089, and U.S. Pat. No. 5,530,101.
  • Generally, a goal of making a chimeric antibody is to create a chimera in which the number of amino acids from the intended patient/recipient species is maximized. One example is the “CDR-grafted” antibody, in which the antibody comprises one or more complementarity determining regions (CDRs) from a particular species or belonging to a particular antibody class or subclass, while the remainder of the antibody chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For use in humans, the variable region or selected CDRs from a rodent antibody often are grafted into a human antibody, replacing the naturally-occurring variable regions or CDRs of the human antibody.
  • One useful type of chimeric antibody is a “humanized” antibody. Generally, a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to corresponding residues in a human antibody of corresponding isotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., U.S. Pat. No. 5,585,089, and U.S. Pat. No. 5,693,762; Jones et al., (1986) Nature 321:522-525; Riechmann et al., (1988) Nature 332:323-27; Verhoeyen et al., (1988) Science 239:1534-1536).
  • In one aspect, the CDRs of the light and heavy chain variable regions of the antibodies provided herein (e.g., in Tables 3-4 and 21-23) are grafted to framework regions (FRs) from antibodies from the same, or a different, phylogenetic species. For example, the CDRs of the heavy and light chain variable regions VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94 and/or VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100 can be grafted to consensus human FRs. To create consensus human FRs, FRs from several human heavy chain or light chain amino acid sequences can be aligned to identify a consensus amino acid sequence. In other embodiments, the FRs of a heavy chain or light chain disclosed herein are replaced with the FRs from a different heavy chain or light chain. In one aspect, rare amino acids in the FRs of the heavy and light chains of an antigen binding protein (e.g., an antibody) that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are not replaced, while the rest of the FR amino acids are replaced. A “rare amino acid” is a specific amino acid that is in a position in which this particular amino acid is not usually found in an FR. Alternatively, the grafted variable regions from the one heavy or light chain can be used with a constant region that is different from the constant region of that particular heavy or light chain as disclosed herein. In other embodiments, the grafted variable regions are part of a single chain Fv antibody.
  • In certain embodiments, constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.
  • Fully Human Antibodies
  • Fully human antibodies are provided by the instant disclosure. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen (“fully human antibodies”). One specific means provided for implementing the production of fully human antibodies is the “humanization” of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen. Using fully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derived mAbs to humans as therapeutic agents.
  • Fully human antibodies can be produced by immunizing transgenic animals (typically mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, e.g., Jakobovits et al., (1993) Proc. Natl. Acad. Sci. USA 90:2551-2555; Jakobovits et al., (1993) Nature 362:255-258; and Bruggermann et al., (1993) Year in Immunol. 7:33. In one example of such a method, transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, are then cross-bred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, e.g., WO96/33735 and WO94/02602. Additional methods relating to transgenic mice for making human antibodies are described in U.S. Pat. No. 5,545,807; U.S. Pat. No. 6,713,610; U.S. Pat. No. 6,673,986; U.S. Pat. No. 6,162,963; U.S. Pat. No. 5,545,807; U.S. Pat. No. 6,300,129; U.S. Pat. No. 6,255,458; U.S. Pat. No. 5,877,397; U.S. Pat. No. 5,874,299 and U.S. Pat. No. 5,545,806; in PCT publications WO91/10741, WO90/04036, and in EP 546073 and EP 546073.
  • According to certain embodiments, antibodies of the invention can be prepared through the utilization of a transgenic mouse that has a substantial portion of the human antibody producing genome inserted but that is rendered deficient in the production of endogenous, murine antibodies. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving this result are disclosed in the patents, applications and references disclosed in the specification, herein. In certain embodiments, one can employ methods such as those disclosed in PCT Published Application No. WO 98/24893 or in Mendez et al., (1997) Nature Genetics, 15:146-156, which are hereby incorporated by reference for any purpose.
  • Generally, fully human monoclonal antibodies specific for a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c can be produced as follows. Transgenic mice containing human immunoglobulin genes are immunized with the antigen of interest, e.g. those described herein, lymphatic cells (such as B-cells) from the mice that express antibodies are obtained. Such recovered cells are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to the antigen of interest. In certain embodiments, the production of a hybridoma cell line that produces antibodies specific to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c is provided.
  • In certain embodiments, fully human antibodies can be produced by exposing human splenocytes (B or T cells) to an antigen in vitro, and then reconstituting the exposed cells in an immunocompromised mouse, e.g. SCID or nod/SCID. See, e.g., Brams et al., J. Immunol. 160: 2051-2058 (1998); Carballido et al., Nat. Med., 6: 103-106 (2000). In certain such approaches, engraftment of human fetal tissue into SCID mice (SCID-hu) results in long-term hematopoiesis and human T-cell development. See, e.g., McCune et al., Science, 241:1532-1639 (1988); Ifversen et al., Sem. Immunol., 8:243-248 (1996). In certain instances, humoral immune response in such chimeric mice is dependent on co-development of human T-cells in the animals. See, e.g., Martensson et al., Immunol., 83:1271-179 (1994). In certain approaches, human peripheral blood lymphocytes are transplanted into SCID mice. See, e.g., Mosier et al., Nature, 335:256-259 (1988). In certain such embodiments, when such transplanted cells are treated either with a priming agent, such as Staphylococcal Enterotoxin A (SEA), or with anti-human CD40 monoclonal antibodies, higher levels of B cell production is detected. See, e.g., Martensson et al., Immunol., 84: 224-230 (1995); Murphy et al., Blood, 86:1946-1953 (1995).
  • Thus, in certain embodiments, fully human antibodies can be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells. In other embodiments, antibodies can be produced using the phage display techniques described herein.
  • The antibodies described herein were prepared through the utilization of the XENOMOUSE® technology, as described herein. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving the same are disclosed in the patents, applications, and references disclosed in the background section herein. In particular, however, a preferred embodiment of transgenic production of mice and antibodies therefrom is disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, published Jun. 11, 1998 and WO 00/76310, published Dec. 21, 2000, the disclosures of which are hereby incorporated by reference. See also Mendez et al., Nature Genetics, 15:146-156 (1997), the disclosure of which is hereby incorporated by reference.
  • Through the use of such technology, fully human monoclonal antibodies to a variety of antigens have been produced. Essentially, XENOMOUSE® lines of mice are immunized with an antigen of interest (e.g. an antigen provided herein), lymphatic cells (such as B-cells) are recovered from the hyper-immunized mice, and the recovered lymphocytes are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines. These hybridoma cell lines are screened and selected to identify hybridoma cell lines that produced antibodies specific to the antigen of interest. Provided herein are methods for the production of multiple hybridoma cell lines that produce antibodies specific to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c. Further, provided herein are characterization of the antibodies produced by such cell lines, including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.
  • The production of the XENOMOUSE® strains of mice is further discussed and delineated in U.S. patent application Ser. No. 07/466,008, filed Jan. 12, 1990, Ser. No. 07/610,515, filed Nov. 8, 1990, Ser. No. 07/919,297, filed Jul. 24, 1992, Ser. No. 07/922,649, filed Jul. 30, 1992, Ser. No. 08/031,801, filed Mar. 15, 1993, Ser. No. 08/112,848, filed Aug. 27, 1993, Ser. No. 08/234,145, filed Apr. 28, 1994, Ser. No. 08/376,279, filed Jan. 20, 1995, 08/430,938, filed Apr. 27, 1995, Ser. No. 08/464,584, filed Jun. 5, 1995, Ser. No. 08/464,582, filed Jun. 5, 1995, Ser. No. 08/463,191, filed Jun. 5, 1995, Ser. No. 08/462,837, filed Jun. 5, 1995, Ser. No. 08/486,853, filed Jun. 5, 1995, Ser. No. 08/486,857, filed Jun. 5, 1995, Ser. No. 08/486,859, filed Jun. 5, 1995, Ser. No. 08/462,513, filed Jun. 5, 1995, Ser. No. 08/724,752, filed Oct. 2, 1996, Ser. No. 08/759,620, filed Dec. 3, 1996, U.S. Publication 2003/0093820, filed Nov. 30, 2001 and U.S. Pat. Nos. 6,162,963, 6,150,584, 6,114,598, 6,075,181, and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also European Patent No., EP 0 463 151 B1, grant published Jun. 12, 1996, International Patent Application No., WO 94/02602, published Feb. 3, 1994, International Patent Application No., WO 96/34096, published Oct. 31, 1996, WO 98/24893, published Jun. 11, 1998, WO 00/76310, published Dec. 21, 2000. The disclosures of each of the above-cited patents, applications, and references are hereby incorporated by reference in their entirety.
  • Using hybridoma technology, antigen-specific human mAbs with the desired specificity can be produced and selected from the transgenic mice such as those described herein. Such antibodies can be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells.
  • Fully human antibodies can also be derived from phage-display libraries (as described in Hoogenboom et al., (1991) J. Mol. Biol. 227:381; and Marks et al., (1991) J. Mol. Biol. 222:581). Phage display techniques mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice. One such technique is described in PCT Publication No. WO 99/10494 (hereby incorporated by reference), which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk-receptors using such an approach.
  • Bispecific or Bifunctional Antigen Binding Proteins
  • Also provided are bispecific and bifunctional antibodies that include one or more CDRs or one or more variable regions as described above. A bispecific or bifunctional antibody in some instances can be an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553. When an antigen binding protein of the instant disclosure binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the binding may lead to the activation of FGF21-like activity as measured by the FGF21-like functional and signaling assays described in Examples 4-6; when such an antigen binding protein is an antibody it is referred to as an agonistic antibody.
  • Various Other Forms
  • Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided in the present disclosure include variant forms of the antigen binding proteins disclosed herein (e.g., those having the sequences listed in Tables 1-4 and 6-23).
  • In various embodiments, the antigen binding proteins disclosed herein can comprise one or more non-naturally occurring/encoded amino acids. For instance, some of the antigen binding proteins have one or more non-naturally occurring/encoded amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-23. Examples of non-naturally occurring/encoded amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include β-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), Nα-methylcitrulline (NMeCit), Nα-methylhomocitrulline (Nα-MeHoCit), ornithine (Orn), Nα-Methylornithine (Nα-MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), Nα-methylarginine (NMeR), Nα-methylleucine (Nα-MeL or NMeL), N-methylhomolysine (NMeHoK), Nα-methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthy)alanine (1-Nal), 3-(2-naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (IgI), para-iodophenylalanine (pI-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated “K(Nε-glycyl)” or “K(glycyl)” or “K(gly)”), nitrophenylalanine (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), γ-carboxyglutamic acid (γ-carboxyglu), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), α-aminoadipic acid (Aad), Nα-methyl valine (NMeVal), N-α-methyl leucine (NMeLeu), Nα-methylnorleucine (NMeNle), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), α, β-diaminopropionoic acid (Dpr), α, γ-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohexylalanine (Cha), 4-methyl-phenylalanine (MePhe), β, β-diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4-phenyl-phenylalanine (or biphenylalanine; 4Bip), α-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid, N-ethylglycine, N-ethylaspargine, hydroxylysine, allo-hydroxylysine, isodesmosine, allo-isoleucine, N-methylglycine, N-methylisoleucine, N-methylvaline, 4-hydroxyproline (Hyp), γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ω-methylarginine, 4-Amino-O-Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed.
  • Additionally, the antigen binding proteins can have one or more conservative amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-4 and 6-23. Naturally-occurring amino acids can be divided into classes based on common side chain properties:
  • 1) hydrophobic: norleucine, Met, Ala, Val, Leu, Ile;
  • 2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
  • 3) acidic: Asp, Glu;
  • 4) basic: His, Lys, Arg;
  • 5) residues that influence chain orientation: Gly, Pro; and
  • 6) aromatic: Trp, Tyr, Phe.
  • Conservative amino acid substitutions can involve exchange of a member of one of these classes with another member of the same class. Conservative amino acid substitutions can encompass non-naturally occurring/encoded amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. See Table 8, infra. These include peptidomimetics and other reversed or inverted forms of amino acid moieties.
  • Non-conservative substitutions can involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues can be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule.
  • In making such changes, according to certain embodiments, the hydropathic index of amino acids can be considered. The hydropathic profile of a protein is calculated by assigning each amino acid a numerical value (“hydropathy index”) and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
  • The importance of the hydropathic profile in conferring interactive biological function on a protein is understood in the art (see, e.g., Kyte et al., 1982, J. Mol. Biol. 157:105-131). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ±2 is included. In some aspects, those which are within ±1 are included, and in other aspects, those within ±0.5 are included.
  • It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen-binding or immunogenicity, that is, with a biological property of the protein.
  • The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5) and tryptophan (−3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ±2 is included, in other embodiments, those which are within ±1 are included, and in still other embodiments, those within ±0.5 are included. In some instances, one can also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as “epitopic core regions.”
  • Exemplary conservative amino acid substitutions are set forth in Table 8.
  • TABLE 8
    Conservative Amino Acid Substitutions
    Original Residue Exemplary Substitutions
    Ala Ser
    Arg Lys
    Asn Gln, His
    Asp Glu
    Cys Ser
    Gln Asn
    Glu Asp
    Gly Pro
    His Asn, Gln
    Ile Leu, Val
    Leu Ile, Val
    Lys Arg, Gln, Glu
    Met Leu, Ile
    Phe Met, Leu, Tyr
    Ser Thr
    Thr Ser
    Trp Tyr
    Tyr Trp, Phe
    Val Ile, Leu
  • A skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques coupled with the information provided herein. One skilled in the art can identify suitable areas of the molecule that can be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides. In further embodiments, even areas that can be important for biological activity or for structure can be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.
  • Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art can opt for chemically similar amino acid substitutions for such predicted important amino acid residues.
  • One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art can predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art can choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues can be involved in important interactions with other molecules. Moreover, one skilled in the art can generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for FGF21-like signaling, (including those described in the Examples provided herein) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations.
  • A number of scientific publications have been devoted to the prediction of secondary structure. See, Moult, (1996) Curr. Op. in Biotech. 7:422-427; Chou et al., (1974) Biochem. 13:222-245; Chou et al., (1974) Biochemistry 113:211-222; Chou et al., (1978) Adv. Enzymol. Relat Areas Mol. Biol. 47:45-148; Chou et al., (1979) Ann. Rev. Biochem. 47:251-276; and Chou et al., (1979) Biophys. J. 26:367-384. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% can have similar structural topologies. The growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., (1999) Nucl. Acid. Res. 27:244-247. It has been suggested (Brenner et al., (1997) Curr. Op. Struct. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate.
  • Additional methods of predicting secondary structure include “threading” (Jones, (1997) Curr. Opin. Struct. Biol. 7:377-387; Sippl et al., (1996) Structure 4:15-19), “profile analysis” (Bowie et al., (1991) Science 253:164-170; Gribskov et al., (1990) Meth. Enzym. 183:146-159; Gribskov et al., (1987) Proc. Nat. Acad. Sci. 84:4355-4358), and “evolutionary linkage” (See, Holm, (1999) supra; and Brenner, (1997) supra).
  • In some embodiments, amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides. For example, single or multiple amino acid substitutions (in some embodiments, conservative amino acid substitutions) can be made in the naturally-occurring sequence. Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts. In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton, Proteins: Structures and Molecular Properties 2nd edition, 1992, W. H. Freeman & Company; Creighton, Proteins: Structures and Molecular Principles, 1984, W. H. Freeman & Company; Introduction to Protein Structure (Branden and Tooze, eds.), 2nd edition, 1999, Garland Publishing; Petsko & Ringe, Protein Structure and Function, 2004, New Science Press Ltd; and Thornton et al., (1991) Nature 354:105, which are each incorporated herein by reference.
  • Additional preferred antibody variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, inter alia when antibodies must be refolded into a biologically active conformation. Cysteine variants can have fewer cysteine residues than the native antibody, and typically have an even number to minimize interactions resulting from unpaired cysteines.
  • The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an immunoadhesion. An immunoadhesion can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDR(s) enable the immunoadhesion to bind specifically to a particular antigen of interest (e.g., to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or an epitope thereon).
  • The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) that is structurally similar to a “half” antibody comprising the heavy chain, the light chain of an antigen binding protein paired with a Fc fragment so that the antigen binding region is monovalent (like a Fab fragment) but with a dimeric Fc moiety.
  • Mimetics (e.g., “peptide mimetics” or “peptidomimetics”) based upon the variable region domains and CDRs that are described herein are also provided. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, (1986) Adv. Drug Res. 15:29; Veber and Freidinger, (1985) TINS p. 392; and Evans et al., (1987) J. Med. Chem. 30:1229, which are incorporated herein by reference for any purpose. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics are proteins that are structurally similar to an antibody displaying a desired biological activity, such as here the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, but have one or more peptide linkages optionally replaced by a linkage selected from: —CH2NH—, —CH2S—, —CH2—CH2—, —CH—CH-(cis and trans), —COCH2—, —CH(OH)CH2—, and —CH2SO—, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used in certain embodiments to generate more stable proteins. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation can be generated by methods known in the art (Rizo and Gierasch, (1992) Ann. Rev. Biochem. 61:387), incorporated herein by reference), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
  • Derivatives of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are described herein are also provided. The derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antibody or fragment, such as increased half-life in a particular use. The derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or streptavidin), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses). Examples of molecules that can be used to derivatize an antigen binding protein include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. Certain antigen binding proteins include a PEGylated single chain polypeptide as described herein. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (“TTR”) or a TTR variant. The TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.
  • Other derivatives include covalent or aggregative conjugates of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising heterologous polypeptides fused to the N-terminus or C-terminus of an antigen binding protein that induces FGF21-like signaling. For example, the conjugated peptide can be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag. An antigen binding protein-containing fusion protein of the present disclosure can comprise peptides added to facilitate purification or identification of an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c (e.g., a poly-His tag) and that can induce FGF21-like signaling. An antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c also can be linked to the FLAG peptide as described in Hopp et al., (1988) Bio/Technology 6:1204; and U.S. Pat. No. 5,011,912. The FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein. Reagents useful for preparing fusion proteins in which the FLAG peptide is fused to a given polypeptide are commercially available (Sigma, St. Louis, Mo.).
