US20170159414A1 - Seal assembly for a submersible pumping system and an associated method thereof - Google Patents
Seal assembly for a submersible pumping system and an associated method thereof Download PDFInfo
- Publication number
- US20170159414A1 US20170159414A1 US14/959,084 US201514959084A US2017159414A1 US 20170159414 A1 US20170159414 A1 US 20170159414A1 US 201514959084 A US201514959084 A US 201514959084A US 2017159414 A1 US2017159414 A1 US 2017159414A1
- Authority
- US
- United States
- Prior art keywords
- bag
- fluid
- seal assembly
- chamber
- support tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 16
- 239000012530 fluid Substances 0.000 claims abstract description 205
- 239000011888 foil Substances 0.000 claims description 83
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 230000004044 response Effects 0.000 claims description 16
- 230000008602 contraction Effects 0.000 claims description 11
- 229920000914 Metallic fiber Polymers 0.000 claims description 10
- 239000004744 fabric Substances 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 5
- 230000002939 deleterious effect Effects 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 49
- 230000004888 barrier function Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 229910001566 austenite Inorganic materials 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 230000001012 protector Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 229920006172 Tetrafluoroethylene propylene Polymers 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920002449 FKM Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
- E21B43/128—Adaptation of pump systems with down-hole electric drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/04—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being hot or corrosive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B47/00—Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
- F04B47/06—Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/12—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
- H02K5/132—Submersible electric motors
Definitions
- Embodiments of the present invention relate generally to a submersible pumping system and more particularly to a seal assembly in an electric submersible pumping system.
- a submersible pumping system is widely used to obtain one or more fluids from subterranean reservoirs to the surface of the earth.
- the submersible pumping system includes assemblies, such as a pump assembly, a seal assembly, and a motor assembly that are deployed into wells to recover the fluids from the subterranean reservoirs.
- Such assemblies include one or more components that are engineered to withstand an inhospitable downhole environment, such as wide ranges of temperature, pressure, and corrosive well fluids.
- a dielectric fluid is employed within the motor assembly for insulation, lubrication and as a coolant.
- contaminated wellbore fluids may ingress into the motor fluid and may affect properties of the motor fluid.
- the properties of the motor fluid include favorable lubrication, dielectric strength, and chemical compatibility of the motor fluid.
- a motor protector is used to shield the motor from the wellbore fluids. Also, the motor protector is used to equalize pressure between the motor fluid and the wellbore fluids as well as to provide space for the motor fluid to expand and contract in response to thermal changes.
- parts of the motor protector may become permeable to water molecules in the wellbore fluids. The water molecules leak or diffuse from the wellbore fluids into the motor fluid, thereby degrading the dielectric strength of the motor fluid.
- a seal assembly for a submersible pumping system includes a support tube configured to surround a shaft. Further, the seal assembly includes a first bag positioned surrounding the support tube to define a first chamber between the first bag and the support tube, wherein the first chamber is configured to contain a motor fluid. Also, the seal assembly includes a second bag positioned surrounding the first bag to define a second chamber between the first bag and the second bag. In addition, the seal assembly includes an impermeable device disposed in the second chamber and configured to isolate the motor fluid from a wellbore fluid.
- a submersible pumping system includes an electric motor. Further, the submersible pumping system includes a pump coupled to the electric motor and configured to pump a wellbore fluid. Also, the submersible pumping system includes a seal assembly positioned between the pump and the electric motor, wherein the seal assembly includes a support tube configured to surround a shaft. Further, the seal assembly includes a first bag positioned surrounding the support tube to define a first chamber between the first bag and the support tube, wherein the first chamber is configured to contain a motor fluid. In addition, the seal assembly includes a second bag positioned surrounding the first bag to define a second chamber between the first bag and the second bag. Further, the seal assembly includes an impermeable device disposed in the second chamber and configured to isolate the motor fluid from a wellbore.
- a method for isolating a motor fluid from a wellbore fluid includes disposing a first bag around a support tube to define a first chamber between the first bag and the support tube, wherein the support tube is configured to support a shaft and the first chamber is configured to store a motor fluid. Further, the method includes disposing a second bag around the first bag to define a second chamber between the first bag and the second bag. Also, the method includes positioning an impermeable device in the second chamber, wherein the impermeable device is configured to isolate the motor fluid from a wellbore fluid.
- FIG. 1 is a sectional view of a submersible pumping system coupled to a production tubing in accordance with an exemplary embodiment of the present invention
- FIG. 2 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with one embodiment of the present invention
- FIG. 3 is a perspective view of a seal bag employed in a seal assembly in accordance with aspects of the present invention.
- FIG. 4 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention.
- FIG. 5 is a cross-sectional view of a seal assembly in a plane perpendicular to a shaft axis in accordance with yet another embodiment of the present invention.
- FIG. 6 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention.
- FIG. 7 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention.
- FIG. 8 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with yet another embodiment of the present invention.
- FIG. 9 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present specification.
- FIG. 10 is a cross-sectional view of a seal assembly having a shape memory alloy in a submersible pumping system in accordance with one embodiment of the present invention.
- FIG. 11 is a cross-sectional view of a seal assembly having a shape memory alloy in a submersible pumping system, in accordance with another embodiment of the present invention.
- FIG. 12 is a flow chart illustrating a method for installing seal assembly in accordance with one embodiment of the present invention.
- FIG. 13 is a flow chart illustrating a method for installing a seal assembly in accordance with another embodiment of the present invention.
- an electric submersible pumping system and method disclosed herein employ a seal assembly that acts as a physical barrier between the wellbore fluid and the motor fluid.
- the seal assembly is capable of restricting the flow of wellbore fluids into the motor fluid even under extreme temperature and pressure conditions.
- the seal assembly provides other preferred functions, such as transmitting torque between a motor assembly and a pump assembly, protecting the motor assembly from axial thrust imparted by the pump assembly, and accommodating expansion and contraction of the motor fluid as the electric motor operates through thermal cycles during operation.
- FIG. 1 is a sectional view of a pumping system 100 coupled to a production tubing 102 in accordance with an exemplary embodiment of the present invention.
- the pumping system 100 is coupled to a wellhead 106 located on a surface of earth via the production tubing 102 .
- the production tubing 102 and the pumping system 100 are deployed in a wellbore 104 to extract fluid such as water and/or petroleum from subterranean reservoirs.
- the fluid in the wellbore 104 may be referred to as a wellbore fluid 105 .
- the wellbore fluid 105 may include mineral hydrocarbons, such as crude oil, gas, and combinations of oil and gas.
- the wellbore fluid 105 may include other ingredients, such as water molecules that may contaminate a motor fluid (not shown in FIG. 1 ) of the pumping system 100 .
- a motor fluid not shown in FIG. 1
- the illustrated pumping system 100 is a submersible pumping system, it may be noted that the pumping system 100 may be used for other applications, such as surface pumping operations.
- the pumping system 100 includes a pump assembly 108 , a motor assembly 110 , and a seal assembly 112 . It may be noted herein that the pumping system 100 may include other components and is not limited to the components shown in FIG. 1 .
- the pump assembly 108 includes a pump 107 that is activated or operated to pump the wellbore fluid 105 to the surface of the earth.
- the motor assembly 110 includes an electric motor 109 that receives electrical power from a motor control unit (not shown) positioned on the surface of the earth. The received electrical power energizes the electric motor 109 which drives a shaft (not shown) to operate the pump 107 .
- the seal assembly 112 is positioned between the motor assembly 110 and the pump assembly 108 to protect the electric motor 109 from the environment in the wellbore 104 .
- the seal assembly 112 includes a support tube (not shown in FIG. 1 ) that is positioned surrounding the shaft coupled between the electric motor 109 and the pump 107 .
- the seal assembly 112 is also used to protect the motor assembly 110 from mechanical thrust produced by the pump assembly 108 .
- the seal assembly 112 contains a pressure/volume compensator for the motor fluid that is within the electric motor 109 of the motor assembly 110 .
- the motor fluid is used to insulate lubricate and/or cool the electric motor 109 of the motor assembly 110 .
- a motor protector In conventional pumping systems, a motor protector is used to shield the motor from the wellbore fluids. However, during high temperature conditions, the motor protector may become permeable to high temperature water molecules in a wellbore fluid. Hence, water molecules leak or diffuse from the wellbore fluids to the motor fluid, thereby degrading a dielectric strength of the motor fluid, which can eventually result in motor failure. Additionally, degradation of the motor fluid may affect the performance of the submersible pumping system.
- the seal assembly 112 includes a seal bag arrangement that aids in isolating the motor fluid from the wellbore fluid 105 even under extreme thermal changes in the wellbore 104 .
- the thermal changes in the wellbore 104 may be caused by the operation of the motor assembly 110 .
