US20170143227A1 - Electrode assembly having an atraumatic distal tip - Google Patents
Electrode assembly having an atraumatic distal tip Download PDFInfo
- Publication number
- US20170143227A1 US20170143227A1 US15/425,272 US201715425272A US2017143227A1 US 20170143227 A1 US20170143227 A1 US 20170143227A1 US 201715425272 A US201715425272 A US 201715425272A US 2017143227 A1 US2017143227 A1 US 2017143227A1
- Authority
- US
- United States
- Prior art keywords
- spline
- catheter
- distal
- distal end
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims description 16
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 238000004382 potting Methods 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 4
- 239000003566 sealing material Substances 0.000 claims description 3
- 238000013507 mapping Methods 0.000 abstract description 16
- 230000000747 cardiac effect Effects 0.000 abstract description 11
- 238000002679 ablation Methods 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 description 16
- 238000010276 construction Methods 0.000 description 9
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 5
- 239000012781 shape memory material Substances 0.000 description 5
- 206010003119 arrhythmia Diseases 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 210000005242 cardiac chamber Anatomy 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000003698 laser cutting Methods 0.000 description 4
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000006793 arrhythmia Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 238000002001 electrophysiology Methods 0.000 description 2
- 230000007831 electrophysiology Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 206010003668 atrial tachycardia Diseases 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000013153 catheter ablation Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/287—Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
-
- A61B5/0422—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
- A61B5/6858—Catheters with a distal basket, e.g. expandable basket
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/0016—Energy applicators arranged in a two- or three dimensional array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00357—Endocardium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00839—Bioelectrical parameters, e.g. ECG, EEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1467—Probes or electrodes therefor using more than two electrodes on a single probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49004—Electrical device making including measuring or testing of device or component part
Definitions
- the present disclosure generally relates to electrode assemblies for use in cardiac procedures and more particularly, to an electrode assembly that may be utilized in a cardiac mapping procedure.
- Electrophysiology catheters are used in a variety of diagnostic and/or therapeutic medical procedures to diagnose and/or correct conditions such as cardiac arrhythmias, including for example, atrial tachycardia, ventricular tachycardia, atrial fibrillation, and atrial flutter.
- Cardiac arrhythmias are a leading cause of stroke, heart disease, and sudden death.
- the physiological mechanism of arrhythmia involves an abnormality in the electrical conduction of the heart.
- treatment options for patients with arrhythmia that include medication, implantable devices, and catheter ablation of cardiac tissue.
- the present disclosure generally relates to electrode assemblies for use in cardiac procedures and more particularly, to an electrode assembly that may be utilized in a cardiac mapping procedure.
- a catheter in a first example, includes an elongate catheter body extending from a proximal end to a distal end.
- An expandable electrode assembly is disposed at the distal end of the catheter body.
- the electrode assembly comprises a plurality of flexible splines extending from the distal end of the catheter body to a distal cap.
- the distal cap comprises a plurality of slots disposed about an outer circumference of the distal cap.
- the plurality of flexible splines includes at least a first spline comprising a distal end defining a locking feature secured within one of the plurality of slots provided in the distal cap.
- the expandable electrode assembly is configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration. Two or more electrodes are located on the first spline.
- the distal cap comprises a cylindrical shape defining an interior cavity.
- the distal cap comprises a rounded tip having an aperture defined therein.
- a height is greater than a width for each of the slots.
- a width is greater than a height for each of the slots.
- the locking feature defined by the distal end of the first spline comprises a first portion having a first width and a second portion having a second width, the first width greater than the second width.
- the locking feature defined by the distal end of the first spline comprises an aperture formed therein.
- an adhesive is disposed within the distal cap.
- the distal cap comprises a rounded distal end and defines an atraumatic distal tip of the catheter.
- each of the slots are spaced an equal distance from one another about the outer circumference of the distal cap.
- an actuation member is coupled to the expandable electrode assembly.
- the locking feature defined by the distal end of the first spline comprises a hook shape.
- the locking feature defined by the distal end of the first spline comprises an arrowhead shape.
- the distal cap serves as a distal tip electrode.
- a catheter in a fifteenth example, includes an elongate catheter body extending from a proximal end to a distal end.
- An expandable electrode assembly is disposed at the distal end of the catheter body.
- the electrode assembly comprises a plurality of flexible splines including a first spline extending from the distal end of the catheter body to a distal cap.
- the distal cap comprises a plurality of slots including a first slot disposed about an outer circumference of the distal cap.
- the first spline comprises a distal end defining a locking feature secured within the first slot.
- the expandable electrode assembly is configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration. Two or more electrodes are located on the first spline.
- An actuation member is coupled to the expandable electrode assembly.
- a method of forming an expandable basket electrode assembly includes forming a flattened spline array comprising two or more flexible splines, a distal end of each spline defining a locking feature; forming a cylindrical spline array from the flattened spline array; positioning a distal cap comprising two or more slots disposed about an outer circumference adjacent a distal end of the cylindrical spline array; separating a first spline from the two or more flexible splines of the cylindrical spline array; rotating the first spline about its major axis from a first orientation to a second orientation; bending the first spline along its minor axis while it is in its second orientation and inserting the distal end into a first slot of the distal cap; and returning the first spline to its original first orientation.
- the first spline automatically returns from the second orientation to the first orientation.
- rotating the first spline about its major axis comprises rotating the first spline about 60 degrees to about 120 degrees about its major axis.
- the method further comprises separating a second spline from the two or more flexible splines of the cylindrical spline array; rotating the second spline about its major axis from the first orientation to the second orientation; inserting the distal end of the second spline while it is in the second orientation into a second slot; and returning the second spline from the second orientation to the first orientation.
- the method further comprises delivering a potting material into the distal cap.
- the method further comprises inserting a cylindrical tube, plug, or gasket into the proximal end of the distal cap to occlude the gaps in the cap's slots, proximal to the distal ends of the splines.
- a method of forming a flexible electrode assembly includes: forming a first flexible printed circuit comprising one or more electrodes on an upper surface of a substrate and forming a second flexible printed circuit comprising one or more electrodes on a lower surface of the substrate to produce a flexible layered sheet; separating the flexible layered sheet into two or more splines extending longitudinally from a proximal end of the flexible layered sheet to a distal end of the flexible layered sheet, wherein the two or more splines are fully separated from one another such that they are not connected and at least one of the splines includes two or more electrodes; inserting a first end of a first spline of the two or more splines into a first slot provided in a distal cap; and inserting a first end of a second spline of the two or more splines into a second slot provided in the distal cap.
- the substrate comprises a shape memory material.
- the step of separating the flexible layered sheet into two or more splines comprises laser cutting the flexible layered sheet into two or more splines.
- the step of separating the flexible layered sheet into two or more splines comprises die cutting the flexible layered sheet into two or more splines.
- the method further includes securing a second end of the first spline and a second end of the second spline to a distal end of a catheter body to form an expandable electrode assembly, wherein the expandable electrode assembly is capable of transitioning from a collapsed configuration to an expanded configuration.
- the method further including at least partially rotating the first end of the first spline to facilitate insertion of the first end into the first slot provided in the distal cap and at least partially rotating the first end of the second spline to facilitate insertion of the first end of the second spline into the second slot provided in the distal cap.
- FIG. 1 is a schematic diagram showing a catheter in the context of a system
- FIGS. 2A-2B are schematic views of an exemplary catheter
- FIG. 3A is an isometric view of an expandable electrode assembly shown in a collapsed configuration
- FIG. 3B is an isometric view of the expandable electrode assembly of FIG. 3A shown in an expanded configuration
- FIG. 4 is a schematic view of an exemplary distal cap
- FIG. 5A is a schematic view of a flattened array of multiple flexible splines
- FIG. 5B is a close-up, schematic view of the distal ends of each of the splines of the flattened array shown in FIG. 5A ;
- FIG. 6 is a close-up, schematic view of a distal portion of an electrode assembly showing the distal ends of multiple flexible splines engaged with a distal cap;
- FIG. 7 is a schematic view of another exemplary distal cap
- FIG. 8A is a schematic view of another exemplary flattened array of multiple flexible splines
- FIG. 8B is a close-up, schematic view of the distal ends of each of the splines of the flattened array shown in FIG. 8A .
- FIG. 9A is a detailed view of a distal portion of an exemplary electrode assembly showing the distal ends of a plurality of flexible splines engaged with a distal cap 170 ;
- FIG. 9B is a cross-sectional view of the distal portion of the exemplary electrode assembly shown in FIG. 9A taken along lines A-A;
- FIG. 10 is a cross-sectional view of the distal portion of another exemplary electrode assembly including a distal cap having a cylindrical plug inserted therein;
- FIG. 11 is a flow chart of a method of constructing an exemplary electrode assembly.
- FIG. 12 is a schematic view of an exemplary, individual spline being rotated about its major axis and bent about its minor axis such that the distal end of the spline can be engaged within a slot provided in an exemplary distal cap.
- FIG. 1 is a high level, schematic view of an overall system 2 that includes a physician, a patient, catheters, including a mapping catheter 10 , and related electrophysiology equipment located within an operating room.
- a physician 16 introduces the catheter 10 into the vasculature of the patient 11 at the patient's leg and advances it along a blood vessel ultimately, entering the patient's heart 12 .
- Other catheters that may be used in the procedure are represented by companion catheter 18 .
- Each catheter 10 , 18 is coupled to signal conditioning hardware 20 with appropriate catheter cabling typified by catheter cable 17 .
- the signal conditioning hardware 20 performs various interface functions applicable to the mapping, tracking, and registration procedures that are performed in conjunction with the workstation 24 . If the companion catheter 18 is an ablation catheter, then conditioning hardware also forms an interface to an RF ablation unit (not illustrated).
- the physician looks at a computer display 26 .
- Present on the display 26 is a substantial amount of information.
- a large window presents an image of the heart chamber 13 along with an image of the catheter 10 .
- the physician will manipulate and control the catheter 10 based in part on the images and other data presented on the display 26 .
- the image 27 seen in FIG. 1 is schematic and depicts the distal array of the deployed catheter 10 occupying a small portion of the heart chamber 13 volume.
- the representation of the heart chamber 13 may use color, wire frame, or other techniques to depict the structure of the heart chamber 13 and to simultaneously portray electrical activity of the patient's heart. In some cases, it may be useful to display chamber geometry, catheter location, and electrical activity in an integrated fashion on the display 26 .
- the physician will observe the display 26 and interact with the workstation processing unit 24 and the catheters 10 and 18 , to direct a medical procedure such as, for example, a cardiac mapping procedure.
- FIGS. 2A and 2B are schematic views of an exemplary intravascular catheter 10 .
- the catheter 10 may be used to map electro-anatomical characteristics of the heart in a cardiac mapping procedure.
- the mapping procedure may be an in-contact mapping or a non-contact mapping procedure.
- the catheter 10 may be deployed at a target location within a patient's heart, placing multiple electrodes in a known spatial configuration. Electrode stability and the known spatial geometry of the electrodes may improve the accuracy of the mapping device.
- the catheter 10 may be used in an ablation procedure. These are just some examples.
- the catheter 10 includes an elongate catheter body 34 extending from a proximal end 38 to a distal end 42 .
- the catheter body 34 may include a lumen (not shown) extending there through, but this is not required in all embodiments.
- the catheter body 34 may have sufficient flexibility so as to navigate the tortuous pathways of a patient's vasculature system.
- the catheter 10 can include a handle assembly 46 coupled to the proximal end 38 of the catheter body 34 . A physician may manipulate the handle assembly 46 to deliver, steer, rotate, deploy and/or deflect the catheter 10 when performing a medical procedure.
- the catheter 10 may include an expandable electrode assembly 30 including one or more electrodes that may be used for cardiac mapping or diagnosis, ablation and/or other therapies involving the application of electrical energy to a patient's heart.
- the handle assembly 46 may include a first actuation mechanism 48 that may be manipulated to transition the expandable electrode assembly 30 from a collapsed configuration (shown in FIG. 2A ) suitable for delivery of the catheter 10 to a target location within a patient's body (e.g. the heart) and an expanded configuration (shown in FIG. 2B ) suitable for use in a diagnostic procedure and/or delivery of a therapy.
- the actuation mechanism 48 may include a pull wire that may be coupled to the expandable electrode assembly 30 that, when actuated in a proximal direction as indicated by the arrow shown in FIG. 2B , causes the expandable electrode assembly 30 to transition from the collapsed configuration to the expanded configuration.
- the actuation mechanism 48 may include a retractable sheath that, when retracted in a proximal direction as indicated by the arrow shown in FIG. 2B , may permit the expandable electrode assembly 30 to self-expand from the collapsed configuration to the expanded configuration.
- the catheter body 34 may include a deflectable distal portion 52 that a physician may manipulate using a second actuation mechanism 54 provided in the handle assembly 46 to position the electrode assembly 30 nearer or adjacent to tissue of interest.
- FIGS. 3A and 3B show different views of an exemplary expandable electrode assembly 30 .
- the expandable electrode assembly 30 is capable of being transitioned form a generally cylindrical, collapsed configuration suitable for delivery of the catheter 10 and the electrode assembly 30 to a target location within the patient's heart and an expanded configuration suitable for use in a desired cardiac procedure such as, for example, a mapping or ablation procedure.
- the expandable electrode assembly 30 may include two or more flexible splines 60 which may be capable of being flexed outwardly and away from a longitudinal axis of the electrode assembly 30 .
- an actuation mechanism may be utilized to transition the electrode assembly 30 including the two or more flexible splines 60 from the collapsed configuration ( FIG. 3A ) to the expanded configuration ( FIG. 3B ).
- the flexible splines 60 may be incorporate a shape memory material that may facilitate self-expansion of the flexible splines 60 and consequently, the electrode assembly 30 , from the collapsed configuration to the expanded configuration.
- the flexible splines 60 may be relatively stiff such that the electrode assembly 30 may be expanded into a known, reproducible shape capable of retaining a known spatial geometry when in use which, in some cases, may be aided by the incorporation of a shape-memory material or other stiff polymeric material such as, for example, a nickel-titanium alloy, or a polyimide or PEEK into the flexible splines 60 .