  • Multimers that comprise one or more antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c form another aspect of the present disclosure. Multimers can take the form of covalently-linked or non-covalently-linked dimers, trimers, or higher multimers. Multimers comprising two or more antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and which may induce FGF21-like signaling are contemplated for use as therapeutics, diagnostics and for other uses as well, with one example of such a multimer being a homodimer. Other exemplary multimers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc.
  • One embodiment is directed to multimers comprising multiple antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c joined via covalent or non-covalent interactions between peptide moieties fused to an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Such peptides can be peptide linkers (spacers), or peptides that have the property of promoting multimerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote multimerization of antigen binding proteins attached thereto, as described in more detail herein.
  • In particular embodiments, the multimers comprise from two to four antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The antigen binding protein moieties of the multimer can be in any of the forms described above, e.g., variants or fragments. Preferably, the multimers comprise antigen binding proteins that have the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.
  • In one embodiment, an oligomer is prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., (1991) Proc. Natl. Acad. Sci. USA 88:10535; Byrn et al., (1990) Nature 344:677; and Hollenbaugh et al., (1992) Current Protocols in Immunology, Suppl. 4, pages 10.19.1-10.19.11.
  • One embodiment comprises a dimer comprising two fusion proteins created by fusing an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer.
  • The term “Fc polypeptide” as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.
  • One suitable Fc polypeptide, described in PCT application WO 93/10151 and U.S. Pat. No. 5,426,048 and U.S. Pat. No. 5,262,522, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG1 antibody. Another useful Fc polypeptide is the Fc mutein described in U.S. Pat. No. 5,457,035, and in Baum et al., (1994) EMBO J. 13:3992-4001. The amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors.
  • In other embodiments, the variable portion of the heavy and/or light chains of a antigen binding protein such as disclosed herein can be substituted for the variable portion of an antibody heavy and/or light chain.
  • Alternatively, the oligomer is a fusion protein comprising multiple antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with or without peptide linkers (spacer peptides). Among the suitable peptide linkers are those described in U.S. Pat. No. 4,751,180 and U.S. Pat. No. 4,935,233.
  • Another method for preparing oligomeric derivatives comprising that antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c involves use of a leucine zipper. Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschultz et al., (1988) Science 240:1759-64), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al., (1994) FEBS Letters 344:191, hereby incorporated by reference. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in Fanslow et al., (1994) Semin. Immunol. 6:267-278. In one approach, recombinant fusion proteins comprising an antigen binding protein fragment or derivative that specifically binds to a complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) is fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric antigen binding protein fragments or derivatives that form are recovered from the culture supernatant.
  • In certain embodiments, the antigen binding protein has a KD (equilibrium binding affinity) of less than 1 pM, 10 pM, 100 pM, 1 nM, 2 nM, 5 nM, 10 nM, 25 nM or 50 nM.
  • In another aspect the instant disclosure provides an antigen binding protein having a half-life of at least one day in vitro or in vivo (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days. In another embodiment, the antibody or portion thereof has a half-life of four days or longer. In another embodiment, the antibody or portion thereof has a half-life of eight days or longer. In another embodiment, the antibody or portion thereof has a half-life of ten days or longer. In another embodiment, the antibody or portion thereof has a half-life of eleven days or longer. In another embodiment, the antibody or portion thereof has a half-life of fifteen days or longer. In another embodiment, the antibody or antigen-binding portion thereof is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antibody. In another embodiment, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c contains point mutations to increase serum half life, such as described in WO 00/09560, published Feb. 24, 2000, incorporated by reference.
  • Glycosylation
  • An antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can have a glycosylation pattern that is different or altered from that found in the native species. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
  • Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine can also be used.
  • Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration can also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence can be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) can be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (0 the amide group of glutamine. These methods are described in WO 87/05330 and in Aplin & Wriston, (1981) CRC Crit. Rev. Biochem. 10:259-306.
  • Removal of carbohydrate moieties present on the starting antigen binding protein can be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., (1987) Arch. Biochem. Biophys. 259:52-57 and by Edge et al., (1981) Anal. Biochem. 118:131-37. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., (1987) Meth. Enzymol. 138:350-59. Glycosylation at potential glycosylation sites can be prevented by the use of the compound tunicamycin as described by Duskin et al., (1982) J. Biol. Chem. 257:3105-09. Tunicamycin blocks the formation of protein-N-glycoside linkages.
  • Hence, aspects of the present disclosure include glycosylation variants of antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. In certain embodiments, antibody protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the native antibody. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X can be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the native polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. In other embodiments, one or more new N-linked sites are created. Antibodies typically have a N-linked glycosylation site in the Fc region.
  • Labels and Effector Groups
  • In some embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one or more labels. The term “labeling group” or “label” means any detectable label. Examples of suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I) fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used as is seen fit.
  • The term “effector group” means any group coupled to an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and that acts as a cytotoxic agent. Examples for suitable effector groups are radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I) Other suitable groups include toxins, therapeutic groups, or chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and cantansine. In some embodiments, the effector group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.
  • In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which can be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art.
  • Specific labels include optical dyes, including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances. Fluorophores can be either “small molecule” fluores, or proteinaceous fluores.
  • By “fluorescent label” is meant any molecule that can be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, Oreg.), FITC, Rhodamine, and Texas Red (Pierce, Rockford, Ill.), CyS, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh, Pa.). Suitable optical dyes, including fluorophores, are described in Molecular Probes Handbook by Richard P. Haugland and in subsequent editions, including Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 11th edition, Johnson and Spence (eds), hereby expressly incorporated by reference.
  • Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., (1994) Science 263:802-805), eGFP (Clontech Labs., Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc., Quebec, Canada; Stauber, (1998) Biotechniques 24:462-71; Heim et al., (1996) Curr. Biol. 6:178-82), enhanced yellow fluorescent protein (EYFP, Clontech Labs., Inc.), luciferase (Ichiki et al., (1993) J. Immunol. 150:5408-17), β-galactosidase (Nolan et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:2603-07) and Renilla (WO92/15673, WO95/07463, WO98/14605, WO98/26277, WO99/49019, U.S. Pat. Nos. 5,292,658, 5,418,155, 5,683,888, 5,741,668, 5,777,079, 5,804,387, 5,874,304, 5,876,995 and 5,925,558).
  • Preparing of Antigen Binding Proteins
  • Non-human antibodies that are provided can be, for example, derived from any antibody-producing animal, such as a mouse, rat, rabbit, goat, donkey, or non-human primate (such as a monkey, (e.g., cynomolgus or rhesus monkey) or an ape (e.g., chimpanzee)). Non-human antibodies can be used, for instance, in in vitro cell culture and cell-culture based applications, or any other application where an immune response to the antibody does not occur or is insignificant, can be prevented, is not a concern, or is desired. In certain embodiments, the antibodies can be produced by immunizing with cell bound receptor from CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface following incubated with FGF21; or with cell bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated version of human FGFR1c encompassing amino acid residues 141 to 822 of the polypeptide of SEQ ID NO: 4; or with full-length β-Klotho, FGFR1c, FGFR2c or FGFR3c; or with the extracellular domain of β-Klotho, FGFR1c, FGFR2c or FGFR3c; or with two of β-Klotho, FGFR1c, FGFR2c, and FGFR3c; or with whole cells expressing FGFR1c, β-Klotho or both FGFR1c and β-Klotho; or with membranes prepared from cells expressing FGFR1c, β-Klotho or both FGFR1c and β-Klotho; or with fusion proteins, e.g., Fc fusions comprising FGFR1c, β-Klotho or FGFR1c and β-Klotho (or extracellular domains thereof) fused to Fc, and other methods known in the art, e.g., as described in the Examples presented herein. Alternatively, the certain non-human antibodies can be raised by immunizing with amino acids which are segments of one or more of β-Klotho, FGFR1c, FGFR2c or FGFR3c that form part of the epitope to which certain antibodies provided herein bind. The antibodies can be polyclonal, monoclonal, or can be synthesized in host cells by expressing recombinant DNA.
  • Fully human antibodies can be prepared as described above by immunizing transgenic animals containing human immunoglobulin loci or by selecting a phage display library that is expressing a repertoire of human antibodies.
  • The monoclonal antibodies (mAbs) can be produced by a variety of techniques, including conventional monoclonal antibody methodology, e.g., the standard somatic cell hybridization technique of Kohler & Milstein, (1975) Nature 256:495-97. Alternatively, other techniques for producing monoclonal antibodies can be employed, for example, the viral or oncogenic transformation of B-lymphocytes. One suitable animal system for preparing hybridomas is the murine system, which is a very well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. For such procedures, B cells from immunized mice are fused with a suitable immortalized fusion partner, such as a murine myeloma cell line. If desired, rats or other mammals besides can be immunized instead of mice and B cells from such animals can be fused with the murine myeloma cell line to form hybridomas. Alternatively, a myeloma cell line from a source other than mouse can be used. Fusion procedures for making hybridomas also are well known. SLAM technology can also be employed in the production of antibodies.
  • The single chain antibodies that are provided can be formed by linking heavy and light chain variable domain (Fv region) fragments via an amino acid bridge (short peptide linker), resulting in a single polypeptide chain. Such single-chain Fvs (scFvs) can be prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (VL and VH). The resulting polypeptides can fold back on themselves to form antigen-binding monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et al., (1997) Prot. Eng. 10:423; Kortt et al., (2001) Biomol. Eng. 18:95-108). By combining different VL and VH-comprising polypeptides, one can form multimeric scFvs that bind to different epitopes (Kriangkum et al., (2001) Biomol. Eng. 18:31-40). Techniques developed for the production of single chain antibodies include those described in U.S. Pat. No. 4,946,778; Bird et al., (1988) Science 242:423-26; Huston et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5879-83; Ward et al., (1989) Nature 334:544-46, de Graaf et al., (2002)Methods Mol Biol. 178:379-387. Single chain antibodies derived from antibodies provided herein include, but are not limited to scFvs comprising the variable domain combinations of the heavy and light chain variable regions depicted in Table 2, or combinations of light and heavy chain variable domains which include the CDRs depicted in Tables 3-4 and 6-23.
  • Antibodies provided herein that are of one subclass can be changed to antibodies from a different subclass using subclass switching methods. Thus, IgG antibodies can be derived from an IgM antibody, for example, and vice versa. Such techniques allow the preparation of new antibodies that possess the antigen binding properties of a given antibody (the parent antibody), but also exhibit biological properties associated with an antibody isotype or subclass different from that of the parent antibody. Recombinant DNA techniques can be employed. Cloned DNA encoding particular antibody polypeptides can be employed in such procedures, e.g., DNA encoding the constant domain of an antibody of the desired isotype. See, e.g., Lantto et al., (2002) Methods Mol. Biol. 178:303-16.
  • Accordingly, the antibodies that are provided include those comprising, for example, the variable domain combinations described, supra., having a desired isotype (for example, IgA, IgG1, IgG2, IgG3, IgG4, IgE, and IgD) as well as Fab or F(ab′)2 fragments thereof. Moreover, if an IgG4 is desired, it can also be desired to introduce a point mutation (e.g., a mutation from CPSCP to CPPCP (SEQ ID NOs 1828 and 1829, respectively, in order of appearance) in the hinge region as described in Bloom et al., (1997) Protein Science 6:407-15, incorporated by reference herein) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies.
  • Moreover, techniques for deriving antibodies having different properties (i.e., varying affinities for the antigen to which they bind) are also known. One such technique, referred to as chain shuffling, involves displaying immunoglobulin variable domain gene repertoires on the surface of filamentous bacteriophage, often referred to as phage display. Chain shuffling has been used to prepare high affinity antibodies to the hapten 2-phenyloxazol-5-one, as described by Marks et al., (1992) Nature Biotechnology 10:779-83.
  • Conservative modifications can be made to the heavy and light chain variable regions described in Table 2, or the CDRs described in Tables 3A and 3B, 4A and 4B, and Tables 6-23 (and corresponding modifications to the encoding nucleic acids) to produce an antigen binding protein having functional and biochemical characteristics. Methods for achieving such modifications are described herein.
  • Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be further modified in various ways. For example, if they are to be used for therapeutic purposes, they can be conjugated with polyethylene glycol (PEGylated) to prolong the serum half-life or to enhance protein delivery. PEG can be attached directly to the antigen binding protein or it can be attached via a linker, such as a glycosidic linkage.
  • Alternatively, the V region of the subject antibodies or fragments thereof can be fused with the Fc region of a different antibody molecule. The Fc region used for this purpose can be modified so that it does not bind complement, thus reducing the likelihood of inducing cell lysis in the patient when the fusion protein is used as a therapeutic agent. In addition, the subject antibodies or functional fragments thereof can be conjugated with human serum albumin to enhance the serum half-life of the antibody or fragment thereof. Another useful fusion partner for the antigen binding proteins or fragments thereof is transthyretin (TTR). TTR has the capacity to form a tetramer, thus an antibody-TTR fusion protein can form a multivalent antibody which can increase its binding avidity.
  • Alternatively, substantial modifications in the functional and/or biochemical characteristics of the antigen binding proteins described herein can be achieved by creating substitutions in the amino acid sequence of the heavy and light chains that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulkiness of the side chain. A “conservative amino acid substitution” can involve a substitution of a native amino acid residue with a nonnative residue that has little or no effect on the polarity or charge of the amino acid residue at that position. See, Table 8, supra. Furthermore, any native residue in the polypeptide can also be substituted with alanine, as has been previously described for alanine scanning mutagenesis.
  • Amino acid substitutions (whether conservative or non-conservative) of the subject antibodies can be implemented by those skilled in the art by applying routine techniques. Amino acid substitutions can be used to identify important residues of the antibodies provided herein, or to increase or decrease the affinity of these antibodies for a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or for modifying the binding affinity of other antigen-binding proteins described herein.
  • Methods of Expressing Antigen Binding Proteins
  • Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs.
  • The antigen binding proteins provided herein can be prepared by any of a number of conventional techniques. For example, antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be produced by recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, (Kennet et al., eds.) Plenum Press (1980) and subsequent editions; and Harlow & Lane, (1988) supra.
  • Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies can be expressed in hybridomas) or in cell lines other than hybridomas. Expression constructs encoding the antibodies can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216; 4,912,040; 4,740,461; and 4,959,455. The optimal transformation procedure used will depend upon which type of host cell is being transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct microinjection of the DNA into nuclei.
  • Recombinant expression constructs typically comprise a nucleic acid molecule encoding a polypeptide comprising one or more of the following: one or more CDRs provided herein; a light chain constant region; a light chain variable region; a heavy chain constant region (e.g., C H1, C H2 and/or CH3); and/or another scaffold portion of an antigen binding protein. These nucleic acid sequences are inserted into an appropriate expression vector using standard ligation techniques. In one embodiment, the heavy or light chain constant region is appended to the C-terminus of the anti-β-Klotho/FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) complex-specific heavy or light chain variable region and is ligated into an expression vector. The vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery, permitting amplification and/or expression of the gene can occur). In some embodiments, vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964, which is hereby incorporated by reference). Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies or BD Biosciences. Other useful vectors for cloning and expressing the antibodies and fragments include those described in Bianchi and McGrew, (2003) Biotech. Biotechnol. Bioeng. 84:439-44, which is hereby incorporated by reference. Additional suitable expression vectors are discussed, for example, in “Gene Expression Technology,” Methods Enzymol., vol. 185, (Goeddel et al., ed.), (1990), Academic Press.
  • Typically, expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as “flanking sequences” in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element.
  • Optionally, an expression vector can contain a “tag”-encoding sequence, i.e., an oligonucleotide molecule located at the 5′ or 3′ end of an antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis, HHHHHH (SEQ ID NO: 1830)), or another “tag” such as FLAG, HA (hemaglutinin influenza virus), or myc, for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification or detection of the antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified antigen binding protein by various means such as using certain peptidases for cleavage.
  • Flanking sequences can be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), synthetic or native. As such, the source of a flanking sequence can be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.
  • Flanking sequences useful in the vectors can be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence can be known. Here, the flanking sequence can be synthesized using the methods described herein for nucleic acid synthesis or cloning.
  • Whether all or only a portion of the flanking sequence is known, it can be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing a flanking sequence can be isolated from a larger piece of DNA that can contain, for example, a coding sequence or even another gene or genes. Isolation can be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, column chromatography or other methods known to the skilled artisan. The selection of suitable enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.
  • An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one can be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 (GenBank Accession # J01749, New England Biolabs, Beverly, Mass.) is suitable for most gram-negative bacteria, and various viral origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter).
  • A transcription termination sequence is typically located 3′ to the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.
  • A selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex or defined media. Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. Advantageously, a neomycin resistance gene can also be used for selection in both prokaryotic and eukaryotic host cells.
  • Other selectable genes can be used to amplify the gene that will be expressed. Amplification is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. As a result, increased quantities of a polypeptide such as an antigen binding protein are synthesized from the amplified DNA.
  • A ribosome-binding site is usually necessary for translation initiation of mRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes). The element is typically located 3′ to the promoter and 5′ to the coding sequence of the polypeptide to be expressed.
  • In some cases, such as where glycosylation is desired in a eukaryotic host cell expression system, one can manipulate the various pre- or pro-sequences to improve glycosylation or yield. For example, one can alter the peptidase cleavage site of a particular signal peptide, or add prosequences, which also can affect glycosylation. The final protein product can have, in the −1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed. For example, the final protein product can have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus. Alternatively, use of some enzyme cleavage sites can result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide.
  • Expression and cloning will typically contain a promoter that is recognized by the host organism and operably linked to the molecule encoding an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Promoters are untranscribed sequences located upstream (i.e., 5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of the structural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature. Constitutive promoters, on the other hand, uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding heavy chain or light chain comprising an antigen binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector.
  • Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, for example, heat-shock promoters and the actin promoter.
  • Additional promoters which can be of interest include, but are not limited to: SV40 early promoter (Benoist & Chambon, (1981) Nature 290:304-310); CMV promoter (Thomsen et al., (1984) Proc. Natl. Acad. U.S.A. 81:659-663); the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto et al., (1980) Cell 22:787-97); herpes thymidine kinase promoter (Wagner et al., (1981) Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); promoter and regulatory sequences from the metallothionine gene (Prinster et al., (1982) Nature 296:39-42); and prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et al., (1978) Proc. Natl. Acad. Sci. U.S.A. 75:3727-31); or the tac promoter (DeBoer et al., (1983) Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Also of interest are the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region that is active in pancreatic acinar cells (Swift et al., (1984) Cell 38:639-46; Ornitz et al., (1986) Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, (1987) Hepatology 7:425-515); the insulin gene control region that is active in pancreatic beta cells (Hanahan, (1985) Nature 315:115-22); the immunoglobulin gene control region that is active in lymphoid cells (Grosschedl et al., (1984) Cell 38:647-58; Adames et al., (1985) Nature 318:533-38; Alexander et al., (1987) Mol. Cell. Biol. 7:1436-44); the mouse mammary tumor virus control region that is active in testicular, breast, lymphoid and mast cells (Leder et al., (1986) Cell 45:485-95); the albumin gene control region that is active in liver (Pinkert et al., (1987) Genes and Devel. 1:268-76); the alpha-feto-protein gene control region that is active in liver (Krumlauf et al., (1985) Mol. Cell. Biol. 5:1639-48; Hammer et al., (1987) Science 253:53-58); the alpha 1-antitrypsin gene control region that is active in liver (Kelsey et al., (1987) Genes and Devel. 1:161-71); the beta-globin gene control region that is active in myeloid cells (Mogram et al., (1985) Nature 315:338-40; Kollias et al., (1986) Cell 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., (1987) Cell 48:703-12); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani, (1985) Nature 314:283-86); and the gonadotropic releasing hormone gene control region that is active in the hypothalamus (Mason et al., (1986) Science 234:1372-78).
  • An enhancer sequence can be inserted into the vector to increase transcription of DNA encoding light chain or heavy chain comprising an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c by higher eukaryotes, e.g., a human antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent, having been found at positions both 5′ and 3′ to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus is used. The SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer can be positioned in the vector either 5′ or 3′ to a coding sequence, it is typically located at a site 5′ from the promoter. A sequence encoding an appropriate native or heterologous signal sequence (leader sequence or signal peptide) can be incorporated into an expression vector, to promote extracellular secretion of the antibody. The choice of signal peptide or leader depends on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence. Examples of signal peptides that are functional in mammalian host cells include the following: the signal sequence for interleukin-7 (IL-7) described in U.S. Pat. No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., (1984) Nature 312:768-71; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; the type II interleukin-1 receptor signal peptide described in EP Patent No. 0 460 846.
  • Expression vectors can be constructed from a starting vector such as a commercially available vector. Such vectors can but need not contain all of the desired flanking sequences. Where one or more of the flanking sequences are not already present in the vector, they can be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art.
  • After the vector has been constructed and a nucleic acid molecule encoding light chain, a heavy chain, or a light chain and a heavy chain comprising an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has been inserted into the proper site of the vector, the completed vector can be inserted into a suitable host cell for amplification and/or polypeptide expression. The transformation of an expression vector for an antigen binding protein into a selected host cell can be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection, lipofection, DEAE-dextran mediated transfection, or other known techniques. The method selected will in part be a function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., (2001), supra.
  • A host cell, when cultured under appropriate conditions, synthesizes an antigen binding protein that can subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule.
  • Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to HeLa cells, Human Embryonic Kidney 293 cells (HEK293 cells), Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. In certain embodiments, cell lines can be selected through determining which cell lines have high expression levels and constitutively produce antigen binding proteins with desirable binding properties (e.g., the ability to bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c). In another embodiment, a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be selected. The ability to induce FGF21-like signaling can also form a selection criterion.
  • Uses of Antigen Binding Proteins for Diagnostic and Therapeutic Purposes
  • The antigen binding proteins disclosed herein are useful for detecting to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in biological samples and identification of cells or tissues that produce one or more of β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. For instance, the antigen binding proteins disclosed herein can be used in diagnostic assays, e.g., binding assays to detect and/or quantify a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c expressed in a tissue or cell.
  • Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can also be used in treatment of diseases related to FGF21-like signaling in a patient in need thereof, such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. By forming a signaling complex comprising an antigen binding protein and a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the natural in vivo activity of FGF21, which associates with a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo to initiate signaling, can be mimicked and/or enhanced, leading to therapeutic effects.
  • Indications
  • A disease or condition associated with human FGF21 includes any disease or condition whose onset in a patient is influenced by, at least in part, the lack of or therapeutically insufficient induction of FGF21-like signaling, which is initiated in vivo by the formation of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The severity of the disease or condition can also be decreased by the induction of FGF21-like signaling. Examples of diseases and conditions that can be treated with the antigen binding proteins provided herein include type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.
  • The antigen binding proteins described herein can be used to treat type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome, or can be employed as a prophylactic treatment administered, e.g., daily, weekly, biweekly, monthly, bimonthly, biannually, etc to prevent or reduce the frequency and/or severity of symptoms, e.g., elevated plasma glucose levels, elevated triglycerides and/or cholesterol levels, thereby providing an improved glycemic and cardiovascular risk factor profile.
  • Diagnostic Methods
  • The antigen binding proteins described herein can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or conditions associated with FGFR1c, FGFR2c, FGFR3c, β-Klotho, FGF21 and/or complexes comprising combinations thereof. Also provided are methods for the detection of the presence of to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a sample using classical immunohistological methods known to those of skill in the art (e.g., Tijssen, (1985) “Practice and Theory of Enzyme Immunoassays” in Laboratory Techniques in Biochemistry and Molecular Biology, 15 (Burdon & van Knippenberg, eds.), Elsevier Biomedical); Zola, (1987) Monoclonal Antibodies: A Manual of Techniques, pp. 147-58 (CRC Press, Inc.); Jalkanen et al., (1985) J. Cell. Biol. 101:976-85; Jalkanen et al., (1987) J. Cell Biol. 105:3087-96). The detection of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be performed in vivo or in vitro.
  • Diagnostic applications provided herein include use of the antigen binding proteins to detect expression/formation of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and/or binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Examples of methods useful in the detection of the presence of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • For diagnostic applications, the antigen binding protein typically will be labeled with a detectable labeling group. Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used.
  • In another aspect, an antigen binding protein can be used to identify a cell or cells that express a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In a specific embodiment, the antigen binding protein is labeled with a labeling group and the binding of the labeled antigen binding protein to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is detected. In a further specific embodiment, the binding of the antigen binding protein to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c detected in vivo. In a further specific embodiment, the antigen binding protein is isolated and measured using techniques known in the art. See, for example, Harlow & Lane, (1988) supra; Current Protocols In Immunology (John E. Coligan, ed), John Wiley & Sons (1993 ed., and supplements and/or updates). Another aspect provides for detecting the presence of a test molecule that competes for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding proteins provided, as disclosed herein. An example of one such assay could involve detecting the amount of free antigen binding protein in a solution containing an amount of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in the presence or absence of the test molecule. An increase in the amount of free antigen binding protein (i.e., the antigen binding protein not bound to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) would indicate that the test molecule is capable of competing for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding protein. In one embodiment, the antigen binding protein is labeled with a labeling group. Alternatively, the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.
  • Methods of Treatment: Pharmaceutical Formulations and Routes of Administration
  • Methods of using the disclosed antigen binding proteins are also provided. In some methods, an antigen binding protein is provided to a patient, which induces FGF21-like signaling.
  • Pharmaceutical compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are also provided. In addition, methods of treating a patient by administering such pharmaceutical composition are included. The term “patient” includes human patients.
  • Acceptable formulation materials are nontoxic to recipients at the dosages and concentrations employed. In specific embodiments, pharmaceutical compositions comprising a therapeutically effective amount of human antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided.
  • In certain embodiments, acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed. In certain embodiments, the pharmaceutical composition can contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In such embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as Pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. See, e.g., Remington's Pharmaceutical Sciences, 18th Edition, (A. R. Gennaro, ed.), 1990, Mack Publishing Company, and subsequent editions.
  • In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, Remington's Pharmaceutical Sciences, supra. In certain embodiments, such compositions can influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antigen binding proteins disclosed. In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier can be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In specific embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and can further include sorbitol or a suitable substitute. In certain embodiments, compositions comprising antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (see, Remington's Pharmaceutical Sciences, supra for examples of suitable formulation agents) in the form of a lyophilized cake or an aqueous solution. Further, in certain embodiments, antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be formulated as a lyophilizate using appropriate excipients such as sucrose. The pharmaceutical compositions can be selected for parenteral delivery.
  • Alternatively, the compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. Preparation of such pharmaceutically acceptable compositions is within the skill of the art.
  • The formulation components are present preferably in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.
  • When parenteral administration is contemplated, the therapeutic compositions can be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antigen binding protein in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the antigen binding protein is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that can provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid can also be used, which can have the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices can be used to introduce the desired antigen binding protein.
  • Certain pharmaceutical compositions are formulated for inhalation. In some embodiments, antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are formulated as a dry, inhalable powder. In specific embodiments, antigen binding protein inhalation solutions can also be formulated with a propellant for aerosol delivery. In certain embodiments, solutions can be nebulized. Pulmonary administration and formulation methods therefore are further described in International Patent Application No. PCT/US94/001875, which is incorporated by reference and describes pulmonary delivery of chemically modified proteins. Some formulations can be administered orally. Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are administered in this fashion can be formulated with or without carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. In certain embodiments, a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of an antigen binding protein. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed.
  • Some pharmaceutical compositions comprise an effective quantity of one or a plurality of human antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or another appropriate vehicle, solutions can be prepared in unit-dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.
  • Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which is incorporated by reference and describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions. Sustained-release preparations can include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices can include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481, each of which is incorporated by reference), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., (1983) Biopolymers 2:547-556), poly (2-hydroxyethyl-inethacrylate) (Langer et al., (1981) J. Biomed. Mater. Res. 15:167-277 and Langer, (1982) Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer et al., (1981) supra) or poly-D(−)-3-hydroxybutyric acid (European Patent Application Publication No. EP 133988). Sustained release compositions can also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036676; EP 088046 and EP 143949, incorporated by reference.
  • Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method can be conducted either prior to or following lyophilization and reconstitution. Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • In certain embodiments, cells expressing a recombinant antigen binding protein as disclosed herein are encapsulated for delivery (see, Tao et al., Invest. Ophthalmol Vis Sci (2002) 43:3292-3298 and Sieving et al., Proc. Natl. Acad. Sciences USA (2006) 103:3896-3901).
  • In certain formulations, an antigen binding protein has a concentration of between 10 mg/ml and 150 mg/ml. Some formulations contain a buffer, sucrose and polysorbate. An example of a formulation is one containing 50-100 mg/ml of antigen binding protein, 5-20 mM sodium acetate, 5-10% w/v sucrose, and 0.002-0.008% w/v polysorbate. Certain, formulations, for instance, contain 1-100 mg/ml of an antigen binding protein in 9-11 mM sodium acetate buffer, 8-10% w/v sucrose, and 0.005-0.006% w/v polysorbate. The pH of certain such formulations is in the range of 4.5-6. Other formulations can have a pH of 5.0-5.5.
  • Once the pharmaceutical composition has been formulated, it can be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder. Such formulations can be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration. Kits for producing a single-dose administration unit are also provided. Certain kits contain a first container having a dried protein and a second container having an aqueous formulation. In certain embodiments, kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided. The therapeutically effective amount of an antigen binding protein-containing pharmaceutical composition to be employed will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will vary depending, in part, upon the molecule delivered, the indication for which the antigen binding protein is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. In certain embodiments, the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.
  • A typical dosage can range from about 1 μg/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage can range from 10 μg/kg up to about 35 mg/kg, optionally from 0.1 mg/kg up to about 35 mg/kg, alternatively from 0.3 mg/kg up to about 20 mg/kg. In some applications, the dosage is from 0.5 mg/kg to 20 mg/kg and in other applications the dosage is from 21-100 mg/kg. In some instances, an antigen binding protein is dosed at 0.3-20 mg/kg. The dosage schedule in some treatment regimes is at a dose of 0.3 mg/kg qW-20 mg/kg qW.
  • Dosing frequency will depend upon the pharmacokinetic parameters of the particular antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect. The composition can therefore be administered as a single dose, or as two or more doses (which can but need not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Appropriate dosages can be ascertained through use of appropriate dose-response data. In certain embodiments, the antigen binding proteins can be administered to patients throughout an extended time period. Chronic administration of an antigen binding protein minimizes the adverse immune or allergic response commonly associated with antigen binding proteins that are not fully human, for example an antibody raised against a human antigen in a non-human animal, for example, a non-fully human antibody or non-human antibody produced in a non-human species.
  • The route of administration of the pharmaceutical composition is in accord with known methods, e.g., orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices. In certain embodiments, the compositions can be administered by bolus injection or continuously by infusion, or by implantation device.
  • The composition also can be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated. In certain embodiments, where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration.
  • It also can be desirable to use antigen binding protein pharmaceutical compositions ex vivo. In such instances, cells, tissues or organs that have been removed from the patient are exposed to antigen binding protein pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.
  • In particular, antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein and known in the art, to express and secrete the polypeptide. In certain embodiments, such cells can be animal or human cells, and can be autologous, heterologous, or xenogeneic. In certain embodiments, the cells can be immortalized. In other embodiments, in order to decrease the chance of an immunological response, the cells can be encapsulated to avoid infiltration of surrounding tissues. In further embodiments, the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
  • Combination Therapies
  • In another aspect, the present disclosure provides a method of treating a subject for diabetes with a therapeutic antigen binding protein of the present disclosure, such as the fully human therapeutic antibodies described herein, together with one or more other treatments. In one embodiment, such a combination therapy achieves an additive or synergistic effect. The antigen binding proteins can be administered in combination with one or more of the type 2 diabetes or obesity treatments currently available. These treatments for diabetes include biguanide (metaformin), and sulfonylureas (such as glyburide, glipizide). Additional treatments directed at maintaining glucose homeostasis include PPAR gamma agonists (pioglitazone, rosiglitazone); glinides (meglitinide, repaglinide, and nateglinide); DPP-4 inhibitors (Januvia® and Onglyza®) and alpha glucosidase inhibitors (acarbose, voglibose).
  • Additional combination treatments for diabetes include injectable treatments such as insulin and incretin mimetics (Byetta®, Exenatide®), other GLP-1 (glucagon-like peptide) analogs such as Victoza® (liraglutide), other GLP-1R agonists and Symlin® (pramlintide).
  • Additional combination treatments directed at weight loss include Meridia® and Xenical®.
  • EXAMPLES
  • The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting.
  • Example 1 Preparation of FGFR1c and β-Klotho Over Expressing Cells for Use as an Antigen
  • Nucleic acid sequences encoding the full length human FGFR1c polypepetide (SEQ ID NO: 4; FIGS. 1A-1B) and a separate sequence encoding the full length human β-Klotho polypeptide (SEQ ID NO: 7; FIGS. 2A-2C) were subcloned into suitable mammalian cell expression vectors (e.g., pcDNA3.1 Zeo, pcDNA3.1 Hyg (Invitrogen, Carlsbad, Calif.) or pDSRa24. The pDSRa24 vector contains SV40 early promoter/enhancer for expressing the gene of interest and a mouse DHFR expression cassette for selection in CHO DHFR (−) host cells such as AM1/D CHO (a derivative of DG44, CHO DHFR (−)).
  • AM-1/D CHO cells were transfected with linearized DNAs of huFGFR1c and hufβ-Klotho in standard mammalian cell expression vectors e.g. pcDNA3.1 puro and pcDNA3.1 Hyg with Lipofectamine 2000 (Invitrogen, Carlsbad Calif.). The transfected cells were trypsinized 2 days after transfection and seeded into media containing the corresponding selection drugs i.e. puromycin and hygromycin. After 2 weeks, the resulting transfected colonies were trypsinized and pooled. Single cell clones from the pools were isolated and screened with antibodies to huFGFR1c and huβKlotho in FACS and Clone 16 was selected due to the high level and balanced expression of the two receptor components.
  • 2×10e9 fresh cells from Clone 16 were harvested from roller bottles into a smaller volume in PBS and incubated with 10 μg/ml recombinant FGF21 (Amgen, Thousand Oaks Calif.) at 4 C for 1 hours to form complex with the cell surface receptors. The cells were washed twice with cold PBS, pelleted by centrifugation and frozen in individual vials at 2×10e8 cells for immunization.
  • HEK 293T cells were transfected with DNA expressing a truncated version of huFGFR1c (a signal peptide VH21 was joined to the remaining FGFR1c from amino acid residue #141 to #822 (in SEQ ID NO: 4) with a deletion that removed both the D1 domain and the acidic box (AB) and DNA expressing the full length huβ-Klotho in pcDNA3.1 series or pTT5 (an expression vector developed by Durocher, NRCC, with CMV promoter and EBV ori) based vector for transient expression. The removal of the D1-AB on FGFR1c was designed to expose epitopes on FGFR1c (e.g., in the D2 and D3 domains) that may be masked by this auto-inhibitory domain (see Mohammadi et al., (2005) Cytokine Growth Factor Reviews, 16, 107-137; Gupte et al., (2011) J. Mol. Biol. 408:491-502).
  • The expression of β-Klotho and truncated FGFR1c in the transfected 293T cells was verified by the respective specific antibodies in FACS and cells were harvested on day 3 post-transfection and frozen as cell pellet into aliquots for immunization.