- the seal bag arrangement may be one type of the pressure/volume compensator in the seal assembly 112 .
- the motor fluid is isolated from the wellbore fluid 105 by the seal assembly 112 even under extreme conditions of temperature and pressure of the motor assembly 110 and/or the wellbore fluid 105 . As a result, degradation of the dielectric strength of the motor fluid is prevented.
- the seal assembly 112 includes a housing 214 , a shaft 216 , a seal unit 218 , a support tube 220 , a first plate 222 a, and a second plate 222 b. It may be noted that only a portion of the seal assembly 112 is shown in FIG. 2 . Also, it may be noted that the seal assembly 112 may include other components such as shaft seals, labyrinth chambers, thrust bearings etc., and is not limited to the components shown in FIG. 2 .
- the shaft 216 is extended through the seal assembly 112 along a shaft axis 217 to couple the motor assembly to the pump assembly.
- the support tube 220 is a cylindrical tube that surrounds the shaft 216 that extends through the seal assembly 112 .
- the seal unit 218 is coupled or secured to a first end 232 and a second end 234 of the support tube 220 . More specifically, the first plate 222 a is provided to secure one end of the seal unit 218 to the first end 232 of the support tube 220 . In a similar manner, the second plate 222 b is provided to secure other end of the seal unit 218 to the second end 234 of the support tube 220 .
- the seal unit 218 includes a first bag 236 , a second bag 238 , and an impermeable device 240 . It should be noted herein that the seal unit 218 may be installed at other suitable locations in the pumping system 100 . For example, it may be desirable to integrate the seal assembly 112 within the motor assembly 110 or the pump assembly 108 . In one embodiment, the seal unit 218 may include multiple seal bags coupled in series or in parallel to increase the available compensation volume and/or to provide an additional barrier against contamination.
- the first and second bags 236 , 238 are flexible cylindrical bags, for example, that are capable of expanding and contracting in response to changes in volume of a motor fluid caused by thermal changes in the wellbore.
- the first and second bags 236 , 238 are polymers bags that are fabricated from materials, such as perfluoroalkoxy alkanes (PFA), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polyphenylene sulfide (PPS), tetrafluoroethylene propylene (Aflas), fluoroelastomer (Viton), and highly saturated nitrile (HSN).
- PFA perfluoroalkoxy alkanes
- PTFE polytetrafluoroethylene
- PEEK polyether ether ketone
- PPS polyphenylene sulfide
- Aflas tetrafluoroethylene propylene
- Viton fluoroelastomer
- HSN highly saturated
- the impermeable device 240 is positioned between the first bag 236 and the second bag 238 to form a seal arrangement. More specifically, the first bag 236 is positioned surrounding the support tube 220 to define a first chamber 242 between the first bag 236 and the support tube 220 . The first chamber 242 is used for storing a motor fluid 244 . Further, the second bag 238 is positioned surrounding the first bag 236 to define a second chamber 246 between the first bag 236 and the second bag 238 .
- the impermeable device 240 is disposed in the second chamber 246 between the first bag 236 and the second bag 238 .
- the impermeable device 240 acts as a physical barrier to isolate high temperature water molecules that diffuse through walls of the polymer bag into the motor fluid 244 from the wellbore fluid.
- the impermeable device 240 is a metal foil that is positioned surrounding the first bag 236 .
- the terms “impermeable device” and “metal foil” may be used interchangeably.
- the illustrated metal foil is a single piece structure. In one embodiment, the metal foil may be fabricated from materials, such as stainless steel, Inconel, or the like. Moreover, the metal foil may be a thin sheet that is disposed around the first bag 236 to shield the motor fluid 244 in the first chamber 242 from the wellbore fluid 104 that contains one or more deleterious ingredients.
- the first plate 222 a is coupled to the first end 232 of the support tube 220 and a first end 248 of the first and second bags 236 , 238 .
- the second plate 222 b is coupled to the second end 234 of the support tube 220 and a second end 250 of the first and second bags 236 , 238 .
- the first and second bags 236 , 238 are attached to the first and second plates 222 a, 222 b.
- the first and second plates 222 a, 222 b includes metal rings.
- the first and second bags 236 , 238 are polymer bags capable of expanding and contracting in response to expansion and contraction of the motor fluid 244 in the first chamber 242 .
- the metal foil 240 is flexible and capable of expanding and contracting along with the first and second bags 236 , 238 .
- the metal foil 240 may have a thickness in a range from about 0.5 mm to about 3 mm.
- Each of the first and second bags 236 , 238 may have a thickness in a range from about 5 mm to about 25 mm.
- the motor fluid 244 in the first chamber 242 may expand or contract in response to thermal changes due to startup, shutdown and/or other transients in the wellbore.
- the motor fluid when the electric motor is started, the motor fluid may be heated due to losses in energy conversion and transmission from the motor assembly to the pump assembly. As a result, the motor fluid 244 in the first chamber 242 may be expanded.
- the impermeable device 240 and the first and second bags 236 , 238 also expand to provide space for expansion of the motor fluid 244 .
- the impermeable device 240 ensures that the wellbore fluid is not permeated into the motor fluid 244 in the first chamber 242 .
- the impermeable device 240 prevents ingress of water molecules of the wellbore fluid to the motor fluid 244 .
- the motor fluid 244 is not contaminated by the water molecules of the wellbore fluid even at high temperatures.
- the impermeable device 240 may act as a physical barrier to isolate the motor fluid 244 from the wellbore fluid 105 .
- the impermeable device 240 facilitates to equalize the pressure of the wellbore fluid and the pressure of the motor fluid 244 .
- the impermeable device 240 is flexible to accommodate expansion and contraction of the motor fluid 244 in response to thermal changes in the wellbore.
- FIG. 3 illustrates a perspective view of a seal bag 300 in accordance with certain aspects of the present invention.
- the seal bag 300 is as an elongated cylinder having an inner layer 302 , an outer layer 304 and an impermeable layer, such as metal foil, in between.
- the inner and outer layers 302 , 304 of the seal bag 300 are made of polymers that are capable of expanding and contracting in response to expansion and contraction of the motor fluid.
- the layers 302 , 304 of the seal bag 300 are fabricated from an elastomer or other polymers, such as, polytetrafluoroethylene (PTFE), perfluoroalkoxy alkanes (PFA), polyvinyl chloride (PVC), tetrafluoroethylene propylene (Aflas), fluoroelastomer (Viton), and highly saturated nitrile (HSN).
- PTFE polytetrafluoroethylene
- PFA perfluoroalkoxy alkanes
- PVC polyvinyl chloride
- Adlas tetrafluoroethylene propylene
- fluoroelastomer Viton
- HSN highly saturated nitrile
- the seal bag 300 includes a first end 306 , a second end 308 , and a middle section 310 .
- a diameter of each of the first and second ends 306 , 308 is less than a diameter of the middle section 310 of the seal bag 300 .
- the first and second ends 306 , 308 of the seal bag 300 are secured to end plates mounted on the support tube of a shaft.
- FIG. 4 a cross-sectional view of a seal assembly 400 in accordance with another embodiment of the present invention is depicted.
- the seal assembly 400 is similar to the seal assembly 112 of FIG. 2 except that seal assembly 400 has a metal foil 402 (also referred to as impermeable device) in the second chamber 246 .
- the metal foil 402 is a two-piece structure arranged to form a shiplap joint or arrangement.
- the metal foil 402 includes a first segment 404 and a second segment 406 . A portion of the first segment 404 and the second segment 406 intersect or overlap each other. Such an arrangement of the metal foil 402 may allow for increased compensation volume of the seal assembly 400 .
- the walls of the bag assembly 400 having the shiplap joint of the metal foil 402 can expand/contract much more than possible with a bag assembly having a single continuous metal foil.
- the first and second bags 236 , 238 may have significantly higher compliance than the metal foil 402 embedded in between these bags 236 , 238 .
- the impermeable device may also be divided into more than two segments with each segment partially overlapping the adjacent segment in a shiplap fashion to generate additional compliance.
- the first and second segments 404 , 406 of the metal foil 402 slide away from each other to provide space for the expansion of the motor fluid 244 . Further, when the motor fluid 244 contracts, the first and second segments 404 , 406 may slide towards each other to retain original shape.
- This shiplap joint or arrangement of the metal foil 402 accommodates a differential thermal expansion between the first and second bags 236 , 238 and the metal foil 402 in the second chamber 246 . Also, the shiplap arrangement prevents an intersegment gap from forming between the two segments 404 , 406 of the metal foil 402 during expansion of the seal assembly 400 , thereby the metal foil 402 still acts as an effective impermeable barrier to high temperature water molecules.
- FIG. 5 illustrates a cross-sectional view of a seal unit in a plane perpendicular to a shaft axis, in accordance with yet another embodiment of the present invention.
- the seal unit 500 is similar to the seal unit 218 of FIG. 2 except that that the seal unit 500 includes a metal foil 502 (also referred to as impermeable device) in the second chamber 246 .
- the metal foil 502 includes a plurality of folded segments 504 positioned surrounding the first bag 236 .
- the second bag 238 is positioned surrounding the folded segments 504 .
- the plurality of folded segments 504 is configured to unfold in response to expansion of the motor fluid and retain original shape in response to contraction of the motor fluid.
- the metal foil 502 ensures that the high temperature water molecules in the wellbore fluid are prevented from diffusing into the motor fluid.
- the metal foil 502 is capable of accommodating different rates of thermal expansion of the first and second bags 236 , 238 .
- a cross-sectional view of a seal assembly 600 in accordance with the aspects of the present invention is depicted.
- the seal assembly 600 is similar to the seal assembly 112 of FIG. 2 , except that the seal assembly 600 includes a buffer fluid 602 (also referred to as impermeable device) in the second chamber 246 .
- the buffer fluid 602 may include hydrophobic fluids, such as oils and alkanes that repel the water molecules of the wellbore fluid.
- the buffer fluid 602 may include superabsorbent fluids, such as sodium polyacrylate and polyacrylonitrile copolymer that are capable of absorbing the water molecules of the wellbore fluid.
- the seal assembly 600 includes an inlet 604 for filling the buffer fluid 602 in the second chamber 246 .
- the seal assembly 600 includes an outlet 606 for draining the buffer fluid 602 from the second chamber 246 .
- the seal assembly 600 may include a pressure relief valve 608 for preventing excess pressure buildup in the buffer fluid 602 .
- the inlet 604 , the outlet 606 , and the pressure relief valve 608 may be provided in the first and second plates 222 a, 222 b of the seal assembly 600 .
- the buffer fluid 602 in the second chamber 246 prevents diffusion of water molecules from the wellbore fluid into the motor fluid 244 .
- the buffer fluid 602 may include a hydrophobic fluid that repels permeation of the water molecules of the wellbore fluid to the motor fluid 244 .
- the buffer fluid 602 may include a superabsorbent fluid that absorbs water molecules of the wellbore fluid 105 .
- one or more properties of the buffer fluid 602 may be modified by an operator based on deleterious ingredients of the wellbore fluid. The one or more properties may include concentration, volume, and type of the buffer fluid 602 .
- the volume and/or the concentration of the buffer fluid 602 in the second chamber 246 may be increased.
- the buffer fluid 602 may be drained and replenished to restore the impermeability of the seal assembly 600 back to its original state.
- FIG. 7 a cross-sectional view of a seal assembly 700 in accordance with another embodiment of the present invention is depicted.
- the seal assembly 700 is similar to the seal assembly 112 of FIG. 2 except that the first and second bags 236 , 238 are fabricated from a plurality of metallic fibers or wires 702 . More specifically, the plurality of metallic fibers 702 may be weaved to form a fabric or cloth layer having a predetermined flexibility. It should be noted herein that diameter of the metallic fibers and/or a pattern of weaving of the metallic fibers are selected based on the predetermined flexibility requirements of the first and second bags 236 , 238 .
- the fabric or cloth layer may be wound around the impermeable device, such as the metal foil 240 .
- the first and second bags 236 , 238 may be fabricated from a plurality of non-metallic fibers, such as ceramic fibers and carbon fibers. Particularly, the plurality of non-metallic fibers may be weaved to form a fabric or cloth layer, which is wound around the metal foil 240 , for example.
- FIG. 8 illustrates a cross-sectional view of a seal assembly 800 in accordance with yet another embodiment of the present invention.
- the seal assembly 800 is similar to the seal assembly 700 of FIG. 7 except that the seal assembly 800 include only one seal bag 802 .
- the seal bag 802 is positioned surrounding the metal foil 240 .
- the metal foil 240 is attached or coupled to the seal bag 802 .
- the metal foil 240 may be tack welded 804 to the seal bag 802 .
- the metal foil 240 may be attached or coupled to the seal bag 802 by using one or more attaching techniques such as diffusion bonding, brazing etc.
- the seal bag 802 may be positioned on an inner surface 806 of the metal foil.
- the seal bag 802 may be fabricated from a plurality of metallic or non-metallic fibers.
- FIG. 9 a cross-sectional view of a seal assembly 900 in accordance with another embodiment of the present invention is depicted.
- the seal assembly 900 is similar to the seal assembly 112 of FIG. 2 except that the seal assembly 900 includes a third bag 902 and an additional impermeable device 904 .
- the seal assembly 900 includes the third bag 902 that is positioned surrounding the second bag 238 to define a third chamber 906 between the third bag 902 and the second bag 238 .
- the additional impermeable device 904 is disposed in the third chamber 906 to further restrict the diffusion of high temperature water molecules into the motor fluid.
- first, second, and third bags 236 , 238 , 902 are coupled to the support tube 220 , using the first and second plates 222 a, 22 b.
- the seal assembly 900 may include any number of seal bags and impermeable devices are positioned between adjacent bags.
- the bags 236 , 238 , 902 and the impermeable device 904 may be bonded together continuously or at discrete locations using any of the bonding techniques, such as welding, brazing, diffusion bonding etc.
- FIG. 10 a cross-sectional view of a seal assembly 1000 having a shape memory alloy (SMA) foil 1002 for a submersible pumping system in accordance with an embodiment of the present invention is depicted.
- the seal assembly 1000 includes a housing 1004 , a shaft 1006 , a seal unit 1008 , a support tube 1010 , a first plate 1012 a, and a second plate 1012 b. It should be noted herein that the seal assembly 1000 may include other components and is not limited to the components shown in FIG. 10 .
- the seal unit 1008 includes the SMA foil 1002 disposed within the housing 1004 of the seal assembly 1000 .
- the SMA foil 1002 may be fabricated from materials, such as NiTi, NiFeGa, NiTiHf, NiTiPd, NiTiZr.
- the SMA foil 1002 is shaped to form a cylindrical hollow tube positioned within the housing 1004 .
- the SMA foil 1002 may have a thickness in a range from about 5 mm to about 20 mm.
- the SMA foil 1002 is capable of expansion and contraction.
- the SMA foil 1002 is disposed surrounding the support tube 1010 to define a chamber 1014 between the SMA foil 1002 and the support tube 1010 .
- the chamber 1014 contains motor fluid 1016 used to insulate, lubricate and/or cool the electric motor 109 in the motor assembly 110 (shown in FIG. 1 ).
- the support tube 1010 is positioned surrounding the shaft 1006 .
- the seal unit 1008 is coupled or secured to the support tube 1010 .
- One end of the seal unit 1008 is coupled to a first end 1018 of the support tube 1010 via the first plate 1012 a.
- Other end of the seal unit 1008 is secured to a second end 1020 of the support tube 1010 via the second plate 1012 b.
- the seal unit 1008 acts as a physical barrier to isolate the motor fluid 1016 from the wellbore fluid.
- the SMA foil 1002 is capable of restricting a flow of the wellbore fluid (including high temperature water molecules) into the motor fluid 1016 even under extreme temperatures and pressure conditions.
- the motor fluid 1016 in the chamber 1014 may expand or contract in response to thermal changes due to startup, shutdown and/or other transients in the wellbore.
- the motor fluid 1016 in the chamber 1014 may expand due to increase in temperature of the electric motor.
- the motor dielectric fluid is heated due to losses associated with transfer of mechanical energy from the motor assembly to the pump assembly. This in turn may heat and expand the motor fluid 1016 in the chamber 1014 .
- the SMA foil 1002 also expands to provide space for the expanded motor fluid 1016 .
- the SMA foil 1002 has a pseudoelasticity property that aids in expansion of the SMA foil 1002 in response to the expansion of the motor fluid 1016 .
- the SMA foil 1002 has two forms of crystal structures, such as an austenite structure and a martensite structure. When the SMA foil 1002 is not expanded, the SMA foil 1002 has an austenite structure. When the SMA foil 1002 is expanded, the SMA foil has a martensite structure.
- the induced stress may be in a range from about 30 MPa to about 90 MPa.
- Such an induced stress may create phase transformation of the SMA foil 1002 from the austenite structure to the martensite structure.
- Such a property of the SMA foil 1002 is referred to as the pseudoelasticity property.
- the SMA foil 1002 may transform from the austenite structure to an intermediate martensite structures and then further to the martensite structure. As a result, the SMA foil 1002 expands to accommodate the expansion of the motor fluid 1016 .
- the SMA foil 1002 restricts flow of water molecules of wellbore fluid into the chamber 1014 . As a result, contamination of the motor fluid 1016 is prevented.
- the motor fluid 1016 in the chamber 1014 contracts due to decrease in temperature of the electric motor.
- the temperature around the support tube 1010 and the motor fluid 1016 is reduced causing contraction of the motor fluid 1016 in the chamber 1014 .
- the SMA foil 1002 also contracts to accommodate a change in the volume of the motor fluid 1016 .
- pressure of the motor fluid 1016 and the pressure of the wellbore fluid are equalized.
- the stress induced on the SMA foil 1002 is gradually released. As a result, the SMA foil 1002 may slowly transform from the martensite structure to the austenite structure.
- Such a transformation causes the SMA foil 1002 to contract and accommodate a change in the volume of the motor fluid 1016 . Moreover, even when there is a change in temperature and pressure of the motor fluid 1016 and/or the wellbore fluid, the seal unit 1008 acts as a physical barrier to isolate the motor fluid 1014 from the wellbore fluid.
- FIG. 11 a cross-sectional view of a seal assembly 1100 having a shape memory alloy (SMA) foil in the submersible pumping system in accordance with one embodiment of the present specification, is depicted.
- the seal assembly 1100 of FIG. 11 is similar to the seal assembly 1000 of FIG. 10 except that a seal unit 1102 of FIG. 11 includes a first bag 1104 and a second bag 1106 on opposite sides of the SMA foil 1002 .
- the first bag 1104 is positioned on an inner surface of the SMA foil 1002
- the second bag 1106 is positioned on an outer surface of the SMA foil 1002 .
- first end 1108 of the first and second bags 1106 , 1104 is sealed to the upper head 1018 of the support tube 1110 by using a first plate 1012 a.
- a second end 1110 of the first and second bags 1106 , 1104 is sealed to the second end 1020 of the support tube 1110 by using a second plate 1012 b.
- first and second bags 1104 , 1106 are used to provide additional structural support to the SMA foil 1002 .
- the first and second bags 1104 , 1106 may have a thickness in a range from about 5 mm to about 20 mm.
- the SMA foil 1102 in conjunction with the first and second bags 1104 , 1106 may expand and contract in response to expansion and contraction of the motor fluid 1016 in the first chamber 1112 . More importantly, SMA foil 1102 may expand and contract without any plastic deformation to the structure of the SMA foil 1102 . Also, the SMA foil 1102 may ensure that the wellbore fluid 104 does not permeate through the seal bag 1102 .
- a flow chart illustrating a method 1200 for installing a seal assembly for a submersible pumping system in accordance with an exemplary embodiment of the present invention is depicted.
- a seal assembly is disposed surrounding a support tube.
- the support tube 220 is used to house or surround a shaft 216 .
- a first bag is disposed around the support tube to define a first chamber between the first bag and the support tube.
- the first bag is positioned surrounding the support tube.
- a first end of the first bag is coupled to a first end of the support tube via a first plate.
- a second end of the first bag is coupled to a second end of the support tube via a second plate.
- the first chamber is used for containing a motor fluid.
- the motor fluid is used in an electric motor for insulating, lubricating or cooling the electric motor.
- a second bag is disposed around the first bag to define a second chamber between the first bag and the second bag.
- the second bag is positioned surrounding the first bag.
- a first end of the second bag is coupled to the first end of the support tube via the first plate.
- a second end of the second bag is coupled to the second end of the support tube via the second plate.
- an impermeable device is positioned in the second chamber and configured to isolate the motor fluid from the wellbore fluid.
- the impermeable device may include a metal foil or a buffer fluid that is configured to expand and contract in response to expansion and contraction of the motor fluid.
- the impermeable device is configured to provide space to accommodate the change in volume of the motor fluid.
- the metal foil or the buffer fluid is configured to act as a physical barrier between the first bag and the second bag to restrict the flow of the wellbore fluid to the motor fluid stored in the first chamber.
- the impermeable device is configured to equalize the pressure of the motor fluid with the pressure of the wellbore fluid.
- the impermeable device is configured to isolate the motor fluid with the wellbore fluid even when there is a change in temperature and pressure of the motor fluid and/or the wellbore fluid.
- a flow chart illustrating a method 1300 for installing a seal assembly of a submersible pumping system in accordance with an exemplary embodiment of the present invention is depicted.
- a support tube is disposed within a housing of the submersible pumping system. Also, the support tube is used to house or surround a shaft.
- a shape memory alloy (SMA) foil is disposed within the housing surrounding the support tube to define a first chamber between the SMA foil and the support tube.
- the first chamber may be configured to contain the motor fluid.
- the SMA foil is shaped to form a cylindrical hollow tube positioned within the housing. Further, a first end of the SMA foil is coupled to a first end of the support tube via a first plate. Similarly, a second end of the SMA foil is coupled to a second end of the support tube via a second plate.
- the SMA foil may have a thickness in a range from about 5 mm to about 20 mm. Moreover, the SMA foil may be configured to restrict a flow of a wellbore fluid to the motor fluid.
- the exemplary sealing system facilitates to isolate the motor fluid from the wellbore fluid. Additionally, the exemplary sealing system facilitates to restrict the flow of wellbore fluid into the motor fluid even under extreme temperature and pressure conditions. Further, the exemplary sealing system facilitates to accommodate expansion and contraction of the motor fluid as the electric motor undergoes thermal cycles during operation.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Power Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Mechanical Sealing (AREA)
Abstract
Description
- This application is related to U.S. patent application entitled “Seal Assembly for a Submersible Pumping System and an associated Method thereof” filed concurrently herewith under attorney docket number 281739-1.
- Embodiments of the present invention relate generally to a submersible pumping system and more particularly to a seal assembly in an electric submersible pumping system.
- Typically, a submersible pumping system is widely used to obtain one or more fluids from subterranean reservoirs to the surface of the earth. In general, the submersible pumping system includes assemblies, such as a pump assembly, a seal assembly, and a motor assembly that are deployed into wells to recover the fluids from the subterranean reservoirs. Such assemblies include one or more components that are engineered to withstand an inhospitable downhole environment, such as wide ranges of temperature, pressure, and corrosive well fluids.
- Furthermore, in submersible pumping systems with an electric drive, a dielectric fluid is employed within the motor assembly for insulation, lubrication and as a coolant. However, in certain environments, contaminated wellbore fluids may ingress into the motor fluid and may affect properties of the motor fluid. In one example, the properties of the motor fluid include favorable lubrication, dielectric strength, and chemical compatibility of the motor fluid.
- In a conventional submersible pumping system, a motor protector is used to shield the motor from the wellbore fluids. Also, the motor protector is used to equalize pressure between the motor fluid and the wellbore fluids as well as to provide space for the motor fluid to expand and contract in response to thermal changes. However, under high temperature, parts of the motor protector may become permeable to water molecules in the wellbore fluids. The water molecules leak or diffuse from the wellbore fluids into the motor fluid, thereby degrading the dielectric strength of the motor fluid.
- In accordance with aspects of the present specification, a seal assembly for a submersible pumping system is presented. The seal assembly includes a support tube configured to surround a shaft. Further, the seal assembly includes a first bag positioned surrounding the support tube to define a first chamber between the first bag and the support tube, wherein the first chamber is configured to contain a motor fluid. Also, the seal assembly includes a second bag positioned surrounding the first bag to define a second chamber between the first bag and the second bag. In addition, the seal assembly includes an impermeable device disposed in the second chamber and configured to isolate the motor fluid from a wellbore fluid.
- In accordance with a further aspect of the present specification, a submersible pumping system is presented. The submersible pumping system includes an electric motor. Further, the submersible pumping system includes a pump coupled to the electric motor and configured to pump a wellbore fluid. Also, the submersible pumping system includes a seal assembly positioned between the pump and the electric motor, wherein the seal assembly includes a support tube configured to surround a shaft. Further, the seal assembly includes a first bag positioned surrounding the support tube to define a first chamber between the first bag and the support tube, wherein the first chamber is configured to contain a motor fluid. In addition, the seal assembly includes a second bag positioned surrounding the first bag to define a second chamber between the first bag and the second bag. Further, the seal assembly includes an impermeable device disposed in the second chamber and configured to isolate the motor fluid from a wellbore.
- In accordance with another aspect of the present specification, a method for isolating a motor fluid from a wellbore fluid is presented. The method includes disposing a first bag around a support tube to define a first chamber between the first bag and the support tube, wherein the support tube is configured to support a shaft and the first chamber is configured to store a motor fluid. Further, the method includes disposing a second bag around the first bag to define a second chamber between the first bag and the second bag. Also, the method includes positioning an impermeable device in the second chamber, wherein the impermeable device is configured to isolate the motor fluid from a wellbore fluid.
- These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 is a sectional view of a submersible pumping system coupled to a production tubing in accordance with an exemplary embodiment of the present invention; -
FIG. 2 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with one embodiment of the present invention; -
FIG. 3 is a perspective view of a seal bag employed in a seal assembly in accordance with aspects of the present invention; -
FIG. 4 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention; -
FIG. 5 is a cross-sectional view of a seal assembly in a plane perpendicular to a shaft axis in accordance with yet another embodiment of the present invention; -
FIG. 6 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention; -
FIG. 7 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present invention; -
FIG. 8 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with yet another embodiment of the present invention; -
FIG. 9 is a cross-sectional view of a seal assembly in a submersible pumping system in accordance with another embodiment of the present specification; -
FIG. 10 is a cross-sectional view of a seal assembly having a shape memory alloy in a submersible pumping system in accordance with one embodiment of the present invention; -
FIG. 11 is a cross-sectional view of a seal assembly having a shape memory alloy in a submersible pumping system, in accordance with another embodiment of the present invention; -
FIG. 12 is a flow chart illustrating a method for installing seal assembly in accordance with one embodiment of the present invention; and -
FIG. 13 is a flow chart illustrating a method for installing a seal assembly in accordance with another embodiment of the present invention. - As will be described in detail hereinafter, various embodiments of a system and method for isolating a motor fluid from a wellbore fluid while compensating for any pressure and volume changes are disclosed. In particular, an electric submersible pumping system and method disclosed herein employ a seal assembly that acts as a physical barrier between the wellbore fluid and the motor fluid. The seal assembly is capable of restricting the flow of wellbore fluids into the motor fluid even under extreme temperature and pressure conditions. Additionally, the seal assembly provides other preferred functions, such as transmitting torque between a motor assembly and a pump assembly, protecting the motor assembly from axial thrust imparted by the pump assembly, and accommodating expansion and contraction of the motor fluid as the electric motor operates through thermal cycles during operation.
-
FIG. 1 is a sectional view of apumping system 100 coupled to aproduction tubing 102 in accordance with an exemplary embodiment of the present invention. Thepumping system 100 is coupled to awellhead 106 located on a surface of earth via theproduction tubing 102. Theproduction tubing 102 and thepumping system 100 are deployed in awellbore 104 to extract fluid such as water and/or petroleum from subterranean reservoirs. It may be noted herein that the fluid in thewellbore 104 may be referred to as awellbore fluid 105. In one example, thewellbore fluid 105 may include mineral hydrocarbons, such as crude oil, gas, and combinations of oil and gas. Also, thewellbore fluid 105 may include other ingredients, such as water molecules that may contaminate a motor fluid (not shown inFIG. 1 ) of thepumping system 100. Although the illustratedpumping system 100 is a submersible pumping system, it may be noted that thepumping system 100 may be used for other applications, such as surface pumping operations. - In a presently contemplated configuration, the
pumping system 100 includes apump assembly 108, amotor assembly 110, and aseal assembly 112. It may be noted herein that thepumping system 100 may include other components and is not limited to the components shown inFIG. 1 . Further, thepump assembly 108 includes apump 107 that is activated or operated to pump thewellbore fluid 105 to the surface of the earth. Themotor assembly 110 includes anelectric motor 109 that receives electrical power from a motor control unit (not shown) positioned on the surface of the earth. The received electrical power energizes theelectric motor 109 which drives a shaft (not shown) to operate thepump 107. - Furthermore, the
seal assembly 112 is positioned between themotor assembly 110 and thepump assembly 108 to protect theelectric motor 109 from the environment in thewellbore 104. In one embodiment, theseal assembly 112 includes a support tube (not shown inFIG. 1 ) that is positioned surrounding the shaft coupled between theelectric motor 109 and thepump 107. Theseal assembly 112 is also used to protect themotor assembly 110 from mechanical thrust produced by thepump assembly 108. Additionally, theseal assembly 112 contains a pressure/volume compensator for the motor fluid that is within theelectric motor 109 of themotor assembly 110. In one embodiment, the motor fluid is used to insulate lubricate and/or cool theelectric motor 109 of themotor assembly 110. - In conventional pumping systems, a motor protector is used to shield the motor from the wellbore fluids. However, during high temperature conditions, the motor protector may become permeable to high temperature water molecules in a wellbore fluid. Hence, water molecules leak or diffuse from the wellbore fluids to the motor fluid, thereby degrading a dielectric strength of the motor fluid, which can eventually result in motor failure. Additionally, degradation of the motor fluid may affect the performance of the submersible pumping system.
- In accordance with the embodiments of the present invention, the
seal assembly 112 includes a seal bag arrangement that aids in isolating the motor fluid from thewellbore fluid 105 even under extreme thermal changes in thewellbore 104. In one example, the thermal changes in thewellbore 104 may be caused by the operation of themotor assembly 110. It may be noted that the seal bag arrangement may be one type of the pressure/volume compensator in theseal assembly 112. - The motor fluid is isolated from the
wellbore fluid 105 by theseal assembly 112 even under extreme conditions of temperature and pressure of themotor assembly 110 and/or thewellbore fluid 105. As a result, degradation of the dielectric strength of the motor fluid is prevented. - Referring now to
FIG. 2 , a cross-sectional view of a portion of theseal assembly 112 in accordance with one embodiment of the present invention is depicted. Theseal assembly 112 includes ahousing 214, ashaft 216, aseal unit 218, asupport tube 220, afirst plate 222 a, and asecond plate 222 b. It may be noted that only a portion of theseal assembly 112 is shown inFIG. 2 . Also, it may be noted that theseal assembly 112 may include other components such as shaft seals, labyrinth chambers, thrust bearings etc., and is not limited to the components shown inFIG. 2 . - In the illustrated embodiment, the
shaft 216 is extended through theseal assembly 112 along ashaft axis 217 to couple the motor assembly to the pump assembly. Thesupport tube 220 is a cylindrical tube that surrounds theshaft 216 that extends through theseal assembly 112. Theseal unit 218 is coupled or secured to afirst end 232 and asecond end 234 of thesupport tube 220. More specifically, thefirst plate 222 a is provided to secure one end of theseal unit 218 to thefirst end 232 of thesupport tube 220. In a similar manner, thesecond plate 222 b is provided to secure other end of theseal unit 218 to thesecond end 234 of thesupport tube 220. - In the exemplary embodiment, the
seal unit 218 includes afirst bag 236, asecond bag 238, and animpermeable device 240. It should be noted herein that theseal unit 218 may be installed at other suitable locations in thepumping system 100. For example, it may be desirable to integrate theseal assembly 112 within themotor assembly 110 or thepump assembly 108. In one embodiment, theseal unit 218 may include multiple seal bags coupled in series or in parallel to increase the available compensation volume and/or to provide an additional barrier against contamination. - The first and
second bags second bags first bag 236 is positioned within thesecond bag 238. Theimpermeable device 240 is positioned between thefirst bag 236 and thesecond bag 238 to form a seal arrangement. More specifically, thefirst bag 236 is positioned surrounding thesupport tube 220 to define afirst chamber 242 between thefirst bag 236 and thesupport tube 220. Thefirst chamber 242 is used for storing amotor fluid 244. Further, thesecond bag 238 is positioned surrounding thefirst bag 236 to define asecond chamber 246 between thefirst bag 236 and thesecond bag 238. - Furthermore, the
impermeable device 240 is disposed in thesecond chamber 246 between thefirst bag 236 and thesecond bag 238. Theimpermeable device 240 acts as a physical barrier to isolate high temperature water molecules that diffuse through walls of the polymer bag into themotor fluid 244 from the wellbore fluid. In the embodiment ofFIG. 2 , theimpermeable device 240 is a metal foil that is positioned surrounding thefirst bag 236. It should be noted herein that the terms “impermeable device” and “metal foil” may be used interchangeably. The illustrated metal foil is a single piece structure. In one embodiment, the metal foil may be fabricated from materials, such as stainless steel, Inconel, or the like. Moreover, the metal foil may be a thin sheet that is disposed around thefirst bag 236 to shield themotor fluid 244 in thefirst chamber 242 from thewellbore fluid 104 that contains one or more deleterious ingredients. - The
first plate 222 a is coupled to thefirst end 232 of thesupport tube 220 and afirst end 248 of the first andsecond bags second plate 222 b is coupled to thesecond end 234 of thesupport tube 220 and asecond end 250 of the first andsecond bags second bags second plates second plates second bags motor fluid 244 in thefirst chamber 242. Themetal foil 240 is flexible and capable of expanding and contracting along with the first andsecond bags metal foil 240 may have a thickness in a range from about 0.5 mm to about 3 mm. Each of the first andsecond bags - During operation of the pumping system, the
motor fluid 244 in thefirst chamber 242 may expand or contract in response to thermal changes due to startup, shutdown and/or other transients in the wellbore. In one embodiment, when the electric motor is started, the motor fluid may be heated due to losses in energy conversion and transmission from the motor assembly to the pump assembly. As a result, themotor fluid 244 in thefirst chamber 242 may be expanded. As themotor fluid 244 expands, theimpermeable device 240 and the first andsecond bags motor fluid 244. Theimpermeable device 240 ensures that the wellbore fluid is not permeated into themotor fluid 244 in thefirst chamber 242. Specifically, theimpermeable device 240 prevents ingress of water molecules of the wellbore fluid to themotor fluid 244. Hence, themotor fluid 244 is not contaminated by the water molecules of the wellbore fluid even at high temperatures. - Further, when the electric motor is shutdown, temperature of the
motor fluid 244 in thefirst chamber 242 reduces, which in turn causes themotor fluid 244 to contract in thefirst chamber 242. As themotor fluid 244 contracts, theimpermeable device 240 and the first andsecond bags motor fluid 244. The compliance of the seal bag arrangement ensures that the motor fluid pressure is always equalized to the well-bore fluid pressure. - Thus, even when there is a change in temperature and pressure of the
motor fluid 244 and/or the wellbore fluid, theimpermeable device 240 may act as a physical barrier to isolate themotor fluid 244 from thewellbore fluid 105. In addition, theimpermeable device 240 facilitates to equalize the pressure of the wellbore fluid and the pressure of themotor fluid 244. Further, theimpermeable device 240 is flexible to accommodate expansion and contraction of themotor fluid 244 in response to thermal changes in the wellbore. -
FIG. 3 illustrates a perspective view of aseal bag 300 in accordance with certain aspects of the present invention. Theseal bag 300 is as an elongated cylinder having aninner layer 302, anouter layer 304 and an impermeable layer, such as metal foil, in between. In one embodiment, the inner andouter layers seal bag 300 are made of polymers that are capable of expanding and contracting in response to expansion and contraction of the motor fluid. Particularly, thelayers seal bag 300 are fabricated from an elastomer or other polymers, such as, polytetrafluoroethylene (PTFE), perfluoroalkoxy alkanes (PFA), polyvinyl chloride (PVC), tetrafluoroethylene propylene (Aflas), fluoroelastomer (Viton), and highly saturated nitrile (HSN). - The
seal bag 300 includes afirst end 306, asecond end 308, and amiddle section 310. In the illustrated embodiment, a diameter of each of the first and second ends 306, 308 is less than a diameter of themiddle section 310 of theseal bag 300. Similar to the previous embodiment, the first and second ends 306, 308 of theseal bag 300 are secured to end plates mounted on the support tube of a shaft. - Referring to
FIG. 4 , a cross-sectional view of aseal assembly 400 in accordance with another embodiment of the present invention is depicted. Theseal assembly 400 is similar to theseal assembly 112 ofFIG. 2 except thatseal assembly 400 has a metal foil 402 (also referred to as impermeable device) in thesecond chamber 246. Specifically, themetal foil 402 is a two-piece structure arranged to form a shiplap joint or arrangement. Particularly, themetal foil 402 includes afirst segment 404 and asecond segment 406. A portion of thefirst segment 404 and thesecond segment 406 intersect or overlap each other. Such an arrangement of themetal foil 402 may allow for increased compensation volume of theseal assembly 400. More specifically, the walls of thebag assembly 400 having the shiplap joint of themetal foil 402 can expand/contract much more than possible with a bag assembly having a single continuous metal foil. Also, the first andsecond bags metal foil 402 embedded in between thesebags - During expansion of the
motor fluid 244, the first andsecond segments metal foil 402 slide away from each other to provide space for the expansion of themotor fluid 244. Further, when themotor fluid 244 contracts, the first andsecond segments metal foil 402 accommodates a differential thermal expansion between the first andsecond bags metal foil 402 in thesecond chamber 246. Also, the shiplap arrangement prevents an intersegment gap from forming between the twosegments metal foil 402 during expansion of theseal assembly 400, thereby themetal foil 402 still acts as an effective impermeable barrier to high temperature water molecules. -
FIG. 5 illustrates a cross-sectional view of a seal unit in a plane perpendicular to a shaft axis, in accordance with yet another embodiment of the present invention. The seal unit 500 is similar to theseal unit 218 ofFIG. 2 except that that the seal unit 500 includes a metal foil 502 (also referred to as impermeable device) in thesecond chamber 246. Particularly, themetal foil 502 includes a plurality of foldedsegments 504 positioned surrounding thefirst bag 236. Further, thesecond bag 238 is positioned surrounding the foldedsegments 504. The plurality of foldedsegments 504 is configured to unfold in response to expansion of the motor fluid and retain original shape in response to contraction of the motor fluid. Additionally, themetal foil 502 ensures that the high temperature water molecules in the wellbore fluid are prevented from diffusing into the motor fluid. Furthermore, themetal foil 502 is capable of accommodating different rates of thermal expansion of the first andsecond bags - Referring to
FIG. 6 , a cross-sectional view of a seal assembly 600, in accordance with the aspects of the present invention is depicted. The seal assembly 600 is similar to theseal assembly 112 ofFIG. 2 , except that the seal assembly 600 includes a buffer fluid 602 (also referred to as impermeable device) in thesecond chamber 246. In one example, the buffer fluid 602 may include hydrophobic fluids, such as oils and alkanes that repel the water molecules of the wellbore fluid. In another example, the buffer fluid 602 may include superabsorbent fluids, such as sodium polyacrylate and polyacrylonitrile copolymer that are capable of absorbing the water molecules of the wellbore fluid. - Furthermore, the seal assembly 600 includes an inlet 604 for filling the buffer fluid 602 in the
second chamber 246. Similarly, the seal assembly 600 includes an outlet 606 for draining the buffer fluid 602 from thesecond chamber 246. Also, the seal assembly 600 may include a pressure relief valve 608 for preventing excess pressure buildup in the buffer fluid 602. In one embodiment, the inlet 604, the outlet 606, and the pressure relief valve 608 may be provided in the first andsecond plates - The buffer fluid 602 in the
second chamber 246 prevents diffusion of water molecules from the wellbore fluid into themotor fluid 244. In one embodiment, the buffer fluid 602 may include a hydrophobic fluid that repels permeation of the water molecules of the wellbore fluid to themotor fluid 244. In another embodiment, the buffer fluid 602 may include a superabsorbent fluid that absorbs water molecules of thewellbore fluid 105. Additionally, one or more properties of the buffer fluid 602 may be modified by an operator based on deleterious ingredients of the wellbore fluid. The one or more properties may include concentration, volume, and type of the buffer fluid 602. In one embodiment, if thewellbore fluid 105 includes concentrated deleterious ingredients, the volume and/or the concentration of the buffer fluid 602 in thesecond chamber 246 may be increased. At periodic maintenance intervals, the buffer fluid 602 may be drained and replenished to restore the impermeability of the seal assembly 600 back to its original state. - Referring to
FIG. 7 , a cross-sectional view of aseal assembly 700 in accordance with another embodiment of the present invention is depicted. Theseal assembly 700 is similar to theseal assembly 112 ofFIG. 2 except that the first andsecond bags wires 702. More specifically, the plurality ofmetallic fibers 702 may be weaved to form a fabric or cloth layer having a predetermined flexibility. It should be noted herein that diameter of the metallic fibers and/or a pattern of weaving of the metallic fibers are selected based on the predetermined flexibility requirements of the first andsecond bags metal foil 240. In another embodiment, the first andsecond bags metal foil 240, for example. -
FIG. 8 illustrates a cross-sectional view of aseal assembly 800 in accordance with yet another embodiment of the present invention. Theseal assembly 800 is similar to theseal assembly 700 ofFIG. 7 except that theseal assembly 800 include only oneseal bag 802. Theseal bag 802 is positioned surrounding themetal foil 240. Moreover, themetal foil 240 is attached or coupled to theseal bag 802. In one example, themetal foil 240 may be tack welded 804 to theseal bag 802. In another example, themetal foil 240 may be attached or coupled to theseal bag 802 by using one or more attaching techniques such as diffusion bonding, brazing etc. In one embodiment, theseal bag 802 may be positioned on aninner surface 806 of the metal foil. Theseal bag 802 may be fabricated from a plurality of metallic or non-metallic fibers. - Referring to
FIG. 9 , a cross-sectional view of aseal assembly 900 in accordance with another embodiment of the present invention is depicted. Theseal assembly 900 is similar to theseal assembly 112 ofFIG. 2 except that theseal assembly 900 includes athird bag 902 and an additionalimpermeable device 904. Particularly, theseal assembly 900 includes thethird bag 902 that is positioned surrounding thesecond bag 238 to define athird chamber 906 between thethird bag 902 and thesecond bag 238. Further, the additionalimpermeable device 904 is disposed in thethird chamber 906 to further restrict the diffusion of high temperature water molecules into the motor fluid. Further, the first, second, andthird bags support tube 220, using the first andsecond plates 222 a, 22 b. It should be noted herein that theseal assembly 900 may include any number of seal bags and impermeable devices are positioned between adjacent bags. In one embodiment, thebags impermeable device 904 may be bonded together continuously or at discrete locations using any of the bonding techniques, such as welding, brazing, diffusion bonding etc. - Referring to
FIG. 10 , a cross-sectional view of aseal assembly 1000 having a shape memory alloy (SMA)foil 1002 for a submersible pumping system in accordance with an embodiment of the present invention is depicted. Theseal assembly 1000 includes ahousing 1004, ashaft 1006, aseal unit 1008, asupport tube 1010, afirst plate 1012 a, and asecond plate 1012 b. It should be noted herein that theseal assembly 1000 may include other components and is not limited to the components shown inFIG. 10 . - In the illustrated embodiment, the
seal unit 1008 includes theSMA foil 1002 disposed within thehousing 1004 of theseal assembly 1000. In one example, theSMA foil 1002 may be fabricated from materials, such as NiTi, NiFeGa, NiTiHf, NiTiPd, NiTiZr. In one embodiment, theSMA foil 1002 is shaped to form a cylindrical hollow tube positioned within thehousing 1004. TheSMA foil 1002 may have a thickness in a range from about 5 mm to about 20 mm. Moreover, theSMA foil 1002 is capable of expansion and contraction. TheSMA foil 1002 is disposed surrounding thesupport tube 1010 to define achamber 1014 between theSMA foil 1002 and thesupport tube 1010. Thechamber 1014 containsmotor fluid 1016 used to insulate, lubricate and/or cool theelectric motor 109 in the motor assembly 110 (shown inFIG. 1 ). - In the illustrated embodiment, the
support tube 1010 is positioned surrounding theshaft 1006. Theseal unit 1008 is coupled or secured to thesupport tube 1010. One end of theseal unit 1008 is coupled to afirst end 1018 of thesupport tube 1010 via thefirst plate 1012 a. Other end of theseal unit 1008 is secured to asecond end 1020 of thesupport tube 1010 via thesecond plate 1012 b. - In the exemplary embodiment, the
seal unit 1008 acts as a physical barrier to isolate themotor fluid 1016 from the wellbore fluid. Particularly, theSMA foil 1002 is capable of restricting a flow of the wellbore fluid (including high temperature water molecules) into themotor fluid 1016 even under extreme temperatures and pressure conditions. - During operation of the pumping system, the
motor fluid 1016 in thechamber 1014 may expand or contract in response to thermal changes due to startup, shutdown and/or other transients in the wellbore. When the electric motor is started, themotor fluid 1016 in thechamber 1014 may expand due to increase in temperature of the electric motor. In one embodiment, when the electric motor is started, the motor dielectric fluid is heated due to losses associated with transfer of mechanical energy from the motor assembly to the pump assembly. This in turn may heat and expand themotor fluid 1016 in thechamber 1014. As themotor fluid 1016 expands, theSMA foil 1002 also expands to provide space for the expandedmotor fluid 1016. In one embodiment, theSMA foil 1002 has a pseudoelasticity property that aids in expansion of theSMA foil 1002 in response to the expansion of themotor fluid 1016. Particularly, theSMA foil 1002 has two forms of crystal structures, such as an austenite structure and a martensite structure. When theSMA foil 1002 is not expanded, theSMA foil 1002 has an austenite structure. When theSMA foil 1002 is expanded, the SMA foil has a martensite structure. - Further, when the
motor fluid 1016 expands in thechamber 1014, stress is induced on the austenite structure of theSMA foil 1002. In one example, the induced stress may be in a range from about 30 MPa to about 90 MPa. Such an induced stress may create phase transformation of theSMA foil 1002 from the austenite structure to the martensite structure. Such a property of theSMA foil 1002 is referred to as the pseudoelasticity property. In one embodiment, theSMA foil 1002 may transform from the austenite structure to an intermediate martensite structures and then further to the martensite structure. As a result, theSMA foil 1002 expands to accommodate the expansion of themotor fluid 1016. Moreover, theSMA foil 1002 restricts flow of water molecules of wellbore fluid into thechamber 1014. As a result, contamination of themotor fluid 1016 is prevented. - Further, when the electric motor is shutdown, the
motor fluid 1016 in thechamber 1014 contracts due to decrease in temperature of the electric motor. In one embodiment, when the electric motor is shutdown, the temperature around thesupport tube 1010 and themotor fluid 1016 is reduced causing contraction of themotor fluid 1016 in thechamber 1014. As themotor fluid 1016 contracts, theSMA foil 1002 also contracts to accommodate a change in the volume of themotor fluid 1016. As a result, pressure of themotor fluid 1016 and the pressure of the wellbore fluid are equalized. In one embodiment, when themotor fluid 1016 contracts, the stress induced on theSMA foil 1002 is gradually released. As a result, theSMA foil 1002 may slowly transform from the martensite structure to the austenite structure. Such a transformation causes theSMA foil 1002 to contract and accommodate a change in the volume of themotor fluid 1016. Moreover, even when there is a change in temperature and pressure of themotor fluid 1016 and/or the wellbore fluid, theseal unit 1008 acts as a physical barrier to isolate themotor fluid 1014 from the wellbore fluid. - Referring to
FIG. 11 , a cross-sectional view of aseal assembly 1100 having a shape memory alloy (SMA) foil in the submersible pumping system in accordance with one embodiment of the present specification, is depicted. Theseal assembly 1100 ofFIG. 11 is similar to theseal assembly 1000 ofFIG. 10 except that aseal unit 1102 ofFIG. 11 includes afirst bag 1104 and asecond bag 1106 on opposite sides of theSMA foil 1002. Particularly, thefirst bag 1104 is positioned on an inner surface of theSMA foil 1002, while thesecond bag 1106 is positioned on an outer surface of theSMA foil 1002. Further, afirst end 1108 of the first andsecond bags upper head 1018 of thesupport tube 1110 by using afirst plate 1012 a. Similarly, asecond end 1110 of the first andsecond bags second end 1020 of thesupport tube 1110 by using asecond plate 1012 b. - Furthermore, by sealing or attaching the
first bag 1104 to thesupport tube 1110, afirst chamber 1112 is formed between thefirst bag 1104 and thesupport tube 1110. Thisfirst chamber 1112 is used for storing themotor fluid 1016. In a similar fashion, by sealing or attaching thesecond bag 1106 to thesupport tube 1110, asecond chamber 1114 is formed between thesecond bag 1106 and thefirst bag 1104. Further, theSMA foil 1002 is positioned between thefirst bag 1104 and thesecond bag 1106 to restrict the flow of the wellbore fluid into themotor fluid 1016 in thefirst chamber 1112. It may be noted that first andsecond bags SMA foil 1002. In one example, the first andsecond bags - During thermal changes in the
wellbore 104, theSMA foil 1102 in conjunction with the first andsecond bags motor fluid 1016 in thefirst chamber 1112. More importantly,SMA foil 1102 may expand and contract without any plastic deformation to the structure of theSMA foil 1102. Also, theSMA foil 1102 may ensure that thewellbore fluid 104 does not permeate through theseal bag 1102. - Referring to
FIG. 12 , a flow chart illustrating amethod 1200 for installing a seal assembly for a submersible pumping system in accordance with an exemplary embodiment of the present invention is depicted. At step 1202, a seal assembly is disposed surrounding a support tube. Also, thesupport tube 220 is used to house or surround ashaft 216. - Subsequently, at
step 1204, a first bag is disposed around the support tube to define a first chamber between the first bag and the support tube. Particularly, the first bag is positioned surrounding the support tube. A first end of the first bag is coupled to a first end of the support tube via a first plate. Similarly, a second end of the first bag is coupled to a second end of the support tube via a second plate. The first chamber is used for containing a motor fluid. The motor fluid is used in an electric motor for insulating, lubricating or cooling the electric motor. - Furthermore, at
step 1206, a second bag is disposed around the first bag to define a second chamber between the first bag and the second bag. Particularly, the second bag is positioned surrounding the first bag. A first end of the second bag is coupled to the first end of the support tube via the first plate. Similarly, a second end of the second bag is coupled to the second end of the support tube via the second plate. - At
step 1208, an impermeable device is positioned in the second chamber and configured to isolate the motor fluid from the wellbore fluid. Particularly, the impermeable device may include a metal foil or a buffer fluid that is configured to expand and contract in response to expansion and contraction of the motor fluid. As a result, the impermeable device is configured to provide space to accommodate the change in volume of the motor fluid. In addition, the metal foil or the buffer fluid is configured to act as a physical barrier between the first bag and the second bag to restrict the flow of the wellbore fluid to the motor fluid stored in the first chamber. Further, the impermeable device is configured to equalize the pressure of the motor fluid with the pressure of the wellbore fluid. - In accordance with the exemplary embodiment, the impermeable device is configured to isolate the motor fluid with the wellbore fluid even when there is a change in temperature and pressure of the motor fluid and/or the wellbore fluid.
- Referring to
FIG. 13 , a flow chart illustrating amethod 1300 for installing a seal assembly of a submersible pumping system in accordance with an exemplary embodiment of the present invention is depicted. Atstep 1302, a support tube is disposed within a housing of the submersible pumping system. Also, the support tube is used to house or surround a shaft. - At
step 1304, a shape memory alloy (SMA) foil is disposed within the housing surrounding the support tube to define a first chamber between the SMA foil and the support tube. The first chamber may be configured to contain the motor fluid. In one example, the SMA foil is shaped to form a cylindrical hollow tube positioned within the housing. Further, a first end of the SMA foil is coupled to a first end of the support tube via a first plate. Similarly, a second end of the SMA foil is coupled to a second end of the support tube via a second plate. The SMA foil may have a thickness in a range from about 5 mm to about 20 mm. Moreover, the SMA foil may be configured to restrict a flow of a wellbore fluid to the motor fluid. - In accordance with the exemplary embodiments discussed herein, the exemplary sealing system facilitates to isolate the motor fluid from the wellbore fluid. Additionally, the exemplary sealing system facilitates to restrict the flow of wellbore fluid into the motor fluid even under extreme temperature and pressure conditions. Further, the exemplary sealing system facilitates to accommodate expansion and contraction of the motor fluid as the electric motor undergoes thermal cycles during operation.
- While only certain features of the present disclosure have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the present disclosure.
Claims (21)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/959,084 US20170159414A1 (en) | 2015-12-04 | 2015-12-04 | Seal assembly for a submersible pumping system and an associated method thereof |
EP16819230.0A EP3384128A1 (en) | 2015-12-04 | 2016-12-02 | Seal assembly for a submersible pumping system and an associated method thereof |
CA3006296A CA3006296A1 (en) | 2015-12-04 | 2016-12-02 | Seal assembly for a submersible pumping system and an associated method thereof |
BR112018010253A BR112018010253A2 (en) | 2015-12-04 | 2016-12-02 | seal assembly for a submersible pumping system, submersible pumping system and mounting method |
CN201680071074.1A CN108291436A (en) | 2015-12-04 | 2016-12-02 | Seal assembly for submergible pumping system and its associated method |
PCT/US2016/064519 WO2017096103A1 (en) | 2015-12-04 | 2016-12-02 | Seal assembly for a submersible pumping system and an associated method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/959,084 US20170159414A1 (en) | 2015-12-04 | 2015-12-04 | Seal assembly for a submersible pumping system and an associated method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170159414A1 true US20170159414A1 (en) | 2017-06-08 |
Family
ID=57614463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/959,084 Abandoned US20170159414A1 (en) | 2015-12-04 | 2015-12-04 | Seal assembly for a submersible pumping system and an associated method thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170159414A1 (en) |
EP (1) | EP3384128A1 (en) |
CN (1) | CN108291436A (en) |
BR (1) | BR112018010253A2 (en) |
CA (1) | CA3006296A1 (en) |
WO (1) | WO2017096103A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323751B2 (en) | 2015-12-04 | 2019-06-18 | General Electric Company | Seal assembly for a submersible pumping system and an associated method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020190975A1 (en) * | 2019-03-18 | 2020-09-24 | Baker Hughes Oilfield Operations Llc | Gas vent for a seal section of an electrical submersible pump assembly |
US11708838B2 (en) | 2020-07-02 | 2023-07-25 | Halliburton Energy Services, Inc. | Chemical sequestration of wellbore fluids in electric submersible pump systems |
WO2022005486A1 (en) | 2020-07-02 | 2022-01-06 | Halliburton Energy Services, Inc. | Seal bag for seal of an electric submersible pump |
US20220003080A1 (en) * | 2020-07-02 | 2022-01-06 | Halliburton Energy Services, Inc. | Water removal from electric submersible pump systems |
DE102021119889A1 (en) | 2021-07-30 | 2023-02-02 | Oil Dynamics GmbH | Volume Compensation Device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544165A (en) * | 1983-05-16 | 1985-10-01 | Xenpax, Inc. | Inflatable packer |
US4940911A (en) * | 1989-06-21 | 1990-07-10 | Oil Dynamics, Inc. | Submersible pump equalizer with multiple expanding chambers |
US6100616A (en) * | 1997-10-16 | 2000-08-08 | Camco International, Inc. | Electric submergible motor protector |
US7182584B2 (en) * | 2003-09-17 | 2007-02-27 | Schlumberger Technology Corporation | Motor protector |
US7373991B2 (en) * | 2005-07-18 | 2008-05-20 | Schlumberger Technology Corporation | Swellable elastomer-based apparatus, oilfield elements comprising same, and methods of using same in oilfield applications |
US7654315B2 (en) * | 2005-09-30 | 2010-02-02 | Schlumberger Technology Corporation | Apparatus, pumping system incorporating same, and methods of protecting pump components |
US7854264B2 (en) * | 2007-11-27 | 2010-12-21 | Schlumberger Technology Corporation | Volumetric compensating annular bellows |
SE533329C2 (en) * | 2009-01-20 | 2010-08-31 | Gva Consultants Ab | Submersible pump and submersible pump system for a marine structure |
US9470216B2 (en) * | 2012-11-28 | 2016-10-18 | Ge Oil & Gas Esp, Inc. | Method for reducing permeability of downhole motor protector bags |
US20140147301A1 (en) * | 2012-11-28 | 2014-05-29 | Ge Oil & Gas Esp, Inc. | Metalized polymer components for use in high temperature pumping applications |
CN203453108U (en) * | 2013-07-02 | 2014-02-26 | 台州市钱涛泵业有限公司 | Efficient sealed submersible pump |
US9874074B2 (en) * | 2013-10-17 | 2018-01-23 | Baker Hughes, A Ge Company, Llc | Water tight and gas tight flexible fluid compensation bellow |
-
2015
- 2015-12-04 US US14/959,084 patent/US20170159414A1/en not_active Abandoned
-
2016
- 2016-12-02 WO PCT/US2016/064519 patent/WO2017096103A1/en active Application Filing
- 2016-12-02 CN CN201680071074.1A patent/CN108291436A/en active Pending
- 2016-12-02 EP EP16819230.0A patent/EP3384128A1/en not_active Withdrawn
- 2016-12-02 BR BR112018010253A patent/BR112018010253A2/en not_active IP Right Cessation
- 2016-12-02 CA CA3006296A patent/CA3006296A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323751B2 (en) | 2015-12-04 | 2019-06-18 | General Electric Company | Seal assembly for a submersible pumping system and an associated method thereof |
Also Published As
Publication number | Publication date |
---|---|
BR112018010253A2 (en) | 2018-11-27 |
CN108291436A (en) | 2018-07-17 |
WO2017096103A1 (en) | 2017-06-08 |
CA3006296A1 (en) | 2017-06-08 |
EP3384128A1 (en) | 2018-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170159414A1 (en) | Seal assembly for a submersible pumping system and an associated method thereof | |
CA3006307C (en) | Seal assembly for a submersible pumping system and an associated method thereof | |
EP2501897B1 (en) | Compensator assembly for submersible pump system | |
US11795795B2 (en) | Fluid expansion chamber with protected bellow | |
US10301915B2 (en) | Seal configuration for ESP systems | |
US20150132158A1 (en) | Electric submersible motor oil expansion compensator | |
US9470216B2 (en) | Method for reducing permeability of downhole motor protector bags | |
US10480298B2 (en) | Bidirectional piston seals with pressure compensation | |
CA2935713C (en) | Method for reducing permeability of downhole motor protector bags | |
US11976660B2 (en) | Inverted closed bellows with lubricated guide ring support | |
US10781811B2 (en) | Volumetric compensator for electric submersible pump | |
CA3068438A1 (en) | Bidirectional piston seals with pressure compensation | |
BR112019027787B1 (en) | VOLUMETRIC COMPENSATOR SET AND BOTTOM WELL PUMPING SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAMUDRALA, OMPRAKASH;VAN DAM, JEREMY DANIEL;REEVES, BRIAN PAUL;AND OTHERS;REEL/FRAME:037209/0662 Effective date: 20151202 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BAKER HUGHES OILFIELD OPERATIONS, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:051620/0268 Effective date: 20170703 |
|
AS | Assignment |
Owner name: BAKER HUGHES OILFIELD OPERATIONS, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:051708/0186 Effective date: 20170703 |