- the flexible splines 60 may be fabricated such that they are somewhat compliant so as to conform to a surface of a patient's heart when placed into intimate contact with the surface of the patient's heart.
- the expandable electrode assembly 30 may include a number of electrodes 64 located on each of the flexible splines 60 forming an electrode array.
- the electrodes 64 may be sensing electrodes.
- the electrode assembly 30 may include at least some current injecting locator electrodes.
- the locator electrodes may be positioned diametrically opposed to each other on the meridian of the expanded electrode assembly 30 .
- the electrode assembly 30 may also include a tip electrode which may be used for cardiac stimulation, ablation or as a locator electrode.
- Each electrode 64 may be electrically connected to the cabling in the handle assembly 46 .
- the signal from each individual electrode may be independently available at the hardware interface 20 . This may be achieved by passing a conductor for each electrode through a connection cable extending within the catheter body.
- the signals may be multiplexed to minimize the number of conductors.
- the electrodes 64 may have a uniform and symmetrical distribution throughout the expandable electrode assembly 30 . In other cases, the electrodes 64 may have an asymmetrical distribution throughout the expandable electrode assembly 30 . Certain electrode distributions may be advantageous for non-contact cardiac mapping, while others may be more suited for contact mapping. The number of electrodes 64 distributed throughout the electrode assembly 30 and the stability of the shape of electrode assembly 30 , when expanded, may affect the overall performance of the mapping system.
- the electrodes 64 may be located on the outer surfaces 66 of each or the splines 60 , the inner surfaces 68 of each of the splines 60 , or both the outer and inner surfaces 66 , 68 of each of the flexible splines 60 . In some cases, up to sixty-four sensing electrodes 64 may be distributed over and along the various splines 60 . Depending upon the application, the electrode assembly 30 may include fewer or greater than sixty-four electrodes. In some cases, the electrodes 64 may form a number of bipolar electrode pairs.
- the bipolar electrode pairs may be formed between two adjacent electrodes located on the same surface (inner or outer surface) of a spline, between two electrodes located on adjacent splines, or between a first electrode located on an outer surface opposite a second electrode located on an inner surface of a spline.
- all of the electrodes 64 located on the flexible splines 60 may be paired together to form a plurality of electrode pairs distributed along the length of the individual flexible splines 60 .
- Up to thirty-two bipolar electrode pairs may be distributed throughout the electrode assembly 30 for a total of up to sixty-four electrodes 64 depending upon the overall size and geometry of the electrode assembly 30 .
- the electrode assembly 30 may be configured such that it is capable of carrying fewer or greater than thirty-two bipolar electrode pairs, depending upon the overall size and geometry of the electrode assembly 30 and the desired application.
- each of the flexible splines 60 may extend from a distal end 42 of the catheter body 34 to a distal cap 70 .
- the distal cap 70 may have a rounded distal end, and may define an atraumatic distal tip of the catheter 10 .
- at least one of the flexible splines 60 may be mechanically interlocked with a corresponding slot provided in the distal cap 70 such that there is a one to one mechanical engagement between the flexible spline 60 and a corresponding slot provided in the cap 70 .
- each of the flexible splines 60 may be mechanically interlocked with a corresponding slot provided in the distal cap 70 such that there is a one to one mechanical engagement between each flexible spline 60 and each slot provided in the cap 70 .
- An adhesive may be utilized to provide a secondary means of securing the each of the flexible splines within each of their respective slots.
- the distal cap 70 may serve as a tip electrode, but this is not required in all embodiments.
- FIG. 4 is a schematic view of an exemplary distal cap 170 that may be utilized in the construction of an exemplary expandable electrode assembly such as, for example, expandable electrode assembly 30 , as described herein.
- FIG. 5A is a schematic view of a flattened array 150 of multiple flexible splines 160 that may be engaged with each of the slots 174 provided in the distal cap 170 to form an electrode assembly 30
- FIG. 5B is a close-up, schematic view of the distal ends 178 of each of the splines 160 of the flattened array 150 .
- the distal cap 170 may be machined or laser cut from a metal or suitable plastic such that it has a desired size and shape. As shown in FIG. 4 , the distal cap 170 may be fabricated such that it has a substantially hollow, cylindrical shape, and may include two or more slots 174 spaced an equal distance from one another about an outer circumference of the distal cap 170 . In some cases, as shown in FIG. 4 , each of the slots 174 may have a height h greater than a width w such that they are capable of receiving and retaining a distal end 178 of a respective flexible spline 160 when the distal end 178 of the flexible spline is inserted into the slot 174 .
- the distal end of the distal cap 170 may be rounded such that it provides the catheter 10 with an atraumatic distal tip.
- the distal cap 170 may include a distal aperture 182 , but this is not required.
- the aperture 182 may facilitate an introduction of an adhesive or other suitable potting material that may be provided as a secondary means of securing the distal ends 178 of each of the flexible splines 160 to the distal cap 170 .
- a cylindrical tube, plug, or gasket may be inserted into the interior cavity of the distal cap to seal any remaining gaps between the splines and the slots subsequent to assembly.
- the distal end of the distal cap 170 may be solid.
- the flattened array 150 of multiple flexible splines 160 may be initially fabricated as a flexible, multi-layered sheet including at least one flexible printed circuit bonded to a substrate.
- the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of the flexible splines 160 , when formed, have at least one electrode located on an outer surface and at least one electrode located on an inner surface of each of the splines 160 .
- the substrate may include a shape memory material. This is just one example.
- the flexible multi-layered sheet including the flexible printed circuit is then laser cut or die cut in a direction along its longitudinal axis to form each of the individual, flexible splines 160 .
- the flexible multi-layered sheet including the flexible printed circuit is then laser cut or die cut to separate and form two or more flexible splines.
- the flexible multi-layered sheet may be fabricated from a dual-sided flexible printed circuit having electrodes located both an upper surface and a lower surface.
- the various materials used to fabricate the flexible multi-layered sheet from which the flexible splines 160 are formed may be selected such that each of the flexible splines 160 has a desired flexibility profile.
- the materials used to fabricate the flexible multi-layered sheet from which the flexible splines 160 are formed may be selected such that the flexible splines 160 are capable of some degree of deformation so that they can be twisted, rotated, and/or bent to facilitate insertion of their distal end into a distal cap (e.g. distal cap 170 ) during construction of an electrode assembly such as, for example, electrode assembly 30 .
- At least one of the layers or substrates of the multi-layered flexible sheet may include a shape memory material such as, for example, Nitinol or another super-elastic material.
- a shape memory material such as, for example, Nitinol or another super-elastic material.
- Incorporation of a Nitinol or super-elastic layer or substrate into the flexible multi-layered sheet from which the flexible splines 160 may be formed may provide the splines 160 with a degree of flexibility and deformation needed such that they can be twisted or rotated about a major axis to facilitate insertion of their distal end into a distal cap (e.g. distal cap 170 ) during construction of an electrode assembly such as, for example, electrode assembly 30 .
- a distal cap e.g. distal cap 170
- each of the flexible splines 160 extend from a proximal band 186 to which they are attached or integrally formed with at their proximal ends 196 to a free distal end 178 .
- Two or more tabs 190 , 192 may extend from the proximal band 186 . Traces on the flexible printed circuit including those connected to the electrodes may terminate to pads bonded on an inner and/or outer surface of the two or more tabs 190 , 192 .
- the two or more tabs 190 , 192 and may be utilized to couple to the electrode assembly 30 to the distal end 32 of the catheter body 34 .
- both the proximal ends 196 and the distal ends 178 may be detached from one another.
- the splines 160 may be independent of one another, and may be inserted into the distal cap 170 and distal end 32 of the catheter body 34 either simultaneously or sequentially.
- Each of the distal ends 178 of the flexible splines 160 may be formed by laser cutting, die cutting or other suitable method such that they define a locking feature 198 that is configured to be inserted into and secured within each of the slots 174 of the distal cap 170 .
- the locking feature 198 may be defined by a geometrical shape having a first portion 202 having a first width and a second portion 204 having a second width. The first width can be greater than the second width.
- the locking feature 198 may have an arrowhead shape.
- each of the locking features 198 may include an aperture 201 .
- An adhesive when utilized, may permeate the apertures 201 and may provide a further means of securing the distal ends 178 to the distal cap 170 .
- the material(s) from which the flattened array 150 may be sufficiently deformable such that the locking feature 198 is capable of being deformed for insertion into the corresponding slot 174 of the distal cap 170 .
- the points 200 of the arrowhead shaped locking feature 198 may be capable of bending or folding inward towards a centerline 210 when inserted into a slot 174 of a distal cap 170 .
- the material from which the flexible splines 160 is fabricated may be sufficiently resilient such that the arrowhead-shaped locking feature 198 returns to its unfolded or uncompressed state, mechanically securing the distal end 178 of the flexible spline 160 in the slot 174 such that the distal end 178 of the spline is unable to be disengaged or removed from the slot 174 .
- FIG. 6 is a detailed view of a distal portion 220 of an exemplary electrode assembly showing the distal ends 178 of a plurality of flexible splines 160 engaged with the distal cap 170 .
- FIG. 7 is a schematic view of another exemplary distal cap 270 that may be utilized in the construction of an exemplary expandable electrode assembly such as, for example, expandable electrode assembly 30 , as described herein.
- FIG. 8A is a schematic view of another exemplary flattened array 250 of multiple flexible splines 260 that may be engaged with each of the slots 274 provided in the distal cap 270 to form an electrode assembly
- FIG. 8B is a close-up, schematic view of the distal ends 278 of each of the splines 260 of the flattened array 250 .
- the distal cap 270 may be machined or laser cut from a metal or suitable plastic such that it has a desired size and shape. As shown in FIG. 7 , the distal cap 270 may be fabricated such that it has a substantially cylindrical shape defining an interior cavity, and may include two or more slots 274 . In some cases, the two or more slots 274 may be spaced an equal distance from one another about an outer circumference of the distal cap 270 about the same longitudinal line. In other cases, the distance between the two or more slots 274 may vary. As shown in FIG.
- each of the slots 274 may have a width w greater than a height h such that they are capable of receiving and retaining a distal end 278 of a respective flexible spline 260 when the distal end 278 of the flexible spline 260 is inserted into the slot 274 .
- the distal end of the distal cap 270 may be rounded such that it provides the catheter 10 with an atraumatic distal tip.
- the distal cap 270 may include a distal aperture 282 , but this is not required in all embodiments.
- the aperture 282 may facilitate an introduction of an adhesive or other suitable potting material that may be provided as a secondary means of securing the distal ends 278 of each of the flexible splines 260 to the distal cap 270 .
- the distal end of the distal cap 270 may be solid.
- a cylindrical tube, plug, or gasket may be inserted into the interior cavity of the distal cap 270 to seal any remaining gaps between the splines 260 and the slots 274 .
- the flattened array 250 of multiple flexible splines 260 may be initially fabricated as a flexible, multi-layered sheet including at least one flexible printed circuit bonded to a substrate.
- the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of the flexible splines 260 , when formed, have at least electrode located on an outer surface and at least one electrode located on an inner surface of each of the splines 260 .
- the flexible multi-layered sheet may be fabricated from a dual-sided flexible printed circuit having electrodes located both an upper surface and a lower surface. The flexible multi-layered sheet including the flexible printed circuit(s) is then laser cut or die cut in a direction along its longitudinal axis to form each of the individual, flexible splines 260 .
- the various materials used to fabricate the flexible multi-layered sheet from which the flexible splines 260 are formed may be selected such that each of the flexible splines 260 has a desired flexibility profile.
- the materials used to fabricate the flexible multi-layered sheet from which the flexible splines 260 are formed may be selected such that the flexible splines 260 are capable of some degree of deformation so that their distal end can be elastically inserted into a distal cap (e.g. distal cap 70 ) during construction of an electrode assembly such as, for example, electrode assembly 30 .
- at least one of the layers of the multi-layered flexible sheet may include Nitinol or another super-elastic material.
- Incorporation of a Nitinol or super-elastic layer or substrate into the flexible multi-layered sheet from which the flexible splines 260 may be formed may provide the splines 260 with a degree of mechanical strength, flexibility and deformation needed such that their distal end can be inserted into a distal cap (e.g. distal cap 270 ), causing the distal barb 302 to bend inward and then recover to lock the spline in position during construction of an electrode assembly such as, for example, electrode assembly 30 .
- a distal cap e.g. distal cap 270
- each of the flexible splines 260 extend from a proximal band 286 to which they are attached or integrally formed with at their proximal ends 296 to a free distal end 278 .
- Two or more tabs 290 , 292 may extend from the proximal band 286 . Traces on the flexible printed circuit including those connected to the electrodes may terminate to pads bonded on an inner and/or outer surface of the two or more tabs 290 , 292 .
- the two or more tabs 290 , 292 and may be utilized to couple to the electrode assembly 30 to the distal end 42 of the catheter body 34 .
- both the proximal ends 296 and the distal ends 278 may be freely detached from one another.
- Each of the distal ends 278 of the flexible splines 260 may be formed by laser cutting, die cutting or other suitable method such that they define a locking feature 298 that is configured to be inserted into and secured within each of the slots 274 of the distal cap 270 .
- the locking feature 298 may be defined by a geometrical shape having a first portion 302 having a first width and a second portion 304 having a second width. The first width can be greater than the second width.
- the locking feature 298 may have a barb or hook shape.
- the material(s) from which the flattened array 250 may be sufficiently deformable such that the locking feature 298 is capable of being deformed for insertion into the corresponding slot 274 of the distal cap 270 .
- the first portion 302 of the barb or hook shaped locking feature 298 may be capable of bending or flexing inward towards a centerline 310 when inserted into a slot 274 of a distal cap 270 .
- the material from which the flexible splines 260 is fabricated may be sufficiently resilient such that the hook or barbed-shaped locking feature 298 returns to its uncompressed state, mechanically securing the distal end 278 of the flexible spline 260 in the slot 274 such that the distal end 278 of the spline is unable to be disengaged or removed from the slot 274 .
- FIG. 9A is a detailed view of a distal portion 320 of an exemplary electrode assembly showing the distal ends 278 of a plurality of flexible splines 160 engaged with the distal cap 170 .
- FIG. 9B is a cross-sectional view of the distal portion 320 taken along lines A-A of FIG. 9A and shows the first portions 302 of the barb-shaped locking features 298 engaged in the slots 274 of distal cap 270 .
- FIG. 10 is a cross sectional view of a distal portion 370 of an exemplary electrode assembly including a cylindrical tube, plug, or gasket 356 .
- FIG. 11 is a flow chart of a method 400 of constructing an expandable electrode assembly using a distal cap and a flexible spline array, as described herein.
- the method 400 may be automated using appropriate machinery or manually performed by an individual.
- a flattened spline array may be formed from flexible, multilayered sheet (Block 404 ).
- the flexible, multi-layered sheet from which a flattened spline array may be formed may includes at least one flexible printed circuit bonded to a substrate.
- the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of the flexible splines, when formed, have at least electrode located on an outer surface and at least one electrode located on an inner surface of each of the splines.
- the individual splines may be formed by laser cutting or die cutting the flexible multi-layered sheet in a direction along its longitudinal axis to form the flattened spline array.
- the flattened spline array includes at least two splines.
- the flattened spline array including the two or more splines may be rolled into cylindrical shape (Block 408 ).
- the flattened spline array may be rolled around a mandrel or other cylindrical member to facilitate formation of the cylindrical shape.
- a band may also be placed around the array to maintain its cylindrical shape during assembly.
- a distal cap such as those described herein may be positioned adjacent a distal end of the now cylindrical array such that the distal cap is co-axial with the cylindrical array (Block 412 ).
- a first spline may be separated from the other splines of the array (Block 416 ) and rotated or twisted about its major axis and bent about its minor axis from a first orientation to a second orientation (Block 420 ).
- the first spline may be rotated at about 60 to about 120 degrees about its major axis and more particularly, about 90 degrees about its major axis from a first orientation to a second orientation.
- the spline may also be bent about its minor axis to align with one of the slots in the distal tip 570 .
- the spline should be rotated a sufficient degree of rotation about its major and minor axes such that the distal end of the locking feature is capable of being inserted into a corresponding slot provided in the distal cap.
- the distal end of the spline including the locking feature may be deformed so as to facilitate insertion of the distal end of the spline into the slot.
- the distal end of the spline may then be inserted into a slot provided in the distal cap while still in the second orientation (Block 420 ). Once inserted through the slot, the locking feature may re-assume its un-deformed shape, if applicable.
- the spline may be returned from its second orientation to its first orientation and lie flat in the slot (Block 428 ). In some cases, the spline may be manually twisted or rotated in the slot from its second orientation to its first orientation. In other cases, because of the elasticity of some of the materials used to construct the flexible, multi-layer sheet from which the spline array is formed, the spline may be configured to automatically return from its second orientation to its first orientation and lie flat in the slot.
- the spline may be mechanically interlocked with the cap by the locking feature formed at the distal end of the spline.
- the remaining splines may be engaged with the cap following the same steps outlined by Blocks 416 , 420 , 424 , and 428 .
- the proximal ends of the splines may be banded together, and may be anchored or bonded to a distal portion of the catheter body.
- the splines may be fully separated from one another such that they are not connected.
- Each of the distal ends of the separated splines may be inserted into a corresponding slot provided in the distal cap.
- the distal ends of the separated splines may be mechanically interlocked with the cap by the locking feature formed at the distal end of the spline. Some rotation of the individual splines may be necessary to urge the locking feature into slot after which the spline may lie flat in the slot. The remaining individual splines may be engaged with the cap utilizing the same method.
- an adhesive may be used to further secure the distal ends of the spline with the cap.
- the distal cap may include an aperture through which an adhesive or other suitable potting material may be introduced.
- a cylindrical tube, plug, or gasket may also be inserted into the proximal end of the cap, occluding the gaps proximal to the distal ends of the splines.
- a sealing material may be provided to seal any gaps between the distal ends of the splines and the slots such that the outer surface of the distal cap is substantially smooth and does not provide a surface onto which blood may collect and thrombi form.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Physiology (AREA)
- Surgical Instruments (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
A catheter including expandable electrode assembly having a distal cap that mechanically engages a locking feature provided on the distal ends of each of two or more flexible splines forming a portion of the expandable electrode assembly is described. The distal cap defines an atraumatic distal tip of the catheter. The catheter may be used in a cardiac mapping and/or ablation procedure.
Description
- This application is a continuation of U.S. application Ser. No. 14/718,909, filed May 21, 2015, which claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 62/007,320, filed Jun. 3, 2014, the entirety of which are incorporated herein by reference.
- The present disclosure generally relates to electrode assemblies for use in cardiac procedures and more particularly, to an electrode assembly that may be utilized in a cardiac mapping procedure.
- Electrophysiology catheters are used in a variety of diagnostic and/or therapeutic medical procedures to diagnose and/or correct conditions such as cardiac arrhythmias, including for example, atrial tachycardia, ventricular tachycardia, atrial fibrillation, and atrial flutter. Cardiac arrhythmias are a leading cause of stroke, heart disease, and sudden death. The physiological mechanism of arrhythmia involves an abnormality in the electrical conduction of the heart. There are a number of treatment options for patients with arrhythmia that include medication, implantable devices, and catheter ablation of cardiac tissue.
- The present disclosure generally relates to electrode assemblies for use in cardiac procedures and more particularly, to an electrode assembly that may be utilized in a cardiac mapping procedure.
- In a first example, a catheter is disclosed. The catheter includes an elongate catheter body extending from a proximal end to a distal end. An expandable electrode assembly is disposed at the distal end of the catheter body. The electrode assembly comprises a plurality of flexible splines extending from the distal end of the catheter body to a distal cap. The distal cap comprises a plurality of slots disposed about an outer circumference of the distal cap. The plurality of flexible splines includes at least a first spline comprising a distal end defining a locking feature secured within one of the plurality of slots provided in the distal cap. The expandable electrode assembly is configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration. Two or more electrodes are located on the first spline.
- In addition or alternatively, and in a second example, the distal cap comprises a cylindrical shape defining an interior cavity.
- In addition or alternatively, and in a third example, the distal cap comprises a rounded tip having an aperture defined therein.
- In addition or alternatively, and in a fourth example, a height is greater than a width for each of the slots.
- In addition or alternatively, and in a fifth example, a width is greater than a height for each of the slots.
- In addition or alternatively, and in a sixth example, the locking feature defined by the distal end of the first spline comprises a first portion having a first width and a second portion having a second width, the first width greater than the second width.
- In addition or alternatively, and in a seventh example, the locking feature defined by the distal end of the first spline comprises an aperture formed therein.
- In addition or alternatively, and in an eighth example, an adhesive is disposed within the distal cap.
- In addition or alternatively, and in a ninth example, the distal cap comprises a rounded distal end and defines an atraumatic distal tip of the catheter.
- In addition or alternatively, and in a tenth example, each of the slots are spaced an equal distance from one another about the outer circumference of the distal cap.
- In addition or alternatively, and in an eleventh example, an actuation member is coupled to the expandable electrode assembly.
- In addition or alternatively, and in a twelfth example, the locking feature defined by the distal end of the first spline comprises a hook shape.
- In addition or alternatively, and in a thirteenth example, the locking feature defined by the distal end of the first spline comprises an arrowhead shape.
- In addition or alternatively, and in a fourteenth example, the distal cap serves as a distal tip electrode.
- In a fifteenth example, a catheter is disclosed. The catheter includes an elongate catheter body extending from a proximal end to a distal end. An expandable electrode assembly is disposed at the distal end of the catheter body. The electrode assembly comprises a plurality of flexible splines including a first spline extending from the distal end of the catheter body to a distal cap. The distal cap comprises a plurality of slots including a first slot disposed about an outer circumference of the distal cap. The first spline comprises a distal end defining a locking feature secured within the first slot. The expandable electrode assembly is configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration. Two or more electrodes are located on the first spline. An actuation member is coupled to the expandable electrode assembly.
- In a sixteenth example, a method of forming an expandable basket electrode assembly is disclosed. The method includes forming a flattened spline array comprising two or more flexible splines, a distal end of each spline defining a locking feature; forming a cylindrical spline array from the flattened spline array; positioning a distal cap comprising two or more slots disposed about an outer circumference adjacent a distal end of the cylindrical spline array; separating a first spline from the two or more flexible splines of the cylindrical spline array; rotating the first spline about its major axis from a first orientation to a second orientation; bending the first spline along its minor axis while it is in its second orientation and inserting the distal end into a first slot of the distal cap; and returning the first spline to its original first orientation.
- In addition or alternatively, and in a seventeenth example, the first spline automatically returns from the second orientation to the first orientation.
- In addition or alternatively, and in an eighteenth example, rotating the first spline about its major axis comprises rotating the first spline about 60 degrees to about 120 degrees about its major axis.
- In addition or alternatively, and in a nineteenth example, the method further comprises separating a second spline from the two or more flexible splines of the cylindrical spline array; rotating the second spline about its major axis from the first orientation to the second orientation; inserting the distal end of the second spline while it is in the second orientation into a second slot; and returning the second spline from the second orientation to the first orientation.
- In addition or alternatively, and in a twentieth example, the method further comprises delivering a potting material into the distal cap.
- In addition or alternatively, and in a twenty-first example, the method further comprises inserting a cylindrical tube, plug, or gasket into the proximal end of the distal cap to occlude the gaps in the cap's slots, proximal to the distal ends of the splines.
- In a twenty-second example, a method of forming a flexible electrode assembly is disclosed. The method includes: forming a first flexible printed circuit comprising one or more electrodes on an upper surface of a substrate and forming a second flexible printed circuit comprising one or more electrodes on a lower surface of the substrate to produce a flexible layered sheet; separating the flexible layered sheet into two or more splines extending longitudinally from a proximal end of the flexible layered sheet to a distal end of the flexible layered sheet, wherein the two or more splines are fully separated from one another such that they are not connected and at least one of the splines includes two or more electrodes; inserting a first end of a first spline of the two or more splines into a first slot provided in a distal cap; and inserting a first end of a second spline of the two or more splines into a second slot provided in the distal cap.
- In addition or alternatively, and in a twenty-third example, the substrate comprises a shape memory material.
- In addition or alternatively, and in a twenty-fourth example, the step of separating the flexible layered sheet into two or more splines comprises laser cutting the flexible layered sheet into two or more splines.
- In addition or alternatively, and in a twenty-fifth example, the step of separating the flexible layered sheet into two or more splines comprises die cutting the flexible layered sheet into two or more splines.
- In addition or alternatively, and in a twenty-sixth example, the method further includes securing a second end of the first spline and a second end of the second spline to a distal end of a catheter body to form an expandable electrode assembly, wherein the expandable electrode assembly is capable of transitioning from a collapsed configuration to an expanded configuration.
- In addition or alternatively, and in a twenty-seventh example, the method further including at least partially rotating the first end of the first spline to facilitate insertion of the first end into the first slot provided in the distal cap and at least partially rotating the first end of the second spline to facilitate insertion of the first end of the second spline into the second slot provided in the distal cap.
- The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
- The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
-
FIG. 1 is a schematic diagram showing a catheter in the context of a system; -
FIGS. 2A-2B are schematic views of an exemplary catheter; -
FIG. 3A is an isometric view of an expandable electrode assembly shown in a collapsed configuration; -
FIG. 3B is an isometric view of the expandable electrode assembly ofFIG. 3A shown in an expanded configuration; -
FIG. 4 is a schematic view of an exemplary distal cap; -
FIG. 5A is a schematic view of a flattened array of multiple flexible splines; -
FIG. 5B is a close-up, schematic view of the distal ends of each of the splines of the flattened array shown inFIG. 5A ; -
FIG. 6 is a close-up, schematic view of a distal portion of an electrode assembly showing the distal ends of multiple flexible splines engaged with a distal cap; -
FIG. 7 is a schematic view of another exemplary distal cap; -
FIG. 8A is a schematic view of another exemplary flattened array of multiple flexible splines; -
FIG. 8B is a close-up, schematic view of the distal ends of each of the splines of the flattened array shown inFIG. 8A . -
FIG. 9A is a detailed view of a distal portion of an exemplary electrode assembly showing the distal ends of a plurality of flexible splines engaged with adistal cap 170; -
FIG. 9B is a cross-sectional view of the distal portion of the exemplary electrode assembly shown inFIG. 9A taken along lines A-A; -
FIG. 10 is a cross-sectional view of the distal portion of another exemplary electrode assembly including a distal cap having a cylindrical plug inserted therein; -
FIG. 11 is a flow chart of a method of constructing an exemplary electrode assembly; and -
FIG. 12 is a schematic view of an exemplary, individual spline being rotated about its major axis and bent about its minor axis such that the distal end of the spline can be engaged within a slot provided in an exemplary distal cap. - While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
- The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
- For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
- All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.
- The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
- Although some suitable dimensions, ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.
- As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
-
FIG. 1 is a high level, schematic view of an overall system 2 that includes a physician, a patient, catheters, including amapping catheter 10, and related electrophysiology equipment located within an operating room. Aphysician 16 introduces thecatheter 10 into the vasculature of the patient 11 at the patient's leg and advances it along a blood vessel ultimately, entering the patient'sheart 12. Other catheters that may be used in the procedure are represented bycompanion catheter 18. Each 10, 18 is coupled to signalcatheter conditioning hardware 20 with appropriate catheter cabling typified bycatheter cable 17. Thesignal conditioning hardware 20 performs various interface functions applicable to the mapping, tracking, and registration procedures that are performed in conjunction with theworkstation 24. If thecompanion catheter 18 is an ablation catheter, then conditioning hardware also forms an interface to an RF ablation unit (not illustrated). - In use, the physician looks at a
computer display 26. Present on thedisplay 26 is a substantial amount of information. A large window presents an image of theheart chamber 13 along with an image of thecatheter 10. The physician will manipulate and control thecatheter 10 based in part on the images and other data presented on thedisplay 26. Theimage 27 seen inFIG. 1 is schematic and depicts the distal array of the deployedcatheter 10 occupying a small portion of theheart chamber 13 volume. The representation of theheart chamber 13 may use color, wire frame, or other techniques to depict the structure of theheart chamber 13 and to simultaneously portray electrical activity of the patient's heart. In some cases, it may be useful to display chamber geometry, catheter location, and electrical activity in an integrated fashion on thedisplay 26. In use, the physician will observe thedisplay 26 and interact with theworkstation processing unit 24 and the 10 and 18, to direct a medical procedure such as, for example, a cardiac mapping procedure.catheters -
FIGS. 2A and 2B are schematic views of an exemplaryintravascular catheter 10. In some cases, thecatheter 10 may be used to map electro-anatomical characteristics of the heart in a cardiac mapping procedure. The mapping procedure may be an in-contact mapping or a non-contact mapping procedure. Thecatheter 10 may be deployed at a target location within a patient's heart, placing multiple electrodes in a known spatial configuration. Electrode stability and the known spatial geometry of the electrodes may improve the accuracy of the mapping device. Alternatively, thecatheter 10 may be used in an ablation procedure. These are just some examples. - As shown in
FIGS. 2A and 2B , thecatheter 10 includes anelongate catheter body 34 extending from aproximal end 38 to adistal end 42. In addition, thecatheter body 34 may include a lumen (not shown) extending there through, but this is not required in all embodiments. Thecatheter body 34 may have sufficient flexibility so as to navigate the tortuous pathways of a patient's vasculature system. Thecatheter 10 can include ahandle assembly 46 coupled to theproximal end 38 of thecatheter body 34. A physician may manipulate thehandle assembly 46 to deliver, steer, rotate, deploy and/or deflect thecatheter 10 when performing a medical procedure. - Additionally, as shown in
FIGS. 2A and 2B , thecatheter 10 may include anexpandable electrode assembly 30 including one or more electrodes that may be used for cardiac mapping or diagnosis, ablation and/or other therapies involving the application of electrical energy to a patient's heart. In some cases, thehandle assembly 46 may include afirst actuation mechanism 48 that may be manipulated to transition theexpandable electrode assembly 30 from a collapsed configuration (shown inFIG. 2A ) suitable for delivery of thecatheter 10 to a target location within a patient's body (e.g. the heart) and an expanded configuration (shown inFIG. 2B ) suitable for use in a diagnostic procedure and/or delivery of a therapy. In some cases, theactuation mechanism 48 may include a pull wire that may be coupled to theexpandable electrode assembly 30 that, when actuated in a proximal direction as indicated by the arrow shown inFIG. 2B , causes theexpandable electrode assembly 30 to transition from the collapsed configuration to the expanded configuration. In other cases, theactuation mechanism 48 may include a retractable sheath that, when retracted in a proximal direction as indicated by the arrow shown inFIG. 2B , may permit theexpandable electrode assembly 30 to self-expand from the collapsed configuration to the expanded configuration. These are just some examples of exemplary actuation mechanisms that may be utilized to facilitate expansion of theexpandable electrode assembly 30 when thecatheter 10 is in use. In some cases, thecatheter body 34 may include a deflectabledistal portion 52 that a physician may manipulate using asecond actuation mechanism 54 provided in thehandle assembly 46 to position theelectrode assembly 30 nearer or adjacent to tissue of interest. -
FIGS. 3A and 3B show different views of an exemplaryexpandable electrode assembly 30. As shown inFIGS. 3A and 3B , theexpandable electrode assembly 30 is capable of being transitioned form a generally cylindrical, collapsed configuration suitable for delivery of thecatheter 10 and theelectrode assembly 30 to a target location within the patient's heart and an expanded configuration suitable for use in a desired cardiac procedure such as, for example, a mapping or ablation procedure. - As shown in
FIGS. 3A and 3B , theexpandable electrode assembly 30 may include two or moreflexible splines 60 which may be capable of being flexed outwardly and away from a longitudinal axis of theelectrode assembly 30. In some cases, as discussed herein, an actuation mechanism may be utilized to transition theelectrode assembly 30 including the two or moreflexible splines 60 from the collapsed configuration (FIG. 3A ) to the expanded configuration (FIG. 3B ). In other cases, theflexible splines 60 may be incorporate a shape memory material that may facilitate self-expansion of theflexible splines 60 and consequently, theelectrode assembly 30, from the collapsed configuration to the expanded configuration. Theflexible splines 60 may be relatively stiff such that theelectrode assembly 30 may be expanded into a known, reproducible shape capable of retaining a known spatial geometry when in use which, in some cases, may be aided by the incorporation of a shape-memory material or other stiff polymeric material such as, for example, a nickel-titanium alloy, or a polyimide or PEEK into theflexible splines 60. Alternatively, depending upon the desired application, theflexible splines 60 may be fabricated such that they are somewhat compliant so as to conform to a surface of a patient's heart when placed into intimate contact with the surface of the patient's heart. - The
expandable electrode assembly 30 may include a number ofelectrodes 64 located on each of theflexible splines 60 forming an electrode array. In many cases, theelectrodes 64 may be sensing electrodes. In addition, theelectrode assembly 30 may include at least some current injecting locator electrodes. The locator electrodes may be positioned diametrically opposed to each other on the meridian of the expandedelectrode assembly 30. Theelectrode assembly 30 may also include a tip electrode which may be used for cardiac stimulation, ablation or as a locator electrode. - Each
electrode 64 may be electrically connected to the cabling in thehandle assembly 46. In some cases, the signal from each individual electrode may be independently available at thehardware interface 20. This may be achieved by passing a conductor for each electrode through a connection cable extending within the catheter body. As an alternative, the signals may be multiplexed to minimize the number of conductors. - The
electrodes 64 may have a uniform and symmetrical distribution throughout theexpandable electrode assembly 30. In other cases, theelectrodes 64 may have an asymmetrical distribution throughout theexpandable electrode assembly 30. Certain electrode distributions may be advantageous for non-contact cardiac mapping, while others may be more suited for contact mapping. The number ofelectrodes 64 distributed throughout theelectrode assembly 30 and the stability of the shape ofelectrode assembly 30, when expanded, may affect the overall performance of the mapping system. - The
electrodes 64 may be located on theouter surfaces 66 of each or thesplines 60, theinner surfaces 68 of each of thesplines 60, or both the outer and 66, 68 of each of theinner surfaces flexible splines 60. In some cases, up to sixty-foursensing electrodes 64 may be distributed over and along the various splines 60. Depending upon the application, theelectrode assembly 30 may include fewer or greater than sixty-four electrodes. In some cases, theelectrodes 64 may form a number of bipolar electrode pairs. The bipolar electrode pairs may be formed between two adjacent electrodes located on the same surface (inner or outer surface) of a spline, between two electrodes located on adjacent splines, or between a first electrode located on an outer surface opposite a second electrode located on an inner surface of a spline. In some cases, all of theelectrodes 64 located on theflexible splines 60 may be paired together to form a plurality of electrode pairs distributed along the length of the individualflexible splines 60. Up to thirty-two bipolar electrode pairs may be distributed throughout theelectrode assembly 30 for a total of up to sixty-fourelectrodes 64 depending upon the overall size and geometry of theelectrode assembly 30. However, it is contemplated that theelectrode assembly 30 may be configured such that it is capable of carrying fewer or greater than thirty-two bipolar electrode pairs, depending upon the overall size and geometry of theelectrode assembly 30 and the desired application. - Referring now back to
FIGS. 3A and 3B , each of theflexible splines 60 may extend from adistal end 42 of thecatheter body 34 to adistal cap 70. Thedistal cap 70 may have a rounded distal end, and may define an atraumatic distal tip of thecatheter 10. As will be described in greater detail herein, at least one of theflexible splines 60 may be mechanically interlocked with a corresponding slot provided in thedistal cap 70 such that there is a one to one mechanical engagement between theflexible spline 60 and a corresponding slot provided in thecap 70. In some cases, each of theflexible splines 60 may be mechanically interlocked with a corresponding slot provided in thedistal cap 70 such that there is a one to one mechanical engagement between eachflexible spline 60 and each slot provided in thecap 70. An adhesive may be utilized to provide a secondary means of securing the each of the flexible splines within each of their respective slots. In some cases, thedistal cap 70 may serve as a tip electrode, but this is not required in all embodiments. -
FIG. 4 is a schematic view of an exemplarydistal cap 170 that may be utilized in the construction of an exemplary expandable electrode assembly such as, for example,expandable electrode assembly 30, as described herein.FIG. 5A is a schematic view of a flattenedarray 150 of multipleflexible splines 160 that may be engaged with each of theslots 174 provided in thedistal cap 170 to form anelectrode assembly 30, andFIG. 5B is a close-up, schematic view of the distal ends 178 of each of thesplines 160 of the flattenedarray 150. - In many cases, the
distal cap 170 may be machined or laser cut from a metal or suitable plastic such that it has a desired size and shape. As shown inFIG. 4 , thedistal cap 170 may be fabricated such that it has a substantially hollow, cylindrical shape, and may include two ormore slots 174 spaced an equal distance from one another about an outer circumference of thedistal cap 170. In some cases, as shown inFIG. 4 , each of theslots 174 may have a height h greater than a width w such that they are capable of receiving and retaining adistal end 178 of a respectiveflexible spline 160 when thedistal end 178 of the flexible spline is inserted into theslot 174. The distal end of thedistal cap 170 may be rounded such that it provides thecatheter 10 with an atraumatic distal tip. In addition, thedistal cap 170 may include adistal aperture 182, but this is not required. Theaperture 182 may facilitate an introduction of an adhesive or other suitable potting material that may be provided as a secondary means of securing the distal ends 178 of each of theflexible splines 160 to thedistal cap 170. In some cases, during construction of any one of the electrode assemblies, as described herein, a cylindrical tube, plug, or gasket may be inserted into the interior cavity of the distal cap to seal any remaining gaps between the splines and the slots subsequent to assembly. Alternatively, the distal end of thedistal cap 170 may be solid. - Turning now to
FIGS. 5A and 5B , the flattenedarray 150 of multipleflexible splines 160 may be initially fabricated as a flexible, multi-layered sheet including at least one flexible printed circuit bonded to a substrate. In some cases, the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of theflexible splines 160, when formed, have at least one electrode located on an outer surface and at least one electrode located on an inner surface of each of thesplines 160. The substrate may include a shape memory material. This is just one example. The flexible multi-layered sheet including the flexible printed circuit is then laser cut or die cut in a direction along its longitudinal axis to form each of the individual,flexible splines 160. For example, the flexible multi-layered sheet including the flexible printed circuit is then laser cut or die cut to separate and form two or more flexible splines. In other cases, the flexible multi-layered sheet may be fabricated from a dual-sided flexible printed circuit having electrodes located both an upper surface and a lower surface. - The various materials used to fabricate the flexible multi-layered sheet from which the
flexible splines 160 are formed may be selected such that each of theflexible splines 160 has a desired flexibility profile. The materials used to fabricate the flexible multi-layered sheet from which theflexible splines 160 are formed may be selected such that theflexible splines 160 are capable of some degree of deformation so that they can be twisted, rotated, and/or bent to facilitate insertion of their distal end into a distal cap (e.g. distal cap 170) during construction of an electrode assembly such as, for example,electrode assembly 30. In some cases, at least one of the layers or substrates of the multi-layered flexible sheet may include a shape memory material such as, for example, Nitinol or another super-elastic material. Incorporation of a Nitinol or super-elastic layer or substrate into the flexible multi-layered sheet from which theflexible splines 160 may be formed may provide thesplines 160 with a degree of flexibility and deformation needed such that they can be twisted or rotated about a major axis to facilitate insertion of their distal end into a distal cap (e.g. distal cap 170) during construction of an electrode assembly such as, for example,electrode assembly 30. - In some cases, as shown in
FIG. 5A , each of theflexible splines 160 extend from aproximal band 186 to which they are attached or integrally formed with at their proximal ends 196 to a freedistal end 178. Two or 190, 192 may extend from themore tabs proximal band 186. Traces on the flexible printed circuit including those connected to the electrodes may terminate to pads bonded on an inner and/or outer surface of the two or 190, 192. In addition, the two ormore tabs 190, 192 and may be utilized to couple to themore tabs electrode assembly 30 to the distal end 32 of thecatheter body 34. Alternatively, both the proximal ends 196 and the distal ends 178 may be detached from one another. Thesplines 160 may be independent of one another, and may be inserted into thedistal cap 170 and distal end 32 of thecatheter body 34 either simultaneously or sequentially. - Each of the distal ends 178 of the
flexible splines 160 may be formed by laser cutting, die cutting or other suitable method such that they define alocking feature 198 that is configured to be inserted into and secured within each of theslots 174 of thedistal cap 170. Is some cases, thelocking feature 198 may be defined by a geometrical shape having afirst portion 202 having a first width and asecond portion 204 having a second width. The first width can be greater than the second width. For example, as shown inFIGS. 5A and 5B , thelocking feature 198 may have an arrowhead shape. In addition, each of the locking features 198 may include anaperture 201. An adhesive, when utilized, may permeate theapertures 201 and may provide a further means of securing the distal ends 178 to thedistal cap 170. - In some cases, the material(s) from which the flattened
array 150 may be sufficiently deformable such that thelocking feature 198 is capable of being deformed for insertion into thecorresponding slot 174 of thedistal cap 170. For example, thepoints 200 of the arrowhead shaped lockingfeature 198, best viewed inFIG. 5B , may be capable of bending or folding inward towards acenterline 210 when inserted into aslot 174 of adistal cap 170. Once inserted into theslot 174, the material from which theflexible splines 160 is fabricated may be sufficiently resilient such that the arrowhead-shapedlocking feature 198 returns to its unfolded or uncompressed state, mechanically securing thedistal end 178 of theflexible spline 160 in theslot 174 such that thedistal end 178 of the spline is unable to be disengaged or removed from theslot 174. -
FIG. 6 is a detailed view of adistal portion 220 of an exemplary electrode assembly showing the distal ends 178 of a plurality offlexible splines 160 engaged with thedistal cap 170. -
FIG. 7 is a schematic view of another exemplarydistal cap 270 that may be utilized in the construction of an exemplary expandable electrode assembly such as, for example,expandable electrode assembly 30, as described herein.FIG. 8A is a schematic view of another exemplary flattened array 250 of multipleflexible splines 260 that may be engaged with each of theslots 274 provided in thedistal cap 270 to form an electrode assembly, andFIG. 8B is a close-up, schematic view of the distal ends 278 of each of thesplines 260 of the flattened array 250. - In many cases, as described previously herein, the
distal cap 270 may be machined or laser cut from a metal or suitable plastic such that it has a desired size and shape. As shown inFIG. 7 , thedistal cap 270 may be fabricated such that it has a substantially cylindrical shape defining an interior cavity, and may include two ormore slots 274. In some cases, the two ormore slots 274 may be spaced an equal distance from one another about an outer circumference of thedistal cap 270 about the same longitudinal line. In other cases, the distance between the two ormore slots 274 may vary. As shown inFIG. 7 , each of theslots 274 may have a width w greater than a height h such that they are capable of receiving and retaining adistal end 278 of a respectiveflexible spline 260 when thedistal end 278 of theflexible spline 260 is inserted into theslot 274. The distal end of thedistal cap 270 may be rounded such that it provides thecatheter 10 with an atraumatic distal tip. In addition, thedistal cap 270 may include adistal aperture 282, but this is not required in all embodiments. Theaperture 282, if provided, may facilitate an introduction of an adhesive or other suitable potting material that may be provided as a secondary means of securing the distal ends 278 of each of theflexible splines 260 to thedistal cap 270. Alternatively, the distal end of thedistal cap 270 may be solid. In some cases, during construction of the electrode assembly, a cylindrical tube, plug, or gasket may be inserted into the interior cavity of thedistal cap 270 to seal any remaining gaps between thesplines 260 and theslots 274. - As previously described herein, the flattened array 250 of multiple
flexible splines 260 may be initially fabricated as a flexible, multi-layered sheet including at least one flexible printed circuit bonded to a substrate. In some cases, the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of theflexible splines 260, when formed, have at least electrode located on an outer surface and at least one electrode located on an inner surface of each of thesplines 260. This is just one example. In other cases, the flexible multi-layered sheet may be fabricated from a dual-sided flexible printed circuit having electrodes located both an upper surface and a lower surface. The flexible multi-layered sheet including the flexible printed circuit(s) is then laser cut or die cut in a direction along its longitudinal axis to form each of the individual,flexible splines 260. - The various materials used to fabricate the flexible multi-layered sheet from which the
flexible splines 260 are formed may be selected such that each of theflexible splines 260 has a desired flexibility profile. The materials used to fabricate the flexible multi-layered sheet from which theflexible splines 260 are formed may be selected such that theflexible splines 260 are capable of some degree of deformation so that their distal end can be elastically inserted into a distal cap (e.g. distal cap 70) during construction of an electrode assembly such as, for example,electrode assembly 30. In some cases, at least one of the layers of the multi-layered flexible sheet may include Nitinol or another super-elastic material. Incorporation of a Nitinol or super-elastic layer or substrate into the flexible multi-layered sheet from which theflexible splines 260 may be formed may provide thesplines 260 with a degree of mechanical strength, flexibility and deformation needed such that their distal end can be inserted into a distal cap (e.g. distal cap 270), causing thedistal barb 302 to bend inward and then recover to lock the spline in position during construction of an electrode assembly such as, for example,electrode assembly 30. - In some cases, as shown in
FIG. 8A , each of theflexible splines 260 extend from aproximal band 286 to which they are attached or integrally formed with at their proximal ends 296 to a freedistal end 278. Two or 290, 292 may extend from themore tabs proximal band 286. Traces on the flexible printed circuit including those connected to the electrodes may terminate to pads bonded on an inner and/or outer surface of the two or 290, 292. In addition, the two ormore tabs 290, 292 and may be utilized to couple to themore tabs electrode assembly 30 to thedistal end 42 of thecatheter body 34. Alternatively, both the proximal ends 296 and the distal ends 278 may be freely detached from one another. - Each of the distal ends 278 of the
flexible splines 260 may be formed by laser cutting, die cutting or other suitable method such that they define alocking feature 298 that is configured to be inserted into and secured within each of theslots 274 of thedistal cap 270. Is some cases, thelocking feature 298 may be defined by a geometrical shape having afirst portion 302 having a first width and asecond portion 304 having a second width. The first width can be greater than the second width. For example, as shown inFIGS. 8A and 8B , thelocking feature 298 may have a barb or hook shape. - In some cases, the material(s) from which the flattened array 250 may be sufficiently deformable such that the
locking feature 298 is capable of being deformed for insertion into thecorresponding slot 274 of thedistal cap 270. For example, thefirst portion 302 of the barb or hook shapedlocking feature 298 may be capable of bending or flexing inward towards acenterline 310 when inserted into aslot 274 of adistal cap 270. Once inserted into theslot 274, the material from which theflexible splines 260 is fabricated may be sufficiently resilient such that the hook or barbed-shapedlocking feature 298 returns to its uncompressed state, mechanically securing thedistal end 278 of theflexible spline 260 in theslot 274 such that thedistal end 278 of the spline is unable to be disengaged or removed from theslot 274. -
FIG. 9A is a detailed view of adistal portion 320 of an exemplary electrode assembly showing the distal ends 278 of a plurality offlexible splines 160 engaged with thedistal cap 170.FIG. 9B is a cross-sectional view of thedistal portion 320 taken along lines A-A ofFIG. 9A and shows thefirst portions 302 of the barb-shaped locking features 298 engaged in theslots 274 ofdistal cap 270. - In some cases, during construction of any one of the electrode assemblies, as described herein, a cylindrical tube, plug, or
gasket 356 may be inserted into theinterior cavity 358 of thedistal cap 370 to seal any remaining gaps between thesplines 360 and the slots 374 subsequent to assembly.FIG. 10 is a cross sectional view of adistal portion 370 of an exemplary electrode assembly including a cylindrical tube, plug, orgasket 356. -
FIG. 11 is a flow chart of amethod 400 of constructing an expandable electrode assembly using a distal cap and a flexible spline array, as described herein. Themethod 400 may be automated using appropriate machinery or manually performed by an individual. During assembly, a flattened spline array may be formed from flexible, multilayered sheet (Block 404). As described herein, the flexible, multi-layered sheet from which a flattened spline array may be formed may includes at least one flexible printed circuit bonded to a substrate. In some cases, the multi-layered sheet includes a first flexible printed circuit bonded to an upper surface of a substrate and a second flexible printed circuit bonded to a lower surface of the same substrate such that each of the flexible splines, when formed, have at least electrode located on an outer surface and at least one electrode located on an inner surface of each of the splines. The individual splines may be formed by laser cutting or die cutting the flexible multi-layered sheet in a direction along its longitudinal axis to form the flattened spline array. In many cases, the flattened spline array includes at least two splines. Next, the flattened spline array including the two or more splines may be rolled into cylindrical shape (Block 408). In some cases, the flattened spline array may be rolled around a mandrel or other cylindrical member to facilitate formation of the cylindrical shape. A band may also be placed around the array to maintain its cylindrical shape during assembly. - A distal cap such as those described herein may be positioned adjacent a distal end of the now cylindrical array such that the distal cap is co-axial with the cylindrical array (Block 412). A first spline may be separated from the other splines of the array (Block 416) and rotated or twisted about its major axis and bent about its minor axis from a first orientation to a second orientation (Block 420). In some cases, the first spline may be rotated at about 60 to about 120 degrees about its major axis and more particularly, about 90 degrees about its major axis from a first orientation to a second orientation. The spline may also be bent about its minor axis to align with one of the slots in the
distal tip 570. The spline should be rotated a sufficient degree of rotation about its major and minor axes such that the distal end of the locking feature is capable of being inserted into a corresponding slot provided in the distal cap. In some cases, as described herein, the distal end of the spline including the locking feature may be deformed so as to facilitate insertion of the distal end of the spline into the slot. These steps are schematically illustrated inFIG. 12 .FIG. 12 shows aspline 560 being twisted or orientated about itsmajor axis 580 and bent about itsminor axis 582 such that thedistal end 578 may be inserted intoslot 574 provided indistal cap 570. - The distal end of the spline may then be inserted into a slot provided in the distal cap while still in the second orientation (Block 420). Once inserted through the slot, the locking feature may re-assume its un-deformed shape, if applicable. In addition, the spline may be returned from its second orientation to its first orientation and lie flat in the slot (Block 428). In some cases, the spline may be manually twisted or rotated in the slot from its second orientation to its first orientation. In other cases, because of the elasticity of some of the materials used to construct the flexible, multi-layer sheet from which the spline array is formed, the spline may be configured to automatically return from its second orientation to its first orientation and lie flat in the slot. The spline may be mechanically interlocked with the cap by the locking feature formed at the distal end of the spline. The remaining splines may be engaged with the cap following the same steps outlined by
416, 420, 424, and 428. The proximal ends of the splines may be banded together, and may be anchored or bonded to a distal portion of the catheter body.Blocks - In another case, the splines may be fully separated from one another such that they are not connected. Each of the distal ends of the separated splines may be inserted into a corresponding slot provided in the distal cap. The distal ends of the separated splines may be mechanically interlocked with the cap by the locking feature formed at the distal end of the spline. Some rotation of the individual splines may be necessary to urge the locking feature into slot after which the spline may lie flat in the slot. The remaining individual splines may be engaged with the cap utilizing the same method.
- In some cases, an adhesive may be used to further secure the distal ends of the spline with the cap. For example, the distal cap may include an aperture through which an adhesive or other suitable potting material may be introduced. A cylindrical tube, plug, or gasket may also be inserted into the proximal end of the cap, occluding the gaps proximal to the distal ends of the splines. In addition or in alternative to, a sealing material may be provided to seal any gaps between the distal ends of the splines and the slots such that the outer surface of the distal cap is substantially smooth and does not provide a surface onto which blood may collect and thrombi form.
- Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
Claims (20)
1. A catheter comprising:
an elongate catheter body extending from a proximal end to a distal end;
an expandable electrode assembly disposed at the distal end of the catheter body, the electrode assembly including:
a distal cap including an inner cavity and a plurality of slots disposed about an outer circumference of the distal cap;
a plurality of flexible splines extending from the distal end of the catheter body to the distal cap, the plurality of flexible splines including a first spline including a distal end defining a locking feature secured within one of the plurality of slots provided in the distal cap, the expandable electrode assembly configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration;
at least one of a cylindrical tube, a plug, and a gasket disposed with in the inner cavity of the distal cap to occlude a gap in at least the one of the plurality of slots securing the first spline; and
two or more electrodes located on the first spline.
2. The catheter of claim 1 , wherein the at least one of the cylindrical tube, the plug, and the gasket includes a gasket extending into the at least the one of the plurality of slots securing the first spline.
3. The catheter of claim 1 , wherein a height is greater than a width for each of the slots.
4. The catheter of claim 1 , wherein the locking feature defined by the distal end of the first spline comprises a first portion having a first width and a second portion having a second width, the first width greater than the second width.
5. The catheter of claim 1 , wherein the locking feature defined by the distal end of the first spline includes an arrowhead shape.
6. The catheter of claim 1 , wherein the locking feature defined by the distal end of the first spline includes a hook shape.
7. The catheter of claim 1 , wherein the distal cap includes a rounded distal end and defines an atraumatic distal tip of the catheter.
8. The catheter of claim 1 , wherein the distal cap serves as a distal tip electrode.
9. The catheter of claim 1 , wherein the slots are spaced an equal distance from one another about the outer circumference of the distal cap.
10. The catheter of claim 1 , further comprising an actuation member coupled to the expandable electrode assembly.
11. The catheter of claim 1 , further comprising an adhesive disposed within the inner cavity of the distal cap.
12. The catheter of claim 1 , further comprising a sealing material disposed within the at least the one of the plurality of slots securing the first spline.
13. The catheter of claim 1 , wherein each of the plurality of flexible splines includes a distal end defining the locking feature, each locking feature secured within a different one of the plurality of slots.
14. A method of forming an expandable basket electrode assembly, the method comprising:
forming a flattened spline array including two or more flexible splines, a distal end of each spline defining a locking feature;
forming a cylindrical spline array from the flattened spline array;
positioning a distal cap including two or more slots disposed about an outer circumference adjacent a distal end of the cylindrical spline array;
separating a first spline from the two or more flexible splines of the cylindrical spline array;
rotating the first spline about its major axis from a first orientation to a second orientation;
bending the first spline along its minor axis while it is in its second orientation and inserting the distal end into a first slot of the distal cap;
returning the first spline to its original first orientation; and
inserting at least one of a cylindrical tube, a plug, and a gasket into the distal cap to occlude the first slot adjacent to the first spline.
15. The method of claim 14 , further comprising delivering a potting material into the distal cap.
16. A catheter comprising:
an elongate catheter body extending from a proximal end to a distal end;
an expandable electrode assembly disposed at the distal end of the catheter body, the expandable electrode assembly configured to be transitioned between a collapsed configuration suitable for delivery and an expanded configuration, the expandable electrode assembly including:
a distal cap including an inner cavity and a plurality of slots disposed about an outer circumference of the distal cap;
a plurality of flexible splines extending from the distal end of the catheter body to the distal cap, the plurality of flexible splines including a first spline including:
at least two electrodes; and
a distal end defining a locking feature secured within one of the plurality of slots provided in the distal cap; and
at least one gasket disposed with in the inner cavity of the distal cap to occlude a gap in at least the one of the plurality of slots securing the first spline.
17. The catheter of claim 16 , further comprising a potting material disposed within the inner cavity of the distal cap.
18. The catheter of claim 16 , further comprising a sealing material disposed within the at least the one of the plurality of slots securing the first spline.
19. The catheter of claim 16 , wherein the distal cap includes a rounded distal end and defines an atraumatic distal tip of the catheter.
20. The catheter of claim 16 , wherein the distal cap serves as a distal tip electrode.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/425,272 US20170143227A1 (en) | 2014-06-03 | 2017-02-06 | Electrode assembly having an atraumatic distal tip |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462007320P | 2014-06-03 | 2014-06-03 | |
| US14/718,909 US9585588B2 (en) | 2014-06-03 | 2015-05-21 | Electrode assembly having an atraumatic distal tip |
| US15/425,272 US20170143227A1 (en) | 2014-06-03 | 2017-02-06 | Electrode assembly having an atraumatic distal tip |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/718,909 Continuation US9585588B2 (en) | 2014-06-03 | 2015-05-21 | Electrode assembly having an atraumatic distal tip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170143227A1 true US20170143227A1 (en) | 2017-05-25 |
Family
ID=53396566
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/718,909 Expired - Fee Related US9585588B2 (en) | 2014-06-03 | 2015-05-21 | Electrode assembly having an atraumatic distal tip |
| US15/425,272 Abandoned US20170143227A1 (en) | 2014-06-03 | 2017-02-06 | Electrode assembly having an atraumatic distal tip |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/718,909 Expired - Fee Related US9585588B2 (en) | 2014-06-03 | 2015-05-21 | Electrode assembly having an atraumatic distal tip |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US9585588B2 (en) |
| EP (1) | EP3151772A1 (en) |
| JP (1) | JP2017522923A (en) |
| CN (1) | CN106413540A (en) |
| WO (1) | WO2015187386A1 (en) |
Cited By (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9848795B2 (en) | 2014-06-04 | 2017-12-26 | Boston Scientific Scimed Inc. | Electrode assembly |
| US10172549B2 (en) | 2016-03-09 | 2019-01-08 | CARDIONOMIC, Inc. | Methods of facilitating positioning of electrodes |
| US10493278B2 (en) | 2015-01-05 | 2019-12-03 | CARDIONOMIC, Inc. | Cardiac modulation facilitation methods and systems |
| US10576273B2 (en) | 2014-05-22 | 2020-03-03 | CARDIONOMIC, Inc. | Catheter and catheter system for electrical neuromodulation |
| US10722716B2 (en) | 2014-09-08 | 2020-07-28 | Cardionomia Inc. | Methods for electrical neuromodulation of the heart |
| US10894160B2 (en) | 2014-09-08 | 2021-01-19 | CARDIONOMIC, Inc. | Catheter and electrode systems for electrical neuromodulation |
| US10905873B2 (en) | 2006-12-06 | 2021-02-02 | The Cleveland Clinic Foundation | Methods and systems for treating acute heart failure by neuromodulation |
| US11077298B2 (en) | 2018-08-13 | 2021-08-03 | CARDIONOMIC, Inc. | Partially woven expandable members |
| EP4042960A4 (en) * | 2019-09-30 | 2022-11-23 | TERUMO Kabushiki Kaisha | MEDICAL DEVICE |
| EP4119084A1 (en) * | 2021-07-13 | 2023-01-18 | Biosense Webster (Israel) Ltd | Ablation electrodes made from electrical traces of flexible printed circuit board |
| US11559687B2 (en) | 2017-09-13 | 2023-01-24 | CARDIONOMIC, Inc. | Methods for detecting catheter movement |
| US11607176B2 (en) | 2019-05-06 | 2023-03-21 | CARDIONOMIC, Inc. | Systems and methods for denoising physiological signals during electrical neuromodulation |
| US11850051B2 (en) | 2019-04-30 | 2023-12-26 | Biosense Webster (Israel) Ltd. | Mapping grid with high density electrode array |
| US11878095B2 (en) | 2018-12-11 | 2024-01-23 | Biosense Webster (Israel) Ltd. | Balloon catheter with high articulation |
| US11918383B2 (en) | 2020-12-21 | 2024-03-05 | Biosense Webster (Israel) Ltd. | Visualizing performance of catheter electrodes |
| US11918341B2 (en) | 2019-12-20 | 2024-03-05 | Biosense Webster (Israel) Ltd. | Selective graphical presentation of electrophysiological parameters |
| US11950840B2 (en) | 2020-09-22 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Basket catheter having insulated ablation electrodes |
| US11950841B2 (en) | 2020-09-22 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Basket catheter having insulated ablation electrodes and diagnostic electrodes |
| US11950930B2 (en) | 2019-12-12 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Multi-dimensional acquisition of bipolar signals from a catheter |
| US11974803B2 (en) | 2020-10-12 | 2024-05-07 | Biosense Webster (Israel) Ltd. | Basket catheter with balloon |
| US11987017B2 (en) | 2020-06-08 | 2024-05-21 | Biosense Webster (Israel) Ltd. | Features to assist in assembly and testing of devices |
| US11992259B2 (en) | 2018-04-11 | 2024-05-28 | Biosense Webster (Israel) Ltd. | Flexible multi-arm catheter with diametrically opposed sensing electrodes |
| US12004804B2 (en) | 2021-09-09 | 2024-06-11 | Biosense Webster (Israel) Ltd. | Basket catheter with mushroom shape distal tip |
| US12011280B2 (en) | 2021-10-04 | 2024-06-18 | Biosense Webster (Israel) Ltd. | Electrophysiological mapping in the presence of injury current |
| US12029545B2 (en) | 2017-05-30 | 2024-07-09 | Biosense Webster (Israel) Ltd. | Catheter splines as location sensors |
| US12042246B2 (en) | 2016-06-09 | 2024-07-23 | Biosense Webster (Israel) Ltd. | Multi-function conducting elements for a catheter |
| US12048479B2 (en) | 2020-09-10 | 2024-07-30 | Biosense Webster (Israel) Ltd. | Surface mounted electrode catheter |
| US12064170B2 (en) | 2021-05-13 | 2024-08-20 | Biosense Webster (Israel) Ltd. | Distal assembly for catheter with lumens running along spines |
| US12082875B2 (en) | 2020-09-24 | 2024-09-10 | Biosense Webster (Israel) Ltd | Balloon catheter having a coil for sensing tissue temperature and position of the balloon |
| US12201786B2 (en) | 2020-12-17 | 2025-01-21 | Biosense Webster (Israel) Ltd. | Measurement of distal end dimension of catheters using magnetic fields |
| US12232874B2 (en) | 2020-05-29 | 2025-02-25 | Biosense Webster (Israel) Ltd. | Electrode apparatus for diagnosis of arrhythmias |
| US12295720B2 (en) | 2019-07-18 | 2025-05-13 | Biosense Webster (Israel) Ltd | Visual guidance for positioning a distal end of a medical probe |
| US12329531B2 (en) | 2018-12-28 | 2025-06-17 | Biosense Webster (Israel) Ltd. | Mapping ECG signals using a multipole electrode assembly |
| US12364426B2 (en) | 2021-08-12 | 2025-07-22 | Biosense Webster (Israel) Ltd. | Electro-anatomical mapping and annotation presented in electrophysiological procedures |
| WO2025170274A1 (en) * | 2024-02-08 | 2025-08-14 | 재단법인 아산사회복지재단 | Cage-type electric pulse catheter |
| US12419683B2 (en) | 2021-12-22 | 2025-09-23 | Biosense Webster (Israel) Ltd. | Irreversible electroporation with shorted electrodes |
| US12440263B2 (en) | 2022-12-14 | 2025-10-14 | Biosense Webster (Israel) Ltd. | Systems and methods for tripodic spines forming a spherical basket for improved tissue contact and current delivery |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008014629A2 (en) | 2006-08-03 | 2008-02-07 | Christoph Scharf | Method and device for determining and presenting surface charge and dipole densities on cardiac walls |
| ITBA20070049A1 (en) * | 2007-06-14 | 2008-12-15 | Massimo Grimaldi | CATHETERS FOR ABLATION TRANSCATETER BY PERCUTANEOUS ROUTE OF HEART ARITHMIA THROUGH BIPOLAR RADIOFREQUENCY |
| US8103327B2 (en) | 2007-12-28 | 2012-01-24 | Rhythmia Medical, Inc. | Cardiac mapping catheter |
| EP2737849A3 (en) | 2008-01-17 | 2014-10-29 | Christoph Scharf | A device and method for the geometric determination of electrical dipole densities on the cardiac wall |
| US8538509B2 (en) | 2008-04-02 | 2013-09-17 | Rhythmia Medical, Inc. | Intracardiac tracking system |
| US9757044B2 (en) | 2011-03-10 | 2017-09-12 | Acutus Medical, Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
| EP2699153B1 (en) * | 2011-04-22 | 2015-12-16 | Topera, Inc. | Flexible electrode assembly for insertion into body lumen or organ |
| JP6441679B2 (en) | 2011-12-09 | 2018-12-19 | メタベンション インコーポレイテッド | Therapeutic neuromodulation of the liver system |
| EP2890292B1 (en) | 2012-08-31 | 2021-01-13 | Acutus Medical, Inc. | Catheter system for the heart |
| CN105358070B (en) | 2013-02-08 | 2018-03-23 | 阿库图森医疗有限公司 | Expandable catheter assembly with flexible printed circuit board |
| AU2014274903B2 (en) | 2013-06-05 | 2019-03-07 | Medtronic Ireland Manufacturing Unlimited Company | Modulation of targeted nerve fibers |
| CA2922941C (en) | 2013-09-13 | 2021-11-16 | Acutus Medical, Inc. | Devices and methods for determination of electrical dipole densities on a cardiac surface |
| EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
| JP6739346B2 (en) | 2014-03-25 | 2020-08-12 | アクタス メディカル インクAcutus Medical,Inc. | Method of operating system of cardiac analysis user interface |
| CN106413540A (en) | 2014-06-03 | 2017-02-15 | 波士顿科学医学有限公司 | Electrode assembly with atraumatic distal tip |
| JP2016007334A (en) * | 2014-06-24 | 2016-01-18 | 株式会社グッドマン | Electrode member for ablation and catheter for ablation |
| CA2969129A1 (en) | 2014-12-03 | 2016-06-09 | Metavention, Inc. | Systems and methods for modulating nerves or other tissue |
| US10593234B2 (en) | 2015-05-12 | 2020-03-17 | Acutus Medical, Inc. | Cardiac virtualization test tank and testing system and method |
| CN115299988A (en) | 2015-05-12 | 2022-11-08 | 阿库图森医疗有限公司 | Ultrasonic sequencing systems and methods |
| US10653318B2 (en) | 2015-05-13 | 2020-05-19 | Acutus Medical, Inc. | Localization system and method useful in the acquisition and analysis of cardiac information |
| EP3337387B1 (en) | 2015-08-20 | 2019-09-25 | Boston Scientific Scimed Inc. | Flexible electrode for cardiac sensing and method for making |
| US10314505B2 (en) * | 2016-03-15 | 2019-06-11 | Biosense Webster (Israel) Ltd. | Asymmetric basket catheter |
| US10362991B2 (en) * | 2016-04-04 | 2019-07-30 | Biosense Webster (Israel) Ltd. | Convertible basket catheter |
| US20170296251A1 (en) * | 2016-04-13 | 2017-10-19 | Biosense Webster (Israel) Ltd. | Basket catheter with prestrained framework |
| CA3022806A1 (en) | 2016-05-03 | 2017-11-09 | Acutus Medical, Inc. | Cardiac mapping system with efficiency algorithm |
| CN107440788A (en) * | 2016-06-01 | 2017-12-08 | 四川锦江电子科技有限公司 | A kind of ablation catheter and ablating device with interpolar discharge function |
| US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
| EP3554406A1 (en) | 2016-12-19 | 2019-10-23 | Boston Scientific Scimed Inc. | Distally-facing electrode array with longitudinally mounted splines |
| US11246534B2 (en) * | 2017-01-23 | 2022-02-15 | Biosense Webster (Israel) Ltd. | Basket catheter made from flexible circuit board with mechanical strengthening |
| US11058315B2 (en) * | 2018-02-06 | 2021-07-13 | Biosense Webster (Israel) Ltd. | Catheter with electrode spine assembly having preformed configurations for improved tissue contact |
| US10905347B2 (en) * | 2018-02-06 | 2021-02-02 | Biosense Webster (Israel) Ltd. | Catheter with increased electrode density spine assembly having reinforced spine covers |
| US12178582B2 (en) | 2018-11-09 | 2024-12-31 | Acutus Medical, Inc. | Systems and methods for calculating patient information |
| EP3900768A4 (en) * | 2018-12-20 | 2022-09-07 | Toray Industries, Inc. | ESOPHAL FLUID SUPPLY CATHETER AND INTERMEDIATE COMPONENT FOR THE ESOPHAL FLUID SUPPLY CATHETER |
| CA3135773A1 (en) | 2019-06-04 | 2020-12-10 | Acutus Medical, Inc. | Systems and methods for performing localization within a body |
| EP4173060A1 (en) | 2020-06-25 | 2023-05-03 | 6K Inc. | Microcomposite alloy structure |
| CN112022154A (en) * | 2020-09-10 | 2020-12-04 | 中国科学院半导体研究所 | Flexible neural electrode implantation system for multi-dimensional extraction of neuronal signals |
| WO2022063137A1 (en) * | 2020-09-22 | 2022-03-31 | 杭州德诺电生理医疗科技有限公司 | Left atrial appendage occlusion apparatus |
| CA3197544A1 (en) | 2021-01-11 | 2022-07-14 | 6K Inc. | Methods and systems for reclamation of li-ion cathode materials using microwave plasma processing |
| US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
| CN113274124B (en) * | 2021-06-22 | 2025-05-27 | 上海安钛克医疗科技有限公司 | Electrode assembly, electrophysiology catheter and electrophysiology system |
| US20230053064A1 (en) * | 2021-08-16 | 2023-02-16 | Biosense Webster (Israel) Ltd. | Catheter having electrodes with adjustable size |
| US20230225789A1 (en) * | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for linear spines and spine retention hub for improved tissue contact and current delivery |
| WO2023229928A1 (en) | 2022-05-23 | 2023-11-30 | 6K Inc. | Microwave plasma apparatus and methods for processing materials using an interior liner |
| US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
| US12094688B2 (en) * | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
| US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
| US20240216048A1 (en) * | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Basket catheter with combination of spine structures |
| US20240341843A1 (en) * | 2023-04-14 | 2024-10-17 | Boston Scientific Scimed, Inc. | Wide area focal ablation catheter |
Family Cites Families (137)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6162444A (en) | 1984-08-14 | 1986-03-31 | コンシ−リオ・ナツイオナ−レ・デツレ・リチエルケ | Method and apparatus for detecting frequent pulse generatingposition |
| US4674518A (en) | 1985-09-06 | 1987-06-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
| US5231995A (en) | 1986-11-14 | 1993-08-03 | Desai Jawahar M | Method for catheter mapping and ablation |
| US4920490A (en) | 1988-01-28 | 1990-04-24 | Rensselaer Polytechnic Institute | Process and apparatus for distinguishing conductivities by electric current computed tomography |
| US4840182A (en) | 1988-04-04 | 1989-06-20 | Rhode Island Hospital | Conductance catheter |
| US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
| US5345936A (en) * | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
| US5381333A (en) | 1991-07-23 | 1995-01-10 | Rensselaer Polytechnic Institute | Current patterns for electrical impedance tomography |
| US5588429A (en) | 1991-07-09 | 1996-12-31 | Rensselaer Polytechnic Institute | Process for producing optimal current patterns for electrical impedance tomography |
| US5284142A (en) | 1991-12-16 | 1994-02-08 | Rensselaer Polytechnic Institute | Three-dimensional impedance imaging processes |
| US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
| US5782239A (en) * | 1992-06-30 | 1998-07-21 | Cordis Webster, Inc. | Unique electrode configurations for cardiovascular electrode catheter with built-in deflection method and central puller wire |
| US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
| US6603996B1 (en) | 2000-06-07 | 2003-08-05 | Graydon Ernest Beatty | Software for mapping potential distribution of a heart chamber |
| US8728065B2 (en) | 2009-07-02 | 2014-05-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Apparatus and methods for contactless electrophysiology studies |
| US5662108A (en) | 1992-09-23 | 1997-09-02 | Endocardial Solutions, Inc. | Electrophysiology mapping system |
| US5553611A (en) | 1994-01-06 | 1996-09-10 | Endocardial Solutions, Inc. | Endocardial measurement method |
| US5297549A (en) | 1992-09-23 | 1994-03-29 | Endocardial Therapeutics, Inc. | Endocardial mapping system |
| CA2678625A1 (en) | 1992-09-23 | 1994-03-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Endocardial mapping system |
| USRE41334E1 (en) | 1992-09-23 | 2010-05-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Endocardial mapping system |
| US5309910A (en) | 1992-09-25 | 1994-05-10 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
| US5687737A (en) | 1992-10-09 | 1997-11-18 | Washington University | Computerized three-dimensional cardiac mapping with interactive visual displays |
| CA2158453C (en) * | 1993-03-16 | 1999-11-16 | Thomas F. Kordis | Multiple electrode support structures |
| WO1994021170A1 (en) * | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Flexible circuit assemblies employing ribbon cable |
| US5476495A (en) | 1993-03-16 | 1995-12-19 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
| US5893847A (en) | 1993-03-16 | 1999-04-13 | Ep Technologies, Inc. | Multiple electrode support structures with slotted hub and hoop spline elements |
| US5840031A (en) | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
| US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
| IL116699A (en) | 1996-01-08 | 2001-09-13 | Biosense Ltd | Method of constructing cardiac map |
| US5921982A (en) | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
| US6947785B1 (en) | 1993-09-23 | 2005-09-20 | Endocardial Solutions, Inc. | Interface system for endocardial mapping catheter |
| US5713367A (en) | 1994-01-26 | 1998-02-03 | Cambridge Heart, Inc. | Measuring and assessing cardiac electrical stability |
| US5469858A (en) | 1994-03-15 | 1995-11-28 | Hewlett-Packard Corporation | ECG P-QRS-T onset/offset annotation method and apparatus |
| US5722402A (en) | 1994-10-11 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
| US5941251A (en) | 1994-10-11 | 1999-08-24 | Ep Technologies, Inc. | Systems for locating and guiding operative elements within interior body regions |
| US6690963B2 (en) | 1995-01-24 | 2004-02-10 | Biosense, Inc. | System for determining the location and orientation of an invasive medical instrument |
| US6246898B1 (en) | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
| DE19511532A1 (en) | 1995-03-29 | 1996-10-02 | Siemens Ag | Process for locating electrical cardiac activity |
| US5577502A (en) | 1995-04-03 | 1996-11-26 | General Electric Company | Imaging of interventional devices during medical procedures |
| US5954665A (en) | 1995-06-07 | 1999-09-21 | Biosense, Inc. | Cardiac ablation catheter using correlation measure |
| US6001065A (en) | 1995-08-02 | 1999-12-14 | Ibva Technologies, Inc. | Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein |
| US5848972A (en) | 1995-09-15 | 1998-12-15 | Children's Medical Center Corporation | Method for endocardial activation mapping using a multi-electrode catheter |
| US5697377A (en) | 1995-11-22 | 1997-12-16 | Medtronic, Inc. | Catheter mapping system and method |
| NL1001890C2 (en) | 1995-12-13 | 1997-06-17 | Cordis Europ | Catheter with plate-shaped electrode array. |
| WO1997025917A1 (en) | 1996-01-19 | 1997-07-24 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
| DE19622078A1 (en) | 1996-05-31 | 1997-12-04 | Siemens Ag | Active current localising appts. for heart |
| US6167296A (en) | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
| US5971933A (en) | 1996-09-17 | 1999-10-26 | Cleveland Clinic Foundation | Method and apparatus to correct for electric field non-uniformity in conductance catheter volumetry |
| JPH10122056A (en) | 1996-10-18 | 1998-05-12 | Mitsubishi Heavy Ind Ltd | Liquefied fuel carburetor |
| RU2127075C1 (en) | 1996-12-11 | 1999-03-10 | Корженевский Александр Владимирович | Method for producing tomographic image of body and electrical-impedance tomographic scanner |
| US6314310B1 (en) | 1997-02-14 | 2001-11-06 | Biosense, Inc. | X-ray guided surgical location system with extended mapping volume |
| US6050267A (en) | 1997-04-28 | 2000-04-18 | American Cardiac Ablation Co. Inc. | Catheter positioning system |
| US6839588B1 (en) | 1997-07-31 | 2005-01-04 | Case Western Reserve University | Electrophysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor |
| US6014581A (en) | 1998-03-26 | 2000-01-11 | Ep Technologies, Inc. | Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure |
| US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
| US7263397B2 (en) | 1998-06-30 | 2007-08-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for catheter navigation and location and mapping in the heart |
| US6226542B1 (en) | 1998-07-24 | 2001-05-01 | Biosense, Inc. | Three-dimensional reconstruction of intrabody organs |
| WO2000010456A1 (en) | 1998-08-02 | 2000-03-02 | Super Dimension Ltd. | Intrabody navigation system for medical applications |
| US6701176B1 (en) | 1998-11-04 | 2004-03-02 | Johns Hopkins University School Of Medicine | Magnetic-resonance-guided imaging, electrophysiology, and ablation |
| US5986126A (en) | 1999-01-25 | 1999-11-16 | E. I. Du Pont De Nemours And Company | Process for the production of 6-aminocapronitrile and/or hexamethylenediamine |
| DE69920395T2 (en) | 1999-01-28 | 2005-10-06 | Ministèro dell' Universita' e della Ricerca Scientifica e Tecnologica | Device for localization of endocardial electrodes |
| US6556695B1 (en) | 1999-02-05 | 2003-04-29 | Mayo Foundation For Medical Education And Research | Method for producing high resolution real-time images, of structure and function during medical procedures |
| US6278894B1 (en) | 1999-06-21 | 2001-08-21 | Cardiac Pacemakers, Inc. | Multi-site impedance sensor using coronary sinus/vein electrodes |
| EP1069814A1 (en) | 1999-07-16 | 2001-01-17 | Ezio Babini | Support device for boards, in particular for printed circuit boards |
| AU1607600A (en) | 1999-07-26 | 2001-02-13 | Super Dimension Ltd. | Linking of an intra-body tracking system to external reference coordinates |
| US6317619B1 (en) | 1999-07-29 | 2001-11-13 | U.S. Philips Corporation | Apparatus, methods, and devices for magnetic resonance imaging controlled by the position of a moveable RF coil |
| US6360123B1 (en) | 1999-08-24 | 2002-03-19 | Impulse Dynamics N.V. | Apparatus and method for determining a mechanical property of an organ or body cavity by impedance determination |
| US6368285B1 (en) | 1999-09-21 | 2002-04-09 | Biosense, Inc. | Method and apparatus for mapping a chamber of a heart |
| US6829497B2 (en) | 1999-09-21 | 2004-12-07 | Jamil Mogul | Steerable diagnostic catheters |
| US6298257B1 (en) | 1999-09-22 | 2001-10-02 | Sterotaxis, Inc. | Cardiac methods and system |
| US6308093B1 (en) | 1999-10-07 | 2001-10-23 | Massachusetts Institute Of Technology | Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation |
| US6892091B1 (en) | 2000-02-18 | 2005-05-10 | Biosense, Inc. | Catheter, method and apparatus for generating an electrical map of a chamber of the heart |
| US6400981B1 (en) | 2000-06-21 | 2002-06-04 | Biosense, Inc. | Rapid mapping of electrical activity in the heart |
| US6408199B1 (en) | 2000-07-07 | 2002-06-18 | Biosense, Inc. | Bipolar mapping of intracardiac potentials with electrode having blood permeable covering |
| US6650927B1 (en) | 2000-08-18 | 2003-11-18 | Biosense, Inc. | Rendering of diagnostic imaging data on a three-dimensional map |
| US6631290B1 (en) | 2000-10-25 | 2003-10-07 | Medtronic, Inc. | Multilayer ceramic electrodes for sensing cardiac depolarization signals |
| US6807439B2 (en) | 2001-04-03 | 2004-10-19 | Medtronic, Inc. | System and method for detecting dislodgement of an implantable medical device |
| US20030018251A1 (en) | 2001-04-06 | 2003-01-23 | Stephen Solomon | Cardiological mapping and navigation system |
| US6397776B1 (en) | 2001-06-11 | 2002-06-04 | General Electric Company | Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators |
| US6773402B2 (en) | 2001-07-10 | 2004-08-10 | Biosense, Inc. | Location sensing with real-time ultrasound imaging |
| US6847839B2 (en) | 2001-07-30 | 2005-01-25 | The Trustees Of Columbia University In The City Of New York | System and method for determining reentrant ventricular tachycardia isthmus location and shape for catheter ablation |
| US7187964B2 (en) | 2001-09-27 | 2007-03-06 | Dirar S. Khoury | Cardiac catheter imaging system |
| GB0123772D0 (en) | 2001-10-03 | 2001-11-21 | Qinetiq Ltd | Apparatus for monitoring fetal heartbeat |
| AU2002362438A1 (en) | 2001-10-04 | 2003-04-14 | Case Western Reserve University | Systems and methods for noninvasive electrocardiographic imaging (ecgi) using generalized minimum residual (gmres) |
| JP3876680B2 (en) | 2001-10-19 | 2007-02-07 | コニカミノルタビジネステクノロジーズ株式会社 | Image display device |
| US6735465B2 (en) | 2001-10-24 | 2004-05-11 | Scimed Life Systems, Inc. | Systems and processes for refining a registered map of a body cavity |
| US7169107B2 (en) | 2002-01-25 | 2007-01-30 | Karen Jersey-Willuhn | Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system |
| DE10210645B4 (en) | 2002-03-11 | 2006-04-13 | Siemens Ag | A method of detecting and displaying a medical catheter inserted into an examination area of a patient |
| US20140018880A1 (en) | 2002-04-08 | 2014-01-16 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monopolar renal neuromodulation |
| US7043292B2 (en) | 2002-06-21 | 2006-05-09 | Tarjan Peter P | Single or multi-mode cardiac activity data collection, processing and display obtained in a non-invasive manner |
| US6892090B2 (en) | 2002-08-19 | 2005-05-10 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual endoscopy |
| US6957101B2 (en) | 2002-08-21 | 2005-10-18 | Joshua Porath | Transient event mapping in the heart |
| US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
| US7003342B2 (en) * | 2003-06-02 | 2006-02-21 | Biosense Webster, Inc. | Catheter and method for mapping a pulmonary vein |
| US6893588B2 (en) | 2003-06-23 | 2005-05-17 | Graham Packaging Company, L.P. | Nitrogen blow molding to enhance oxygen scavenger shelf-life |
| US20050033136A1 (en) | 2003-08-01 | 2005-02-10 | Assaf Govari | Catheter with electrode strip |
| US7398116B2 (en) | 2003-08-11 | 2008-07-08 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
| DE10340546B4 (en) | 2003-09-01 | 2006-04-20 | Siemens Ag | Method and apparatus for visually assisting electrophysiology catheter application in the heart |
| US20050054918A1 (en) | 2003-09-04 | 2005-03-10 | Sra Jasbir S. | Method and system for treatment of atrial fibrillation and other cardiac arrhythmias |
| WO2005025401A2 (en) | 2003-09-09 | 2005-03-24 | Board Of Regents | Method and apparatus for determining cardiac performance in a patient with a conductance catheter |
| US20050107833A1 (en) | 2003-11-13 | 2005-05-19 | Freeman Gary A. | Multi-path transthoracic defibrillation and cardioversion |
| US20050154282A1 (en) | 2003-12-31 | 2005-07-14 | Wenguang Li | System and method for registering an image with a representation of a probe |
| US20050288599A1 (en) | 2004-05-17 | 2005-12-29 | C.R. Bard, Inc. | High density atrial fibrillation cycle length (AFCL) detection and mapping system |
| US7865236B2 (en) | 2004-10-20 | 2011-01-04 | Nervonix, Inc. | Active electrode, bio-impedance based, tissue discrimination system and methods of use |
| US7720520B2 (en) | 2004-12-01 | 2010-05-18 | Boston Scientific Scimed, Inc. | Method and system for registering an image with a navigation reference catheter |
| US7117030B2 (en) | 2004-12-02 | 2006-10-03 | The Research Foundation Of State University Of New York | Method and algorithm for spatially identifying sources of cardiac fibrillation |
| US7869865B2 (en) | 2005-01-07 | 2011-01-11 | Biosense Webster, Inc. | Current-based position sensing |
| US7684850B2 (en) | 2005-01-07 | 2010-03-23 | Biosense Webster, Inc. | Reference catheter for impedance calibration |
| US7722538B2 (en) | 2005-02-10 | 2010-05-25 | Dirar S. Khoury | Conductance-imaging catheter and determination of cavitary volume |
| EP2759276A1 (en) | 2005-06-20 | 2014-07-30 | Medtronic Ablation Frontiers LLC | Ablation catheter |
| US7848787B2 (en) | 2005-07-08 | 2010-12-07 | Biosense Webster, Inc. | Relative impedance measurement |
| US7536218B2 (en) | 2005-07-15 | 2009-05-19 | Biosense Webster, Inc. | Hybrid magnetic-based and impedance-based position sensing |
| US7610078B2 (en) | 2005-08-26 | 2009-10-27 | Boston Scientific Scimed, Inc. | System and method of graphically generating anatomical structures using ultrasound echo information |
| US20080221566A1 (en) | 2005-11-29 | 2008-09-11 | Krishnan Subramaniam C | Method and apparatus for detecting and achieving closure of patent foramen ovale |
| US9629567B2 (en) | 2006-01-12 | 2017-04-25 | Biosense Webster, Inc. | Mapping of complex fractionated atrial electrogram |
| WO2007134190A2 (en) | 2006-05-10 | 2007-11-22 | Regents Of The University Of Minnesota | Methods and apparatus of three dimensional cardiac electrophysiological imaging |
| EP1857141A1 (en) | 2006-05-15 | 2007-11-21 | BIOTRONIK CRM Patent AG | Method for automatically monitoring the cardiac burden of sleep disordered breathing |
| US7505810B2 (en) | 2006-06-13 | 2009-03-17 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including preprocessing |
| US7515954B2 (en) | 2006-06-13 | 2009-04-07 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including moving catheter and multi-beat integration |
| US7729752B2 (en) | 2006-06-13 | 2010-06-01 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including resolution map |
| US20080190438A1 (en) | 2007-02-08 | 2008-08-14 | Doron Harlev | Impedance registration and catheter tracking |
| US10492729B2 (en) | 2007-05-23 | 2019-12-03 | St. Jude Medical, Cardiology Division, Inc. | Flexible high-density mapping catheter tips and flexible ablation catheter tips with onboard high-density mapping electrodes |
| US8103327B2 (en) * | 2007-12-28 | 2012-01-24 | Rhythmia Medical, Inc. | Cardiac mapping catheter |
| US8538509B2 (en) | 2008-04-02 | 2013-09-17 | Rhythmia Medical, Inc. | Intracardiac tracking system |
| US8128617B2 (en) | 2008-05-27 | 2012-03-06 | Boston Scientific Scimed, Inc. | Electrical mapping and cryo ablating with a balloon catheter |
| US8137343B2 (en) | 2008-10-27 | 2012-03-20 | Rhythmia Medical, Inc. | Tracking system using field mapping |
| US8571647B2 (en) | 2009-05-08 | 2013-10-29 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
| US8870863B2 (en) | 2010-04-26 | 2014-10-28 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses, systems, and methods for renal neuromodulation |
| WO2012092016A1 (en) | 2010-12-30 | 2012-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for diagnosing arrhythmias and directing catheter therapies |
| EP2699153B1 (en) | 2011-04-22 | 2015-12-16 | Topera, Inc. | Flexible electrode assembly for insertion into body lumen or organ |
| EP2792322B1 (en) | 2011-08-25 | 2017-10-04 | Covidien LP | Systems and devices for treatment of luminal tissue |
| US8825130B2 (en) * | 2011-12-30 | 2014-09-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrode support structure assemblies |
| CN203017083U (en) * | 2012-12-31 | 2013-06-26 | 上海微创电生理医疗科技有限公司 | Multi-electrode ablation catheter |
| WO2014110579A1 (en) | 2013-01-14 | 2014-07-17 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter |
| CN103750899B (en) * | 2014-01-21 | 2016-04-27 | 深圳市惠泰医疗器械有限公司 | Multi-electrode basket catheter and preparation method thereof |
| CN106413540A (en) | 2014-06-03 | 2017-02-15 | 波士顿科学医学有限公司 | Electrode assembly with atraumatic distal tip |
| US9848795B2 (en) | 2014-06-04 | 2017-12-26 | Boston Scientific Scimed Inc. | Electrode assembly |
-
2015
- 2015-05-21 CN CN201580030242.8A patent/CN106413540A/en active Pending
- 2015-05-21 JP JP2016569634A patent/JP2017522923A/en active Pending
- 2015-05-21 WO PCT/US2015/032004 patent/WO2015187386A1/en active Application Filing
- 2015-05-21 US US14/718,909 patent/US9585588B2/en not_active Expired - Fee Related
- 2015-05-21 EP EP15728975.2A patent/EP3151772A1/en not_active Withdrawn
-
2017
- 2017-02-06 US US15/425,272 patent/US20170143227A1/en not_active Abandoned
Cited By (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11986650B2 (en) | 2006-12-06 | 2024-05-21 | The Cleveland Clinic Foundation | Methods and systems for treating acute heart failure by neuromodulation |
| US10905873B2 (en) | 2006-12-06 | 2021-02-02 | The Cleveland Clinic Foundation | Methods and systems for treating acute heart failure by neuromodulation |
| US10576273B2 (en) | 2014-05-22 | 2020-03-03 | CARDIONOMIC, Inc. | Catheter and catheter system for electrical neuromodulation |
| US9848795B2 (en) | 2014-06-04 | 2017-12-26 | Boston Scientific Scimed Inc. | Electrode assembly |
| US10894160B2 (en) | 2014-09-08 | 2021-01-19 | CARDIONOMIC, Inc. | Catheter and electrode systems for electrical neuromodulation |
| US10722716B2 (en) | 2014-09-08 | 2020-07-28 | Cardionomia Inc. | Methods for electrical neuromodulation of the heart |
| US10493278B2 (en) | 2015-01-05 | 2019-12-03 | CARDIONOMIC, Inc. | Cardiac modulation facilitation methods and systems |
| US10448884B2 (en) | 2016-03-09 | 2019-10-22 | CARDIONOMIC, Inc. | Methods of reducing duty cycle during neurostimulation treatment |
| US11806159B2 (en) | 2016-03-09 | 2023-11-07 | CARDIONOMIC, Inc. | Differential on and off durations for neurostimulation devices and methods |
| US10952665B2 (en) | 2016-03-09 | 2021-03-23 | CARDIONOMIC, Inc. | Methods of positioning neurostimulation devices |
| US11229398B2 (en) | 2016-03-09 | 2022-01-25 | CARDIONOMIC, Inc. | Electrode assemblies for neurostimulation treatment |
| US10188343B2 (en) | 2016-03-09 | 2019-01-29 | CARDIONOMIC, Inc. | Methods of monitoring effects of neurostimulation |
| US10172549B2 (en) | 2016-03-09 | 2019-01-08 | CARDIONOMIC, Inc. | Methods of facilitating positioning of electrodes |
| US12042246B2 (en) | 2016-06-09 | 2024-07-23 | Biosense Webster (Israel) Ltd. | Multi-function conducting elements for a catheter |
| US12029545B2 (en) | 2017-05-30 | 2024-07-09 | Biosense Webster (Israel) Ltd. | Catheter splines as location sensors |
| US11559687B2 (en) | 2017-09-13 | 2023-01-24 | CARDIONOMIC, Inc. | Methods for detecting catheter movement |
| US12042655B2 (en) | 2017-09-13 | 2024-07-23 | CARDIONOMIC, Inc. | Systems for detecting catheter movement |
| US11992259B2 (en) | 2018-04-11 | 2024-05-28 | Biosense Webster (Israel) Ltd. | Flexible multi-arm catheter with diametrically opposed sensing electrodes |
| US12329448B2 (en) | 2018-04-11 | 2025-06-17 | Biosense Webster (Israel) Ltd. | Flexible multi-arm catheter with diametrically opposed sensing electrodes |
| US11648395B2 (en) | 2018-08-13 | 2023-05-16 | CARDIONOMIC, Inc. | Electrode assemblies for neuromodulation |
| US11077298B2 (en) | 2018-08-13 | 2021-08-03 | CARDIONOMIC, Inc. | Partially woven expandable members |
| US11878095B2 (en) | 2018-12-11 | 2024-01-23 | Biosense Webster (Israel) Ltd. | Balloon catheter with high articulation |
| US12329531B2 (en) | 2018-12-28 | 2025-06-17 | Biosense Webster (Israel) Ltd. | Mapping ECG signals using a multipole electrode assembly |
| US11850051B2 (en) | 2019-04-30 | 2023-12-26 | Biosense Webster (Israel) Ltd. | Mapping grid with high density electrode array |
| US12251224B2 (en) | 2019-04-30 | 2025-03-18 | Biosense Webster (Israel) Ltd. | Mapping grid with high density electrode array |
| US11607176B2 (en) | 2019-05-06 | 2023-03-21 | CARDIONOMIC, Inc. | Systems and methods for denoising physiological signals during electrical neuromodulation |
| US12295720B2 (en) | 2019-07-18 | 2025-05-13 | Biosense Webster (Israel) Ltd | Visual guidance for positioning a distal end of a medical probe |
| EP4042960A4 (en) * | 2019-09-30 | 2022-11-23 | TERUMO Kabushiki Kaisha | MEDICAL DEVICE |
| US11950930B2 (en) | 2019-12-12 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Multi-dimensional acquisition of bipolar signals from a catheter |
| US11918341B2 (en) | 2019-12-20 | 2024-03-05 | Biosense Webster (Israel) Ltd. | Selective graphical presentation of electrophysiological parameters |
| US12232874B2 (en) | 2020-05-29 | 2025-02-25 | Biosense Webster (Israel) Ltd. | Electrode apparatus for diagnosis of arrhythmias |
| US11987017B2 (en) | 2020-06-08 | 2024-05-21 | Biosense Webster (Israel) Ltd. | Features to assist in assembly and testing of devices |
| US12102382B2 (en) | 2020-09-10 | 2024-10-01 | Biosense Webster (Israel) Ltd. | Biased electrodes for improved tissue contact and current delivery |
| US12048479B2 (en) | 2020-09-10 | 2024-07-30 | Biosense Webster (Israel) Ltd. | Surface mounted electrode catheter |
| US11950841B2 (en) | 2020-09-22 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Basket catheter having insulated ablation electrodes and diagnostic electrodes |
| US11950840B2 (en) | 2020-09-22 | 2024-04-09 | Biosense Webster (Israel) Ltd. | Basket catheter having insulated ablation electrodes |
| US12082875B2 (en) | 2020-09-24 | 2024-09-10 | Biosense Webster (Israel) Ltd | Balloon catheter having a coil for sensing tissue temperature and position of the balloon |
| US11974803B2 (en) | 2020-10-12 | 2024-05-07 | Biosense Webster (Israel) Ltd. | Basket catheter with balloon |
| US12201786B2 (en) | 2020-12-17 | 2025-01-21 | Biosense Webster (Israel) Ltd. | Measurement of distal end dimension of catheters using magnetic fields |
| US11918383B2 (en) | 2020-12-21 | 2024-03-05 | Biosense Webster (Israel) Ltd. | Visualizing performance of catheter electrodes |
| US12064170B2 (en) | 2021-05-13 | 2024-08-20 | Biosense Webster (Israel) Ltd. | Distal assembly for catheter with lumens running along spines |
| EP4119084A1 (en) * | 2021-07-13 | 2023-01-18 | Biosense Webster (Israel) Ltd | Ablation electrodes made from electrical traces of flexible printed circuit board |
| US12364426B2 (en) | 2021-08-12 | 2025-07-22 | Biosense Webster (Israel) Ltd. | Electro-anatomical mapping and annotation presented in electrophysiological procedures |
| US12004804B2 (en) | 2021-09-09 | 2024-06-11 | Biosense Webster (Israel) Ltd. | Basket catheter with mushroom shape distal tip |
| US12011280B2 (en) | 2021-10-04 | 2024-06-18 | Biosense Webster (Israel) Ltd. | Electrophysiological mapping in the presence of injury current |
| US12419683B2 (en) | 2021-12-22 | 2025-09-23 | Biosense Webster (Israel) Ltd. | Irreversible electroporation with shorted electrodes |
| US12440263B2 (en) | 2022-12-14 | 2025-10-14 | Biosense Webster (Israel) Ltd. | Systems and methods for tripodic spines forming a spherical basket for improved tissue contact and current delivery |
| WO2025170274A1 (en) * | 2024-02-08 | 2025-08-14 | 재단법인 아산사회복지재단 | Cage-type electric pulse catheter |
Also Published As
| Publication number | Publication date |
|---|---|
| US9585588B2 (en) | 2017-03-07 |
| EP3151772A1 (en) | 2017-04-12 |
| US20150342491A1 (en) | 2015-12-03 |
| WO2015187386A1 (en) | 2015-12-10 |
| JP2017522923A (en) | 2017-08-17 |
| CN106413540A (en) | 2017-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9585588B2 (en) | Electrode assembly having an atraumatic distal tip | |
| US20180168511A1 (en) | Distally-facing electrode array with longitudinally mounted splines | |
| US12295649B2 (en) | Catheter electrode assemblies and methods of construction thereof | |
| US8728065B2 (en) | Apparatus and methods for contactless electrophysiology studies | |
| EP2613686B1 (en) | Medical devices having an electroanatomical system imaging element mounted thereon | |
| CN112020324A (en) | Flexible multi-arm catheter with directly opposed sensing electrodes | |
| US20120010490A1 (en) | Medical devices having flexible electrodes mounted thereon | |
| CN106859638A (en) | Electrod-array conduit with interconnection frame | |
| JP6925860B2 (en) | Catheter and method for forming the catheter | |
| JP7656594B2 (en) | Medical Guidewire Assembly and/or Electrical Connector | |
| DE202023102294U1 (en) | Basket end effector with distal position sensor | |
| CN216317943U (en) | Balloon catheter and electrophysiology system | |
| US20220117539A1 (en) | Medical device with novel electrical interconnects, and related methods | |
| US20240277405A1 (en) | Electrode catheter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |