US20170176158A1 - Container for containing explosive device and blast containing panel therefor - Google Patents

Container for containing explosive device and blast containing panel therefor Download PDF

Info

Publication number
US20170176158A1
US20170176158A1 US14/974,718 US201514974718A US2017176158A1 US 20170176158 A1 US20170176158 A1 US 20170176158A1 US 201514974718 A US201514974718 A US 201514974718A US 2017176158 A1 US2017176158 A1 US 2017176158A1
Authority
US
United States
Prior art keywords
layer
blast
mitigating
cell structure
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/974,718
Inventor
Salvatore Cirillo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/974,718 priority Critical patent/US20170176158A1/en
Priority to CA2952184A priority patent/CA2952184A1/en
Publication of US20170176158A1 publication Critical patent/US20170176158A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B39/00Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
    • F42B39/30Containers for detonators or fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B39/00Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
    • F42B39/24Shock-absorbing arrangements in packages, e.g. for shock waves

Definitions

  • the present specification relates to explosion containment, and more particularly to a container allowing safe transport of at least one small explosive device and to blast containing panels for such containers.
  • Small explosive devices such as detonators, detonating cord, airbag inflators and fuses are widely used and often need to be carried in the presence of others, including the general public.
  • the hot blast combustion products are typically capable of igniting combustible materials nearby and inflicting burns on exposed humans. Humans may be killed by intense blast pressure alone, as this causes lung damage above threshold levels. Below threshold conditions for fatal injury, blast pressure may cause damage to ears and lungs, and sudden accelerations that lead to spinal injuries. Moreover, fragments from exploding cased explosive devices may lead to fatal internal damage.
  • Large obstructions such as buildings surrounding a street in which a blast occurs prolong pressure durations and lead to greater damaging capability.
  • Complete or near-total confinement maximizes blast effect duration, as the blast pressure is prevented from being dissipated.
  • a container for containing an explosive device comprising: an outer shell including a body and a cover relatively movable between an open position and a closed position; a plurality of blast containing panels including at least a first group of blast containing panels disposed against inner surfaces of the outer shell such as to substantially define an enclosure when the body and the cover are in the closed position, each of the blast containing panels including a fragment-retaining layer and at least one mitigating layer facing the enclosure, each mitigating layer including: a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open, a blast effect mitigating material received within the cells of the cell structure, a fabric layer disposed against and sealing the open end of the plurality of cells, a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and a frame connected to the cell structure,
  • a blast containing panel for containing an explosion of an explosive device, the blast containing panel comprising: a fragment-retaining layer; at least one mitigating layer including: a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open, a blast effect mitigating material received within the cells of the cell structure, a fabric layer disposed against and sealing the open end of the plurality of cells, a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and a frame connected to the cell structure, the frame forming a perimeter surrounding sides of the cell structure; wherein the mesh layer, cell structure and fabric layer permit transmission of a blast wave caused by an explosion of the explosive device into the blast effect mitigating material; and wherein the mitigating layer is configured to reduce a force of the blast wave, and the fragment-retaining layer is configured to resist a remainder
  • FIG. 1 is a schematic tridimensional view of a transport case for explosives, in accordance with a particular embodiment
  • FIG. 2 is a side cross-sectional view of part of a blast containing panel of the case of FIG. 1 , in accordance with a particular embodiment
  • FIG. 3 is a top cross-sectional view of part of the blast containing panels of FIG. 1 , which the layers progressively peeled for improved clarity.
  • the case 10 comprises an outer shell 12 , with inner surfaces of the outer shell being overlaid with blast containing panels 15 .
  • the outer shell 12 preferably has a rectangular cross-section, and includes a body 18 and a complementary cover 20 also preferably of rectangular cross-section.
  • the outer shell 12 protects the internal components and materials being transported from weather and incidental damage, and as such is made of a shock resistant plastic, for example a polypropylene copolymer such as CoroplastTM.
  • a shock resistant plastic for example a polypropylene copolymer such as CoroplastTM.
  • Alternate materials for the outer shell include wood or any appropriate type of metal such as for example steel or aluminum.
  • the cover 20 is pivotally retained on the body 18 through hinges 22 , which are suitable sized and configured to resist a blast from components received inside the case 10 .
  • the body 18 and cover 20 also include one or more lock(s) 24 retaining the cover 20 in the closed position when engaged. It is understood that the hinges 22 and/or locks 24 may be configured differently, for example provided on different sides of the body 12 than that shown.
  • the case 10 is designed to handle small explosive devices (e.g. less than 1 kg total of TNT-equivalent explosive), and as such the hinges 22 and lock(s) 24 allow some gas to escape between the closed cover 20 and the body 18 , with the gas leakage and attendant shock waves mitigated to the extent required to prevent permanent injury to nearby people or prevent sympathetic detonation or burning of nearby energetic materials.
  • the case 10 is used to contain explosive devices and other devices that may contain hazardous biological, radioactive, or chemical agents that could be dispersed under pressure, and as such the seal between the cover 20 and body 18 is adequate to prevent release of the hazardous material.
  • the degree to which the seal is impervious to the transmission of gas can thus be varied through various closure modifications readily available to one in the art.
  • a handle 26 which may be fixed or extendable, is attached to the body 18 to facilitate transport of the case 10 either by hand or by a robotic device. It is understood that the handle 26 shown herein is exemplary only, and that the handle may be provided in any other appropriate location of the body 18 , including but not limited to on another one of its sides. It is also considered to provide the case 10 with more than one handle 26 , or alternatively with no handle at all.
  • outer shell 12 is provided as an example only and that the configuration of the outer shell 12 may vary.
  • the blast containing panels 15 are located within the outer shell 12 .
  • the blast containing panels 15 include a bottom panel 15 b and four (4) side panels 15 s located in the body 18 , and a top panel 15 t located in the cover 20 , each in contact with the adjacent inner surface of the outer shell 12 .
  • the bottom and side panels 15 b , 15 s preferably abut one another and the panels 15 b , 15 s , 15 t together define an enclosure within the outer shell 12 .
  • the blast containing panels 15 may also include divider panels 15 d extending across the enclosure between the opposed side panels 15 s , and abutting the bottom panel 15 b .
  • the divider panels 15 d are disposed in a cross-shaped configuration to separate the enclosure into four compartments insulated from one another by the divider panels 15 d .
  • the divider panels 15 d may be permanently attached to the adjacent bottom and side panels 15 b , 15 s , or be removable. Additional removable divider panels 15 d may be provided (one of which is shown), for snug insertion into one of the compartments to be able to customize the number and size of separate enclosures defined in the case.
  • the divider panels 15 d allow to resist or inhibit the occurrence of sympathetic detonation when more sensitive explosive devices are carried.
  • prevention of sympathetic detonation is not essential.
  • release of blast generated gas from the case 10 is so slight that no permanent injury is inflicted on humans in close proximity to the case 10 .
  • Fragments from explosive device components, and components of the case 10 are preferably completely confined. Extremely rapid cooling of hot gaseous products is also preferable such as to prevent possible ignition of case materials and other items kept within the case 10 .
  • the divider panels 15 d may be omitted such that the case 10 defines a single enclosure.
  • Each blast containing panel 15 includes a fragment-retaining layer 14 and at least a mitigating layer 16 facing the enclosure where the explosive will be received.
  • the bottom, side, and top panels 15 b , 15 s , 15 t include a single mitigating layer 16 , with the fragment-retaining layer 14 disposed between the adjacent wall of the outer shell 12 and the mitigating layer 16
  • the divider panels 15 d include two mitigating layers 16 , with the fragment-retaining layer 14 extending therebetween.
  • the inner surfaces of the mitigating layer 16 define the enclosure for the explosive device which will be contained in the case 10 .
  • the mitigating layer 16 is the first layer reached by the effects of the blast and accordingly includes a blast effect mitigating material which effectively reduces the strength of the blast of an explosive device in close proximity, as will be detailed further below.
  • the mitigating layer 16 includes a cell structure 24 , which in a particular embodiment is made of cardboard.
  • the cell structure 24 includes a planar outer wall 26 and a plurality of interconnected cell walls 28 extending from the outer wall 26 to form a plurality of cells 30 having one end closed by the outer wall 26 and the opposed end open.
  • the blast effect mitigating material 32 is received within the cells 30 of the cell structure 24 .
  • the blast effect mitigating material 32 is a combination of perlite beads and borax (sodium borate, sodium tetraborate, or disodium tetraborate).
  • the open end of the cells 30 is sealed by a fabric layer 34 which is disposed against the open ends.
  • the fabric layer 34 includes a nonwoven textile made with synthetic fibers, made for example of polyester; an example of a suitable material is Pellon® PLF36 Fusible Interfacing. Other materials may be used, included but not limited to materials having similar properties as this material.
  • the fabric layer 34 provides some support to the cell structure 24 .
  • a mesh layer 36 is disposed on the fabric layer 34 , and forms the inner surface of the mitigating layer 16 .
  • the mesh layer 36 is made of fiberglass.
  • Other materials may be used, including but not limited to mesh materials suitable for use as window screening, such as aluminum mesh.
  • the mesh layer 36 , cell structure 24 and fabric layer 34 contain the blast effect mitigating material 32 within the cells 30 , but permits transmission of the impinging blast wave into the blast effect mitigating material 30 , for example by provide negligible resistance to or delay in rupture and/or allowing the blast wave to simply pass therethrough.
  • the cells 30 of the cell structure 24 may be open along the sides of the mitigating layer 16 .
  • a frame 38 forms a perimeter surrounding the cell structure 24 to close the side of the cells 30 and provided increased resistance to the mitigating layer 16 .
  • the frame 38 has an L-shaped cross-section, including an outer wall 40 extending outwardly of the outer wall 26 of the cell structure 24 , and a side wall 42 surrounding the cell structure 24 .
  • the frame 38 is made of a suitable polymer, such as for example polyvinyl chloride (PVC). Other suitable materials may be alternately be used.
  • the fabric layer 34 is connected to the frame 38 around its perimeter, and the mesh layer 36 is connected to the fabric layer 34 .
  • Such connections may be done through any suitable type of adhesive or other fastening method, including, but not limited to, contact adhesive.
  • the side wall 42 of the frame 38 is surrounded by adhesive tape 44 around its perimeter;
  • the adhesive tape 44 may be, for example, a cloth-backed or scrim-backed pressure-sensitive tape such as duct tape.
  • the tape 44 or a different type of tape, may also surround the side edges of the fragment-retaining layer 14 as shown.
  • the fragment-retaining layer 14 is configured to resist to a remainder of the explosive force passing through the mitigating layer 16 .
  • the fragment-retaining layer 14 is made of a fragment-retaining material which minimizes shock wave transmission as well as retains fragments propagated by an explosion of a size corresponding to the explosive device(s) to be transported in the case 10 .
  • the fragment-retaining layer 14 is made of polycarbonate, such as Lexan®, as this material has been proven to deform plastically to a great extent under explosive loading without rupture. Polycarbonate also features low acoustic impedance, which is desirable for shock wave attenuation.
  • the fragment-retaining layer 14 can be made of a metal of similar properties and/or can comprise ballistic armor in order to protect the encased explosive devices from impinging projectiles or ammunition fragments.
  • the fragment-retaining layer 14 is thus connected to the outer surface of the outer wall 26 of the cell structure 24 , as well as to the outer surface of the bottom wall 40 of the frame 38 ; the outer wall 40 of the frame 38 extends between the outer wall 26 of the cell structure 24 and the fragment-retaining layer 14 around the perimeter of the mitigating layer 16 .
  • the fragment-retaining layer 14 may be connected to the cell structure 24 through any suitable type of adhesive, including, but not limited to, double-sided adhesive tape.
  • the elements of the second mitigating layer 16 on the other side of the fragment-retaining layer 14 have a mirror configuration with respect to the elements of the first mitigating layer 16 .
  • the body 18 includes an inspection port 54 , formed by aligned holes through the outer shell 12 and adjacent blast containing panel 15 .
  • the port 54 facilitates examination or characterization by various means so that inspection devices such as optical and other electromagnetic imaging devices, chemical sensors, and radiation detection probes may be installed in appropriate locations.
  • the port 54 may be provided with an appropriate nozzle to inject various kinds of agents, such as aqueous foams for blast effect mitigation or neutralizing of chemical or biological agents, or cleaning material for scrubbing radioactive dusts.
  • the port 54 when not in use, is closed by an appropriate cover (not shown). Alternately, the port 54 can be omitted.
  • the body 18 also includes at least one vent 52 , which is defined by an aperture cut in one wall of the outer shell 12 , in order to release hot blast gases.
  • the vent 52 is located near explosive devices within the case 10 and is vented in a direction away from a person carrying the case 10 .
  • the vent 52 is covered by the portion of the wall of the outer shell 12 removed to form the aperture (not shown), re-attached over the aperture in such a manner that the vent cover is easily dislodged under internal pressure.
  • vent 52 could be located in other locations, for example in corners of the outer shell 12 .
  • alternate covers for the vent 52 include an elastic or flexible bag that expands under pressurization caused by an internal explosion.
  • This expandable member may be substantially comprised of a fabric or plurality of fabric layers capable of catching debris and fragments from the detonation of a stored explosive device.
  • the expandable member may be substantially comprised of a mesh that allows gradual release of internal gas, thereby reducing the loads imparted by the blast to the hinges 22 and lock(s) 24 .
  • Any combination of such components for vent covers can be made by an individual skilled in the design of blast protection devices, such as bellows-type components combined with mesh and elastic “balloon” components.
  • mountings or other provisions for cylindrical vessels, or other shapes of explosive devices may be provided in the compartments. Straps or other similar components can be provided for additional restraint to the explosive devices within the compartments.
  • wheels are attached to the outer shell 12 to facilitate movement of the case 10 by hand or robot.
  • the wheels may be integral to the outer shell 12 , or be detachable to enable the wheel assembly to be removed when not needed.
  • skids may be provided that also serve to facilitate movement.
  • explosive devices or other items may be placed in protective cartons or wraps within the compartments to provide additional levels of protection.
  • Such wraps and cartons may be substantially comprised of high-strength materials that resist bullets and ammunition fragments from penetrating.
  • the case 10 (as well as detachable wheels, if provided) may be provided with a bag enclosure that seals the case 10 when it is shut, to prevent release of dangerous materials to the external environment, for instance if the device within contains radioactive materials or potentially lethal pathogens.
  • the bag enclosure may be part of the detachable wheeled or skid device, attached to the outer shell 12 , or incorporated with the internal compartments or linings of the case 10 .
  • This bag enclosure may be coated or otherwise substantially comprised of materials that serve to neutralize the anticipated hazard.
  • the case 10 can also include shielding against the transmission of electromagnetic radiation or interference (EMI), including the effects of electromagnetic pulse (generally designated as EMP) when the case 10 is closed.
  • EMI electromagnetic radiation or interference
  • EMP electromagnetic pulse
  • the case 10 acting as a protection system, thus protects explosive devices kept therewithin from unintentional detonation or neutralization from radio waves or other electromagnetic events present outside the closed case 10 .
  • Provisions for electrical grounding may also be placed in suitable locations of the case 10 in order to prevent the buildup of static electricity.
  • Part or all of the outer shell 12 may utilize materials that facilitate external examination of the case contents, such as those permitting transmission therethrough of a desired portion of the electromagnetic spectrum.
  • the fragment-retaining layer 14 and the mitigating layer 16 may be made of materials that are correspondingly similar.
  • the outer surface of the outer shell 12 and the surfaces of the blast containing panels 15 exposed within the enclosure may be coated with fire-resistant materials in order to avoid ignition upon detonation of an encased explosive device. This is preferable when the case 10 is destined to contain energetic materials that may be capable of sustained burning with or without access to ambient air.
  • the case 10 of the present invention thus minimizes the release of potentially hazardous phenomena under pressure above ambient to the environment external to it.
  • shock waves and pressurized gas leakage are mitigated to the degree desired by those who may be come into close proximity to the case 10 when explosive devices are contained therewithin.
  • the mitigating layer 16 preferably provides substantial cushioning in order to protect explosive devices placed within the case 10 from shock and impact.
  • the case 10 may be dropped, fall from a moving vehicle, stepped on, crushed by stacking with heavy objects, or struck by bullets with a reduced risk of explosion of the contained explosive devices or, in the case of an explosion, with limited risk of injury to people nearby.
  • the case 10 is preferably sized such as to be relatively light.
  • the case 10 can safely contain a variety of small explosive devices, including, but not limited to, detonators, detonating cords, airbag inflators, fuses, small hand grenades, small anti-personnel mines, various recovered explosive devices, etc.
  • small explosive devices including, but not limited to, detonators, detonating cords, airbag inflators, fuses, small hand grenades, small anti-personnel mines, various recovered explosive devices, etc.
  • the case 10 has been described as a portable case, it is also considered to integrate the case in a rolling cart, in a vehicle, in a building, etc. Where the case 10 is integrated in an enclosure of an existing structure, the outer shell 12 can be omitted.
  • the case integrated in a rolling cart could be used, for example, in an airplane, where the rolling cart would be of a serving-cart type, to be rolled in proximity of a potentially dangerous device found, so that the device could be place within the case 10 with minimal handling.
  • the case integrated in a vehicle could be used, for example, in the cabin of a law enforcement vehicle, to transport small explosive devices destined to explode suspect devices, or to transport the suspect devices themselves away from the public.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

A container for containing an explosive device, including an outer shell and blast containing panels disposed against inner surfaces of the outer shell to substantially define an enclosure. Each blast containing panel includes a fragment-retaining layer and at least one mitigating layer facing the enclosure. Each mitigating layer includes a cell structure having an outer wall connected to the fragment-retaining layer and a cell walls extending from the outer wall and forming cells having one end closed by the outer wall and an opposed end open, a blast effect mitigating material received within the cells, a fabric layer disposed against and sealing the open end of the cells, a mesh layer overlaying the fabric layer, and a frame forming a perimeter surrounding sides of the cell structure. The mitigating layer reduces a blast wave force and the fragment-retaining layer resists a remainder of the blast wave force and retains fragments.

Description

    TECHNICAL FIELD
  • The present specification relates to explosion containment, and more particularly to a container allowing safe transport of at least one small explosive device and to blast containing panels for such containers.
  • BACKGROUND OF THE ART
  • Small explosive devices such as detonators, detonating cord, airbag inflators and fuses are widely used and often need to be carried in the presence of others, including the general public.
  • Upon detonation, rapid combustion processes produced even by a small explosive device compress surrounding fluid media so quickly that shock waves are produced. Also, the physical expansion of the hot blast combustion products adds to pressure loading of objects in its path, as well as generates radiation. The hot blast combustion products are typically capable of igniting combustible materials nearby and inflicting burns on exposed humans. Humans may be killed by intense blast pressure alone, as this causes lung damage above threshold levels. Below threshold conditions for fatal injury, blast pressure may cause damage to ears and lungs, and sudden accelerations that lead to spinal injuries. Moreover, fragments from exploding cased explosive devices may lead to fatal internal damage.
  • Explosive effects dissipate rapidly in air as long as the blast is unconfined. Large obstructions such as buildings surrounding a street in which a blast occurs prolong pressure durations and lead to greater damaging capability. Complete or near-total confinement maximizes blast effect duration, as the blast pressure is prevented from being dissipated.
  • In order to provide safe handling of small explosive devices, it is often desired to prevent detonation of one explosive charge from causing detonation of others nearby, an event widely termed “sympathetic detonation”, as mass detonation of large quantities of small explosive charges generates blast parameters equivalent to single-charge detonations of similar weight. A number of prior art small explosive devices containers are designed to prevent sympathetic detonation, but not to confine either blast effect or fragments. As a result, such containers are usually destroyed when the elements contained therein explode, and components are hurled at significant velocities. As such, these containers would be unsuitable for transportation of small explosive devices next to people, as the components projected by the explosion could cause serious injury.
  • SUMMARY
  • In one aspect, there is provided a container for containing an explosive device, the container comprising: an outer shell including a body and a cover relatively movable between an open position and a closed position; a plurality of blast containing panels including at least a first group of blast containing panels disposed against inner surfaces of the outer shell such as to substantially define an enclosure when the body and the cover are in the closed position, each of the blast containing panels including a fragment-retaining layer and at least one mitigating layer facing the enclosure, each mitigating layer including: a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open, a blast effect mitigating material received within the cells of the cell structure, a fabric layer disposed against and sealing the open end of the plurality of cells, a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and a frame connected to the cell structure, the frame forming a perimeter surrounding sides of the cell structure; wherein the mitigating layer is configured to reduce a force of a blast wave caused by an explosion of the explosive device, and the fragment-retaining layer is configured to resist a remainder of the force of the blast wave passing through the mitigating layer and to retain fragments propagated by the explosion.
  • In another aspect, there is provided a blast containing panel for containing an explosion of an explosive device, the blast containing panel comprising: a fragment-retaining layer; at least one mitigating layer including: a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open, a blast effect mitigating material received within the cells of the cell structure, a fabric layer disposed against and sealing the open end of the plurality of cells, a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and a frame connected to the cell structure, the frame forming a perimeter surrounding sides of the cell structure; wherein the mesh layer, cell structure and fabric layer permit transmission of a blast wave caused by an explosion of the explosive device into the blast effect mitigating material; and wherein the mitigating layer is configured to reduce a force of the blast wave, and the fragment-retaining layer is configured to resist a remainder of the force of the blast wave passing through the mitigating layer and to retain fragments propagated by the explosion.
  • DESCRIPTION OF THE DRAWINGS
  • Reference is now made to the accompanying figures in which:
  • FIG. 1 is a schematic tridimensional view of a transport case for explosives, in accordance with a particular embodiment;
  • FIG. 2 is a side cross-sectional view of part of a blast containing panel of the case of FIG. 1, in accordance with a particular embodiment; and
  • FIG. 3 is a top cross-sectional view of part of the blast containing panels of FIG. 1, which the layers progressively peeled for improved clarity.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, a container or transport case 10 according to a particular embodiment of the present invention is shown. The case 10 comprises an outer shell 12, with inner surfaces of the outer shell being overlaid with blast containing panels 15.
  • The outer shell 12 preferably has a rectangular cross-section, and includes a body 18 and a complementary cover 20 also preferably of rectangular cross-section. In a particular embodiment, the outer shell 12 protects the internal components and materials being transported from weather and incidental damage, and as such is made of a shock resistant plastic, for example a polypropylene copolymer such as Coroplast™. Alternate materials for the outer shell include wood or any appropriate type of metal such as for example steel or aluminum.
  • In the embodiment shown, the cover 20 is pivotally retained on the body 18 through hinges 22, which are suitable sized and configured to resist a blast from components received inside the case 10. The body 18 and cover 20 also include one or more lock(s) 24 retaining the cover 20 in the closed position when engaged. It is understood that the hinges 22 and/or locks 24 may be configured differently, for example provided on different sides of the body 12 than that shown.
  • In a particular embodiment, the case 10 is designed to handle small explosive devices (e.g. less than 1 kg total of TNT-equivalent explosive), and as such the hinges 22 and lock(s) 24 allow some gas to escape between the closed cover 20 and the body 18, with the gas leakage and attendant shock waves mitigated to the extent required to prevent permanent injury to nearby people or prevent sympathetic detonation or burning of nearby energetic materials. In an alternate embodiment, the case 10 is used to contain explosive devices and other devices that may contain hazardous biological, radioactive, or chemical agents that could be dispersed under pressure, and as such the seal between the cover 20 and body 18 is adequate to prevent release of the hazardous material. The degree to which the seal is impervious to the transmission of gas can thus be varied through various closure modifications readily available to one in the art.
  • A handle 26, which may be fixed or extendable, is attached to the body 18 to facilitate transport of the case 10 either by hand or by a robotic device. It is understood that the handle 26 shown herein is exemplary only, and that the handle may be provided in any other appropriate location of the body 18, including but not limited to on another one of its sides. It is also considered to provide the case 10 with more than one handle 26, or alternatively with no handle at all.
  • It is understood that the particular configuration of outer shell 12 is provided as an example only and that the configuration of the outer shell 12 may vary.
  • The blast containing panels 15 are located within the outer shell 12. In the embodiment shown, the blast containing panels 15 include a bottom panel 15 b and four (4) side panels 15 s located in the body 18, and a top panel 15 t located in the cover 20, each in contact with the adjacent inner surface of the outer shell 12. The bottom and side panels 15 b, 15 s preferably abut one another and the panels 15 b, 15 s, 15 t together define an enclosure within the outer shell 12.
  • The blast containing panels 15 may also include divider panels 15 d extending across the enclosure between the opposed side panels 15 s, and abutting the bottom panel 15 b. In the embodiment shown, the divider panels 15 d are disposed in a cross-shaped configuration to separate the enclosure into four compartments insulated from one another by the divider panels 15 d. The divider panels 15 d may be permanently attached to the adjacent bottom and side panels 15 b, 15 s, or be removable. Additional removable divider panels 15 d may be provided (one of which is shown), for snug insertion into one of the compartments to be able to customize the number and size of separate enclosures defined in the case. In a particular embodiment, the divider panels 15 d allow to resist or inhibit the occurrence of sympathetic detonation when more sensitive explosive devices are carried. However, prevention of sympathetic detonation is not essential. In a particular embodiment, in the event of a detonation of one or more explosive devices within the case 10, release of blast generated gas from the case 10 is so slight that no permanent injury is inflicted on humans in close proximity to the case 10. Fragments from explosive device components, and components of the case 10, are preferably completely confined. Extremely rapid cooling of hot gaseous products is also preferable such as to prevent possible ignition of case materials and other items kept within the case 10.
  • Alternately, the divider panels 15 d may be omitted such that the case 10 defines a single enclosure.
  • Each blast containing panel 15 includes a fragment-retaining layer 14 and at least a mitigating layer 16 facing the enclosure where the explosive will be received. In the embodiment of FIG. 1, the bottom, side, and top panels 15 b, 15 s, 15 t include a single mitigating layer 16, with the fragment-retaining layer 14 disposed between the adjacent wall of the outer shell 12 and the mitigating layer 16, while the divider panels 15 d include two mitigating layers 16, with the fragment-retaining layer 14 extending therebetween. The inner surfaces of the mitigating layer 16 define the enclosure for the explosive device which will be contained in the case 10. The mitigating layer 16 is the first layer reached by the effects of the blast and accordingly includes a blast effect mitigating material which effectively reduces the strength of the blast of an explosive device in close proximity, as will be detailed further below.
  • Referring to FIGS. 2-3, an exemplary embodiment for the blast containing panels 15 is shown. The mitigating layer 16 includes a cell structure 24, which in a particular embodiment is made of cardboard. The cell structure 24 includes a planar outer wall 26 and a plurality of interconnected cell walls 28 extending from the outer wall 26 to form a plurality of cells 30 having one end closed by the outer wall 26 and the opposed end open. The blast effect mitigating material 32 is received within the cells 30 of the cell structure 24. In a particular embodiment, the blast effect mitigating material 32 is a combination of perlite beads and borax (sodium borate, sodium tetraborate, or disodium tetraborate).
  • The open end of the cells 30 is sealed by a fabric layer 34 which is disposed against the open ends. In a particular embodiment, the fabric layer 34 includes a nonwoven textile made with synthetic fibers, made for example of polyester; an example of a suitable material is Pellon® PLF36 Fusible Interfacing. Other materials may be used, included but not limited to materials having similar properties as this material. The fabric layer 34 provides some support to the cell structure 24.
  • A mesh layer 36 is disposed on the fabric layer 34, and forms the inner surface of the mitigating layer 16. In a particular embodiment, the mesh layer 36 is made of fiberglass. Other materials may be used, including but not limited to mesh materials suitable for use as window screening, such as aluminum mesh.
  • The mesh layer 36, cell structure 24 and fabric layer 34 contain the blast effect mitigating material 32 within the cells 30, but permits transmission of the impinging blast wave into the blast effect mitigating material 30, for example by provide negligible resistance to or delay in rupture and/or allowing the blast wave to simply pass therethrough.
  • The cells 30 of the cell structure 24 may be open along the sides of the mitigating layer 16. A frame 38 forms a perimeter surrounding the cell structure 24 to close the side of the cells 30 and provided increased resistance to the mitigating layer 16. In the embodiment shown, the frame 38 has an L-shaped cross-section, including an outer wall 40 extending outwardly of the outer wall 26 of the cell structure 24, and a side wall 42 surrounding the cell structure 24. In a particular embodiment, the frame 38 is made of a suitable polymer, such as for example polyvinyl chloride (PVC). Other suitable materials may be alternately be used.
  • In a particular embodiment, the fabric layer 34 is connected to the frame 38 around its perimeter, and the mesh layer 36 is connected to the fabric layer 34. Such connections may be done through any suitable type of adhesive or other fastening method, including, but not limited to, contact adhesive.
  • In the embodiment shown, the side wall 42 of the frame 38 is surrounded by adhesive tape 44 around its perimeter; the adhesive tape 44 may be, for example, a cloth-backed or scrim-backed pressure-sensitive tape such as duct tape. The tape 44, or a different type of tape, may also surround the side edges of the fragment-retaining layer 14 as shown.
  • A portion of the explosive force is mitigated as it passes through the mitigating layer 16. The fragment-retaining layer 14 is configured to resist to a remainder of the explosive force passing through the mitigating layer 16. The fragment-retaining layer 14 is made of a fragment-retaining material which minimizes shock wave transmission as well as retains fragments propagated by an explosion of a size corresponding to the explosive device(s) to be transported in the case 10. In a particular embodiment, the fragment-retaining layer 14 is made of polycarbonate, such as Lexan®, as this material has been proven to deform plastically to a great extent under explosive loading without rupture. Polycarbonate also features low acoustic impedance, which is desirable for shock wave attenuation. Alternatively, the fragment-retaining layer 14 can be made of a metal of similar properties and/or can comprise ballistic armor in order to protect the encased explosive devices from impinging projectiles or ammunition fragments.
  • The fragment-retaining layer 14 is thus connected to the outer surface of the outer wall 26 of the cell structure 24, as well as to the outer surface of the bottom wall 40 of the frame 38; the outer wall 40 of the frame 38 extends between the outer wall 26 of the cell structure 24 and the fragment-retaining layer 14 around the perimeter of the mitigating layer 16. The fragment-retaining layer 14 may be connected to the cell structure 24 through any suitable type of adhesive, including, but not limited to, double-sided adhesive tape.
  • It is understood that in cases where the blast containing panels 15 includes two mitigating layers 16, the elements of the second mitigating layer 16 on the other side of the fragment-retaining layer 14 have a mirror configuration with respect to the elements of the first mitigating layer 16.
  • In the embodiment shown, the body 18 includes an inspection port 54, formed by aligned holes through the outer shell 12 and adjacent blast containing panel 15. The port 54 facilitates examination or characterization by various means so that inspection devices such as optical and other electromagnetic imaging devices, chemical sensors, and radiation detection probes may be installed in appropriate locations. Alternatively, the port 54 may be provided with an appropriate nozzle to inject various kinds of agents, such as aqueous foams for blast effect mitigation or neutralizing of chemical or biological agents, or cleaning material for scrubbing radioactive dusts. The port 54, when not in use, is closed by an appropriate cover (not shown). Alternately, the port 54 can be omitted.
  • In the embodiment shown, the body 18 also includes at least one vent 52, which is defined by an aperture cut in one wall of the outer shell 12, in order to release hot blast gases. Preferably, the vent 52 is located near explosive devices within the case 10 and is vented in a direction away from a person carrying the case 10. The vent 52 is covered by the portion of the wall of the outer shell 12 removed to form the aperture (not shown), re-attached over the aperture in such a manner that the vent cover is easily dislodged under internal pressure.
  • Alternately, the vent 52 could be located in other locations, for example in corners of the outer shell 12. Also, alternate covers for the vent 52 include an elastic or flexible bag that expands under pressurization caused by an internal explosion. This expandable member may be substantially comprised of a fabric or plurality of fabric layers capable of catching debris and fragments from the detonation of a stored explosive device. Alternatively, the expandable member may be substantially comprised of a mesh that allows gradual release of internal gas, thereby reducing the loads imparted by the blast to the hinges 22 and lock(s) 24. Any combination of such components for vent covers can be made by an individual skilled in the design of blast protection devices, such as bellows-type components combined with mesh and elastic “balloon” components.
  • Although not shown, mountings or other provisions for cylindrical vessels, or other shapes of explosive devices, may be provided in the compartments. Straps or other similar components can be provided for additional restraint to the explosive devices within the compartments.
  • In a particular embodiment, wheels (not shown) are attached to the outer shell 12 to facilitate movement of the case 10 by hand or robot. The wheels may be integral to the outer shell 12, or be detachable to enable the wheel assembly to be removed when not needed. Alternatively, skids may be provided that also serve to facilitate movement.
  • Moreover, explosive devices or other items may be placed in protective cartons or wraps within the compartments to provide additional levels of protection. Such wraps and cartons may be substantially comprised of high-strength materials that resist bullets and ammunition fragments from penetrating.
  • The case 10 (as well as detachable wheels, if provided) may be provided with a bag enclosure that seals the case 10 when it is shut, to prevent release of dangerous materials to the external environment, for instance if the device within contains radioactive materials or potentially lethal pathogens. The bag enclosure may be part of the detachable wheeled or skid device, attached to the outer shell 12, or incorporated with the internal compartments or linings of the case 10. This bag enclosure may be coated or otherwise substantially comprised of materials that serve to neutralize the anticipated hazard.
  • The case 10 can also include shielding against the transmission of electromagnetic radiation or interference (EMI), including the effects of electromagnetic pulse (generally designated as EMP) when the case 10 is closed. The case 10, acting as a protection system, thus protects explosive devices kept therewithin from unintentional detonation or neutralization from radio waves or other electromagnetic events present outside the closed case 10. Provisions for electrical grounding may also be placed in suitable locations of the case 10 in order to prevent the buildup of static electricity.
  • Part or all of the outer shell 12 may utilize materials that facilitate external examination of the case contents, such as those permitting transmission therethrough of a desired portion of the electromagnetic spectrum. The fragment-retaining layer 14 and the mitigating layer 16 may be made of materials that are correspondingly similar.
  • The outer surface of the outer shell 12 and the surfaces of the blast containing panels 15 exposed within the enclosure, either alone or in combination, may be coated with fire-resistant materials in order to avoid ignition upon detonation of an encased explosive device. This is preferable when the case 10 is destined to contain energetic materials that may be capable of sustained burning with or without access to ambient air.
  • Should vessels or containers storing radioactive, chemical, or biological agents be placed within cases where explosive devices are also kept, internal protective components that prevent piercing the agent container may be integrated within the second enclosure.
  • The case 10 of the present invention thus minimizes the release of potentially hazardous phenomena under pressure above ambient to the environment external to it. Thus shock waves and pressurized gas leakage are mitigated to the degree desired by those who may be come into close proximity to the case 10 when explosive devices are contained therewithin.
  • The mitigating layer 16 preferably provides substantial cushioning in order to protect explosive devices placed within the case 10 from shock and impact. Thus, in a particular embodiment, the case 10 may be dropped, fall from a moving vehicle, stepped on, crushed by stacking with heavy objects, or struck by bullets with a reduced risk of explosion of the contained explosive devices or, in the case of an explosion, with limited risk of injury to people nearby. As it often is required to be carried by hand, the case 10 is preferably sized such as to be relatively light.
  • In a particular embodiment the case 10, sized accordingly, can safely contain a variety of small explosive devices, including, but not limited to, detonators, detonating cords, airbag inflators, fuses, small hand grenades, small anti-personnel mines, various recovered explosive devices, etc.
  • Although the case 10 has been described as a portable case, it is also considered to integrate the case in a rolling cart, in a vehicle, in a building, etc. Where the case 10 is integrated in an enclosure of an existing structure, the outer shell 12 can be omitted. The case integrated in a rolling cart could be used, for example, in an airplane, where the rolling cart would be of a serving-cart type, to be rolled in proximity of a potentially dangerous device found, so that the device could be place within the case 10 with minimal handling. The case integrated in a vehicle could be used, for example, in the cabin of a law enforcement vehicle, to transport small explosive devices destined to explode suspect devices, or to transport the suspect devices themselves away from the public.
  • The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.

Claims (20)

1. A container for containing an explosive device, the container comprising:
an outer shell including a body and a cover relatively movable between an open position and a closed position;
a plurality of blast containing panels including at least a first group of blast containing panels disposed against inner surfaces of the outer shell such as to substantially define an enclosure when the body and the cover are in the closed position, each of the blast containing panels including a fragment-retaining layer and at least one mitigating layer facing the enclosure, each mitigating layer including:
a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open,
a blast effect mitigating material received within the cells of the cell structure,
a fabric layer disposed against and sealing the open end of the plurality of cells,
a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and
a frame connected to the cell structure, the frame forming a perimeter surrounding sides of the cell structure;
wherein the mitigating layer is configured to reduce a force of a blast wave caused by an explosion of the explosive device, and the fragment-retaining layer is configured to resist a remainder of the force of the blast wave passing through the mitigating layer and to retain fragments propagated by the explosion.
2. The container as defined in claim 1, wherein each of the blast containing panels of the first group includes a single mitigating layer, the fragment-retaining layer thereof being disposed against a respective one of the inner surfaces of the body and the cover.
3. The container as defined in claim 1, wherein the cell structure is made of cardboard.
4. The container as defined in claim 1, wherein the blast effect mitigating material includes a combination of perlite beads and borax.
5. The container as defined in claim 1, wherein the fabric layer is a nonwoven textile made with synthetic fibers.
6. The container as defined in claim 5, wherein the fabric layer is made of polyester.
7. The container as defined in claim 1, wherein the mesh layer is made of fiberglass.
8. The container as defined in claim 1, wherein the frame has an L-shaped cross-section, including a bottom wall extending between the outer wall of the cell structure and the fragment-retaining layer, and a side wall surrounding the cell structure.
9. The container as defined in claim 8, wherein the frame is made of polyvinyl chloride.
10. The container as defined in claim 1, wherein the fragment-retaining layer includes at least one of ballistic armor and polycarbonate.
11. The container as defined in claim 1, wherein the plurality of blast containing panels further include at least one divider panel extending across the enclosure and defining compartments on either side thereof, the at least one mitigating layer of each divider panel including two mitigating layers, each divider panel having the fragment-retaining layer received between and connected to the two mitigating layers thereof.
12. The container as defined in claim 11, wherein at least one of the at least one divider panel is removably engaged in the enclosure.
13. A blast containing panel for containing an explosion of an explosive device, the blast containing panel comprising:
a fragment-retaining layer;
at least one mitigating layer including:
a cell structure having an outer wall connected to the fragment-retaining layer and a plurality of cell walls extending from the outer wall, the cell walls forming a plurality of cells having one end closed by the outer wall and an opposed end open,
a blast effect mitigating material received within the cells of the cell structure,
a fabric layer disposed against and sealing the open end of the plurality of cells,
a mesh layer overlaying the fabric layer such that the fabric layer extends between the cell structure and the mesh layer, and
a frame connected to the cell structure, the frame forming a perimeter surrounding sides of the cell structure;
wherein the mesh layer, cell structure and fabric layer permit transmission of a blast wave caused by an explosion of the explosive device into the blast effect mitigating material; and
wherein the mitigating layer is configured to reduce a force of the blast wave, and the fragment-retaining layer is configured to resist a remainder of the force of the blast wave passing through the mitigating layer and to retain fragments propagated by the explosion.
14. The blast containing panel as defined in claim 13, wherein the blast effect mitigating material includes a combination of perlite beads and borax.
15. The blast containing panel as defined in claim 13, wherein the fabric layer is a nonwoven textile made with synthetic fibers.
16. The blast containing panel as defined in claim 13, wherein the frame has an L-shaped cross-section, including a bottom wall extending between the outer wall of the cell structure and the fragment-retaining layer, and a side wall surrounding the cell structure.
17. The blast containing panel as defined in claim 16, wherein the frame is made of polyvinyl chloride.
18. The blast containing panel as defined in claim 13, wherein the fabric layer is a nonwoven textile made with synthetic fibers.
19. The blast containing panel as defined in claim 13, wherein the fragment-retaining layer includes at least one of ballistic armor and polycarbonate.
20. The blast containing panel as defined in claim 13, wherein the at least one mitigating layer includes two mitigating layers, the fragment-retaining layer received between and connected to the two mitigating layers.
US14/974,718 2015-12-18 2015-12-18 Container for containing explosive device and blast containing panel therefor Abandoned US20170176158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/974,718 US20170176158A1 (en) 2015-12-18 2015-12-18 Container for containing explosive device and blast containing panel therefor
CA2952184A CA2952184A1 (en) 2015-12-18 2016-12-16 Container for containing explosive device and blast containing panel therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/974,718 US20170176158A1 (en) 2015-12-18 2015-12-18 Container for containing explosive device and blast containing panel therefor

Publications (1)

Publication Number Publication Date
US20170176158A1 true US20170176158A1 (en) 2017-06-22

Family

ID=59065065

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/974,718 Abandoned US20170176158A1 (en) 2015-12-18 2015-12-18 Container for containing explosive device and blast containing panel therefor

Country Status (2)

Country Link
US (1) US20170176158A1 (en)
CA (1) CA2952184A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674163C1 (en) * 2017-08-28 2018-12-05 Акционерное общество "Новосибирский механический завод "Искра" Protective assembly for detonators
CN112385325A (en) * 2018-05-23 2021-02-19 费斯托股份两合公司 Operating device and process valve assembly

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583276A (en) * 1968-09-16 1971-06-08 Michael F Murray Sonic bomb alerting apparatus
US3739731A (en) * 1970-08-05 1973-06-19 P Tabor Open enclosure for explosive charge
US3786956A (en) * 1970-06-03 1974-01-22 P Tabor Container for explosive charge
US4169403A (en) * 1978-08-04 1979-10-02 Hanson Ralph W Bomb circuit disrupting device and method
US5394786A (en) * 1990-06-19 1995-03-07 Suppression Systems Engineering Corp. Acoustic/shock wave attenuating assembly
US6341708B1 (en) * 1995-09-25 2002-01-29 Alliedsignal Inc. Blast resistant and blast directing assemblies
US6454085B1 (en) * 2001-01-18 2002-09-24 Halliburton Energy Services, Inc. Method and system for packaging explosive products of transportation
US20030131722A1 (en) * 2002-01-11 2003-07-17 John Donovan Method for suppressing ejection of fragments and shrapnel during destruction of shrapnel munitions
US6991124B1 (en) * 1995-09-25 2006-01-31 Alliedsignal Inc. Blast resistant and blast directing containers and methods of making
US20070131684A1 (en) * 2005-09-06 2007-06-14 Salvatore Cirillo Case for small explosive device
US7343843B2 (en) * 2003-07-31 2008-03-18 Blast Gard International Explosive effect mitigated containers and enclosing devices
US7520223B2 (en) * 2003-07-31 2009-04-21 Blastgard Technologies, Inc. Explosive effect mitigated containers
US9470484B2 (en) * 2011-04-07 2016-10-18 Mark Benson Foam explosive containers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583276A (en) * 1968-09-16 1971-06-08 Michael F Murray Sonic bomb alerting apparatus
US3786956A (en) * 1970-06-03 1974-01-22 P Tabor Container for explosive charge
US3739731A (en) * 1970-08-05 1973-06-19 P Tabor Open enclosure for explosive charge
US4169403A (en) * 1978-08-04 1979-10-02 Hanson Ralph W Bomb circuit disrupting device and method
US5394786A (en) * 1990-06-19 1995-03-07 Suppression Systems Engineering Corp. Acoustic/shock wave attenuating assembly
US6991124B1 (en) * 1995-09-25 2006-01-31 Alliedsignal Inc. Blast resistant and blast directing containers and methods of making
US6341708B1 (en) * 1995-09-25 2002-01-29 Alliedsignal Inc. Blast resistant and blast directing assemblies
US6454085B1 (en) * 2001-01-18 2002-09-24 Halliburton Energy Services, Inc. Method and system for packaging explosive products of transportation
US20030131722A1 (en) * 2002-01-11 2003-07-17 John Donovan Method for suppressing ejection of fragments and shrapnel during destruction of shrapnel munitions
US7343843B2 (en) * 2003-07-31 2008-03-18 Blast Gard International Explosive effect mitigated containers and enclosing devices
US7520223B2 (en) * 2003-07-31 2009-04-21 Blastgard Technologies, Inc. Explosive effect mitigated containers
US20070131684A1 (en) * 2005-09-06 2007-06-14 Salvatore Cirillo Case for small explosive device
US9470484B2 (en) * 2011-04-07 2016-10-18 Mark Benson Foam explosive containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674163C1 (en) * 2017-08-28 2018-12-05 Акционерное общество "Новосибирский механический завод "Искра" Protective assembly for detonators
CN112385325A (en) * 2018-05-23 2021-02-19 费斯托股份两合公司 Operating device and process valve assembly

Also Published As

Publication number Publication date
CA2952184A1 (en) 2017-06-18

Similar Documents

Publication Publication Date Title
US20070131684A1 (en) Case for small explosive device
US5390580A (en) Lightweight explosive and fire resistant container
US5864767A (en) Chemical biological explosive containment system
US7343843B2 (en) Explosive effect mitigated containers and enclosing devices
US7520223B2 (en) Explosive effect mitigated containers
Ramasamy et al. Blast mines: physics, injury mechanisms and vehicle protection
US6354181B1 (en) Method and apparatus for the destruction of suspected terrorist weapons by detonation in a contained environment
US7421936B2 (en) Systems and methods for explosive blast wave mitigation
US4389947A (en) Blast suppressive shielding
US4325309A (en) Blast suppressive shielding
US20110174144A1 (en) Blast mitigation
US20070039453A1 (en) Variable containment vessel
RU2150669C1 (en) Device for localization of effects of explosive mechanisms
US20170176158A1 (en) Container for containing explosive device and blast containing panel therefor
Chernyshov et al. Brief Review of Modern Devices for Blast Mitigation
RU53000U1 (en) RADIO-TRANSPARENT DEVICE FOR LOCALIZING THE IMPACTS OF EXPLOSIVE MECHANISMS
CN206192199U (en) Explosive -removal container
KR102013147B1 (en) portable explosion proof and bulletproof equipment
KR20200034562A (en) Explosion-proof panel
RU2224976C1 (en) Device "vodopad" for localization of actions of blasting mechanisms
WO2005057126A1 (en) Vodopad explosive ammunition impact containment device
RU2177141C1 (en) Blast localizer with corrugated shell
RU2732858C1 (en) Protective device for transportation and/or storage of explosive, radiation and toxicologically hazardous cargo
GB2454540A (en) Blast and shrapnel mitigation apparatus
RU2226668C2 (en) Porous gas-and-liquid blast localizer

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION