US20170174658A1 - Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors - Google Patents
Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors Download PDFInfo
- Publication number
- US20170174658A1 US20170174658A1 US15/452,256 US201715452256A US2017174658A1 US 20170174658 A1 US20170174658 A1 US 20170174658A1 US 201715452256 A US201715452256 A US 201715452256A US 2017174658 A1 US2017174658 A1 US 2017174658A1
- Authority
- US
- United States
- Prior art keywords
- oxo
- chloro
- methyl
- amino
- ethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003112 inhibitor Substances 0.000 title abstract description 9
- ASHZGMCLOXNDFT-UHFFFAOYSA-N 1H-pyridin-2-one 1H-quinolin-2-one Chemical class O=C1C=CC=CN1.C1=CC=C2NC(=O)C=CC2=C1 ASHZGMCLOXNDFT-UHFFFAOYSA-N 0.000 title 1
- 101710088194 Dehydrogenase Proteins 0.000 title 1
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 15
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 claims abstract description 14
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims description 212
- 238000000034 method Methods 0.000 claims description 123
- -1 NR′ Inorganic materials 0.000 claims description 45
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 39
- 229910052757 nitrogen Inorganic materials 0.000 claims description 36
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 35
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 34
- 229910052736 halogen Inorganic materials 0.000 claims description 33
- 125000000623 heterocyclic group Chemical group 0.000 claims description 27
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 26
- 150000002367 halogens Chemical class 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 23
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 23
- 125000001072 heteroaryl group Chemical group 0.000 claims description 23
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 20
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 18
- HWXBTNAVRSUOJR-UHFFFAOYSA-N 2-hydroxyglutaric acid Chemical compound OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 claims description 18
- 201000010099 disease Diseases 0.000 claims description 18
- 208000035475 disorder Diseases 0.000 claims description 17
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 16
- 125000001424 substituent group Chemical group 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 10
- 125000005843 halogen group Chemical group 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 208000006990 cholangiocarcinoma Diseases 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 8
- UHPKLGPKLHHNCW-VIFPVBQESA-N C[C@H](NC1=NC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](NC1=NC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 UHPKLGPKLHHNCW-VIFPVBQESA-N 0.000 claims description 7
- GWBZTYSDSZBEJE-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)CC)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)CC)=O GWBZTYSDSZBEJE-UHFFFAOYSA-N 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 6
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 6
- 208000014767 Myeloproliferative disease Diseases 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000000304 alkynyl group Chemical group 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 229910052805 deuterium Inorganic materials 0.000 claims description 6
- 201000007450 intrahepatic cholangiocarcinoma Diseases 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 5
- SHENXRCDBJGWNU-GOSISDBHSA-N 6-(1,3-benzothiazol-6-ylamino)-4-(cyclopropylamino)-n-[(2r)-2-fluoro-3-hydroxy-3-methylbutyl]pyridine-3-carboxamide Chemical compound CC(C)(O)[C@H](F)CNC(=O)C1=CN=C(NC=2C=C3SC=NC3=CC=2)C=C1NC1CC1 SHENXRCDBJGWNU-GOSISDBHSA-N 0.000 claims description 5
- 201000010915 Glioblastoma multiforme Diseases 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 208000005017 glioblastoma Diseases 0.000 claims description 5
- 239000000651 prodrug Substances 0.000 claims description 5
- 229940002612 prodrug Drugs 0.000 claims description 5
- 239000012453 solvate Substances 0.000 claims description 5
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 4
- ARMGVRSPXQMERQ-VIFPVBQESA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=CC(Cl)=C2 ARMGVRSPXQMERQ-VIFPVBQESA-N 0.000 claims description 4
- UXVGPOVENBADCI-VIFPVBQESA-N C[C@H](NC1=CC=C(NC1=O)C#N)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(NC1=O)C#N)C1=CC2=C(NC1=O)C=CC(Cl)=C2 UXVGPOVENBADCI-VIFPVBQESA-N 0.000 claims description 4
- 208000005243 Chondrosarcoma Diseases 0.000 claims description 4
- 208000032612 Glial tumor Diseases 0.000 claims description 4
- 206010018338 Glioma Diseases 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- HPOPOVVUDKGCAN-LBPRGKRZSA-N CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 Chemical compound CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 HPOPOVVUDKGCAN-LBPRGKRZSA-N 0.000 claims description 3
- VIKJAIUMEYADPO-UHFFFAOYSA-N CC(NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1CC(F)(F)C1)C(Cl)=C2 Chemical compound CC(NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1CC(F)(F)C1)C(Cl)=C2 VIKJAIUMEYADPO-UHFFFAOYSA-N 0.000 claims description 3
- PDMDNRKCRBOWOM-UHFFFAOYSA-N CN1C(=O)C(NCC2=CC3=C(NC2=O)C=CC(Cl)=C3)=CC=C1C#N Chemical compound CN1C(=O)C(NCC2=CC3=C(NC2=O)C=CC(Cl)=C3)=CC=C1C#N PDMDNRKCRBOWOM-UHFFFAOYSA-N 0.000 claims description 3
- SWRGOIPVPPLYDR-UHFFFAOYSA-N CN1C=CC=C(NCC2=CC3=C(NC2=O)C=C(OCC2=NC=CC=C2)C(Cl)=C3)C1=O Chemical compound CN1C=CC=C(NCC2=CC3=C(NC2=O)C=C(OCC2=NC=CC=C2)C(Cl)=C3)C1=O SWRGOIPVPPLYDR-UHFFFAOYSA-N 0.000 claims description 3
- NSSCFMGYDFCYNL-UHFFFAOYSA-N COC1=CC2=C(C=C1Cl)C=C(C(C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 Chemical compound COC1=CC2=C(C=C1Cl)C=C(C(C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 NSSCFMGYDFCYNL-UHFFFAOYSA-N 0.000 claims description 3
- NSSCFMGYDFCYNL-SNVBAGLBSA-N COC1=CC2=C(C=C1Cl)C=C([C@@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 Chemical compound COC1=CC2=C(C=C1Cl)C=C([C@@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2 NSSCFMGYDFCYNL-SNVBAGLBSA-N 0.000 claims description 3
- TZKQLILAWIHUMT-SECBINFHSA-N C[C@@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(F)C(Cl)=C2 Chemical compound C[C@@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(F)C(Cl)=C2 TZKQLILAWIHUMT-SECBINFHSA-N 0.000 claims description 3
- PJBUFTGEHWYEER-CQSZACIVSA-N C[C@@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 Chemical compound C[C@@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 PJBUFTGEHWYEER-CQSZACIVSA-N 0.000 claims description 3
- ZPOAXBRGKZGJGA-VIFPVBQESA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C(F)=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C(F)=CC(Cl)=C2 ZPOAXBRGKZGJGA-VIFPVBQESA-N 0.000 claims description 3
- TZKQLILAWIHUMT-VIFPVBQESA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(F)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(F)C(Cl)=C2 TZKQLILAWIHUMT-VIFPVBQESA-N 0.000 claims description 3
- PJBUFTGEHWYEER-AWEZNQCLSA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 PJBUFTGEHWYEER-AWEZNQCLSA-N 0.000 claims description 3
- MWYSDNPPAIJPJV-LBPRGKRZSA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1CC1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(OCC1CC1)C(Cl)=C2 MWYSDNPPAIJPJV-LBPRGKRZSA-N 0.000 claims description 3
- HSFDUNNUAFZOQD-LSDHHAIUSA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(O[C@H](C)C1=NC=CC=C1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(O[C@H](C)C1=NC=CC=C1)C(Cl)=C2 HSFDUNNUAFZOQD-LSDHHAIUSA-N 0.000 claims description 3
- SLCDOTDJNCIYCJ-VIFPVBQESA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=NC2=CC(Cl)=CC=C2NC1=O Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=NC2=CC(Cl)=CC=C2NC1=O SLCDOTDJNCIYCJ-VIFPVBQESA-N 0.000 claims description 3
- SLCDOTDJNCIYCJ-SECBINFHSA-N ClC1=CC=C2NC(C(=NC2=C1)[C@@H](C)NC1=CC=C(N(C1=O)C)C#N)=O Chemical compound ClC1=CC=C2NC(C(=NC2=C1)[C@@H](C)NC1=CC=C(N(C1=O)C)C#N)=O SLCDOTDJNCIYCJ-SECBINFHSA-N 0.000 claims description 3
- GAGJFBRIVDHXBX-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C(=CC=1)C(F)(F)F)C)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C(=CC=1)C(F)(F)F)C)=O GAGJFBRIVDHXBX-UHFFFAOYSA-N 0.000 claims description 3
- HONGYFQTPGJGNF-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C(=CC=1)C)C)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C(=CC=1)C)C)=O HONGYFQTPGJGNF-UHFFFAOYSA-N 0.000 claims description 3
- LEVPMQPHTKJABL-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)C)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)C)=O LEVPMQPHTKJABL-UHFFFAOYSA-N 0.000 claims description 3
- DHDHUTUALAFFMG-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)C1CC1)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(N(C=CC=1)C1CC1)=O DHDHUTUALAFFMG-UHFFFAOYSA-N 0.000 claims description 3
- NEQYWYXGTJDAKR-SNVBAGLBSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)[C@@H](C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)[C@@H](C)NC1=CC=C(N(C1=O)C)C#N NEQYWYXGTJDAKR-SNVBAGLBSA-N 0.000 claims description 3
- TZKQLILAWIHUMT-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1F)=O)C(C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=CC=1F)=O)C(C)NC1=CC=C(N(C1=O)C)C#N TZKQLILAWIHUMT-UHFFFAOYSA-N 0.000 claims description 3
- DAJPKGHXCGODGX-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1OC)=O)CNC=1C(N(C=CC=1)C)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1OC)=O)CNC=1C(N(C=CC=1)C)=O DAJPKGHXCGODGX-UHFFFAOYSA-N 0.000 claims description 3
- NSSCFMGYDFCYNL-JTQLQIEISA-N ClC=1C=C2C=C(C(NC2=CC=1OC)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=CC=1OC)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N NSSCFMGYDFCYNL-JTQLQIEISA-N 0.000 claims description 3
- PJBUFTGEHWYEER-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1OCC1=NC=CC=C1)=O)C(C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=CC=1OCC1=NC=CC=C1)=O)C(C)NC1=CC=C(N(C1=O)C)C#N PJBUFTGEHWYEER-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 238000001802 infusion Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- NEQYWYXGTJDAKR-JTQLQIEISA-N olutasidenib Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 NEQYWYXGTJDAKR-JTQLQIEISA-N 0.000 claims description 3
- RSPVHLVVLCWCMC-UHFFFAOYSA-N COC(=O)C1=CNC(=O)C(NCC2=CC3=C(NC2=O)C=CC(Cl)=C3)=C1 Chemical compound COC(=O)C1=CNC(=O)C(NCC2=CC3=C(NC2=O)C=CC(Cl)=C3)=C1 RSPVHLVVLCWCMC-UHFFFAOYSA-N 0.000 claims description 2
- BWHIFDUXXABGMM-NSHDSACASA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(C(Cl)=C2)C(C)(C)O Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(C(Cl)=C2)C(C)(C)O BWHIFDUXXABGMM-NSHDSACASA-N 0.000 claims description 2
- CYFQOPAAZZVBQG-NSHDSACASA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(N1CC(F)(F)C1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)C=C(N1CC(F)(F)C1)C(Cl)=C2 CYFQOPAAZZVBQG-NSHDSACASA-N 0.000 claims description 2
- SEEDZPLNIRDCAL-JTQLQIEISA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=C(C1CC1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=C(C1CC1)C(Cl)=C2 SEEDZPLNIRDCAL-JTQLQIEISA-N 0.000 claims description 2
- CYAKHPACTXYEPK-NSHDSACASA-N C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=C(N1CCC1)C(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(NC1=O)N=C(N1CCC1)C(Cl)=C2 CYAKHPACTXYEPK-NSHDSACASA-N 0.000 claims description 2
- JEDNKDBKPFUMBB-VIFPVBQESA-N C[C@H](NC1=CC=C(C#N)N(C1=O)C(F)(F)F)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(C#N)N(C1=O)C(F)(F)F)C1=CC2=C(NC1=O)C=CC(Cl)=C2 JEDNKDBKPFUMBB-VIFPVBQESA-N 0.000 claims description 2
- LVEMRGVOUYXDFD-VIFPVBQESA-N C[C@H](NC1=CC=C(N(C)C1=O)C(N)=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(N(C)C1=O)C(N)=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 LVEMRGVOUYXDFD-VIFPVBQESA-N 0.000 claims description 2
- GSMIYCKMLOSJBR-JTQLQIEISA-N C[C@H](NC1=CC=C(N2C=NN=N2)N(C)C1=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](NC1=CC=C(N2C=NN=N2)N(C)C1=O)C1=CC2=C(NC1=O)C=CC(Cl)=C2 GSMIYCKMLOSJBR-JTQLQIEISA-N 0.000 claims description 2
- MMEAODLKSRHAIR-UHFFFAOYSA-N ClC1=CC2=C(NC(=O)C(CNC3=CC=C(Br)NC3=O)=C2)C=C1 Chemical compound ClC1=CC2=C(NC(=O)C(CNC3=CC=C(Br)NC3=O)=C2)C=C1 MMEAODLKSRHAIR-UHFFFAOYSA-N 0.000 claims description 2
- BJRNSMBACDBVMT-UHFFFAOYSA-N ClC1=CC2=C(NC(=O)C(CNC3=CC=C(NC3=O)C#N)=C2)C=C1 Chemical compound ClC1=CC2=C(NC(=O)C(CNC3=CC=C(NC3=O)C#N)=C2)C=C1 BJRNSMBACDBVMT-UHFFFAOYSA-N 0.000 claims description 2
- AMGSLPSFZAJSOA-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(NC(=CC=1)C(F)(F)F)=O Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)CNC=1C(NC(=CC=1)C(F)(F)F)=O AMGSLPSFZAJSOA-UHFFFAOYSA-N 0.000 claims description 2
- GMHCMYUQVXEYLF-LBPRGKRZSA-N ClC=1C=C2C=C(C(NC2=CC=1NCC(C)(C)O)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=CC=1NCC(C)(C)O)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N GMHCMYUQVXEYLF-LBPRGKRZSA-N 0.000 claims description 2
- UFQKUWOMVVXDCG-VIFPVBQESA-N ClC=1C=C2C=C(C(NC2=NC=1C)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N Chemical compound ClC=1C=C2C=C(C(NC2=NC=1C)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N UFQKUWOMVVXDCG-VIFPVBQESA-N 0.000 claims description 2
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 claims description 2
- JOSPMXZAMORKSR-LBPRGKRZSA-N N1(CCC1)C1=C(C=C2C=C(C(NC2=C1)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N)Cl Chemical compound N1(CCC1)C1=C(C=C2C=C(C(NC2=C1)=O)[C@H](C)NC1=CC=C(N(C1=O)C)C#N)Cl JOSPMXZAMORKSR-LBPRGKRZSA-N 0.000 claims description 2
- 101710134866 Quinone reductase Proteins 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical group O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- RUZLIIJDZBWWSA-INIZCTEOSA-N methyl 2-[[(1s)-1-(7-methyl-2-morpholin-4-yl-4-oxopyrido[1,2-a]pyrimidin-9-yl)ethyl]amino]benzoate Chemical group COC(=O)C1=CC=CC=C1N[C@@H](C)C1=CC(C)=CN2C(=O)C=C(N3CCOCC3)N=C12 RUZLIIJDZBWWSA-INIZCTEOSA-N 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 125000004434 sulfur atom Chemical group 0.000 claims description 2
- WCYWZMWISLQXQU-FIBGUPNXSA-N trideuteriomethane Chemical compound [2H][C]([2H])[2H] WCYWZMWISLQXQU-FIBGUPNXSA-N 0.000 claims description 2
- 230000001404 mediated effect Effects 0.000 claims 2
- 230000003538 neomorphic effect Effects 0.000 abstract description 11
- 238000011282 treatment Methods 0.000 abstract description 9
- 102000004169 proteins and genes Human genes 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 abstract description 3
- 208000035269 cancer or benign tumor Diseases 0.000 abstract description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 272
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 177
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 169
- 239000000203 mixture Substances 0.000 description 166
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 161
- 239000000243 solution Substances 0.000 description 154
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 149
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 145
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 135
- 235000019439 ethyl acetate Nutrition 0.000 description 131
- 238000005160 1H NMR spectroscopy Methods 0.000 description 127
- 239000007787 solid Substances 0.000 description 120
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 100
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 75
- 230000002829 reductive effect Effects 0.000 description 69
- 238000006243 chemical reaction Methods 0.000 description 61
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 56
- 229910052938 sodium sulfate Inorganic materials 0.000 description 56
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 55
- 239000007832 Na2SO4 Substances 0.000 description 55
- 239000000741 silica gel Substances 0.000 description 50
- 229910002027 silica gel Inorganic materials 0.000 description 50
- 239000002904 solvent Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 48
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 46
- 239000012044 organic layer Substances 0.000 description 42
- 239000011541 reaction mixture Substances 0.000 description 41
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 36
- 239000002244 precipitate Substances 0.000 description 35
- 238000004587 chromatography analysis Methods 0.000 description 34
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 32
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 32
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 30
- 239000000543 intermediate Substances 0.000 description 28
- VMUOXNQVBSAYQR-UHFFFAOYSA-N CN1C(=O)C(F)=CC=C1C#N Chemical compound CN1C(=O)C(F)=CC=C1C#N VMUOXNQVBSAYQR-UHFFFAOYSA-N 0.000 description 27
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 26
- 239000012298 atmosphere Substances 0.000 description 26
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 25
- 0 *C1=C([6*])[U]=C(NC([4*])([5*])C2=[W]C3=[W]([W])C([1*])=C([2*])[W]([W][W])=C3N([3*])C2=O)C(=O)N1[9*] Chemical compound *C1=C([6*])[U]=C(NC([4*])([5*])C2=[W]C3=[W]([W])C([1*])=C([2*])[W]([W][W])=C3N([3*])C2=O)C(=O)N1[9*] 0.000 description 24
- 238000004440 column chromatography Methods 0.000 description 24
- 239000000706 filtrate Substances 0.000 description 24
- 238000003756 stirring Methods 0.000 description 23
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 22
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 20
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 229920006395 saturated elastomer Polymers 0.000 description 20
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 19
- 239000000725 suspension Substances 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000010410 layer Substances 0.000 description 18
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 18
- 239000000377 silicon dioxide Substances 0.000 description 18
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 17
- LELOWRISYMNNSU-UHFFFAOYSA-N Hydrocyanic acid Natural products N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 17
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 description 17
- 229910052681 coesite Inorganic materials 0.000 description 17
- 229910052906 cristobalite Inorganic materials 0.000 description 17
- 238000010829 isocratic elution Methods 0.000 description 17
- 229910052682 stishovite Inorganic materials 0.000 description 17
- 229910052905 tridymite Inorganic materials 0.000 description 17
- 125000004093 cyano group Chemical group *C#N 0.000 description 16
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 235000011089 carbon dioxide Nutrition 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 14
- CESUXLKAADQNTB-SSDOTTSWSA-N 2-methylpropane-2-sulfinamide Chemical compound CC(C)(C)[S@](N)=O CESUXLKAADQNTB-SSDOTTSWSA-N 0.000 description 13
- BRWRYFMSCOCVEL-RGMNGODLSA-N Cl.C[C@H](N)c1cc2cc(Cl)ccc2[nH]c1=O Chemical compound Cl.C[C@H](N)c1cc2cc(Cl)ccc2[nH]c1=O BRWRYFMSCOCVEL-RGMNGODLSA-N 0.000 description 13
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 13
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 13
- 235000002639 sodium chloride Nutrition 0.000 description 13
- 239000012267 brine Substances 0.000 description 12
- 239000000284 extract Substances 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- 239000007858 starting material Substances 0.000 description 12
- 238000004809 thin layer chromatography Methods 0.000 description 12
- 239000003643 water by type Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 11
- 239000003480 eluent Substances 0.000 description 11
- 238000003818 flash chromatography Methods 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- BRWRYFMSCOCVEL-FYZOBXCZSA-N Cl.C[C@@H](N)c1cc2cc(Cl)ccc2[nH]c1=O Chemical compound Cl.C[C@@H](N)c1cc2cc(Cl)ccc2[nH]c1=O BRWRYFMSCOCVEL-FYZOBXCZSA-N 0.000 description 10
- 101000599886 Homo sapiens Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 10
- 102100037845 Isocitrate dehydrogenase [NADP], mitochondrial Human genes 0.000 description 10
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- 239000012279 sodium borohydride Substances 0.000 description 10
- 229910000033 sodium borohydride Inorganic materials 0.000 description 10
- 101001042041 Bos taurus Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial Proteins 0.000 description 9
- GKUUXWMIHDDFFO-YFKPBYRVSA-N C[C@H](N)C1=CC2=C(NC1=O)N=CC(Cl)=C2 Chemical compound C[C@H](N)C1=CC2=C(NC1=O)N=CC(Cl)=C2 GKUUXWMIHDDFFO-YFKPBYRVSA-N 0.000 description 9
- 101000960234 Homo sapiens Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 9
- 239000012065 filter cake Substances 0.000 description 9
- 229910000027 potassium carbonate Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- FHJAVYLZHDPTCU-UHFFFAOYSA-N 2,6-dichloro-7-methoxyquinoline-3-carbaldehyde Chemical compound ClC1=C(C=O)C=C2C=C(Cl)C(OC)=CC2=N1 FHJAVYLZHDPTCU-UHFFFAOYSA-N 0.000 description 8
- GYFKDNYSOQWVFX-UHFFFAOYSA-N CN1C(=O)C(N)=CC=C1C#N Chemical compound CN1C(=O)C(N)=CC=C1C#N GYFKDNYSOQWVFX-UHFFFAOYSA-N 0.000 description 8
- 101710102690 Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 8
- 101710175291 Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 238000000132 electrospray ionisation Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000010898 silica gel chromatography Methods 0.000 description 8
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 7
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 7
- PIRZNPJATAITHP-YFKPBYRVSA-N N[C@@H](C)C=1C(NC2=CC=C(C=C2N=1)Cl)=O Chemical compound N[C@@H](C)C=1C(NC2=CC=C(C=C2N=1)Cl)=O PIRZNPJATAITHP-YFKPBYRVSA-N 0.000 description 7
- PIRZNPJATAITHP-RXMQYKEDSA-N N[C@H](C)C=1C(NC2=CC=C(C=C2N=1)Cl)=O Chemical compound N[C@H](C)C=1C(NC2=CC=C(C=C2N=1)Cl)=O PIRZNPJATAITHP-RXMQYKEDSA-N 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 102200069708 rs121913499 Human genes 0.000 description 7
- 102200069690 rs121913500 Human genes 0.000 description 7
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- CHCQKMBNHJJUGQ-UHFFFAOYSA-N 6-chloro-7-methoxy-2-oxo-1h-quinoline-3-carbaldehyde Chemical compound N1C(=O)C(C=O)=CC2=C1C=C(OC)C(Cl)=C2 CHCQKMBNHJJUGQ-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- BVZDXYIZDUHRFP-QRPNPIFTSA-N Cl.CC(C)Oc1cc2[nH]c(=O)c(cc2cc1Cl)[C@H](C)N Chemical compound Cl.CC(C)Oc1cc2[nH]c(=O)c(cc2cc1Cl)[C@H](C)N BVZDXYIZDUHRFP-QRPNPIFTSA-N 0.000 description 6
- MWAPLNKKPXBXMY-UHFFFAOYSA-N Cl.CC(N)c1cc2cc(Cl)c(OCC3CC(F)(F)C3)cc2[nH]c1=O Chemical compound Cl.CC(N)c1cc2cc(Cl)c(OCC3CC(F)(F)C3)cc2[nH]c1=O MWAPLNKKPXBXMY-UHFFFAOYSA-N 0.000 description 6
- YXELGLWRIXSSCC-RGMNGODLSA-N Cl.COc1cc2[nH]c(=O)c(cc2cc1Cl)[C@H](C)N Chemical compound Cl.COc1cc2[nH]c(=O)c(cc2cc1Cl)[C@H](C)N YXELGLWRIXSSCC-RGMNGODLSA-N 0.000 description 6
- WVIWWSOFEVUQCX-QRPNPIFTSA-N Cl.C[C@H](N)c1cc2cc(Cl)c(OCC3CC3)cc2[nH]c1=O Chemical compound Cl.C[C@H](N)c1cc2cc(Cl)c(OCC3CC3)cc2[nH]c1=O WVIWWSOFEVUQCX-QRPNPIFTSA-N 0.000 description 6
- JPHJMUPPJBHIFR-VZXYPILPSA-N Cl.C[C@H](N)c1cc2cc(Cl)c(O[C@H](C)c3ccccn3)cc2[nH]c1=O Chemical compound Cl.C[C@H](N)c1cc2cc(Cl)c(O[C@H](C)c3ccccn3)cc2[nH]c1=O JPHJMUPPJBHIFR-VZXYPILPSA-N 0.000 description 6
- ATWXFDIFSBZTBS-JEDNCBNOSA-N Cl.C[C@H](N)c1cc2cc(Cl)cc(F)c2[nH]c1=O Chemical compound Cl.C[C@H](N)c1cc2cc(Cl)cc(F)c2[nH]c1=O ATWXFDIFSBZTBS-JEDNCBNOSA-N 0.000 description 6
- ABKJANKCECUUMP-UHFFFAOYSA-N ClC1=CC2=C(NC(=O)C(C=O)=C2)C=C1OCC1=NC=CC=C1 Chemical compound ClC1=CC2=C(NC(=O)C(C=O)=C2)C=C1OCC1=NC=CC=C1 ABKJANKCECUUMP-UHFFFAOYSA-N 0.000 description 6
- JLEFKXNYVOTIJZ-HXUWFJFHSA-N ClC1=NC2=CC=C(C=C2C=C1C=N[S@](=O)C(C)(C)C)Cl Chemical compound ClC1=NC2=CC=C(C=C2C=C1C=N[S@](=O)C(C)(C)C)Cl JLEFKXNYVOTIJZ-HXUWFJFHSA-N 0.000 description 6
- 229910019213 POCl3 Inorganic materials 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000019253 formic acid Nutrition 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- CCERQOYLJJULMD-UHFFFAOYSA-M magnesium;carbanide;chloride Chemical compound [CH3-].[Mg+2].[Cl-] CCERQOYLJJULMD-UHFFFAOYSA-M 0.000 description 6
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- FLCMDLBXJRJGQJ-UHFFFAOYSA-N (6-cyano-3-fluoropyridin-2-yl) acetate Chemical compound CC(=O)OC1=NC(C#N)=CC=C1F FLCMDLBXJRJGQJ-UHFFFAOYSA-N 0.000 description 5
- VZOIKHJINSYQJE-UHFFFAOYSA-N 1-ethyl-3-nitropyridin-2-one Chemical compound CCN1C=CC=C([N+]([O-])=O)C1=O VZOIKHJINSYQJE-UHFFFAOYSA-N 0.000 description 5
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 5
- MYEXYKZJHZEROP-UHFFFAOYSA-N 3-acetyl-6-chloro-1h-quinolin-2-one Chemical compound ClC1=CC=C2NC(=O)C(C(=O)C)=CC2=C1 MYEXYKZJHZEROP-UHFFFAOYSA-N 0.000 description 5
- HBRDRVKCYDCDLQ-UHFFFAOYSA-N ClC1=CC(=C(C(=C1)C=O)NC(OC(C)(C)C)=O)F Chemical compound ClC1=CC(=C(C(=C1)C=O)NC(OC(C)(C)C)=O)F HBRDRVKCYDCDLQ-UHFFFAOYSA-N 0.000 description 5
- AHEGGPDUSQVBOW-UHFFFAOYSA-N ClC1=CC(=C(C=C1O)NC(OC(C)(C)C)=O)C=O Chemical compound ClC1=CC(=C(C=C1O)NC(OC(C)(C)C)=O)C=O AHEGGPDUSQVBOW-UHFFFAOYSA-N 0.000 description 5
- VRJRRBSUVZMCDJ-UHFFFAOYSA-N ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)F Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)F VRJRRBSUVZMCDJ-UHFFFAOYSA-N 0.000 description 5
- XQUGUPHYBXIWSM-UHFFFAOYSA-N ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OCC1=NC=CC=C1 Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OCC1=NC=CC=C1 XQUGUPHYBXIWSM-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- ONPYRZSDSGLGKI-UHFFFAOYSA-N FC1=CC=C(NC1=O)C#N Chemical compound FC1=CC=C(NC1=O)C#N ONPYRZSDSGLGKI-UHFFFAOYSA-N 0.000 description 5
- KMYJMGMCXPPHMW-UHFFFAOYSA-N NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1CC(C1)(F)F)=O Chemical compound NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1CC(C1)(F)F)=O KMYJMGMCXPPHMW-UHFFFAOYSA-N 0.000 description 5
- RYJUJISGWZGAPM-YFKPBYRVSA-N N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O Chemical compound N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O RYJUJISGWZGAPM-YFKPBYRVSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- MQLFFYVXNZGOTC-QMMMGPOBSA-N ethyl (3s)-3-[(2-methylpropan-2-yl)oxycarbonylamino]butanoate Chemical compound CCOC(=O)C[C@H](C)NC(=O)OC(C)(C)C MQLFFYVXNZGOTC-QMMMGPOBSA-N 0.000 description 5
- ZKFCKQCYSAHBSY-UHFFFAOYSA-N n-(4-chloro-3-methoxyphenyl)acetamide Chemical compound COC1=CC(NC(C)=O)=CC=C1Cl ZKFCKQCYSAHBSY-UHFFFAOYSA-N 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- SFOFUPMHMIGQMT-UHFFFAOYSA-N tert-butyl n-(4-chloro-2-fluorophenyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1=CC=C(Cl)C=C1F SFOFUPMHMIGQMT-UHFFFAOYSA-N 0.000 description 5
- 238000001665 trituration Methods 0.000 description 5
- BIZDDVFNNQDHKJ-NUGSKGIGSA-N (NE)-N-[[6-chloro-7-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1H-quinolin-3-yl]methylidene]-2-methylpropane-2-sulfinamide Chemical compound CC(C)(C)S(=O)\N=C\C1=CC2=C(NC1=O)C=C(OCC1CC(F)(F)C1)C(Cl)=C2 BIZDDVFNNQDHKJ-NUGSKGIGSA-N 0.000 description 4
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 4
- VTFCXMNTJYSFIR-UHFFFAOYSA-N 2-amino-5-chloro-4-fluorobenzoic acid Chemical compound NC1=CC(F)=C(Cl)C=C1C(O)=O VTFCXMNTJYSFIR-UHFFFAOYSA-N 0.000 description 4
- CESUXLKAADQNTB-ZETCQYMHSA-N 2-methylpropane-2-sulfinamide Chemical compound CC(C)(C)[S@@](N)=O CESUXLKAADQNTB-ZETCQYMHSA-N 0.000 description 4
- UUSRDESYSIHKNV-UHFFFAOYSA-N 3-amino-1-ethylpyridin-2-one Chemical compound CCN1C=CC=C(N)C1=O UUSRDESYSIHKNV-UHFFFAOYSA-N 0.000 description 4
- YBBWQEUGDJCNLZ-UHFFFAOYSA-N 4-chloro-3-(pyridin-2-ylmethoxy)aniline Chemical compound NC1=CC=C(Cl)C(OCC=2N=CC=CC=2)=C1 YBBWQEUGDJCNLZ-UHFFFAOYSA-N 0.000 description 4
- QRZBEHUXMWTNTE-UHFFFAOYSA-N 4-chloro-3-propan-2-yloxyaniline Chemical compound CC(C)OC1=CC(N)=CC=C1Cl QRZBEHUXMWTNTE-UHFFFAOYSA-N 0.000 description 4
- JSCNCRWPXOTDDZ-UHFFFAOYSA-N 5-amino-2-chlorophenol Chemical compound NC1=CC=C(Cl)C(O)=C1 JSCNCRWPXOTDDZ-UHFFFAOYSA-N 0.000 description 4
- CBLORNUIUVMGAS-UHFFFAOYSA-N 6-chloro-2-oxo-1h-quinoline-3-carbaldehyde Chemical compound N1C(=O)C(C=O)=CC2=CC(Cl)=CC=C21 CBLORNUIUVMGAS-UHFFFAOYSA-N 0.000 description 4
- LHXGPAYMNWOQRC-UHFFFAOYSA-N BrC1=CN=C(C(N1C)=O)Cl Chemical compound BrC1=CN=C(C(N1C)=O)Cl LHXGPAYMNWOQRC-UHFFFAOYSA-N 0.000 description 4
- YDJIPKLGVCGHRQ-QMMMGPOBSA-N BrC=1N(C(C(=NC=1)N[C@@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O)=O)C Chemical compound BrC=1N(C(C(=NC=1)N[C@@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O)=O)C YDJIPKLGVCGHRQ-QMMMGPOBSA-N 0.000 description 4
- CLCXVBJWWVQTJR-UHFFFAOYSA-N C(#N)C1=[N+](C=C(C=C1)F)[O-] Chemical compound C(#N)C1=[N+](C=C(C=C1)F)[O-] CLCXVBJWWVQTJR-UHFFFAOYSA-N 0.000 description 4
- XEJYVBUIYXRIJD-UHFFFAOYSA-N CC(=O)C1=CC2=C(NC1=O)N=CC(Cl)=C2 Chemical compound CC(=O)C1=CC2=C(NC1=O)N=CC(Cl)=C2 XEJYVBUIYXRIJD-UHFFFAOYSA-N 0.000 description 4
- LVHIOLJVOOYKFW-UHFFFAOYSA-N CC(NS(=O)C(C)(C)C)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 Chemical compound CC(NS(=O)C(C)(C)C)C1=CC2=C(NC1=O)C=C(OCC1=NC=CC=C1)C(Cl)=C2 LVHIOLJVOOYKFW-UHFFFAOYSA-N 0.000 description 4
- PGARYZLWHHCLIV-UHFFFAOYSA-N CC(NS(=O)C(C)(C)C)C1=CC2=C(NC1=O)C=C(OCC1CC(F)(F)C1)C(Cl)=C2 Chemical compound CC(NS(=O)C(C)(C)C)C1=CC2=C(NC1=O)C=C(OCC1CC(F)(F)C1)C(Cl)=C2 PGARYZLWHHCLIV-UHFFFAOYSA-N 0.000 description 4
- LHLSDOSFSYYBKD-UHFFFAOYSA-N COC1=CC2=C(C=C1Cl)C=C(C(C)N)C(=O)N2 Chemical compound COC1=CC2=C(C=C1Cl)C=C(C(C)N)C(=O)N2 LHLSDOSFSYYBKD-UHFFFAOYSA-N 0.000 description 4
- KRPSDHINKYSGIM-UHFFFAOYSA-N COC1=CC2=C(C=C1Cl)C=C(C(C)NS(=O)C(C)(C)C)C(=O)N2 Chemical compound COC1=CC2=C(C=C1Cl)C=C(C(C)NS(=O)C(C)(C)C)C(=O)N2 KRPSDHINKYSGIM-UHFFFAOYSA-N 0.000 description 4
- YDZSNNIBZCALCA-UHFFFAOYSA-N COC1=NC2=CC(OC(C)C)=C(Cl)C=C2C=C1C(C)O Chemical compound COC1=NC2=CC(OC(C)C)=C(Cl)C=C2C=C1C(C)O YDZSNNIBZCALCA-UHFFFAOYSA-N 0.000 description 4
- ITDRZNHAIGJERV-UHFFFAOYSA-N Cl.CC(N)c1cc2cc(Cl)c(F)cc2[nH]c1=O Chemical compound Cl.CC(N)c1cc2cc(Cl)c(F)cc2[nH]c1=O ITDRZNHAIGJERV-UHFFFAOYSA-N 0.000 description 4
- QDHLVEFZTAWZFZ-UHFFFAOYSA-N Cl.CC(N)c1cc2cc(Cl)c(OCc3ccccn3)cc2[nH]c1=O Chemical compound Cl.CC(N)c1cc2cc(Cl)c(OCc3ccccn3)cc2[nH]c1=O QDHLVEFZTAWZFZ-UHFFFAOYSA-N 0.000 description 4
- YXELGLWRIXSSCC-UHFFFAOYSA-N Cl.COc1cc2[nH]c(=O)c(cc2cc1Cl)C(C)N Chemical compound Cl.COc1cc2[nH]c(=O)c(cc2cc1Cl)C(C)N YXELGLWRIXSSCC-UHFFFAOYSA-N 0.000 description 4
- ITDRZNHAIGJERV-NUBCRITNSA-N Cl.C[C@@H](N)c1cc2cc(Cl)c(F)cc2[nH]c1=O Chemical compound Cl.C[C@@H](N)c1cc2cc(Cl)c(F)cc2[nH]c1=O ITDRZNHAIGJERV-NUBCRITNSA-N 0.000 description 4
- FRSSQDHTANMVEQ-UHFFFAOYSA-N ClC1=C(C=C(C=C1)NC(C)=O)OC(C)C Chemical compound ClC1=C(C=C(C=C1)NC(C)=O)OC(C)C FRSSQDHTANMVEQ-UHFFFAOYSA-N 0.000 description 4
- WPYMRXICXOBISP-UHFFFAOYSA-N ClC1=C(C=C(C=C1)NC(C)=O)OCC1=NC=CC=C1 Chemical compound ClC1=C(C=C(C=C1)NC(C)=O)OCC1=NC=CC=C1 WPYMRXICXOBISP-UHFFFAOYSA-N 0.000 description 4
- SCJODNYWSYWDJV-UHFFFAOYSA-N ClC1=C(C=C(C=C1)NC(C)=O)OCC1CC(C1)(F)F Chemical compound ClC1=C(C=C(C=C1)NC(C)=O)OCC1CC(C1)(F)F SCJODNYWSYWDJV-UHFFFAOYSA-N 0.000 description 4
- BYBZTCCZRUAWLM-UHFFFAOYSA-N ClC1=CC(=C(C=C1OCC1CC1)NC(OC(C)(C)C)=O)C=O Chemical compound ClC1=CC(=C(C=C1OCC1CC1)NC(OC(C)(C)C)=O)C=O BYBZTCCZRUAWLM-UHFFFAOYSA-N 0.000 description 4
- ZRIIHVWEDLWTPO-GFCCVEGCSA-N ClC1=CC(=C(C=C1O[C@H](C)C1=NC=CC=C1)NC(OC(C)(C)C)=O)C=O Chemical compound ClC1=CC(=C(C=C1O[C@H](C)C1=NC=CC=C1)NC(OC(C)(C)C)=O)C=O ZRIIHVWEDLWTPO-GFCCVEGCSA-N 0.000 description 4
- BNOGGNOLUIPDCQ-UHFFFAOYSA-N ClC1=CC=C2N=C(C(=NC2=C1)C(=O)OC)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)C(=O)OC)OC BNOGGNOLUIPDCQ-UHFFFAOYSA-N 0.000 description 4
- JWJWGYAEABOLJI-UHFFFAOYSA-N ClC1=NC2=CC(=C(C=C2C=C1C(C)NS(=O)C(C)(C)C)Cl)F Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C(C)NS(=O)C(C)(C)C)Cl)F JWJWGYAEABOLJI-UHFFFAOYSA-N 0.000 description 4
- FJTNKFHLKWSGGA-UHFFFAOYSA-N ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OC(C)C Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OC(C)C FJTNKFHLKWSGGA-UHFFFAOYSA-N 0.000 description 4
- CHOOGPRDZJEXNF-UHFFFAOYSA-N ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OCC1CC(C1)(F)F Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C=O)Cl)OCC1CC(C1)(F)F CHOOGPRDZJEXNF-UHFFFAOYSA-N 0.000 description 4
- XSRROSHWKBHRJY-UHFFFAOYSA-N ClC=1C=C2C=C(C(=NC2=CC=1OC(C)C)OC)C=O Chemical compound ClC=1C=C2C=C(C(=NC2=CC=1OC(C)C)OC)C=O XSRROSHWKBHRJY-UHFFFAOYSA-N 0.000 description 4
- YDUCTGVVWCCAKG-CWMRNNLJSA-N ClC=1C=C2C=C(C(NC2=CC=1F)=O)[C@@H](C)N[S@](=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(NC2=CC=1F)=O)[C@@H](C)N[S@](=O)C(C)(C)C YDUCTGVVWCCAKG-CWMRNNLJSA-N 0.000 description 4
- 101000960235 Dictyostelium discoideum Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 4
- ZGGWAVYGMPMZOC-UHFFFAOYSA-N FC1(F)CC(COC2=CC3=C(C=C2Cl)C=C(C=O)C(=O)N3)C1 Chemical compound FC1(F)CC(COC2=CC3=C(C=C2Cl)C=C(C=O)C(=O)N3)C1 ZGGWAVYGMPMZOC-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- RYJUJISGWZGAPM-RXMQYKEDSA-N N[C@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O Chemical compound N[C@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O RYJUJISGWZGAPM-RXMQYKEDSA-N 0.000 description 4
- LHLSDOSFSYYBKD-ZCFIWIBFSA-N N[C@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OC)=O Chemical compound N[C@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OC)=O LHLSDOSFSYYBKD-ZCFIWIBFSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000004677 hydrates Chemical class 0.000 description 4
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 4
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- LJYZRPHMWHAKCL-UHFFFAOYSA-N n-(4-chloro-3-fluorophenyl)acetamide Chemical compound CC(=O)NC1=CC=C(Cl)C(F)=C1 LJYZRPHMWHAKCL-UHFFFAOYSA-N 0.000 description 4
- VEMQUFHWJFGZCB-UHFFFAOYSA-N n-(6-cyanopyridin-3-yl)-2,2,2-trifluoroacetamide Chemical compound FC(F)(F)C(=O)NC1=CC=C(C#N)N=C1 VEMQUFHWJFGZCB-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 239000011369 resultant mixture Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- WVQSNKUQKRPUID-UHFFFAOYSA-N tert-butyl N-[3-[tert-butyl(dimethyl)silyl]oxy-4-chlorophenyl]carbamate Chemical compound [Si](C)(C)(C(C)(C)C)OC=1C=C(C=CC=1Cl)NC(OC(C)(C)C)=O WVQSNKUQKRPUID-UHFFFAOYSA-N 0.000 description 4
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 4
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Chemical compound C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 150000003738 xylenes Chemical class 0.000 description 4
- DSDGBAKEOMMSBA-FOKLQQMPSA-N (NE)-N-[[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1H-quinolin-3-yl]methylidene]-2-methylpropane-2-sulfinamide Chemical compound ClC=1C=C2C=C(C(NC2=CC=1OCC1=NC=CC=C1)=O)\C=N\S(=O)C(C)(C)C DSDGBAKEOMMSBA-FOKLQQMPSA-N 0.000 description 3
- IUZJFCDYXXLQGV-FDMCQNKASA-N (NE,R)-N-[(6-chloro-7-fluoro-2-oxo-1H-quinolin-3-yl)methylidene]-2-methylpropane-2-sulfinamide Chemical compound ClC=1C=C2C=C(C(NC2=CC=1F)=O)\C=N\[S@](=O)C(C)(C)C IUZJFCDYXXLQGV-FDMCQNKASA-N 0.000 description 3
- XFRBXZCBOYNMJP-UHFFFAOYSA-N 2,2,6-trimethyl-1,3-dioxin-4-one Chemical compound CC1=CC(=O)OC(C)(C)O1 XFRBXZCBOYNMJP-UHFFFAOYSA-N 0.000 description 3
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- HIZUSIWGVJPMFD-UHFFFAOYSA-N C(C)(=O)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O Chemical compound C(C)(=O)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O HIZUSIWGVJPMFD-UHFFFAOYSA-N 0.000 description 3
- HHPNJXHDOSVPBZ-UHFFFAOYSA-N CC(=O)C1=CC2=CC(Cl)=C(OCC3=NC=CC=C3)C=C2N=C1Cl Chemical compound CC(=O)C1=CC2=CC(Cl)=C(OCC3=NC=CC=C3)C=C2N=C1Cl HHPNJXHDOSVPBZ-UHFFFAOYSA-N 0.000 description 3
- HUUXACSGKZKEEJ-UHFFFAOYSA-N COC1=C(Cl)C=C2C=C(C(C)O)C(OC)=NC2=C1 Chemical compound COC1=C(Cl)C=C2C=C(C(C)O)C(OC)=NC2=C1 HUUXACSGKZKEEJ-UHFFFAOYSA-N 0.000 description 3
- LHLSDOSFSYYBKD-LURJTMIESA-N COC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2 Chemical compound COC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2 LHLSDOSFSYYBKD-LURJTMIESA-N 0.000 description 3
- QBNUZSIZIMHQIZ-UHFFFAOYSA-N COC1=NC2=CC(OC(C)C)=C(Cl)C=C2C=C1C(C)=O Chemical compound COC1=NC2=CC(OC(C)C)=C(Cl)C=C2C=C1C(C)=O QBNUZSIZIMHQIZ-UHFFFAOYSA-N 0.000 description 3
- IBJFVMNXBYUTKZ-RGMNGODLSA-N C[C@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.Cl.S Chemical compound C[C@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.Cl.S IBJFVMNXBYUTKZ-RGMNGODLSA-N 0.000 description 3
- YDUCTGVVWCCAKG-ZCAPAMDOSA-N C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=C(F)C=C2NC1=O Chemical compound C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=C(F)C=C2NC1=O YDUCTGVVWCCAKG-ZCAPAMDOSA-N 0.000 description 3
- VFWSPFMWUCJTDA-PVBMHHQDSA-N ClC1=CC=C2N=C(C(=NC2=C1)[C@@H](C)N[S@](=O)C(C)(C)C)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)[C@@H](C)N[S@](=O)C(C)(C)C)OC VFWSPFMWUCJTDA-PVBMHHQDSA-N 0.000 description 3
- HRCGIOZSRAFZMC-CJRTWVEFSA-N ClC1=CC=C2N=C(C(=NC2=C1)\C=N\[S@@](=O)C(C)(C)C)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)\C=N\[S@@](=O)C(C)(C)C)OC HRCGIOZSRAFZMC-CJRTWVEFSA-N 0.000 description 3
- HRCGIOZSRAFZMC-ZXSWEOGUSA-N ClC1=CC=C2N=C(C(=NC2=C1)\C=N\[S@](=O)C(C)(C)C)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)\C=N\[S@](=O)C(C)(C)C)OC HRCGIOZSRAFZMC-ZXSWEOGUSA-N 0.000 description 3
- DPVKZKWOADUGKX-FPVGNUTFSA-N ClC1=NC2=CC=C(C=C2C=C1[C@H](C)N[S@@](=O)C(C)(C)C)Cl Chemical compound ClC1=NC2=CC=C(C=C2C=C1[C@H](C)N[S@@](=O)C(C)(C)C)Cl DPVKZKWOADUGKX-FPVGNUTFSA-N 0.000 description 3
- DPVKZKWOADUGKX-JLTPVHFHSA-N ClC1=NC2=CC=C(C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C)Cl Chemical compound ClC1=NC2=CC=C(C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C)Cl DPVKZKWOADUGKX-JLTPVHFHSA-N 0.000 description 3
- XTAPZPVSEIXIJA-UHFFFAOYSA-N ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)C(C)=O Chemical compound ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)C(C)=O XTAPZPVSEIXIJA-UHFFFAOYSA-N 0.000 description 3
- FOGHKHJERJYNIG-UHFFFAOYSA-N ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)C=O Chemical compound ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)C=O FOGHKHJERJYNIG-UHFFFAOYSA-N 0.000 description 3
- FZMXICHVAHYYBY-LPSMDMKWSA-N ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)\C(\C)=N\[S@](=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)\C(\C)=N\[S@](=O)C(C)(C)C FZMXICHVAHYYBY-LPSMDMKWSA-N 0.000 description 3
- JAPRUJCSHPIDJU-AOUSDQRYSA-N ClC=1C=C2C=C(C(NC2=CC=1)=O)[C@@H](C)N[S@](=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(NC2=CC=1)=O)[C@@H](C)N[S@](=O)C(C)(C)C JAPRUJCSHPIDJU-AOUSDQRYSA-N 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 101000599885 Dictyostelium discoideum Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- QAUBKACTSJSWNK-UHFFFAOYSA-N FC1=CC2=C(C=C1Cl)C=C(C=O)C(=O)N2 Chemical compound FC1=CC2=C(C=C1Cl)C=C(C=O)C(=O)N2 QAUBKACTSJSWNK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- RYJUJISGWZGAPM-UHFFFAOYSA-N NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O Chemical compound NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)F)=O RYJUJISGWZGAPM-UHFFFAOYSA-N 0.000 description 3
- JVLZRHQEGOUWTG-UHFFFAOYSA-N NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1=NC=CC=C1)=O Chemical compound NC(C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1=NC=CC=C1)=O JVLZRHQEGOUWTG-UHFFFAOYSA-N 0.000 description 3
- NNSNVNVXUVDZMJ-UHFFFAOYSA-N NC1=C(C=C(C(=C1)F)Cl)CO Chemical compound NC1=C(C=C(C(=C1)F)Cl)CO NNSNVNVXUVDZMJ-UHFFFAOYSA-N 0.000 description 3
- PPZKIKDYHUPMON-UHFFFAOYSA-N NC1=C(C=O)C=C(C(=C1)F)Cl Chemical compound NC1=C(C=O)C=C(C(=C1)F)Cl PPZKIKDYHUPMON-UHFFFAOYSA-N 0.000 description 3
- MSQPSKIEXILZBQ-UHFFFAOYSA-N NC1=CC=C(NC1=O)C#N Chemical compound NC1=CC=C(NC1=O)C#N MSQPSKIEXILZBQ-UHFFFAOYSA-N 0.000 description 3
- BQVMANHTFVFQTD-YFKPBYRVSA-N N[C@@H](C)C=1C(NC2=C(C=C(C=C2C=1)Cl)F)=O Chemical compound N[C@@H](C)C=1C(NC2=C(C=C(C=C2C=1)Cl)F)=O BQVMANHTFVFQTD-YFKPBYRVSA-N 0.000 description 3
- JTXIDPMONSIPLC-QMMMGPOBSA-N N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1CC1)=O Chemical compound N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1CC1)=O JTXIDPMONSIPLC-QMMMGPOBSA-N 0.000 description 3
- XAQHPLBJLOMYJW-WDEREUQCSA-N N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)O[C@H](C)C1=NC=CC=C1)=O Chemical compound N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)O[C@H](C)C1=NC=CC=C1)=O XAQHPLBJLOMYJW-WDEREUQCSA-N 0.000 description 3
- ZUQJYZAPOPVHNH-ZCFIWIBFSA-N N[C@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O Chemical compound N[C@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O ZUQJYZAPOPVHNH-ZCFIWIBFSA-N 0.000 description 3
- 208000009277 Neuroectodermal Tumors Diseases 0.000 description 3
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 3
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000012131 assay buffer Substances 0.000 description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 3
- 229940043279 diisopropylamine Drugs 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- XGZNHFPFJRZBBT-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO.CCO.CCO.CCO XGZNHFPFJRZBBT-UHFFFAOYSA-N 0.000 description 3
- JSIBGWARTZZBOB-UHFFFAOYSA-N ethyl 3-(4-chloro-2-nitroanilino)-3-oxopropanoate Chemical compound CCOC(=O)CC(=O)NC1=CC=C(Cl)C=C1[N+]([O-])=O JSIBGWARTZZBOB-UHFFFAOYSA-N 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 208000007312 paraganglioma Diseases 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- QVGWXBORBLGQDV-CAOOACKPSA-N (NE)-N-[(6-chloro-7-methoxy-2-oxo-1H-quinolin-3-yl)methylidene]-2-methylpropane-2-sulfinamide Chemical compound COC1=CC2=C(C=C1Cl)C=C(\C=N\S(=O)C(C)(C)C)C(=O)N2 QVGWXBORBLGQDV-CAOOACKPSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- HBEDSQVIWPRPAY-UHFFFAOYSA-N 2,3-dihydrobenzofuran Chemical compound C1=CC=C2OCCC2=C1 HBEDSQVIWPRPAY-UHFFFAOYSA-N 0.000 description 2
- WZUNMOMEOMPYKZ-UHFFFAOYSA-N 2,6-dichloroquinoline-3-carbaldehyde Chemical compound N1=C(Cl)C(C=O)=CC2=CC(Cl)=CC=C21 WZUNMOMEOMPYKZ-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- IHSBTHXDCVIBPF-UHFFFAOYSA-N 3-amino-1-methylpyridin-2-one Chemical compound CN1C=CC=C(N)C1=O IHSBTHXDCVIBPF-UHFFFAOYSA-N 0.000 description 2
- DLYFJXPEKKLNBK-UHFFFAOYSA-N 3-fluoro-1-methylpyridin-2-one Chemical compound CN1C=CC=C(F)C1=O DLYFJXPEKKLNBK-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 2
- JAJDBQBXSDCQRR-QRPNPIFTSA-N CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2.Cl.S Chemical compound CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2.Cl.S JAJDBQBXSDCQRR-QRPNPIFTSA-N 0.000 description 2
- DUSPYBLEKJHGGH-GWQKEKGPSA-N COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1[C@H](C)N[S@](=O)C(C)(C)C Chemical compound COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1[C@H](C)N[S@](=O)C(C)(C)C DUSPYBLEKJHGGH-GWQKEKGPSA-N 0.000 description 2
- JAPRUJCSHPIDJU-FPVGNUTFSA-N C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=C(NC1=O)C=CC(Cl)=C2 Chemical compound C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=C(NC1=O)C=CC(Cl)=C2 JAPRUJCSHPIDJU-FPVGNUTFSA-N 0.000 description 2
- VFWSPFMWUCJTDA-AUADJRAKSA-N ClC1=CC=C2N=C(C(=NC2=C1)[C@H](C)N[S@@](=O)C(C)(C)C)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)[C@H](C)N[S@@](=O)C(C)(C)C)OC VFWSPFMWUCJTDA-AUADJRAKSA-N 0.000 description 2
- ARIJVXNQTWXDNM-CAMPQQCRSA-N ClC1=NC2=CC(=C(C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C)Cl)OCC1=NC=CC=C1 Chemical compound ClC1=NC2=CC(=C(C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C)Cl)OCC1=NC=CC=C1 ARIJVXNQTWXDNM-CAMPQQCRSA-N 0.000 description 2
- GDXADAPUWMDNOY-VMRVFZDPSA-N ClC1=NC2=CC(=C(C=C2C=C1\C(\C)=N\[S@](=O)C(C)(C)C)Cl)OCC1=NC=CC=C1 Chemical compound ClC1=NC2=CC(=C(C=C2C=C1\C(\C)=N\[S@](=O)C(C)(C)C)Cl)OCC1=NC=CC=C1 GDXADAPUWMDNOY-VMRVFZDPSA-N 0.000 description 2
- IKKAMLGXUPATRC-CNHKJKLMSA-N ClC1=NC2=CC(=C(C=C2C=C1\C=N\S(=O)C(C)(C)C)Cl)F Chemical compound ClC1=NC2=CC(=C(C=C2C=C1\C=N\S(=O)C(C)(C)C)Cl)F IKKAMLGXUPATRC-CNHKJKLMSA-N 0.000 description 2
- DPVKZKWOADUGKX-AOUSDQRYSA-N ClC1=NC2=CC=C(C=C2C=C1[C@@H](C)N[S@](=O)C(C)(C)C)Cl Chemical compound ClC1=NC2=CC=C(C=C2C=C1[C@@H](C)N[S@](=O)C(C)(C)C)Cl DPVKZKWOADUGKX-AOUSDQRYSA-N 0.000 description 2
- QVGWXBORBLGQDV-UHFFFAOYSA-N ClC=1C=C2C=C(C(NC2=CC=1OC)=O)C=NS(=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(NC2=CC=1OC)=O)C=NS(=O)C(C)(C)C QVGWXBORBLGQDV-UHFFFAOYSA-N 0.000 description 2
- UUSAEBBPHICIAN-PPRQPISWSA-N ClC=1C=C2C=C(C(NC2=NC=1)=O)[C@H](C)N[S@@](=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(NC2=NC=1)=O)[C@H](C)N[S@@](=O)C(C)(C)C UUSAEBBPHICIAN-PPRQPISWSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 229910004373 HOAc Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- ARUDLFGINFYIHP-UHFFFAOYSA-N N#CC(N=C1)=CC=C1N(C(C(F)(F)F)=O)O Chemical compound N#CC(N=C1)=CC=C1N(C(C(F)(F)F)=O)O ARUDLFGINFYIHP-UHFFFAOYSA-N 0.000 description 2
- IKKAMLGXUPATRC-UHFFFAOYSA-N N-[(2,6-dichloro-7-fluoroquinolin-3-yl)methylidene]-2-methylpropane-2-sulfinamide Chemical compound ClC1=NC2=CC(=C(C=C2C=C1C=NS(=O)C(C)(C)C)Cl)F IKKAMLGXUPATRC-UHFFFAOYSA-N 0.000 description 2
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- MYPXNRNIOHTHBN-QMMMGPOBSA-N N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OC(C)C)=O Chemical compound N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OC(C)C)=O MYPXNRNIOHTHBN-QMMMGPOBSA-N 0.000 description 2
- JVLZRHQEGOUWTG-JTQLQIEISA-N N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1=NC=CC=C1)=O Chemical compound N[C@@H](C)C=1C(NC2=CC(=C(C=C2C=1)Cl)OCC1=NC=CC=C1)=O JVLZRHQEGOUWTG-JTQLQIEISA-N 0.000 description 2
- ZUQJYZAPOPVHNH-LURJTMIESA-N N[C@@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O Chemical compound N[C@@H](C)C=1C(NC2=CC=C(C=C2C=1)Cl)=O ZUQJYZAPOPVHNH-LURJTMIESA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002543 antimycotic Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000001502 aryl halides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 239000004305 biphenyl Chemical group 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 239000000460 chlorine Chemical group 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000007824 enzymatic assay Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 235000001727 glucose Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229910052740 iodine Chemical group 0.000 description 2
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 2
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000005895 oxidative decarboxylation reaction Methods 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 102200093149 rs77938727 Human genes 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- PPHIIIRFJKDTLG-LURJTMIESA-N (1s)-1-pyridin-2-ylethanol Chemical compound C[C@H](O)C1=CC=CC=N1 PPHIIIRFJKDTLG-LURJTMIESA-N 0.000 description 1
- MDZKTVVUZBIKGI-UHFFFAOYSA-N (3,3-difluorocyclobutyl)methanol Chemical compound OCC1CC(F)(F)C1 MDZKTVVUZBIKGI-UHFFFAOYSA-N 0.000 description 1
- OQEBBZSWEGYTPG-VKHMYHEASA-N (3s)-3-aminobutanoic acid Chemical compound C[C@H](N)CC(O)=O OQEBBZSWEGYTPG-VKHMYHEASA-N 0.000 description 1
- KZEDPVFJLQLDIZ-UHFFFAOYSA-N (5-diphenylphosphanyl-9,9-dimethylxanthen-4-yl)-diphenylphosphane Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1.C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZEDPVFJLQLDIZ-UHFFFAOYSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- IDNCJNZOOBNEAQ-LWCFKDAVSA-N *.*.*.*.*.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.CC(C)(C)[S@](N)=O.C[C@@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.C[C@@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.Cl.I[I-2].O=CC1=CC2=C(C=CC(Cl)=C2)N=C1Cl Chemical compound *.*.*.*.*.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.CC(C)(C)[S@](N)=O.C[C@@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.C[C@@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.Cl.I[I-2].O=CC1=CC2=C(C=CC(Cl)=C2)N=C1Cl IDNCJNZOOBNEAQ-LWCFKDAVSA-N 0.000 description 1
- VITCGVMCDDUHHL-FFFYBEAPSA-N *.*.*.B.C/C(=N\[S@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(C)(C)[S@](N)=O.CC1=CC(=O)OC(C)(C)O1.C[C@@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@@H](N[S@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[I-2].NC1=CC=C(Cl)C=C1C=O.S.[NaH] Chemical compound *.*.*.B.C/C(=N\[S@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(C)(C)[S@](N)=O.CC1=CC(=O)OC(C)(C)O1.C[C@@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@@H](N[S@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[I-2].NC1=CC=C(Cl)C=C1C=O.S.[NaH] VITCGVMCDDUHHL-FFFYBEAPSA-N 0.000 description 1
- DNROZPFSDPMPMU-DZUHQICVSA-N *.*.*.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.CC(C)(C)[S@](N)=O.C[C@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.C[C@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.Cl.I[IH-].O=CC1=CC2=C(C=CC(Cl)=C2)N=C1Cl.S.S Chemical compound *.*.*.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.CC(C)(C)[S@](N)=O.C[C@H](N)C1=CC2=C(C=CC(Cl)=C2)NC1=O.C[C@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.Cl.I[IH-].O=CC1=CC2=C(C=CC(Cl)=C2)N=C1Cl.S.S DNROZPFSDPMPMU-DZUHQICVSA-N 0.000 description 1
- JAPRUJCSHPIDJU-AVBQWDGQSA-N *.*.C[C@@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)NC1=O Chemical compound *.*.C[C@@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)NC1=O JAPRUJCSHPIDJU-AVBQWDGQSA-N 0.000 description 1
- JLEFKXNYVOTIJZ-CFIBSBMNSA-N *.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl Chemical compound *.CC(C)(C)[S@@](=O)/N=C/C1=CC2=C(C=CC(Cl)=C2)N=C1Cl JLEFKXNYVOTIJZ-CFIBSBMNSA-N 0.000 description 1
- OGXPNQGGKIKKAR-UHFFFAOYSA-N *.CC(C)C1=CC2=C(C=CC(Cl)=C2)NC1=O Chemical compound *.CC(C)C1=CC2=C(C=CC(Cl)=C2)NC1=O OGXPNQGGKIKKAR-UHFFFAOYSA-N 0.000 description 1
- YFABVWPKKPXJJV-HCFANDDOSA-N *.COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1/C(C)=N/[S@](=O)C(C)(C)C Chemical compound *.COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1/C(C)=N/[S@](=O)C(C)(C)C YFABVWPKKPXJJV-HCFANDDOSA-N 0.000 description 1
- GBULALIKFJIMSL-CUHMAXLESA-N *.COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1[C@H](C)N[S@](=O)C(C)(C)C.S Chemical compound *.COC1=NC2=C(C=C(Cl)C(OC(C)C)=C2)C=C1[C@H](C)N[S@](=O)C(C)(C)C.S GBULALIKFJIMSL-CUHMAXLESA-N 0.000 description 1
- PSJOPOHINULFGI-XGEDGTBLSA-N *.COC1=NC2=CC(OC)=C(Cl)C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C.S Chemical compound *.COC1=NC2=CC(OC)=C(Cl)C=C2C=C1[C@H](C)N[S@](=O)C(C)(C)C.S PSJOPOHINULFGI-XGEDGTBLSA-N 0.000 description 1
- UARZZVSCXHGMAW-VZXYPILPSA-N *.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=NC=CC=C3)C=C2NC1=O.S Chemical compound *.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=NC=CC=C3)C=C2NC1=O.S UARZZVSCXHGMAW-VZXYPILPSA-N 0.000 description 1
- RUGCSPXPQLDCOB-ZGVCQXROSA-N *.C[C@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.S Chemical compound *.C[C@H](NS(=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)N=C1Cl.S RUGCSPXPQLDCOB-ZGVCQXROSA-N 0.000 description 1
- ZTZYWTHDUKLKEP-IASWDBPISA-N *.C[C@H](N[S@](=O)C(C)(C)C)C1=CC2=C(C=C(OCC3=CC=CC=N3)C(Cl)=C2)N=C1Cl.S Chemical compound *.C[C@H](N[S@](=O)C(C)(C)C)C1=CC2=C(C=C(OCC3=CC=CC=N3)C(Cl)=C2)N=C1Cl.S ZTZYWTHDUKLKEP-IASWDBPISA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- OIQOAYVCKAHSEJ-UHFFFAOYSA-N 2-[2,3-bis(2-hydroxyethoxy)propoxy]ethanol;hexadecanoic acid;octadecanoic acid Chemical compound OCCOCC(OCCO)COCCO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O OIQOAYVCKAHSEJ-UHFFFAOYSA-N 0.000 description 1
- LGPVTNAJFDUWLF-UHFFFAOYSA-N 2-amino-4-fluorobenzoic acid Chemical compound NC1=CC(F)=CC=C1C(O)=O LGPVTNAJFDUWLF-UHFFFAOYSA-N 0.000 description 1
- KUIFMGITZFDQMP-UHFFFAOYSA-N 2-amino-5-chlorobenzaldehyde Chemical compound NC1=CC=C(Cl)C=C1C=O KUIFMGITZFDQMP-UHFFFAOYSA-N 0.000 description 1
- IJLNTKNOWITPHC-UHFFFAOYSA-N 2-amino-5-chloropyridine-3-carbaldehyde Chemical compound NC1=NC=C(Cl)C=C1C=O IJLNTKNOWITPHC-UHFFFAOYSA-N 0.000 description 1
- NAMYKGVDVNBCFQ-UHFFFAOYSA-N 2-bromopropane Chemical compound CC(C)Br NAMYKGVDVNBCFQ-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- IDUSJBBWEKNWAK-UHFFFAOYSA-N 3,4-dihydro-2h-1,2-benzothiazine Chemical compound C1=CC=C2SNCCC2=C1 IDUSJBBWEKNWAK-UHFFFAOYSA-N 0.000 description 1
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-Aminobutanoic acid Natural products CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical compound C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 description 1
- ITDRZNHAIGJERV-JEDNCBNOSA-N 3-[(1S)-1-aminoethyl]-6-chloro-7-fluoro-1H-quinolin-2-one hydrochloride Chemical compound Cl.C[C@H](N)c1cc2cc(Cl)c(F)cc2[nH]c1=O ITDRZNHAIGJERV-JEDNCBNOSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-M 3-carboxynaphthalen-2-olate Chemical compound C1=CC=C2C=C(C([O-])=O)C(O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-M 0.000 description 1
- BOAFCICMVMFLIT-UHFFFAOYSA-N 3-nitro-1h-pyridin-2-one Chemical compound OC1=NC=CC=C1[N+]([O-])=O BOAFCICMVMFLIT-UHFFFAOYSA-N 0.000 description 1
- LNKBDFVSILQKSI-UHFFFAOYSA-N 4-Chloro-3-methoxyaniline Chemical compound COC1=CC(N)=CC=C1Cl LNKBDFVSILQKSI-UHFFFAOYSA-N 0.000 description 1
- CSFDTBRRIBJILD-UHFFFAOYSA-N 4-chloro-2-fluoroaniline Chemical compound NC1=CC=C(Cl)C=C1F CSFDTBRRIBJILD-UHFFFAOYSA-N 0.000 description 1
- PBGKNXWGYQPUJK-UHFFFAOYSA-N 4-chloro-2-nitroaniline Chemical compound NC1=CC=C(Cl)C=C1[N+]([O-])=O PBGKNXWGYQPUJK-UHFFFAOYSA-N 0.000 description 1
- ACMJJQYSPUPMPN-UHFFFAOYSA-N 4-chloro-3-fluoroaniline Chemical compound NC1=CC=C(Cl)C(F)=C1 ACMJJQYSPUPMPN-UHFFFAOYSA-N 0.000 description 1
- VERUFXOALATMPS-UHFFFAOYSA-N 5,5-diamino-2-(2-phenylethenyl)cyclohex-3-ene-1,1-disulfonic acid Chemical compound C1=CC(N)(N)CC(S(O)(=O)=O)(S(O)(=O)=O)C1C=CC1=CC=CC=C1 VERUFXOALATMPS-UHFFFAOYSA-N 0.000 description 1
- IFOXWHQFTSCNQB-UHFFFAOYSA-N 5-aminopyridine-2-carbonitrile Chemical compound NC1=CC=C(C#N)N=C1 IFOXWHQFTSCNQB-UHFFFAOYSA-N 0.000 description 1
- BHXHRMVSUUPOLX-UHFFFAOYSA-N 5-fluoropyridine-2-carbonitrile Chemical compound FC1=CC=C(C#N)N=C1 BHXHRMVSUUPOLX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241001251200 Agelas Species 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ASLZNJOQHZCJTD-GZPBKJOBSA-N B.C/C(=N\[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(C)(C)[S@@](N)=O.CC1=CC(=O)OC(C)(C)O1.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].NC1=CC=C(Cl)C=C1C=O.S.S.S.S.[NaH] Chemical compound B.C/C(=N\[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.CC(C)(C)[S@@](N)=O.CC1=CC(=O)OC(C)(C)O1.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].NC1=CC=C(Cl)C=C1C=O.S.S.S.S.[NaH] ASLZNJOQHZCJTD-GZPBKJOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZBASCZPSUBKUEK-KSGNLIQLSA-N C.C.C.C.C1CCOC1.CC.CC(=O)NC1=CC(OCC2CC(F)(F)C2)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(C)(C)[SH]=O.CC(N)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.Cl.I[I-16].N.NC1=CC(O)=C(Cl)C=C1.O=CC1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2N=C1Cl.O=CC1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.OCC1CC(F)(F)C1.[2H]C(F)[PH](=O)(Cl)(Cl)Cl Chemical compound C.C.C.C.C1CCOC1.CC.CC(=O)NC1=CC(OCC2CC(F)(F)C2)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(C)(C)[SH]=O.CC(N)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.Cl.I[I-16].N.NC1=CC(O)=C(Cl)C=C1.O=CC1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2N=C1Cl.O=CC1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.OCC1CC(F)(F)C1.[2H]C(F)[PH](=O)(Cl)(Cl)Cl ZBASCZPSUBKUEK-KSGNLIQLSA-N 0.000 description 1
- LWEKVUHLZLYLAE-KJPPYSQNSA-N C.C.C.CC(=O)OC1=NC(C#N)=CC=C1F.CI(=O)(O)([K])([K])C=O.CN1C(=O)C(F)=CC=C1C#N.I[IH][IH-].N#CC1=CC=C(F)C(=O)N1.N#CC1=CC=C(F)C=N1.N#CC1=CC=C(F)C=[N+]1[O-].[2H]CF Chemical compound C.C.C.CC(=O)OC1=NC(C#N)=CC=C1F.CI(=O)(O)([K])([K])C=O.CN1C(=O)C(F)=CC=C1C#N.I[IH][IH-].N#CC1=CC=C(F)C(=O)N1.N#CC1=CC=C(F)C=N1.N#CC1=CC=C(F)C=[N+]1[O-].[2H]CF LWEKVUHLZLYLAE-KJPPYSQNSA-N 0.000 description 1
- NEWCGZYXOSJARG-SAALUYRVSA-N C.C.CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=CC(O)=C(Cl)C=C1C=O.CC(C)(C)OC(=O)NC1=CC(O[Si](C)(C)C(C)(C)C)=C(Cl)C=C1.CC(C)(C)[Si](C)(C)Cl.C[C@@H](OC1=C(Cl)C=C(C=O)C(NC(=O)OC(C)(C)C)=C1)C1=CC=CC=N1.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=CC=CC=N3)C=C2NC1=O.C[C@H](N)CC(=O)O.C[C@H](O)C1=CC=CC=N1.Cl.I[I-14].NC1=CC(O)=C(Cl)C=C1.[KH].[KH] Chemical compound C.C.CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=CC(O)=C(Cl)C=C1C=O.CC(C)(C)OC(=O)NC1=CC(O[Si](C)(C)C(C)(C)C)=C(Cl)C=C1.CC(C)(C)[Si](C)(C)Cl.C[C@@H](OC1=C(Cl)C=C(C=O)C(NC(=O)OC(C)(C)C)=C1)C1=CC=CC=N1.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=CC=CC=N3)C=C2NC1=O.C[C@H](N)CC(=O)O.C[C@H](O)C1=CC=CC=N1.Cl.I[I-14].NC1=CC(O)=C(Cl)C=C1.[KH].[KH] NEWCGZYXOSJARG-SAALUYRVSA-N 0.000 description 1
- VCFSEUSQHOYPTR-MSYYGBQJSA-N C.C1CCOC1.CC(=O)NC1=CC(OCC2=CC=CC=N2)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.CC(C)(C)S(N)=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.CCOC(C)=O.NC1=CC(O)=C(Cl)C=C1.NC1=CC(OCC2=CC=CC=N2)=C(Cl)C=C1.OCC1=CC=CC=N1.[H]C(=O)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2N=C1Cl.[H]C(=O)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O Chemical compound C.C1CCOC1.CC(=O)NC1=CC(OCC2=CC=CC=N2)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.CC(C)(C)S(N)=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.CCOC(C)=O.NC1=CC(O)=C(Cl)C=C1.NC1=CC(OCC2=CC=CC=N2)=C(Cl)C=C1.OCC1=CC=CC=N1.[H]C(=O)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2N=C1Cl.[H]C(=O)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O VCFSEUSQHOYPTR-MSYYGBQJSA-N 0.000 description 1
- XQAGKIXGHAXXJO-UHFFFAOYSA-M C.CC(=O)O.CC(=O)OB[Na].CC(=O)OOC(C)=O.CC1=CC2=C(C=C1)NC(=O)C(CNC1=CC=C(C#N)N(C)C1=O)=C2.CN1C(=O)C(N)=CC=C1C#N.[H]C(=O)C1=CC2=C(C=CC(Cl)=C2)NC1=O.[I-].[V-2].[V-]I Chemical compound C.CC(=O)O.CC(=O)OB[Na].CC(=O)OOC(C)=O.CC1=CC2=C(C=C1)NC(=O)C(CNC1=CC=C(C#N)N(C)C1=O)=C2.CN1C(=O)C(N)=CC=C1C#N.[H]C(=O)C1=CC2=C(C=CC(Cl)=C2)NC1=O.[I-].[V-2].[V-]I XQAGKIXGHAXXJO-UHFFFAOYSA-M 0.000 description 1
- CRRVEECJZGLHLO-OVUXLNQVSA-N C.CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2.CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-18].I[IH][IH-].[I-29] Chemical compound C.CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)N)C(=O)N2.CC(C)OC1=CC2=C(C=C1Cl)C=C([C@H](C)NC1=CC=C(C#N)N(C)C1=O)C(=O)N2.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-18].I[IH][IH-].[I-29] CRRVEECJZGLHLO-OVUXLNQVSA-N 0.000 description 1
- ZRSQKVYHUOTABT-UHFFFAOYSA-N C.CC(N)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(OCC3CC(F)(F)C3)C(Cl)=C2)NC1=O.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-16].I[IH][IH-].[I-28] Chemical compound C.CC(N)C1=CC2=CC(Cl)=C(OCC3CC(F)(F)C3)C=C2NC1=O.CC(NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(OCC3CC(F)(F)C3)C(Cl)=C2)NC1=O.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-16].I[IH][IH-].[I-28] ZRSQKVYHUOTABT-UHFFFAOYSA-N 0.000 description 1
- TZDVBVJNHCESOF-WJCITNFCSA-N C.CC1=C(Cl)C=C2C=C([C@H](C)N)C(=O)NC2=C1.CC1=C(Cl)C=C2C=C([C@H](C)NC3=CC=C(C#N)N(C)C3=O)C(=O)NC2=C1.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-7].I[IH][IH-].S.S.[I-20] Chemical compound C.CC1=C(Cl)C=C2C=C([C@H](C)N)C(=O)NC2=C1.CC1=C(Cl)C=C2C=C([C@H](C)NC3=CC=C(C#N)N(C)C3=O)C(=O)NC2=C1.CN1C(=O)C(F)=CC=C1C#N.Cl.I[I-7].I[IH][IH-].S.S.[I-20] TZDVBVJNHCESOF-WJCITNFCSA-N 0.000 description 1
- IMDUZYDLVFWPLZ-YRNJSYLZSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.Cl.I[I-4].I[IH][IH-].S.S.[I-16] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.Cl.I[I-4].I[IH][IH-].S.S.[I-16] IMDUZYDLVFWPLZ-YRNJSYLZSA-N 0.000 description 1
- KJZZZIYPDOWQJX-OVUXLNQVSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(OCC3CC3)C(Cl)=C2)NC1=O.Cl.I[I-15].I[IH][IH-].[I-27] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(OCC3CC3)C(Cl)=C2)NC1=O.Cl.I[I-15].I[IH][IH-].[I-27] KJZZZIYPDOWQJX-OVUXLNQVSA-N 0.000 description 1
- KLGZLTXDEPHAOX-FHCBJRKOSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=CC=CC=N3)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(O[C@H](C)C3=CC=CC=N3)C(Cl)=C2)NC1=O.Cl.I[I-14].I[IH][IH-].[I-26] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=C(O[C@H](C)C3=CC=CC=N3)C=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=C(C=C(O[C@H](C)C3=CC=CC=N3)C(Cl)=C2)NC1=O.Cl.I[I-14].I[IH][IH-].[I-26] KLGZLTXDEPHAOX-FHCBJRKOSA-N 0.000 description 1
- MKWUMSIEFDSAHR-NQUALVNWSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.Cl.I[I-17].I[IH][IH-].[I-30] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.Cl.I[I-17].I[IH][IH-].[I-30] MKWUMSIEFDSAHR-NQUALVNWSA-N 0.000 description 1
- COCFFVUNYPCNCQ-DSTMGPCSSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].I[IH][IH-].S.S.[I-13] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].I[IH][IH-].S.S.[I-13] COCFFVUNYPCNCQ-DSTMGPCSSA-N 0.000 description 1
- XDSJQTKVDQSTQZ-NVGFHCLVSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CN=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CN=C2NC1=O.I[I-11].I[IH][IH-].[I-31] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=CC2=CC(Cl)=CN=C2NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CN=C2NC1=O.I[I-11].I[IH][IH-].[I-31] XDSJQTKVDQSTQZ-NVGFHCLVSA-N 0.000 description 1
- ZELWGPHOQADOLK-NQUALVNWSA-N C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=NC2=C(C=CC(Cl)=C2)NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O.I[I-13].I[IH][IH-].S.[I-33] Chemical compound C.CN1C(=O)C(F)=CC=C1C#N.C[C@H](N)C1=NC2=C(C=CC(Cl)=C2)NC1=O.C[C@H](NC1=CC=C(C#N)N(C)C1=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O.I[I-13].I[IH][IH-].S.[I-33] ZELWGPHOQADOLK-NQUALVNWSA-N 0.000 description 1
- PGJKEGIXCJVKGU-QLKWJRDKSA-N C.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=CC=C(C#N)NC1=O)C1=CC2=C(C=CC(Cl)=C2)NC1=O.Cl.I[IH-].N#CC1=CC=C(F)C(=O)N1.[I-14] Chemical compound C.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=CC=C(C#N)NC1=O)C1=CC2=C(C=CC(Cl)=C2)NC1=O.Cl.I[IH-].N#CC1=CC=C(F)C(=O)N1.[I-14] PGJKEGIXCJVKGU-QLKWJRDKSA-N 0.000 description 1
- LINWYTPTURMUAO-ZETCQYMHSA-N CC(=O)C[C@H](C)NC(=O)OC(C)(C)C Chemical compound CC(=O)C[C@H](C)NC(=O)OC(C)(C)C LINWYTPTURMUAO-ZETCQYMHSA-N 0.000 description 1
- FSFFOQGRCIRMOK-MIIHGNNJSA-N CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=C(F)C=C(Cl)C=C1.CC(C)(C)OC(=O)NC1=C(F)C=C(Cl)C=C1C=O.C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.I[I-17].NC1=C(F)C=C(Cl)C=C1.[H]Cl.[KH] Chemical compound CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=C(F)C=C(Cl)C=C1.CC(C)(C)OC(=O)NC1=C(F)C=C(Cl)C=C1C=O.C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.I[I-17].NC1=C(F)C=C(Cl)C=C1.[H]Cl.[KH] FSFFOQGRCIRMOK-MIIHGNNJSA-N 0.000 description 1
- GKJGHDDJHSPVOC-VDCVOLHBSA-N CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=CC(O)=C(Cl)C=C1C=O.CC(C)(C)OC(=O)NC1=CC(OCC2CC2)=C(Cl)C=C1C=O.C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.I[I-15].OCC1CC1.[H]Cl.[KH] Chemical compound CC(=O)C[C@H](C)NC(=O)OC(C)(C)C.CC(C)(C)OC(=O)NC1=CC(O)=C(Cl)C=C1C=O.CC(C)(C)OC(=O)NC1=CC(OCC2CC2)=C(Cl)C=C1C=O.C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.I[I-15].OCC1CC1.[H]Cl.[KH] GKJGHDDJHSPVOC-VDCVOLHBSA-N 0.000 description 1
- YTAZWUCKNZWYQB-GCZJNOTLSA-N CC(=O)NC1=CC(F)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(F)C=C2N=C1Cl.CC(C)(C)S(N)=O.CC(N)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(F)C=C2N=C1Cl.CCOC(C)=O.Cl.Cl.I[IH-3].NC1=CC(F)=C(Cl)C=C1.O=CC1=CC2=CC(Cl)=C(F)C=C2N=C1Cl Chemical compound CC(=O)NC1=CC(F)=C(Cl)C=C1.CC(C)(C)S(=O)/N=C/C1=CC2=CC(Cl)=C(F)C=C2N=C1Cl.CC(C)(C)S(N)=O.CC(N)C1=CC2=CC(Cl)=C(F)C=C2NC1=O.CC(NS(=O)C(C)(C)C)C1=CC2=CC(Cl)=C(F)C=C2N=C1Cl.CCOC(C)=O.Cl.Cl.I[IH-3].NC1=CC(F)=C(Cl)C=C1.O=CC1=CC2=CC(Cl)=C(F)C=C2N=C1Cl YTAZWUCKNZWYQB-GCZJNOTLSA-N 0.000 description 1
- IVFCPVIHLUIMSV-UHFFFAOYSA-N CC(C)(C)CC1CC1 Chemical compound CC(C)(C)CC1CC1 IVFCPVIHLUIMSV-UHFFFAOYSA-N 0.000 description 1
- FZMXICHVAHYYBY-VZNRXUTRSA-N CC(C)(C)[S@@](/N=C(\C)/c(cc(cc(c(OC)c1)Cl)c1n1)c1OC)=O Chemical compound CC(C)(C)[S@@](/N=C(\C)/c(cc(cc(c(OC)c1)Cl)c1n1)c1OC)=O FZMXICHVAHYYBY-VZNRXUTRSA-N 0.000 description 1
- ZUQJYZAPOPVHNH-UHFFFAOYSA-O CC(C1=Cc2cc(Cl)ccc2NC1=O)[NH3+] Chemical compound CC(C1=Cc2cc(Cl)ccc2NC1=O)[NH3+] ZUQJYZAPOPVHNH-UHFFFAOYSA-O 0.000 description 1
- PKIPILVOYNGEPI-UHFFFAOYSA-N CC(N)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.Cl.I[I-9] Chemical compound CC(N)C1=CC2=CC(Cl)=C(OCC3=CC=CC=N3)C=C2NC1=O.Cl.I[I-9] PKIPILVOYNGEPI-UHFFFAOYSA-N 0.000 description 1
- FNHMNUFLNBAMNT-UHFFFAOYSA-K CCN1C=CC=C(N)C1=O.CCN1C=CC=C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)C1=O.CCN1C=CC=C([N+](=O)[O-])C1=O.C[SnH](Cl)Cl.O=C1NC=CC=C1[N+](=O)[O-].[H]C(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.[IH-2].[V-]I Chemical compound CCN1C=CC=C(N)C1=O.CCN1C=CC=C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)C1=O.CCN1C=CC=C([N+](=O)[O-])C1=O.C[SnH](Cl)Cl.O=C1NC=CC=C1[N+](=O)[O-].[H]C(=O)C1=CC2=CC(Cl)=CC=C2NC1=O.[IH-2].[V-]I FNHMNUFLNBAMNT-UHFFFAOYSA-K 0.000 description 1
- KTHJISSFOGQLQR-UHFFFAOYSA-N CCOC(=O)C1=NC2=C(C=CC(Cl)=C2)N=C1Cl.COC(=O)C1=NC2=C(C=CC(Cl)=C2)N=C1Cl Chemical compound CCOC(=O)C1=NC2=C(C=CC(Cl)=C2)N=C1Cl.COC(=O)C1=NC2=C(C=CC(Cl)=C2)N=C1Cl KTHJISSFOGQLQR-UHFFFAOYSA-N 0.000 description 1
- WZGYZCHOEDNWBB-UHFFFAOYSA-N CCOC(=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O.COC(=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O Chemical compound CCOC(=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O.COC(=O)C1=NC2=C(C=CC(Cl)=C2)NC1=O WZGYZCHOEDNWBB-UHFFFAOYSA-N 0.000 description 1
- WRBKCMRECYNUFB-UHFFFAOYSA-N CCOC(=O)C1=NC2=CC(Cl)=CC=C2N=C1Cl Chemical compound CCOC(=O)C1=NC2=CC(Cl)=CC=C2N=C1Cl WRBKCMRECYNUFB-UHFFFAOYSA-N 0.000 description 1
- AEFZWEWDKDHXDV-UHFFFAOYSA-N CCOC(=O)C1=[N+]([O-])C2=C(C=CC(Cl)=C2)NC1=O.COC(=O)C1=[N+]([O-])C2=C(C=CC(Cl)=C2)NC1=O Chemical compound CCOC(=O)C1=[N+]([O-])C2=C(C=CC(Cl)=C2)NC1=O.COC(=O)C1=[N+]([O-])C2=C(C=CC(Cl)=C2)NC1=O AEFZWEWDKDHXDV-UHFFFAOYSA-N 0.000 description 1
- XXSRAEICPZQSMD-QUQNYFLDSA-N CN1C(=O)C(Cl)=NC=C1Br.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=NC=C(Br)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=NC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].O=C1NC(Br)=CN=C1Cl.[I-17] Chemical compound CN1C(=O)C(Cl)=NC=C1Br.C[C@H](N)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=NC=C(Br)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.C[C@H](NC1=NC=C(C#N)N(C)C1=O)C1=CC2=CC(Cl)=CC=C2NC1=O.Cl.I[IH-].O=C1NC(Br)=CN=C1Cl.[I-17] XXSRAEICPZQSMD-QUQNYFLDSA-N 0.000 description 1
- PICXOGWFHAEYOZ-UHFFFAOYSA-N COC(=O)C1=CCC(=O)C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)=C1 Chemical compound COC(=O)C1=CCC(=O)C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)=C1 PICXOGWFHAEYOZ-UHFFFAOYSA-N 0.000 description 1
- SWBKEMLAYCUIEM-RGMNGODLSA-N COC1=C(Cl)C=C2C=C([C@H](C)N)C(=O)NC2=C1.Cl.S Chemical compound COC1=C(Cl)C=C2C=C([C@H](C)N)C(=O)NC2=C1.Cl.S SWBKEMLAYCUIEM-RGMNGODLSA-N 0.000 description 1
- DGZZYCWEVBUALN-UHFFFAOYSA-N COC1=NC2=C(C=C(Cl)C=C2)N=C1C(O)OC(O)C1=C(OC)N=C2C=CC(Cl)=CC2=N1.COC1=NC2=C(C=C(Cl)C=C2)N=C1C=O Chemical compound COC1=NC2=C(C=C(Cl)C=C2)N=C1C(O)OC(O)C1=C(OC)N=C2C=CC(Cl)=CC2=N1.COC1=NC2=C(C=C(Cl)C=C2)N=C1C=O DGZZYCWEVBUALN-UHFFFAOYSA-N 0.000 description 1
- CRRWYLPYDYISNA-GQVVHGLKSA-N COC1=NC2=C(C=C(Cl)C=C2)N=C1[C@H](C)N[S@@](=O)C(C)(C)C.S.S Chemical compound COC1=NC2=C(C=C(Cl)C=C2)N=C1[C@H](C)N[S@@](=O)C(C)(C)C.S.S CRRWYLPYDYISNA-GQVVHGLKSA-N 0.000 description 1
- COBBXOWUXXQBQM-JEDNCBNOSA-N C[C@H](N)C1=CC2=C(C=C(F)C(Cl)=C2)NC1=O.Cl.S Chemical compound C[C@H](N)C1=CC2=C(C=C(F)C(Cl)=C2)NC1=O.Cl.S COBBXOWUXXQBQM-JEDNCBNOSA-N 0.000 description 1
- OEANDNWVXDPFMO-JEDNCBNOSA-N C[C@H](N)C1=CC2=C(N=CC(Cl)=C2)NC1=O.Cl.S Chemical compound C[C@H](N)C1=CC2=C(N=CC(Cl)=C2)NC1=O.Cl.S OEANDNWVXDPFMO-JEDNCBNOSA-N 0.000 description 1
- PZFOJMQISWNVBO-PPHPATTJSA-N C[C@H](N)C1=CC2=CC(Cl)=C(OCC3=NC=CC=C3)C=C2NC1=O.S Chemical compound C[C@H](N)C1=CC2=CC(Cl)=C(OCC3=NC=CC=C3)C=C2NC1=O.S PZFOJMQISWNVBO-PPHPATTJSA-N 0.000 description 1
- KNNSPCSHJVKVFR-QRPNPIFTSA-N C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.S Chemical compound C[C@H](N)C1=CC2=CC(Cl)=C(OCC3CC3)C=C2NC1=O.S KNNSPCSHJVKVFR-QRPNPIFTSA-N 0.000 description 1
- GRIRUTAZDJTPGU-JEDNCBNOSA-N C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.S Chemical compound C[C@H](N)C1=CC2=CC(Cl)=CC(F)=C2NC1=O.S GRIRUTAZDJTPGU-JEDNCBNOSA-N 0.000 description 1
- RMBXVDNQQSNFHO-JEDNCBNOSA-N C[C@H](N)C1=NC2=C(C=CC(Cl)=C2)NC1=O.S Chemical compound C[C@H](N)C1=NC2=C(C=CC(Cl)=C2)NC1=O.S RMBXVDNQQSNFHO-JEDNCBNOSA-N 0.000 description 1
- UTMPCOODDPYKMU-PPHPATTJSA-N C[C@H](NC(=O)C(F)(F)F)C1=CC2=C(C=C(OCC3=CC=CC=N3)C(Cl)=C2)NC1=O.S Chemical compound C[C@H](NC(=O)C(F)(F)F)C1=CC2=C(C=C(OCC3=CC=CC=N3)C(Cl)=C2)NC1=O.S UTMPCOODDPYKMU-PPHPATTJSA-N 0.000 description 1
- MWDBWIRMDKCAKQ-QMSDODOOSA-N C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)NC1=O.S.S Chemical compound C[C@H](N[S@@](=O)C(C)(C)C)C1=CC2=C(C=CC(Cl)=C2)NC1=O.S.S MWDBWIRMDKCAKQ-QMSDODOOSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010004103 Chylomicrons Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- DTAPFRLHJDJMGA-UHFFFAOYSA-N ClC1=C(C=C(N)C=C1)OCC1CC(C1)(F)F Chemical compound ClC1=C(C=C(N)C=C1)OCC1CC(C1)(F)F DTAPFRLHJDJMGA-UHFFFAOYSA-N 0.000 description 1
- UGBHOAQWECBJIL-UHFFFAOYSA-N ClC1=CC=C2N=C(C(=NC2=C1)C=O)OC Chemical compound ClC1=CC=C2N=C(C(=NC2=C1)C=O)OC UGBHOAQWECBJIL-UHFFFAOYSA-N 0.000 description 1
- IIQFKFDQRASRDZ-UHFFFAOYSA-N ClC1=CC=C2NC(C(=[N+](C2=C1)[O-])C(=O)OC)=O Chemical compound ClC1=CC=C2NC(C(=[N+](C2=C1)[O-])C(=O)OC)=O IIQFKFDQRASRDZ-UHFFFAOYSA-N 0.000 description 1
- LYPRUDQFMYEZSY-UHFFFAOYSA-N ClC1=CC=C2NC(C(=[N+](C2=C1)[O-])C(=O)OCC)=O Chemical compound ClC1=CC=C2NC(C(=[N+](C2=C1)[O-])C(=O)OCC)=O LYPRUDQFMYEZSY-UHFFFAOYSA-N 0.000 description 1
- OFGJYDSIMLXEAI-UHFFFAOYSA-N ClC1=NC=C(Br)NC1=O Chemical compound ClC1=NC=C(Br)NC1=O OFGJYDSIMLXEAI-UHFFFAOYSA-N 0.000 description 1
- ZKZXLMXJGRIIEL-CCGUKBGLSA-N ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)[C@H](C)N[S@](=O)C(C)(C)C Chemical compound ClC=1C=C2C=C(C(=NC2=CC=1OC)OC)[C@H](C)N[S@](=O)C(C)(C)C ZKZXLMXJGRIIEL-CCGUKBGLSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 238000006646 Dess-Martin oxidation reaction Methods 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 102000008157 Histone Demethylases Human genes 0.000 description 1
- 108010074870 Histone Demethylases Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- SMWANXFBIHBNIL-UHFFFAOYSA-N N#CC1=CC=C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)C(=O)C1 Chemical compound N#CC1=CC=C(NCC2=CC3=CC(Cl)=CC=C3NC2=O)C(=O)C1 SMWANXFBIHBNIL-UHFFFAOYSA-N 0.000 description 1
- ZKGNPQKYVKXMGJ-UHFFFAOYSA-N N,N-dimethylacetamide Chemical compound CN(C)C(C)=O.CN(C)C(C)=O ZKGNPQKYVKXMGJ-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- ITOQFKSVNIQRLI-UHFFFAOYSA-N NCC1=Cc(cc(cc2F)Cl)c2NC1=O Chemical compound NCC1=Cc(cc(cc2F)Cl)c2NC1=O ITOQFKSVNIQRLI-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- JTAIXKSZQVFEPP-UHFFFAOYSA-N O(C(O)C1=NC2=CC(=CC=C2N=C1OC)Cl)C(O)C1=NC2=CC(=CC=C2N=C1OC)Cl Chemical compound O(C(O)C1=NC2=CC(=CC=C2N=C1OC)Cl)C(O)C1=NC2=CC(=CC=C2N=C1OC)Cl JTAIXKSZQVFEPP-UHFFFAOYSA-N 0.000 description 1
- HPJKDOTZHXQTIP-UHFFFAOYSA-N O=C1CC(Br)=CC=C1NCC1=CC2=CC(Cl)=CC=C2NC1=O Chemical compound O=C1CC(Br)=CC=C1NCC1=CC2=CC(Cl)=CC=C2NC1=O HPJKDOTZHXQTIP-UHFFFAOYSA-N 0.000 description 1
- PBARQVSGGDLZKW-UHFFFAOYSA-N O=C1CC(C(F)(F)F)=CC=C1NCC1=CC2=CC(Cl)=CC=C2NC1=O Chemical compound O=C1CC(C(F)(F)F)=CC=C1NCC1=CC2=CC(Cl)=CC=C2NC1=O PBARQVSGGDLZKW-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910020667 PBr3 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229950003153 amsonate Drugs 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- OISFUZRUIGGTSD-LJTMIZJLSA-N azane;(2r,3r,4r,5s)-6-(methylamino)hexane-1,2,3,4,5-pentol Chemical compound N.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO OISFUZRUIGGTSD-LJTMIZJLSA-N 0.000 description 1
- AJRJLXLBOYWMEC-UHFFFAOYSA-N azanium;4-(pyridin-3-ylmethylcarbamoylamino)benzenesulfinate Chemical compound [NH4+].C1=CC(S(=O)[O-])=CC=C1NC(=O)NCC1=CC=CN=C1 AJRJLXLBOYWMEC-UHFFFAOYSA-N 0.000 description 1
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- UWTDFICHZKXYAC-UHFFFAOYSA-N boron;oxolane Chemical compound [B].C1CCOC1 UWTDFICHZKXYAC-UHFFFAOYSA-N 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229940045348 brown mixture Drugs 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- LDVVMCZRFWMZSG-UHFFFAOYSA-N captan Chemical compound C1C=CCC2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C21 LDVVMCZRFWMZSG-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000020719 chondrogenic neoplasm Diseases 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- GUDMZGLFZNLYEY-UHFFFAOYSA-N cyclopropylmethanol Chemical compound OCC1CC1 GUDMZGLFZNLYEY-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 230000032459 dedifferentiation Effects 0.000 description 1
- 125000002576 diazepinyl group Chemical group N1N=C(C=CC=C1)* 0.000 description 1
- ACYGYJFTZSAZKR-UHFFFAOYSA-J dicalcium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Ca+2].[Ca+2].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O ACYGYJFTZSAZKR-UHFFFAOYSA-J 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 125000005436 dihydrobenzothiophenyl group Chemical group S1C(CC2=C1C=CC=C2)* 0.000 description 1
- SPCNPOWOBZQWJK-UHFFFAOYSA-N dimethoxy-(2-propan-2-ylsulfanylethylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound COP(=S)(OC)SCCSC(C)C SPCNPOWOBZQWJK-UHFFFAOYSA-N 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- UZZWBUYVTBPQIV-UHFFFAOYSA-N dme dimethoxyethane Chemical compound COCCOC.COCCOC UZZWBUYVTBPQIV-UHFFFAOYSA-N 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 229940009662 edetate Drugs 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229950000206 estolate Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- KWFADUNOPOSMIJ-UHFFFAOYSA-N ethyl 3-chloro-3-oxopropanoate Chemical compound CCOC(=O)CC(Cl)=O KWFADUNOPOSMIJ-UHFFFAOYSA-N 0.000 description 1
- QLQSEGZUZAKTPM-UHFFFAOYSA-N ethyl 7-chloro-3-oxo-4h-quinoxaline-2-carboxylate Chemical compound ClC1=CC=C2NC(=O)C(C(=O)OCC)=NC2=C1 QLQSEGZUZAKTPM-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-M lactobionate Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-M 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical compound [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- PQJPFKVZQNLYQS-UHFFFAOYSA-N methyl 3,7-dichloroquinoxaline-2-carboxylate Chemical compound COC(=O)C1=NC2=CC(Cl)=CC=C2N=C1Cl PQJPFKVZQNLYQS-UHFFFAOYSA-N 0.000 description 1
- JEMSWXCHROUUQK-UHFFFAOYSA-N methyl 7-chloro-3-oxo-4h-quinoxaline-2-carboxylate Chemical compound ClC1=CC=C2NC(=O)C(C(=O)OC)=NC2=C1 JEMSWXCHROUUQK-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- LRMHVVPPGGOAJQ-UHFFFAOYSA-N methyl nitrate Chemical compound CO[N+]([O-])=O LRMHVVPPGGOAJQ-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 1
- WOOWBQQQJXZGIE-UHFFFAOYSA-N n-ethyl-n-propan-2-ylpropan-2-amine Chemical compound CCN(C(C)C)C(C)C.CCN(C(C)C)C(C)C WOOWBQQQJXZGIE-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000005968 oxazolinyl group Chemical group 0.000 description 1
- 125000003585 oxepinyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- SHNUBALDGXWUJI-UHFFFAOYSA-N pyridin-2-ylmethanol Chemical compound OCC1=CC=CC=N1 SHNUBALDGXWUJI-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 102200069688 rs121913499 Human genes 0.000 description 1
- 102200069691 rs121913499 Human genes 0.000 description 1
- 102200069689 rs121913500 Human genes 0.000 description 1
- 102200094181 rs2228500 Human genes 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- MOODSJOROWROTO-UHFFFAOYSA-N salicylsulfuric acid Chemical compound OC(=O)C1=CC=CC=C1OS(O)(=O)=O MOODSJOROWROTO-UHFFFAOYSA-N 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940071103 sulfosalicylate Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229950002757 teoclate Drugs 0.000 description 1
- BWJHNIPKQFCYIS-UHFFFAOYSA-N tert-butyl n-(4-chloro-3-hydroxyphenyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1=CC=C(Cl)C(O)=C1 BWJHNIPKQFCYIS-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- PHCBRBWANGJMHS-UHFFFAOYSA-J tetrasodium;disulfate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O PHCBRBWANGJMHS-UHFFFAOYSA-J 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000002769 thiazolinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- GZNAASVAJNXPPW-UHFFFAOYSA-M tin(4+) chloride dihydrate Chemical compound O.O.[Cl-].[Sn+4] GZNAASVAJNXPPW-UHFFFAOYSA-M 0.000 description 1
- FWPIDFUJEMBDLS-UHFFFAOYSA-L tin(II) chloride dihydrate Substances O.O.Cl[Sn]Cl FWPIDFUJEMBDLS-UHFFFAOYSA-L 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical class CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 description 1
- 229930195724 β-lactose Natural products 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/472—Non-condensed isoquinolines, e.g. papaverine
- A61K31/4725—Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
Definitions
- the present invention is directed to inhibitors of mutant isocitrate dehydrogenase (mt-IDH) proteins with neomorphic activity useful in the treatment of diseases or disorders associated with such mutant IDH proteins including cell-proliferation disorders and cancers.
- the invention is concerned with compounds and compositions inhibiting mt-IDH, methods of treating diseases or disorders associated with mt-IDH, and methods of synthesis of these compounds.
- Isocitrate dehydrogenases are enzymes that participate in the citric acid cycle (cellular metabolism). They catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (i.e., ⁇ -ketoglutarate, ⁇ -KG). There are three isoforms within the IDH family. IDH-1, expressed in the cytoplasm and peroxisome, IDH-2, localized in the mitochondria, both utilize NADP+ as the cofactor and exist as homodimers. IDH-3 is localized in mitochondrial matrix and utilizes NAD+ as a cofactor and exists as tetramer.
- IDH-1 cytosolic
- IDH-2 mitochondrial
- glioma glioblastoma multiforme
- paraganglioma supratentorial primordial neuroectodermal tumors
- acute myeloid leukemia (AML) prostate cancer
- thyroid cancer colon cancer
- chondrosarcoma cholangiocarcinoma
- peripheral T-cell lymphoma melanoma
- Normal cells have low basal levels of 2-HG, whereas cells harboring mutations in IDH1 or IDH2 show significantly elevated levels of 2-HG.
- High levels of 2-HG have also been detected in tumors harboring the mutations. For example, high levels of 2-HG have been detected in the plasma of patients with mutant IDH containing AML. (See S. Gross et al., J. Exp. Med., 2010, 207(2), 339).
- High levels of 2-HG have been shown to block ⁇ -KG dependent DNA and histone demethylases, and ultimately to result in improper dedifferentiation of hematopoietic progenitor cells in AML patients (Wang et. al., Science 340, 622 (2013); Losman et al., Science 339, 1621 (2013)).
- mt-IDHs and their neomorphic activity therefore has the potential to be a treatment for cancers and other disorders of cellular proliferation.
- a first aspect of the invention relates to compounds of Formula I:
- W 3 is independently CR 2 or N;
- U is N or CR 6 ;
- A is selected from the group consisting of H, D, halogen, CN, —CHO, —COOH, —COOR, —C(O)NH 2 , —C(O)NHR, R′S(O) 2 —, —O(CH 2 ) n C(O)R′, R'S(O)—, heteroaryl, —SOMe, —SO 2 Me,
- X and Y are independently in each occurrence C, N, NR′, S, and O, provided that the ring containing X and Y cannot have more than 4 N or NH atoms or more than one S or O atoms, and wherein the S and O are not contiguous;
- R and R′ at each occurrence are independently selected from the group consisting of H, OH, CN, —CH 2 CN, halogen, —NR 7 R 8 , CHCF 2 , CF 3 , C 1 -C 6 alkyl, R 7 S(O) 2 —, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkylalkyl, 3- to 8-membered heterocyclyl, aryl, and heteroaryl, wherein each R is optionally substituted with one or more substituents selected from the group consisting of OH, halogen, C 1 -C 6 alkoxy, NH 2 , R 7 S(O) 2 —, CN, C 3 -C 8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, heteroaryl, and R 7 S(O
- R 1 is independently OH, CN, halogen, CHCF 2 , CF 3 , C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkenyl, C 3 -C 8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl, wherein each C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl is optionally substituted one or more times with substituents selected from the group consisting of halogen, OH, NH 2 , CN, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy;
- each R 2 is independently H, OH, CN, halogen, CF 3 , CHF 2 , benzyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, NH 2 , —O(CH 2 ) n R′, —O(CH 2 ) n C(O)NHR′, —O(CH 2 ) n C(O)R′, NHR 7 , —N(R 7 )(R 8 ), NHC(O)R 7 , NHS(O)R 7 , NHS(O) 2 R 7 , NHC(O)OR 7 , NHC(O)NHR 7 , —S(O) 2 NHR 7 , NHC(O)N(R 8 )R 7 , OCH 2 R 7 , CHRR′ or OCHR′R 7 , wherein C 1 -C 6 alkyl, C 1 -C 6 alkoxy is optionally substituted with one or more substituents selected from the group consisting of
- R 1 and R 2 can combine to form a C 4 -C 6 cycloalkyl or a 3- to 8-membered heterocyclyl containing at least one atom selected from the group consisting of N, O, and S;
- R 3 is H, D, C 1 -C 6 alkyl, or; —OH;
- R 4 and R 5 are independently H, D, halogen, CH 2 OH, C 1 -C 3 alkyl, or C 1 -C 3 alkyl substituted with halogen, or R 4 and R 5 when combined can form a C 3 -C 6 cycloalkyl or C 3 -C 6 heterocyclyl;
- each R 6 is H, halogen, C 1 -C 6 alkyl, C 1 -C 6 alkyl substituted with halogen, C 1 -C 6 alkoxy, C 1 -C 6 alkoxy substituted with one or more halogen, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl;
- R 7 and R 8 are independently H, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, and heteroaryl; or when combined R 7 and R 8 can form a 3- to 8-membered heterocyclyl or heteroaryl ring;
- R 9 is independently H, D, CD 3 , CF 3 , C 1 -C 6 alkyl, C 2-6 alkenyl, C 3-6 alkynyl, C 3 -C 8 cycloalkyl, wherein the alkyl, alkenyl, alkynyl, and cycloalkyl is optionally substituted with amino, OH, halo, or alkoxy;
- n 0, 1, or 2;
- r 0, 1, or 2;
- R 1 is not C 1 -C 6 alkyl or C 1 -C 6 alkoxy and R 1 and R 2 cannot combine to form a 3- to 8-membered heterocyclyl.
- Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase.
- the method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of a compound of Formula I.
- Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase.
- the method involves administering to a patient in need thereof an effective amount of the compound of Formula I.
- Another aspect of the invention relates to method of reducing 2-hydroxyglutarate.
- the method comprises administering to a patient in need thereof an effective amount of the compound of Formula I.
- compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier.
- the pharmaceutically acceptable carrier may further include an excipient, diluent, or surfactant.
- the present invention further provides methods of treating cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors.
- glioma glioblastoma multiforme
- paraganglioma paraganglioma
- supratentorial primordial neuroectodermal tumors acute myeloid leukemia (AML)
- AML acute myeloid leukemia
- prostate cancer thyroid cancer
- colon cancer colon cancer
- chondrosarcoma cholangiocarcinoma
- the present invention also provides potent mt-IDH inhibitors with excellent drug-like properties to cancers and other cell proliferative disorders.
- the inhibitors of the present invention may target mutated IDH1 or IDH2.
- the present invention further provides development of potent, orally active, and selective IDH inhibitors as therapeutic agents for various diseases or disorders including cancers.
- the invention also provides treatment for solid and hematologic cancers for which there are no currently targeted therapies available for patients suffering from these conditions or disorders.
- FIG. 1 illustrates a graph showing the potency of IDH1 inhibitors in IDH1-R132H Enzymatic Assay using compounds I-1, I-5, and I-20.
- IDH1 or IDH2 mutations are a genetically validated target in many solid and hematologic cancers, but there are currently no targeted therapies available for patients in need of treatment for specific conditions associated with mt-IDH activity.
- Non-mutant IDH e.g., wild-type catalyze the oxidative decarboxylation of isocitrate to ⁇ -ketoglutarate thereby reducing NAD + (NADP + ) to NADH (NADPH) (WO 2013/102431 to Cianchetta et al., hereby incorporated by reference in its entirety).
- an element means one element or more than one element.
- an alkyl group that is optionally substituted can be a fully saturated alkyl chain (i.e. a pure hydrocarbon).
- the same optionally substituted alkyl group can have substituents different from hydrogen. For instance, it can, at any point along the chain be bounded to a halogen atom, a hydroxyl group, or any other substituent described herein.
- optionally substituted means that a given chemical moiety has the potential to contain other functional groups, but does not necessarily have any further functional groups.
- Suitable substituents used in the optional substitution of the described groups include, without limitation, halogen, oxo, CN, —COOH, —CH 2 CN, —O—C 1 -C 6 alkyl, C 1 -C 6 alkyl, —OC 1 -C 6 alkenyl, —OC 1 -C 6 alkynyl, —C 1 -C 6 alkenyl, —C 1 -C 6 alkynyl, —OH, —OP(O)(OH) 2 , —OC(O)C 1 -C 6 alkyl, —C(O)C 1 -C 6 alkyl, —OC(O)OC 1 -C 6 alkyl, NH 2 , NH(C 1 -C 6 alkyl), N(C 1 -C 6 alkyl) 2 , —NHC(O)C 1 -C 6 alkyl, —C(O)NHC 1 -C 6 alkyl, —
- aryl refers to cyclic, aromatic hydrocarbon groups that have 1 to 2 aromatic rings, including monocyclic or bicyclic groups such as phenyl, biphenyl or naphthyl. Where containing two aromatic rings (bicyclic, etc.), the aromatic rings of the aryl group may be joined at a single point (e.g., biphenyl), or fused (e.g., naphthyl).
- the aryl group may be optionally substituted by one or more substituents, e.g., 1 to 5 substituents, at any point of attachment.
- substituents include, but are not limited to, —H, -halogen, —O—C 1 -C 6 alkyl, C 1 -C 6 alkyl, —OC 1 -C 6 alkenyl, —OC 1 -C 6 alkynyl, —C 1 -C 6 alkenyl, —C 1 -C 6 alkynyl, —OH, —OP(O)(OH) 2 , —OC(O)C 1 -C 6 alkyl, —C(O)C 1 -C 6 alkyl, —OC(O)OC 1 -C 6 alkyl, NH 2 , NH(C 1 -C 6 alkyl), N(C 1 -C 6 alkyl) 2 , —S(O) 2 —C 1 -C 6 alkyl, —S(O)NHC 1 -C 6 alkyl, and S(O)N(C 1 -C 6 alkyl) 2 .
- aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring.
- Exemplary ring systems of these aryl groups include indanyl, indenyl, tetrahydronaphthalenyl, and tetrahydrobenzoannulenyl.
- heteroaryl means a monovalent monocyclic aromatic radical of 5 to 10 ring atoms or a polycyclic aromatic radical, containing one or more ring heteroatoms selected from N, O, or S, the remaining ring atoms being C.
- Heteroaryl as herein defined also means a bicyclic heteroaromatic group wherein the heteroatom is selected from N, O, or S.
- the aromatic radical is optionally substituted independently with one or more substituents described herein.
- Examples include, but are not limited to, furyl, thienyl, pyrrolyl, pyridyl, pyrazolyl, pyrimidinyl, imidazolyl, pyrazinyl, indolyl, thiophen-2-yl, quinolyl, benzopyranyl, thiazolyl, and derivatives thereof.
- the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring.
- Exemplary ring systems of these heteroaryl groups include indolinyl, indolinonyl, dihydrobenzothiophenyl, dihydrobenzofuran, chromanyl, thiochromanyl, tetrahydroquinolinyl, dihydrobenzothiazine, and dihydrobenzoxanyl.
- Halogen or “halo” refers to fluorine, chlorine, bromine and iodine.
- Alkyl refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms.
- Examples of a C 1 -C 6 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, and isohexyl.
- Alkoxy refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms containing a terminal “O” in the chain.
- alkoxy groups include without limitation, methoxy, ethoxy, propoxy, butoxy, t-butoxy, or pentoxy groups.
- Alkenyl refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms.
- the “alkenyl” group contains at least one double bond in the chain. Examples of alkenyl groups include ethenyl, propenyl, n-butenyl, iso-butenyl, pentenyl, or hexenyl.
- Alkynyl refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms.
- the “alkynyl” group contains at least one triple bond in the chain.
- alkenyl groups include ethynyl, propargyl, n-butynyl, iso-butynyl, pentynyl, or hexynyl.
- Cycloalkyl means monocyclic saturated carbon rings containing 3-18 carbon atoms.
- Examples of cycloalkyl groups include, without limitations, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptanyl, cyclooctanyl, norboranyl, norborenyl, bicyclo[2.2.2]octanyl, or bicyclo[2.2.2]octenyl.
- Cycloalkylalkyl means monocyclic saturated carbon rings containing 3-18 carbon atoms further substituted with C 1 -C 6 alkyl groups.
- cycloalkylalkyl groups herein described display the following Formula
- n is an integer from 1 to 16.
- Heterocyclyl or “heterocycloalkyl” monocyclic rings containing carbon and heteroatoms taken from oxygen, nitrogen, or sulfur and wherein there is not delocalized ⁇ electrons (aromaticity) shared among the ring carbon or heteroatoms; heterocyclyl rings include, but are not limited to, oxetanyl, azetadinyl, tetrahydrofuranyl, pyrrolidinyl, oxazolinyl, oxazolidinyl, thiazolinyl, thiazolidinyl, pyranyl, thiopyranyl, tetrahydropyranyl, dioxalinyl, piperidinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S-dioxide, piperazinyl, azepinyl, oxepinyl, diazepinyl, trop
- solvate refers to a complex of variable stoichiometry formed by a solute and solvent. Such solvents for the purpose of the invention may not interfere with the biological activity of the solute. Examples of suitable solvents include, but are not limited to, water, MeOH, EtOH, and AcOH. Solvates wherein water is the solvent molecule are typically referred to as hydrates. Hydrates include compositions containing stoichiometric amounts of water, as well as compositions containing variable amounts of water.
- the term “isomer” refers to compounds that have the same composition and molecular weight but differ in physical and/or chemical properties. The structural difference may be in constitution (geometric isomers) or in the ability to rotate the plane of polarized light (stereoisomers). With regard to stereoisomers, the compounds of Formula (I) may have one or more asymmetric carbon atom and may occur as racemates, racemic mixtures and as individual enantiomers or diastereomers.
- compositions comprising an effective amount of a disclosed compound and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable salts include, e.g., water-soluble and water-insoluble salts, such as the acetate, amsonate (4,4-diaminostilbene-2,2-disulfonate), benzenesulfonate, benzonate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, calcium, calcium edetate, camsylate, carbonate, chloride, citrate, clavulariate, dihydrochloride, edetate, edisylate, estolate, esylate, fiunarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexafluorophosphate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, i
- a “patient” or “subject” is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus.
- an “effective amount” when used in connection with a compound is an amount effective for treating or preventing a disease in a subject as described herein.
- carrier encompasses carriers, excipients, and diluents and means a material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body of a subject.
- treating refers to improving at least one symptom of the subject's disorder. Treating includes curing, improving, or at least partially ameliorating the disorder.
- disorder is used in this disclosure to mean, and is used interchangeably with, the terms disease, condition, or illness, unless otherwise indicated.
- administer refers to either directly administering a disclosed compound or pharmaceutically acceptable salt of the disclosed compound or a composition to a subject, or administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body.
- prodrug means a compound which is convertible in vivo by metabolic means (e.g., by hydrolysis) to a disclosed compound.
- A is CN.
- R 9 may further be H, C 1 -C 6 alkyl or C 3 -C 6 cycloalkyl. In another embodiment, R 9 may also be methyl or Ethyl.
- U is N.
- A may further be CN.
- Another embodiment of the invention pertains to compounds of Formula I where R 4 and R 5 are H.
- R 3 is H, methyl or ethyl.
- R 4 is H and R 5 is methyl.
- R 4 is H and R 5 is (S)-methyl.
- R 4 and R 5 are halogen.
- R 4 is F and R 5 is methyl.
- R 4 and R 5 can combine to form a C 3 -C 6 cycloalkyl.
- W 1 , W 2 , and W 3 are all CH.
- W 1 , W 2 , or W 3 are CF.
- W 1 or W 3 is CH or N.
- W 3 is CR 2 .
- R 1 can be halogen. In another embodiment, R 1 is chloro.
- R 2 can be H, halogen, or C 1 -C 6 alkoxy. In another embodiment, R 2 can also be C 1 -C 6 alkoxy substituted with heteroaryl or 3- to 8-membered heterocyclyl.
- illustrative compounds of Formula I are:
- illustrative compounds of Formula I include:
- the compounds of the invention have the Formula Ia:
- the compounds of the invention have the Formula Ia-1:
- the compounds of the invention have the Formula Ia-2:
- the compounds of the invention have the Formula Ib:
- the compounds of the invention have the Formula Ib-1:
- the compounds of Formula I are enantiomers.
- the compounds are (S)-enantiomer.
- the compounds may also be (R)-enantiomer.
- the compounds of Formula I may be (+) or ( ⁇ ) enantiomers.
- the compounds of Formula I contain isotopes of atoms forming the structure of Formula I.
- Isotopes herein means, each of two or more forms of the same element (e.g., H and D; 12 C and 13 C) that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass.
- the substituent may be in the E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis or trans configuration. All tautomeric forms are also intended to be included.
- Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase.
- the method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of the compositions and compounds of Formula I.
- Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase.
- the method involves administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.
- mutant IDH protein having a neomorphic activity examples include mutant IDH1 and mutant IDH2.
- a neomorphic activity associated with mutant IDH1 and mutant IDH2 is the ability to produce 2-hydroxyglutarate (2-HG neomorphic activity), specifically R-2-HG (R-2-HG neomorphic activity).
- Mutations in IDH 1 associated with 2-HG neomorphic activity, specifically R-2-HG neomorphic activity include mutations at residues 97, 100, and 132, e.g. G97D, R100Q, R132H, R132C, R132S, R132G, R132L, and R132V.
- Mutations in IDH2 associated with 2-HG neoactivity, specifically R-2-HG neomorphic activity, include mutations at residues 140 and 172, e.g. R140Q, R140G, R172K, R172M, R172S, R172G, and R172W.
- Another aspect of the invention relates to method of reducing 2-hydroxyglutarate.
- the method comprises administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.
- One therapeutic use of the compounds or compositions of the present invention which inhibit mt-IDH is to provide treatment to patients or subjects suffering from cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors.
- cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer,
- the disclosed compounds of the invention can be administered in effective amounts to treat or prevent a disorder and/or prevent the development thereof in subjects.
- Administration of the disclosed compounds can be accomplished via any mode of administration for therapeutic agents. These modes include systemic or local administration such as oral, nasal, parenteral, transdermal, subcutaneous, vaginal, buccal, rectal or topical administration modes.
- compositions can be in solid, semi-solid or liquid dosage form, such as, for example, injectables, tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices.
- injectables tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices.
- they can also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous or intramuscular form, and all using forms well known to those skilled in the pharmaceutical arts.
- Illustrative pharmaceutical compositions are tablets and gelatin capsules comprising a Compound of the Invention and a pharmaceutically acceptable carrier, such as a) a diluent, e.g., purified water, triglyceride oils, such as hydrogenated or partially hydrogenated vegetable oil, or mixtures thereof, corn oil, olive oil, sunflower oil, safflower oil, fish oils, such as EPA or DHA, or their esters or triglycerides or mixtures thereof, omega-3 fatty acids or derivatives thereof, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, sodium, saccharin, glucose and/or glycine; b) a lubricant, e.g., silica, talcum, stearic acid, its magnesium or calcium salt, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and/or polyethylene glycol; for tablets also;
- Liquid, particularly injectable, compositions can, for example, be prepared by dissolution, dispersion, etc.
- the disclosed compound is dissolved in or mixed with a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form an injectable isotonic solution or suspension.
- a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like.
- Proteins such as albumin, chylomicron particles, or serum proteins can be used to solubilize the disclosed compounds.
- the disclosed compounds can be also formulated as a suppository that can be prepared from fatty emulsions or suspensions; using polyalkylene glycols such as propylene glycol, as the carrier.
- the disclosed compounds can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
- Liposomes can be formed from a variety of phospholipids, containing cholesterol, stearylamine or phosphatidylcholines.
- a film of lipid components is hydrated with an aqueous solution of drug to a form lipid layer encapsulating the drug, as described in U.S. Pat. No. 5,262,564.
- Disclosed compounds can also be delivered by the use of monoclonal antibodies as individual carriers to which the disclosed compounds are coupled.
- the disclosed compounds can also be coupled with soluble polymers as targetable drug carriers.
- Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspanamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues.
- Disclosed compounds can be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers of hydrogels.
- a polymer e.g., a polycarboxylic acid polymer, or a polyacrylate.
- Parental injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions.
- Injectables can be prepared in conventional forms, either as liquid solutions or suspensions or solid forms suitable for dissolving in liquid prior to injection.
- compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier.
- the pharmaceutical acceptable carrier may further include an excipient, diluent, or surfactant.
- compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain from about 0.1% to about 99%, from about 5% to about 90%, or from about 1% to about 20% of the disclosed compound by weight or volume.
- the dosage regimen utilizing the disclosed compound is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal or hepatic function of the patient; and the particular disclosed compound employed.
- a physician or veterinarian of ordinary skill in the art can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.
- Effective dosage amounts of the disclosed compounds when used for the indicated effects, range from about 0.5 mg to about 5000 mg of the disclosed compound as needed to treat the condition.
- Compositions for in vivo or in vitro use can contain about 0.5, 5, 20, 50, 75, 100, 150, 250, 500, 750, 1000, 1250, 2500, 3500, or 5000 mg of the disclosed compound, or, in a range of from one amount to another amount in the list of doses.
- the compositions are in the form of a tablet that can be scored.
- the compounds of the present invention may be made by a variety of methods, including standard chemistry. Suitable synthetic routes are depicted in the Schemes given below.
- the compounds of Formula (I) may be prepared by methods known in the art of organic synthesis as set forth in part by the following synthetic schemes. In the schemes described below, it is well understood that protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles or chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis”, Third edition, Wiley, New York 1999). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection processes, as well as the reaction conditions and order of their execution, shall be consistent with the preparation of compounds of Formula (I).
- the present invention includes both possible stereoisomers (unless specified in the synthesis) and includes not only racemic compounds but the individual enantiomers and/or diastereomers as well.
- a compound When a compound is desired as a single enantiomer or diastereomer, it may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be affected by any suitable method known in the art. See, for example, “Stereochemistry of Organic Compounds” by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994).
- the compounds described herein may be made from commercially available starting materials or synthesized using known organic, inorganic, and/or enzymatic processes.
- the compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis.
- compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include but are not limited to those methods described below.
- Compounds of the present invention Formula (I) can be synthesized by following the steps outlined in Schemes 1-2, which comprise different sequences of assembling intermediates II, III, IV, and V. Starting materials are either commercially available or made by known procedures in the reported literature or as illustrated.
- a mixture of enantiomers, diastereomers, cis/trans isomers resulted from the process can be separated into their single components by chiral salt technique, chromatography using normal phase, reverse phase or chiral column, depending on the nature of the separation.
- Table 6 provides activity of illustrative compounds of Formula I in IDH1-R132H, IDH1-R132C, IDH1-MS-HTC116-R132H, and IDH1-MS-HTC116-R132C assays.
- Mobile phase A 95% water/5% methanol with 0.1% Formic Acid
- Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid
- Column temperature Ambient LC gradient Linear 5-95% B in 2.5 min, hold 95% B to 3.5 min
- LC Flow rate 3 mL/min UV wavelength 220 nm and 254 nm
- Ionization Mode Electrospray Ionization; positive/negative
- Mobile phase A (A) 95% water/5% methanol with 0.1% Formic Acid
- Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid
- Column temperature Ambient LC gradient Linear 5-95% B in 5.5 min, hold 95% B to 7.5 min LC
- Flow rate 1.2 mL/min UV wavelength 220 nm and 254 nm
- Ionization Mode Electrospray Ionization; positive/negative
- HPLC-Agilent 1100 series Column: Agela Technologies Durashell C18, 3 ⁇ m, 4.6 ⁇ 50 mm,).
- Step-1 (R,E)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-2 (R)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-3 (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-1)
- Step-1 (R)—N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-2 (R)—N—((R)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-3 (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-2)
- Step-2 ((S)—N—((S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide
- Step-3 (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-1)
- Step-1 ((R)—N—((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide
- Step-2 (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-2)
- a tube was capped with a septum and placed under an atmosphere of nitrogen.
- DMF (9.5 mL, 123 mmol) was added by syringe and then cooled on an ice bath.
- POCl 3 (37 mL, 397 mmol) was added dropwise by syringe (over 25 minutes).
- the red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed and the mixture was treated with N-(4-chloro-3-fluorophenyl)acetamide (7.00 g, 37.3 mmol).
- the tube was then sealed and the solution was stirred at 80° C. overnight.
- the solution was pipetted onto ice, resulting in formation of a yellow precipitate.
- Step-3 N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-4 N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (573.6 mg, 1.652 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen.
- DCM 14 mL was added and the resulting suspension was cooled in a dry ice/chloroform bath (to approx. ⁇ 60° C.).
- Methyl magnesium bromide (MeMgBr) (3M in ethyl ether, 0.83 mL, 2.490 mmol) was then added dropwise. The reaction was stirred at ⁇ 60° C. for several hours, and then at ⁇ 20° C. overnight.
- the mixture was placed in an ice bath and treated dropwise with water (7 mL).
- the mixture was diluted with water (150 mL) and extracted with EtOAc (3 ⁇ 50 mL).
- Silica gel was added to the combined extracts and the sample was evaporated under reduced pressure.
- the sample was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 100% EtOAc in hexanes and with isocratic elution when peaks eluted) to provide 226.3 mg of the title compound as a yellowish solid.
- 2-Amino-5-chloro-4-fluorobenzoic acid (42 g, 221 mmol) was dissolved in 100 mL of THF and BH 3 .THF (712 mL of 1 M solution in THF, 712 mmol) was added dropwise over the period of 1 h at room temperature. The reaction mixture was heated at 50° C. overnight (18 h). The mixture was cooled to room temperature, poured onto ice cold water, and sat. NaCl solution was added. The aqueous was extracted with EtOAc (3 ⁇ 200 mL).
- Step-4 3-acetyl-6-chloro-7-fluoroquinolin-2(1H)-one
- Step-5 (S)—N—((S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide
- Step-6 (S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one. HCl, (II-4)
- Step-1 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde
- 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (2.56 g, 10.49 mmol) was heated at reflux in concentrated HCl (12M, 100 mL) overnight, during which the material did not appear to go into solution. The mixture was allowed to cool, then was poured into water (750 mL). The slurry was filtered on a Buchner funnel, washed with water (750 mL), and dried to provide impure 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.1991 g, 9.75 mmol, 93% yield) as a reddish brown solid. The material was suitable for use as is.
- Step-2 (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- the reaction mixture was quenched by dropwise addition of saturated aqueous NH 4 Cl, resulting in precipitation.
- the mixture was triturated with EtOAc (400 mL) and filtered on a Buchner funnel. The filter cake was then sonicated in 300 mL EtOAc for 15 minutes. The mixture was filtered on a Buchner funnel, and the filtrates from the two filtrations were combined.
- Step-3 (R)—N—((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- the material was purified by column chromatography on a Biotage® MPLC chromatography system (using 50 g silica gel column; eluted with 0 to 50% EtOAc in hexanes, with isocratic elution when peaks eluted) to provide (R)—N—((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (774.3 mg, 2.245 mmol, 23% yield) as a greenish solid.
- 1 H NMR shows a single diastereomer.
- a tube was capped with a septum and placed under an atmosphere of nitrogen.
- DMF (6.4 mL, 83 mmol) was added by syringe and then cooled on an ice bath.
- POCl 3 (25 mL, 268 mmol) was added dropwise by syringe (over 20 minutes).
- the red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed, and the mixture was treated with N-(4-chloro-3-methoxyphenyl)acetamide (5 g, 25.05 mmol).
- the tube was sealed and the solution was stirred at 80° C. overnight. The solution was then pipetted onto ice, resulting in formation of a yellow precipitate.
- Step-2 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde
- 2,6-Dichloro-7-methoxyquinoline-3-carbaldehyde (5.06 g, 19.76 mmol) was heated at reflux in concentrated HCl (12M, 185 mL) overnight. The material went into solution during heating and then a solid precipitated during the course of the reaction. The mixture was allowed to cool and then was poured into water (1500 mL) resulting in further precipitation. The slurry was filtered on a Buchner funnel, washed with water (1500 mL), and dried to provide 4.04 g of the title compound as a yellowish-brown solid.
- Step-3 N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-4 N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (265 mg, 0.778 mmol) was placed in a 50 mL round-bottom flask under an atmosphere of nitrogen.
- DCM 7 mL was added, and the suspension was cooled on a dry ice/chloroform bath (to approx. ⁇ 60° C.).
- Methylmagnesium bromide (MeMgBr) (3M in ether, 0.80 mL, 2.40 mmol) was added dropwise. The reaction mixture was stirred at ⁇ 60° C.
- Step-4 1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethanol
- Step-6 (R,E)-N-(1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethylidene)-2-methylpropane-2-sulfinamide
- Step-7 (R)—(N)—((S)-1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethyl-2-methylpropane-2-sulfinamide
- Step-8 (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride salt (II-7)
- Step-2 N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide
- a tube was capped with a septum and placed under an atmosphere of nitrogen.
- DMF (2.9 mL, 37.5 mmol) was added by syringe and then cooled on an ice bath.
- POCl 3 (11.4 mL, 122 mmol) was added dropwise by syringe (over 20 minutes). The solution was allowed to warm to room temperature (over 15 minutes) and the septum was removed. The mixture was treated with N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (3.16 g, 11.42 mmol). The tube was again sealed and the solution was stirred at 80° C. overnight. The solution was then pipetted onto ice, resulting in the formation of a yellow precipitate.
- Step-4 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde IV-3
- Step-5 (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-6 N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-7 3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one hydrochloride (II-9)
- Step-1 1-(2,6-Dichloro-7-(pyridin-2-ylmethoxy) quinolin-3-yl)ethanone
- Step-2 (R,E)-N-(1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethylidene)-2-methylpropane-2-sulfinamide
- Step-3 (R)—N—((S)-1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide
- Step-4 (S)-3-(1-Aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one TFA salt (II-10)
- the crude solid was purified by reverse phase chromatography on an ISCO® chromatography system (C18 column: eluted with H 2 O/MeCN/0.1% CF 3 CO 2 H 0 to 100%) and the fractions were monitored by LCMS. The pure fractions were combined and lyophilized to afford the title compound II-10 (920 mg, 86% yield) as the TFA salt.
- Step-1 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one
- Step-2 (S)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-3 (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one (II-11)
- Step-1 Ethyl 3-((4-chloro-2-nitrophenyl)amino)-3-oxopropanoate
- Step-2 7-Chloro-2-(ethoxycarbonyl)-3-oxo-3,4-dihydroquinoxaline 1-oxide (A) and 7-Chloro-2-(methoxycarbonyl)-3-oxo-3,4-dihydroquinoxaline 1-oxide (B)
- Step 3 Ethyl 7-chloro-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (D) and methyl 7-chloro-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (C)
- Step-4 Ethyl 3,7-dichloroquinoxaline-2-carboxylate (E) and methyl 3,7-dichloro quinoxaline-2-carboxylate (F)
- Step-6 7-Chloro-3-methoxyquinoxaline-2-carbaldehyde (G) and oxybis((7-chloro-3-methoxyquinoxalin-2-yl)methanol) (H)
- Step-7 (R,E)-N-((7-chloro-3-methoxyquinoxalin-2-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-8 (R)—N—((R)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-1 (S,E)-N-((7-chloro-3-methoxyquinoxalin-2-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-2 (S)—N—((S)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-1 tert-butyl (3-((tert-butyldimethylsilyl)oxy)-4-chlorophenyl)carbamate
- the sample was dissolved in EtOAc, silica gel (33 g) was added, and the solvent was evaporated under reduced pressure.
- the material was divided into two batches, each of which was purified by column chromatography on a Biotage® MPLC chromatography system using a 330 g silica gel column eluted with 0 to 5% EtOAc in hexanes and with isocratic elution at 4.5% or 5% EtOAc when the product eluted.
- the t-BuLi solution was added dropwise to the ether solution (over ⁇ 10 minutes), during which time the ether solution gradually became cloudy with a precipitate.
- the mixture was stirred at about ⁇ 40° C. for 2.5 hours, then DMF (11 mL) was added dropwise by syringe (over ⁇ 10 minutes), during which time the solids went back into solution.
- the acetonitrile/dry ice bath was replaced with an ice bath, and the yellow solution was stirred at 0° C. for 1.75 hours.
- the reaction was then quenched by dropwise addition of water (25 mL), resulting in formation of an orange precipitate.
- the ice bath was removed and the sample was diluted with water (125 mL), resulting in dissolution of the precipitate.
- Step-3 (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate
- Step-5 & 6 3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride (II-14)
- Step-1 tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate
- Step-2 & 3 (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride (II-15)
- Step-1 N-(4-Chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide
- the material was purified by column chromatography on a Biotage® MPLC chromatography system (using a 340 g silica gel column eluted with 0 to 100% EtOAc in hexanes with isocratic elution when peaks eluted) to provide 3.89 g of the title compound as a brown liquid.
- LCMS was consistent with impure 4-chloro-3-((3,3-difluorocyclobutyl)methoxy)aniline (m/z 248 [M+H] + ).
- the sample was dissolved in EtOAc (80 mL) and treated with DIEA (3.00 mL, 17.18 mmol) and Ac 2 O (1.60 mL, 16.96 mmol).
- Step-2 2,6-Dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde
- a tube was capped with a septum and placed under an atmosphere of nitrogen.
- DMF (2.15 mL, 27.8 mmol) was then added by syringe and the resulting reaction mixture was cooled on an ice bath.
- POCl 3 (8.40 mL, 90 mmol) was added dropwise by syringe (10 minutes) during which time a white material precipitated.
- the solution was then allowed to warm to room temperature over 10 minutes and the mixture was treated with N-(4-chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide (2.44 g, 8.42 mmol). The mixture was stirred at 80° C. for two days.
- Step-3 6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde
- Step-4 (E)-N-((6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide
- Step-5 N-(1-(6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide
- Step-6 3-(1-Aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride (II-16)
- Step-1 tert-Butyl (4-chloro-2-fluorophenyl)carbamate
- the organic material was diluted with EtOAc (50 mL), and washed with water (50 mL), 3.6% aqueous HCl solution (2 ⁇ 50 mL), saturated aqueous NaHCO 3 solution (50 mL), and then again with water (2 ⁇ 50 mL).
- the organic layer was dried (MgSO 4 ), filtered, and evaporated under reduced pressure to provide tert-butyl (4-chloro-2-fluorophenyl)carbamate (3.0011 g, 12.22 mmol, 89% yield) as a reddish liquid that solidified on standing.
- Step-2 tert-Butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate
- the mixture was diluted with EtOAc (100 mL), washed with water (2 ⁇ 100 mL), dried (Na 2 SO 4 ), filtered, and evaporated under reduced pressure to provide 5.45 g of an oily black solid.
- the material was triturated with hexanes (50 mL), collected on a Buchner funnel and washed with more hexanes to provide 2.73 g tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate as a yellow powder.
- the mixture was partitioned between EtOAc and water (100 mL each). The organic layer was dried (MgSO 4 ), filtered, and evaporated under reduced pressure to provide 1.88 g of the title compound as an orange gum.
- the material was dissolved in 1,4-dioxane (38 mL), treated with 12M aqueous HCl (0.96 mL), and stirred at 110° C. for 50 minutes. The sample was then allowed to cool. The solvent was evaporated under reduced pressure to provide 1.24 g of a red solid.
- Step-6 1-(6-Chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethanone
- Step-7 (R,E)-N-(1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethylidene)-2-methyl propane-2-sulfinamide
- Step-8 (R)—N—((S)-1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide
- the sample was diluted with DCM (300 mL) and filtered on a Buchner funnel, and the filter cake was washed with DCM ( ⁇ 400 mL). A white material precipitated in the filtrate.
- the filtrate mixture was washed with saturated aqueous NaHCO 3 (400 mL), during which the solids went into solution.
- the organic layer was washed with water (300 mL), then dried (MgSO 4 ) and filtered. Silica gel was added and the mixture was evaporated under reduced pressure.
- Step-2 N-(6-cyanopyridin-3-yl)-2,2,2-trifluoroacetamide-N-oxide
- Step-4 5-Amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (V-2)
- Step 3 6-chloro-3-((1-ethyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl)quinolin-2(1H)-one (I-2)
- the solid was filtered and washed by water, and then dissolved in EtOAc and dried over sodium sulfate. After filtration, the solution was concentrated with silica gel and purified by flash column chromatography (SiO 2 : dichloromethane/EtOAc 0 to 50%) to afford the target compound I-16 as a pale yellow solid (1.20 g, 89%).
- Step 2 (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one
- Step 3 (S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile (I-17)
- HCT116 isogenic IDH1-R132H and IDH1-R132C mutant cells were cultured in growth media (McCoy's 5 A, 10% fetal bovine serum, 1 ⁇ antibiotic-antimycotic solution and 0.3 mg/mL G418) in 5% CO 2 in an incubator at 37° C.
- growth media McCoy's 5 A, 10% fetal bovine serum, 1 ⁇ antibiotic-antimycotic solution and 0.3 mg/mL G4108
- assay media McCoy's 5 A with no L-glutamine, 10% fetal bovine serum, 1 ⁇ antibiotic-antimycotic solution and 0.3 mg/mL G418).
- An aliquot of 10,000 cells/100 ⁇ L was transferred to each well of a clear 96-well tissue culture plate. The cells were incubated in 5% CO 2 at 37° C.
- Table 6 provides activity of each compound according to the legend that “++++” indicates an inhibition at a concentration ⁇ 0.01 ⁇ M; “+++” indicates inhibition at a concentration between 0.01 ⁇ M and 0.1 ⁇ M of the disclosed compound; “++” indicates inhibition at a concentration from 0.1 ⁇ M to 1 ⁇ M of the disclosed compound; and “+” indicates inhibition at a concentration >1 ⁇ M for Enzyme IDH1R132H, HCT116 IDH1R132H, and HCT116 IDH1R132C.
- “++++” indicates an inhibition at a concentration ⁇ 0.1 ⁇ M; “+++” indicates inhibition at a concentration between 0.1 ⁇ M and 1 ⁇ M of the disclosed compound; “++” indicates inhibition at a concentration from 1 ⁇ M to 10 ⁇ M of the disclosed compound; and “+” indicates inhibition at a concentration >10 ⁇ M.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a Continuation application of U.S. patent application Ser. No. 14/858,167, filed Sep. 18, 2015, which claims the benefit of priority of U.S. Provisional Application No. 62/053,006, filed Sep. 19, 2014, U.S. Provisional Application No. 62/128,089, filed Mar. 4, 2015, and U.S. Provisional Application No. 62/150,812, filed Apr. 21, 2015, all of which are incorporated herein by reference in their entireties.
- The present invention is directed to inhibitors of mutant isocitrate dehydrogenase (mt-IDH) proteins with neomorphic activity useful in the treatment of diseases or disorders associated with such mutant IDH proteins including cell-proliferation disorders and cancers. Specifically, the invention is concerned with compounds and compositions inhibiting mt-IDH, methods of treating diseases or disorders associated with mt-IDH, and methods of synthesis of these compounds.
- Isocitrate dehydrogenases (IDHs) are enzymes that participate in the citric acid cycle (cellular metabolism). They catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (i.e., α-ketoglutarate, α-KG). There are three isoforms within the IDH family. IDH-1, expressed in the cytoplasm and peroxisome, IDH-2, localized in the mitochondria, both utilize NADP+ as the cofactor and exist as homodimers. IDH-3 is localized in mitochondrial matrix and utilizes NAD+ as a cofactor and exists as tetramer. Mutations in IDH-1 (cytosolic) and IDH-2 (mitochondrial) have been identified in various diseases or disorders including glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, and melanoma (L. Deng et al., Trends Mol. Med., 2010, 16, 387; T. Shibata et al., Am. J. Pathol., 201 1, 178(3), 1395; Gaal et al., J. Clin. Endocrinol. Metab. 2010; Hayden et al., Cell Cycle, 2009; Balss et al., Acta Neuropathol., 2008). The mutations have been found at or near key residues in the active site: G97D, R100, R132, H133Q, and A134D for IDH1, and R140 and R172 for IDH2. (See L. Deng et al., Nature, 2009, 462, 739; L. Sellner et al., Eur. J. Haematol., 2011, 85, 457).
- Mutant forms of IDH-1 and IDH-2 have been shown to lose wild type activity, and instead exhibit a neomorphic activity (also known as a gain of function activity), of reducing alpha-ketoglutarate to 2-hydroxyglutarate (2-HG). (See P. S. Ward et al., Cancer Cell, 2010, 17, 225; Zhao et. al., Science 324, 261(2009); Dang et. al Nature 462, 739 (2009)). In general, production of 2-HG is enantiospecific, resulting in generation of the D-enantiomer (also known as the R enantiomer or R-2-HG). Normal cells have low basal levels of 2-HG, whereas cells harboring mutations in IDH1 or IDH2 show significantly elevated levels of 2-HG. High levels of 2-HG have also been detected in tumors harboring the mutations. For example, high levels of 2-HG have been detected in the plasma of patients with mutant IDH containing AML. (See S. Gross et al., J. Exp. Med., 2010, 207(2), 339). High levels of 2-HG have been shown to block α-KG dependent DNA and histone demethylases, and ultimately to result in improper dedifferentiation of hematopoietic progenitor cells in AML patients (Wang et. al., Science 340, 622 (2013); Losman et al., Science 339, 1621 (2013)).
- Furthermore, patients with Oilier Disease and Mafucci Syndrome (two rare disorders that predispose to cartilaginous tumors) have been shown to be somatically mosaic for IDH1 and 2 mutations and exhibit high levels of D-2-HG. (See Amary et al., Nature Genetics, 2011 and Pansuriya et al., Nature Genetics, 2011).
- The inhibition of mt-IDHs and their neomorphic activity with small molecule inhibitors therefore has the potential to be a treatment for cancers and other disorders of cellular proliferation.
- A first aspect of the invention relates to compounds of Formula I:
- and pharmaceutical salts, enantiomers, hydrates, solvates, prodrugs, isomers, and tautomers thereof,
- wherein:
-
- each W1 and W2 is independently CH, CF or N;
- W3 is independently CR2 or N;
- U is N or CR6;
- A is selected from the group consisting of H, D, halogen, CN, —CHO, —COOH, —COOR, —C(O)NH2, —C(O)NHR, R′S(O)2—, —O(CH2)nC(O)R′, R'S(O)—, heteroaryl, —SOMe, —SO2Me,
- wherein X and Y are independently in each occurrence C, N, NR′, S, and O, provided that the ring containing X and Y cannot have more than 4 N or NH atoms or more than one S or O atoms, and wherein the S and O are not contiguous;
- R and R′ at each occurrence are independently selected from the group consisting of H, OH, CN, —CH2CN, halogen, —NR7R8, CHCF2, CF3, C1-C6 alkyl, R7S(O)2—, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkylalkyl, 3- to 8-membered heterocyclyl, aryl, and heteroaryl, wherein each R is optionally substituted with one or more substituents selected from the group consisting of OH, halogen, C1-C6 alkoxy, NH2, R7S(O)2—, CN, C3-C8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, heteroaryl, and R7S(O)—;
- R1 is independently OH, CN, halogen, CHCF2, CF3, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkenyl, C3-C8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl, wherein each C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl is optionally substituted one or more times with substituents selected from the group consisting of halogen, OH, NH2, CN, C1-C6 alkyl, and C1-C6 alkoxy;
- each R2 is independently H, OH, CN, halogen, CF3, CHF2, benzyl, C1-C6 alkyl, C1-C6 alkoxy, NH2, —O(CH2)nR′, —O(CH2)nC(O)NHR′, —O(CH2)nC(O)R′, NHR7, —N(R7)(R8), NHC(O)R7, NHS(O)R7, NHS(O)2R7, NHC(O)OR7, NHC(O)NHR7, —S(O)2NHR7, NHC(O)N(R8)R7, OCH2R7, CHRR′ or OCHR′R7, wherein C1-C6 alkyl, C1-C6 alkoxy is optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkyl substituted with one or more halogen, 3- to 8-membered heterocyclyl, aryl, -heteroaryl-C(O)NH2, and heteroaryl;
- or R1 and R2 can combine to form a C4-C6 cycloalkyl or a 3- to 8-membered heterocyclyl containing at least one atom selected from the group consisting of N, O, and S;
- R3 is H, D, C1-C6 alkyl, or; —OH;
- R4 and R5 are independently H, D, halogen, CH2OH, C1-C3 alkyl, or C1-C3 alkyl substituted with halogen, or R4 and R5 when combined can form a C3-C6 cycloalkyl or C3-C6 heterocyclyl;
- each R6 is H, halogen, C1-C6 alkyl, C1-C6 alkyl substituted with halogen, C1-C6 alkoxy, C1-C6 alkoxy substituted with one or more halogen, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, or heteroaryl;
- R7 and R8 are independently H, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, 3- to 8-membered heterocyclyl, aryl, and heteroaryl; or when combined R7 and R8 can form a 3- to 8-membered heterocyclyl or heteroaryl ring;
- R9 is independently H, D, CD3, CF3, C1-C6 alkyl, C2-6 alkenyl, C3-6 alkynyl, C3-C8 cycloalkyl, wherein the alkyl, alkenyl, alkynyl, and cycloalkyl is optionally substituted with amino, OH, halo, or alkoxy;
- n is 0, 1, or 2; and
- r is 0, 1, or 2;
- with the proviso that when A is H, then R1 is not C1-C6 alkyl or C1-C6 alkoxy and R1 and R2 cannot combine to form a 3- to 8-membered heterocyclyl.
- Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase. The method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of a compound of Formula I.
- Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase. The method involves administering to a patient in need thereof an effective amount of the compound of Formula I.
- Another aspect of the invention relates to method of reducing 2-hydroxyglutarate. The method comprises administering to a patient in need thereof an effective amount of the compound of Formula I.
- Another aspect of the invention is directed to pharmaceutical compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may further include an excipient, diluent, or surfactant.
- The present invention further provides methods of treating cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors.
- The present invention also provides potent mt-IDH inhibitors with excellent drug-like properties to cancers and other cell proliferative disorders. The inhibitors of the present invention may target mutated IDH1 or IDH2.
- The present invention further provides development of potent, orally active, and selective IDH inhibitors as therapeutic agents for various diseases or disorders including cancers. The invention also provides treatment for solid and hematologic cancers for which there are no currently targeted therapies available for patients suffering from these conditions or disorders.
-
FIG. 1 illustrates a graph showing the potency of IDH1 inhibitors in IDH1-R132H Enzymatic Assay using compounds I-1, I-5, and I-20. - IDH1 or IDH2 mutations are a genetically validated target in many solid and hematologic cancers, but there are currently no targeted therapies available for patients in need of treatment for specific conditions associated with mt-IDH activity. Non-mutant IDH (e.g., wild-type) catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate thereby reducing NAD+ (NADP+) to NADH (NADPH) (WO 2013/102431 to Cianchetta et al., hereby incorporated by reference in its entirety). Mutations of IDH present in certain cancer cells result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate R(−)-2-hydroxyglutarate (2HG). 2HG is not formed by wild-type IDH. The production of 2HG contributes to the formation and progression of cancer (Dang, L et al., Nature, 2009, 462:739-44, hereby incorporated by reference in its entirety). The present invention provides inhibitors of mt-IDH, and prophylactic measures to reduce the formation and progression of 2HG in cells.
- In a first aspect of the invention, are described the compounds of Formula I:
- and pharmaceutically acceptable salts, enantiomers, hydrates, solvates, prodrugs, isomers, and tautomers thereof, where A, U, W1, W2, W3, R1-R6, and R9 are as described above.
- The details of the invention are set forth in the accompanying description below. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All patents and publications cited in this specification are incorporated herein by reference in their entireties.
- The articles “a” and “an” are used in this disclosure to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
- The term “and/or” is used in this disclosure to mean either “and” or “or” unless indicated otherwise.
- The term “optionally substituted” is understood to mean that a given chemical moiety (e.g. an alkyl group) can (but is not required to) be bonded other substituents (e.g. heteroatoms). For instance, an alkyl group that is optionally substituted can be a fully saturated alkyl chain (i.e. a pure hydrocarbon). Alternatively, the same optionally substituted alkyl group can have substituents different from hydrogen. For instance, it can, at any point along the chain be bounded to a halogen atom, a hydroxyl group, or any other substituent described herein. Thus the term “optionally substituted” means that a given chemical moiety has the potential to contain other functional groups, but does not necessarily have any further functional groups. Suitable substituents used in the optional substitution of the described groups include, without limitation, halogen, oxo, CN, —COOH, —CH2CN, —O—C1-C6alkyl, C1-C6alkyl, —OC1-C6alkenyl, —OC1-C6alkynyl, —C1-C6alkenyl, —C1-C6alkynyl, —OH, —OP(O)(OH)2, —OC(O)C1-C6alkyl, —C(O)C1-C6alkyl, —OC(O)OC1-C6alkyl, NH2, NH(C1-C6alkyl), N(C1-C6alkyl)2, —NHC(O)C1-C6alkyl, —C(O)NHC1-C6alkyl, —S(O)2—C1-C6alkyl, —S(O)NHC1-C6alkyl, and S(O)N(C1-C6alkyl)2
- Unless otherwise specifically defined, the term “aryl” refers to cyclic, aromatic hydrocarbon groups that have 1 to 2 aromatic rings, including monocyclic or bicyclic groups such as phenyl, biphenyl or naphthyl. Where containing two aromatic rings (bicyclic, etc.), the aromatic rings of the aryl group may be joined at a single point (e.g., biphenyl), or fused (e.g., naphthyl). The aryl group may be optionally substituted by one or more substituents, e.g., 1 to 5 substituents, at any point of attachment. Exemplary substituents include, but are not limited to, —H, -halogen, —O—C1-C6alkyl, C1-C6alkyl, —OC1-C6alkenyl, —OC1-C6alkynyl, —C1-C6alkenyl, —C1-C6alkynyl, —OH, —OP(O)(OH)2, —OC(O)C1-C6alkyl, —C(O)C1-C6alkyl, —OC(O)OC1-C6alkyl, NH2, NH(C1-C6alkyl), N(C1-C6alkyl)2, —S(O)2—C1-C6alkyl, —S(O)NHC1-C6alkyl, and S(O)N(C1-C6alkyl)2. The substituents can themselves be optionally substituted. Furthermore when containing two fused rings the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring. Exemplary ring systems of these aryl groups include indanyl, indenyl, tetrahydronaphthalenyl, and tetrahydrobenzoannulenyl.
- Unless otherwise specifically defined, “heteroaryl” means a monovalent monocyclic aromatic radical of 5 to 10 ring atoms or a polycyclic aromatic radical, containing one or more ring heteroatoms selected from N, O, or S, the remaining ring atoms being C. Heteroaryl as herein defined also means a bicyclic heteroaromatic group wherein the heteroatom is selected from N, O, or S. The aromatic radical is optionally substituted independently with one or more substituents described herein. Examples include, but are not limited to, furyl, thienyl, pyrrolyl, pyridyl, pyrazolyl, pyrimidinyl, imidazolyl, pyrazinyl, indolyl, thiophen-2-yl, quinolyl, benzopyranyl, thiazolyl, and derivatives thereof. Furthermore when containing two fused rings the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring. Exemplary ring systems of these heteroaryl groups include indolinyl, indolinonyl, dihydrobenzothiophenyl, dihydrobenzofuran, chromanyl, thiochromanyl, tetrahydroquinolinyl, dihydrobenzothiazine, and dihydrobenzoxanyl.
- Halogen or “halo” refers to fluorine, chlorine, bromine and iodine.
- Alkyl refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms. Examples of a C1-C6 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, and isohexyl.
- “Alkoxy” refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms containing a terminal “O” in the chain. Examples of alkoxy groups include without limitation, methoxy, ethoxy, propoxy, butoxy, t-butoxy, or pentoxy groups.
- “Alkenyl” refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms. The “alkenyl” group contains at least one double bond in the chain. Examples of alkenyl groups include ethenyl, propenyl, n-butenyl, iso-butenyl, pentenyl, or hexenyl.
- “Alkynyl” refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms. The “alkynyl” group contains at least one triple bond in the chain. Examples of alkenyl groups include ethynyl, propargyl, n-butynyl, iso-butynyl, pentynyl, or hexynyl.
- “Cycloalkyl” means monocyclic saturated carbon rings containing 3-18 carbon atoms. Examples of cycloalkyl groups include, without limitations, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptanyl, cyclooctanyl, norboranyl, norborenyl, bicyclo[2.2.2]octanyl, or bicyclo[2.2.2]octenyl.
- “Cycloalkylalkyl” means monocyclic saturated carbon rings containing 3-18 carbon atoms further substituted with C1-C6 alkyl groups. In general cycloalkylalkyl groups herein described display the following Formula
- where m is an integer from 1 to 6 and n is an integer from 1 to 16.
- “Heterocyclyl” or “heterocycloalkyl” monocyclic rings containing carbon and heteroatoms taken from oxygen, nitrogen, or sulfur and wherein there is not delocalized π electrons (aromaticity) shared among the ring carbon or heteroatoms; heterocyclyl rings include, but are not limited to, oxetanyl, azetadinyl, tetrahydrofuranyl, pyrrolidinyl, oxazolinyl, oxazolidinyl, thiazolinyl, thiazolidinyl, pyranyl, thiopyranyl, tetrahydropyranyl, dioxalinyl, piperidinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S-dioxide, piperazinyl, azepinyl, oxepinyl, diazepinyl, tropanyl, and homotropanyl. In accordance with the present invention, 3- to 8-membered heterocyclyl refers to saturated or partially saturated non aromatic rings structures containing between 3 and 8 atoms in which there is at least one heteroatoms selected from the group N, O, or S.
- The term “solvate” refers to a complex of variable stoichiometry formed by a solute and solvent. Such solvents for the purpose of the invention may not interfere with the biological activity of the solute. Examples of suitable solvents include, but are not limited to, water, MeOH, EtOH, and AcOH. Solvates wherein water is the solvent molecule are typically referred to as hydrates. Hydrates include compositions containing stoichiometric amounts of water, as well as compositions containing variable amounts of water.
- The term “isomer” refers to compounds that have the same composition and molecular weight but differ in physical and/or chemical properties. The structural difference may be in constitution (geometric isomers) or in the ability to rotate the plane of polarized light (stereoisomers). With regard to stereoisomers, the compounds of Formula (I) may have one or more asymmetric carbon atom and may occur as racemates, racemic mixtures and as individual enantiomers or diastereomers.
- The disclosure also includes pharmaceutical compositions comprising an effective amount of a disclosed compound and a pharmaceutically acceptable carrier. Representative “pharmaceutically acceptable salts” include, e.g., water-soluble and water-insoluble salts, such as the acetate, amsonate (4,4-diaminostilbene-2,2-disulfonate), benzenesulfonate, benzonate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, calcium, calcium edetate, camsylate, carbonate, chloride, citrate, clavulariate, dihydrochloride, edetate, edisylate, estolate, esylate, fiunarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexafluorophosphate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, magnesium, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, 3-hydroxy-2-naphthoate, oleate, oxalate, palmitate, pamoate (1,1-methene-bis-2-hydroxy-3-naphthoate, einbonate), pantothenate, phosphate/diphosphate, picrate, polygalacturonate, propionate, p-toluenesulfonate, salicylate, stearate, subacetate, succinate, sulfate, sulfosalicylate, suramate, tannate, tartrate, teoclate, tosylate, triethiodide, and valerate salts.
- A “patient” or “subject” is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus.
- An “effective amount” when used in connection with a compound is an amount effective for treating or preventing a disease in a subject as described herein.
- The term “carrier”, as used in this disclosure, encompasses carriers, excipients, and diluents and means a material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body of a subject.
- The term “treating” with regard to a subject, refers to improving at least one symptom of the subject's disorder. Treating includes curing, improving, or at least partially ameliorating the disorder.
- The term “disorder” is used in this disclosure to mean, and is used interchangeably with, the terms disease, condition, or illness, unless otherwise indicated.
- The term “administer”, “administering”, or “administration” as used in this disclosure refers to either directly administering a disclosed compound or pharmaceutically acceptable salt of the disclosed compound or a composition to a subject, or administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body.
- The term “prodrug,” as used in this disclosure, means a compound which is convertible in vivo by metabolic means (e.g., by hydrolysis) to a disclosed compound.
- In one embodiment of the invention, A is CN. In this embodiment, R9 may further be H, C1-C6 alkyl or C3-C6 cycloalkyl. In another embodiment, R9 may also be methyl or Ethyl.
- In another embodiment of the compounds of Formula I, U is N. In this embodiment, A may further be CN.
- In other embodiments of the invention, are describe the compounds of Formula I where A is H or F.
- In other embodiments of the invention, are describe the compounds of Formula I where A is
- Another embodiment of the invention pertains to compounds of Formula I where R4 and R5 are H.
- In another embodiment of the invention, R3 is H, methyl or ethyl.
- In another embodiment of the compounds of Formula I, R4 is H and R5 is methyl.
- In yet another embodiment of the invention, R4 is H and R5 is (S)-methyl.
- In another embodiment, R4 and R5 are halogen.
- In another embodiment of the compounds of Formula I, R4 is F and R5 is methyl.
- In another embodiment, R4 and R5 can combine to form a C3-C6 cycloalkyl.
- In one embodiment of the compounds of Formula I, W1, W2, and W3 are all CH.
- In one embodiment of the compounds of Formula I, W1, W2, or W3 are CF.
- In one embodiment, W1 or W3 is CH or N.
- In one embodiment, W3 is CR2.
- In another embodiment of the invention, R1 can be halogen. In another embodiment, R1 is chloro.
- In one embodiment of the invention R2 can be H, halogen, or C1-C6 alkoxy. In another embodiment, R2 can also be C1-C6 alkoxy substituted with heteroaryl or 3- to 8-membered heterocyclyl.
- In another embodiment, illustrative compounds of Formula I are:
- 5-{[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 6-chloro-3-{[(1-ethyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-1,2-dihydroquinolin-2-one;
- 6-chloro-3-{[(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-1,2-dihydroquinolin-2-one;
- 5-{[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 6-chloro-3-{[(1-cyclopropyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-1,2-dihydroquinolin-2-one;
- 6-chloro-3-{[(1,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-1,2-dihydroquinolin-2-one;
- 3-{[(6-bromo-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-6-chloro-1,2-dihydroquinolin-2-one;
- 6-chloro-3-({[2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl]amino}methyl)-1,2-dihydroquinolin-2-one;
- 6-chloro-3-({[1-methyl-2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl]amino}methyl)-1,2-dihydroquinolin-2-one;
- methyl 5-{[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-6-oxo-1,6-dihydropyridine-3-carboxylate;
- 6-chloro-7-methoxy-3-{[(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-1,2-dihydroquinolin-2-one;
- 6-chloro-3-{[(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile;
- 5-{[(1R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1R)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-({1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl}amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-{6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl}ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1 S)-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-[(1-{6-chloro-7-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl}ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1R)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile; and
- 5-{[(1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile.
- In another embodiment, illustrative compounds of Formula I include:
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-6-oxo-1-(trifluoromethyl)-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-[6-chloro-7-(2-hydroxypropan-2-yl)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-7-cyclopropyl-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-(6-chloro-7-methyl-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-{6-chloro-7-[(2-hydroxy-2-methylpropyl)amino]-2-oxo-1,2-dihydroquinolin-3-yl}ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-[7-(azetidin-1-yl)-6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-[7-(azetidin-1-yl)-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 5-{[(1S)-1-[6-chloro-7-(3,3-difluoroazetidin-1-yl)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
- 6-chloro-3-[(1S)-1-{[1-methyl-2-oxo-6-(1H-1,2,3,4-tetrazol-1-yl)-1,2-dihydropyridin-3-yl]amino}ethyl]-1,2-dihydroquinolin-2-one; and
- 5-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carboxamide.
- In one embodiment, the compounds of the invention have the Formula Ia:
- In another embodiment, the compounds of the invention have the Formula Ia-1:
- In another embodiment, the compounds of the invention have the Formula Ia-2:
- In another embodiment, the compounds of the invention have the Formula Ib:
- In another embodiment, the compounds of the invention have the Formula Ib-1:
- In another embodiment of the invention, the compounds of Formula I are enantiomers. In some embodiments the compounds are (S)-enantiomer. In other embodiments the compounds may also be (R)-enantiomer. In yet other embodiments, the compounds of Formula I may be (+) or (−) enantiomers.
- In another embodiment of the invention, the compounds of Formula I contain isotopes of atoms forming the structure of Formula I. Isotopes herein means, each of two or more forms of the same element (e.g., H and D; 12C and 13C) that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass.
- It should be understood that all isomeric forms are included within the present invention, including mixtures thereof. If the compound contains a double bond, the substituent may be in the E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis or trans configuration. All tautomeric forms are also intended to be included.
- Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase. The method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of the compositions and compounds of Formula I.
- Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase. The method involves administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.
- Examples of a mutant IDH protein having a neomorphic activity are mutant IDH1 and mutant IDH2. A neomorphic activity associated with mutant IDH1 and mutant IDH2 is the ability to produce 2-hydroxyglutarate (2-HG neomorphic activity), specifically R-2-HG (R-2-HG neomorphic activity). Mutations in
IDH 1 associated with 2-HG neomorphic activity, specifically R-2-HG neomorphic activity, include mutations atresidues 97, 100, and 132, e.g. G97D, R100Q, R132H, R132C, R132S, R132G, R132L, and R132V. Mutations in IDH2 associated with 2-HG neoactivity, specifically R-2-HG neomorphic activity, include mutations at residues 140 and 172, e.g. R140Q, R140G, R172K, R172M, R172S, R172G, and R172W. - Another aspect of the invention relates to method of reducing 2-hydroxyglutarate. The method comprises administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.
- One therapeutic use of the compounds or compositions of the present invention which inhibit mt-IDH is to provide treatment to patients or subjects suffering from cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors. Targeted treatments for these cancers and cell proliferative diseases are not currently available to patients suffering from these conditions. Therefore, there is a need for new therapeutic agents selective to these conditions.
- The disclosed compounds of the invention can be administered in effective amounts to treat or prevent a disorder and/or prevent the development thereof in subjects.
- Administration of the disclosed compounds can be accomplished via any mode of administration for therapeutic agents. These modes include systemic or local administration such as oral, nasal, parenteral, transdermal, subcutaneous, vaginal, buccal, rectal or topical administration modes.
- Depending on the intended mode of administration, the disclosed compositions can be in solid, semi-solid or liquid dosage form, such as, for example, injectables, tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices. Likewise, they can also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous or intramuscular form, and all using forms well known to those skilled in the pharmaceutical arts.
- Illustrative pharmaceutical compositions are tablets and gelatin capsules comprising a Compound of the Invention and a pharmaceutically acceptable carrier, such as a) a diluent, e.g., purified water, triglyceride oils, such as hydrogenated or partially hydrogenated vegetable oil, or mixtures thereof, corn oil, olive oil, sunflower oil, safflower oil, fish oils, such as EPA or DHA, or their esters or triglycerides or mixtures thereof, omega-3 fatty acids or derivatives thereof, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, sodium, saccharin, glucose and/or glycine; b) a lubricant, e.g., silica, talcum, stearic acid, its magnesium or calcium salt, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and/or polyethylene glycol; for tablets also; c) a binder, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, magnesium carbonate, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, waxes and/or polyvinylpyrrolidone, if desired; d) a disintegrant, e.g., starches, agar, methyl cellulose, bentonite, xanthan gum, algiic acid or its sodium salt, or effervescent mixtures; e) absorbent, colorant, flavorant and sweetener; f) an emulsifier or dispersing agent, such as Tween 80, Labrasol, HPMC, DOSS, caproyl 909, labrafac, labrafil, peceol, transcutol, capmul MCM, capmul PG-12, captex 355, gelucire, vitamin E TGPS or other acceptable emulsifier; and/or g) an agent that enhances absorption of the compound such as cyclodextrin, hydroxypropyl-cyclodextrin, PEG400, PEG200.
- Liquid, particularly injectable, compositions can, for example, be prepared by dissolution, dispersion, etc. For example, the disclosed compound is dissolved in or mixed with a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form an injectable isotonic solution or suspension. Proteins such as albumin, chylomicron particles, or serum proteins can be used to solubilize the disclosed compounds.
- The disclosed compounds can be also formulated as a suppository that can be prepared from fatty emulsions or suspensions; using polyalkylene glycols such as propylene glycol, as the carrier.
- The disclosed compounds can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, containing cholesterol, stearylamine or phosphatidylcholines. In some embodiments, a film of lipid components is hydrated with an aqueous solution of drug to a form lipid layer encapsulating the drug, as described in U.S. Pat. No. 5,262,564.
- Disclosed compounds can also be delivered by the use of monoclonal antibodies as individual carriers to which the disclosed compounds are coupled. The disclosed compounds can also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspanamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the Disclosed compounds can be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers of hydrogels. In one embodiment, disclosed compounds are not covalently bound to a polymer, e.g., a polycarboxylic acid polymer, or a polyacrylate.
- Parental injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions or solid forms suitable for dissolving in liquid prior to injection.
- Another aspect of the invention is directed to pharmaceutical compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier. The pharmaceutical acceptable carrier may further include an excipient, diluent, or surfactant.
- Compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain from about 0.1% to about 99%, from about 5% to about 90%, or from about 1% to about 20% of the disclosed compound by weight or volume.
- The dosage regimen utilizing the disclosed compound is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal or hepatic function of the patient; and the particular disclosed compound employed. A physician or veterinarian of ordinary skill in the art can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.
- Effective dosage amounts of the disclosed compounds, when used for the indicated effects, range from about 0.5 mg to about 5000 mg of the disclosed compound as needed to treat the condition. Compositions for in vivo or in vitro use can contain about 0.5, 5, 20, 50, 75, 100, 150, 250, 500, 750, 1000, 1250, 2500, 3500, or 5000 mg of the disclosed compound, or, in a range of from one amount to another amount in the list of doses. In one embodiment, the compositions are in the form of a tablet that can be scored.
- The compounds of the present invention may be made by a variety of methods, including standard chemistry. Suitable synthetic routes are depicted in the Schemes given below.
- The compounds of Formula (I) may be prepared by methods known in the art of organic synthesis as set forth in part by the following synthetic schemes. In the schemes described below, it is well understood that protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles or chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis”, Third edition, Wiley, New York 1999). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection processes, as well as the reaction conditions and order of their execution, shall be consistent with the preparation of compounds of Formula (I).
- Those skilled in the art will recognize if a stereocenter exists in the compounds of Formula (I). Accordingly, the present invention includes both possible stereoisomers (unless specified in the synthesis) and includes not only racemic compounds but the individual enantiomers and/or diastereomers as well. When a compound is desired as a single enantiomer or diastereomer, it may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be affected by any suitable method known in the art. See, for example, “Stereochemistry of Organic Compounds” by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994).
- The compounds described herein may be made from commercially available starting materials or synthesized using known organic, inorganic, and/or enzymatic processes.
- The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include but are not limited to those methods described below. Compounds of the present invention Formula (I) can be synthesized by following the steps outlined in Schemes 1-2, which comprise different sequences of assembling intermediates II, III, IV, and V. Starting materials are either commercially available or made by known procedures in the reported literature or as illustrated.
- wherein A, U, W1, W2, W3, R1-R9 are defined in Formula (I).
- The general ways of preparing target molecules of Formula I by using intermediates II, III, IV, and V are outlined in
Scheme - It should be understood that in the description and formulae shown above, the various groups A, U, W1, W2, W3, R1-R6, and R9 and other variables are as defined above, except where otherwise indicated. Furthermore, for synthetic purposes, the compounds of
schemes - The disclosure is further illustrated by the following examples and synthesis schemes, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims.
- Table 6 provides activity of illustrative compounds of Formula I in IDH1-R132H, IDH1-R132C, IDH1-MS-HTC116-R132H, and IDH1-MS-HTC116-R132C assays.
- Unless otherwise noted, reagents and solvents were used as received from commercial suppliers. Proton nuclear magnetic resonance (NMR) spectra were obtained on either Bruker or Varian spectrometers at 300 MHz. Spectra are given in ppm (δ) and coupling constants, J, are reported in Hertz. Tetramethylsilane (TMS) was used as an internal standard. Mass spectra were collected using a Waters ZQ Single Quad Mass Spectrometer (ion trap electrospray ionization (ESI)). High performance liquid chromatograph (HPLC) analyses were obtained using a XBridge Phenyl or C18 column (5 μm, 50×4.6 mm, 150×4.6 mm or 250×4.6 mm) with UV detection (Waters 996 PDA) at 254 nm or 223 nm using a standard solvent gradient program (Method 1-4).
-
-
HPLC: Waters HT2790 Alliance MS: Waters ZQ Single Quad Mass Spectrometer UV: Waters 996 PDA -
-
Mobile phase A 95% water/5% methanol with 0.1% Formic Acid Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid Column XBridge Phenyl or C18, 5 μm 4.6 × 50 mm Column temperature Ambient LC gradient Linear 5-95% B in 2.5 min, hold 95% B to 3.5 min LC Flow rate 3 mL/min UV wavelength 220 nm and 254 nm Ionization Mode Electrospray Ionization; positive/negative -
-
HPLC: Waters HT2790 Alliance MS: Waters ZQ Single Quad Mass Spectrometer UV: Waters 996 PDA -
-
Mobile phase A (A) 95% water/5% methanol with 0.1% Formic Acid Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid Column XBridge C18, 5 μm 4.6 × 150 mm Column temperature Ambient LC gradient Linear 5-95% B in 5.5 min, hold 95% B to 7.5 min LC Flow rate 1.2 mL/min UV wavelength 220 nm and 254 nm Ionization Mode Electrospray Ionization; positive/negative - HPLC-Agilent 1100 series.
Column: Agela Technologies Durashell C18, 3 μm, 4.6×50 mm,). -
-
Time (min) % B 00 95 15 05 18 05 20 95
Flow Rate: 1 mL/min. -
-
HPLC: Waters Acquity MS: Waters ZQ Mass Detector Binary Solvent Manager UV: Waters Acquity PDA Mobile phase A (A) 95% water/5% acetonitrile with 0.1% formic acid in 10 mM ammonium formate Mobile phase B (B) 95% acetonitrile/5% water with 0.09% formic acid Column Waters Acquity UPLC BEH C18, 1.7 μm, 2.1 × 50 mm Column temperature 35° C. LC gradient 5-100% B in 2.0 min, hold 100% B to 2.2 min LC Flow rate 0.6 mL/min UV wavelength 220 nm and 254 nm Ionization Mode Electrospray Ionization; positive/negative
Abbreviations used in the following examples and elsewhere herein are: - Ac2O acetic anhydride
- ACN Acetonitrile
- BOP ammonium 4-(3-(pyridin-3-ylmethyl)ureido)benzenesulfinate
- CDCl3 deuterated chloroform
- Cs2CO3 cesium carbonateCuSO4 copper sulfate
- δ chemical shift
- DCM dichloromethane or methylene chloride
-
DCE 1,2-dichloroethane - DEAD diethyl azodicarboxylate
- DIAD diisopropyl azodicarboxylate
- DIEA N,N-diisopropylethylamine
- DMA N,N-dimethylacetamide
- DME dimethoxyethane
- DMF N,N-dimethylformamide
- DMP Dess-Martin Periodinane
- DMSO dimethylsulfoxide
- DMSO-d6 deuterated dimethylsulfoxide
-
dppf - EDCI N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
- EDTA ethylenediaminetetraacetic acid
- ee enantiomeric excess
- EtOAc ethyl acetate
- EtOH ethanol
- 1H NMR proton nuclear magnetic resonance
- HOAc acetic acid
- HATU 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate
- HCl hydrochloric acid
- HOBT 1H-benzo[d][1,2,3]triazol-1-ol hydrate
- HPLC high pressure liquid chromatography
- Hz hertz
- IPA isopropyl alcohol
- KOAc potassium acetate
- K2CO3 potassium carbonate
- LAH lithium aluminum hydride
- LCMS liquid chromatography/mass spectrometry
- (M+1)
mass+ 1 - m-CPBA m-chloroperbenzoic acid
- MeOH methanol
- MeMgBr methyl magnesium bromide
- MS mass spectrometry
- NaBH4 sodium borohydride
- Na2SO4 sodium sulfate
- Pd(dppf)Cl2 [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
- Palladium tetrakis Tetrakis(triphenylphosphine)palladium(0)
- Rt retention time
- TBDMS-Cl Tert-butyl dimethylsilyl chloride
- TEA triethylamine
- THF tetrahydrofuran
- TLC thin layer chromatography
- Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
-
-
- To a mixture of 2,6-dichloroquinoline-3-carbaldehyde (15.0 g, 66.37 mmol) and (R)-2-methylpropane-2-sulfinamide (8.85 g, 73.14 mmol) in 1,2-dichloroethane (150 mL) was added CuSO4 (16.0 g, 100.25 mmol). The resulting mixture was heated to 55° C. and stirred at 55° C. overnight. After TLC and MS showed complete disappearance of starting materials, the mixture was cooled to room temperature and filtered through a pad of Celite®. The pad of celite was then rinsed with CH2Cl2. The filtrate was evaporated to dryness in vacuo and purified by SiO2 column chromatography (0 to 25% hexanes/EtOAc) to afford the title compound, (R,E)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide, as a yellow solid (17.7 g, 81% yield).
-
- To a solution of (R,E)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (8.85 g, 26.88 mmol) in anhydrous CH2Cl2 (200 mL) at −60° C. was added dropwise MeMgBr (3M solution in diethyl ether, 13.5 mL, 40.54 mmol). The resulting reaction mixture was stirred at about −60 to −50° C. for 3 hours and then stirred at −20° C. overnight under an atmosphere of N2. After TLC and MS showed complete disappearance of starting materials, saturated NH4Cl (163 mL) was added at −20° C. and the resulting mixture was stirred for 10 minutes. The aqueous phase was extracted with CH2Cl2 (100 mL×3), dried over anhydrous Na2SO4 filtered, and evaporated. The residue was purified by column chromatography on an ISCO® chromatography system (SiO2: Gold column; gradient; hexanes to 100% EtOAc) to provide the title compound, (R)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide, as a yellow solid (5.8 g, 63% yield).
-
- A mixture of (R)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (6.6 g, 19.13 mmol) in 1,4-dioxane (41 mL) and 1N HCl (41 mL) was heated at reflux overnight. The solvents were evaporated in vacuo and the resulting residue was dissolved in hot water and lyophilized. The crude product was triturated with diethyl ether to afford the title compound II-1 as a yellow solid (9.0 g, ee: 98.4%). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.4 (br s, 1H), 8.32 (br s, 2H), 8.07 (s, 1H), 7.85 (d, J=2.2 Hz, 1H), 7.63 (dd, J1=8.8 Hz, J2=2.5 Hz, 1H), 7.40 (d, J=8.8 Hz, 1H), 4.40-4.45 (m, 1H), 1.53 (d, J=8.5 Hz, 3H). LCMS (Method 3): Rt 3.42 min, m/z 223.1 [M+H]+.
-
- To a mixture of 2,6-dichloroquinoline-3-carbaldehyde (500 mg, 2.21 mmol) and (R)-2-methylpropane-2-sulfinamide (295 g, 2.43 mmol) in 1,2-dichloroethane (15 mL) was added CuSO4 (530 mg, 3.31 mmol). The resulting mixture was heated to 55° C. and stirred at 55° C. for 18 hours. Once TLC and MS showed complete disappearance of starting materials, the reaction mixture was cooled to room temperature and filtered through a pad of Celite®. The pad of celite was then rinsed with CH2Cl2. The filtrate was evaporated to dryness in vacuo and purified by column chromatography on an ISCO® chromatography system (SiO2; hexanes to 60% EtOAc/hexanes) to afford the title compound, (R)—N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide, as a yellow solid (510 mg, 70% yield).
- To a solution of (R)—N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (505 mg, 1.534 mmol) in anhydrous THF (8 mL) at 0° C. was added dropwise MeMgBr (3M solution in diethyl ether, 0.56 mL, 1.687 mmol). The mixture was stirred at 0° C. for 3 hours under an atmosphere of N2. After TLC and MS showed complete disappearance of starting materials, saturated NH4Cl (5 mL) was added at 0° C. and the resulting mixture was stirred for 10 minutes. The aqueous phase was extracted with EtOAc (10 mL×3), dried over anhydrous Na2SO4, filtered, and evaporated. The residue was purified by column chromatography on an ISCO® chromatography system (SiO2; hexanes to 80% EtOAc/hexanes) to afford the title compound as the R,R isomer as a pale yellow solid (200 mg, 38%) and the R,S isomer as a pale yellow solid (93 mg, 18% yield).
-
- A mixture of (R)—N—((R)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (190 mg, 0.55 mmol) in 1,4-dioxane (2 mL) and 1N HCl (1.1 mL, 1.1 mmol) was heated to 150° C. for 30 minutes in a microwave reactor. The solvents were evaporated and the residue was dissolved in hot water and lyophilized to afford the title compound II-2 as a yellow solid (148 mg, quantitative yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.35 (br s, 1H), 8.28 (br s, 2H), 8.05 (s, 1H), 7.86 (d, J=2.2 Hz, 1H), 7.63 (dd, J1=8.8 Hz, J2=2.5 Hz, 1H), 7.40 (d, J=8.8 Hz, 1H), 4.40-4.45 (m, 1H), 1.53 (d, J=8.5 Hz, 3H). LCMS (Method 3): Rt 3.40 min, m/z 223.1 [M+H]+.
-
-
- A mixture of 2-amino-5-chlorobenzaldehyde (0.5 g, 3.21 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (0.594 g, 4.18 mmol) in xylenes (10 mL) under an atmosphere of nitrogen was heated to reflux for 3 hours and then cooled to room temperature. The reaction mixture was filtered and washed with xylenes twice to afford the title compound, 3-acetyl-6-chloroquinolin-2(1H)-one (330 mg, 46.3%). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.22 (br, 1H), 8.41 (s, 2H), 8.00 (s, 1H), 7.63 (d, J=8.8 Hz, 1H), 7.32 (dd, J1=8.8 Hz, J2=2.5 Hz, 1H), 2.58 (s, 3H). LCMS (Method 1): m/z 222.94 [M+H]+.
-
- A mixture of tetraethoxytitanium (144 mg, 0.632 mmol), (S)-2-methylpropane-2-sulfinamide (38.3 mg, 0.316 mmol), and 3-acetyl-6-chloroquinolin-2(1H)-one (70 mg, 0.316 mmol) in THF (20 mL) was heated to 80° C. overnight and then cooled to room temperature. To this mixture was added NaBH4 (59.7 mg, 1.579 mmol) at −50° C. The mixture was then slowly warmed up to room temperature overnight. MeOH (2 mL) was added to quench excess NaBH4 and was followed by the addition of water. The resulting mixture was filtered to remove solids and the aqueous phase was extracted with EtOAc twice, dried over Na2SO4 and concentrated. The residue was purified on a Biotage® chromatography system using a 25 g SiO2 column with gradient elution (20% to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to afford (S)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (39 mg, 38% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.05 (br, 1H), 7.95 (s, 1H), 7.84 (s, 1H), 7.38 (d, J=8.8 Hz, 1H), 5.76 (d, J=8.06 Hz, 1H), 5.37 (m, 1H), 4.55 (m, 1H), 1.44 (d, J=6.82 Hz, 3H), 1.18 (s, 9H). LCMS (Method 1): Rt 2.22 min; m/z 327.96 [M+H]+.
-
- To a solution of ((S)—N—((S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (150 mg, 0.459 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.0 mmol, 4M in 1,4-dioxane). The mixture was stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was collected by filtration, washed with ethyl ether (2×), and then dried to afford (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (50 mg, 42% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.4 (br s, 1H), 8.32 (br s, 2H), 8.07 (s, 1H), 7.85 (d, J=2.2 Hz, 1H), 7.63 (dd, J1=8.8 Hz, J2=2.5 Hz, 1H), 7.40 (d, J=8.8 Hz, 1H), 4.40-4.45 (m, 1H), 1.53 (d, J=8.5 Hz, 3H). LCMS (Method 1): Rt 1.22 min, m/z 223.1 [M+H]+. The enantiomer purity (ee %) of II-1 (>98%) was determined by chiral HPLC analysis.
-
-
- A mixture of tetraethoxytitanium (412 mg, 1.805 mmol) (R)-2-methylpropane-2-sulfinamide (131 mg, 1.083 mmol) and 3-acetyl-6-chloroquinolin-2(1H)-one (160 mg, 0.722 mmol) in THF (20 mL) was heated to 80° C. overnight, then cooled to room temperature. To this mixture was added NaBH4 (137 mg, 3.61 mmol) −50° C. The mixture was then slowly warmed up to room temperature overnight. MeOH (2 mL) was added to quench excess NaBH4 and was followed by the addition of water. The resulting mixture was filtered to remove solids and the aqueous phase was extracted with EtOAc twice, dried over Na2SO4 and concentrated. The residue was purified on a Biotage® chromatography system using a 25 g SiO2 column with gradient elution (20 to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to afford ((R)—N—((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (157 mg, 66% yield). 1H NMR (300 MHz, CDCl3): δ ppm 11.31 (br, 1H), 7.35 (s, 1H), 7.07-7.22 (m, 2H), 5.86 (d, J=9.3 Hz, 1H), 5.37 (m, 1H), 4.55 (m, 1H), 1.56 (d, J=6.94 Hz, 3H), 1.32 (s, 9H). LCMS (Method 1): Rt 2.20 min, m/z 327.96 [M+H]+.
-
- To a solution of (R)—N—((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (150 mg, 0.459 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.00 mmol, 4M in 1,4-dioxane). The mixture was stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was collected by filtration, washed with ethyl ether (2×), and then dried to afford (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (80 mg, 67% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.32 (br s, 1H), 8.34 (br, 2H), 8.06 (s, 1H), 7.81 (s, 1H), 7.58 (d, J=8.82 Hz, 1H), 7.31 (d, J=8.83 Hz, 1H), 4.40-4.45 (m, 1H), 1.53 (d, J=6.81 Hz, 3H). LCMS (Method 1): Rt 1.20 min, m/z 223.1 [M+H]+. The enantiomer purity (ee %) of II-2 (>98%) was determined by chiral HPLC analysis.
-
-
- To a solution of 4-chloro-3-fluoroaniline (10.00 g, 68.7 mmol) and DIEA (13.2 mL, 76 mmol) in EtOAc (200 mL) was added Ac2O (7.1 mL, 75 mmol) dropwiseThe solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was washed with water (2×100 mL) and brine (100 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide the product as a white solid. LCMS and 1H NMR are consistent with N-(4-chloro-3-fluorophenyl)acetamide (12.39 g, 66.0 mmol, 96% yield)1H NMR (300 MHz, DMSO-d6): δ ppm 10.26 (s, 1H), 7.77 (dd, J=12.17, 2.20 Hz, 1H), 7.49 (dd, J=8.60, 8.60 Hz, 1H), 7.30 (dd, J=8.79, 2.35 Hz, 1H), 2.06 (s, 3H). LCMS (Method 1): m/z 188 [M+H]+.
-
- A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (9.5 mL, 123 mmol) was added by syringe and then cooled on an ice bath. POCl3 (37 mL, 397 mmol) was added dropwise by syringe (over 25 minutes). The red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed and the mixture was treated with N-(4-chloro-3-fluorophenyl)acetamide (7.00 g, 37.3 mmol). The tube was then sealed and the solution was stirred at 80° C. overnight. The solution was pipetted onto ice, resulting in formation of a yellow precipitate. The precipitate was collected on a Buchner funnel and washed with water (500 mL), during which most of the precipitate dissolved. The filter cake was dried to provide 427.6 mg of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with impure 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (427.6 mg, 1.752 mmol, 4.70% yield). The material was used without further purification. 1H NMR (300 MHz, DMSO-d6): δ ppm 10.36 (s, 1H), 8.99 (s, 1H), 8.67 (d, J=8.21 Hz, 1H), 8.13 (d, J=10.26 Hz, 1H), 5.76 (s, 1H). LCMS (Method 1): m/z 244 [M+H]+.
-
- A mixture of 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (424.4 mg, 1.739 mmol) and 2-methylpropane-2-sulfinamide (253.8 mg, 2.094 mmol) was placed under an atmosphere of nitrogen. THF (4 mL) and titanium (IV) isopropoxide (Ti(OiPr)4) (1.00 mL, 3.41 mmol) were then added by syringe and the resulting suspension was stirred at room temperature for 48 hours. Once LCMS indicated the reaction had gone cleanly to completion. The reaction was quenched by dropwise addition of aqueous saturated NH4Cl (2 mL). The mixture was triturated with EtOAc (100 mL), and the solid was collected on a Buchner funnel, and was washed with EtOAc (50 mL). The filtrate was washed with brine (50 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 574.3 mg of the title compound as a yellow solid. LCMS and 1H NMR are consistent with (E)-N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (574.3 mg, 1.654 mmol, 95% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 9.13 (s, 1H), 8.87 (s, 1H), 8.67 (d, J=8.21 Hz, 1H), 8.11 (d, J=10.26 Hz, 1H), 1.25 (s, 9H). LCMS (Method 1): m/z 347 [M+H]+.
-
- N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (573.6 mg, 1.652 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen. DCM (14 mL) was added and the resulting suspension was cooled in a dry ice/chloroform bath (to approx. −60° C.). Methyl magnesium bromide (MeMgBr) (3M in ethyl ether, 0.83 mL, 2.490 mmol) was then added dropwise. The reaction was stirred at −60° C. for several hours, and then at −20° C. overnight. The mixture was placed in an ice bath and treated dropwise with water (7 mL). The mixture was diluted with water (150 mL) and extracted with EtOAc (3×50 mL). Silica gel was added to the combined extracts and the sample was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 100% EtOAc in hexanes and with isocratic elution when peaks eluted) to provide 226.3 mg of the title compound as a yellowish solid. LCMS and 1H NMR are consistent with N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (226.3 mg, 0.623 mmol, 25.02% yield). 1H NMR indicates a single diastereomer. 1H NMR (300 MHz, DMSO-d6): δ ppm 8.52 (s, 1H), 8.47 (d, J=7.92 Hz, 1H), 8.01 (d, J=10.26 Hz, 1H), 5.66 (d, J=6.16 Hz, 1H), 4.83 (q, J=6.60 Hz, 1H), 1.60 (d, J=6.74 Hz, 3H), 1.13 (s, 9H). LCMS (Method 1): m/z 363 [M+H]+.
-
- A sample of N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (226.3 mg, 0.623 mmol) was mixed with 1,4-dioxane (3.5 mL) and 3.6% HCl (aqueous, 3.5 mL) and stirred at 95° C. overnight; the material quickly went into solution upon heating. Once LCMS showed the reaction had gone to completion, the solution was evaporated under reduced pressure. The residue was dissolved in MeOH (˜10 mL), treated with heptane (˜15 mL), and evaporated again under reduced pressure. The resulting residue was then triturated with Et2O, collected on a Hirsch funnel, and washed with Et2O (20 mL) to provide 179.8 mg of the title compound as a yellow solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (179.8 mg, 0.649 mmol, 104% yield). 1H NMR (300 MHz, Methanol-d4): δ ppm 8.02 (s, 1H), 7.92 (d, J=7.62 Hz, 1H), 7.23 (d, J=9.97 Hz, 1H), 4.53 (q, J=6.84 Hz, 1H), 1.68 (d, J=6.74 Hz, 3H). LCMS (Method 1): m/z 241 [M+H]+.
-
-
- 2-Amino-4-fluorobenzoic acid (50 g, 322.6 mmol) was dissolved in 700 mL of DMF and N-chlorosuccinimide (41 g, 305.5 mmol) was added portion wise. The reaction mixture was heated at 50° C. for 5 h. The mixture was cooled to room temperature, poured on to ice cold water to get the solid. The solid was filtered and dissolved in EtOAc, then sat. NaCl (300 mL) was added. The aqueous layer was extracted with EtOAc (3×200 mL). The combined organic phase was dried (Na2SO4) and evaporated to a brown solid (42 g, 69%) as desired product 2-amino-5-chloro-4-fluorobenzoic acid.
-
- 2-Amino-5-chloro-4-fluorobenzoic acid (42 g, 221 mmol) was dissolved in 100 mL of THF and BH3.THF (712 mL of 1 M solution in THF, 712 mmol) was added dropwise over the period of 1 h at room temperature. The reaction mixture was heated at 50° C. overnight (18 h). The mixture was cooled to room temperature, poured onto ice cold water, and sat. NaCl solution was added. The aqueous was extracted with EtOAc (3×200 mL). The combined organic phase was dried (Na2SO4), evaporated and purified by flash chromatography using 0-100% hexanes/ethyl acetate as eluent to afford the desired product as a brown solid (17 g, 45%).
-
- To a solution of (2-amino-5-chloro-4-fluorophenyl)methanol (22 g, 125.7 mmol) in 1000 mL of chloroform was added MnO2 (109 g, 1250 mmol) and the reaction mixture was stirred overnight at ambient temperature. The reaction mixture was filtered, washed with EtOAc and evaporated. The resulting crude product was passed through a pad of silica gel eluting with 0 to 20% hexanes/EtOAc to give the pure product as a brown solid (19 g, 87%).
-
- A mixture of 2-Amino-5-chloro-4-fluorobenzaldehyde (14 g, 173.6 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (16 mL, 121 mmol) in m-xylene (500 mL) was refluxed for 1.5 h. The reaction mixture was cooled to room temperature and filtered. The collected solid was washed with m-xylene and dried to yield the desired product (9.6 g, 50%) as off-white solid.
-
- To a mixture of 3-acetyl-6-chloro-7-fluoroquinolin-2(1H)-one (6.4 g, 26.7 mmol) and (S)-2-methylpropane-2-sulfinamide (4.85 g, 40.06 mmol) in THF (450 mL) was added Ti(OEt)4 (14 mL, 66.7 mmol). The resultant mixture was stirred at 80° C. overnight. Upon the completion of the reaction, the reaction mixture was cooled to −60° C. and NaBH4 (5.1 g, 134 mmol) was added portion wise and then allowed to warm to room temperature overnight. The excess NaBH4 was quenched with MeOH (20 mL), then with water (20 mL) and EtOAc (300 mL). The solution was filtered through a pad of celite. The filtrate was taken into a separatory funnel and the organic layer was separated, dried (Na2SO4), concentrated and purified by flash chromatography (SiO2: hexanes/iPrOH 0 to 20%) to give the title compound (4.5 g, 49%) as a yellow solid.
-
- To a mixture of (S)—N—((S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (3.5 g, 10.1 mmol) in MeOH (80 mL) was added 3N methanolic HCl (80 mL, 121 mmol). The resultant mixture was stirred at room temperature overnight. To this mixture was added diethyl ether (60 mL) and the resulting solid was filtered and dried to give the desired product II-4 (2.1 g, 75%) as a yellow solid. 1H NMR (300 MHz, DMSO-d6): δ 12.40 (br s, 1H), 8.24 (br s, 2H), 8.07-8.05 (m, 2H), 7.32 (d, J=10.4 Hz, 1H), 4.5-4.15 (m, 1H), 1.53 (d, J=6.8 Hz, 3H). LCMS (Method 3): Rt 3.47 min, m/z 241.1 [M+H]+.
-
- 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (2.56 g, 10.49 mmol) was heated at reflux in concentrated HCl (12M, 100 mL) overnight, during which the material did not appear to go into solution. The mixture was allowed to cool, then was poured into water (750 mL). The slurry was filtered on a Buchner funnel, washed with water (750 mL), and dried to provide impure 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.1991 g, 9.75 mmol, 93% yield) as a reddish brown solid. The material was suitable for use as is. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.41 (s, 1H), 10.20 (s, 1H), 8.49 (s, 1H), 8.28 (d, J=7.92 Hz, 1H), 7.25 (d, J=10.26 Hz, 1H). LCMS: m/z+226 [M+H]+.
-
- A mixture of 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.20 g, 9.75 mmol) and (R)-2-methylpropane-2-sulfinamide (1.42 g, 11.72 mmol) was placed in a 50 mL round bottom flask under an atmosphere of nitrogen. THF (20 mL) and titanium (IV) isopropoxide (Ti(OiPr)4) (5.8 mL, 19.79 mmol) were added by syringe and the resulting suspension was stirred at room temperature for one day, during which the mixture turned dark. The reaction mixture was quenched by dropwise addition of saturated aqueous NH4Cl, resulting in precipitation. The mixture was triturated with EtOAc (400 mL) and filtered on a Buchner funnel. The filter cake was then sonicated in 300 mL EtOAc for 15 minutes. The mixture was filtered on a Buchner funnel, and the filtrates from the two filtrations were combined. The combined filtrate solution was washed with brine (200 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methyl propane-2-sulfinamide (3.22 g, 9.79 mmol, 100% yield) as an orange solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.40 (br s, 1H), 8.75 (br s, 1H), 8.65 (s, 1H), 8.27 (d, J=8.21 Hz, 1H), 7.25 (d, J=10.26 Hz, 1H), 1.20 (s, 9H). LCMS: m/z 329 [M+H]+.
-
- (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (3.22 g, 9.79 mmol) was placed in a 500 mL round-bottom flask under an atmosphere of nitrogen. DCM (100 mL) was added and the resulting suspension was cooled on a dry ice/chloroform bath (to approximately −60° C.). Methyl magnesium bromide (MeMgBr) (3M in ether, 10 mL, 30.0 mmol) was added dropwise. The reaction mixture was stirred at −60° C. for several hours, and then allowed to warm to room temperature overnight, resulting in a red solution. The solution was then cooled on an ice bath, treated dropwise with water (40 mL) and concentrated under reduced pressure. The resulting slurry was diluted with water (300 mL) and washed with EtOAc. The resulting emulsion was allowed to separate overnight. The layers were separated, and silica gel was added to the organic layer. Most of the solvent was evaporated under reduced pressure. MeOH and heptane were added and the mixture was evaporated under reduced pressure to dryness. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using 50 g silica gel column; eluted with 0 to 50% EtOAc in hexanes, with isocratic elution when peaks eluted) to provide (R)—N—((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (774.3 mg, 2.245 mmol, 23% yield) as a greenish solid. 1H NMR shows a single diastereomer. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.03 (s, 1H), 7.98 (d, J=7.92 Hz, 1H), 7.89 (s, 1H), 7.22 (d, J=10.26 Hz, 1H), 5.67 (d, J=7.92 Hz, 1H), 4.41-4.55 (m, 1H), 1.37 (d, J=6.74 Hz, 3H), 1.12 (s, 9H). LCMS: m/z 345 [M+H]+.
-
- A solution of (R)—N—((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (773 mg, 2.242 mmol) in MeOH (20 mL) was cooled on an ice bath and treated dropwise with 4M HCl in dioxane (12 mL), during which the material went into solution. The reaction was stirred 25 minutes, during which time precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with ethyl ether (50 mL), then the solid was collected on a Hirsch funnel and washed with more ethyl ether (50 mL) to provide (R)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (613.5 mg, 2.214 mmol, 99% yield) as a yellow solid. 1H NMR (300 MHz, Methanol-d4): δ ppm 7.99 (s, 1H), 7.90 (d, J=7.62 Hz, 1H), 7.22 (d, J=9.67 Hz, 1H), 4.51 (q, J=6.64 Hz, 1H), 1.66 (d, J=7.04 Hz, 3H). LCMS: m/z 241 [M+H]+.
-
-
- A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (6.4 mL, 83 mmol) was added by syringe and then cooled on an ice bath. POCl3 (25 mL, 268 mmol) was added dropwise by syringe (over 20 minutes). The red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed, and the mixture was treated with N-(4-chloro-3-methoxyphenyl)acetamide (5 g, 25.05 mmol). The tube was sealed and the solution was stirred at 80° C. overnight. The solution was then pipetted onto ice, resulting in formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (1200 mL), and dried to provide 5.06 g of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-methoxyquinoline-3-carbaldehyde (5.06 g, 19.76 mmol, 79% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 10.33 (s, 1H), 8.87 (s, 1H), 8.47 (s, 1H), 7.64 (s, 1H), 4.08 (s, 3H). LCMS (Method 1): m/z 256 [M+H]+.
-
- 2,6-Dichloro-7-methoxyquinoline-3-carbaldehyde (5.06 g, 19.76 mmol) was heated at reflux in concentrated HCl (12M, 185 mL) overnight. The material went into solution during heating and then a solid precipitated during the course of the reaction. The mixture was allowed to cool and then was poured into water (1500 mL) resulting in further precipitation. The slurry was filtered on a Buchner funnel, washed with water (1500 mL), and dried to provide 4.04 g of the title compound as a yellowish-brown solid. LCMS and 1H NMR are consistent with 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4.04 g, 17.00 mmol, 86% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.22 (s, 1H), 10.16-10.18 (m, 1H), 8.43 (s, 1H), 8.08 (s, 1H), 6.95 (s, 1H), 3.94 (s, 3H). LCMS (Method 1): m/z 238 [M+H]+.
-
- A mixture of 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.00 g, 8.42 mmol) and 2-methylpropane-2-sulfinamide (1.22 g, 10.07 mmol) was placed under an atmosphere of nitrogen. THF (20 mL) and titanium (IV) isopropoxide (Ti(OiPr)4) (5.0 mL, 17.06 mmol) were added by syringe and the resulting suspension was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the reaction was quenched by dropwise addition of aqueous saturated NH4Cl (10 mL). The mixture was triturated with EtOAc (450 mL), then filtered through Celite® 545, and the Celite® was washed further with EtOAc (200 mL). The filter cake was then sonicated in EtOAc (450 mL) for 15 minutes, then filtered on a Buchner funnel. The two filtrates were combined, washed with brine (200 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 1.01 g of the title compound as a yellow solid. LCMS and 1H NMR are consistent with (E)-N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (1.01 g, 2.96 mmol, 35.2% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.21 (s, 1H), 8.74 (s, 1H), 8.59 (s, 1H), 8.08 (s, 1H), 6.97 (s, 1H), 3.94 (s, 3H), 1.19 (s, 9H). LCMS (Method 1): m/z 341 [M+H]+.
-
- N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (265 mg, 0.778 mmol) was placed in a 50 mL round-bottom flask under an atmosphere of nitrogen. DCM (7 mL) was added, and the suspension was cooled on a dry ice/chloroform bath (to approx. −60° C.). Methylmagnesium bromide (MeMgBr) (3M in ether, 0.80 mL, 2.40 mmol) was added dropwise. The reaction mixture was stirred at −60° C. for several hours, then allowed to warm to room temperature overnight, resulting in an orange solution. Once LCMS indicated the reaction had gone to completion, the suspension was cooled on an ice bath and treated dropwise with water (3 mL). The resulting mixture was diluted with water (75 mL) and extracted with EtOAc (75 mL+20 mL). Silica gel was added and the EtOAc was evaporated under reduced pressure to provide a wet globular mass. Heptane and MeOH were added and the mixture was evaporated under reduced pressure to provide a powder. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 4.2% MeOH in DCM, with isocratic elution when peaks eluted). The product fractions provided 152.7 mg of the title compound as a blue-green brittle foam. LCMS and 1H NMR are consistent with N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (152.7 mg, 0.428 mmol, 55% yield). LCMS (Method 1): m/z 357 [M+H]+.
-
- A solution of N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (149.6 mg, 0.419 mmol) in MeOH (3.8 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (2.2 mL). The reaction was stirred for 25 minutes, during which time a small amount of precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 10 mL of ethyl ether, then collected on a Hirsch funnel, and washed with more ethyl ether to provide 115.6 mg of the title compound as a pale green solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride (115.6 mg, 0.400 mmol, 95% yield). 1H NMR (300 MHz, Methanol-d4): δ ppm 7.95 (s, 1H), 7.77 (s, 1H), 6.97 (s, 1H), 4.51 (q, J=6.84 Hz, 1H), 3.98 (s, 3H), 1.68 (d, J=7.04 Hz, 3H). LCMS (Method 1): m/z 253 [M+H]+.
-
-
- To a solution of 4-chloro-3-methoxyaniline (50 g, 317 mmol) and DIPEA (110 mL, 635 mmol) in CH2Cl2 (700 mL) was added acetic anhydride (36 mL, 381 mmol) dropwise at 0° C. and the reaction mixture was stirred at room temperature for 3 h. The reaction then was quenched with water (250 mL) and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (100 mL×3). The combined organic layers were dried (Na2SO4), concentrated and purified by flash chromatography with CH2Cl2/MeOH to give N-(4-chloro-3-methoxy phenyl)acetamide (71 g, quantitative yield) as a white solid.
-
- To POCl3 (450 g, 274 mL, 2.95 mol) in a 2 L flask was added anhydrous DMF (83.5 g, 89 mL, 14 mol) drop wise. The reaction mixture was warmed up to room temperature and stirred for 20 min. After that N-(4-chloro-3-methoxyphenyl)acetamide (65 g, 327 mmol) was added portion wise at room temperature and the mixture was heated to 90° C. overnight. The reaction mixture was then cooled to room temperature and carefully quenched into aqueous NaHCO3 solution. The precipitation obtained was filtered, washed with water (100 mL×3) and then dried in vacuum oven to give 60 g of title compound (73%).
-
- To 2,6-dichloro-7-methoxyquinoline-3-carbaldehyde (40 g, 157 mmol) in MeOH (1 L) and THF (200 mL) was added NaOMe (16.9 g, 314 mmol) portion wise at room temperature. The reaction mixture was refluxed for 3 h. After cooling to room temperature, the reaction was quenched by addition of aqueous NH4Cl solution (200 mL). The mixture was extracted with EtOAc (200 mL×3). The combined organic layers were dried (Na2SO4), concentrated and purified by flash chromatography with hexanes/EtOAc (3:1) to give the desired product (37.89 g, 96%) as a yellow solid.
-
- To a solution of 6-chloro-2,7-dimethoxyquinoline-3-carbaldehyde (36.74 g, 151 mmol) in THF (1 L) at −78° C. was added a solution of MeMgCl in THF (3 M, 75.5 mL, 226 mmol) drop wise. The reaction was stirred at room temperature for 3 h and then quenched with aqueous NH4Cl solution (250 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (100 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by silica gel chromatography with hexanes/EtOAc (3:1) to afford the title compound (38.06 g, 91%).
-
- To 1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethanol (36.74 g, 137.6 mmol) in CH2Cl2 (1 L) at 0° C. was added DMP (70.0 g, 165.1 mmol) portion wise. The reaction was stirred at room temperature for 2 h, and then was quenched with an aqueous solution of NaHCO3 and Na2S2O3. After stirring for 15 min, both layers became clear. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 (100 mL×2). The combined organic layers were dried (Na2SO4), concentrated and purified by silica gel chromatography with hexanes/EtOAc (4:1) to afford the title compound (30.02 g, 80%) as a white solid.
-
- To 1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethanone (30.07 g, 113.5 mmol) in THF/toluene (100 mL/1 L) at room temperature was added (R)-2-methylpropane-2-sulfinamide (27.5 g, 227 mmol,) and Ti(OiPr)4 (97 mL, 340.5 mmol,). The reaction was refluxed with a Dean-Stark apparatus. After the reaction was refluxed for 4 h and 300 mL of solvent was removed, the reaction was cooled to room temperature. The solvent was removed under vacuum, and 200 mL of EtOAc was added to the residue, followed by 100 mL of saturated aqueous NaHCO3 solution. After stirring for 10 min, the reaction mixture was passed through a pad of celite. The filtrate was extracted with EtOAc (200 mL×2), dried (Na2SO4), concentrated and purified by silica gel chromatography with hexanes/EtOAc (1:1) to give the title compound (34.28 g, 82%).
-
- To (R,E)-N-(1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethylidene)-2-methylpropane-2-sulfinamide (34.28 g, 93.15 mmol) in THF (600 mL) at −78° C., was added 1 M L-selectride (121 mL, 121 mmol) in THF drop wise. The reaction mixture was warmed to room temperature and stirred for 3 h. The reaction was quenched with aqueous saturated NH4Cl (300 mL) solution and then extracted with EtOAc (200 mL×2). The combined organic layers were dried (Na2SO4), concentrated and purified by silica gel chromatography with hexanes/EtOAc (1:1) to afford the title compound (29.27 g, 85%).
-
- To (R)—N—((S)-1-(6-chloro-2,7-dimethoxyquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (30.35 g, 82 mmol) in dioxane (250 mL) was added 2 N HCl (250 mL) at rt. The reaction mixture was refluxed for 3 h, cooled to room temperature and the solvent was removed under vacuum. The crude residue obtained was dried under vacuum to give a crude product, which was further purified by trituration (CH2Cl2/MeOH/hexane) to obtain pure title compound II-7 (17.65 g, 75%) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ 12.18 (s, 1H), 8.24 (br, s, 3H), 7.99 (s, 1H), 7.86 (s, 1H), 7.02 (s, 1H), 4.41 (m, 1H), 3.91 (s, 3H), 1.52 (d, J=6.87 Hz, 3H). LCMS (Method 3): Rt 3.48 min, m/z 253.1 [M+H]+.
-
- The title compound II-8 was prepared in the same procedure described for II-7, except using (S)-2-methylpropane-2-sulfinamide in Step-6 (Scheme-3). 1H NMR (300 MHz, Methanol-d4): δ ppm 7.92 (s, 1H), 7.75 (s, 1H), 6.95 (s, 1H), 4.48 (q, J=6.84 Hz, 1H), 3.96 (s, 3H), 1.65 (d, J=6.74 Hz, 3H). LCMS: m/z 253 [M+H]+.
-
-
- A solution of 5-amino-2-chlorophenol (2.00 g, 13.93 mmol pyridin-2-ylmethanol (1.4 mL, 14.51 mmol), and triphenylphosphine (4.30 g, 16.39 mmol) in THF (250 mL) was placed under an atmosphere of nitrogen and treated with DEAD (2.6 mL, 16.42 mmol) The solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was treated with silica gel and evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using a 340 g silica gel column, eluted with 0 to 100% EtOAc in hexanes, then 2.3% MeOH in EtOAc) to provide the title compound as a light brown solid. LCMS and 1H NMR are consistent with 4-chloro-3-(pyridin-2-ylmethoxy)aniline (2.29 g, 9.76 mmol, 70.0% yield) with residual triphenylphosphine oxide. The crude was used in the next step without further purification. 1H NMR (300 MHz, DMSO-d6): δ ppm 8.55-8.62 (m, 1H), 7.86 (ddd, J=7.77, 7.77, 1.76 Hz, 1H), 7.52 (d, J=7.92 Hz, 1H), 7.35 (dd, J=6.89, 5.42 Hz, 1H), 7.02 (d, J=8.50 Hz, 1H), 6.37 (d, J=2.35 Hz, 1H), 6.15 (dd, J=8.50, 2.35 Hz, 1H), 5.28 (s, 2H), 5.14 (s, 2H). LCMS (
Method 1,): m/z 235 [M+H]+. -
- A solution of 4-chloro-3-(pyridin-2-ylmethoxy)aniline (5.22 g, 22.24 mmol) and DIEA (4.30 mL, 24.62 mmol) in EtOAc (125 mL) was treated with Ac2O (2.30 mL, 24.38 mmol) The solution was stirred at room temperature overnight, after which a thick white precipitate formed. EtOAc (300 mL) was added and the mixture was shaken until most of the precipitate dissolved. The organic layer was then washed with water and brine (125 mL each), dried (Na2SO4) and filtered. Silica gel was added, and the mixture was evaporated under reduced pressure. The residue was purified by column chromatography on a Biotage® MPLC chromatography system (using a100 g silica gel column, eluted with 0 to 5% MeOH in DCM) to provide 3.23 g of the title compound as a white solid. LCMS and 1H NMR are consistent with N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (3.23 g, 11.67 mmol, 52.5% yield)1H NMR (300 MHz, DMSO-d6): δ ppm 10.06 (s, 1H), 8.56-8.62 (m, 1H), 7.87 (ddd, J=7.80, 7.80, 1.80 Hz, 1H), 7.53 (d, J=7.62 Hz, 1H), 7.49 (d, J=2.05 Hz, 1H), 7.33-7.40 (m, 2H), 7.22 (dd, J=8.65, 2.20 Hz, 1H), 5.21 (s, 2H), 2.02 (s, 3H). LCMS (Method 1): m/z 277 [M+H]+.
-
- A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (2.9 mL, 37.5 mmol) was added by syringe and then cooled on an ice bath. POCl3 (11.4 mL, 122 mmol) was added dropwise by syringe (over 20 minutes). The solution was allowed to warm to room temperature (over 15 minutes) and the septum was removed. The mixture was treated with N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (3.16 g, 11.42 mmol). The tube was again sealed and the solution was stirred at 80° C. overnight. The solution was then pipetted onto ice, resulting in the formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (500 mL), and dried to provide 2.88 g of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (2.88 g, 8.64 mmol, 76% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 10.34 (s, 1H), 8.89 (s, 1H), 8.66 (br d, J=4.10 Hz, 1H), 8.52 (s, 1H), 7.92-8.01 (m, 1H), 7.75 (s, 1H), 7.69 (br d, J=7.62 Hz, 1H), 7.41-7.50 (m, 1H), 5.55 (s, 2H). LCMS (Method 1): m/z 333 [M+H]+.
-
- A solution of 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (2.88 g, 8.64 mmol) in concentrated HCl (81 mL) was stirred at reflux (
bath temperature 100° C.) for one day, during which time the solution turned orange. The solution was diluted with water (900 mL), resulting in the formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (750 mL), and dried under vacuum at 60° C. to provide 2.27 g of the title compound as a yellow solid. LCMS and 1H NMR are consistent with 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde IV-3 (2.27 g, 7.21 mmol, 83% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.20 (s, 1H), 10.16-10.19 (m, 1H), 8.60-8.64 (m, 1H), 8.44 (s, 1H), 8.14 (s, 1H), 7.90 (ddd, J=7.60, 7.60, 1.80 Hz, 1H), 7.57 (d, J=7.62 Hz, 1H), 7.36-7.43 (m, 1H), 7.05 (s, 1H), 5.37 (s, 2H). LCMS (Method 1): m/z 315 [M+H]+. -
- A mixture of 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde (2.27 g, 7.21 mmol) and 2-methylpropane-2-sulfinamide (1.05 g, 8.66 mmol) was placed in a 25 mL round bottom flask under an atmosphere of nitrogen. THF (9 mL) and titanium (IV) isopropoxide (Ti(OiPr)4) (4.3 mL, 14.68 mmol) were added by syringe and the suspension was stirred at room temperature for one day. Once LCMS indicated the reaction had gone to completion, the material was triturated with EtOAc (400 mL), then filtered through Celite® 545, and the filter cake was washed with EtOAc (100 mL). The filter cake was sonicated in EtOAc (400 mL) for fifteen minutes and then filtered on a Buchner funnel. The two filtrates were combined and washed with brine (250 mL). The aqueous layer was back-extracted with EtOAc (200 mL+100 mL). The three combined organic layers were dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 1.44 g of the title compound as a yellow solid. LCMS and 1H NMR are consistent with (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (1.44 g, 3.45 mmol, 47.8% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.20 (s, 1H), 8.74 (s, 1H), 8.62 (d, J=4.10 Hz, 1H), 8.60 (s, 1H), 8.13 (s, 1H), 7.90 (ddd, J=7.80, 7.80, 1.80 Hz, 1H), 7.58 (d, J=7.92 Hz, 1H), 7.40 (dd, J=7.18, 4.54 Hz, 1H), 7.06 (s, 1H), 5.36 (s, 2H), 1.19 (s, 9H). LCMS (Method 1): m/z 418 [M+H]+.
-
- (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methyl propane-2-sulfinamide (1.44 g, 3.45 mmol) was placed in a 250 mL round-bottom flask under an atmosphere of nitrogen. DCM (27 mL) was added and the suspension was cooled on a dry ice/chloroform bath (to approx. −60° C.). Methylmagnesium bromide (MeMgBr) (3M in ether, 3.50 mL, 10.50 mmol) was added dropwise. The cold bath was allowed to warm to room temperature overnight resulting in an orange suspension. Once LCMS indicated the reaction had gone to completion, the suspension was cooled on an ice bath and treated dropwise with water (10 mL) resulting in emulsification. The emulsion was diluted with EtOAc (400 mL) and washed with water (400 mL). Silica gel was added to the organic layer and the solvent was evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 6% MeOH in DCM with isocratic elution when peaks eluted) to provide 1.17 g of the title compound as a yellow brittle foam. LCMS and 1H NMR are consistent with N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (1.17 g, 2.70 mmol, 78% yield). NMR indicated a mixture of diastereomers. LCMS (Method 1): m/z 434 [M+H]+.
-
- A solution of N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (167.3 mg, 0.386 mmol) in MeOH (3.5 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (2 mL). The reaction was stirred for 20 minutes and within five minutes a precipitate began to form. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 10 mL of ethyl ether, collected on a Hirsch funnel and washed with more ethyl ether to provide 145.8 mg of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one hydrochloride (145.8 mg, 0.398 mmol, 103% yield). 1H NMR (300 MHz, Methanol-d4): δ ppm 8.91-8.95 (m, 1H), 8.68 (ddd, J=7.90, 7.90, 1.50 Hz, 1H), 8.29 (d, J=7.62 Hz, 1H), 8.04-8.11 (m, 1H), 8.00 (s, 1H), 7.90 (s, 1H), 7.17 (s, 1H), 5.66 (s, 2H), 4.53 (q, J=6.84 Hz, 1H), 1.69 (d, J=6.74 Hz, 3H). LCMS (Method 1): m/z 352 [M+Na]+.
-
-
- To a solution of 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (1.0 g, 3.0 mmol) (prepared in the same procedure described for step-1-3 shown in Scheme-4) in CH2Cl2 (40 mL) was added dropwise methyl magnesium bromide (MeMgBr) (3 M solution in diethyl ether, 1.5 mL, 4.50 mmol) at 0° C. The resulting mixture was then stirred at ambient temperature for 1.5 hours. Upon completion of reaction, the mixture was slowly quenched with water (3 mL) and extracted with CH2Cl2 (50 mL). The organic layer was separated and dried over anhydrous Na2SO4. The solvents were evaporated to dryness. The resulting residue was dissolved in CH2Cl2 (25 mL) and treated with Dess-Martin Periodinate (2.54 g, 6.00 mmol). The mixture was stirred at ambient temperature overnight. The mixture was then quenched with an aqueous co-solution of 20% NaHCO3 and 20% Na2S2O3 (10 mL) and stirred for 5 minutes at room temperature. The solution was extracted with CH2Cl2 (40 mL), dried over anhydrous Na2SO4, filtered and evaporated. The resulting residue was purified by column chromatography on an ISCO® chromatography system (SiO2 column: eluted with CH2Cl2/MeOH 0 to 10%) to afford the title compound (800 mg, 79%).
-
- To a mixture of 1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethanone (2.18 g, 6.56 mmol) and (R)-2-methylpropane-2-sulfinamide (1.19 g, 9.84 mmol) in THF:Toluene (40 mL:180 mL), was added titanium (IV) isopropoxide (Ti(OiPr)4) (3.96 mL, 13.30 mmol). The resulting mixture was refluxed with a Dean-Stark apparatus for 7 hours. The mixture was then cooled to room temperature, quenched with water, and diluted with EtOAc (300 mL). The organic layer was washed with water (100 mL), dried over anhydrous Na2SO4, filtered and evaporated to dryness. The resulting residue was purified by column chromatography on an ISCO® chromatography system (SiO2 column: eluted with Hex/EtOAc 0 to 100%) to afford the title compound as yellow solid (1.4 g, 50% yield). The starting material ketone was also recovered (250 mg, 11% yield).
-
- To a solution of (R,E)-N-(1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethylidene)-2-methyl propane-2-sulfinamide (900 mg, 1.99 mmol) in THF (25 mL) at −40 to −50° C. was added L-selectride (1M in THF, 1.98 mL, 2.59 mmol) dropwise. The resulting mixture was stirred at −40 to −50° C. for 2 hours. Upon completion of reaction, the mixture was quenched with ice at −50° C., extracted with EtOAc (100 mL), dried, and evaporated. The resulting residue was purified by column chromatography on an ISCO® chromatography system (SiO2 column: Hex/EtOAc 0 to 100%) followed by trituration with hexanes-methylene chloride to afford the title compound (266 mg, 30% yield).
-
- To a mixture of (R)—N—((S)-1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (1.1 g, 2.43 mmol) in 1,4-dioxane (6.6 mL), was added aqueous 1N HCl (6.6 mL) at room temperature. The resulting mixture was heated to 120° C. overnight. After TLC and MS showed completion of reaction, the solvents were removed on a rotary evaporator and lyophilized to provide yellow solid. The crude solid was purified by reverse phase chromatography on an ISCO® chromatography system (C18 column: eluted with H2O/MeCN/0.1% CF3CO2H 0 to 100%) and the fractions were monitored by LCMS. The pure fractions were combined and lyophilized to afford the title compound II-10 (920 mg, 86% yield) as the TFA salt. 1H NMR (300 MHz, DMSO-d6): δ 12.17 (br s, 1H), 8.62 (d, J=4.95 Hz, 1H), 8.09 (br s, 2H), 7.96-7.85 (m, 3H), 7.59 (d, J=7.9 Hz, 1H), 7.42-7.37 (m, 1H), 7.08 (d, J=2.5 Hz, 1H), 5.33 (s, 2H), 4.39-4.38 (m, 1H), 1.51 (d, J=6.8 Hz, 3H). LCMS (method 3): Rt 3.3 min, m/z 329.1 [M+H]+.
-
-
- A mixture of 2-amino-5-chloronicotinaldehyde (1 g, 6.39 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (1.362 g, 9.58 mmol) in xylenes (10 mL) was heated to reflux for 3 hours, then cooled to room temperature, filtered, and washed with xylenes twice to afford 914 mg of 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one (64.3% yield). 1H NMR (300 MHz, DMSO-d6): δ 12.68 (br, 1H), 8.63 (s, 1H), 8.49 (s, 1H), 8.39 (s, 1H), 2.48 (s, 3H). LCMS (Method 1): Rt 1.60 min, m/z 223.03[M+H]+.
-
- A mixture of tetraethoxytitanium (512 mg, 2.25 mmol), (R)-2-methylpropane-2-sulfinamide (163 mg, 1.35 mmol) and 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one (200 mg, 0.898 mmol) in THF (15 mL) was heated to 80° C. overnight, then cooled to room temperature. To this mixture was added NaBH4 (170 mg, 4.49 mmol) and the mixture was slowly warmed up to room temperature overnight. MeOH was then added to quench any excess NaBH4, followed by the addition of water. The mixture was filtered to remove solids, then extracted with EtOAc twice, dried over Na2SO4, and concentrated. The residue was purified on a Biotage® chromatography system using a 25 g SiO2 column eluted on a gradient (first 20% to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to afford (S)—N—((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (123 mg, 42% yield). 1H NMR (300 MHz, DMSO-d6): δ 8.40 (s, 1H), 7.74 (s, 1H), 7.75 (s, 1H), 7.24 (s, 1H), 5.24 (d, J=9.45 Hz, 1H), 4.42 (m, 3H), 1.54 (d, J=6.93 Hz, 3H), 1.20 (s, 9H). LCMS (Method 1): Rt 2.07 min, m/z 328.98 [M+H]+.
-
- To a solution of ((S)—N—((S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (123 mg, 0.375 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.00 mmol, 4M in 1,4-dioxane). The mixture was then stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was filtered, washed with ethyl ether (2×), dried and concentrated to afford (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one, HCl (96 mg, 98% yield). 1H NMR (300 MHz, DMSO-d6): δ 12.75 (br s, 1H), 8.60-8.35 (s, 1H), 8.26 (br, 1H) 8.07 (s, 1H), 4.40-4.50 (m, 1H), 1.51 (d, J=6.78 Hz, 3H). LCMS (Method 1): Rt 0.87 min, m/z 224.99 [M+H]+.
-
-
- To a solution of 4-chloro-2-nitroaniline (42.3 g, 245 mmol) in CH2Cl2 (1 L) was added ethyl 3-chloro-3-oxopropanoate (48 g, 319 mmol) dropwise and the reaction mixture was stirred at room temperature overnight. The solvent was removed under vacuum and the resulting residue was dissolved in a minimum amount of MTBE (200 mL) and hexanes (800 mL) which was slowly added. Any product that precipitated out from solution was filtered and the filtrate was concentrated and purified by column chromatography ISCO® chromatography system with hexanes/ethyl acetate gradient elution to afford additional desired product. The title compound was obtained in 98% yield (69.85 g).
-
- To a solution of ethyl 3-((4-chloro-2-nitrophenyl)amino)-3-oxopropanoate (68 g, 238 mmol) and methyl benzoate (150 mL) in anhydrous DMF (500 mL) at 0° C. was added dropwise KOtBu (1M solution in THF, 500 mL, 500 mmol). The reaction mixture was stirred at 0° C. for 4 hours and then quenched with saturated NH4Cl aqueous solution. The mixture was extracted with CH2Cl2 (300 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by SiO2 flash chromatography and eluted with CH2Cl2/MeOH to afford a mixture of A/B (42.54 g, 67% yield, A/B ratio 1:2) as a solid. This was used in the next step without further purification.
-
- To a mixture of compounds A and B (42.54 g, 159 mmol) in DMF (200 mL) was added PBr3 (85.9 g, 318 mmol) dropwise at room temperature. The reaction mixture was stirred at room temperature for 3 hours and was then quenched with ice water and extracted with CH2Cl2 (200 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by flash chromatography using CH2Cl2/MeOH (9:1) as eluent to afford C/D (36.6 g, 91% yield) as a solid. This was used in the next step without further purification.
-
- To a mixture of compounds C/D (36.6 g, 145 mmol) in a 1 L flask was added POCl3 (150 mL) in one portion and the resulting mixture was refluxed for 3 hours. The mixture was then cooled to room temperature and carefully quenched with aqueous NaHCO3 solution. The mixture was extracted with CH2Cl2 (200 mL×3). The combined organic layer was dried (Na2SO4), concentrated, and purified by SiO2 flash chromatography using hexane/ethyl acetate (9:1) as eluent to afford E/F (23.7 g, 61% yield) as a solid. This mixture was used in the next step without further purification.
-
- To a mixture of compounds E/F (22.11 g, 81.9 mmol) in THF/MeOH (9:1, 300 mL) was added NaOMe (0.5 M, 360 mL) dropwise at 0° C. The resulting mixture was stirred at room temperature for 3 hours and quenched with solid NH4Cl (20 g). The solvent was removed under vacuum and water was added (200 mL). The mixture was extracted with CH2Cl2 (150 mL×3) and the combined organic layers were dried (Na2SO4), concentrated, and purified by SiO2 flash chromatography using hexanes/ethyl acetate (9:1) as eluent to afford the title compound (19.1 g, 88% yield) as a solid.
-
- To methyl 7-chloro-3-methoxyquinoxaline-2-carboxylate (5.3 g, 20 mmol) in CH2Cl2 (250 mL) was added diisobutylaluminum hydride (1 M, 30 mL) dropwise at −78° C. The resulting mixture was stirred at −78° C. for 3 hours and was then quenched with MeOH (at −78° C., 20 mL). After stirring for 0.5 hours, the mixture was warmed to room temperature and potassium sodium L-tartrate aqueous solution (100 mL) was added. The organic layer was then separated, and the aqueous layer was extracted with CH2Cl2 (50 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by SiO2 flash chromatography using hexanes/ethyl acetate (1:1) as eluent to afford G (1.02 g, 23% yield) and H (2.24 g, 50% yield). The structure of H was assigned based on MS and 1H NMR.
-
- To compound H (2.24 g, 5.1 mmol) in DCE (300 mL) at room temperature was added (R)-2-methylpropane-2-sulfinamide (2.44 g, 20.1 mmol) and CuSO4 (4.85 g, 30.3 mmol). The reaction was heated to 60° C. and stirred for 4 hours. The reaction mixture was then cooled to room temperature and quenched with 50 mL of saturated aqueous NaHCO3 solution. After stirring for 10 minutes, the reaction mixture was filtered through a pad of Celite®. The filtrate was extracted with CH2Cl2 (50 mL×3), dried (Na2SO4), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (2.21 g, 67% yield).
-
- To (R,E)-N-((7-chloro-3-methoxyquinoxalin-2-yl)methylene)-2-methylpropane-2-sulfinamide (2.21 g, 6.8 mmol) in CH2Cl2 (150 mL) was added methyl magnesium chloride (MeMgCl) (3M in THF, 3.4 mL) dropwise at −78° C. The resulting mixture was stirred at −78° C. for 2 hours and was then quenched with aqueous NH4Cl solution (20 mL). After stirring for 10 minutes, the organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (25 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (1.18 g, 51% yield).
-
- To the compound (R)—N—((R)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide (1.29 g, 3.46 mmol) in CH3CN (100 mL) was added iodotrimethylsilane (3.46 g, 17.3 mmol) dropwise at 0° C. The mixture was then refluxed for 2 hours, cooled to room temperature, and quenched with MeOH (10 mL). The solvent was removed under vacuum, and the residue was purified by reverse C-18 chromatography on an ISCO® chromatography system using water (0.1% TFA)/CH3CN (0.1% TFA) as eluent to afford the compound II-12 (1.22 g, 95% yield) as a TFA salt.
-
-
- To compound H (2.31 g, 5.2 mmol) in DCE (300 mL) at room temperature was added (S)-2-methylpropane-2-sulfinamide (2.52 g, 20.8 mmol) and CuSO4 (5.0 g, 31.2 mmol). The resulting reaction mixture was heated to 60° C. and stirred for 4 hours. The reaction mixture was then cooled to room temperature and quenched with 50 mL of saturated aqueous NaHCO3 solution. After stirring for 10 minutes, the mixture was filtered through a pad of Celite®. The filtrate was extracted with CH2Cl2 (50 mL×3), dried (Na2SO4), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (2.62 g, 78% yield).
-
- To compound (S,E)-N-((7-chloro-3-methoxyquinoxalin-2-yl)methylene)-2-methylpropane-2-sulfinamide (2.62 g, 8.0 mmol) in CH2Cl2 (150 mL) was added methyl magnesium chloride (MeMgCl) (3M in THF, 4.0 mL) dropwise at −78° C. The resulting mixture was stirred at −78° C. for 2 hours and was then quenched with aqueous NH4Cl solution (20 mL). After stirring for 10 minutes, the organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (25 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (1.69 g, 62%).
-
- To the compound (S)—N—((S)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide (350 mg, 1.03 mmol) in CH3CN (40 mL) was added iodotrimethylsilane (1.03 g, 5.15 mmol) dropwise at 0° C. The mixture was then refluxed for 2 hours. After it was cooled to room temperature, the reaction was quenched with MeOH (2 mL). The solvent was removed under vacuum, and the residue was purified by reverse C-18 chromatography on an ISCO® chromatography system using water (0.1% TFA)/CH3CN (0.1% TFA) as eluent to afford the title compound (267 mg, 79% yield) as a TFA salt.
-
-
- A solution of 5-amino-2-chlorophenol (10.00 g, 69.7 mmol) in THF (350 mL) was treated with di-tert-butyl dicarbonate (20 mL, 86 mmol) and stirred at reflux overnight. The solvent was evaporated under reduced pressure to provide a brown oil. The oil was then dissolved in EtOAc (300 mL), washed with water, saturated aqueous NaHCO3, and brine (300 mL each), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 21.01 g of impure tert-butyl (4-chloro-3-hydroxyphenyl)carbamate as a brown oil (LCMS: m/z 244 [M+H]+). This material was dissolved in DMF (130 mL) and cooled on an ice bath. Imidazole (11.74 g, 172 mmol) was then added slowly (over ˜10 minutes). A solution of TBDMS-Cl (14.98 g, 99 mmol) in DMF (45 mL) was added (over ˜2 minutes). The ice bath was removed and the solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was diluted with EtOAc (1 L) and washed with water (2×600 mL), half-saturated aqueous NaHCO3 (600 mL), half-saturated aqueous NH4Cl (600 mL), saturated NaHCO3 (600 mL), and brine (600 mL). The organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to provide 28.00 g of a brown solid. The sample was dissolved in EtOAc, silica gel (33 g) was added, and the solvent was evaporated under reduced pressure. The material was divided into two batches, each of which was purified by column chromatography on a Biotage® MPLC chromatography system using a 330 g silica gel column eluted with 0 to 5% EtOAc in hexanes and with isocratic elution at 4.5% or 5% EtOAc when the product eluted. The product fractions were collected and provided 21.76 g of tert-butyl (3-((tert-butyldimethylsilyl)oxy)-4-chlorophenyl)carbamate (21.76 g, 60.8 mmol, 88% yield) as a peach-colored solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 9.43 (s, 1H), 7.23-7.28 (m, 1H), 7.22 (d, J=2.35 Hz, 1H), 7.09-7.16 (m, 1H), 1.46 (s, 9H), 0.99 (s, 9H), 0.21 (s, 6H). LCMS (Method 1): m/z 358 [M+H]+.
-
- An oven-dried 3-necked 500 mL round bottom flask was charged with tert-butyl (3-((tert-butyldimethylsilyl)oxy)-4-chlorophenyl)carbamate (10 g, 27.9 mmol). An oven-dried addition funnel was attached, and the system was flushed with nitrogen. Ethyl ether (113 mL) was added by syringe. The resulting yellow solution was cooled on an acetonitrile/dry ice bath (to approximately −40° C.). t-BuLi (1.7 M in pentane, 40 mL, 68.0 mmol) was then added to the addition funnel by cannula. The t-BuLi solution was added dropwise to the ether solution (over ˜10 minutes), during which time the ether solution gradually became cloudy with a precipitate. The mixture was stirred at about −40° C. for 2.5 hours, then DMF (11 mL) was added dropwise by syringe (over ˜10 minutes), during which time the solids went back into solution. The acetonitrile/dry ice bath was replaced with an ice bath, and the yellow solution was stirred at 0° C. for 1.75 hours. The reaction was then quenched by dropwise addition of water (25 mL), resulting in formation of an orange precipitate. The ice bath was removed and the sample was diluted with water (125 mL), resulting in dissolution of the precipitate. The mixture was shaken, and the layers were separated. The aqueous layer was acidified to pH ˜4-5 with AcOH. The resulting precipitate was extracted with EtOAc (200 mL), washed with water (2×100 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate as a yellow solid (4.79 g, 17.63 mmol, 63% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 11.72 (s, 1H), 10.50 (s, 1H), 9.68 (br s, 1H), 7.99 (s, 1H), 7.88-7.91 (m, 1H), 1.48 (s, 9H). LCMS (Method 1): m/z 216 (M-56, loss of t-Bu).
-
- A mixture of (S)-1-(pyridin-2-yl)ethanol (454.3 mg, 3.69 mmol), tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate (1 g, 3.68 mmol) and triphenylphosphine (1.158 g, 4.42 mmol) was placed in a 100 mL round bottom flask under an atmosphere of nitrogen. THF (40 mL) was added by syringe. The resulting yellow solution was cooled on an ice bath and then DIAD (0.86 mL, 4.42 mmol) was added dropwise. The ice bath was removed and the solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, silica gel was added and the solvent was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system (using a 50 g silica gel column eluted with 0 to 13% EtOAc in hexanes) to provide 473.7 mg of a white solid. LCMS and NMR are consistent with (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate contaminated with phenolic starting material (˜5:1 product to starting material by NMR). The material was used for next step without further purification. 1H NMR (300 MHz, DMSO-d6): δ ppm 10.42 (s, 1H), 9.73 (s, 1H), 8.54-8.60 (m, 1H), 7.98 (s, 1H), 7.92 (s, 1H), 7.82 (ddd, J=7.80, 7.80, 1.80 Hz, 1H), 7.44 (br d, J=7.90 Hz, 1H), 7.30-7.36 (m, 1H), 5.64 (q, J=6.35 Hz, 1H), 1.67 (d, J=6.45 Hz, 3H), 1.46 (s, 9H). LCMS (Method 1): m/z 377 [M+H]+.
-
- A suspension of (S)-3-aminobutanoic acid (6.25 g, 60.6 mmol) in EtOH (27.5 mL) was cooled on an ice bath. Thionyl chloride (7.5 mL, 103 mmol) was then added dropwise over 40 minutes, during which time the amino acid went into solution. The ice bath was allowed to melt, and the solution was stirred at room temperature overnight. The mixture was evaporated under reduced pressure, and the residue was mixed with more EtOH (60 mL) and again evaporated under reduced pressure to provide an oil. The oil was dissolved in DCM (55 mL) and cooled on an ice bath. TEA (25 mL, 179 mmol) was added dropwise over 15 minutes with stirring, resulting in a milky mixture. Di-tert-butyl dicarbonate (17 mL, 73.2 mmol) was then added. The ice bath was allowed to melt, and the mixture was stirred at room temperature for five days. The resulting mixture was filtered through Celite® 545 on a Buchner funnel, and the filter cake was washed with DCM (50 mL). The filtrate was washed with saturated aqueous citric acid (20 mL) and water (2×100 mL), dried (MgSO4), filtered, and evaporated under reduced pressure to provide the title compound as a clear oil. 1H NMR is consistent with (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate (13.47 g, 58.2 mmol, 96% yield). 1H NMR (300 MHz, CDCl3): δ ppm 4.95 (br s, 1H), 4.15 (q, J=7.13, 2H), 3.98-4.10 (m, 1H), 2.40-2.57 (m, 2H), 1.44 (s, 9H), 1.27 (t, J=7.18, 3H), 1.22 (d, J=6.74, Hz, 3H).
-
- An oven-dried 25 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen. THF (2.25 mL) and diisopropylamine (0.27 mL, 1.894 mmol) were then added by syringe. The solution was cooled using a dry ice/acetone bath (−78° C.) and n-BuLi (1.6 M in hexane, 1.15 mL, 1.84 mmol) was added dropwise over 5 minutes. After stirring for 10 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (115.3 mg, 0.499 mmol) in THF (0.5 mL) was added dropwise (over 5 minutes). The solution was stirred for 75 minutes at −78° C. and then a solution of (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate (188.7 mg, 0.501 mmol) in THF (1.0 mL) was added dropwise by syringe. The reaction solution became yellow when the aldehyde was added. The reaction was stirred at −78° C. for 13 minutes and then quenched by the addition of saturated aqueous NH4Cl solution (2.5 mL). The mixture was partitioned between EtOAc and water (10 mL each). The organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to provide an impure mixture of isomers of (3S)-ethyl 3-((tert-butoxycarbonyl)amino)-2-((2-((tert-butoxycarbonyl)amino)-5-chloro-4-((R)-1-(pyridin-2-yl)ethoxy)phenyl)(hydroxy)methyl) butanoate as a yellow oil (344.8 mg; LCMS: m/z+608 [M+H]+). The crude material (334 mg) was dissolved in 1,4-dioxane (5 mL), treated with 12M aqueous HCl (0.125 mL), and stirred at 110° C. for 90 minutes, during which time a red material precipitated. The mixture was allowed to cool and the supernatant was decanted and discarded. Heptane (˜4 mL) was added to the red precipitate remaining in the round bottom and then evaporated under reduced pressure to provide 161.8 mg of a red solid. The material was triturated with iPrOH (5 mL) and the resulting precipitate was collected on a Hirsch funnel and washed with iPrOH (1 mL) and ethyl ether (˜20 mL) to provide 3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride (104.2 mg, 0.274 mmol, 55% yield) as a red solid, impure but suitable for use as it is. 1H NMR (300 MHz, Methanol-d4): δ ppm 8.81-8.87 (m, 1H), 8.55-8.64 (m, 1H), 8.18 (d, J=7.92 Hz, 1H), 7.96-8.04 (m, 1H), 7.95 (s, 1H), 7.85 (s, 1H), 6.99 (s, 1H), 5.98 (q, J=6.84 Hz, 1H), 4.48 (q, J=6.84 Hz, 1H), 1.86 (d, J=6.45 Hz, 3H), 1.64 (d, J=6.74 Hz, 3H). LCMS (Method 1): m/z 344 [M+H]+.
-
-
- A mixture of cyclopropylmethanol (0.145 mL, 1.838 mmol), tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate J (499.4 mg, 1.838 mmol) and triphenylphosphine (579.4 mg, 2.209 mmol) was placed in a 100 mL round bottom flask under an atmosphere of nitrogen and THF (20 mL) was then added by syringe. The resulting orange solution was cooled on an ice bath and DIAD (0.43 mL, 2.184 mmol) was added dropwise. The ice bath was removed and the solution was stirred at room temperature for 48 hours. Once LCMS indicated the reaction had gone to completion, silica gel was added and the solvent was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system using a 25 g silica gel column eluted with 0 to 3% EtOAc in hexanes to provide tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate (410.6 mg, 1.260 mmol, 68.6% yield) as a yellowish solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 10.57 (s, 1H), 9.75 (s, 1H), 7.95-8.00 (m, 2H), 4.02 (d, J=7.04 Hz, 2H), 1.49 (s, 9H), 1.23-1.31 (m, 1H), 0.57-0.66 (m, 2H), 0.38-0.46 (m, 2H). LCMS (Method 1): m/z 270 (loss of t-Bu).
-
- An oven-dried 25 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen and THF (5.6 mL) and diisopropylamine (0.53 mL, 3.72 mmol) were added by syringe. The solution was cooled on a dry ice/acetone bath (to −78° C.) and n-BuLi (1.6 M in hexane, 2.35 mL, 3.76 mmol) was added dropwise over a 5 minute period. After stirring for 15 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (286 mg, 1.238 mmol) in THF (1.25 mL) was added dropwise (over 5 minutes). The solution was stirred for 80 minutes at −78° C. and a solution of tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate (403.2 mg, 1.238 mmol) in THF (2.5 mL) was added dropwise by syringe. The reaction solution became yellow when the aldehyde was added. The reaction was stirred at −78° C. for 12 minutes and then quenched by addition of saturated aqueous NH4Cl solution (6 mL). The mixture was partitioned between EtOAc and water (25 mL each) and the organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to provide 724.5 g of a yellowish oil. The material was dissolved in 1,4-dioxane (12.5 mL), treated with 12M HCl (aqueous; 0.32 mL), and stirred at 110° C. for 70 minutes during which time the solution became thick with a pink precipitate. The sample was allowed to cool and the solvent was evaporated under reduced pressure to provide 1.13 g of a fibrous red solid. The material was triturated with i-PrOH (15 mL) and the resulting precipitate was collected on a Buchner funnel and washed with i-PrOH (20 mL) and ethyl ether (˜60 mL) to provide (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride (146.1 mg, 0.444 mmol, 36% yield) as a papery white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.13 (br s, 1H), 8.21 (br s, 3H), 7.98 (s, 1H), 7.86 (s, 1H), 6.98 (s, 1H), 4.32-4.46 (m, 1H), 3.96 (d, J=6.40 Hz, 2H), 1.51 (d, J=6.70 Hz, 3H), 1.21-1.35 (m, 1H), 0.55-0.68 (m, 2H), 0.35-0.46 (m, 2H). LCMS (Method 1): m/z 293 [M+H]+.
-
-
- A solution of 5-amino-2-chlorophenol (3 g, 20.90 mmol) (3,3-difluorocyclobutyl)methanol (2.66 g, 21.78 mmol) in THF (375 mL) was placed under an atmosphere of nitrogen and treated with DEAD (3.90 mL, 24.63 mmol). The solution was stirred at room temperature for 48 hours. Once LCMS indicated adequate progression of the reaction, the silica gel was added to the solution and evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using a 340 g silica gel column eluted with 0 to 100% EtOAc in hexanes with isocratic elution when peaks eluted) to provide 3.89 g of the title compound as a brown liquid. LCMS was consistent with impure 4-chloro-3-((3,3-difluorocyclobutyl)methoxy)aniline (m/z 248 [M+H]+). The sample was dissolved in EtOAc (80 mL) and treated with DIEA (3.00 mL, 17.18 mmol) and Ac2O (1.60 mL, 16.96 mmol). The solution was stirred at room temperature overnight. The solution was then washed with water and brine (50 mL each), dried (Na2SO4), filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on a Biotage® MPLC chromatography system (using a 50 g silica gel column, eluted with 0 to 50% EtOAc in hexanes with isocratic elution when peaks eluted) to provide 3.16 g of the title compound as a light brown oil, which slowly crystallized on standing. LCMS and 1H NMR are consistent with N-(4-chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide (3.16 g, 10.91 mmol, 52% yield) In the NMR one proton is obscured by the solvent signal. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.91 (s, 1H), 8.54-8.67 (m, 1H), 7.80-7.95 (m, 2H), 7.68 (s, 1H), 7.56 (d, J=7.30 Hz, 1H), 7.34-7.44 (m, 1H), 7.29 (d, J=9.10 Hz, 1H), 7.13-7.22 (m, 1H), 7.03 (s, 1H), 6.31 (br s, 1H), 6.22 (d, J=7.90 Hz, 1H), 5.30 (s, 2H), 4.10-4.26 (m, 2H), 3.78 (s, 3H). LCMS (Method 1): m/z 290 [M+H]+.
-
- A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (2.15 mL, 27.8 mmol) was then added by syringe and the resulting reaction mixture was cooled on an ice bath. POCl3 (8.40 mL, 90 mmol) was added dropwise by syringe (10 minutes) during which time a white material precipitated. The solution was then allowed to warm to room temperature over 10 minutes and the mixture was treated with N-(4-chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide (2.44 g, 8.42 mmol). The mixture was stirred at 80° C. for two days. The resulting thick red solution was pipetted onto ice, resulting in a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (˜500 mL), and dried to provide 2.38 g of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde (2.38 g, 6.88 mmol, 82% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 10.31-10.36 (m, 1H), 8.88 (s, 1H), 8.48 (s, 1H), 7.65 (s, 1H), 4.37 (d, J=4.69 Hz, 2H), 2.53-2.84 (m, 5H). LCMS (Method 1): m/z 346 [M+H]+.
-
- A solution of 2,6-dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde (2.66 g, 7.68 mmol) in concentrated HCl (75 mL) was stirred at 100° C. for one day during which time a red crust formed on the surface of the flask. The mixture was diluted with water (800 mL), resulting in formation of a red precipitate. The mixture was allowed to stand at room temperature for 4 days. The precipitate was then collected on a Buchner funnel, washed with water (1 L), and dried under vacuum at 50° C. to provide 2.16 g of the title compound as a red solid. LCMS and 1H NMR are consistent with 6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.16 g, 6.59 mmol, 86% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.21 (s, 1H), 10.16-10.18 (m, 1H), 8.43 (s, 1H), 8.09 (s, 1H), 6.94 (s, 1H), 4.20 (d, J=4.10 Hz, 2H), 2.54-2.80 (m, 5H). LCMS (Method 1): m/z+328 [M+H]+.
-
- A mixture of 6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (499.6 mg, 1.525 mmol) and 2-methylpropane-2-sulfinamide (222.1 mg, 1.832 mmol) was placed in a 25 mL round bottom flask under an atmosphere of nitrogen. THF (3.0 mL) and titanium (IV) isopropoxide (Ti(OiPr)4) (0.90 mL, 3.07 mmol) were added by syringe, and the suspension was stirred at room temperature overnight. Once LCMS indicated near completion of reaction, the reaction was quenched by dropwise addition of saturated aqueous NH4Cl solution (2 mL). The material was then triturated with EtOAc (100 mL) and the resulting precipitate was filtered through Celite®. The filter cake was washed with EtOAc (50 mL), sonicated in EtOAc for 15 minutes and filtered using a Buchner funnel. The filtrates were combined and washed with brine (100 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 413 mg of the title compound as a yellow solid. LCMS and 1H NMR are consistent with (E)-N-((6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (413 mg, 0.958 mmol, 62.9% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.21 (s, 1H), 8.74 (s, 1H), 8.59 (s, 1H), 8.09 (s, 1H), 6.95 (s, 1H), 4.19 (d, J=4.40 Hz, 2H), 2.55-2.79 (m, 5H), 1.19 (s, 9H). LCMS (Method 1): m/z 431 [M+H]+.
-
- (E)-N-((6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl) methylene)-2-methylpropane-2-sulfinamide (411.3 mg, 0.955 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen. DCM (7.6 mL) was added, and the suspension was cooled on a dry ice/chloroform bath (to approx. −60° C.). Methylmagnesium bromide (MeMgBr, 3M in ether) (0.95 mL, 2.85 mmol) was added dropwise. The cold bath was then allowed to warm to room temperature overnight, resulting in an orange solution. Once LCMS indicated reaction completion, the solution was cooled on an ice bath and treated dropwise with water (5 mL), resulting in precipitation. The mixture was diluted with EtOAc (100 mL) and washed with water (100 mL). Silica gel was added to the organic layer and the solvent was evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 5% MeOH in DCM with isocratic elution at 3.2% MeOH) to provide 345.5 mg of the title compound as a brown brittle foam. LCMS and 1H NMR are consistent with N-(1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (345.5 mg, 0.773 mmol, 81% yield). NMR shows a ˜1:1 mixture of diastereomers. LCMS (Method 1): m/z 447 [M+H]+.
-
- A solution of N-(1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (342.7 mg, 0.767 mmol) in MeOH (7.0 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (4 mL). The solution was then stirred for 25 minutes. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 20 mL ethyl ether and the resulting precipitate was collected on a Hirsch funnel and washed with more ethyl ether to provide 271.4 mg of a pink solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride (271.4 mg, 0.716 mmol, 93% yield). 1H NMR (300 MHz, Methanol-d4): δ ppm 7.95 (s, 1H), 7.79 (s, 1H), 6.96 (s, 1H), 4.48-4.55 (m, 1H), 4.20 (d, J=4.10 Hz, 2H), 2.56-2.79 (m, 5H), 1.68 (d, J=7.04 Hz, 3H). LCMS (Method 1): m/z 343 [M+H]+.
-
-
- A solution of 4-chloro-2-fluoroaniline (2 g, 13.74 mmol) and di-tert-butyl dicarbonate (6.4 mL, 27.6 mmol) in 1,4-dioxane (50 mL) was stirred at reflux for 2 days. The solvent was then evaporated. The resulting oil was diluted with MeOH, water, and aqueous ammonium hydroxide solution (10 mL each) and vigorously stirred for 45 minutes. The organic lower layer was separated. The organic material was diluted with EtOAc (50 mL), and washed with water (50 mL), 3.6% aqueous HCl solution (2×50 mL), saturated aqueous NaHCO3 solution (50 mL), and then again with water (2×50 mL). The organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to provide tert-butyl (4-chloro-2-fluorophenyl)carbamate (3.0011 g, 12.22 mmol, 89% yield) as a reddish liquid that solidified on standing. 1H NMR (300 MHz, DMSO-d6): δ ppm 9.12 (s, 1H), 7.63 (t, J=8.65 Hz, 1H), 7.42 (dd, J=10.85, 2.35 Hz, 1H), 7.18-7.24 (m, 1H), 1.45 (s, 9H). LCMS (Method 1): m/z 246 [M+H]+.
-
- An oven-dried 3-necked 500 mL round bottom flask was fitted with an oven-dried addition funnel and placed under an atmosphere of nitrogen. tert-Butyl (4-chloro-2-fluorophenyl)carbamate (5.44 g, 22.14 mmol) and ethyl ether (91 mL) were added by syringe. The clear solution was cooled on an acetonitrile/dry ice bath (to approximately −40° C.). tert-Butyllithium (1.7M in pentane, 33 mL, 22.14 mmol) was added to the addition funnel by cannula. The t-BuLi solution was added dropwise to the ether solution (over ˜10 minutes), during which time the ether solution began to turn orange. The solution was stirred at about −40° C. for 2 hours, during which time it progressively became more orange. DMF (8.7 mL, 112 mmol) was added dropwise (over ˜10 minutes), resulting in precipitation of a yellow solid. The MeCN/dry ice bath was replaced with an ice bath and the mixture was stirred for an additional 2 hours. The reaction was then quenched by dropwise addition of water (20 mL), resulting in a brown mixture and the ice bath was removed. The mixture was diluted with EtOAc (100 mL), washed with water (2×100 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 5.45 g of an oily black solid. The material was triturated with hexanes (50 mL), collected on a Buchner funnel and washed with more hexanes to provide 2.73 g tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate as a yellow powder. The filtrate was evaporated under reduced pressure, the residue was triturated in hexanes (˜15 mL), and the resulting yellow solid was collected on a Hirsch funnel to provide a second crop of the title compound (0.66 g). A total of 3.39 g (12.4 mmol, 56% yield) of tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate was recovered. 1H NMR (300 MHz, DMSO-d6): δ ppm 9.93 (d, J=0.88 Hz, 1H), 9.47 (s, 1H), 7.81-7.90 (m, 1H), 7.55-7.61 (m, 1H), 1.44 (s, 9H). LCMS (Method 1): m/z 296 [M+Na].
-
- An oven-dried 200 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen. THF (17 mL) and diisopropylamine (1.59 mL, 11.16 mmol) were added by syringe. The resulting solution was cooled on a dry ice/acetone bath (to approximately −78° C.) and then n-butyllithium (1.6M in hexane, 7.1 mL, 11.36 mmol) was added dropwise over a 5 minute period. After stirring for 15 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (860.7 mg, 3.72 mmol) in THF (3.75 mL) was added dropwise over 5 minutes. The solution was stirred for 80 minutes at −78° C., and a solution of tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate (1016.4 mg, 3.71 mmol) in THF (7.5 mL) was then added dropwise by syringe. The reaction was stirred at −78° C. for another 22 minutes and then quenched by addition of saturated aqueous NH4Cl solution (17 mL). The mixture was partitioned between EtOAc and water (100 mL each). The organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to provide 1.88 g of the title compound as an orange gum. The material was dissolved in 1,4-dioxane (38 mL), treated with 12M aqueous HCl (0.96 mL), and stirred at 110° C. for 50 minutes. The sample was then allowed to cool. The solvent was evaporated under reduced pressure to provide 1.24 g of a red solid. The material was triturated in IPA (25 mL), collected on a Hirsch funnel and washed sequentially with IPA (5 mL) and ethyl ether (˜20 mL) to provide (S)-3-(1-aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one hydrochloride (370.4 mg, 1.337 mmol, 36% yield) as a red solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.41 (s, 1H), 8.33 (br s, 3H), 8.10 (s, 1H), 7.67-7.76 (m, 2H), 4.38-4.53 (m, 1H), 1.52 (d, J=7.04 Hz, 3H). LCMS (Method 1): m/z 241 [M+H]+.
-
-
- A mixture of 5-amino-2-chlorophenol (20 g, 139 mmol) and 2-bromopropane (26 mL, 278 mmol) and K2CO3 (38.4 g, 278 mmol) in CH3CN (300 mL) was refluxed for 24 h. The reaction mixture was cooled to room temperature, filtered and the solid was washed with ethyl acetate (150 mL). The filtrate was concentrated and the residue was purified by ISCO (SiO2: Hex/EtOAc 0 to 40%) to give the title compound, 4-Chloro-3-isopropoxyaniline (22.6 g, 87%).
-
- To a mixture of 4-chloro-3-isopropoxyaniline (22.5 g, 121 mmol) in CH2Cl2 (200 mL) was added DIPEA (42 mL, 242 mmol) followed by acetic anhydride (17 mL, 181 mmol). The resultant mixture was stirred at room temperature for 3 h. Upon the completion of the reaction, water (100 mL) was added and stirred for 10 minutes. The organic layer was separated, washed with 1N HCl (aq, 200 mL), brine (150 mL) and dried over anhydrous Na2SO4. The solution was filtered and concentrated. The crude residue was recrystallized from CH2Cl2/hexanes to give desired compound N-(4-Chloro-3-isopropoxyphenyl)acetamide (19.6 g, 71%).
-
- DMF (15 mL, 193.6 mmol) was added to a 350 mL seal tube and cooled to 0° C. To this solution was added phosphorous oxychloride (60.1 mL, 645.6 mmol) dropwise during 40-50 min. The resultant mixture was brought to room temperature followed by addition of N-(4-chloro-3-isopropoxyphenyl)acetamide (14.7 g, 64.5 mmol) in portions and heated at 80° C. overnight. The mixture was cooled to room temperature and carefully poured onto crushed ice. The yellow precipitate was filtered, washed with water and dried over P2O5 overnight to afford 2,6-Dichloro-7-isopropoxyquinoline-3-carbaldehyde as yellow solid (17.5 g, 95%).
-
- To 2,6-dichloro-7-isopropoxyquinoline-3-carbaldehyde (5.8 g, 20.4 mmol) in a co-solvent of MeOH:THF (1:1, 100 mL) was added NaOMe (2.2 g, 40.8 mmol) portion wise at rt. The reaction mixture was refluxed for 3 h. After cooling to rt, the reaction was quenched with aqueous NH4.Cl solution (20 mL). The mixture was extracted with EtOAc (25 mL×3). The combined organic layer was dried (Na2SO4), concentrated and purified by flash chromatography with Hexane/EA (3:1) to give 6-Chloro-7-isopropoxy-2-methoxyquinoline-3-carbaldehyde (5.07 g, 89%) as a yellow solid.
-
- To 6-chloro-7-isopropoxy-2-methoxyquinoline-3-carbaldehyde (5.07 g, 18.17 mmol) in THF (100 mL) at −78° C. was added a solution of MeMgCl in THF (3 M, 9.1 mL, 27.2 mmol) drop wise. The reaction was stirred at room temperature (rt) for 3 h and then quenched with aqueous NH4Cl solution (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (25 mL×3). The combined organic layers were dried (Na2SO4), concentrated, and purified by silica gel chromatography with hexane/EA (3:1) to give compound 1-(6-Chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethanol (4.06 g, 76%).
-
- To 1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethanol (4.06 g, 13.8 mmol) in CH2Cl2 (50 mL) at rt was added DMP (7.0 g, 16.5 mmol) portion wise. The reaction was stirred at rt for 2 h, and then was quenched with an aqueous solution of NaHCO3 and Na2S2O3. After stirring for 15 min, both layers became clear. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 (30 mL×2). The combined organic layers were dried (Na2SO4), concentrated and purified by silica gel chromatography with hexane/EA (4:1) to give 1-(6-Chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethanone (3.67 g, 72%) as a white solid.
-
- To 1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethanone (3.67 g, 12.5 mmol) in THF/toluene (20 mL:400 mL) at rt was added (R)-2-methylpropane-2-sulfinamide (3.03 g, 25 mmol,) and Ti(OiPr)4 (11 mL, 37.5 mmol,). The reaction was refluxed with a Dean-Stark apparatus. After the reaction was refluxed for 4 h and 150 mL of solvent was removed, the reaction was cooled to rt. The solvent was removed under vacuum, and 50 mL of EtOAc was added to the residue, followed by addition of 20 mL of saturated aqueous NaHCO3 solution. After stirring for 10 min, the solid was removed through a pad of celite. The filtrate was extracted with EtOAc (200 mL×2), dried (Na2SO4), concentrated and purified by silica gel chromatography with hexane/EA (1:1) to give the title compound (4.32 g, 87%).
-
- To (R,E)-N-(1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethylidene)-2-methyl propane-2-sulfinamide (4.32 g, 10.9 mmol) in THF (100 mL) at −78° C., was added 1 M L-selectride (14.2 mL, 14.2 mmol) in THF dropwise. The reaction mixture was warmed to rt and stirred for 3 h. The reaction was quenched with aqueous saturated NH4Cl (30 mL) solution and then extracted with EtOAc (20 mL×3). The combined organic layers were dried (Na2SO4), concentrated and purified by silica gel chromatography with hexane/EA (1:1) to give the desired compound (3.58 g, 82%).
-
- To (R)—N—((S)-1-(6-chloro-7-isopropoxy-2-methoxyquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (3.58 g, 8.99 mmol) in dioxane (50 mL) was added 2 N HCl (50 mL) at rt. The reaction was refluxed for 3 h. The solvent was removed under vacuum and the residue was dried under vacuum to afford crude II-18, which was further purified by trituration (CH2Cl2/MeOH/hexane) to give pure compound II-18 (2.44 g, 86%) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ 12.10 (s, 1H), 8.29 (br, s, 3H), 7.98 (s, 1H), 7.83 (s, 1H), 7.08 (s, 1H), 4.66 (m, 1H), 4.38 (m, 1H), 3.91 (s, 3H), 1.52 (d, J=6.87 Hz, 3H), 1.37 (d, J=6.03 Hz, 6H).
- LCMS (
Method 3, APCI): RT=8.06 min, m/z=281.1 [M+H]+. -
-
- A solution of 5-fluoropicolinonitrile (7.27 g, 59.5 mmol) in CHCl3 (60 mL) was added dropwise by addition funnel to a solution of m-CPBA (<77%, 22.00 g, 98 mmol) in CHCl3 160 mL). The solution was stirred at reflux 4 days, at which time LCMS showed ˜85% conversion. The sample was allowed to cool, then sodium sulfite (12.4 g, 98 mmol) was added and the sample was stirred at room temperature three hours, during which time the solution became thick with a white precipitate. The sample was diluted with DCM (300 mL) and filtered on a Buchner funnel, and the filter cake was washed with DCM (˜400 mL). A white material precipitated in the filtrate. The filtrate mixture was washed with saturated aqueous NaHCO3 (400 mL), during which the solids went into solution. The organic layer was washed with water (300 mL), then dried (MgSO4) and filtered. Silica gel was added and the mixture was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (340 g silica gel column) with 0 to 100% EtOAc in hexanes, with isocratic elution when peaks came off to provide 2-cyano-5-fluoropyridine 1-oxide (4.28 g, 31.0 mmol, 52% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 8.85-8.93 (m, 1H), 8.23 (dd, J=9.09, 6.74 Hz, 1H), 7.53-7.64 (m, 1H). LCMS (Method 1): Rt 0.57 min., m/z 138.9 [M+H]+.
-
- A solution of 2-cyano-5-fluoropyridine 1-oxide (4.28 g, 31.0 mmol) in acetic anhydride (40 ml, 424 mmol) was heated at reflux (150° C. bath) three days, during which the clear solution turned dark. The sample was concentrated under reduced pressure. The residue was dissolved in MeOH (30 mL) and stirred 1 hour. Silica gel was added and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (100 g silica gel column) with 0 to 23% EtOAc in hexanes to provide 6-cyano-3-fluoropyridin-2-yl acetate (3.32 g, 18.43 mmol, 60% yield) as a clear liquid that solidified on cooling. 1H NMR (300 MHz, CHLOROFORM-d): δ ppm 7.65-7.75 (m, 2H), 2.42 (s, 3H). LCMS (Method 1): Rt 1.54 min., m/z 138.8 (loss of acetate).
-
- A solution of 6-cyano-3-fluoropyridin-2-yl acetate (3.32 g, 18.43 mmol) in MeOH (40 ml) was treated with potassium carbonate (5.10 g, 36.9 mmol) and stirred at room temperature four hours. LCMS at 2 hours showed the reaction had gone to completion. The solvent was evaporated under reduced pressure. The residue was dissolved in water (100 mL) and acidified to pH≦1 with 1M HCl. The solution was extracted with EtOAc (3×100 mL). The combined organic extracts were dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile (2.34 g, 16.94 mmol, 92% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.92 (br s, 1H), 7.73 (br s, 1H), 7.43 (br s, 1H). LCMS (Method 1): Rt 0.70 min., m/z 138.9 [M+H]+.
-
- A mixture of 5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile (2.31 g, 16.73 mmol) and potassium carbonate (4.86 g, 35.2 mmol) in a 200 mL round bottom flask was treated with DMF (46 ml) and stirred 15 minutes. MeI (1.2 ml, 19.19 mmol) was added and the mixture was stirred at room temperature 45 minutes. The solvent was evaporated under reduced pressure. The residue was mixed with water (150 mL) and extracted with DCM (2×150 mL). The combined organic extracts were dried (MgSO4), filtered, treated with silica gel, and evaporated under reduced pressure, then evaporated further at 60° C. under high vacuum. The material was chromatographed by Biotage MPLC with 0 to 35% EtOAc in hexanes, with isocratic elution at 16% EtOAc and 35% EtOAc while peaks came off. The peak that came off with 16% EtOAc was O-methylated material and was discarded. The peak that came off with 35% EtOAc provided the title compound III-1 (1.70 g, 11.17 mmol, 67% yield) as a solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 7.53 (dd, J=9.38, 7.62 Hz, 1H), 7.18 (dd, J=7.77, 4.84 Hz, 1H), 3.60 (s, 3H). LCMS (Method 1): Rt 0.94 min., m/z 152.9 [M+H]+.
-
- A solution of 5-aminopicolinonitrile (5.50 g, 46 mmol, 1 eq.) in 300 mL DCM was cooled to 0° C., and then treated with TEA (20 mL, 144 mmol, 3.1 eq.) followed by dropwise addition of trifluoroacetic anhydride (20 mL, 144 mmol, 3.1 eq.). After stirring overnight at room temperature, the reaction mixture was poured onto ice, and extracted with DCM. Purification by passing over a silica gel plug (hexane/EtOAc, 75/25) provided N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (7.24 g, 73%) as a white solid. TLC: Hexane/EtOAc, 8/2.
- A solution of N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (7.24 g, 33.7 mmol, 1 eq.) in 270 mL CHCl3 was cooled in an ice bath, then treated dropwise with a solution of mCPBA (7.68 g, 39 mmol, 1.15 eq.) in 65 mL CHCl3. The reaction mixture was refluxed for 24 hours and then poured into H2O. After stirring with 10% aqueous NaHSO3 and NaHCO3, the solid was collected and rinsed with H2O, then CHCl3. This provided 1.86 g (24%) of the title compound as a white solid. Unreacted N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (4.70 g, 65%) was recovered by extraction of the filtrate, and purification by chromatography on silica gel (hexane/EtOAc, 75/25).
- A suspension of N-(6-cyanopyridin-3-yl)-2,2,2-trifluoroacetamide-N-oxide (0.81 g, 3.5 mmol, 1 eq.) in 10.5 mL THF was treated with TEA (0.75 mL, 5.3 mmol, 1.5 eq.) followed by dropwise addition of trifluoroacetic anhydride (1.74 mL, 12.5 mmol, 3.5 eq.). After stirring overnight at room temperature, ice chips and 12 mL 10% NaOH were added. After stirring at room temperature for 1 hour, the reaction mixture was acidified to pH ˜4 with HOAc and the precipitated solid was collected, providing 0.31 g 5-Amino-6-oxo-1,6-dihydropyridine-2-carbonitrile (64%) as a beige solid. TLC: DCM/MeOH, 97/3.
- A solution of 5-Amino-6-oxo-1,6-dihydropyridine-2-carbonitrile (500 mg, 3.7 mmol, 1 eq.) in 18 mL DMF was treated with anhydrous K2CO3 (1.0 g, 7.26 mmol, 2 eq.) and CH3I (0.175 mL, 4.0 mmol, 1.1 eq) and stirred at room temperature for 1.5 h. To the reaction mixture water was added followed by extraction with EtOAc (2×), the extracts were dried (Na2SO4) and evaporated to provide a tan solid. Analysis of the crude product by NMR indicated a ˜8/2 ratio of desired product vs the O-methylated isomer. Trituration of the solid with Et2O provided 160 mg of the desired product (29%). Purification of the Et2O washes by C18 ISCO preparative chromatography provided an additional 82 mg of the title compound V-1 as the TFA salt (15%). TLC: Hexane/EtOAc, 1/1. 1H-NMR (300 MHz, d6DMSO) δ: 6.94 (d, J=7.68), 6.42 (broad s, 2H), 6.33 (d, J=7.68), 3.55 (s, 3H). LC/MS (Methods 3): Rt 3.0 min., m/z 150 [M+H]+.
-
TABLE 1 The Intermediates listed in Table 1 were either prepared using the methods described above or obtained from commercial sources. Intermediate No. Chemical names Structure II-1 (S)-3-(1-aminoethyl)-6- chloroquinolin-2(1H)-one II-2 (R)-3-(1-aminoethyl)-6- chloroquinolin-2(1H)-one II-3 3-(1-aminoethyl)-6-chloro-7- fluoroquinolin-2(1H)-one II-4 (S)-3-(1-aminoethyl)-6- chloro-7-fluoroquinolin- 2(1H)-one II-5 (R)-3-(1-aminoethyl)-6- chloro-7-fluoroquinolin- 2(1H)-one II-6 3-(1-aminoethyl)-6-chloro-7- methoxyquinolin-2(1H)-one II-7 (S)-3-(1-aminoethyl)-6- chloro-7-methoxyquinolin- 2(1H)-one II-8 (R)-3-(1-aminoethyl)-6- chloro-7-methoxyquinolin- 2(1H)-one II-9 3-(1-aminoethyl)-6-chloro-7- (pyridin-2- ylmethoxy)quinolin-2(1H)- one II-10 (S)-3-(1-aminoethyl)-6- chloro-7-(pyridin-2- ylmethoxy)quinolin-2(1H)- one II-11 (S)-3-(1-aminoethyl)-6- chloro-1,8-naphthyridin- 2(1H)-one II-12 (R)-3-(1-aminoethyl)-6- chloroquinoxalin-2(1H)-one II-13 (S)-3-(1-aminoethyl)-6- chloroquinoxalin-2(1H)-one II-14 (3-((S)-1-aminoethyl)-6- chloro-7-((R)-1-(pyridin-2- yl)ethoxy)quinolin-2(1H)- one II-15 (S)-3-(1-aminoethyl)-6- chloro-7- (cyclopropylmethoxy) quinolin-2(1H)-one II-16 3-(1-aminoethyl)-6-chloro-7- ((3,3- difluorocyclobutyl)methoxy) quinolin-2(1H)-one II-17 (S)-3-(1-aminoethyl)-6- chloro-8-fluoroquinolin- 2(1H)-one II-18 (S)-3-(1-aminoethyl)-6- chloro-7-isopropoxy quinolin-2(1H)-one III-1 5-fluoro-1-methyl-6-oxo- 1,6-dihydropyridine-2- carbonitrile III-2 3-fluoro-1-methylpyridin- 2(1H)-one IV-1 6-chloro-2-oxo-1,2- dihydroquinoline-3- carbaldehyde IV-2 6-chloro-7-methoxy-2-oxo- 1,2-dihydroquinoline-3- carbaldehyde IV-3 6-chloro-2-oxo-7-(pyridin- 2-ylmethoxy)-1,2- dihydroquinoline-3- carbaldehyde V-1 3-amino-1-methylpyridin- 2(1H)-one V-2 5-amino-1-methyl-6-oxo- 1,6-dihydropyridine-2- carbonitrile - Note: All amines are hydrochloride salts, except that II-5a is TFA salt
-
- To a 100 mL round bottle flask was added 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde IV-1 (69.6 mg, 0.335 mmol), 5-amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile V-2 (50 mg, 0.335 mmol) and acetic acid (0.096 ml, 1.676 mmol) in DCM (10 ml). Finally sodium triacetoxyborohydride (107 mg, 0.503 mmol) was charged and stir vigorously at room temperature under N2 flow overnight. The reaction mixture was diluted with EtOAc (60 mL), then washed with saturated NaHCO3, water (×2) and brine. The organic extract was dried over Na2SO4, filtered and concentrated to yield a crude, which was purified by reverse phase preparative HPLC on Gilson to yield a mixture of product and unknown by-product (˜32 mg, 28% yield, 81% HPLC purity). The mixture was subjected 2nd HPLC purification to afford a pure desired product (4 mg, 3.5% yield). 1H NMR (300 MHz, CDCl3) δ ppm 7.97 (s, 1H), 7.56 (br s, 1H), 7.45 (br d, J=11.43 Hz, 2H), 7.36 (br d, J=8.79 Hz, 1H), 7.12-7.20 (m, 1H), 6.66-6.78 (m, 1H), 6.00 (br d, J=7.92 Hz, 1H), 3.68 (s, 2H), 3.31 (br s, 3H). LCMS (Method 1): Rt 2.37 min, m/z 340.97 [M+H]+.
-
-
- A mixture of 3-nitropyridin-2(1H)-one (1.00 g, 7.14 mmol) and K2CO3 (3.00 g, 21.71 mmol) in DMF (30 ml) was treated with ethyl iodide (0.60 ml, 7.42 mmol) and stirred at 50° C. overnight. LCMS indicated a 4:1 mixture of product and starting material. More ethyl iodide (0.25 mL) was added and the reaction was stirred at 60° C. five hours. The yellow mixture was diluted with water (100 mL) and extracted with EtOAc (3×100 mL). The combined organic extracts were dried (MgSO4), filtered, and evaporated under reduced pressure to provide 1.08 g yellow solid. The material was dissolved in a few mL DCM and chromatographed by Biotage MPLC (25 g silica gel column, 0 to 10% MeOH in DCM, with isocratic elution at 3% MeOH) to provide 1-ethyl-3-nitropyridin-2(1H)-one (898.9 mg, 5.35 mmol, 74.9% yield) as a yellow solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 8.38 (dd, J=7.92, 2.05 Hz, 1H), 8.24 (dd, J=6.60, 2.20 Hz, 1H), 6.44 (dd, J=7.62, 6.45 Hz, 1H), 4.05 (q, J=7.04 Hz, 2H), 1.26 (t, J=7.18 Hz, 3H). LCMS (Method 1): Rt 0.96 min., m/z 169.0 [M+H]+.
-
- A solution of 1-ethyl-3-nitropyridin-2(1H)-one (891.2 mg, 5.30 mmol) and tin (II) chloride dihydrate (5.03 g, 22.29 mmol) in EtOAc (30 ml) in a 200 mL round bottom flask was stirred at 80° C. two hours; LCMS at 1.5 hours showed the reaction had gone cleanly to completion. The solution was allowed to cool and was diluted with EtOAc (50 mL), then NaHCO3 (8 g) was added in small portions and the mixture was stirred 20 minutes, by which time little effervescence had occurred and the mixture was still strongly acidic (pH ˜1). Water (50 mL) was added in portions with thorough stirring, first magnetically and then by hand as a precipitate formed, resulting in a dark blue mixture of pH ˜8. The mixture was filtered on a Buchner funnel and the filter cake was washed with several portions of EtOAc (˜100 mL total). The filtrate layers were separated. The aqueous phase was extracted with EtOAc (3×50 mL), and all the organics were combined and dried (Na2SO4), filtered, and evaporated under reduced pressure. The resulting bluish solid (0.64 g) was dissolved in a few mL DCM and chromatographed by Biotage MPLC (25 g silica gel snap column, 0 to 9% MeOH in DCM, with isocratic elution at 3.8% MeOH). The blue solid thus obtained was dissolved in DCM, treated with silica gel, and evaporated under reduced pressure. The material was rechromatographed by Biotage MPLC (25 g silica gel column, 0 to 100% EtOAc in hexanes, with isocratic elution at 67% EtOAc) to provide 3-amino-1-ethylpyridin-2(1H)-one (517.7 mg, 3.75 mmol, 70.7% yield) as a slightly blue solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 6.88 (dd, J=6.89, 1.91 Hz, 1H), 6.41 (dd, J=7.04, 1.76 Hz, 1H), 6.03 (dd, J=6.90, 6.90 Hz, 1H), 5.06 (s, 2H), 3.89 (q, J=7.13 Hz, 2H), 1.19 (t, J=7.18 Hz, 3H). LCMS (Method 1): Rt 0.76 min., m/z 139.0 [M+H]+.
-
- A suspension of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (100.1 mg, 0.482 mmol) and 3-amino-1-ethylpyridin-2(1H)-one (67.1 mg, 0.486 mmol) in MeOH (1.5 mL) and toluene (1.5 mL) was treated with AcOH (27.6 μL) and shaken at 50° C. for 5.5 hours, during which the blue color of the pyridinone starting material was discharged. The solvents were evaporated under reduced pressure. The red residue was treated with successively with two aliquots of toluene (3 mL each) and evaporated under reduced pressure. The residue was suspended in DCM (3 mL) and treated with AcOH (135.4 μL) and sodium triacetoxyborohydride (164.3 mg, 0.775 mmol), then placed under nitrogen and stirred at room temperature overnight; within a few minutes the material went into solution, and within an hour a material precipitated out. The sample was diluted with DCM/MeOH/EtOAc, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (0 to 100% EtOAc in hexanes) to provide the title compound (I-2) (25.7 mg, 0.078 mmol, 16.16% yield,
HPLC purity 100% at 220 nm) as a greenish solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.02 (s, 1H), 7.79 (d, J=2.05 Hz, 1H), 7.65 (s, 1H), 7.49 (dd, J=8.65, 2.20 Hz, 1H), 7.30 (d, J=8.79 Hz, 1H), 6.90 (dd, J=4.30, 4.30 Hz, 1H), 5.95-6.11 (m, 3H), 4.16 (d, J=5.90 Hz, 2H), 3.93 (q, J=6.84 Hz, 2H), 1.22 (t, J=7.04 Hz, 3H). LCMS (Method 4): Rt 1.15 min., m/z 330.0 [M+H]+. -
TABLE 3 LCMS signal and NMR chemical shifts of each compound listed in Table 2. Cmpd no LCMS 1H NMR (300 MHz) δ ppm Chemical Name I-1 m/z: 340.93 1H NMR (300 MHz, CHLOROFORM-d) δ 5-{[(6-chloro-2-oxo-1,2- (M + H)+ ppm 7.97 (s, 1 H), 7.56 (br s, 1 H), 7.45 dihydroquinolin-3- Rt (min): 1.76 (br d, J = 11.43 Hz, 2 H), 7.36 (br d, yl)methyl]amino}-1-methyl-6- J = 8.79 Hz, 1 H), 7.12-7.20 (m, 1 H), oxo-1,6-dihydropyridine-2- 6.66-6.78 (m, 1 H), 6.00 (br d, J = 7.92 carbonitrile Hz, 1 H), 3.68 (s, 2 H), 3.31 (br s, 3 H). I-2 m/z: 329.99 1H NMR (300 MHz, DMSO-d6): δ ppm 6-chloro-3-{[(1-ethyl-2-oxo- (M + H)+ 12.02 (s, 1 H), 7.79 (d, J = 2.05 Hz, 1 H), 1,2-dihydropyridin-3- Rt (min): 1.15 7.65 (s, 1 H), 7.49 (dd, J = 8.65, 2.20 Hz, 1 yl)amino]methyl}-1,2- H), 7.30 (d, J = 8.79 Hz, 1 H), 6.90 (dd, dihydroquinolin-2-one J = 4.30, 4.30 Hz, 1 H), 5.95-6.11 (m, 3 H), 4.16 (d, J = 5.90 Hz, 2 H), 3.93 (q, J = 6.84 Hz, 2 H), 1.22 (t, J = 7.04 Hz, 3 H). I-3 m/z: 315.98 1H NMR (300 MHz, CHLOROFORM-d) δ 6-chloro-3-{[(1-methyl-2-oxo- (M + H)+ ppm 11.42 (br s, 1 H), 7.58 (s, 1 H), 7.41 1,2-dihydropyridin-3- Rt (min): 1.06 (d, J = 2.05 Hz, 1 H), 7.31-7.38 (m, 1 H), yl)amino]methyl}-1,2- 7.21-7.27 (m, 1 H), 6.62 (d, J = 6.45 Hz, 1 dihydroquinolin-2-one H), 6.13 (br s, 1 H), 5.95-6.04 (m, 1 H), 4.34 (s, 2 H), 3.55 (s, 4 H). I-4 m/z: 327.04 1H NMR (300 MHz, DMSO-d6): δ 5-{[(6-chloro-2-oxo-1,2- (M + H)+ 12.01(br, 1H), 7.74(s, 1H), 7.55(s, 1H), dihydroquinolin-3- Rt (min): 1.01 7.45(dd, J1 = 2.35 Hz, J2 = 8.8 Hz, 1H), yl)methyl]amino}-6-oxo-1,6- 7.27(d, J = 8.79 Hz, 1H), 6.60-6.80(m, 2H),, dihydropyridine-2-carbonitrile 6.00(d, J = 7.62 Hz, 1H), 4.17(d, J = 6.16 Hz, 2H) I-5 m/z: 342.01 6-chloro-3-{[(1-cyclopropyl-2- (M + H)+ oxo-1,2-dihydropyridin-3- Rt (min): 1.15 yl)amino]methyl}-1,2- dihydroquinolin-2-one I-6 m/z: 329.99 1H NMR (300 MHz, DMSO-d6): δ ppm 6-chloro-3-{[(1,6-dimethyl-2- (M + H)+ 12.00 (s, 1 H), 7.77 (d, J = 2.35 Hz, 1 H), oxo-1,2-dihydropyridin-3- Rt (min): 1.13 7.62 (s, 1 H), 7.48 (dd, J = 8.79, 2.35 Hz, 1 yl)amino]methyl}-1,2- H), 7.30 (d, J = 8.79 Hz, 1 H), 5.98-6.04 dihydroquinolin-2-one (m, 1 H), 5.88-5.95 (m, 1 H), 5.78 (t, J = 6.30 Hz, 1 H), 4.14 (d, J = 6.20 Hz, 2 H), 3.47 (s, 3 H), 2.22 (s, 3 H). I-7 m/z: 379.86 1H NMR (300 MHz, DMSO-d6): δ 3-{[(6-bromo-2-oxo-1,2- (M + H)+ 12.00(br, 1H), 7.76(d, J = 2.32 Hz, 1H), dihydropyridin-3- Rt (min): 0.97 7.59((s, 1H)), 7.45(dd, yl)amino]methyl}-6-chloro-1,2- J1 = 2.40 Hz, J2 = 8.78 Hz, 1H), 7.27(d, dihydroquinolin-2-one J = 8.72 Hz, 1H), 6.42(br, 1H), 6.18(br, 1H), 5.89(br, 1H), 5.82 (d, J = 8.98 Hz, 1H) 4.13(d, J = 5.38 Hz, 2H) I-8 m/z: 369.90 6-chloro-3-({[2-oxo-6- (M + H)+ (trifluoromethyl)-1,2- Rt (min): 1.2 dihydropyridin-3- yl]amino}methyl)-1,2- dihydroquinolin-2-one I-9 m/z: 383.93 6-chloro-3-({[1-methyl-2-oxo- (M + H)+ 6-(trifluoromethyl)-1,2- Rt (min): 1.43 dihydropyridin-3- yl]amino}methyl)-1,2- dihydroquinolin-2-one I-10 m/z: 359.99 methyl 5-{[(6-chloro-2-oxo-1,2- (M + H)+ dihydroquinolin-3- Rt (min): 1.01 yl)methyl]amino}-6-oxo-1,6- dihydropyridine-3-carboxylate I-11 m/z: 346.04 1H NMR (300 MHz, DMSO-d6): δ ppm 6-chloro-7-methoxy-3-{[(1- (M + H)+ 11.88 (s, 1 H), 7.78 (s, 1 H), 7.58 (s, 1 H), methyl-2-oxo-1,2- Rt (min): 1.05 6.94 (s, 1 H), 6.88 (dd, J = 6.45, 2.05 Hz, 1 dihydropyridin-3- H), 5.92-6.10 (m, 3 H), 4.12 (d, J = 6.45 yl)amino]methyl}-1,2- Hz, 2 H), 3.87 (s, 3 H), 3.45 (s, 3 H). dihydroquinolin-2-one I-12 6-chloro-3-{[(1-methyl-2-oxo- 1,2-dihydropyridin-3- yl)amino]methyl}-7-(pyridin-2- ylmethoxy)-1,2- dihydroquinolin-2-one a. LCMS data are determined by Method 4. b. Data is not available. -
- A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (1.23 g, 8.09 mmol), (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (1.91 g, 7.37 mmol) and N,N-diisopropylethylamine (3.8 mL, 21.8 mmol) in anhydrous dimethyl sulfoxide (57 mL) under N2 was heated to 110° C. and stirred for 6 hours. After cooling to room temperature, the mixture was partitioned between EtOAc/H2O (750 mL/750 mL). The organic layer was separated, dried (Na2SO4) and concentrated in vacuum. The residue was purified on ISCO twice (40 g silica gel column, EtOAc/hexanes 0˜100%; 80 g silica gel column, MeOH/dichloromethane 0-5%). The colorless fractions were combined and dichloromethane was removed under reduced pressure on rotavap until a lot of white solid precipitated out. The white solid was collected by filtration and washed with cold MeOH. It was then mixed with MeCN/H2O (10 mL/25 mL) and lyophilized to afford the title compound I-13 as a white solid (790 mg). m.p. 262-264° C. 1H NMR (300 MHz, DMSO-d6) δ: 12.07 (s, 1H), 7.75 (s, 1H), 7.73 (d, J=2.2 Hz, 1H), 7.51 (dd, J=8.6, 2.3 Hz, 1H), 7.31 (d, J=8.8 Hz, 1H), 6.97 (d, J=8.0 Hz, 1H), 6.93 (d, J=7.7 Hz, 1H), 5.95 (d, J=8.0 Hz, 1H), 4.68 (m, 1H), 3.58 (s, 3H), 1.50 (d, J=6.6 Hz, 3H). LCMS (Method 3): 100% pure @ 254 nm, Rt 10.78 min, m/z 355, 357 [M+H]+. The filtrate and the colored fractions (TLC pure) from the second ISCO were combined and treated with activated charcoal and filtered (until the filtrate is colorless). The filtrate was then concentrated under reduced pressure on rotavap to remove dichlorometane until a lot of white solid precipitated out. The white solid was collected by filtration and washed with cold MeOH. It was then mixed with MeCN/H2O (10 mL/25 mL) and lyophilized to afford the title compound I-13 as a white solid (970 mg). m.p. 262-264° C. 1H NMR (300 MHz, DMSO-d6) δ: 12.06 (s, 1H), 7.75 (s, 1H), 7.73 (d, J=2.5 Hz, 1H), 7.51 (dd, J=8.6, 2.3 Hz, 1H), 7.31 (d, J=8.8 Hz, 1H), 6.97 (d, J=8.0 Hz, 1H), 6.92 (d, J=8.0 Hz, 1H), 5.95 (d, J=8.0 Hz, 1H), 4.68 (m, 1H), 3.58 (s, 3H), 1.50 (d, J=6.9 Hz, 3H). LCMS (Method 3): 100% pure @ 254 nm, m/z 355, 357 [M+H]+. The total yield for combined two batches is 67%.
-
- A mixture of DIEA (0.165 ml, 0.943 mmol), (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one II-1 (70 mg, 0.314 mmol), and 5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile (52.1 mg, 0.377 mmol) in DMSO (1 ml) was heated to 110° C. for 2 hrs. The reaction mixture was cooled to room temperature, then was treated with EtOAc, washed with water twice, dried and concentrated. The biotage purification with 0 to 10% MeOH/DCM on a 10 g column afforded (S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-6-oxo-1,6-dihydro pyridine-2-carbonitrile (12.1 mg, 11.3%). 1H NMR (300 MHz, DMSO-d6) δ ppm 12.03 (s, 1H), 7.72 (s, 2H), 7.47 (m, 1H), 7.28 (m, 1H), 6.84 (m, 1H), 6.68 (m, 1H), 5.93 (m, 1H), 4.66 (m, 1H), 1.45 (d, J=6.74 Hz, 3H). LCMS (Method 3): Rt 2.35 min, m/z 361.05 [M+Na]+.
-
- A mixture of (S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride II-4 (1.00 g, 3.61 mmol), 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (604 mg, 3.97 mmol), N,N-diisopropylethylamine (1.9 mL, 10.8 mmol) in DMSO (15 mL) was heated at 110° C. in a seal tube for 16 h. MS and TLC showed clean conversion. The reaction mixture was poured into water (300 mL) with vigorous stirring. The solid was filtered and washed by water, and then dissolved in EtOAc and dried over sodium sulfate. After filtration, the solution was concentrated with silica gel and purified by flash column chromatography (SiO2: dichloromethane/EtOAc 0 to 50%) to afford the target compound I-16 as a pale yellow solid (1.20 g, 89%). 1H NMR (300 MHz, DMSO-d6) δ 12.12 (s, 1H), 7.95 (d, J=7.9 Hz, 1H), 7.74 (s, 1H), 7.21 (d, J=10.4 Hz, 1H), 6.94 (d, J=7.9 Hz, 1H), 6.92 (d, J=7.4 Hz, 1H), 5.94 (d, J=8.2 Hz, 1H), 4.69-4.62 (m, 1H), 3.58 (s, 3H), 1.49 (d, J=6.6 Hz, 3H); LCMS (Method 3): Rt 5.00 min, m/z 373.1, 375.1 [M+H]+.
-
-
- A mixture of 6-bromo-3-chloropyrazin-2(1H)-one (2 g, 9.55 mmol) and potassium carbonate (2.77 g, 20.04 mmol) in a 200 mL round bottom flask was treated with DMF (25 ml) and stirred 15 minutes. MeI (0.69 ml, 11.04 mmol) was added and the mixture was stirred at room temperature for 45 minutes. The solvent was evaporated under reduced pressure. The residue was mixed with water (75 mL) and extracted with DCM (2×75 mL). The combined organic extracts were dried (MgSO4), filtered, treated with silica gel, and evaporated under reduced pressure, then evaporated further at 60° C. under high vacuum. The material was chromatographed by Biotage MPLC (silica gel, 0 to 35% EtOAc in hexanes), with isocratic elution at 16% EtOAc and 30% EtOAc while peaks of the desired mass came off. The peak that came off with 30% EtOAc provided 6-bromo-3-chloro-1-methylpyrazin-2(1H)-one (1.30 g, 5.82 mmol, 61% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 7.50 (s, 1H), 3.63 (s, 3H). LCMS (Method 1): Rt 1.44 min., m/z 222.9, 224.9 [M+H]+.
-
- A mixture of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (200 mg, 0.772 mmol) and 6-bromo-3-chloro-1-methylpyrazin-2(1H)-one (189.2 mg, 0.847 mmol) in DMSO (5 ml) was treated with DIEA (400 μL, 2.290 mmol) and stirred at 110° C. five hours. The sample was mixed with water (75 mL) and extracted with DCM (2×50 mL). The combined organic layers were dried (Na2SO4) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The sample was chromatographed by Biotage MPLC (25 g silica gel column, 0 to 100% EtOAc in hexanes, with isocratic elution when peaks came off) to provide (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloro quinolin-2(1H)-one (32.9 mg, 0.080 mmol, 10% yield) as an orange solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.99 (s, 1H), 7.70-7.75 (m, 2H), 7.56 (d, J=7.92 Hz, 1H), 7.46-7.52 (m, 1H), 7.30 (d, J=8.79 Hz, 1H), 6.88-6.96 (m, 1H), 5.02-5.17 (m, 1H), 3.50-3.60 (m, 3H), 1.44 (d, J=6.74 Hz, 3H). LCMS (Method 1): Rt 2.55 min., m/z 410.8 [M+H]+.
-
- A mixture of (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one (31.0 mg, 0.076 mmol), Pd2(dba)3 (7.4 mg, 8.08 μmol), 1,1′-bis(diphenylphosphino)ferrocene (8.7 mg, 0.016 mmol), and dicyanozinc (18.1 mg, 0.154 mmol) was placed under nitrogen in a 2-dram vial. DMF (1.4 ml) was added by syringe. The atmosphere was evacuated and replaced with nitrogen three times. The mixture was stirred at room temperature overnight. LCMS indicated the reaction had gone cleanly to completion. The solvent was evaporated under reduced pressure. The residue was partitioned between water (15 mL) and DCM (2×15 mL). The combined organic extracts were dried (Na2SO4) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (0 to 65% EtOAc in hexanes, with isocratic elution when peaks came off) to provide the title compound I-17 (20.1 mg, 0.055 mmol, 72.0% yield, HPLC purity 96.5% at 220 nm) as an orange solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.03 (s, 1H), 8.59 (d, J=8.50 Hz, 1H), 7.77 (s, 1H), 7.72 (d, J=2.35 Hz, 1H), 7.47-7.55 (m, 2H), 7.31 (d, J=8.79 Hz, 1H), 5.18-5.31 (m, 1H), 3.48 (s, 3H), 1.48 (d, J=6.74 Hz, 3H). LCMS (Method 4): Rt 1.25 min., m/z 356.1 [M+H]+.
-
- A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (58 mg, 0.38 mmol), (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride II-7 (100 mg, 0.35 mmol) and N,N-diisopropylethylamine (180 μL, 1.04 mmol) in n-BuOH (3 mL) was heated to 110° C. in a sealed tube under N2 and stirred overnight. The mixture was then concentrated under reduced pressure and the residue was purified on ISCO (20 g silica gel column, EtOAc/hexanes 0˜100%). The off-white solid obtained was triturated with EtOAc/hexanes, filtered, dissolved in hot MeCN/H2O (10 mL/10 mL) and then lyophilized to afford the title compound I-20 as a white solid (78 mg, 58%). 1H NMR (300 MHz, DMSO-d6) δ: 11.90 (s, 1H), 7.74 (s, 1H), 7.68 (s, 1H), 6.98 (d, J=7.7 Hz, 1H), 6.95 (s, 1H), 6.90 (d, J=7.9 Hz, 1H), 5.95 (d, J=7.9 Hz, 1H), 4.65 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 1.48 (d, J=6.9 Hz, 3H). LCMS (Method 3): Rt 4.98 min, m/z 385 [M+H]+.
-
- A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (35.2 mg, 0.231 mmol) and 3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride II-14 (80 mg, 0.210 mmol) II-8 was treated with DMSO (1.5 ml) and DIEA (111 μL, 0.636 mmol). The solution was stirred at 110° C. for five hours. The sample was mixed with water (20 mL) and extracted with DCM (2×15 mL). The extracts were washed with water (2×20 mL), dried (Na2SO4) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 3.4% MeOH in hexanes. The material thus obtained was dissolved in MeCN (2 mL), treated with water (1 mL), frozen on a dry ice/acetone bath, and lyopholized to provide the title compound (I-26) (32.7 mg, 0.069 mmol, 33% yield,
HPLC purity 100% at 220 nm) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.75 (s, 1H), 8.55-8.62 (m, 1H), 7.80 (dd, J=7.50, 7.50 Hz, 1H), 7.74 (s, 1H), 7.64 (s, 1H), 7.39 (d, J=7.62 Hz, 1H), 7.32 (dd, J=7.48, 4.84 Hz, 1H), 6.96 (d, J=7.62 Hz, 1H), 6.82-6.89 (m, 2H), 5.93 (d, J=7.92 Hz, 1H), 5.50 (q, J=6.16 Hz, 1H), 4.61 (s, 1H), 3.57 (s, 3H), 1.66 (d, J=6.16 Hz, 3H), 1.44 (d, J=6.74 Hz, 3H). LCMS (Method 1): Rt 2.61 min., m/z 475.9 [M+H]+. -
- A solution of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (18.3 mg, 0.120 mmol) and (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride II-15 (35 mg, 0.106 mmol) was treated with DMSO (0.8 ml) and DIEA (57 μL, 0.326 mmol). The solution was stirred at 110° C. for 3.5 hours. The sample was mixed with water (20 mL) and extracted with DCM (2×10 mL). The combined extracts were washed with water (2×20 mL), dried (Na2SO4) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 70% EtOAc in hexanes. The material thus obtained was dissolved in MeCN (0.8 mL), treated with water (0.4 mL), frozen on a dry ice/acetone bath, and lyopholized to provide the title compound (I-27) (23.9 mg, 0.056 mmol, 52.9% yield, HPLC purity >99% at 220 nm) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.83 (s, 1H), 7.73 (s, 1H), 7.67 (s, 1H), 6.97 (d, J=7.92 Hz, 1H), 6.92 (s, 1H), 6.89 (d, J=7.92 Hz, 1H), 5.95 (d, J=7.92 Hz, 1H), 4.61-4.70 (m, 1H), 3.92 (d, J=6.74 Hz, 2H), 3.58 (s, 3H), 1.48 (d, J=6.74 Hz, 3H), 1.21-1.33 (m, 1H), 0.56-0.65 (m, 2H), 0.34-0.44 (m, 2H). LCMS (Method 1): Rt 2.61 min., m/z 424.9 [M+H]+.
-
- A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (26.7 mg, 0.176 mmol) and 3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride II-16 (59.7 mg, 0.157 mmol) was treated with DMSO (1 ml) and DIEA (84 μL, 0.481 mmol). The solution was stirred at 110° C. eight hours. LCMS indicated the reaction had gone to completion. The sample was mixed with water (15 mL) and extracted with DCM (3×10 mL). The extracts were dried (Na2SO4), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 75% in EtOAc in hexanes) to provide the title compound I-28 (40.5 mg, 0.085 mmol, 54.2% yield,
HPLC purity 100% at 220 nm) as an off-white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.90 (s, 1H), 7.76 (s, 1H), 7.68 (s, 1H), 6.97 (d, J=7.62 Hz, 1H), 6.94 (s, 1H), 6.91 (d, J=7.62 Hz, 1H), 5.95 (d, J=7.62 Hz, 1H), 4.65 (quin, J=6.82 Hz, 1H), 4.12 (d, J=4.10 Hz, 2H), 3.58 (s, 3H), 2.52-2.80 (m, 5H), 1.48 (d, J=6.74 Hz, 3H). LCMS (Method 4): Rt 1.51 min., m/z 475.1 [M+H]+. -
- A mixture of (S)-3-(1-aminoethyl)-6-chloro-7-isopropoxyquinolin-2(1H)-one hydrochloride II-18 (128 mg, 0.4 mmol, 1 eq.), 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (67 mg, 0.44 mmol, 1.1 eq.) and DIPEA (148 mg, 1.2 mmol, 3 eq.) in 4 mL DMSO was heated at 130-135° C. for 80 minutes. The reaction mixture was then poured into water and the resulting solid collected and rinsed with water. Chromatography on 3.5 g silica gel using a DCM to DCM/EtOH (98/2) gradient followed by trituration with H2O/MeOH afforded I-29 (93 mg, 56%) as an off-white solid. 1H NMR (300 MHz, DMSO-d6) δ: 11.80 (broad s, 0.7H), 7.72 (s, 1H), 7.66 (s, 1H), 6.98 (s, 1H), 6.96 (s, 1H), 6.89 (d, J=7.41, 1H), 5.93 (d, J=7.68, 1H), 4.62 (m, 2H), 3.57 (s, 3H), 1.47 (d, J=7.41, 3H), 1.33 (d, J=6.03, 6H). LC/MS (Method 3), Rt 5.5 min, m/z 413 [M+H]+.
-
- A solution of (S)-3-(1-aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one hydrochloride II-17 (91.7 mg, 0.331 mmol) and 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (56.8 mg, 0.373 mmol) in DMSO (2.0 ml) was treated with DIEA (172 μl, 0.985 mmol) and stirred at 110° C. for four hours. The sample was added to water (30 mL), and the resulting precipitate was extracted with DCM (2×20 mL) and EtOAc (10 mL). The combined organic extracts were dried (Na2SO4), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 45% EtOAc in hexanes, with isocratic elution when peaks came off. Product fractions were combined, washed with water (2×30 mL), and evaporated under reduced pressure. The residue was dissolved in MeCN (4 mL) and water (2 mL), frozen (dry ice & acetone bath), and lyopholized to provide the title compound I-30 (62.0 mg, 0.166 mmol, 50.3% yield,
HPLC purity 100% at 220 nm) as a grayish-yellow solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.15 (s, 1H), 7.77 (s, 1H), 7.56-7.65 (m, 2H), 6.97 (d, J=7.92 Hz, 1H), 6.93 (d, J=7.62 Hz, 1H), 5.94 (d, J=7.92 Hz, 1H), 4.61-4.75 (m, 1H), 3.58 (s, 3H), 1.50 (d, J=6.74 Hz, 3H). LCMS (Method 1): Rt 2.39 min., m/z 373.0 [M+H]+. -
- The mixture of (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one II-11 (100 mg, 0.447 mmol), 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (82 mg, 0.537 mmol) and DIEA (0.234 ml, 1.341 mmol) in DMSO (1 ml) was heated to 110° C. for two hours. LC-MS showed the formation of the product. The reaction mixture was then cooled to room temperature, follow by addition of water and filtration. The biotage purification of the crude with 0-10% MeOH/DCM on a 25 g column afforded (S)-5-((1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile I-31 (53.8 mg, 33.8%). 1H NMR (300 MHz, DMSO-d6) δ ppm 12.52 (s, 1H), 8.49 (d, J=2.64 Hz, 1H), 8.24 (d, J=2.64 Hz, 1H), 7.72 (s, 1H), 6.71-7.07 (m, 2H), 5.91 (d, J=8.21 Hz, 1H), 4.52-4.85 (m, 1H), 3.46-3.74 (s, 3H), 1.48 (d, J=6.74 Hz, 3H). LCMS (Method 1): Rt 2.22 min, m/z 356.01 [M+H]+.
-
- To compound II-13 (59 mg, 0.175 mmol) in DMSO (5 mL) in a sealed tube was added 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-1 (35 mg, 0.23 mmol) and DIEA (0.5 mL). The reaction mixture was heated up to 110° C. and stirred for 3 h. The reaction mixture was then cooled to rt, diluted with water (30 mL) and extracted with EtOAc (50 mL×4). The combined organic layers were dried (Na2SO4), concentrated and purified by reverse C-18 ISCO with water (0.1% TFA) to CH3CN (0.1% TFA) to give the title compound (I-33) (22 mg, 34%) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ 12.71 (s, 1H), 7.82 (d, J=6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J=2.19 Hz, 1H), 7.59 (dd, J=9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J=8.79 Hz, 1H), 7.05 (d, J=7.71 Hz, 1H), 6.93 (d, J=7.98 Hz, 1H), 6.31 (d, J=7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J=6.60 Hz, 3H). LCMS (Method 3): Rt 5.30 min, m/z 357.1 [M+H]+.
-
TABLE 5 LCMS signal and NMR chemical shifts of each compound listed in Table 4. Cmpd no LCMSa 1H NMR (300 MHz) δ ppm Chemical Name I-13 m/z: 355.02 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-(6-chloro-2-oxo-1,2- (M + H)+ 12.07 (s, 1 H), 7.71-7.76 (m, 2 H), 7.51 dihydroquinolin-3- Rt (min): 1.22 (dd, J = 8.79, 2.35 Hz, 1 H), 7.31 (d, J = 8.79 yl)ethyl]amino}-1-methyl-6- Hz, 1 H), 6.97 (d, J = 7.92 Hz, 1 H), 6.93 (d, oxo-1,6-dihydropyridine-2- J = 7.92 Hz, 1 H), 5.95 (d, J = 7.92 Hz, 1 H), carbonitrile 4.62-4.75 (m, 1 H), 3.58 (s, 3 H), 1.50 (d, J = 6.74 Hz, 3 H). I-14 m/z: 341.19 1H NMR (300 MHz, DMSO-d6) δ ppm 5-{[(1S)-1-(6-chloro-2-oxo-1,2- (M + H)+ 12.03 (s, 1 H), 7.72 (s, 2 H), 7.47 (m, 1 H), dihydroquinolin-3- Rt (min): 1.06 7.28(m, 1H), 6.84 (m, 1 H), 6.68(m, 1H), yl)ethyl]amino}-6-oxo-1,6- 5.93(m, 1H), 4.66(m, 1H), 1.45(d, dihydropyridine-2-carbonitrile J = 6.74 Hz, 3H) I-15 m/z: 355.17 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1R)-1-(6-chloro-2-oxo-1,2- (M + H)+ 12.07 (s, 1 H), 7.75 (s, 1 H), 7.74 (d, dihydroquinolin-3- Rt (min): 1.22 J = 2.35 Hz, 1 H), 7.51 (dd, J = 8.79, 2.35 yl)ethyl]amino}-1-methyl-6- Hz, 1 H), 7.31 (d, J = 8.79 Hz, 1 H), 6.97 (d, oxo-1,6-dihydropyridine-2- J = 7.92 Hz, 1 H), 6.93 (d, J = 7.62 Hz, 1 H), carbonitrile 5.95 (d, J = 7.92 Hz, 1 H), 4.68 (quin, J = 6.89 Hz, 1 H), 3.58 (s, 3 H), 1.50 (d, J = 6.74 Hz, 3 H). I-16 m/z: 373.09 5-{[(1S)-1-(6-chloro-7-fluoro-2- (M + H)+ oxo-1,2-dihydroquinolin-3- Rt (min): 1.35 yl)ethyl]amino}-1-methyl-6- oxo-1,6-dihydropyridine-2- carbonitrile I-17 m/z: 356.07 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-(6-chloro-2-oxo-1,2- (M + H)+ 12.03 (s, 1 H), 8.59 (d, J = 8.50 Hz, 1 H), dihydroquinolin-3- Rt (min): 1.25 7.77 (s, 1 H), 7.72 (d, J = 2.35 Hz, 1 H), yl)ethyl]amino}-1-methyl-6- 7.47-7.55 (m, 2 H), 7.31 (d, J = 8.79 Hz, 1 oxo-1,6-dihydropyrazine-2- H), 5.18-5.31 (m, 1 H), 3.48 (s, 3 H), 1.48 carbonitrile (d, J = 6.74 Hz, 3 H). I-18 m/z: 373.09 5-{[(1R)-1-(6-chloro-7-fluoro-2- (M + H)+ oxo-1,2-dihydroquinolin-3- Rt (min): 1.35 yl)ethyl]amino}-1-methyl-6- oxo-1,6-dihydropyridine-2- carbonitrile I-19 m/z: 373.04 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[1-(6-chloro-7-fluoro-2-oxo- (M + H)+ 12.12 (s, 1 H), 7.95 (d, J = 7.92 Hz, 1 H), 1,2-dihydroquinolin-3- Rt (min): 1.28 7.74 (s, 1 H), 7.21 (d, J = 10.26 Hz, 1 H), yl)ethyl]amino}-1-methyl-6- 6.97 (d, J = 7.62 Hz, 1 H), 6.91 (d, J = 7.62 oxo-1,6-dihydropyridine-2- Hz, 1 H), 5.93 (d, J = 7.92 Hz, 1 H), 4.65 carbonitrile (quin, J = 6.90 Hz, 1 H), 3.58 (s, 3 H), 1.49 (d, J = 6.74 Hz, 3 H). I-20 m/z: 385.12 5-{[(1S)-1-(6-chloro-7- (M + H)+ methoxy-2-oxo-1,2- Rt (min): 1.26 dihydroquinolin-3- yl)ethyl]amino}-1-methyl-6- oxo-1,6-dihydropyridine-2- carbonitrile I-21 m/z: 385.14 5-{[(1R)-1-(6-chloro-7- (M + H)+ methoxy-2-oxo-1,2- Rt (min): 1.26 dihydroquinolin-3- yl)ethyl]amino}-1-methyl-6- oxo-1,6-dihydropyridine-2- carbonitrile I-22 m/z: 385.06 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[1-(6-chloro-7-methoxy-2- (M + H)+ 11.92 (s, 1 H), 7.74 (s, 1 H), 7.68 (s, 1 H), oxo-1,2-dihydroquinolin-3- Rt (min): 1.23 6.97 (d, J = 7.92 Hz, 1 H), 6.95 (s, 1 H), yl)ethyl]amino}-1-methyl-6- 6.90 (d, J = 7.62 Hz, 1 H), 5.95 (d, J = 7.92 oxo-1,6-dihydropyridine-2- Hz, 1 H), 4.65 (quin, J = 7.04 Hz, 1 H), 3.88 carbonitrile (s, 3 H), 3.57 (s, 3 H), 1.48 (d, J = 6.74 Hz, 3 H). I-23 m/z: 462.20 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-[6-chloro-2-oxo-7- (M + H)+ 11.89 (s, 1 H), 8.61 (d, J = 4.69 Hz, 1 H), (pyridin-2-ylmethoxy)-1,2- Rt (min): 1.61 7.88 (td, J = 7.70, 1.91 Hz, 1 H), 7.79 (s, 1 dihydroquinolin-3- H), 7.68 (s, 1 H), 7.54 (d, J = 7.92 Hz, 1 H), yl]ethyl]amino}-1-methyl-6- 7.38 (dd, J = 7.33, 4.98 Hz, 1 H), 7.03 (s, 1 oxo-1,6-dihydropyridine-2- H), 6.96 (d, J = 7.62 Hz, 1 H), 6.90 (d, carbonitrile J = 7.62 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.57-4.72 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.74 Hz, 3 H). I-24 m/z: 462.17 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1R)-1-[6-chloro-2-oxo-7- (M + H)+ 11.88 (s, 1 H), 8.61 (d, J = 4.40 Hz, 1 H), (pyridin-2-ylmethoxy)-1,2- Rt (min): 1.61 7.83-7.93 (m, 1 H), 7.79 (s, 1 H), 7.68 (s, dihydroquinolin-3- 1 H), 7.54 (d, J = 7.62 Hz, 1 H), 7.33-7.43 yl]ethyl]amino}-1-methyl-6- (m, 1 H), 7.03 (s, 1 H), 6.96 (d, J = 7.92 Hz, oxo-1,6-dihydropyridine-2- 1 H), 6.90 (br d, J = 7.33 Hz, 1 H), 5.94 (d, carbonitrile J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.57-4.71 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.74 Hz, 3 H). I-25 m/z: 462.08 1H NMR (300 MHz, DMSO-d6): δ ppm 5-({1-[6-chloro-2-oxo-7- (M + H)+ 11.89 (s, 1 H), 8.58-8.63 (m, 1 H), 7.88 (pyridin-2-ylmethoxy)-1,2- Rt (min): 1.2925 (ddd, J = 7.62, 7.62, 1.76 Hz, 1 H), 7.79 (s, dihydroquinolin-3- 1 H), 7.68 (s, 1 H), 7.54 (d, J = 7.92 Hz, 1 yl]ethyl}amino)-1-methyl-6- H), 7.38 (dd, J = 6.89, 5.42 Hz, 1 H), 7.03 oxo-1,6-dihydropyridine-2- (s, 1 H), 6.97 (d, J = 7.92 Hz, 1 H), 6.90 (d, carbonitrile J = 7.62 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.56-4.71 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.45 Hz, 3 H). I-26 m/z: 476.24 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-{6-chloro-2-oxo-7- (M + H)+ 11.75 (s, 1 H), 8.55-8.62 (m, 1 H), 7.80 [(1R)-1-(pyridin-2-yl)ethoxy]- Rt (min): 1.4 (dd, J = 7.50, 7.50 Hz, 1 H), 7.74 (s, 1 H), 1,2-dihydroquinolin-3- 7.64 (s, 1 H), 7.39 (d, J = 7.62 Hz, 1 H), yl}ethyl]amino}-1-methyl-6- 7.32 (dd, J = 7.48, 4.84 Hz, 1 H), 6.96 (d, oxo-1,6-dihydropyridine-2- J = 7.62 Hz, 1 H), 6.82-6.89 (m, 2 H), 5.93 carbonitrile (d, J = 7.92 Hz, 1 H), 5.50 (q, J = 6.16 Hz, 1 H), 4.61 (s, 1 H), 3.57 (s, 3 H), 1.66 (d, J = 6.16 Hz, 3 H), 1.44 (d, J = 6.74 Hz, 3 H). I-27 m/z: 425.55 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-[6-chloro-7- (M + H)+ 11.83 (s, 1 H), 7.73 (s, 1 H), 7.67 (s, 1 H), (cyclopropylmethoxy)-2-oxo- Rt (min): 1.48 6.97 (d, J = 7.92 Hz, 1 H), 6.92 (s, 1 H), 1,2-dihydroquinolin-3- 6.89 (d, J = 7.92 Hz, 1 H), 5.95 (d, J = 7.92 yl]ethyl]amino}-1-methyl-6- Hz, 1 H), 4.61-4.70 (m, 1 H), 3.92 (d, oxo-1,6-dihydropyridine-2- J = 6.74 Hz, 2 H), 3.58 (s, 3 H), 1.48 (d, carbonitrile J = 6.74 Hz, 3 H), 1.21-1.33 (m, 1 H), 0.56- 0.65 (m, 2 H), 0.34-0.44 (m, 2 H). I-28 m/z: 475.05 1H NMR (300 MHz, DMSO-d6): δ ppm 5-[(1-{6-chloro-7-[(3,3- (M + H)+ 11.90 (s, 1 H), 7.76 (s, 1 H), 7.68 (s, 1 H), difluorocyclobutyl)methoxy]-2- Rt (min): 1.51 6.97 (d, J = 7.62 Hz, 1 H), 6.94 (s, 1 H), oxo-1,2-dihydroquinolin-3- 6.91 (d, J = 7.62 Hz, 1 H), 5.95 (d, J = 7.62 yl}ethyl)amino]-1-methyl-6- Hz, 1 H), 4.65 (quin, J = 6.82 Hz, 1 H), 4.12 oxo-1,6-dihydropyridine-2- (d, J = 4.10 Hz, 2 H), 3.58 (s, 3 H), 2.52- carbonitrile 2.80 (m, 5 H), 1.48 (d, J = 6.74 Hz, 3 H). I-29 1H NMR(300 MHz, DMSO-d6) δ: 11.80 5-{[(1S)-1-[6-chloro-2-oxo-7- (broad s, 0.7H), 7.72 (s, 1H), 7.66 (s, 1H), (propan-2-yloxy)-1,2- 6.98 (s, 1H), 6.96 (s, 1H), 6.89 (d, J = dihydroquinolin-3- 7.41, 1H), 5.93 (d, J = 7.68, 1H), 4.62 (m, yl]ethyl]amino}-1-methyl-6- 2H), 3.57 (s, 3H), 1.47 (d, J = 7.41, 3H), oxo-1,6-dihydropyridine-2- 1.33 (d, J = 6.03, 6H) carbonitrile I-30 m/z: 373.22 1H NMR (300 MHz, DMSO-d6): δ ppm 5-{[(1S)-1-(6-chloro-8-fluoro-2- (M + H)+ 12.15 (s, 1 H), 7.77 (s, 1 H), 7.56-7.65 oxo-1,2-dihydroquinolin-3- Rt (min): 1.27 (m, 2 H), 6.97 (d, J = 7.92 Hz, 1 H), 6.93 (d, yl)ethyl]amino}-1-methyl-6- J = 7.62 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), oxo-1,6-dihydropyridine-2- 4.61-4.75 (m, 1 H), 3.58 (s, 3 H), 1.50 (d, carbonitrile J = 6.74 Hz, 3 H) I-31 m/z: 356.20 1H NMR (300 MHz, DMSO-d6) δ ppm 5-{[(1S)-1-(6-chloro-2-oxo-1,2- (M + H)+ 12.52 (s, 1 H), 8.49 (d, J = 2.64 Hz, 1 H), dihydro-1,8-naphthyridin-3- Rt (min): 1.09 8.24 (d, J = 2.64 Hz, 1 H), 7.72 (s, 1 H), yl)ethyl]amino}-1-methyl-6- 6.71-7.07 (m, 2 H), 5.91 (d, J = 8.21 Hz, 1 oxo-1,6-dihydropyridine-2- H), 4.52-4.85 (m, 1 H), 3.46-3.74 (s, 3 carbonitrile H), 1.48 (d, J = 6.74 Hz, 3 H). I-32 m/z: 356.15 1H NMR (300 MHz, DMSO-d6): δ 12.71 5-{[(1R)-1-(7-chloro-3-oxo-3,4- (M + H)+ (s, 1H), 7.82 (d, J = 6.57 Hz, 1H), 7.90 (s, dihydroquinoxalin-2- Rt (min): 1.28 1H), 7.81 (s, 1 H), 7.59 (d, J = 2.19 Hz, yl)ethyl]amino}-1-methyl-6- 1H), 7.59 (dd, J = 9.06 Hz, 2.19 Hz, 1H), oxo-1,6-dihydropyridine-2- 7.32 (d, J = 8.79 Hz, 1H), 7.05 (d, J = carbonitrile 7.71 Hz, 1H), 6.93 (d, J = 7.98 Hz, 1H), 6.31 (d, J = 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J = 6.60 Hz, 3H). I-33 m/z: 356.20 1H NMR (300 MHz, DMSO-d6): δ 12.71 5-{[(1S)-1-(7-chloro-3-oxo-3,4- (M + H)+ (s, 1H), 7.82 (d, J = 6.57 Hz, 1H), 7.90 (s, dihydroquinoxalin-2- Rt (min): 1.28 1H), 7.81 (s, 1 H), 7.59 (d, J = 2.19 Hz, yl)ethyl]amino}-1-methyl-6- 1H), 7.59 (dd, J = 9.06 Hz, 2.19 Hz, 1H), oxo-1,6-dihydropyridine-2- 7.32 (d, J = 8.79 Hz, 1H), 7.05 (d, J = carbonitrile 7.71 Hz, 1H), 6.93 (d, J = 7.98 Hz, 1H), 6.31 (d, J = 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J = 6.60 Hz, 3H). aLCMS data are determined by Method 4. - Assays were performed in a 384-well black plate. An aliquot of 250 nL of compound was incubated with 10 μL of 30 nM IDH1-R132H or 10 nM IDH1-R132C recombinant protein in assay buffer (50 mM Tris pH=7.5, 150 mM NaCl, 5 mM MgCl2, 0.1% (w/v) Bovine Serum Albumin, and 0.01% Triton X-100) in each well at 25° C. for 15 minutes. After the plate was centrifuged briefly, an aliquot of 10 μL of 2 mM α-ketoglutarate and 20 μM NADPH solution prepared in assay buffer was then added to each well and the reaction was maintained at 25° C. for 45 minutes. An aliquot of 10 μL of diaphorase solution (0.15 U/mL diaphorase and 30 μM Resazurin in assay buffer) was added to each well. The plate was maintained at 25° C. for 15 minutes and then read on a plate reader with excitation and emission wavelengths at 535 nm and 590 nm, respectively. The IC50 of a given compound was calculated by fitting the dose response curve of inhibition of NADPH consumption at a given concentration with the four parameter logistic equation.
- HCT116 isogenic IDH1-R132H and IDH1-R132C mutant cells were cultured in growth media (McCoy's 5 A, 10% fetal bovine serum, 1× antibiotic-antimycotic solution and 0.3 mg/mL G418) in 5% CO2 in an incubator at 37° C. To prepare the assay, cells were trypsinized and resuspended in assay media (McCoy's 5 A with no L-glutamine, 10% fetal bovine serum, 1× antibiotic-antimycotic solution and 0.3 mg/mL G418). An aliquot of 10,000 cells/100 μL was transferred to each well of a clear 96-well tissue culture plate. The cells were incubated in 5% CO2 at 37° C. in an incubator overnight to allow for proper cell attachment. An aliquot of 50 μL of compound containing assay media were then added to each well and the assay plate was kept in 5% CO2 at 37° C. in an incubator for 24 hours. The media was then removed from each well and 150 μL of a methanol/water mixture (80/20 v/v) was added to each well. The plates were kept at −80° C. freezer overnight to allow for complete cell lysis. An aliquot of 125 μL of extracted supernatant was analyzed by RapidFire high-throughout-mass spectrometry (Agilent) to determine the cellular 2-HG level. The IC50 of a given compound was calculated by fitting the dose response curve of cellular 2-HG inhibition at a given concentration with the four parameter logistic equation
- Table 6 below provides activity of each compound according to the legend that “++++” indicates an inhibition at a concentration <0.01 μM; “+++” indicates inhibition at a concentration between 0.01 μM and 0.1 μM of the disclosed compound; “++” indicates inhibition at a concentration from 0.1 μM to 1 μM of the disclosed compound; and “+” indicates inhibition at a concentration >1 μM for Enzyme IDH1R132H, HCT116 IDH1R132H, and HCT116 IDH1R132C.
- For Enzyme IDH1R132C, “++++” indicates an inhibition at a concentration <0.1 μM; “+++” indicates inhibition at a concentration between 0.1 μM and 1 μM of the disclosed compound; “++” indicates inhibition at a concentration from 1 μM to 10 μM of the disclosed compound; and “+” indicates inhibition at a concentration >10 μM.
-
TABLE 6 Results of the illustrative compounds of Formula I in IDH1-R132H, IDH1-R132C, IDH1-MS-HTC116- R132H, and IDH1-MS-HTC116-R132C assays. Enzyme Enzyme HCT116 HCT116 IDH1 IDH1 IDH1 IDH1 R132H R132C R132H R132C Cmpd no Range Range Range Range I-1 +++ I-2 ++ + I-3 ++ + I-4 +++ +++ I-5 ++ + I-6 ++ + I-7 + I-8 + I-9 ++ + I-10 + I-11 ++ + I-12 +++ + I-13 +++ +++ +++ +++ I-14 +++ +++ +++ ++ I-15 + ++ I-16 +++ +++ +++ ++ I-17 +++ +++ +++ ++ I-18 + + I-19 +++ +++ +++ +++ I-20 +++ ++++ ++++ +++ I-21 + + I-22 +++ ++++ ++++ +++ I-23 +++ ++++ ++++ ++++ I-24 + + I-25 +++ ++++ ++++ I-26 ++++ ++++ ++++ ++++ I-27 ++++ ++++ ++++ +++ I-28 +++ +++ +++ I-29 ++++ ++++ +++ +++ I-30 +++ +++ +++ ++ I-31 ++ ++ +++ + I-32 ++ ++ + + I-33 ++ ++ ++ + - Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.
Claims (34)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/452,256 US20170174658A1 (en) | 2014-09-19 | 2017-03-07 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US15/964,844 US10414752B2 (en) | 2014-09-19 | 2018-04-27 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/290,240 US10550098B2 (en) | 2014-09-19 | 2019-03-01 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/712,951 US10889567B2 (en) | 2014-09-19 | 2019-12-12 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/101,018 US11498913B2 (en) | 2014-09-19 | 2020-11-23 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/984,069 US20230125739A1 (en) | 2014-09-19 | 2022-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US18/506,060 US20240150319A1 (en) | 2014-09-19 | 2023-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462053006P | 2014-09-19 | 2014-09-19 | |
US201562128089P | 2015-03-04 | 2015-03-04 | |
US201562150812P | 2015-04-21 | 2015-04-21 | |
US14/858,167 US9834539B2 (en) | 2014-09-19 | 2015-09-18 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US15/452,256 US20170174658A1 (en) | 2014-09-19 | 2017-03-07 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/858,167 Continuation US9834539B2 (en) | 2014-09-19 | 2015-09-18 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/964,844 Continuation US10414752B2 (en) | 2014-09-19 | 2018-04-27 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US15/964,844 Division US10414752B2 (en) | 2014-09-19 | 2018-04-27 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170174658A1 true US20170174658A1 (en) | 2017-06-22 |
Family
ID=54291606
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/858,167 Active US9834539B2 (en) | 2014-09-19 | 2015-09-18 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US15/452,256 Abandoned US20170174658A1 (en) | 2014-09-19 | 2017-03-07 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US15/964,844 Active US10414752B2 (en) | 2014-09-19 | 2018-04-27 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/290,240 Active US10550098B2 (en) | 2014-09-19 | 2019-03-01 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/712,951 Active US10889567B2 (en) | 2014-09-19 | 2019-12-12 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/101,018 Active US11498913B2 (en) | 2014-09-19 | 2020-11-23 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/984,069 Abandoned US20230125739A1 (en) | 2014-09-19 | 2022-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US18/506,060 Pending US20240150319A1 (en) | 2014-09-19 | 2023-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/858,167 Active US9834539B2 (en) | 2014-09-19 | 2015-09-18 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/964,844 Active US10414752B2 (en) | 2014-09-19 | 2018-04-27 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/290,240 Active US10550098B2 (en) | 2014-09-19 | 2019-03-01 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US16/712,951 Active US10889567B2 (en) | 2014-09-19 | 2019-12-12 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/101,018 Active US11498913B2 (en) | 2014-09-19 | 2020-11-23 | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US17/984,069 Abandoned US20230125739A1 (en) | 2014-09-19 | 2022-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US18/506,060 Pending US20240150319A1 (en) | 2014-09-19 | 2023-11-09 | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Country Status (36)
Country | Link |
---|---|
US (8) | US9834539B2 (en) |
EP (4) | EP4257131A3 (en) |
JP (1) | JP6648115B2 (en) |
KR (1) | KR102209667B1 (en) |
CN (3) | CN107001328B (en) |
AU (3) | AU2015317329B2 (en) |
BR (1) | BR112017005238B1 (en) |
CA (1) | CA2961817C (en) |
CL (1) | CL2017000658A1 (en) |
CO (1) | CO2017003241A2 (en) |
CY (2) | CY1121149T1 (en) |
DK (2) | DK3194376T3 (en) |
EA (1) | EA034336B1 (en) |
EC (1) | ECSP17022933A (en) |
ES (3) | ES2704897T3 (en) |
FI (1) | FI3733662T3 (en) |
HR (1) | HRP20200666T1 (en) |
HU (2) | HUE041460T2 (en) |
IL (3) | IL292608B2 (en) |
LT (2) | LT3194376T (en) |
MA (2) | MA40481A (en) |
ME (1) | ME03776B (en) |
MX (2) | MX2017003404A (en) |
MY (2) | MY176250A (en) |
NZ (1) | NZ730373A (en) |
PE (1) | PE20171056A1 (en) |
PH (1) | PH12017500517A1 (en) |
PL (3) | PL3733662T3 (en) |
PT (3) | PT3447050T (en) |
RS (2) | RS60140B1 (en) |
SA (1) | SA517381129B1 (en) |
SG (1) | SG11201702194SA (en) |
SI (2) | SI3447050T1 (en) |
TW (1) | TWI686390B (en) |
WO (1) | WO2016044789A1 (en) |
ZA (3) | ZA201702127B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170044620A1 (en) * | 2009-10-21 | 2017-02-16 | Agios Pharmaceuticals, Inc. | Methods and compositions for cell-proliferation-related disorders |
US10005734B2 (en) | 2014-09-19 | 2018-06-26 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10253015B2 (en) | 2014-09-19 | 2019-04-09 | Forma Tm2, Inc. | Pyridinyl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10280150B2 (en) | 2014-09-19 | 2019-05-07 | Forma Tm2, Inc. | Quinolinone pyrimidines compositions as mutant-isocitrate dehydrogenase inhibitors |
US10294206B2 (en) | 2015-04-21 | 2019-05-21 | Forma Tm2, Inc. | Fused-bicyclic aryl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10407419B2 (en) | 2015-04-21 | 2019-09-10 | Forma Therapeutics, Inc. | Quinolinone five-membered heterocyclic compounds as mutant-isocitrate dehydrogenase inhibitors |
US10414752B2 (en) | 2014-09-19 | 2019-09-17 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10532047B2 (en) | 2018-05-16 | 2020-01-14 | Forma Therapeutics, Inc. | Solid forms of ((S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile |
US10610125B2 (en) | 2009-03-13 | 2020-04-07 | Agios Pharmaceuticals, Inc. | Methods and compositions for cell-proliferation-related disorders |
US11013733B2 (en) | 2018-05-16 | 2021-05-25 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mlDH-1) |
US11013734B2 (en) | 2018-05-16 | 2021-05-25 | Forma Therapeutics, Inc. | Treating patients harboring an isocitrate dehydrogenase-1 (IDH-1) mutation |
US11311527B2 (en) | 2018-05-16 | 2022-04-26 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mIDH-1) |
US11376246B2 (en) | 2018-05-16 | 2022-07-05 | Forma Therapeutics, Inc. | Inhibiting mutant IDH-1 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RS65894B1 (en) | 2014-02-06 | 2024-09-30 | Nxera Pharma Uk Ltd | Bicyclic aza compounds as muscarinic receptor agonists |
WO2016042084A1 (en) | 2014-09-19 | 2016-03-24 | Bayer Pharma Aktiengesellschaft | Benzyl substituted indazoles as bub1 inhibitors |
ES2905564T3 (en) | 2014-12-22 | 2022-04-11 | Us Health | Mutant IDH1 inhibitors useful in treating cancer |
WO2018202524A1 (en) | 2017-05-04 | 2018-11-08 | Bayer Cropscience Aktiengesellschaft | 2-{[2-(phenyloxymethyl)pyridin-5-yl]oxy}-ethanamin-derivatives and related compounds as pest-control agents e.g. for the protection of plants |
WO2020232381A1 (en) | 2019-05-16 | 2020-11-19 | Forma Therapeutics, Inc. | INHIBITING MUTANT ISOCITRATE DEHYDROGENASE 1 (mIDH-1) |
SI3720442T1 (en) | 2018-05-16 | 2023-06-30 | Forma Therapeutics, Inc. | Inhibiting mutant idh-1 |
TW202104207A (en) * | 2019-04-17 | 2021-02-01 | 美商健生生物科技公司 | Dihydroorotate dehydrogenase inhibitors |
US11566013B1 (en) * | 2019-11-20 | 2023-01-31 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mIDH1) |
CN112321571B (en) * | 2020-10-27 | 2022-06-03 | 浙江工业大学 | 2-furan-quinoline-4-formamide compound and application thereof |
CN112341389B (en) * | 2020-10-27 | 2022-07-29 | 浙江工业大学 | Nitrogen-containing aromatic heterocycle substituted quinoline formamide derivative and application thereof |
CN115850240B (en) * | 2022-12-28 | 2023-09-19 | 北京康立生医药技术开发有限公司 | Synthesis method of medicine ao Lu Taxi Ni for treating acute myelogenous leukemia |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL99731A0 (en) | 1990-10-18 | 1992-08-18 | Merck & Co Inc | Hydroxylated pyridine derivatives,their preparation and pharmaceutical compositions containing them |
US5262564A (en) | 1992-10-30 | 1993-11-16 | Octamer, Inc. | Sulfinic acid adducts of organo nitroso compounds useful as retroviral inactivating agents anti-retroviral agents and anti-tumor agents |
US20030105124A1 (en) | 2000-04-27 | 2003-06-05 | Susan Beth Sobolov-Jaynes | Substituted benzolactam compounds |
JP2005532368A (en) | 2002-06-12 | 2005-10-27 | アボット・ラボラトリーズ | Melanin-concentrating hormone receptor antagonist |
JPWO2004043936A1 (en) | 2002-11-14 | 2006-03-09 | 協和醗酵工業株式会社 | PLK inhibitor |
RU2284325C2 (en) | 2003-12-17 | 2006-09-27 | Общество С Ограниченной Ответственностью "Асинэкс Медхим" | Derivatives of phenyl-3-aminomethylquinolone-2 as inhibitors of no-synthase, method for their preparing, biologically active compounds and pharmaceutical composition based on thereof |
EP1749827A4 (en) | 2004-03-30 | 2010-04-21 | Kyowa Hakko Kirin Co Ltd | Anti-tumor agent |
WO2006054912A1 (en) * | 2004-11-18 | 2006-05-26 | Obchestvo S Ogranichennoy Otvetstvennost'u 'asineks Medhim' | Aryl(hetaryl)-3-aminomethyl-quinilone-2 derivatives in the form of no-synthetase i and cyclooxygenase-2 nhibitors, methods for the production thereof and compositions based thereon |
TW200803855A (en) | 2006-02-24 | 2008-01-16 | Kalypsys Inc | Quinolones useful as inducible nitric oxide synthase inhibitors |
US20100056516A1 (en) * | 2006-07-17 | 2010-03-04 | Williams Peter D | 1-hydroxy naphthyridine compounds as anti-hiv agents |
JP2010043004A (en) | 2006-12-06 | 2010-02-25 | Dainippon Sumitomo Pharma Co Ltd | New bicyclic heterocyclic compound |
PT2152676E (en) | 2007-04-30 | 2013-06-25 | Prometic Biosciences Inc | "triazine derivatives, compositions containing such derivatives, and methods of treatment of cancer and autoimmune diseases using such derivatives" |
AU2010259002B2 (en) | 2009-06-08 | 2014-03-20 | Nantbio, Inc. | Triazine derivatives and their therapeutical applications |
JP5967827B2 (en) * | 2009-12-09 | 2016-08-10 | アジオス ファーマシューティカルズ, インコーポレイテッド | Therapeutically active compounds for the treatment of cancer characterized by having an IDH variant |
WO2012006104A2 (en) | 2010-06-28 | 2012-01-12 | Academia Sinica, Taiwan | Compounds and methods for treating tuberculosis infection |
CN102558049B (en) | 2010-12-17 | 2015-02-04 | 中国科学院上海药物研究所 | Dicoumarol compound, as well as preparation method and application thereof |
US20120184562A1 (en) | 2011-01-19 | 2012-07-19 | Kin-Chun Luk | 1,6- and 1,8-naphthyridines |
US20120184548A1 (en) | 2011-01-19 | 2012-07-19 | Romyr Dominique | Carboxylic acid aryl amides |
WO2012129562A2 (en) | 2011-03-24 | 2012-09-27 | The Scripps Research Institute | Compounds and methods for inducing chondrogenesis |
CN102827170A (en) | 2011-06-17 | 2012-12-19 | 安吉奥斯医药品有限公司 | Active treatment compositions and use method thereof |
CN103814020B (en) * | 2011-06-17 | 2017-07-14 | 安吉奥斯医药品有限公司 | Therapeutic activity composition and their application method |
EP2771337B1 (en) | 2011-09-27 | 2017-08-02 | Novartis AG | 3-(pyrimidin-4-yl)-oxazolidin-2-ones as inhibitors of mutant idh |
JP6473330B2 (en) | 2011-12-21 | 2019-02-20 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ コロラド,ア ボディ コーポレイト | Anticancer compounds targeting RalGTPase and methods of use thereof |
SI2800743T1 (en) | 2012-01-06 | 2018-08-31 | Agios Pharmaceuticals, Inc. | Therapeutically active compounds and their methods of use |
EP2970242B1 (en) * | 2013-03-14 | 2017-09-06 | Novartis AG | 3-pyrimidin-4-yl-oxazolidin-2-ones as inhibitors of mutant idh |
US10478445B2 (en) | 2013-07-03 | 2019-11-19 | Georgetown University | Boronic acid derivatives of resveratrol for activating deacetylase enzymes |
SG11201605810WA (en) | 2014-02-11 | 2016-08-30 | Bayer Pharma AG | Benzimidazol-2-amines as midh1 inhibitors |
US10005734B2 (en) | 2014-09-19 | 2018-06-26 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
JP6751081B2 (en) | 2014-09-19 | 2020-09-02 | フォーマ セラピューティクス,インコーポレイテッド | Pyridinylquinolinone derivatives as mutant isocitrate dehydrogenase inhibitors |
EP4257131A3 (en) | 2014-09-19 | 2024-01-10 | Forma Therapeutics, Inc. | Pyridin-2(1h)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
MX2017003627A (en) | 2014-09-19 | 2018-01-24 | Forma Therapeutics Inc | Quinolinone pyrimidines compositions as mutant-isocitrate dehydrogenase inhibitors. |
ES2905564T3 (en) | 2014-12-22 | 2022-04-11 | Us Health | Mutant IDH1 inhibitors useful in treating cancer |
GB2533925A (en) | 2014-12-31 | 2016-07-13 | Univ Bath | Antimicrobial compounds, compositions and methods |
US10407419B2 (en) | 2015-04-21 | 2019-09-10 | Forma Therapeutics, Inc. | Quinolinone five-membered heterocyclic compounds as mutant-isocitrate dehydrogenase inhibitors |
US10294206B2 (en) | 2015-04-21 | 2019-05-21 | Forma Tm2, Inc. | Fused-bicyclic aryl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
WO2017019429A1 (en) | 2015-07-27 | 2017-02-02 | Eli Lilly And Company | 7-phenylethylamino-4h-pyrimido[4,5-d][1,3]oxazin-2-one compounds and theit use as mutant idh1 inhibitors |
ES2912909T3 (en) | 2016-02-26 | 2022-05-30 | Celgene Corp | Enasidenib for use in the treatment of relapsed or refractory acute myeloid leukemia |
ES2814290T3 (en) | 2016-06-06 | 2021-03-26 | Lilly Co Eli | Mutant IDH1 inhibitors |
EP3475276B1 (en) | 2016-06-22 | 2021-03-31 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Thiazole derivatives useful as mutant idh1 inhibitors for treating cancer |
CR20190252A (en) | 2016-12-16 | 2019-08-26 | Lilly Co Eli | 7-phenylethylamino-4h-pyrimido[4,5-d][1,3]oxazin-2-one compounds as mutant idh1 and idh2 inhibitors |
-
2015
- 2015-09-18 EP EP23176702.1A patent/EP4257131A3/en active Pending
- 2015-09-18 IL IL292608A patent/IL292608B2/en unknown
- 2015-09-18 PT PT181989690T patent/PT3447050T/en unknown
- 2015-09-18 BR BR112017005238-5A patent/BR112017005238B1/en active IP Right Grant
- 2015-09-18 RS RS20200418A patent/RS60140B1/en unknown
- 2015-09-18 MA MA040481A patent/MA40481A/en unknown
- 2015-09-18 PL PL20157755.8T patent/PL3733662T3/en unknown
- 2015-09-18 EP EP18198969.0A patent/EP3447050B1/en active Active
- 2015-09-18 ES ES15778433T patent/ES2704897T3/en active Active
- 2015-09-18 SG SG11201702194SA patent/SG11201702194SA/en unknown
- 2015-09-18 DK DK15778433.1T patent/DK3194376T3/en active
- 2015-09-18 EA EA201790657A patent/EA034336B1/en unknown
- 2015-09-18 KR KR1020177010585A patent/KR102209667B1/en active IP Right Grant
- 2015-09-18 LT LTEP15778433.1T patent/LT3194376T/en unknown
- 2015-09-18 PL PL15778433T patent/PL3194376T3/en unknown
- 2015-09-18 FI FIEP20157755.8T patent/FI3733662T3/en active
- 2015-09-18 ME MEP-2020-78A patent/ME03776B/en unknown
- 2015-09-18 JP JP2017515059A patent/JP6648115B2/en active Active
- 2015-09-18 HU HUE15778433A patent/HUE041460T2/en unknown
- 2015-09-18 CA CA2961817A patent/CA2961817C/en active Active
- 2015-09-18 WO PCT/US2015/051055 patent/WO2016044789A1/en active Application Filing
- 2015-09-18 SI SI201531117T patent/SI3447050T1/en unknown
- 2015-09-18 PL PL18198969T patent/PL3447050T3/en unknown
- 2015-09-18 MY MYPI2017700895A patent/MY176250A/en unknown
- 2015-09-18 SI SI201530537T patent/SI3194376T1/en unknown
- 2015-09-18 MX MX2017003404A patent/MX2017003404A/en active IP Right Grant
- 2015-09-18 CN CN201580050441.5A patent/CN107001328B/en active Active
- 2015-09-18 HU HUE20157755A patent/HUE062424T2/en unknown
- 2015-09-18 PE PE2017000471A patent/PE20171056A1/en unknown
- 2015-09-18 CN CN202010391529.6A patent/CN111909130B/en active Active
- 2015-09-18 PT PT15778433T patent/PT3194376T/en unknown
- 2015-09-18 ES ES20157755T patent/ES2953347T3/en active Active
- 2015-09-18 EP EP15778433.1A patent/EP3194376B1/en active Active
- 2015-09-18 DK DK18198969.0T patent/DK3447050T3/en active
- 2015-09-18 US US14/858,167 patent/US9834539B2/en active Active
- 2015-09-18 LT LTEP18198969.0T patent/LT3447050T/en unknown
- 2015-09-18 EP EP20157755.8A patent/EP3733662B1/en active Active
- 2015-09-18 AU AU2015317329A patent/AU2015317329B2/en active Active
- 2015-09-18 TW TW104131044A patent/TWI686390B/en active
- 2015-09-18 MY MYPI2020001463A patent/MY197533A/en unknown
- 2015-09-18 CN CN202311265288.0A patent/CN117695280A/en active Pending
- 2015-09-18 MA MA053352A patent/MA53352A/en unknown
- 2015-09-18 NZ NZ73037315A patent/NZ730373A/en unknown
- 2015-09-18 RS RS20181586A patent/RS58184B1/en unknown
- 2015-09-18 ES ES18198969T patent/ES2790640T3/en active Active
- 2015-09-18 PT PT201577558T patent/PT3733662T/en unknown
-
2017
- 2017-03-07 US US15/452,256 patent/US20170174658A1/en not_active Abandoned
- 2017-03-14 IL IL251163A patent/IL251163B/en active IP Right Grant
- 2017-03-15 MX MX2019013203A patent/MX2019013203A/en unknown
- 2017-03-17 PH PH12017500517A patent/PH12017500517A1/en unknown
- 2017-03-17 CL CL2017000658A patent/CL2017000658A1/en unknown
- 2017-03-19 SA SA517381129A patent/SA517381129B1/en unknown
- 2017-03-27 ZA ZA2017/02127A patent/ZA201702127B/en unknown
- 2017-04-03 CO CONC2017/0003241A patent/CO2017003241A2/en unknown
- 2017-04-13 EC ECIEPI201722933A patent/ECSP17022933A/en unknown
-
2018
- 2018-04-27 US US15/964,844 patent/US10414752B2/en active Active
-
2019
- 2019-01-21 CY CY20191100075T patent/CY1121149T1/en unknown
- 2019-03-01 US US16/290,240 patent/US10550098B2/en active Active
- 2019-04-17 ZA ZA2019/02446A patent/ZA201902446B/en unknown
- 2019-12-12 US US16/712,951 patent/US10889567B2/en active Active
- 2019-12-16 AU AU2019283765A patent/AU2019283765B2/en active Active
-
2020
- 2020-04-24 HR HRP20200666TT patent/HRP20200666T1/en unknown
- 2020-05-04 CY CY20201100407T patent/CY1122865T1/en unknown
- 2020-11-23 US US17/101,018 patent/US11498913B2/en active Active
-
2021
- 2021-04-18 IL IL282363A patent/IL282363B/en unknown
- 2021-08-10 AU AU2021215141A patent/AU2021215141B2/en active Active
-
2022
- 2022-11-09 US US17/984,069 patent/US20230125739A1/en not_active Abandoned
-
2023
- 2023-04-14 ZA ZA2023/04409A patent/ZA202304409B/en unknown
- 2023-11-09 US US18/506,060 patent/US20240150319A1/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10610125B2 (en) | 2009-03-13 | 2020-04-07 | Agios Pharmaceuticals, Inc. | Methods and compositions for cell-proliferation-related disorders |
US9982309B2 (en) * | 2009-10-21 | 2018-05-29 | Agios Pharmaceuticals, Inc. | Method for treating cell proliferation related disorders |
US10711314B2 (en) | 2009-10-21 | 2020-07-14 | Agios Pharmaceuticals, Inc. | Methods for diagnosing IDH-mutant cell proliferation disorders |
US20170044620A1 (en) * | 2009-10-21 | 2017-02-16 | Agios Pharmaceuticals, Inc. | Methods and compositions for cell-proliferation-related disorders |
US11498913B2 (en) | 2014-09-19 | 2022-11-15 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10280150B2 (en) | 2014-09-19 | 2019-05-07 | Forma Tm2, Inc. | Quinolinone pyrimidines compositions as mutant-isocitrate dehydrogenase inhibitors |
US10266495B2 (en) | 2014-09-19 | 2019-04-23 | Forma Tm2, Inc. | Phenyl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10253015B2 (en) | 2014-09-19 | 2019-04-09 | Forma Tm2, Inc. | Pyridinyl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10414752B2 (en) | 2014-09-19 | 2019-09-17 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10889567B2 (en) | 2014-09-19 | 2021-01-12 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10550098B2 (en) | 2014-09-19 | 2020-02-04 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10550099B2 (en) | 2014-09-19 | 2020-02-04 | Forma Therapeutics, Inc. | Quinolinone pyrimidines compositions as mutant-isocitrate dehydrogenase inhibitors |
US10005734B2 (en) | 2014-09-19 | 2018-06-26 | Forma Therapeutics, Inc. | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10407419B2 (en) | 2015-04-21 | 2019-09-10 | Forma Therapeutics, Inc. | Quinolinone five-membered heterocyclic compounds as mutant-isocitrate dehydrogenase inhibitors |
US10577329B2 (en) | 2015-04-21 | 2020-03-03 | Forma Therapeutics, Inc. | Fused-bicyclic aryl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10807976B2 (en) | 2015-04-21 | 2020-10-20 | Forma Therapeutics, Inc. | Quinolinone five-membered heterocyclic compounds as mutant-isocitrate dehydrogenase inhibitors |
US10294206B2 (en) | 2015-04-21 | 2019-05-21 | Forma Tm2, Inc. | Fused-bicyclic aryl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
US10959994B2 (en) | 2018-05-16 | 2021-03-30 | Forma Therapeutics, Inc. | Solid forms of ((S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile |
US11013733B2 (en) | 2018-05-16 | 2021-05-25 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mlDH-1) |
US11013734B2 (en) | 2018-05-16 | 2021-05-25 | Forma Therapeutics, Inc. | Treating patients harboring an isocitrate dehydrogenase-1 (IDH-1) mutation |
US11311527B2 (en) | 2018-05-16 | 2022-04-26 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mIDH-1) |
US11376246B2 (en) | 2018-05-16 | 2022-07-05 | Forma Therapeutics, Inc. | Inhibiting mutant IDH-1 |
US11497743B2 (en) | 2018-05-16 | 2022-11-15 | Forma Therapeutics, Inc. | Treating patients harboring an isocitrate dehydrogenase 1 (IDH-1) mutation |
US10532047B2 (en) | 2018-05-16 | 2020-01-14 | Forma Therapeutics, Inc. | Solid forms of ((S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile |
US11576906B2 (en) | 2018-05-16 | 2023-02-14 | Forma Therapeutics, Inc. | Inhibiting mutant IDH-1 |
US11723905B2 (en) | 2018-05-16 | 2023-08-15 | Forma Therapeutics, Inc. | Solid forms of ((s)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile |
US11738018B2 (en) | 2018-05-16 | 2023-08-29 | FORMA Therapeuetics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mIDH-1) |
US11963956B2 (en) | 2018-05-16 | 2024-04-23 | Forma Therapeutics, Inc. | Inhibiting mutant isocitrate dehydrogenase 1 (mIDH-1) |
US12053463B2 (en) | 2018-05-16 | 2024-08-06 | Forma Therapeutics, Inc. | Solid forms of ((s)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11498913B2 (en) | Pyridin-2(1H)-one quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors | |
US10266495B2 (en) | Phenyl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors | |
US10807976B2 (en) | Quinolinone five-membered heterocyclic compounds as mutant-isocitrate dehydrogenase inhibitors | |
US10253015B2 (en) | Pyridinyl quinolinone derivatives as mutant-isocitrate dehydrogenase inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FORMA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, JIAN;ERICSSON, ANNA;CAMPBELL, ANN-MARIE;AND OTHERS;SIGNING DATES FROM 20160615 TO 20160620;REEL/FRAME:044801/0115 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |
|
AS | Assignment |
Owner name: FORMA TM2, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORMA THERAPEUTICS, INC.;REEL/FRAME:047457/0946 Effective date: 20181106 |
|
AS | Assignment |
Owner name: FORMA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORMA TM2, INC.;REEL/FRAME:049598/0522 Effective date: 20190607 |