  • Stable CHO or transiently transfected HEK 293T cells expressing FGFR1c and β-Klotho individually or together were also generated and used for titering mouse sera by FACS after immunization and for binding screens of the hybridoma supernatants by FMAT (see Example 3).
  • Example 2 Preparation of Monoclonal Antibodies
  • Immunizations were conducted using one or more suitable forms of FGF21 receptor antigen, including: (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 (see also FIGS. 1a-b ) and cDNA encoding a human β-Klotho polypeptide of SEQ ID NO: 7 (see also FIGS. 2a-c ) in a balanced ratio with cells and incubated with FGF21 prior to freezing; (2) cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residues 141-822 polypeptide of SEQ ID NO: 4 (D1 domain of FGFR1c deleted).
  • A suitable amount of immunogen (i.e., 3-4×106 cells/mouse of stably transfected CHO cells or transiently transfected 293T cells mentioned above was used for initial immunization in XENOMOUSE® according to the methods disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, and WO 00/76310, the disclosures of which are incorporated by reference. Following the initial immunization, subsequent boost immunizations of immunogen (1.7×106 FGF21R transfected cells/mouse) were administered on a schedule and for the duration necessary to induce a suitable anti-FGF21R titer in the mice. Titers were determined by a suitable method, for example, by enzyme immunoassay, fluorescence activated cell sorting (FACS), or by other methods (including combinations of enzyme immunoassays and FACS).
  • Animals exhibiting suitable titers were identified, and lymphocytes were obtained from draining lymph nodes and, if necessary, pooled for each cohort. Lymphocytes were dissociated from lymphoid tissue by grinding in a suitable medium (for example, Dulbecco's Modified Eagle Medium; DMEM; obtainable from Invitrogen, Carlsbad, Calif.) to release the cells from the tissues, and suspended in DMEM. B cells were selected and/or expanded using standard methods, and fused with suitable fusion partner, for example, nonsecretory myeloma P3X63Ag8.653 cells (American Type Culture Collection CRL 1580; Kearney et al, (1979) J. Immunol. 123:1548-1550), using techniques that were known in the art.
  • In one suitable fusion method, lymphocytes were mixed with fusion partner cells at a ratio of 1:4. The cell mixture was gently pelleted by centrifugation at 400×g for 4 minutes, the supernatant decanted, and the cell mixture gently mixed (for example, by using a 1 ml pipette). Fusion was induced with PEG/DMSO (polyethylene glycol/dimethyl sulfoxide; obtained from Sigma-Aldrich, St. Louis Mo.; 1 ml per million of lymphocytes). PEG/DMSO was slowly added with gentle agitation over one minute followed, by one minute of mixing. IDMEM (DMEM without glutamine; 2 ml per million of B cells), was then added over 2 minutes with gentle agitation, followed by additional IDMEM (8 ml per million B-cells) which was added over 3 minutes.
  • The fused cells were pelleted (400×g 6 minutes) and resuspended in 20 ml Selection media (for example, DMEM containing Azaserine and Hypoxanthine [HA] and other supplemental materials as necessary) per million B-cells. Cells were incubated for 20-30 minutes at 37° C. and then resuspended in 200 ml selection media and cultured for three to four days in T175 flasks prior to 96 well plating.
  • Cells were distributed into 96-well plates using standard techniques to maximize clonality of the resulting colonies. An alternative method was also employed and the fused cells were directly plated clonally into 384-well plates to ensure monoclonality from the start. After several days of culture, supernatants were collected and subjected to screening assays as detailed in the examples below, including confirmation of binding to human FGF21 receptor, specificity and/or cross-species reactivity. Positive cells were further selected and subjected to standard cloning and subcloning techniques. Clonal lines were expanded in vitro, and the secreted human antibodies obtained for analysis.
  • In this manner, mice were immunized with cells expressing full length FGF21R cells mixed with FGF21, or cells expressing a truncated FGFR1c and full length β-Klotho, with a range of 11-17 immunizations over a period of approximately one to three and one-half months. Several cell lines secreting FGF21R-specific antibodies were obtained, and the antibodies were further characterized. The sequences thereof are presented herein and in the Sequence Listing, and results of various tests using these antibodies are provided.
  • Example 3 Selection of Binding Antibodies by FMAT
  • After 14 days of culture, hybridoma supernatants were screened for FGF21R-specific monoclonal antibodies by Fluorometric Microvolume Assay Technology (FMAT) by screening against either the CHO AM1/D/huFGF21R cell line or recombinant HEK293 cells that were transfected with human FGF21R and counter-screening against parental CHO or HEK293 cells. Briefly the cells in Freestyle media (Invitrogen) were seeded into 384-well FMAT plates in a volume of 50 μL/well at a density of 4,000 cells/well for the stable transfectants, and at a density of 16,000 cells/well for the parental cells, and cells were incubated overnight at 37° C. 10 μL/well of supernatant was then added, and the plates were incubated for approximately one hour at 4° C., after which 10 μL/well of anti-human IgG-Cy5 secondary antibody was added at a concentration of 2.8 μg/ml (400 ng/ml final concentration). Plates were then incubated for one hour at 4° C., and fluorescence was read using an FMAT Cellular Detection System (Applied Biosystems).
  • In total, over 1,500 hybridoma supernatants were identified as binding to the FGF21 receptor expressing cells but not to parental cells by the FMAT method. These supernatants were then tested in the FGF21 functional assays as described below.
  • Example 4 Selection of Antibodies that Induce FGF21-Like Signaling
  • Experiments were performed to identify functional antibodies that mimic wild-type FGF21 activity (e.g., the ability to induce FGF21-like signaling) using a suitable FGF21 reporter assay. The disclosed FGF21 reporter assay measures activation of FGFR signaling via a MAPK pathway readout. β-Klotho is a co-receptor for FGF21 signaling, and although it is believed not to have any inherent signaling capability due to its very short cytoplasmic domain, it is required for FGF21 to induce signaling through FGFRs.
  • Example 4.1 ELK-Luciferase Reporter Assay
  • ELK-luciferase assays were performed using a recombinant human 293T kidney cell or CHO cell system. Specifically, the host cells were engineered to over-express β-Klotho and luciferase reporter constructs. The reporter constructs contain sequences encoding GAL4-ELK1 and 5×UAS-Luc, a luciferase reporter driven by a promoter containing five tandem copies of the Gal4 binding site. Activation of the FGF21 receptor complex in these recombinant reporter cell lines induces intracellular signal transduction, which in turn leads to ERK and ELK phosphorylation. Luciferase activity is regulated by the level of phosphorylated ELK, and is used to indirectly monitor and quantify FGF21 activity.
  • In one example, CHO cells were transfected sequentially using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol with the receptor constructs expressing β-Klotho, FGFR1c and the reporter plasmids: 5×Gal4-Luciferase (minimal TK promoter with 5×Gal4 binding sites upstream of luciferase) and Gal4-ELK1. Gal4-ELK1 binds to the Gal4 binding sites and activates transcription when it is phosphorylated by ERK. Luciferase transcription, and thereby the corresponding enzymatic activity in this context is regulated by the level of phosphorylated ELK1, and is used to indirectly monitor and quantify FGF21 activity.
  • Clone 16 was selected as the FGF21 luciferase reporter cell line based on the optimal assay window of 10-20 fold with native FGF21 exhibiting an EC50 in the single nM range.
  • For the assay, the ELK-luciferase reporter cells were plated in 96 well assay plates, and serum starved overnight. FGF21 or test samples were added for 6 hours at 37 degrees. The plates were then allowed to cool to room temperature and the luciferase activity in the cell lysates was measured with Bright-Glo (Promega).
  • Example 4.2 ERK-Phosphorylation Assay
  • Alternative host cell lines specifically L6 (a rat myoblastic cell line) was developed and applied to identify antibodies with FGF21-like signaling activity. The rat L6 cell line is a desirable host cell line for the activity assay because it is known to express minimal levels of endogeneous FGF receptors. The L6 cells do not respond to FGF21 even when transfected with β-Klotho expression vector and therefore provides a cleaner background. (Kurosu et al., (2007) J. Biol. Chem. 282, 26687-26695).
  • Human primary preadipocytes isolated from subcutaneous adipose tissues of multiple healthy nondiabetic donors were purchased from Zen-Bio, Inc. The preadipocytes were plated in 24-well plates and differentiated for 18 days into mature adipocytes. After a 3-hour starvation period, adipocytes were treated with different concentrations of test molecules for 10 minutes. Following treatment, the media was aspirated and cells were snap-frozen in liquid nitrogen. Cell lysates were prepared and ERK phosphorylation was measured using the Phospho-ERK1/2(Thr202/Tyr204; Thr185/Tyr187)/Total ERK1/2 Assay Whole Cell Lysate Kit from Meso Scale Discovery.”
  • L6 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cells were transfected with plasmids expressing β-Klotho and individual FGFR using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol.
  • Analysis of FGF signaling in L6 cells was performed as described in the literature (Kurosu et al., (2007) J. Biol. Chem. 282, 26687-26695). Cell cultures were collected 10 min after the treatment of FGF21 or test molecules and snap frozen in liquid nitrogen, homogenized in the lysis buffer and ERK phosphorylation was measured using the Phospho-ERK1/2(Thr202/Tyr204; Thr185/Tyr187)/Total ERK1/2 Assay Whole Cell Lysate Kit from Meso Scale Discovery.”
  • In addition, the factor-dependent mouse BaF3 cell-based proliferation assay used frequently for cytokine receptors can also be developed and applied.
  • Among the hybridoma supernatants tested in the CHO cell (Clone 16) based human FGF21 ELK-luciferase reporter assay, over 140 were identified as positive (>20% of the activity of FGF21) when compared to 20 nM FGF21 as the positive control (FIGS. 3 and 4).
  • Antibodies can be purified from the conditioned media of the hybridoma cultures of these positives and tested again in the CHO cell based ELK-luciferase reporter assay to assess the potency of the representative antibodies in the dose-responsive assay and determine the EC50. The activities and potency can be confirmed in the L6 cell based ERK1/2-phosphrylation assay. The EC50 is expected to be consistent to the ELK-luciferase assay in the CHO stable cell line Clone 16.
  • Example 5 Determining that Induction of FGF21-Like Signaling is Specific to the FGFR/13Klotho Complex
  • FGF21 has been reported to signal through multiple receptor complexes including FGFR1c, 2c, 3c, and 4 when paired with β-Klotho. The selectivity of the FGF21 agonistic antibodies can be determined in the rat myoblastic L6 cells transfected with vectors expressing the respective FGFRs and β-Klotho as described in Example 4.2.
  • Observed selectivity would be strongly suggestive that the action of these antibodies is β-Klotho-dependent yet it must also involve the FGFR component of the signaling complex. The results are set forth in Table 6 below.
  • TABLE 9
    FGFR Selectivity
    Molecule FGFR1c FGFR2c FGFR3c FGFR4
    Fgf21 + + +
    FGF19 + + + +
    16H7 D58A +
    49H12.1 +
    51A8.1 +
    51E5.1 +
    54A1.1 +
    60D7.1 +
    63A10.1 +
    64B10.1 +
    65C3.1 +
    66G2.1 +
    67F5.1 +
    67C10.1 +
    68C8.1 +
    49C8.1 +
    49G3.3 +
    56E7.3 +
    52A8.1 +
  • Example 5.1 Binding Specificity is Exclusively β-Klotho Dependent
  • The binding specificity of the reporter assay positive antibodies in the hybridoma supernatants was determined by FACS using 293T cells transiently transfected to express full length FGFR1c alone, β-Klotho alone or FGFR1c and β-Klotho together. Over 98% (141 out of 143 hybridomas) bind β-Klotho alone whereas none bind FGFR1c alone.
  • Example 6 Activity in Primary Human Adipocytes
  • FGF21 stimulates glucose uptake and lipolysis in cultured adipocytes, and adipocytes are considered to be more physiologically relevant than the recombinant reporter cell system.
  • A panel of the antibodies were tested in the human adipocyte assay for Erk-phosphorylation activity as described in Example 4.2 and compared with FGF21 for their EC50. The results are set forth below in Table 10 below.
  • TABLE 10
    Activity of Antibodies on pERK Human Adipocyte Assay
    Molecule EC50
    Fgf21 0.623
    16H7 0.280
    49H12.1 0.254
    51A8.1 0.213
    51E5.1 3.221
    54A1.1 0.206
    60D7.1 0.496
    63A10.1 0.435
    64B10.1 0.955
    65C3.1 6.387
    66G2.1 3.529
    67F5.1 1.438
    67C10.1 5.789
    68C8.1 1.216
    49C8.1 0.243
    49G3.3 1.424
    56E7.3 0.916
    58C2.1 0.317
  • Example 7 Competition Binding and Epitope Binning
  • To compare the similarity of the binding sites of the antibodies on the FGF21 receptor, a series of competition binding experiments can be performed and measured by Biacore. In one example, representative agonistic FGF21 receptor antibodies (and any controls) can be immobilized on the sensor chip surface. Soluble human FGFR1c/β-Klotho ECD-Fc complex or β-Klotho can then be captured on the immobilized antibody surfaces. Finally, several of the test FGF21 receptor antibodies can be injected individually over the captured soluble human FGF21 receptor or β-Klotho. If the injected antibody recognizes a distinct binding site relative to that recognized by the immobilized antibody, a second binding event will be observed. If the antibodies recognize very similar binding site, no more binding will be observed.
  • Alternatively or additionally, a Biacore analysis can be carried out with biotinylated-FGF21 immobilized on the sensor ship. 10 nM soluble β-Klotho is then passed over the chip alone or mixed with the individual test antibodies at 100 nM. The results are set forth below in Table 11 below.
  • TABLE 11
    Epitope Binning Summary
    Bin 1: 2 nd Campaign - 24H11, 17C3, 16H7, 20D4, 21B4, 22H5, 23F8,
    21H2, 18B11;
    3 rd Campaign - 40D2, 46D11
    Current - 49H12, 51A8, 54A1, 60D7, 49C8, 49G3, 56E7,
    63A10, 64B10 (64B10.1), 67C8, 68C8.1
    Bin 2: 2 nd Campaign - 17D8, 12C11, 26H11, 12E4, 18G1;
    3 rd Campaign - 37D3
    Bin 3: 3 rd Campaign - 39F7, 38F2, 39F11, 39G5
    Bin 4: 3 rd Campaign - 20E8
    Bin 5: current - 51E5
    Bin 6: current - 52A8 (52A8.1), 67F5 (67F5.1), 67C10 (67C10.1),
    65C3.1, 66G2.1
    Bold samples in bold are recombinant mAbs
    Italicized samples are from hybridoma supernatants.
  • Example 8 Recognition of Native and Denatured Structures
  • The ability of disclosed antigen binding proteins to recognize denatured and native structures was investigated. The procedure and results were as follows.
  • Example 8.1 FGF21 Receptor Agonistic Antibodies do not Recognize Denatured Structures
  • Cell lysates from CHO cells stably expressing FGF21 receptor (FGFR1c and β-Klotho) or CHO parental cells were diluted with sample buffer without beta-mercaptoethanol (non-reducing conditions). 20 μl of cell lysate were loaded per lane on adjacent lanes separated with a molecular weight marker lane on 4-20% SDS-PAGE gels. Following electrophoresis, the gels were blotted onto 0.2μ nitrocellulose filters. The blots were treated with Tris-buffered saline/Triton-X (TBST) plus 5% non-fat milk (blocking buffer) for 30 minutes. The blots were then cut along the molecular weight marker lanes. The strips were probed with commercial goat anti-murine βKlotho or mouse anti-huFGFR1 (R&D Diagnostics) in TBST/5% milk. Blots were incubated with the antibodies for one hour at room temperature, followed by three washes with TBST+1% milk. The blots were then probed with anti-human or anti-goat IgG-HRP secondary antibodies for 20 min. Blots were given three 15 minute washes with TBST followed by treatment with Pierce Supersignal West Dura developing reagent (1 minute) and exposure to Kodak Biomax X-ray film.
  • The commercial anti-β-Klotho and anti-FGFR1 antibodies detected the corresponding receptor proteins in the SDS-PAGE indicating they bind to denatured receptor proteins.
  • Example 8.2
  • FGF21 Receptor Agonistic Antibodies Bind to Native Receptor Structure
  • A FACS binding assay was performed with several commercially available FGFR1c and β-Klotho antibodies, and several of the disclosed FGF21 receptor agonistic antibodies. The experiments were performed as follows.
  • CHO cells stably expressing FGF21 receptor were treated with R&D Systems mouse anti-huFGFR1, goat anti-mu β-Klotho (1 μg per 1×106 cells in 100 μl PBS/0.5% BSA). Cells were incubated with the antibodies at 4° C. followed by two washes with PBS/BSA. Cells were then treated with FITC-labeled secondary antibodies at 4° C. followed by two washes. The cells were resuspended in 1 ml PBS/BSA and antibody binding was analyzed using a FACSCalibur™ instrument.
  • None of the commercial anti-β-Klotho or anti-FGFR1 antibodies tested bind well to cell surface FGF21 receptor, as determined by FACS. This observation further confirmed that the commercial antibodies to the receptor components bind to denatured and non-native structure whereas all of the agonistic antibodies described herein bind receptors on cell surface as shown by FACS or FMAT which were the initial screens.
  • Example 9 Arginine Scanning
  • As described above, antigen binding proteins that bind a complex comprising b-Klotho and one of FGFR1c, FGFR2c and FGFR3c can be created and characterized. To determine the neutralizing determinants on human FGFR1c and/or β-Klotho that these various antigen binding proteins bound, a number of mutant FGFR1c and/or β-Klotho proteins can be constructed having arginine substitutions at select amino acid residues of human FGFR1c and/or β-Klotho. Arginine scanning is an art-recognized method of evaluating where antibodies, or other proteins, bind to another protein, see, e.g., Nanevicz et al., (1995) J. Biol. Chem., 270:37, 21619-25 and Zupnick et al., (2006) J. Biol. Chem., 281:29, 20464-73. In general, the arginine sidechain is positively charged and relatively bulky as compared to other amino acids, which can disrupt antibody binding to a region of the antigen where the mutation is introduced. Arginine scanning is a method that determines if a residue is part of a neutralizing determinant and/or an epitope.
  • Various amino acids distributed throughout the human FGFR1c and/or β-Klotho extracellular domains can be selected for mutation to arginine. The selection can be biased towards charged or polar amino acids to maximize the possibility of the residue being on the surface and reduce the likelihood of the mutation resulting in misfolded protein. Using standard techniques known in the art, sense and anti-sense oligonucleotides containing the mutated residues can be designed based on criteria provided by Stratagene Quickchange® II protocol kit (Stratagene/Agilent, Santa Clara, Calif.). Mutagenesis of the wild-type (WT) FGFR1c and/or β-Klotho sequences can be performed using a Quickchange® II kit (Stratagene). Chimeric constructs can be engineered to encode a FLAG-histidine tag (six histidines (SEQ ID NO: 1830)) on the carboxy terminus of the extracellular domain to facilitate purification via the poly-His tag.
  • Multiplex analysis using the Bio-Plex Workstation and software (BioRad, Hercules, Calif.) can be performed to determine neutralizing determinants on human FGFR1c and/or β-Klotho by analyzing exemplary human FGFR1c and/or β-Klotho mAbs differential binding to arginine mutants versus wild-type FGFR1c and/or β-Klotho proteins. Any number of bead codes of pentaHis-coated beads (“penta-His” disclosed as SEQ ID NO: 1831) (Qiagen, Valencia, Calif.) can be used to capture histidine-tagged protein. The bead codes can allow the multiplexing of FGFR1c and/or β-Klotho arginine mutants and wild-type human FGFR1c and/or β-Klotho.
  • To prepare the beads, 100 ul of wild-type FGFR1c and/or β-Klotho and FGFR1c and/or β-Klotho arginine mutant supernatants from transient expression culture are bound to penta-His-coated beads (“penta-His” disclosed as SEQ ID NO: 1831) overnight at 4° C. or 2 hours at room temperature with vigorous shaking. The beads are then washed as per the manufacturer's protocol and the bead set pooled and aliquoted into 2 or 3 columns of a 96-well filter plate (Millipore, Billerica, Mass., product #MSBVN1250) for duplicate or triplicate assay points, respectively. 100 μl anti-FGFR1c and/or anti-β-Klotho antibodies in 4-fold dilutions are added to the wells, incubated for 1 hour at room temperature, and washed. 100 μl of a 1:100 dilution of PE-conjugated anti-human IgG Fc (Jackson Labs., Bar Harbor, Me.) is added to each well, incubated for 1 hour at room temperature and washed. Beads are resuspended in 1% BSA, shaken for 3 minutes, and read on the Bio-Plex workstation. Antibody binding to FGFR1c and/or β-Klotho arginine mutant protein is compared to antibody binding to the human FGFR1c and/or β-Klotho wild-type from the same pool. A titration of antibody over approximately a 5 log scale can be performed. Median Fluorescence Intensity (MFI) of FGFR1c and/or β-Klotho arginine mutant proteins can be graphed as a percent of maximum wild-type human FGFR1c and/or β-Klotho signal. Those mutants for which signal from all the antibodies are below a cut-off value, e.g., 30% of wild-type FGFR1c and/or β-Klotho can be deemed to be either of too low a protein concentration on the bead due to poor expression in the transient culture or possibly misfolded and can be excluded from analysis. Mutations (i.e., arginine substitutions) that increase the EC50 for the FGFR1c and/or β-Klotho mAb by a cut-off value, e.g., 3-fold or greater (as calculated by, e.g., GraphPad Prism®) can be considered to have negatively affected FGFR1c and/or β-Klotho mAb binding. Through these methods, neutralizing determinants and epitopes for various FGFR1c and/or β-Klotho antibodies are elucidated.
  • Example 10 Protease Protection Analysis
  • Regions of the human FGF21 receptor bound by the antigen binding proteins that bind human FGF21 receptor, e.g., FGFR1c, β-Klotho or FGFR1c and β-Klotho complex can be identified by fragmenting human FGF21 receptor into peptides with specific proteases, e.g., AspN, Lys-C, chymotrypsin or trypsin. The sequence of the resulting human FGF21 receptor peptides (i.e., both disulfide- and non-disulfide-containing peptide fragments from FGFR1c and β-Klotho portions) can then be determined. In one example, soluble forms of a human FGF21 receptor, e.g., a complex comprising the FGFR1c ECD-Fc and β-Klotho ECD-Fc heterodimer described herein can be digested with AspN (which cleaves after aspartic acid and some glutamic acid residues at the amino end) by incubating about 100 μg of soluble FGF21 receptor at 1.0 mg/ml in 0.1M sodium phosphate (pH 6.5) for 20 hrs at 37° C. with 2 μg of AspN.
  • A peptide profile of the AspN digests can then be generated on HPLC chromatography while a control digestion with a similar amount of antibody is expected to be essentially resistant to AspN endoprotease. A protease protection assay can then be performed to determine the proteolytic digestion of human FGF21 receptor in the presence of the antigen binding proteins. The general principle of this assay is that binding of an antigen binding protein to the FGF21 receptor can result in protection of certain specific protease cleavage sites and this information can be used to determine the region or portion of FGF21 receptor where the antigen binding protein binds.
  • Briefly, the peptide digests can be subjected to HPLC peptide mapping; the individual peaks are collected, and the peptides are identified and mapped by on-line electrospray ionization LC-MS (ESI-LC-MS) analyses and/or by N-terminal sequencing. HPLC analyses for these studies can be performed using a narrow bore reverse-phase C18 column (Agilent Technologies) for off-line analysis and using a capillary reverse phase C18 column (The Separation Group) for LC-MS. HPLC peptide mapping can be performed with a linear gradient from 0.05% trifluoroacetic acid (mobile phase A) to 90% acetonitrile in 0.05% trifluoroacetic acid. Columns can be developed at desirable flow rate for narrow bore HPLC for off-line or on-line LC-MS analyses, and for capillary HPLC for on-line LC-MS analyses.
  • Sequence analyses can be conducted by on-line LC-MS/MS and by Edman sequencing on the peptide peaks recovered from HPLC. On-line ESI LC-MS analyses of the peptide digest can be performed to determine the precise mass and sequence of the peptides that are separated by HPLC. The identities of selected peptides present in the peptide peaks from the protease digestion can thus be determined.
  • Example 11 Construction of Chimeric Receptors
  • An additional method of determining activation determinants on which these various antigen binding proteins bind is as follows. Specific chimeric FGFR1c and/or β-Klotho proteins between human and mouse species can be constructed, expressed in transient or stable 293 or CHO cells (as described herein) and tested. For example, a chimeric FGF21 receptor can be constructed comprising native human FGFR1c, FGFR2c, FGFR3c or FGFR4 receptors. By way of example, FGFR1c can be paired with chimeric human/mouse β-Klotho in which selected regions or sequences on the human β-Klotho are systematically replaced by the corresponding mouse-specific residues (see, e.g., FIG. 2A-2C). Similarly, native human β-Klotho can be paired with chimeric human/mouse FGFR1c, FGFR2c, FGFR3c or FGFR4. Here, selected regions or sequences on the human FGFR1c are systematically replaced by the corresponding mouse-specific residues (see, e.g., the alignments of FIGS. 1A-1B). The critical sequences involved in the binding and/or activity of the antigen binding proteins can be derived through binding assay or activity measurements described in previous Examples 4, 5, 6, and 7 based on the chimeric FGF21 receptors.
  • Example 11.1 Construction of Specific Chimeras
  • Human-mouse β-Klotho chimeras were constructed using the methodology described above. A schematic of the chimeras constructed is presented in FIG. 4. In summary, the chimeras generated comprised (from N- to C-terminus) a fusion of a human β-Klotho sequence fused to a murine β-Klotho sequence fused to a human β-Klotho sequence. Human β-Klotho Klotho (SEQ ID NO: 7) was used as a framework into which regions of murine β-Klotho (full length sequence shown in SEQ ID NO:468) were inserted. The regions of murine β-Klotho that were inserted were as follows:
  • Murine Residues 82P-520P
    (amino acids 82 to 520 of SEQ ID NO: 10)
    PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY
    IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS
    LVLRNIEPIVTLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGD
    RVKYWITIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVW
    HNYDKNFRPHQKGWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWFA
    NPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSN
    TVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTEDTTAI
    YMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTRRGLFYVDF
    NSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDMKGRFP
    Murine Residues 506F-1043S
    (amino acids 506 to 1043 of SEQ ID NO: 10)
    FPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTG
    NRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSIL
    PTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLS
    SGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDMYNRTSND
    TYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPANPFVDSH
    WKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSVLPRFT
    AKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDITRLS
    SPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQIRKYYL
    EKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAKSSVQF
    YSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFFGCCFIST
    LAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS
    Murine Residues 1M-193L
    (amino acids 506 to 1043 of SEQ NO: 10)
    MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV
    TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSW
    KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ
    FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTL
    Murine Residues 82P-302S
    (amino acids 82 to 302 of SEQ ID NO: 10)
    PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY
    IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS
    LVLRNIEPIVTLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGD
    RVKYWITIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVW
    HNYDKNFRPHQKGWLSITLGS
    Murine Residues 194Y-416G
    (amino acids 194 to 416 of SEQ ID NO: 10)
    YHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPY
    LVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQK
    GWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEF
    MKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLN
    LRQVLNWIKLEYDDPQILISENG
    Murine Residues 302S-506F
    (amino acids 302 to 506 of SEQ ID NO: 10)
    SHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMIP
    EFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNWI
    KLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIR
    VFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQII
    QDNGF
    Murine Residues 416G-519P
    (amino acids 416 to 519 of SEQ ID NO: 10)
    GWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFE
    WQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDM
    KGRF
    Murine Residues 507P-632G
    (amino acids 507 to 632 of SEQ NO: 10)
    PLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGN
    RLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILP
    TGNLSKVNRQVLRYYRCVVSEGLKLG
    Murine Residues 520P-735A
    (amino acids 520 to 735 of SEQ ID NO: 10)
    PCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGVRLKT
    RPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQVLR
    YYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQ
    DYAELCFRELGDLVKLWITINEPNRLSDMYNRTSNDTYRAAHNLMIAHAQ
    VWHLYDRQYRPVQHGA
    Murine Residues 632G-849Q
    (amino acids 632 to 849 of SEQ ID NO: 10)
    GVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELGD
    LVKLWITINEPNRLSDMYNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPV
    QHGAVSLSLHCDWAEPANPFVDSHWKAAERFLQFEIAWFADPLFKTGDYP
    SVMKEYIASKNQRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIH
    KQLNTNRSVADRDVQFLQ
    Murine Residues 735A-963S
    (amino acids 735 to 963 of SEQ ID NO: 10)
    AVSLSLHCDWAEPANPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVM
    KEYIASKNQRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQL
    NTNRSVADRDVQFLQDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIY
    ITANGIDDLALEDDQIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEE
    KSKPRFGFFTSDFRAKSSVQFYSKLISSS
    Murine Residues 1M-81F
    (amino acids 1 to 81 of SEQ ID NO: 10)
    MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV
    TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTF
    Murine Residues 82P-193L
    (amino acids 82 to 193 of SEQ ID NO: 10)
    PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY
    IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS
    LVLRNIEPIVTL
  • The chimeras that were generated using the murine β-Klotho sequences comprised the following:
  • TABLE 12
    N-terminal C-terminal
    SEQ. Human β- Mouse β- Human β-
    Con- Construct ID Klotho Klotho Klotho
    struct Identifier NO. Residues Residues Residues
    1 huBeta_Klotho (1- 1-81   82-520 523-1044
    81, 523-1044)
    (muBetaKLOTHO
    82-520)
    2 huBeta_Klotho (1- 1-507  506-1043
    507)
    (muBetaKLOTHO
    506F-1045S)
    3 huBeta_Klotho  1-193 194-1044
    (194-1044)
    (muBetaKLOTHO
    1-L193)
    4 huBeta_Klotho (1- 1-81   82-302 303-1044
    81, 303-1044)
    (muBetaKLOTHO
    82P-302S)
    5 huBeta_Klotho (1- 1-193 194-416 419-1044
    193, 419-1044)
    (muBetaKLOTHO
    Y194-416G)
    6 huBeta_Klotho(1- 1-301 302-506 509-1044
    301, 509-1044)
    (muBetaKLOTHO
    S302-F506)
    7 huBeta_Klotho(1- 1-417 416-519 522-1044
    417, 522-1044)
    (muBetaKLOTHO
    G416-F519)
    8 huBeta_Klotho (1- 1-508 507-632 635-1044
    507, 635-1044)
    (muBeta KLOTHO
    F06-G632)
    9 huBeta_Klotho (1- 1-521 520-735 738-1044
    521, 738-1044)
    (muBeta KLOTHO
    520P-735A)
    10 huBeta_Klotho (1- 1-633 632-849 852-1044
    633, 852-1044)
    (muBeta KLOTHO
    632G-849Q)
    11 huBeta_Klotho (1- 1-736 735-963 967-1044
    736, 967-1044)
    (muBeta KLOTHO
    735A-963S)
    12 huBeta_Klotho  1-81  82-1044
    (82-1044) (muBeta
    KLOTHO 1-81F)
    13 huBeta_Klotho (1- 1-81   82-193 194-1044
    81, 194-1044)
    (muBeta KLOTHO
    82P-193L)
    14 huBeta_Klotho (1- 1-301  302-506, 967-1044
    301, 509-743, 967- 742-964
    1044) (muBeta
    KLOTHO 302-
    506, 742-964)

    The generated chimeras comprised the following amino acid sequences:
  • (i) huBeta_Klotho(1-81, 523-1044)(muBetaKLOTHO
    82-520)
    (SEQ ID NO: 1898)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW
    KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ
    FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL
    TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF
    GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL
    GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI
    PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW
    IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI
    RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI
    IQDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPHLYV
    WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD
    WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP
    EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN
    RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP
    YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA
    LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD
    ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL
    RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK
    SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC
    CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (ii) huBeta_Klotho(1-507)(muBetaKLOTHO 506F-1045S)
    (SEQ ID NO: 1899)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL
    YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA
    LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG
    LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM
    YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPA
    NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS
    SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL
    QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDD
    QIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR
    AKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFF
    GCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS
    (iii) huBeta_Klotho(194-1044)(muBetaKLOTHO 1-L193)
    (SEQ ID NO: 1900)
    MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV
    TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSW
    KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ
    FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (iv) huBeta_Klotho(1-81, 303-1044)(muBetaKLOTHO
    82P-302S)
    (SEQ ID NO: 1901)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW
    KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ
    FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL
    TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF
    GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (v) huBeta_Klotho(1-193, 419-1044)(muBetaKLOTHO
    Y194-416G)
    (SEQ ID NO: 1902)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF
    GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL
    GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI
    PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW
    IKLEYDDPQILISENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLDEI
    RVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYKQI
    IRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV
    WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD
    WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP
    EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN
    RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP
    YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA
    LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD
    ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL
    RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK
    SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC
    CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (vi) huBeta_Klotho(1-301, 509-1044)(muBetaKLOTHO
    S302-F506)
    (SEQ ID NO: 1903)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI
    PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW
    IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI
    RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI
    IQDNGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV
    WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD
    WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP
    EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN
    RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP
    YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA
    LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD
    ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL
    RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK
    SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC
    CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (vii) huBeta_Klotho(1-417, 522-1044)(muBetaKLOTHO
    G416-F519)
    (SEQ ID NO: 1904)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFD
    EIRVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYK
    QIIQDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (viii) huBeta_Klotho(1-507, 635-1044)(muBeta KLOTHO
    F06-G632)
    (SEQ ID NO: 1905)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL
    YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA
    LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (ix) huBeta_Klotho(1-521, 738-1044)(muBeta KLOTHO
    520P-735A)
    (SEQ ID NO: 1906)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPEFTVSSPQFTDPHL
    YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA
    LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG
    LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM
    YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (x) huBeta_Klotho(1-633, 852-1044)(muBeta KLOTHO
    632G-849Q)
    (SEQ ID NO: 1907)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG
    LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM
    YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPA
    NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS
    SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (xi) huBeta_Klotho(1-736, 967-1044)(muBeta KLOTHO
    735A-963S)
    (SEQ ID NO: 1908)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHCDWAEPA
    NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS
    SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL
    QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDD
    QIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR
    AKSSVQFYSKLISSSGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (xii) huBeta_Klotho(82-1044)(muBeta KLOTHO 1-81F)
    (SEQ ID NO: 1909)
    MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV
    TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (xiii) huBeta_Klotho(1-81, 194-1044)(muBeta KLOTHO
    82P-193L)
    (SEQ ID NO: 1910)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW
    KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ
    FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS
    VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL
    NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
    EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
    QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL
    YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA
    LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG
    LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI
    YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA
    NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS
    SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL
    QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD
    RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK
    AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL
    GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
    (xiv) huBeta_Klotho (1-301, 509-743, 967-1044)
    (muBetaKLOTHO 302-506, 742-964)
    (SEQ ID NO: 1911)
    MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV
    TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
    KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ
    FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL
    ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY
    GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL
    GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI
    PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW
    IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI
    RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI
    IQDNGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV
    WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD
    WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP
    EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN
    RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHCDWAEPANP
    FVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSV
    LPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQD
    ITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQI
    RKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAK
    SSVQFYSKLISSSGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC
    CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS
  • Various antigen binding proteins provided herein, as well as human FGF21, were tested for the ability to activate chimeras in L6 cells. FIG. 5 shows the observed results with each tested molecule.
  • These data indicate that while human FGF21 was able to activate FGFR1c combined with all of the human/mouse β-Klotho chimeras (the “+” sign indicates activity on the receptor), the substitutions of mouse sequences into human β-Klotho affected the activities of 16H7, 37D3, and 39F7 (See FIG. 5). These results suggest that β-Klotho sequences 1-81, 302-522, and 849-1044 are important for the activities of agonistic antigen binding proteins and may represent an important epitope for their function.
  • In addition, various antigen binding proteins were also tested for binding to the various human/mouse β-Klotho chimeras transiently expressed on the surface of HEK-293T cells by flow cytometry. Transfection and flow-cytometry was performed as described in Example 12. It will be appreciated that antibodies which do not have the ability to cross-bind full length murine β-Klotho are unable to bind the human/mouse β-Klotho chimera if the chimera spans a region of the antibody's binding site. In this manner, the binding profile of each antibody on the panel of chimeras reveals epitope information for the antibody. Data is shown below in Table 10. The anti-β-Klotho antibody 2G10 (which binds both human and mouse β-Klotho) was used as the positive control for expression of each human/mouse chimera. Using this positive control it was determine the expression level of chimeras 7 and 8 were not high enough to provide robust data and therefore they were eliminated from the analysis. One antibody, 26H11, was found to bind to full-length mouse β-Klotho and therefore could not be assigned an epitope in this analysis. Other antibodies which did not cross-bind to mouse β-Klotho could be group into epitope clusters. The first cluster included antibodies 16H7, 46D11, and 49G3.3, which antibodies did not bind to chimera #3 and chimera #12, indicating that the epitope includes the 1-81 region. Additionally, this group of antibodies also lacked observed binding to chimeras 1, 5, 6 and 14, which indicates that the epitope also includes the 294-506 region. Taken together, this data suggests that these antibodies have a complex non-linear type of epitope.
  • A second cluster included only antibody 65C3.1. This antibody lacked binding to chimeras #2, #11, and #14, indicating an epitope in the region of 849-936. A third cluster, including antibodies 49H12.1, 54A1.1, 49C8.1, 51A8.1, 63A10.1, 64B10.1, 68C8.1 and 39F7, lacked binding to chimera #1, #5, and #6, indicating that their epitope is in the 302-416 region. The forth cluster included antibodies 67C10.1, 51E5.1, 52A8.1, 66G2, 167F5.1, which lacked binding on chimeras #2, #8, #9, #10, #11, and #14 indicating that the epitope for these antibodies lies within region 506-1045. A “+” or “−” symbol in the chart below indicates binding of the respective antibody (“+”), or lack of binding (“−”) to the chimera and/or the respective ortholog of β-Klotho, or Mock Cells (negative control).
  • TABLE 13
    Chimera Binding
    Mock
    cells
    CHIMERA # hu β- mu β- (Neg. Epitope
    1 2 3 4 5 6 9 10 11 12 13 14 Klotho klotho Cont.) Region
    2G10 + + + + + + + + + + + + + +
    26H11 + + + + + + + + + + + + + +
    16H7 + + + + + + + 1-81 &
    49G3.3 + + + + + + + 302-416
    46D11 + + + + + + +
    49H12.1 + + + + + + + + + 302-416
    54A1.1 + + + + + + + + +
    49C8.1 + + + + + + + + +
    51A8.1 + + + + + + + + +
    63A10.1 + + + + + + + + +
    64B10.1 + + + + + + + + +
    68C8.1 + + + + + + + + +
    39F7 + + + + + + + + +
    65C3.1 + + + + + + + + + + 849-936
    67C10.1 + + + + + + + +  506-1045
    51E5.1 + + + + + + + +
    52A8.1 + + + + + + + +
    66G2.1 + + + + + + + +
    67F5.1 + + + + + + + +
    IgG2/K
    Control
    IgG4/K
    Control
    Secondary
    Only
  • Example 12 FGF21 Receptor Agonistic Antibodies Binding Selectivity
  • A panel of FGF21 receptor agonistic antibodies were assayed using flow cytometry for the binding to human FGFR1/human β-klotho transiently co-transfected HEK293T cells, human FGFR1c transiently transfected HEK293T cells and β-klotho transiently transfected HEK293T cells. In addition, binding was also tested on HEK-293T cells transiently transfected with cynomologous monkey orthologs of FGFR1c and β-klotho. Cells were transfected by preparing bug plasmid DNA in 500 ul OptiMEM™ media (Invitrogen™) and mixing this with 10 ul of 293fectin™ in 500 ul OptiMEM™ media, and then incubating the solution for 5 minutes at room temperature. This solution was then added dropwise to 10 million HEK293T cells in 10 ml of media. 24 hours following transfection, the cells were washed and 50,000 cells were stained with each primary antibody, 50 ul of unpurified hybridoma supernatant was diluted 1:2 and used for staining cells. After a one hour incubation at 4° c., the cells were washed and an anti-Human Fc-specific secondary was added. Stained cells were then analyzed on a flow cytometer. The panel of hybridoma supernatants tested all bound specifically to human β-Klotho/human FGFR1c co-transfected cells as well as human β-Klotho transfected alone. Data is shown below in Table 11. No staining was detected for any of the antibodies on cells transfected with FGFR1c alone. All antibodies except 64B10.1 and 68C8.1 specifically detected cynomologous β-Klotho/cynoFGFR1c co-transfected cells.
  • TABLE 14
    FGFR Antibody Selectivity
    Human Human β- HuFGFR1c/Hu Cyno
    Mock FGFR1c Klotho β-Klotho Co- FGFR1c/Cyno
    Transfected Transfect Tranfected transfected β-Klotho Co-
    293T cells 293T cells 293T Cells 293T Cells transfected Cells
    Antibody GeoMean GeoMean GeoMean GeoMean GeoMean
    49G3.3 648 706 14891 17919 25947
    49H12.1 581 719 16213 21731 20870
    51E5.1 723 747 16900 20951 36536
    51A8.1 728 795 17799 22826 18476
    54A1.1 709 770 14317 18701 11106
    59G10.3 686 780 15669 21105 33464
    63A10.1 648 834 17442 20432 32558
    64B10.1 624 691 14939 19850 701
    65C3.1 705 719 13720 18835 24564
    66G2.1 695 780 12671 16715 21566
    67F5.1 632 757 13482 13948 15784
    67C10.1 688 780 15114 18896 4063
    68C8.1 592 798 15905 20622 750
    16H7 @ 723 869 16335 20686 31319
    5 ug/ml
  • Example 13 Hotspot/Covariant Mutants
  • A total of 17 antibodies were analyzed for potential hotspots and covariance violations. The designed variants (shown below) outline amino acid substitutions capable of reducing and/or avoiding isomerization, deamidation, oxidation, covariance violations, and the like. In the data below, “02 49C8.1_VK: [F21I]” refers to a variant of the parental antibody 49C8.1 that has a mutation at position 21, from F (Phe) to I (Isoleucine). Note that a structure-based numbering scheme is followed for designating amino acid positions. It will be appreciated that these single point mutations can be combined in any combinatorial manner in order to arrive at a final desired molecule. The data are shown below in Table 15 and Table 16.
  • TABLE 15
    Antibody 49C8.1
    02 49C8.1_VK: [F21I]
    03 49C8.1_VK: [F91L]
    04 49C8.1_VK: [I101F]
    05 49C8.1_VK: [I101V]
    06 49C8.1_VK: [P141Q]
    07 49C8.1_VK: [P141G]
    08 49C8.1_VH: [T48P]
    09 49C8.1_VH: [N61Q]
    10 49C8.1_VH: [G65T]
    Antibody 49H12_N83D
    01 49H12_N83D_VK: [F91L]
    02 49H12_N83D_VK: [I101F]
    03 49H12_N83D_VK: [I101V]
    04 49H12_N83D_VH: [M24K]
    05 49H12_N83D_VH: [I30T]
    06 49H12_N83D_VH: [T48P]
    07 49H12_N83D_VH: [W57Y]
    08 49H12_N83D_VH: [W111Y]
    Antibody 49G3.3
    01 49G3.3_VK: [F91L]
    02 49G3.3_VK: [I101F]
    03 49G3.3_VK: [I101V]
    04 49G3.3_VK: [G141Q]
    05 49G3.3_VH: [E17Q]
    06 49G3.3_VH: [V25F]
    07 49G3.3_VH: [T56A]
    08 49G3.3_VH: [T56G]
    09 49G3.3_VH: [T144L]
    10 49G3.3_VH: [T144M]
    Antibody 51A8.1
    01 51A8.1_VL: [I98T]
    02 51A8.1_VL: [I98A]
    03 51A8.1_VH: [R17G]
    04 51A8.1_VH: [D61E]
    05 51A8.1_VH: [D72E]
    06 51A8.1_VH: [D110E]
    Antibody 51E5.1
    01 51E5.1_VK: [N53K]
    02 51E5.1_VK: [R54L]
    03 51E5.1_VK: [R54S]
    04 51E5.1_VK: [G141Q]
    05 51E5.1_VH: [D59E]
    06 51E5.1_VH: [H60T]
    Antibody 52A8.1
    01 52A8.1_VK: [F10S]
    02 52A8.1_VK: [H44Y]
    03 52A8.1_VK: [H44F]
    04 52A8.1_VK: [G141Q]
    05 52A8.1_VH: [W57Y]
    06 52A8.1_VH: [R95S]
    07 52A8.1_VH: [W135Y]
    Antibody 54A1.1_N83D
    01 54A1.1_N83D_VK: [A5T]
    02 54A1.1_N83D_VK: [L46Q]
    03 54A1.1_N83D_VK: [G81S]
    04 54A1.1_N83D_VK: [F91L]
    05 54A1.1_N83D_VK: [I101F]
    06 54A1.1_N83D_VK: [I101V]
    07 54A1.1_N83D_VK: [P141G]
    08 54A1.1_N83D_VK: [P141Q]
    09 54A1.1_N83D_VH: [T48P]
    10 54A1.1_N83D_VH: [W57Y]
    11 54A1.1_N83D_VH: [W111Y]
    Antibody 56E7.3
    01 56E7.3_VK: [N53K]
    02 56E7.3_VK: [F91L]
    03 56E7.3_VK: [I101F]
    04 56E7.3_VK: [P141Q]
    05 56E7.3_VK: [P141G]
    06 56E7.3_VK: [T144K]
    07 56E7.3_VK: [T144R]
    08 56E7.3_VH: [L31F]
    09 56E7.3_VH: [D65E]
    10 56E7.3_VH: [T84K]
    11 56E7.3_VH: [R95S]
    Antibody 58C2.1
    01 58C2.1_VK: [D36E]
    02 58C2.1_VH: [R17G]
    03 58C2.1_VH: [D61E]
    04 58C2.1_VH: [D72E]
    05 58C2.1_VH: [N116Q]
    Antibody 60D7.1_N30T
    01 60D7.1_N30T_VK: [D33E]
    02 60D7.1_N30T_VK: [D36E]
    03 60D7.1_N30T_VH: [R17G]
    04 60D7.1_N30T_VH: [D61E]
    05 60D7.1_N30T_VH: [D72E]
    06 60D7.1_N30T_VH: [W115Y]
    Antibody 63A10.1_C58S
    01 63A10.1_C58S_VL: [H9L]
    02 63A10.1_C58S_VL: [H9P]
    03 63A10.1_C58S_VL: [T15L]
    04 63A10.1_C58S_VL: [T15P]
    05 63A10.1_C58S_VL: [A16G]
    06 63A10.1_C58S_VL: [M18T]
    07 63A10.1_C58S_VL: [D51A]
    08 63A10.1_C58S_VL: [D51S]
    09 63A10.1_C58S_VL: [D51F]
    10 63A10.1_C58S_VL: [D67E]
    11 63A10.1_C58S_VL: [P83S]
    12 63A10.1_C58S_VL: [E97Q]
    13 63A10.1_C58S_VL: [D110E]
    14 63A10.1_C58S_VL: [D136E]
    15 63A10.1_C58S_VH: [D11G]
    16 63A10.1_C58S_VH: [K14Q]
    17 63A10.1_C58S_VH: [I29F]
    18 63A10.1_C58S_VH: [G56S]
    19 63A10.1_C58S_VH: [D64E]
    20 63A10.1_C58S_VH: [G84D]
    21 63A10.1_C58S_VH: [G84N]
    22 63A10.1_C58S_VH: [T98A]
    23 63A10.1_C58S_VH: [T107A]
    24 63A10.1_C58S_VH: [T108R]
    25 63A10.1_C58S_VH: [D109E]
    26 63A10.1_C58S_VL: [W109Y]
    Antibody 63A10.3_N20R_C42S
    01 63A10.3_N20R_C42S_VL: [W109Y]
    02 63A10.3_N20R_C42S_VL: [D67E]
    03 63A10.3_N20R_C42S_VL: [D110E]
    04 63A10.3_N20R_C42S_VH: [D11G]
    05 63A10.3_N20R_C42S_VH: [K14Q]
    06 63A10.3_N20R_C42S_VH: [I29F]
    07 63A10.3_N20R_C42S_VH: [G56S]
    08 63A10.3_N20R_C42S_VH: [D64E]
    09 63A10.3_N20R_C42S_VH: [G84N]
    10 63A10.3_N20R_C42S_VH: [T98A]
    11 63A10.3_N20R_C42S_VH: [T107A]
    12 63A10.3_N20R_C42S_VH: [T108R]
    13 63A10.3_N20R_C42S_VH: [D109E]
    14 63A10.3_N20R_C42S_VL: [W109Y]
    Antibody 64B10.1
    01 64B10.1_VL: [G92A]
    02 64B10.1_VL: [G99E]
    03 64B10.1_VL: [D110E]
    04 64B10.1_VH: [L5Q]
    05 64B10.1_VH: [T144L]
    06 64B10.1_VH: [T144M]
    07 64B10.1_VL: [W109Y]
    08 64B10.1_VH: [W113Y]
    Antibody 66G2
    01 66G2_VK: [R54L]
    02 66G2_VK: [K88E]
    03 66G2_VK: [K88D]
    04 66G2_VK: [N110Q]
    05 66G2_VH: [R17G]
    06 66G2_VH: [D61E]
    07 66G2_VH: [D72E]
    08 66G2_VH: [I78F]
    09 66G2_VH: [T108K]
    10 66G2_VH: [T108R]
    Antibody 67F5
    1. 01 67F5_VK: [H57Y]
    2. 02 67F5_VK: [Q97E]
    3. 03 67F5_VK: [S98P]
    4. 04 67F5_VK: [A99E]
    5. 05 67F5_VK: [N105Y]
    6. 06 67F5_VH: [K5Q]
    7. 07 67F5_VK: [W135Y]
    8. 08 67F5_VK: [W137Y]
    Antibody 67C10
    1. 01 67C10_VK: [F2I]
    2. 02 67C10_VK: [D36E]
    3. 03 67C10_VH: [Q24K]
    4. 04 67C10_VH: [D65E]
    Antibody 68C8
    1. 01 68C8_VL: [G92A]
    2. 02 68C8_VL: [G99E]
    3. 03 68C8_VL: [D110E]
    4. 04 68C8_VH: [D29G]
    5. 05 68C8_VH: [H83D]
    6. 06 68C8_VH: [G107A]
    7. 07 68C8_VH: [T144L]
    8. 08 68C8_VH: [T144M]
    9. 09 68C8_VL: [W109Y]
    10. 10  68C8_VH: [W113Y]
  • TABLE 16
    Exemplary Substitutions
    >49C8.1 VK
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ ID
    NO: 1912)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1915)
    >49G3.3 VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3 VH
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1917)
    >51A8.1 VL
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1918)
    >51A8.1 VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1919)
    >51E5.1 VK
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG
    VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1920)
    >51E5.1 VH
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1921)
    >52A8.1 VK
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1922)
    >52A8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1923)
    >54A1.1 N83D VK
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1924)
    >54A1.1 N83D VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >56E7.3 VK
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 1926)
    >56E7.3 VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >58C2.1 VK
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 1928)
    >58C2.1 VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND
    GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP
    YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 1929)
    >60D7.1 N30T VK
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 1930)
    >60D7.1 N30T VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)
    >63A10.1 C58S VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1 C58S VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.3 N20R C42S VL
    SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQDSERPSGIP
    ERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID
    NO: 1934)
    >63A10.3 N20R C42S VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1935)
    >64B10.1 VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1936)
    >64B10.1 VH
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 1937)
    >66G2 VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ
    ID NO: 1938)
    >66G2 VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 1939)
    >67F5 VK
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 1940)
    >67F5 VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67C10 VK
    DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS
    YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR
    (SEQ ID NO: 1942)
    >67C10 VH
    EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW
    GQGTMVTVSS (SEQ ID NO: 1943)
    >68C8 VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8 VH
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1945)
    >49C8.1 VK.02
    DIQMTQSPSSLSASVGDRVTITCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETGV
    PSRFSGSGSGTDFTLTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ ID
    NO: 1946)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK.03
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTLTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1947)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK.04
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDFATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1948)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK.05
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDVATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1949)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK.06
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGQGTKVDLKR (SEQ
    ID NO: 1950)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK.07
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGGGTKVDLKR (SEQ
    ID NO: 1951)
    >49C8.1 VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1913)
    >49C8.1 VK
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1912)
    >49C8.1 VH.08
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQAPGQGLEWMGWMNPN
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1952)
    >49C8.1 VK
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1912)
    >49C8.1 VH.09
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPQ
    GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1953)
    >49C8.1 VK
    DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ
    ID NO: 1912)
    >49C8.1 VH.10
    TGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW
    GQGTLVTVSS (SEQ ID NO: 1954)
    >49H12 N83D VK.01
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTLTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ
    ID NO: 1955)
    >49H12 N83D VH
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1915)
    >49H12 N83D VK.02
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDFATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1956)
    >49H12 N83D VH
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1915)
    >49H12 N83D VK.03
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDVATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1957)
    >49H12 N83D VH
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1915)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH.04
    QVQLVQSGAEVKKPGASVKVSCKASGYIFTSYDINWVRQATGQGPEWMGWMNPYS
    GSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFWG
    QGTMVTVSS (SEQ ID NO: 1958)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH.05
    QVQLVQSGAEVKKPGASVKVSCMASGYTFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1959)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH.06
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQAPGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1960)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH.07
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGYMNPYS
    GSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFWG
    QGTMVTVSS (SEQ ID NO: 1961)
    >49H12 N83D VK
    DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID
    NO: 1914)
    >49H12 N83D VH.08
    QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY
    SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNYNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1962)
    >49G3.3 VK.01
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTLTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1963)
    >49G3.3 VH
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1917)
    >49G3.3 VK.02
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDFATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1964)
    >49G3.3 VH
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1917)
    >49G3.3 VK.03
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDVATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1965)
    >49G3.3 VH
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1917)
    >49G3.3 VK.04
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGQGTKVEIRR (SEQ ID
    NO: 1966)
    >49G3.3 VH
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1917)
    >49G3.3 VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3 VH.05
    QVTLKESGPVLVKPTQTLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1967)
    >49G3.3 VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3 VH.06
    QVTLKESGPVLVKPTETLTLTCTFSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1968)
    >49G3.3 VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3 VH.07
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLAHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1969)
    >49G3.3_VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3_VH.08
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLGHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1970)
    >49G3.3_VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3_VH.09
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTLVTVSS (SEQ ID NO: 1971)
    >49G3.3_VK
    DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID
    NO: 1916)
    >49G3.3_VH.10
    QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE
    KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW
    GQGTMVTVSS (SEQ ID NO: 1972)
    >51A8.1_VL.01
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1973)
    >51A8.1_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1919)
    >51A8.1_VL.02
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKAEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1974)
    >51A8.1_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1919)
    >51A8.1_VL
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1918)
    >51A8.1_VH.03
    QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1975)
    >51A8.1_VL
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1918)
    >51A8.1_VH.04
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEGS
    NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYYG
    MDVWGQGTTVTVSS (SEQ ID NO: 1976)
    >51A8.1_VL
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1918)
    >51A8.1_VH.05
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1977)
    >51A8.1_VL
    NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV
    PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID
    NO: 1918)
    >51A8.1_VH.06
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAEGDYPYYYYYY
    GMDVWGQGTTVTVSS (SEQ ID NO: 1978)
    >51E5.1_VK.01
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIYAASSLQFG
    VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1979)
    >51E5.1_VH
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1921)
    >51E5.1_VK.02
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNLLIYAASSLQFGV
    PSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1980)
    >51E5.1_VH
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1921)
    >51E5.1_VK.03
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNSLIYAASSLQFGV
    PSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1981)
    >51E5.1_VH
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1921)
    >51E5.1_VK.04
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG
    VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGQGTRVEIKR (SEQ ID
    NO: 1982)
    >51E5.1_VH
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1921)
    >51E5.1_VK
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG
    VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1920)
    >51E5.1_VH.05
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELEHSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1983)
    >51E5.1_VK
    DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG
    VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID
    NO: 1920)
    >51E5.1_VH.06
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDTSGSI
    NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT
    VSS (SEQ ID NO: 1984)
    >52A8.1_VK.01
    DIQMTQSPSSLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1985)
    >52A8.1_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1923)
    >52A8.1_VK.02
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWYQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1986)
    >52A8.1_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1923)
    >52A8.1_VK.03
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWFQQKPGKAPKLLIYAASSLQSGVP
    SRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1987)
    >52A8.1_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1923)
    >52A8.1_VK.04
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGQGTKVEIKR (SEQ ID
    NO: 1988)
    >52A8.1_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1923)
    >52A8.1_VK
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1922)
    >52A8.1_VH.05
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGYINPNS
    AATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1989)
    >52A8.1_VK
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1922)
    >52A8.1_VH.06
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSSLRSDDTAVYYCAREGGTYNWFDPWG
    QGTLVTVSS (SEQ ID NO: 1990)
    >52A8.1_VK
    DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV
    PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID
    NO: 1922)
    >52A8.1_VH.07
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN
    SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNYFDPWG
    QGTLVTVSS (SEQ ID NO: 1991)
    >54A1.1_N83D_VK.01
    DIQMTQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1992)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.02
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQQKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1993)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.03
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1994)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.04
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTLTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1995)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.05
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDFATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1996)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.06
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDVATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1997)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.07
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGGGTKVDIKR (SEQ ID
    NO: 1998)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK.08
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTKVDIKR (SEQ ID
    NO: 1999)
    >54A1.1_N83D_VH
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 1925)
    >54A1.1_N83D_VK
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1924)
    >54A1.1_N83D_VH.09
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQAPGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 2000)
    >54A1.1_N83D_VK
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1924)
    >54A1.1_N83D_VH.10
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGYMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 2001)
    >54A1.1_N83D_VK
    DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV
    PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID
    NO: 1924)
    >54A1.1_N83D_VH.11
    QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH
    SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNYNYGAFDFW
    GQGTMVTVSS (SEQ ID NO: 2002)
    >58C2.1_VK.01
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDEGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 2003)
    >58C2.1_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND
    GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP
    YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 1929)
    >58C2.1_VK
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 1928)
    >58C2.1_VH.02
    QVQLVESGGGVVQPGGSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND
    GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP
    YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2004)
    >58C2.1_VK
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 1928)
    >58C2.1_VH.03
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWNEG
    NNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYPY
    YFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2005)
    >58C2.1_VK
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 1928)
    >58C2.1_VH.04
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND
    GNNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP
    YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2006)
    >58C2.1_VK
    ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ
    ID NO: 1928)
    >58C2.1_VH.05
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND
    GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWQGYP
    YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2007)
    >56E7.3_VK.01
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPKLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 2008)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.02
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTLTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 2009)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.03
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDFATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 2010)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.04
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGGGTTVDIKR (SEQ ID
    NO: 2011)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.05
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGQGTTVDIKR (SEQ ID
    NO: 2012)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.06
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTKVDIKR (SEQ ID
    NO: 2013)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK.07
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTRVDIKR (SEQ ID
    NO: 2014)
    >56E7.3_VH
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 1927)
    >56E7.3_VK
    378DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLE
    TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ
    ID NO: 1926)
    >56E7.3_VH.08
    EVQLVQSGPEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSD
    TRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLVT
    VSS (SEQ ID NO: 2015)
    >56E7.3_VK
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLET
    GVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ
    ID NO: 1926)
    >56E7.3_VH.09
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGESD
    TRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLVT
    VSS (SEQ ID NO: 2016)
    >56E7.3_VK
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 1926)
    >56E7.3_VH.10
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADKSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 2017)
    >56E7.3_VK
    DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG
    VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID
    NO: 1926)
    >56E7.3_VH.11
    EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADTSISTAYLQWSSLKASDTAVYYCARAQLGIFDYWGQGTLV
    TVSS (SEQ ID NO: 2018)
    >60D7.1_N30T_VK.01
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLESDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2019)
    >60D7.1_N30T_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)
    >60D7.1_N30T_VK.02
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDEGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2020)
    >60D7.1_N30T_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)
    >60D7.1_N30T_VK
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2021)
    >60D7.1_N30T_VH.03
    QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2022)
    >60D7.1_N30T_VK
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2021)
    >60D7.1_N30T_VH.04
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYEG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2023)
    >60D7.1_N30T_VK
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2021)
    >60D7.1_N30T_VH.05
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2024)
    >60D7.1_N30T_VK
    DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ
    ID NO: 2021)
    >60D7.1_N30T_VH.06
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG
    SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFYSGYPFF
    YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2025)
    >63A10.1_C58S_VL.01
    SYELTQPLSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2026)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.02
    SYELTQPPSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2027)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.03
    SYELTQPHSVSVALAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2028)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.04
    SYELTQPHSVSVAPAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2029)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.05
    SYELTQPHSVSVATGQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2030)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.06
    SYELTQPHSVSVATAQTARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGIP
    ERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2031)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.07
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQAPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2032)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.08
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQSPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2033)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.09
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQFPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2034)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.10
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSESNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2035)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.11
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNSGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2036)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.12
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIQAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2037)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.13
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWESSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2038)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL.14
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSEGVFGGGTKLTVLG (SEQ ID
    NO: 2039)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.15
    EVQLVESGGGLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2040)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.16
    EVQLVESGGDLVQPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2041)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.17
    EVQLVESGGDLVKPGGSLRLSCAVSGFTFSNAWMSWVRQAPGKGLEWVGRIKSKT
    DGGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVED
    YFDYWGQGTLVTVSS (SEQ ID NO: 2042)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.18
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVSRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2043)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.19
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTE
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2044)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.20
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDDSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2045)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.21
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDNSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2046)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.22
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKAEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2047)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.23
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCATDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2048)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.24
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTRDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2049)
    >63A10.1_C58S_VL
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 1932)
    >63A10.1_C58S_VH.25
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTESSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 2050)
    >63A10.1_C58S_VL.26
    SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI
    PERFSGSNPGNTATLTISRIEAGDEADYYCQVYDSSSDGVFGGGTKLTVLG (SEQ ID
    NO: 2051)
    >63A10.1_C58S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1933)
    >63A10.3_N20R_C42S_VL.01
    SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKPGQSPVLVIYQDSERPSGIP
    ERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID
    NO: 2052)
    >63A10.3_N20R_C42S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1935)
    >63A10.3_N20R_C42S_VL.02
    SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQESERPSGIPE
    RFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID
    NO: 2053)
    >63A10.3_N20R_C42S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1935)
    >63A10.3_N20R_C42S_VL.03
    SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQDSERPSGIP
    ERFSGSNSGNTATLTISGTQAMDEADYYCQAWESTTVVFGGGTKLTVLG (SEQ ID
    NO: 2054)
    >63A10.3_N20R_C42S_VH
    EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD
    GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF
    DYWGQGTLVTVSS (SEQ ID NO: 1935)
    >64B10.1_VL.01
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLAITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2055)
    >64B10.1_VH
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 1937)
    >64B10.1_VL.02
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    20
    IPDRFSGSKSGTSATLGITGLQTEDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2056)
    >64B10.1_VH
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 1937)
    >64B10.1_VL.03
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWESSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2057)
    >64B10.1_VH
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 1937)
    >64B10.1_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1936)
    >64B10.1_VH.04
    QIQLQESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 2058)
    >64B10.1_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1935)
    >64B10.1_VH.05
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTLVTVSS (SEQ ID NO: 2059)
    >64B10.1_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1935)
    >64B10.1_VH.06
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTMVTVSS (SEQ ID NO: 2060)
    >64B10.1_VL.07
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTYDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2061)
    >64B10.1_VH
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 1937)
    >64B10.1_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1935)
    >64B10.1_VH.08
    QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG
    TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTYDYYYGVDVWG
    QGTTVTVSS (SEQ ID NO: 2062)
    >66G2_VK.01
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 2063)
    >66G2_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 1939)
    >66G2_VK.02
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTEFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 2064)
    >66G2_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 1939)
    >66G2_VK.03
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTDFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 2065)
    >66G2_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 1939)
    >66G2_VK.04
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLQGYPLTFGGGTKVEIKR (SEQ ID
    NO: 2066)
    >66G2_VH
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 1939)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.05
    QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 2067)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.06
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYEGS
    NKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGMD
    VWGQGTTVTVSS (SEQ ID NO: 2068)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.07
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYAESVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGMD
    VWGQGTTVTVSS (SEQ ID NO: 2068)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.08
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRFTISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 2070)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.09
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCAKTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 2071)
    >66G2_VK
    DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG
    VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID
    NO: 1938)
    >66G2_VH.10
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG
    SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCARTVTKEDYYYYGM
    DVWGQGTTVTVSS (SEQ ID NO: 2072)
    >67F5_VK.01
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 2073)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK.02
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLESADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 2074)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK.03
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQPADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 2075)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK.04
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSEDFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 2076)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK.05
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYYCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 2077)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID
    NO: 1940)
    >67F5_VH.06
    QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 2078)
    >67F5_VK.07
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIYPWTFGQGTKVEIKR (SEQ ID
    NO: 2079)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67F5_VK.08
    ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP
    ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPYTFGQGTKVEIKR (SEQ ID
    NO: 2080)
    >67F5_VH
    QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN
    YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL
    VTVSS (SEQ ID NO: 1941)
    >67C10_VK.01
    DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLSY
    RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ
    ID NO: 2081)
    >67C10_VH
    EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW
    GQGTMVTVSS (SEQ ID NO: 1943)
    >67C10_VK.02
    DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDEGNTYLDWYLQKPGQSPQLLIYTLS
    YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ
    ID NO: 2082)
    >67C10_VH
    EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW
    GQGTMVTVSS (SEQ ID NO: 1943)
    >67C10_VK
    DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS
    YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ
    ID NO: 1942)
    >67C10_VH.03
    EVQLVQSGAEVKKPGESLKISCKGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS
    DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW
    GQGTMVTVSS (SEQ ID NO: 2083)
    >67C10_VK
    DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS
    YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ
    ID NO: 1942)
    >67C10_VH.04
    EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGESD
    TRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIWG
    QGTMVTVSS (SEQ ID NO: 2084)
    >68C8_VL.01
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLAITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2085)
    >68C8_VH
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1945)
    >68C8_VL.02
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTEDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2086)
    >68C8_VH
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1945)
    >68C8_VL.03
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWESSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2087)
    >68C8_VH
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1945)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.04
    QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 2088)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.05
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLDTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 2089)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.06
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCARYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 2090)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.07
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTLVTVSS (SEQ ID NO: 2091)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.08
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTMVTVSS (SEQ ID NO: 2092)
    >68C8_VL.09
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTYDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 2093)
    >68C8_VH
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 1945)
    >68C8_VL
    QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG
    IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ
    ID NO: 1944)
    >68C8_VH.10
    QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG
    STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDYDYYYGMDVW
    GQGTTVTVSS (SEQ ID NO: 2094)
  • Example 14 Immunogenicity Prediction
  • Immune responses against proteins are enhanced by antigen processing and presentation in the major histocompatability complex (MHC) class II binding site. This interaction is required for T cell help in maturation of antibodies that recognize the protein. Since the binding sites of MHC class II molecules have been characterized, it is possible to predict whether proteins have specific sequences that can bind to a series of common human alleles. Computer algorithms have been created based on literature references and MHC class II crystal structures to determine whether linear 9 amino acid peptide sequences have the potential to break immune tolerance. We used the TEPITOPE™ program called to determine if point mutations of FGF21 are predicted to increase antigen specific T-cells in a majority of humans. Based on the linear protein sequence, none of the mutations examined are expected enhance immunogenicity. Results are shown in Table 17A and Table 17B below.
  • TABLE 17A
    Protein Predicted Immunogenicity
    Met-FGF21 Low
    Met-hFGF21(N106D) Low
    Met-FGF21 (N122D) Low
    hFc(R4).L15.hFGF21(G170E) Low
    hFc(R4).L15.hFGF21(P171A) Low
    hFc(R4).L15.hFGF21(S172L) Low
    p30.hFc.L15.hFGF21(A45K, G170E) Low
    p30.hFc.L15.hFGF21 (L98R, P171G) Low
  • TABLE 17B
    LC HC
    Non- Non-
    LC LC Non- Tolerant HC HC Non- tolerant
    Predicted LC Total Tolerant Tolerant HLA HC Total Tolerant tolerant HLA
    Clone immunogenicity Agretopes Agretopes Agretopes DRB1 Agretopes Agretopes Agretopes DRB1
    68C8 Tier
    1 3 3 0 NA 12 12 0 NA
    63A10 Tier
    1 1 1 0 NA 12 12 0 NA
    51A8 Tier
    2 3 2 1 0101 16 16 0 NA
    0701
    51E5 Tier 2 6 6 0 NA 11 10 1 0401
    0701
    64B10 Tier 2 2 2 0 NA 12 11 1 0801
    49H12 Tier 3 7 5 2 0101 13 13 0 NA
    0701
    0801
    1301
    1501
    54A1 Tier 3 6 4 2 0301 14 14 0 NA
    0801
    1501
    52A8 Tier 3 6 5 1 0701 13 12 1 1301
    60D7 Tier 4 8 7 1 0301 16 14 2 0401
    0401 1501
    1101
    49C8 Tier 4 7 5 2 0801 14 13 1 0401
    1501
    67C10 Tier 4 8 7 1 0301 14 12 2 0101
    0401  701
    1101
  • Each reference cited herein is incorporated by reference in its entirety for all that it teaches and for all purposes.
  • The present disclosure is not to be limited in scope by the specific embodiments described herein, which are intended as illustrations of individual aspects of the disclosure, and functionally equivalent methods and components form aspects of the disclosure. Indeed, various modifications of the disclosure, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Claims (8)

1-23. (canceled)
24. A method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of isolated antigen binding protein that induces FGF21-mediated signaling, wherein the antigen binding protein comprises a light chain CDR1 comprising a sequence of SEQ ID NO: 821, a light chain CDR2 comprising a sequence of SEQ ID NO: 900, a light chain CDR3 comprising a sequence of SEQ ID NO: 954, a heavy chain CDR1 comprising a sequence of SEQ ID NO: 611, a heavy chain CDR2 comprising a sequence of SEQ ID NO: 664, and a heavy chain CDR3 comprising a sequence of SEQ ID NO: 741 to the subject, wherein the condition is treatable by lowering one or more of blood glucose, insulin or serum lipid levels.
25. The method of claim 24, wherein the antigen binding protein comprises one or more of:
(a) a light chain variable domain sequence comprising VL47 of Table 2A (SEQ ID NO. 263);
(b) a heavy chain variable domain sequence comprising VH46 of Table 2B (SEQ ID NO: 361); or
(c) a combination comprising a light chain variable domain of (a) and a heavy chain variable domain of (b).
26. The method of claim 25, wherein the light chain variable domain and the heavy chain variable domain comprise VL47 and VH46.
27. The method of claim 26, wherein the antigen binding protein comprises:
(a) a kappa light chain constant sequence of SEQ ID NO: 12
(b) a lambda light chain constant sequence of SEQ ID NO: 13
(c) a heavy chain constant sequence of SEQ ID NO: 11; or
(d) (i) the kappa light chain constant sequence of SEQ ID NO: 12 or the lambda light chain constant sequence of SEQ ID NO: 13, and
(ii) the heavy chain constant sequence of SEQ ID NO: 11.
28. The method of claim 24, wherein the antigen binding protein is a human antibody, a humanized antibody, chimeric antibody, a monoclonal antibody, a polyclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an F(fab′)2 fragment, an IgD antibody, an IgE antibody, an IgM antibody, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, an IgG4 antibody, or an IgG4 antibody having at least one mutation in the hinge region.
29. The method of claim 24, wherein the condition is diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.
30. The method of claim 29, wherein the condition is type 2 diabetes.
US15/400,800 2011-06-06 2017-01-06 Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor Abandoned US20170183412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/400,800 US20170183412A1 (en) 2011-06-06 2017-01-06 Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor
US16/282,834 US11248052B2 (en) 2011-06-06 2019-02-22 Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161493933P 2011-06-06 2011-06-06
US201161501133P 2011-06-24 2011-06-24
US201161537998P 2011-09-22 2011-09-22
US13/487,061 US9574002B2 (en) 2011-06-06 2012-06-01 Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US15/400,800 US20170183412A1 (en) 2011-06-06 2017-01-06 Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/487,061 Division US9574002B2 (en) 2011-06-06 2012-06-01 Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,834 Continuation US11248052B2 (en) 2011-06-06 2019-02-22 Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Publications (1)

Publication Number Publication Date
US20170183412A1 true US20170183412A1 (en) 2017-06-29

Family

ID=46298687

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/487,061 Active 2032-07-21 US9574002B2 (en) 2011-06-06 2012-06-01 Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US15/400,800 Abandoned US20170183412A1 (en) 2011-06-06 2017-01-06 Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor
US16/282,834 Active 2032-07-21 US11248052B2 (en) 2011-06-06 2019-02-22 Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/487,061 Active 2032-07-21 US9574002B2 (en) 2011-06-06 2012-06-01 Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/282,834 Active 2032-07-21 US11248052B2 (en) 2011-06-06 2019-02-22 Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor

Country Status (9)

Country Link
US (3) US9574002B2 (en)
EP (2) EP3447074A3 (en)
JP (1) JP2014518640A (en)
AR (1) AR086693A1 (en)
CA (1) CA2837473A1 (en)
MX (1) MX2013014244A (en)
TW (1) TW201315741A (en)
UY (1) UY34118A (en)
WO (1) WO2012170438A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068752A1 (en) * 2018-09-27 2020-04-02 Celgene Corporation SIRPα BINDING PROTEINS AND METHODS OF USE THEREOF
WO2022261079A3 (en) * 2021-06-08 2023-01-19 Merck Patent Gmbh Proteins that bind cd80 and/or cd86, and ox40l
US11591390B2 (en) 2018-09-27 2023-02-28 Celgene Corporation SIRP-α binding proteins and methods of use thereof

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
AU2012279237B2 (en) 2011-07-01 2016-09-29 Ngm Biopharmaceuticals, Inc. Compositions, uses and methods for treatment of metabolic disorders and diseases
ES2828505T3 (en) 2012-11-28 2021-05-26 Ngm Biopharmaceuticals Inc Compositions and methods for the treatment of metabolic disorders and diseases
US9290557B2 (en) 2012-11-28 2016-03-22 Ngm Biopharmaceuticals, Inc. Compositions comprising variants and fusions of FGF19 polypeptides
US9273107B2 (en) 2012-12-27 2016-03-01 Ngm Biopharmaceuticals, Inc. Uses and methods for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
RU2675514C2 (en) 2012-12-27 2018-12-19 ЭнДжиЭм БАЙОФАРМАСЬЮТИКАЛЗ, ИНК. Methods for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
EP3062881B1 (en) 2013-10-28 2019-10-02 NGM Biopharmaceuticals, Inc. Cancer models and associated methods
TWI728373B (en) * 2013-12-23 2021-05-21 美商建南德克公司 Antibodies and methods of use
DK3097122T3 (en) 2014-01-24 2020-08-10 Ngm Biopharmaceuticals Inc ANTIBODIES BINDING BETA-KLOTHO DOMAIN 2 AND METHODS OF USING IT
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
MX2016012219A (en) 2014-03-25 2016-12-16 Regeneron Pharma Fgf21 receptor agonists and uses thereof.
US10398758B2 (en) 2014-05-28 2019-09-03 Ngm Biopharmaceuticals, Inc. Compositions comprising variants of FGF19 polypeptides and uses thereof for the treatment of hyperglycemic conditions
PE20170441A1 (en) 2014-06-06 2017-04-26 Bristol Myers Squibb Co ANTIBODIES AGAINST THE GLUCOCORTICOID-INDUCED TUMOR NECROSIS FACTOR RECEPTOR (GITR) AND ITS USES
AU2015277438B2 (en) 2014-06-16 2020-02-27 Ngm Biopharmaceuticals, Inc. Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
CA2964782A1 (en) 2014-10-23 2016-04-28 Ngm Biopharmaceuticals, Inc. Pharmaceutical compositions comprising peptide variants and methods of use thereof
WO2016073855A1 (en) 2014-11-07 2016-05-12 Ngm Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders and prediction of clinical sensitivity to treatment of bile acid-related disorders
KR102129107B1 (en) 2015-03-06 2020-07-02 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 Anti-LILRB antibodies and their use for the detection and treatment of cancer
ES2810856T3 (en) 2015-06-03 2021-03-09 Bristol Myers Squibb Co ANTI-GITR antibodies for cancer diagnosis
WO2017019957A2 (en) 2015-07-29 2017-02-02 Ngm Biopharmaceuticals, Inc. Binding proteins and methods of use thereof
CN108350072B (en) * 2015-08-03 2022-05-24 诺华股份有限公司 Methods of treating FGF 21-associated disorders
AR106133A1 (en) 2015-09-24 2017-12-13 Genentech Inc METHODS FOR THE TREATMENT OF EPILEPSY
KR20170049319A (en) 2015-10-28 2017-05-10 주식회사유한양행 Long-acting fgf21 fusion proteins and pharmaceutical composition comprising the same
KR20170049320A (en) 2015-10-28 2017-05-10 주식회사유한양행 Dual function proteins and pharmaceutical composition comprising the same
EP3377090B1 (en) 2015-11-09 2021-04-07 NGM Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders
KR20180082563A (en) 2015-11-19 2018-07-18 브리스톨-마이어스 스큅 컴퍼니 Antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) and uses thereof
JP7328479B2 (en) * 2016-03-23 2023-08-17 ソウル大学校産学協力団 Antibody that binds to outer membrane glycoprotein of severe fever with thrombocytopenic syndrome virus and use thereof
CN106279437B (en) 2016-08-19 2017-10-31 安源医药科技(上海)有限公司 Hyperglycosylated human coagulation factor VIII fusion proteins and preparation method thereof and purposes
CN107759697B (en) 2016-08-19 2023-03-24 安源医药科技(上海)有限公司 Method for producing fusion protein
US11123438B2 (en) 2016-08-19 2021-09-21 Ampsource Biopharma Shanghai Inc. Linker peptide for constructing fusion protein
EP3503882A4 (en) 2016-08-26 2020-07-29 NGM Biopharmaceuticals, Inc. Methods of treating fibroblast growth factor 19-mediated cancers and tumors
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
AU2017358289A1 (en) 2016-11-10 2019-06-20 Yuhan Corporation Pharmaceutical composition for preventing or treating hepatitis, hepatic fibrosis, and hepatic cirrhosis comprising fusion proteins
WO2018112334A1 (en) * 2016-12-16 2018-06-21 Bluefin Biomedicine, Inc. Anti-cub domain-containing protein 1 (cdcp1) antibodies, antibody drug conjugates, and methods of use thereof
AU2018218557B9 (en) * 2017-02-08 2021-06-24 Novartis Ag FGF21 mimetic antibodies and uses thereof
EA201992516A1 (en) 2017-04-21 2020-04-09 Юхан Корпорейшн METHOD FOR PRODUCING BIFUNCTIONAL PROTEINS AND THEIR DERIVATIVES
NO344051B1 (en) * 2017-05-04 2019-08-26 Patogen As Novel virus in Fish and Method for detection
CN110869392A (en) 2017-05-16 2020-03-06 百时美施贵宝公司 Treatment of cancer with anti-GITR agonistic antibodies
SG11202003114UA (en) * 2017-10-04 2020-05-28 Amgen Inc Transthyretin immunoglobulin fusions
KR102637908B1 (en) * 2018-12-28 2024-02-20 씨제이제일제당 (주) Genetic Marker for Disease Related to Helicobacter pylori
AU2021320658A1 (en) * 2020-08-04 2023-03-02 Exelixis, Inc. CD47 binding agents and uses thereof
KR20220021207A (en) 2020-08-13 2022-02-22 주식회사 나이벡 BMP-9 or BMP-10 variants with improved therapeutic effect by reducing the side effects of ossicle formation and a pharmaceutical composition using the same

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180193A (en) 1963-02-25 1965-04-27 Benedict David Machines for cutting lengths of strip material
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
DE3374837D1 (en) 1982-02-17 1988-01-21 Ciba Geigy Ag Lipids in the aqueous phase
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
US4615885A (en) 1983-11-01 1986-10-07 Terumo Kabushiki Kaisha Pharmaceutical composition containing urokinase
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US4751180A (en) 1985-03-28 1988-06-14 Chiron Corporation Expression using fused genes providing for protein product
US4935233A (en) 1985-12-02 1990-06-19 G. D. Searle And Company Covalently linked polypeptide cell modulators
EP0272253A4 (en) 1986-03-07 1990-02-05 Massachusetts Inst Technology Method for enhancing glycoprotein stability.
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
US5011912A (en) 1986-12-19 1991-04-30 Immunex Corporation Hybridoma and monoclonal antibody for use in an immunoaffinity purification system
US4965195A (en) 1987-10-26 1990-10-23 Immunex Corp. Interleukin-7
US4968607A (en) 1987-11-25 1990-11-06 Immunex Corporation Interleukin-1 receptors
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
WO1990005183A1 (en) 1988-10-31 1990-05-17 Immunex Corporation Interleukin-4 receptors
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5683888A (en) 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5292658A (en) 1989-12-29 1994-03-08 University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center Cloning and expressions of Renilla luciferase
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
JP3068180B2 (en) 1990-01-12 2000-07-24 アブジェニックス インコーポレイテッド Generation of heterologous antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
WO1991018982A1 (en) 1990-06-05 1991-12-12 Immunex Corporation Type ii interleukin-1 receptors
GB9014932D0 (en) 1990-07-05 1990-08-22 Celltech Ltd Recombinant dna product and method
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
ATE158021T1 (en) 1990-08-29 1997-09-15 Genpharm Int PRODUCTION AND USE OF NON-HUMAN TRANSGENT ANIMALS FOR THE PRODUCTION OF HETEROLOGUE ANTIBODIES
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
DK0575319T3 (en) 1991-03-11 2000-07-10 Univ Georgia Res Found Cloning and expression of Renilla luciferase
US6565841B1 (en) 1991-03-15 2003-05-20 Amgen, Inc. Pulmonary administration of granulocyte colony stimulating factor
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
CA2112801A1 (en) 1991-07-05 1993-01-21 Charles M. Harper Reduced fat meat product and process of manufacture
US5262522A (en) 1991-11-22 1993-11-16 Immunex Corporation Receptor for oncostatin M and leukemia inhibitory factor
US5159012A (en) 1991-11-29 1992-10-27 Textile Rubber & Chemical Co., Inc. Process for the manufacture of polyurethane elastomers
JPH05244982A (en) 1991-12-06 1993-09-24 Sumitomo Chem Co Ltd Humanized b-b10
ES2301158T3 (en) 1992-07-24 2008-06-16 Amgen Fremont Inc. XENOGENIC ANTIBODY PRODUCTION.
PT672141E (en) 1992-10-23 2003-09-30 Immunex Corp METHODS OF PREPARATION OF SOLUVEAL OLIGOMERIC PROTEINS
US5457035A (en) 1993-07-23 1995-10-10 Immunex Corporation Cytokine which is a ligand for OX40
WO1995007463A1 (en) 1993-09-10 1995-03-16 The Trustees Of Columbia University In The City Of New York Uses of green fluorescent protein
WO1995021191A1 (en) 1994-02-04 1995-08-10 William Ward Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein
US5777079A (en) 1994-11-10 1998-07-07 The Regents Of The University Of California Modified green fluorescent proteins
CA2761116A1 (en) 1995-04-27 1996-10-31 Amgen Fremont Inc. Human antibodies derived from immunized xenomice
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997023091A1 (en) 1995-12-20 1997-06-26 Micropolis Corporation Vcr-type controls for video server system
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US5804387A (en) 1996-02-01 1998-09-08 The Board Of Trustees Of The Leland Stanford Junior University FACS-optimized mutants of the green fluorescent protein (GFP)
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5925558A (en) 1996-07-16 1999-07-20 The Regents Of The University Of California Assays for protein kinases using fluorescent protein substrates
US5976796A (en) 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
KR20080059467A (en) 1996-12-03 2008-06-27 아브게닉스, 인크. Transgenic mammals having human ig loci including plural vh and vk regions and antibodies produced therefrom
IL129767A0 (en) 1996-12-12 2000-02-29 Prolume Ltd Apparatus and method for detecting and identifying infectious agents
CA2196496A1 (en) 1997-01-31 1998-07-31 Stephen William Watson Michnick Protein fragment complementation assay for the detection of protein-protein interactions
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
US6232107B1 (en) 1998-03-27 2001-05-15 Bruce J. Bryan Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items
CA2341029A1 (en) 1998-08-17 2000-02-24 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
GB9928787D0 (en) 1999-12-03 2000-02-02 Medical Res Council Direct screening method
GB0025144D0 (en) 2000-10-13 2000-11-29 Medical Res Council Concatenated nucleic acid sequences
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
US20040202995A1 (en) 2003-04-09 2004-10-14 Domantis Nucleic acids, proteins, and screening methods
AU2004312376A1 (en) 2003-12-19 2005-07-21 Five Prime Therapeutics, Inc. Fibroblast growth factor receptors 1, 2, 3, and 4 as targets for therapeutic intervention
US7919297B2 (en) 2006-02-21 2011-04-05 Cornell Research Foundation, Inc. Mutants of Aspergillus niger PhyA phytase and Aspergillus fumigatus phytase
WO2008123625A1 (en) * 2007-04-06 2008-10-16 National Institute Of Advanced Industrial Science And Technology Method for activating receptor by cofactor and method for utilizing ligand activity
US7537903B2 (en) * 2007-04-23 2009-05-26 Board Of Regents, The University Of Texas System FGF21 upregulates expression of GLUT-1 in a βklotho-dependent manner
WO2010139741A1 (en) 2009-06-04 2010-12-09 Novartis Ag Fgf-21 for treating cancers
US8372952B2 (en) * 2009-12-02 2013-02-12 Amgen Inc. Binding proteins that bind to human FGFR1C, human β-klotho and both human FGFR1C and human β-klotho
UA109888C2 (en) 2009-12-07 2015-10-26 ANTIBODY OR ANTIBODILITY ANTIBODY OR ITS BINDING TO THE β-CLOTE, FGF RECEPTORS AND THEIR COMPLEXES
EP2558497A2 (en) 2010-04-15 2013-02-20 Amgen Inc. Human fgf receptor and beta-klotho binding proteins
WO2012059873A2 (en) 2010-11-05 2012-05-10 Covx Technologies Ireland, Ltd. Anti-diabetic compounds
PE20140995A1 (en) 2011-05-16 2014-08-23 Genentech Inc FGFR1 AGONISTS AND THEIR METHODS OF USE
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068752A1 (en) * 2018-09-27 2020-04-02 Celgene Corporation SIRPα BINDING PROTEINS AND METHODS OF USE THEREOF
CN113166245A (en) * 2018-09-27 2021-07-23 细胞基因公司 SIRP alpha binding proteins and methods of use thereof
US11591390B2 (en) 2018-09-27 2023-02-28 Celgene Corporation SIRP-α binding proteins and methods of use thereof
WO2022261079A3 (en) * 2021-06-08 2023-01-19 Merck Patent Gmbh Proteins that bind cd80 and/or cd86, and ox40l

Also Published As

Publication number Publication date
UY34118A (en) 2013-01-03
US20190248906A1 (en) 2019-08-15
WO2012170438A3 (en) 2013-04-11
US9574002B2 (en) 2017-02-21
JP2014518640A (en) 2014-08-07
EP3447074A2 (en) 2019-02-27
TW201315741A (en) 2013-04-16
MX2013014244A (en) 2014-02-27
EP2718323B1 (en) 2018-07-25
CA2837473A1 (en) 2012-12-13
AR086693A1 (en) 2014-01-15
US11248052B2 (en) 2022-02-15
EP3447074A3 (en) 2019-08-28
EP2718323A2 (en) 2014-04-16
WO2012170438A2 (en) 2012-12-13
US20120328616A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US11248052B2 (en) Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
US20200216546A1 (en) Human Antigen Binding Proteins That Bind Beta-Klotho, FGF Receptors and Complexes Thereof
US9517264B2 (en) Human FGF receptor and β-Klotho binding proteins
AU2017200115B2 (en) Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2012268396A1 (en) Human antigen binding proteins that bind to a complex comprising beta-Klotho and an FGF receptor

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMGEN INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, YANG;STEVENS, JENNITTE;KING, CHADWICK TERENCE;AND OTHERS;SIGNING DATES FROM 20120822 TO 20120824;REEL/FRAME:041186/0318

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION