US20170128633A1 - Bioactive Implants and Methods of Making and Using - Google Patents
Bioactive Implants and Methods of Making and Using Download PDFInfo
- Publication number
- US20170128633A1 US20170128633A1 US14/937,206 US201514937206A US2017128633A1 US 20170128633 A1 US20170128633 A1 US 20170128633A1 US 201514937206 A US201514937206 A US 201514937206A US 2017128633 A1 US2017128633 A1 US 2017128633A1
- Authority
- US
- United States
- Prior art keywords
- solution
- composition
- disclosed
- microparticles
- cartilage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007943 implant Substances 0.000 title claims abstract description 398
- 230000000975 bioactive effect Effects 0.000 title claims abstract description 396
- 238000000034 method Methods 0.000 title claims abstract description 223
- 239000000203 mixture Substances 0.000 claims abstract description 646
- 239000011859 microparticle Substances 0.000 claims abstract description 637
- 210000000845 cartilage Anatomy 0.000 claims abstract description 462
- 239000000243 solution Substances 0.000 claims description 851
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 claims description 116
- 229920000153 Povidone-iodine Polymers 0.000 claims description 116
- 229960001621 povidone-iodine Drugs 0.000 claims description 116
- 239000002904 solvent Substances 0.000 claims description 48
- 239000003795 chemical substances by application Substances 0.000 claims description 39
- 238000004108 freeze drying Methods 0.000 claims description 30
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 23
- 230000018044 dehydration Effects 0.000 claims description 21
- 238000006297 dehydration reaction Methods 0.000 claims description 21
- 230000002631 hypothermal effect Effects 0.000 claims description 21
- 239000011780 sodium chloride Substances 0.000 claims description 20
- 239000004599 antimicrobial Substances 0.000 claims description 19
- 239000003855 balanced salt solution Substances 0.000 claims description 18
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 claims description 17
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 claims description 17
- 229940112869 bone morphogenetic protein Drugs 0.000 claims description 17
- 239000003102 growth factor Substances 0.000 claims description 16
- 239000003242 anti bacterial agent Substances 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 13
- 229960005475 antiinfective agent Drugs 0.000 claims description 11
- 239000000122 growth hormone Substances 0.000 claims description 11
- 239000003206 sterilizing agent Substances 0.000 claims description 11
- 229940124597 therapeutic agent Drugs 0.000 claims description 11
- 229940088594 vitamin Drugs 0.000 claims description 11
- 229930003231 vitamin Natural products 0.000 claims description 11
- 235000013343 vitamin Nutrition 0.000 claims description 11
- 239000011782 vitamin Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 230000002648 chondrogenic effect Effects 0.000 claims description 9
- 102000018997 Growth Hormone Human genes 0.000 claims 1
- 108010051696 Growth Hormone Proteins 0.000 claims 1
- 230000000202 analgesic effect Effects 0.000 claims 1
- 230000003115 biocidal effect Effects 0.000 claims 1
- 150000003722 vitamin derivatives Chemical class 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 abstract description 517
- 230000007547 defect Effects 0.000 abstract description 144
- 230000008439 repair process Effects 0.000 abstract description 56
- 230000000670 limiting effect Effects 0.000 abstract description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 197
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 197
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 187
- 102000008186 Collagen Human genes 0.000 description 178
- 108010035532 Collagen Proteins 0.000 description 178
- 229920001436 collagen Polymers 0.000 description 178
- 239000000499 gel Substances 0.000 description 150
- 102000009027 Albumins Human genes 0.000 description 146
- 108010088751 Albumins Proteins 0.000 description 146
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 102
- 231100000252 nontoxic Toxicity 0.000 description 102
- 230000003000 nontoxic effect Effects 0.000 description 102
- 238000001704 evaporation Methods 0.000 description 100
- 230000008020 evaporation Effects 0.000 description 100
- 229940050526 hydroxyethylstarch Drugs 0.000 description 97
- 239000002245 particle Substances 0.000 description 87
- 238000004519 manufacturing process Methods 0.000 description 64
- 239000000843 powder Substances 0.000 description 62
- 241000282414 Homo sapiens Species 0.000 description 60
- 241000124008 Mammalia Species 0.000 description 53
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 40
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 40
- 210000002435 tendon Anatomy 0.000 description 32
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 27
- 210000002805 bone matrix Anatomy 0.000 description 25
- 238000002513 implantation Methods 0.000 description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 24
- 238000011282 treatment Methods 0.000 description 23
- 238000000227 grinding Methods 0.000 description 21
- 108091006905 Human Serum Albumin Proteins 0.000 description 20
- 102000008100 Human Serum Albumin Human genes 0.000 description 20
- 108010058846 Ovalbumin Proteins 0.000 description 20
- 230000009261 transgenic effect Effects 0.000 description 20
- 230000003412 degenerative effect Effects 0.000 description 19
- 230000000472 traumatic effect Effects 0.000 description 18
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 16
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 16
- 239000012981 Hank's balanced salt solution Substances 0.000 description 16
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 206010028980 Neoplasm Diseases 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- 238000002271 resection Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000004927 fusion Effects 0.000 description 12
- 230000003902 lesion Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 10
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 10
- 229940088710 antibiotic agent Drugs 0.000 description 10
- 229940121375 antifungal agent Drugs 0.000 description 10
- 239000003429 antifungal agent Substances 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 229930003316 Vitamin D Natural products 0.000 description 8
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 8
- 229930003448 Vitamin K Natural products 0.000 description 8
- 230000000735 allogeneic effect Effects 0.000 description 8
- 229940035676 analgesics Drugs 0.000 description 8
- 239000000730 antalgic agent Substances 0.000 description 8
- 210000001188 articular cartilage Anatomy 0.000 description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 8
- 229910052794 bromium Inorganic materials 0.000 description 8
- 159000000007 calcium salts Chemical class 0.000 description 8
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 8
- 230000002138 osteoinductive effect Effects 0.000 description 8
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 8
- 230000002792 vascular Effects 0.000 description 8
- 235000019166 vitamin D Nutrition 0.000 description 8
- 239000011710 vitamin D Substances 0.000 description 8
- 150000003710 vitamin D derivatives Chemical class 0.000 description 8
- 235000019168 vitamin K Nutrition 0.000 description 8
- 239000011712 vitamin K Substances 0.000 description 8
- 150000003721 vitamin K derivatives Chemical class 0.000 description 8
- 229940046008 vitamin d Drugs 0.000 description 8
- 229940046010 vitamin k Drugs 0.000 description 8
- 230000002188 osteogenic effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- -1 e.g. Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000000278 osteoconductive effect Effects 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 230000011164 ossification Effects 0.000 description 5
- 239000000825 pharmaceutical preparation Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 3
- 230000001054 cortical effect Effects 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 2
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 2
- 229920000945 Amylopectin Polymers 0.000 description 2
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 2
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 description 2
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 2
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 108010078777 Colistin Proteins 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 2
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 description 2
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 description 2
- 101000899390 Homo sapiens Bone morphogenetic protein 6 Proteins 0.000 description 2
- 101000899361 Homo sapiens Bone morphogenetic protein 7 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 2
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 2
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 2
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 201000009859 Osteochondrosis Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 229960004821 amikacin Drugs 0.000 description 2
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037182 bone density Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229960003405 ciprofloxacin Drugs 0.000 description 2
- 238000005115 demineralization Methods 0.000 description 2
- 230000002328 demineralizing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229960002549 enoxacin Drugs 0.000 description 2
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 229960003923 gatifloxacin Drugs 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229960000642 grepafloxacin Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229940064366 hespan Drugs 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 229960003376 levofloxacin Drugs 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229960002422 lomefloxacin Drugs 0.000 description 2
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 2
- 210000004705 lumbosacral region Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229960003702 moxifloxacin Drugs 0.000 description 2
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 229960001180 norfloxacin Drugs 0.000 description 2
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 2
- 229960001699 ofloxacin Drugs 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 230000004819 osteoinduction Effects 0.000 description 2
- 210000004663 osteoprogenitor cell Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000008354 sodium chloride injection Substances 0.000 description 2
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 2
- 229960004954 sparfloxacin Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229960000707 tobramycin Drugs 0.000 description 2
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 2
- 229960000497 trovafloxacin Drugs 0.000 description 2
- WVPSKSLAZQPAKQ-CDMJZVDBSA-N trovafloxacin Chemical compound C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F WVPSKSLAZQPAKQ-CDMJZVDBSA-N 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- YKSVGLFNJPQDJE-YDMQLZBCSA-N (19E,21E,23E,25E,27E,29E,31E)-33-[(2R,3S,4R,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-17-[7-(4-aminophenyl)-5-hydroxy-4-methyl-7-oxoheptan-2-yl]-1,3,5,7,37-pentahydroxy-18-methyl-9,13,15-trioxo-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid Chemical compound CC(CC(C)C1OC(=O)CC(=O)CCCC(=O)CC(O)CC(O)CC(O)CC2(O)CC(O)C(C(CC(O[C@@H]3O[C@H](C)[C@@H](O)[C@@H](N)[C@@H]3O)\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C1C)O2)C(O)=O)C(O)CC(=O)C1=CC=C(N)C=C1 YKSVGLFNJPQDJE-YDMQLZBCSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- GUXHBMASAHGULD-SEYHBJAFSA-N (4s,4as,5as,6s,12ar)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1([C@H]2O)=C(Cl)C=CC(O)=C1C(O)=C1[C@@H]2C[C@H]2[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]2(O)C1=O GUXHBMASAHGULD-SEYHBJAFSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 description 1
- RXZBMPWDPOLZGW-XMRMVWPWSA-N (E)-roxithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=N/OCOCCOC)/[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 RXZBMPWDPOLZGW-XMRMVWPWSA-N 0.000 description 1
- MPIPASJGOJYODL-SFHVURJKSA-N (R)-isoconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@@H](OCC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 MPIPASJGOJYODL-SFHVURJKSA-N 0.000 description 1
- AFNXATANNDIXLG-SFHVURJKSA-N 1-[(2r)-2-[(4-chlorophenyl)methylsulfanyl]-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound C1=CC(Cl)=CC=C1CS[C@H](C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 AFNXATANNDIXLG-SFHVURJKSA-N 0.000 description 1
- ZCJYUTQZBAIHBS-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-{[4-(phenylsulfanyl)benzyl]oxy}ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C=CC(SC=2C=CC=CC=2)=CC=1)CN1C=NC=C1 ZCJYUTQZBAIHBS-UHFFFAOYSA-N 0.000 description 1
- OCAPBUJLXMYKEJ-UHFFFAOYSA-N 1-[biphenyl-4-yl(phenyl)methyl]imidazole Chemical compound C1=NC=CN1C(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 OCAPBUJLXMYKEJ-UHFFFAOYSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 1
- RPABDKTXMKOGKI-OYTUFZPASA-N 6-methyl-n-[2-[(2s,5s,8s,11s,14s,17s,20s,23s)-8,11,14,20-tetrakis(2-aminoethyl)-5-[(1r)-1-hydroxyethyl]-17,23-bis(2-methylpropyl)-3,6,9,12,15,18,21,24-octaoxo-1,4,7,10,13,16,19,22-octazacyclotetracos-2-yl]ethyl]octanamide Chemical compound CCC(C)CCCCC(=O)NCC[C@@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H]([C@@H](C)O)NC1=O RPABDKTXMKOGKI-OYTUFZPASA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108010064760 Anidulafungin Proteins 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 102000004152 Bone morphogenetic protein 1 Human genes 0.000 description 1
- 108090000654 Bone morphogenetic protein 1 Proteins 0.000 description 1
- 102100028726 Bone morphogenetic protein 10 Human genes 0.000 description 1
- 102100028727 Bone morphogenetic protein 15 Human genes 0.000 description 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 description 1
- 102100022526 Bone morphogenetic protein 5 Human genes 0.000 description 1
- KAWOEDMUUFFXAM-UHFFFAOYSA-N CC1(C)CCCC2(C)C(C)C(C=O)=CCC21 Polymers CC1(C)CCCC2(C)C(C)C(C=O)=CCC21 KAWOEDMUUFFXAM-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 102000001187 Collagen Type III Human genes 0.000 description 1
- 108010069502 Collagen Type III Proteins 0.000 description 1
- 102000004510 Collagen Type VII Human genes 0.000 description 1
- 108010017377 Collagen Type VII Proteins 0.000 description 1
- FMTDIUIBLCQGJB-UHFFFAOYSA-N Demethylchlortetracyclin Natural products C1C2C(O)C3=C(Cl)C=CC(O)=C3C(=O)C2=C(O)C2(O)C1C(N(C)C)C(O)=C(C(N)=O)C2=O FMTDIUIBLCQGJB-UHFFFAOYSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229930183931 Filipin Natural products 0.000 description 1
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- CTETYYAZBPJBHE-UHFFFAOYSA-N Haloprogin Chemical compound ClC1=CC(Cl)=C(OCC#CI)C=C1Cl CTETYYAZBPJBHE-UHFFFAOYSA-N 0.000 description 1
- 229930195098 Hamycin Natural products 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000695367 Homo sapiens Bone morphogenetic protein 10 Proteins 0.000 description 1
- 101000695360 Homo sapiens Bone morphogenetic protein 15 Proteins 0.000 description 1
- 101000762375 Homo sapiens Bone morphogenetic protein 3 Proteins 0.000 description 1
- 101000899388 Homo sapiens Bone morphogenetic protein 5 Proteins 0.000 description 1
- 206010021137 Hypovolaemia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- JUZNIMUFDBIJCM-ANEDZVCMSA-N Invanz Chemical compound O=C([C@H]1NC[C@H](C1)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)NC1=CC=CC(C(O)=O)=C1 JUZNIMUFDBIJCM-ANEDZVCMSA-N 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 108010021062 Micafungin Proteins 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 208000002804 Osteochondritis Diseases 0.000 description 1
- 206010031252 Osteomyelitis Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- UOZODPSAJZTQNH-UHFFFAOYSA-N Paromomycin II Natural products NC1C(O)C(O)C(CN)OC1OC1C(O)C(OC2C(C(N)CC(N)C2O)OC2C(C(O)C(O)C(CO)O2)N)OC1CO UOZODPSAJZTQNH-UHFFFAOYSA-N 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- AZJUJOFIHHNCSV-KCQAQPDRSA-N Polygodial Polymers C[C@@]1([C@H](C(C=O)=CC2)C=O)[C@@H]2C(C)(C)CCC1 AZJUJOFIHHNCSV-KCQAQPDRSA-N 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 208000035965 Postoperative Complications Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- AWGBZRVEGDNLDZ-UHFFFAOYSA-N Rimocidin Natural products C1C(C(C(O)C2)C(O)=O)OC2(O)CC(O)CCCC(=O)CC(O)C(CC)C(=O)OC(CCC)CC=CC=CC=CC=CC1OC1OC(C)C(O)C(N)C1O AWGBZRVEGDNLDZ-UHFFFAOYSA-N 0.000 description 1
- AWGBZRVEGDNLDZ-JCUCCFEFSA-N Rimocidine Chemical compound O([C@H]1/C=C/C=C/C=C/C=C/C[C@H](OC(=O)[C@@H](CC)[C@H](O)CC(=O)CCC[C@H](O)C[C@@]2(O)O[C@H]([C@@H]([C@@H](O)C2)C(O)=O)C1)CCC)[C@@H]1O[C@H](C)[C@@H](O)[C@H](N)[C@@H]1O AWGBZRVEGDNLDZ-JCUCCFEFSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000004187 Spiramycin Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- RRDRHWJDBOGQHN-JWCTVYNTSA-N [2-[(2s,5r,8s,11s,14r,17s,22s)-17-[(1r)-1-hydroxyethyl]-22-[[(2s)-2-[[(2s,3r)-3-hydroxy-2-[[(2s)-2-[6-methyloctanoyl(sulfomethyl)amino]-4-(sulfomethylamino)butanoyl]amino]butyl]amino]-4-(sulfomethylamino)butanoyl]amino]-5,8-bis(2-methylpropyl)-3,6,9,12,15 Chemical compound CCC(C)CCCCC(=O)N(CS(O)(=O)=O)[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCNCS(O)(=O)=O)NC1=O RRDRHWJDBOGQHN-JWCTVYNTSA-N 0.000 description 1
- TYBHXIFFPVFXQW-UHFFFAOYSA-N abafungin Chemical compound CC1=CC(C)=CC=C1OC1=CC=CC=C1C1=CSC(NC=2NCCCN=2)=N1 TYBHXIFFPVFXQW-UHFFFAOYSA-N 0.000 description 1
- 229950006373 abafungin Drugs 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 210000000588 acetabulum Anatomy 0.000 description 1
- 210000001361 achilles tendon Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- UHIXWHUVLCAJQL-MPBGBICISA-N albaconazole Chemical compound C([C@@](O)([C@H](N1C(C2=CC=C(Cl)C=C2N=C1)=O)C)C=1C(=CC(F)=CC=1)F)N1C=NC=N1 UHIXWHUVLCAJQL-MPBGBICISA-N 0.000 description 1
- 229950006816 albaconazole Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000001909 alveolar process Anatomy 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- XZKWIPVTHGWDCF-KUZYQSSXSA-N amorolfine hydrochloride Chemical compound Cl.C1=CC(C(C)(C)CC)=CC=C1CC(C)CN1C[C@@H](C)O[C@@H](C)C1 XZKWIPVTHGWDCF-KUZYQSSXSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229960003348 anidulafungin Drugs 0.000 description 1
- JHVAMHSQVVQIOT-MFAJLEFUSA-N anidulafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@@H](C)O)[C@H](O)[C@@H](O)C=2C=CC(O)=CC=2)[C@@H](C)O)=O)C=C1 JHVAMHSQVVQIOT-MFAJLEFUSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 229940003446 arsphenamine Drugs 0.000 description 1
- VLAXZGHHBIJLAD-UHFFFAOYSA-N arsphenamine Chemical compound [Cl-].[Cl-].C1=C(O)C([NH3+])=CC([As]=[As]C=2C=C([NH3+])C(O)=CC=2)=C1 VLAXZGHHBIJLAD-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 238000011882 arthroplasty Methods 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960003623 azlocillin Drugs 0.000 description 1
- JTWOMNBEOCYFNV-NFFDBFGFSA-N azlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCNC1=O JTWOMNBEOCYFNV-NFFDBFGFSA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 1
- 229960002699 bacampicillin Drugs 0.000 description 1
- PFOLLRNADZZWEX-FFGRCDKISA-N bacampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 PFOLLRNADZZWEX-FFGRCDKISA-N 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229960002206 bifonazole Drugs 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 229960002962 butenafine Drugs 0.000 description 1
- ABJKWBDEJIDSJZ-UHFFFAOYSA-N butenafine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)CC1=CC=C(C(C)(C)C)C=C1 ABJKWBDEJIDSJZ-UHFFFAOYSA-N 0.000 description 1
- 229960005074 butoconazole Drugs 0.000 description 1
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 1
- PPKJUHVNTMYXOD-PZGPJMECSA-N c49ws9n75l Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1.N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O PPKJUHVNTMYXOD-PZGPJMECSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229960004348 candicidin Drugs 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- JSVCEVCSANKFDY-SFYZADRCSA-N carbacephem Chemical compound C1CC(C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)C)[C@H]21 JSVCEVCSANKFDY-SFYZADRCSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003034 caspofungin Drugs 0.000 description 1
- JYIKNQVWKBUSNH-WVDDFWQHSA-N caspofungin Chemical compound C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 JYIKNQVWKBUSNH-WVDDFWQHSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- XIURVHNZVLADCM-IUODEOHRSA-N cefalotin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CC1=CC=CS1 XIURVHNZVLADCM-IUODEOHRSA-N 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- 229960004069 cefditoren Drugs 0.000 description 1
- KMIPKYQIOVAHOP-YLGJWRNMSA-N cefditoren Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C/C=1SC=NC=1C KMIPKYQIOVAHOP-YLGJWRNMSA-N 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- WZOZEZRFJCJXNZ-ZBFHGGJFSA-N cefoxitin Chemical compound N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)CC1=CC=CS1 WZOZEZRFJCJXNZ-ZBFHGGJFSA-N 0.000 description 1
- 229960005090 cefpodoxime Drugs 0.000 description 1
- WYUSVOMTXWRGEK-HBWVYFAYSA-N cefpodoxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/OC)\C1=CSC(N)=N1 WYUSVOMTXWRGEK-HBWVYFAYSA-N 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960000484 ceftazidime Drugs 0.000 description 1
- NMVPEQXCMGEDNH-TZVUEUGBSA-N ceftazidime pentahydrate Chemical compound O.O.O.O.O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 NMVPEQXCMGEDNH-TZVUEUGBSA-N 0.000 description 1
- 229960004086 ceftibuten Drugs 0.000 description 1
- UNJFKXSSGBWRBZ-BJCIPQKHSA-N ceftibuten Chemical compound S1C(N)=NC(C(=C\CC(O)=O)\C(=O)N[C@@H]2C(N3C(=CCS[C@@H]32)C(O)=O)=O)=C1 UNJFKXSSGBWRBZ-BJCIPQKHSA-N 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- 229950004259 ceftobiprole Drugs 0.000 description 1
- VOAZJEPQLGBXGO-SDAWRPRTSA-N ceftobiprole Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(\C=C/4C(N([C@H]5CNCC5)CC\4)=O)CS[C@@H]32)C(O)=O)=O)=N1 VOAZJEPQLGBXGO-SDAWRPRTSA-N 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- NPGNOVNWUSPMDP-UTEPHESZSA-N chembl1650818 Chemical compound N(/[C@H]1[C@@H]2N(C1=O)[C@H](C(S2)(C)C)C(=O)OCOC(=O)C(C)(C)C)=C\N1CCCCCC1 NPGNOVNWUSPMDP-UTEPHESZSA-N 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960003749 ciclopirox Drugs 0.000 description 1
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 229940047766 co-trimoxazole Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229940108538 colistimethate Drugs 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 108700028201 colistinmethanesulfonic acid Proteins 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229960002398 demeclocycline Drugs 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229960004100 dirithromycin Drugs 0.000 description 1
- WLOHNSSYAXHWNR-NXPDYKKBSA-N dirithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H]2O[C@H](COCCOC)N[C@H]([C@@H]2C)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 WLOHNSSYAXHWNR-NXPDYKKBSA-N 0.000 description 1
- 229960000895 doripenem Drugs 0.000 description 1
- AVAACINZEOAHHE-VFZPANTDSA-N doripenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](CNS(N)(=O)=O)C1 AVAACINZEOAHHE-VFZPANTDSA-N 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 229960002770 ertapenem Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229960001274 fenticonazole Drugs 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 210000000968 fibrocartilage Anatomy 0.000 description 1
- 210000002082 fibula Anatomy 0.000 description 1
- 229950000152 filipin Drugs 0.000 description 1
- IMQSIXYSKPIGPD-NKYUYKLDSA-N filipin Chemical compound CCCCC[C@H](O)[C@@H]1[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@H](O)\C(C)=C\C=C\C=C\C=C\C=C\[C@H](O)[C@@H](C)OC1=O IMQSIXYSKPIGPD-NKYUYKLDSA-N 0.000 description 1
- IMQSIXYSKPIGPD-UHFFFAOYSA-N filipin III Natural products CCCCCC(O)C1C(O)CC(O)CC(O)CC(O)CC(O)CC(O)CC(O)C(C)=CC=CC=CC=CC=CC(O)C(C)OC1=O IMQSIXYSKPIGPD-UHFFFAOYSA-N 0.000 description 1
- 229960004273 floxacillin Drugs 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960000308 fosfomycin Drugs 0.000 description 1
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 1
- 229960001625 furazolidone Drugs 0.000 description 1
- PLHJDBGFXBMTGZ-WEVVVXLNSA-N furazolidone Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)OCC1 PLHJDBGFXBMTGZ-WEVVVXLNSA-N 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 229960003170 gemifloxacin Drugs 0.000 description 1
- ZRCVYEYHRGVLOC-HYARGMPZSA-N gemifloxacin Chemical compound C1C(CN)C(=N/OC)/CN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1CC1 ZRCVYEYHRGVLOC-HYARGMPZSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229960001906 haloprogin Drugs 0.000 description 1
- 229950006942 hamycin Drugs 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- MCAHMSDENAOJFZ-BVXDHVRPSA-N herbimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](OC)[C@@H](OC)C[C@H](C)[C@@H](OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-BVXDHVRPSA-N 0.000 description 1
- 229930193320 herbimycin Natural products 0.000 description 1
- 229940027278 hetastarch Drugs 0.000 description 1
- 229940053703 hextend Drugs 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000003035 hyaline cartilage Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- DDFOUSQFMYRUQK-RCDICMHDSA-N isavuconazole Chemical compound C=1SC([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC=C(F)C=2)F)=NC=1C1=CC=C(C#N)C=C1 DDFOUSQFMYRUQK-RCDICMHDSA-N 0.000 description 1
- 229960000788 isavuconazole Drugs 0.000 description 1
- 229960004849 isoconazole Drugs 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 229960003907 linezolid Drugs 0.000 description 1
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JAPHQRWPEGVNBT-UTUOFQBUSA-M loracarbef anion Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)N)=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-M 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 210000004373 mandible Anatomy 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000198 mezlocillin Drugs 0.000 description 1
- YPBATNHYBCGSSN-VWPFQQQWSA-N mezlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCN(S(C)(=O)=O)C1=O YPBATNHYBCGSSN-VWPFQQQWSA-N 0.000 description 1
- 229960002159 micafungin Drugs 0.000 description 1
- PIEUQSKUWLMALL-YABMTYFHSA-N micafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS(O)(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 PIEUQSKUWLMALL-YABMTYFHSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229960003128 mupirocin Drugs 0.000 description 1
- 229930187697 mupirocin Natural products 0.000 description 1
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 description 1
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960004313 naftifine Drugs 0.000 description 1
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960003255 natamycin Drugs 0.000 description 1
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 1
- 235000010298 natamycin Nutrition 0.000 description 1
- 239000004311 natamycin Substances 0.000 description 1
- 229960000808 netilmicin Drugs 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- 229960000564 nitrofurantoin Drugs 0.000 description 1
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 229960004031 omoconazole Drugs 0.000 description 1
- JMFOSJNGKJCTMJ-ZHZULCJRSA-N omoconazole Chemical compound C1=CN=CN1C(/C)=C(C=1C(=CC(Cl)=CC=1)Cl)\OCCOC1=CC=C(Cl)C=C1 JMFOSJNGKJCTMJ-ZHZULCJRSA-N 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000004820 osteoconduction Effects 0.000 description 1
- 210000005009 osteogenic cell Anatomy 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960003483 oxiconazole Drugs 0.000 description 1
- QRJJEGAJXVEBNE-MOHJPFBDSA-N oxiconazole Chemical compound ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)\CN1C=NC=C1 QRJJEGAJXVEBNE-MOHJPFBDSA-N 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 210000000426 patellar ligament Anatomy 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 230000003239 periodontal effect Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- IVBHGBMCVLDMKU-GXNBUGAJSA-N piperacillin Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 IVBHGBMCVLDMKU-GXNBUGAJSA-N 0.000 description 1
- 229960004212 pivmecillinam Drugs 0.000 description 1
- CSOMAHTTWTVBFL-OFBLZTNGSA-N platensimycin Chemical compound C([C@]1([C@@H]2[C@@H]3C[C@@H]4C[C@@]2(C=CC1=O)C[C@@]4(O3)C)C)CC(=O)NC1=C(O)C=CC(C(O)=O)=C1O CSOMAHTTWTVBFL-OFBLZTNGSA-N 0.000 description 1
- CSOMAHTTWTVBFL-UHFFFAOYSA-N platensimycin Natural products O1C2(C)CC3(C=CC4=O)CC2CC1C3C4(C)CCC(=O)NC1=C(O)C=CC(C(O)=O)=C1O CSOMAHTTWTVBFL-UHFFFAOYSA-N 0.000 description 1
- FPGPDEPMWUWLOV-UHFFFAOYSA-N polygodial Natural products CC1(C)CCCC2(C)C(C=O)C(=CC(O)C12)C=O FPGPDEPMWUWLOV-UHFFFAOYSA-N 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 229960001589 posaconazole Drugs 0.000 description 1
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ABBQGOCHXSPKHJ-WUKNDPDISA-N prontosil Chemical compound NC1=CC(N)=CC=C1\N=N\C1=CC=C(S(N)(=O)=O)C=C1 ABBQGOCHXSPKHJ-WUKNDPDISA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 229940052337 quinupristin/dalfopristin Drugs 0.000 description 1
- OPAHEYNNJWPQPX-RCDICMHDSA-N ravuconazole Chemical compound C=1SC([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=1C1=CC=C(C#N)C=C1 OPAHEYNNJWPQPX-RCDICMHDSA-N 0.000 description 1
- 229950004154 ravuconazole Drugs 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229960005224 roxithromycin Drugs 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960001294 spiramycin Drugs 0.000 description 1
- 235000019372 spiramycin Nutrition 0.000 description 1
- 229930191512 spiramycin Natural products 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000005065 subchondral bone plate Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960005256 sulbactam Drugs 0.000 description 1
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 description 1
- 229960002607 sulconazole Drugs 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- VACCAVUAMIDAGB-UHFFFAOYSA-N sulfamethizole Chemical compound S1C(C)=NN=C1NS(=O)(=O)C1=CC=C(N)C=C1 VACCAVUAMIDAGB-UHFFFAOYSA-N 0.000 description 1
- 229960005158 sulfamethizole Drugs 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- OPYGFNJSCUDTBT-PMLPCWDUSA-N sultamicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(=O)OCOC(=O)[C@H]2C(S(=O)(=O)[C@H]3N2C(C3)=O)(C)C)(C)C)=CC=CC=C1 OPYGFNJSCUDTBT-PMLPCWDUSA-N 0.000 description 1
- 229960001326 sultamicillin Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 229960003250 telithromycin Drugs 0.000 description 1
- LJVAJPDWBABPEJ-PNUFFHFMSA-N telithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)N(CCCCN3C=C(N=C3)C=3C=NC=CC=3)[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@@]1(C)OC)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O LJVAJPDWBABPEJ-PNUFFHFMSA-N 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 229960000580 terconazole Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960003053 thiamphenicol Drugs 0.000 description 1
- OTVAEFIXJLOWRX-NXEZZACHSA-N thiamphenicol Chemical compound CS(=O)(=O)C1=CC=C([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)C=C1 OTVAEFIXJLOWRX-NXEZZACHSA-N 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000011541 total hip replacement Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 229960005041 troleandomycin Drugs 0.000 description 1
- LQCLVBQBTUVCEQ-QTFUVMRISA-N troleandomycin Chemical compound O1[C@@H](C)[C@H](OC(C)=O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](OC(C)=O)[C@@H](C)C(=O)[C@@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)OC(C)=O)[C@H]1C LQCLVBQBTUVCEQ-QTFUVMRISA-N 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229940075601 voluven Drugs 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3608—Bone, e.g. demineralised bone matrix [DBM], bone powder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3612—Cartilage, synovial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
- A61L31/044—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/106—Halogens or compounds thereof, e.g. iodine, chlorite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/06—Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
Definitions
- the present application relates to bioactive implants, methods of making bioactive implants, and methods of using bioactive implants to treat or repair bone or cartilage defects.
- the basic elements required for bone formation include a three-dimensional, open-porosity tissue scaffold, cells, and osteoinductive signaling molecules to stimulate cell differentiation, proliferation, and matrix formation.
- the biologic, physical, and biomechanical properties of the materials, compositions, and constructs are some of the major factors in determining their suitability for the use in the treatment and repair of bone and cartilage defects. For example, successful bone formation requires that these elements be combined in a well-coordinated spatial and time dependent fashion.
- the relative contribution of each element may vary, e.g., according to differences in patient age, gender, health, systemic conditions, habits, anatomical location, etc.
- bioactive implants that are biocompatible, non-inflammatory, osteogenic, and chondrogenic, and can be replaced by a subject's natural bone and cartilage.
- composition comprising bone microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ M.
- composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- PVP polyvinyl pyrrolidone
- composition comprising bone microparticle in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition disclosed herein.
- a container comprising a composition, wherein the composition comprises bone microparticles in a solution.
- a container comprising a composition, wherein the composition comprises bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a container comprising a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- a container comprising a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- container comprising a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- kit comprising a container disclosed herein.
- kits comprising a container disclosed herein, wherein the container comprises a composition disclosed herein.
- kits comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution.
- kits comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- kits comprising (i) bone microparticles, and (ii) instructions for preparing a composition comprising bone microparticles in a solution.
- kits comprising (i) bone microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution.
- kits comprising (i) bone microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- kits comprising (i) bone microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- bioactive implant made by a method comprising desiccating a composition disclosed herein.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- PVP polyvinyl pyrrolidone
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition disclosed herein.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a solution.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a method of making a bioactive implant comprising adding to a mold a disclosed composition; and desiccating the composition.
- a method of making a bioactive implant comprising adding to a mold a composition comprising bone microparticles in a solution; and desiccating the composition.
- a method of making a bioactive implant comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a method of making a bioactive implant comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- a method of making a bioactive implant comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding to a mold the composition; and desiccating the composition.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- PVP polyvinyl pyrrolidone
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising generating a bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition disclosed herein.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition disclosed herein.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone a bioactive implant made by a method disclosed herein.
- a method of treating or repairing a bone defect comprising: preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- a method of treating or repairing a bone defect comprising: preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- composition comprising cartilage microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ M.
- composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- PVP polyvinyl pyrrolidone
- composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ M.
- composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution.
- a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a container comprising a composition cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- a container comprising a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- container comprising a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- kits comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution.
- kits comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- kits comprising (i) cartilage microparticles, and (ii) instructions for preparing a composition comprising cartilage microparticles in a solution.
- kits comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution.
- kits comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- kits comprising (i) cartilage microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- PVP polyvinyl pyrrolidone
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a solution.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant comprising adding to a mold a composition comprising cartilage microparticles in a solution; and desiccating the composition.
- a method of making a bioactive implant comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a method of making a bioactive implant comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; and desiccating the composition.
- a method of making a bioactive implant comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding to a mold the composition; and desiccating the composition.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- PVP polyvinyl pyrrolidone
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising generating a bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of a cartilage defect a bioactive implant made by a method disclosed herein.
- a method of treating or repairing a cartilage defect comprising: preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- a method of treating or repairing a cartilage defect comprising: preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- FIG. 1A shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles (25% w/v) in a 6% HES solution.
- the surface of the bioactive implant was smooth and glistening.
- FIG. 1C shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles in a human bone collage solution. Bone microparticles particles were visible in a thin layer of collagen, which escaped the mold.
- FIG. 1D shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles in an albumin solution.
- the surface of the bioactive implant was rough and uneven and the texture was brittle.
- the bar at the bottom of photograph is 1.5 cm long.
- FIG. 2A shows a section of bone microparticles embedded in an HES solution, when viewed in polarized light under 10% magnification. Evenly distributed bone particles were doubly refractile.
- FIG. 2B shows a 25 ⁇ magnification of the image shown in FIG. 2A . Evenly spaced doubly refractile bone particles were clearly visible.
- Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, a further aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms a further aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
- references in the specification and concluding claims to parts by weight of a particular element or component in a composition denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed.
- X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
- a disclosed method can optionally comprise one or more additional steps, such as, for example, repeating an administering step or altering an administering step.
- a solution is a homogeneous mixture of two or more substances.
- a solution may exist in any phase.
- a solution can be a homogeneous mixture composed of only one phase, wherein a solute (such as, e.g., HES, non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, albumin, or a combination thereof) is dissolved in a solvent (such as, e.g., water, saline, alcohol, DMSO, or a combination thereof).
- a solvent such as, e.g., water, saline, alcohol, DMSO, or a combination thereof.
- solution disclosed herein is non-toxic.
- a disclosed solution comprises non-toxic components.
- a disclosed solution is safe for administration to human beings or other mammals.
- the term “subject” refers to the target of administration or implantation, e.g., an animal.
- the term “subject” also includes domesticated animals (e.g., cats, dogs, etc.), livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), and laboratory animals (e.g., mouse, rabbit, rat, guinea pig, fruit fly, etc.).
- the subject can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian.
- the subject can be a human, non-human primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea pig, or rodent.
- a subject can be human.
- a subject can have a bone or cartilage defect, or a subject can have multiple bone or cartilage defects.
- a “patient” refers to a subject afflicted with one or more diseases or disorders or conditions, such as, for example, one or more bone or cartilage defects.
- a bone or cartilage can require medical intervention.
- a patient can refer to a subject that has been diagnosed with or is suspected of having a bone or cartilage defect.
- treatment refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder (such as, for example, a bone or cartilage defect).
- a disease, pathological condition, or disorder such as, for example, a bone or cartilage defect.
- active treatment that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder
- causal treatment that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder.
- this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.
- the term covers any treatment of a subject, including a mammal (e.g., a human), and includes: (i) preventing the disease from occurring in a subject that can be predisposed to the disease but has not yet been diagnosed as having it; (ii) inhibiting the disease, i.e., arresting its development; or (iii) relieving the disease, i.e., causing regression of the disease.
- a mammal e.g., a human
- treating means improving or eliminating a bone or cartilage defect.
- “treating” means reducing the effects of a bone or cartilage defect or the symptoms of a bone or cartilage defect.
- treating can refer to a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% reduction in the severity of an established bone or cartilage defect or symptoms of a bone or cartilage defect.
- a method for treating a bone or cartilage defect can reduce one or more symptoms of a bone or cartilage defect in a subject by 10% as compared to a control.
- a reduction of one or more symptoms can be 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or any percent reduction in between 10% and 100% as compared to a control. It is understood that treatment does not necessarily refer to a cure or complete ablation or eradication of the bone or cartilage defect. However, in an aspect, treatment can refer to a cure or complete ablation or eradication of the bone or cartilage defect.
- prevent refers to precluding, averting, obviating, forestalling, stopping, or hindering something from happening, especially by advance action. It is understood that where reduce, inhibit or prevent are used herein, unless specifically indicated otherwise, the use of the other two words is also expressly disclosed. In an aspect, preventing the worsening of a bone or cartilage defect or the severity of a bone or cartilage defect is intended.
- diagnosisd means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by the composition, bioactive implants, and methods disclosed herein.
- diagnosis with a bone or cartilage defect means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or can be treated by a composition or bioactive implant disclosed herein, such as, for example, a bioactive implant that can treat or prevent the worsening of severity of a bone or cartilage defect.
- “suspected of having a bone or cartilage defect” can mean having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be likely be diagnosed as or can likely be treated by a composition or bioactive implant that can treat or repair a bone or cartilage defect.
- administering refers to any method of providing a disclosed agent or a pharmaceutical preparation comprising a disclosed agent to a subject.
- Such methods are well known to those skilled in the art and include, but are not limited to: oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intracerebral administration, rectal administration, sublingual administration, buccal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, and subcutaneous administration. Administration can be continuous or intermittent.
- the skilled person can determine an efficacious dose, an efficacious schedule, and an efficacious route of administration for a disclosed composition or a disclosed complex so as to treat a subject or inhibit or prevent an inflammatory reaction.
- the skilled person can also alter, change, or modify an aspect of an administering step so as to improve efficacy of a disclosed agent or a pharmaceutical preparation comprising a disclosed agent.
- modifying the method can comprise modifying or changing one or more features or aspects of one or more steps of a disclosed method.
- a method can be altered by changing the dose or the amount of a disclosed agent or a pharmaceutical preparation comprising a disclosed agent, or by changing the duration or frequency of the administration of a disclosed agent or pharmaceutical preparation comprising a disclosed agent.
- growth factors can refer to proteins that bind to receptors on the cell surface, with the primary result of activating cellular proliferation and/or differentiation. Many growth factors are quite versatile, stimulating cellular division in numerous different cell types; while others are specific to a particular cell-type. The art is familiar with growth factors, which include, but are not limited to, fibroblast growth factor-2 (FGF-2), insulin-like growth factor-I and -II (IGF-I and IGF-II), platelet derived growth factor (PDGF), and transforming growth factor-beta 1 (TGF- ⁇ ).
- FGF-2 fibroblast growth factor-2
- IGF-I and IGF-II insulin-like growth factor-I and -II
- PDGF platelet derived growth factor
- TGF- ⁇ transforming growth factor-beta 1
- bone can refer to two bone tissue categories. Cortical bone represents one category while cancellous bone, which is spongy interior bone tissue, represents the second category. Cortical bone has a much higher density than cancellous bone, but it is less porous (about 5-10% for cortical bone vs. about 50-90% for cancellous bone). This means compact bone has fewer spaces and cavities than spongy bone. Despite these differences, compact and spongy bone tissue work together as cortical tissue is the shell that covers the cancellous bone of the vertebrae and joint ends
- the disclosed cartilage microparticles can be prepared as follows.
- Articular cartilage can be obtained from the articular surfaces of joints, such as from distal femurs, proximal tibias, acetabulums, heads of femurs, and/or heads of radiuses.
- the cartilage can be removed, for example, with a scalpel blade and can be removed down to subchondral bone, without removing bone.
- the articular cartilage can include articular hyaline cartilage and/or fibrocartilage.
- the cartilage is not subjected to harsh chemical treatments, which can alter the inherent natural properties of material within the cartilage.
- the cartilage is not subjected to demineralization treatments such as treatment with hydrochloric acid, ethylene diamine, and/or other demineralization agents.
- the non-demineralized articular cartilage can be subjected to microbiological testing or can be subjected to other testing protocols that do not deleteriously alter the cartilage.
- the articular cartilage is not subjected to any physical treatments that may demineralize and/or alter the inherent natural properties of the cartilage.
- the articular cartilage is not subjected to elevated temperatures, e.g., temperatures greater than about 50° C., as elevated temperatures can diminish the chondrogenic activity of the cartilage.
- the articular cartilage can be preserved, e.g., freeze-dried, frozen, and/or dried, after being removed from the joint.
- a preferred method of preserving articular cartilage can be freeze-drying.
- the disclosed cartilage microparticles can be produced by grinding the cartilage.
- the cartilage Prior to grinding, the cartilage can be dry cartilage, freeze-dried cartilage, frozen cartilage, wet cartilage, or a combination thereof.
- Pieces of cartilage obtained from the articular surface of one or more joints can be washed in several changes of normal saline, blotted dry, and frozen rapidly, e.g., at 10° C./min or faster, in the vapor phase of liquid nitrogen (about ⁇ 150° C.), or alternatively, frozen rapidly in the liquid phase of liquid nitrogen (about ⁇ 196° C.).
- the cartilage After being frozen, the cartilage can be rapidly placed directly on the shelves of a freeze-drying apparatus maintained at about ⁇ 40° C.
- a vacuum level of less than about 100 millitorr can be maintained in the freeze-drying chamber during the freeze-drying cycle.
- a vacuum level of about 100 millitorr to about 400 millitorr can be maintained in the freeze-drying chamber during the freeze-drying cycle.
- the freeze-drying cycle can last an average of about 5 days.
- the cartilage can warm from the initial frozen temperature (e.g., about ⁇ 150° C.) to the temperature of the freeze-drying chamber (e.g., about ⁇ 40° C.), after which it can be maintained at about ⁇ 40° C. for the remainder of the cycle.
- the moisture content of the cartilage can be reduced to from about 4 to about 5%. Overdrying should be avoided, as this can result in the irreversible alterations of collagen and proteoglycan structures.
- the chamber can be warmed to room temperature, the vacuum can be released, and the freeze-dried cartilage can be removed.
- the cartilage can be ground using any suitable grinding apparatus.
- any grinding apparatus capable of grinding dry, hard, brittle material in seconds such as turbo mills, disc mills, toothed disc mills, jet mills, or other similar apparatuses can be used.
- grinding can be performed under conditions that preclude raising the temperature of the cartilage to a level that can diminish the chondrogenic activity of the resulting composition.
- grinding can be performed without raising the temperature of the articular cartilage above about 50° C.
- grinding can be performed without raising the temperature of the cartilage above about 40° C.
- the temperature of the cartilage can be measured in any suitable manner.
- thermocouples can be used to monitor the temperature of the cartilage directly, e.g., by measuring the temperature of the cartilage immediately after grinding, or indirectly, e.g., by measuring the temperature of the metal in the grinding mill. Continuous grinding in conventional grinding mills for 3-5 minutes can raise the temperature of the material to 70° C. or above.
- freeze-dried pieces of cartilage 1-4 mm in size
- the cartilage can be sieved.
- the cartilage can be sieved through sieves of various sizes. Sieving can be used to separate cartilage into cartilage powder (i.e., particle sizes of less than 250 microns) and cartilage granules. Grinding can be repeated until the desired distribution of particles sizes can be obtained, such as, for example, from about 50 ⁇ m to about 900 ⁇ m. See, e.g., U.S. Pat. No. 8,318,212.
- the disclosed bone microparticles can be prepared as follows.
- bone can be freeze-dried and processed, which can include repeated washing in warm saline or other balanced salt solutions to remove “undesirable constituents”.
- the bone can be immersed directly into liquid nitrogen vapor and can then be freeze-dried to achieve a residual moisture of 5%-6% or less. Residual moisture content can be determined gravimetrically.
- freeze-dried bone can be cut into cubes with a band saw, an oscillating or a rotary saw without heating the bone preparation, by avoiding pressure on the bone being cut, and by limiting the time of grinding to no more than 15 second for each surface being cut.
- cut bone cubes, rectangles, or other small configurations can be further cut in a turbo mill, micro hammer cutter mill, disc mill, toothed disc mill, jet mill, or other similar mills to obtain particles of a smaller size.
- dry bone can be ground.
- wet bone preparation can be ground.
- Heating bone above about 45° C. to about 50° C. can be undesirable as the heat can significantly reduce or can completely abolish osteoinductive properties of bone.
- continuous grinding for 3 to 5 minutes in any of the conventional grinding mills can raise the temperature to 70° C. or above.
- a mill can be operated in cycles of about 8 seconds to about 18 seconds, then the bone can be sieved a duration of about 14 seconds to about 15 seconds.
- the temperature of bone or grinder can rise above about 33° C. from the initial temperature of the product (e.g., about 18° C. and about 20° C.).
- the cycle can operate for no longer than 3 minutes with an average operating time of about 2.5 minutes.
- the bone after each grinding cycle, the bone can be sieved.
- the bone can be sieved through sieves of various sizes. Sieving can be used to separate bone into bone powder and bone granules. In an aspect, grinding can be repeated until the desired distribution of particles sizes can be obtained, such as, for example, from about 20 ⁇ m to about 800 ⁇ m. See, e.g., U.S. Pat. No. 7,335,381.
- contacting refers to bringing a disclosed composition or bioactive implant together with an intended target (such as at least a portion of a bone or cartilage defect) or targeted area (such as an area diagnosed with, suspected of having, or susceptible to developing a bone or cartilage defect) in such a manner that the disclosed composition or bioactive implant can exert an effect on the intended target or targeted area either directly or indirectly.
- an intended target such as at least a portion of a bone or cartilage defect
- targeted area such as an area diagnosed with, suspected of having, or susceptible to developing a bone or cartilage defect
- mixing means to physically combine the recited components so as to achieve a homogenous solution.
- a person skilled in the art could ascertain without undue experimentation, the amount of time required to mix the recited components so as to achieve a solution.
- the term “determining” can refer to measuring or ascertaining the presence and severity of a bone or cartilage defect.
- Methods and techniques used to determining the presence and/or severity of a bone or cartilage defect are known to the medical arts.
- the art is familiar with ways (e.g., radiograph, imaging (e.g., CT scan, MRI, etc.) to identify and/or diagnose the presence, severity, or both of a bone or cartilage defect.
- the terms “effective amount” and “amount effective” can refer to an amount that is sufficient to achieve the desired result such as, for example, the treatment and/or repair of a bone or cartilage defect.
- the terms “effective amount” and “amount effective” can refer to an amount that is sufficient to achieve the desired an effect on an undesired condition (e.g., bone or cartilage defect).
- a “therapeutically effective amount” refers to an amount that is sufficient to achieve the desired therapeutic result or to have an effect on undesired symptoms, but is generally insufficient to cause adverse side effects.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of a compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. If desired, then the effective daily dose can be divided into multiple doses for purposes of administration.
- compositions can contain such amounts or submultiples thereof to make up the daily dose.
- the dosage can be adjusted by the individual physician in the event of any contraindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products.
- a preparation can be administered in a “prophylactically effective amount”; that is, an amount effective for prevention of a disease or condition.
- autografts are bone grafts that use bone obtained from the same subject that is receiving the graft.
- bone can be harvested from non-essential bones, such as the iliac crest or the fibula, the chin, the ribs, the mandible, and even parts of the skull.
- Autogenous bone possesses all the properties essential for bone formation. In other words, it is osteoconductive and osteoinductive, and it houses growth factors and osteogenic cells with no associated immune or infection related risks (i.e., non-immunogenic).
- Autologous bone fracts are slowly replaced by newly formed host bone.
- autografts include possible post-operative pain and complications as well as blood loss, hematomas, infection, fracture, neurovascular injury, and cosmetic deformity at the explantation site. Autografts also require longer operative time. Moreover, the availability of an autogenous bone graft is limited in a pediatric subject or in an elderly subject as well as those subjects afflicted with osteopenia and osteoporosis.
- Allograft bone can be collected from either living donors (e.g., patients receiving a total hip replacement surgery) or non-living donors. Allografts are typically processed by a bone tissue bank. An allograft can be osteoconductive and can be weakly osteoinductive. Processing an allograft can often require sterilization (i.e., gamma irradiation), which can detrimentally affect the mechanical properties of bone, and can deactivate proteins normally found in healthy bone.
- sterilization i.e., gamma irradiation
- xenografts are bone grafts that originate in a species other than the species of the subject receiving the graft.
- a xenograft can be derived from a bovine bone or a porcine bone.
- the xenograft can be freeze-dried and/or demineralized and deproteinized.
- BMPs Bone morphogenetic proteins
- BMPs include, but are not limited to, BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, and BMP15.
- BMPs exist at high concentration within bone and are secreted by many bone-forming cell types. Cellular signaling is an important function of BMPs.
- the art generally considers BMP2, BMP4, BMP6, and BMP7 to be the most osteoinductive of all known BMPs.
- Anti-fungal agents are known to the art.
- anti-fungal agents include, but are not limited to, abafungin, albaconazole, amorolfin, amphotericin b, anidulafungin, bifonazole, butenafine, butoconazole, candicidin, caspofungin, ciclopirox, clotrimazole, econazole, fenticonazole, filipin, fluconazole, flucytosine, griseofulvin, haloprogin, hamycin, isavuconazole, isoconazole, itraconazole, ketoconazole, micafungin, miconazole, naftifine, natamycin, nystatin, omoconazole, oxiconazole, polygodial, posaconazole, ravuconazole, rimocidin, sertaconazole, sulconazole, terbinafine,
- Anti-bacterial agents are known to the art.
- anti-bacterial agents include, but are not limited to, afenide, amikacin, amoxicillin, ampicillin, arsphenamine, azithromycin, azlocillin, aztreonam, bacampicillin, bacitracin, carbacephem (loracarbef), carbenicillin, cefaclor, cefadroxil, cefalotin, cefamandole, cefazolin, cefdinir, cefditoren, cefepime, cefixime, cefoperazone, cefotaxime, cefoxitin, cefpodoxime, cefprozil, ceftazidime, ceftibuten, ceftizoxime, ceftobiprole, ceftriaxone, cefuroxime, cephalexin, chloramphenicol, chlorhexidine, ciprofloxacin, clarithromycin, clavulanic acid
- Anti-bacterial agents include quinolones, such as, for example, ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, moxifloxacin, nalidixic acid, norfloxacin, ofloxacin, sparfloxacin, trovafloxacin, or a combination thereof.
- Anti-bacterial agents include aminoglycosides such as, for example, amikacin, gentamicin, kanamycin, neomycin, streptomycin, tobramycin, or a combination thereof.
- resorbable refers to the ability of a material to be broken down over a period of time and assimilated into the biological environment.
- “embedded” refers to the physical relationship of the bone microparticles, cartilage microparticles, or both in a specific solution.
- “embed” means to fix an object, such as bone and cartilage microparticles, firmly and deeply in a surrounding mass, such as, for example, a desiccated solution.
- biocompatible refers to the ability of a composition or a bioactive implant disclosed herein to perform with an appropriate host response in a specific application, or at least to perform without having a toxic or otherwise deleterious effect on a biological system of the host (either locally or systemically).
- biodegradable refers to the ability of a composition or a bioactive implant disclosed herein to be degraded, disassembled, and/or digested over time by action of a biological environment (including the action of living organisms, e.g., the patient's body) and/or in response to a change in physiological pH or temperature.
- osteoconductive refers to the ability of a composition or a bioactive implant disclosed herein to passively permit bone growth (e.g., onto and/or into the composition or bioactive implant). As such, osteoconduction can be characterized as a passive process.
- a bioactive implant can be osteoconductive, for example, because it permits growth of bone on one or more surfaces.
- a bioactive implant disclosed herein can be osteoconductive.
- osteoinductive refers to the ability of a composition or a bioactive implant disclosed herein to actively stimulate a biological response that induces bone formation.
- osteoinduction can be characterized as an active process.
- Osteoinduction can include, but is not limited to, the formation and/or stimulation of osteoprogenitor cells, such as osteoprogenitor cells, in bodily tissue surrounding or proximate to a bioactive implant.
- a bioactive implant disclosed herein can be osteoinductive.
- DBM demineralized bone matrix
- DBM can be osteoconductive and osteoinductive.
- DBM retains much of the proteinaceous components native to bone, with small amounts of calcium-based solids, inorganic phosphates, and some trace cell debris. Many of these proteinaceous components (e.g., growth factors) are known to be potent osteogenic agents.
- DBM provides a degradable matrix facilitating endogenous release of these proteinaceous components at the site of a bone defect, thereby inducing new bone formation and accelerating healing.
- demineralized is intended to encompass such expressions as “substantially demineralized”, “partially demineralized”, “surface demineralized”, and “fully demineralized.” In an aspect, “partially demineralized” can encompass “surface demineralized”.
- a bone or cartilage defect can be, for example, a void, gap, or other defect in a bone or other bony structure in a body of a subject.
- a defect can be in the spine, pelvis, an extremity, the cranium, or another bone or bony structure in the subject's body.
- a defect can include a site requiring bone, joint, cartilage, or ligament repair, construction, fusion, regeneration, or augmentation.
- the defect can be an osteochondral defect, such as an osteochondral plug. Such a defect traverses the entirety of the overlying cartilage and enters, at least in part, the underlying bony structure.
- a chondral or subchondral defect traverses the overlying cartilage, in part or in whole, respectively, but does not involve the underlying bone.
- Other defects amenable to repair using the composition, bioactive implants, and methods disclosed herein include, but are not limited to, non-union fractures; bone cavities; tumor resection; fresh fractures (distracted or undistracted); cranial, maxillofacial and facial abnormalities, for example, in facial skeletal reconstruction, specifically, orbital floor reconstruction, augmentation of the alveolar ridge or sinus, periodontal defects and tooth extraction socket; cranioplasty, genioplasty, chin augmentation, palate reconstruction, and other large bony reconstructions; vertebroplasty, interbody fusions in the cervical, thoracic and lumbar spine and posteriolateral fusions in the thoracic and lumbar spine; in osteomyelitis for bone regeneration; appendicular fusion, ankle fusion, total hip, knee and joint fusions or arthroplasty; correcting tendon and
- HES hydroxyethyl starch
- amylopectin is a derivative of amylopectin, which is a highly branched compound of starch. In humans and animals, amylopectin is rapidly hydrolyzed by amylase. Hydroxyethyl starches are identified by three numbers, e.g., 10% HES 200/0.5 or 6% HES 130/0.4. The first number indicates the concentration of the solution, the second represents the mean MW expressed in kiloDalton (kDa), and the third and most significant one is MS. These parameters are highly relevant to the pharmacokinetics of HES. See, e.g., Table 2.
- HESAN 6% HES 450/0.7 in 0.9% Sodium Chloride Injection
- B. Braun Medical Inc Hetastarch
- HEXTEND 6% HES 450/0.7 in physiological solution
- BioTime Inc Voluven
- collagen can be or can include soluble collagen, insoluble collagen, or a combination thereof.
- collagen can be or can include type I collagen, type II collagen, type III collagen, type VII collagen, another suitable type of collagen, or a combination thereof.
- collagen can be human, equine, bovine, or porcine collagen.
- collagen can include a combination of collagen from different species.
- collagen can be derived from several members of the same species.
- collagen can be collagen derived from human cartilage, human bone, or a combination thereof.
- a desiccant can be a substance that absorbs water. Desiccants are most commonly used to remove humidity that would normally degrade or even destroy products sensitive to moisture. Desiccants include, but are not limited to, activated alumina, aerogel, benzophenone, bentonite clay, calcium chloride, calcium sulfate, cobalt(ii) chloride, copper(ii) sulfate, lithium chloride, lithium bromide, magnesium sulfate, magnesium perchlorate, molecular sieve, potassium carbonate, silica gel, sodium, sodium chlorate, sodium chloride, sodium hydroxide, sodium sulfate, and sucrose.
- compositions Comprising Bone Microparticles
- composition comprising bone microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- composition comprising bone microparticles, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800.
- PVP polyvinyl pyrrolidone
- composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a disclosed composition can be desiccated.
- a disclosed composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- the bioactive implant can be osteogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- the size of the bone microparticles in a disclosed composition can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- the bone microparticles in a disclosed composition can be non-decalcified. In an aspect, the bone microparticles in a disclosed composition can be decalcified. In an aspect, the bone microparticles in a disclosed composition can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP).
- a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP).
- a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM).
- a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM).
- Table 1 provides a graphic representation of these various combinations.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component.
- the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- a disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- the bone microparticles of a disclosed composition can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source.
- an allogeneic source can be a cadaver.
- the bone microparticles can be obtained from one or more sources (i.e., one or more donors).
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed composition can comprise one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the solvent of a disclosed solution can comprise water.
- the solvent of a disclosed solution can comprise saline.
- the solvent of a disclosed solution can comprise DMSO.
- the solvent of a disclosed solution can comprise alcohol.
- the solvent of a disclosed solution can comprise a balanced salt solution.
- a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- compositions comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions Comprising Cartilage Microparticles
- composition comprising cartilage microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- PVP polyvinyl pyrrolidone
- composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a disclosed composition can be desiccated.
- a disclosed composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- the bioactive implant can be chondrogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- the size of the cartilage microparticles in a disclosed composition can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900 ⁇ m.
- the cartilage microparticles in a disclosed composition can be non-decalcified. In an aspect, the cartilage microparticles in a disclosed composition can be decalcified.
- a disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- the cartilage microparticles of a disclosed composition can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source.
- an allogeneic source can be a cadaver.
- the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed composition can comprise one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the solvent of a disclosed solution can comprise water.
- the solvent of a disclosed solution can comprise saline.
- the solvent of a disclosed solution can comprise DMSO.
- the solvent of a disclosed solution can comprise alcohol.
- the solvent of a disclosed solution can comprise a balanced salt solution.
- a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- compositions comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- compositions comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- bioactive implant made by a method comprising desiccating a composition disclosed herein.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- the method can comprise preparing the composition.
- the method can comprise adding to a mold the composition.
- the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- the size of the bone microparticles in a disclosed composition can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- desiccating the composition can occur in a vacuum.
- the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- desiccating the composition can comprise freeze-drying the composition.
- freeze-drying can comprise an amount of time from about 24 hours to about 120 hours.
- freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- freeze-drying can occur at a temperature from about ⁇ 40° C. to about ⁇ 80° C.
- freeze-drying can occur at ⁇ 40° C., ⁇ 50° C., ⁇ 60° C., ⁇ 70° C., or ⁇ 80° C., or at some temperature between ⁇ 40° C. and ⁇ 50° C., ⁇ 50° C. and ⁇ 60° C., ⁇ 60° C. and ⁇ 70° C., or -70° C. and ⁇ 80° C.
- desiccating the composition can comprise subjecting the composition to hypothermic dehydration.
- hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C.
- hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C.
- hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours.
- hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- the bioactive implant can be osteogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant made by the disclosed method can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- bioactive implant made by a method comprising desiccating a composition disclosed herein.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; and desiccating the composition.
- a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- the method can comprise preparing the composition.
- the method can comprise adding to a mold the composition.
- the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- the size of the cartilage microparticles can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900 ⁇ m.
- the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- desiccating the composition can occur in a vacuum.
- the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- desiccating the composition can comprise freeze-drying the composition.
- freeze-drying can comprise an amount of time from about 24 hours to about 120 hours.
- freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- freeze-drying can occur at a temperature from about ⁇ 40° C. to about ⁇ 80° C.
- freeze-drying can occur at ⁇ 40° C., ⁇ 50° C., ⁇ 60° C., ⁇ 70° C., or ⁇ 80° C., or at some temperature between ⁇ 40° C. and ⁇ 50° C., ⁇ 50° C. and ⁇ 60° C., ⁇ 60° C. and ⁇ 70° C., or -70° C. and ⁇ 80° C.
- desiccating the composition can comprise subjecting the composition to hypothermic dehydration.
- hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C.
- hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C.
- hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours.
- hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- the bioactive implant can be chondrogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a container comprising a composition disclosed herein.
- a container comprising a composition, wherein the composition comprises bone microparticles in a solution.
- a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution.
- a container comprising a composition, wherein the composition comprises bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800.
- a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a container comprising a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a disclosed container can be sterilized. In an aspect, a disclosed container can be autoclaved.
- a disclosed container does not contribute to the degradation of the composition contained therein.
- the composition contained therein can harden upon desiccation into a bioactive implant.
- a disclosed container can be a syringe.
- a syringe can be a glass syringe or a non-glass syringe.
- a syringe can comprise a perforated barrel.
- a syringe can comprise a distal end having no seal.
- a distal end having no seal can facilitate desiccation.
- a distal end having no seal can facilitate the extrusion or expelling of the composition.
- a disclosed container can be a glass container or a non-glass container.
- a disclosed container can be a glass vial or a non-glass vial.
- a disclosed container can comprise a stopper or a seal.
- a stopper or seal can comprise siliconized or non-siliconized rubber.
- a stopper or seal can comprise metal.
- the stopper or seal can comprise metal.
- a stopper or seal can comprise a Teflon coating or a Teflon treatment.
- the composition contained within a disclosed container can be desiccated.
- the composition contained within a disclosed container hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- the bioactive implant can be osteogenic. In an aspect, the bioactive implant can be chondrogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- a composition comprising bone microparticles can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these bone defects or conditions.
- a composition comprising cartilage microparticles can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these cartilage defects or conditions.
- the size of the bone microparticles in the composition contained within a disclosed container can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- the size of the cartilage microparticles in the composition contained within a disclosed container can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900
- the bone microparticles in a disclosed composition contained within a disclosed container can be non-decalcified. In an aspect, the bone microparticles in a disclosed composition contained within a disclosed container can be decalcified. In an aspect, the bone microparticles in a disclosed composition contained within a disclosed container can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP).
- a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP).
- a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM).
- a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component.
- the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- the cartilage microparticles in the composition contained within a disclosed container can be non-decalcified. In an aspect, the cartilage microparticles in the composition contained within a disclosed container can be decalcified.
- the composition comprising bone microparticles contained within a disclosed container can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- the composition a composition comprising cartilage microparticles contained within a disclosed container can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- the bone microparticles or the cartilage microparticles can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source.
- an allogeneic source can be a cadaver.
- the bone microparticles can be obtained from one or more sources (i.e., one or more donors).
- the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- the solution of a composition contained with a disclosed container can comprise hydroxyethyl starch.
- the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch.
- the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste.
- the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic.
- a disclosed HES solution comprises non-toxic components.
- a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- the composition contained within a disclosed container can comprise one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the solvent of the solution contained within a disclosed container can comprise water.
- the solvent of the solution contained within a disclosed container can comprise saline.
- the solvent of the solution contained within a disclosed container can comprise DMSO.
- the solvent of the solution contained within a disclosed container can comprise a balanced salt solution.
- a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- a container comprising a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- a container comprising a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- PVP polyvinyl pyrrolidone
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- container comprising a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- container comprising a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- a container comprising a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, wherein the composition hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- kit comprising a container disclosed herein.
- kits comprising a container disclosed herein, wherein the container comprises a composition disclosed herein.
- kits comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution.
- kits comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution.
- kits comprising (i) bone microparticles, and (ii) instructions for preparing a composition comprising bone microparticles in a solution.
- kits comprising (i) cartilage microparticles, and (ii) instructions for preparing a composition comprising cartilage microparticles in a solution.
- kits comprising a container comprising a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- kits comprising a container comprising a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- a disclosed kit can comprise instructions for using the composition.
- composition of a disclosed kit can be desiccated.
- composition of a disclosed kit hardens upon desiccation into a bioactive implant.
- the hardened bioactive implant has a predetermined size and shape.
- the bioactive implant can be osteogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the solution of the composition of a disclosed kit can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these bone defects or conditions.
- the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these cartilage defects or conditions.
- the solution of a composition contained with a disclosed container can comprise hydroxyethyl starch.
- the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch.
- the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste.
- the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic.
- a disclosed HES solution comprises non-toxic components.
- a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed kit can comprise at least one mold having a predetermined size and a predetermined shape.
- a mold can have a volume from about 1 mL to about 120 mL.
- a mold can have a volume from about 500 mL to about 2000 mL.
- a mold can have a volume greater than 2000 mL.
- a mold can be customized for a specific bone defect or bone defects of the subject.
- a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- the size of the bone microparticles in a disclosed composition can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- composition of a disclosed kit can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- the bone microparticles in the composition of a disclosed kit can be non-decalcified. In an aspect, the bone microparticles in the composition of a disclosed kit can be decalcified. In an aspect, the bone microparticles in the composition of a disclosed kit can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP).
- a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP).
- a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP).
- a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM).
- a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM).
- a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component.
- the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- the size of the cartilage microparticles can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900 ⁇ m.
- composition of a disclosed kit can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- the cartilage microparticles in the composition of a disclosed kit can be non-decalcified. In an aspect, the cartilage microparticles in the composition of a disclosed kit can be decalcified.
- the bone microparticles or the cartilage microparticles in a disclosed kit can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source.
- an allogeneic source can be a cadaver.
- the bone microparticles can be obtained from one or more sources (i.e., one or more donors).
- the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- the solvent of the solution of a disclosed kit can comprise water. In an aspect, the solvent of the solution of a disclosed kit can comprise saline. In an aspect, the solvent of the solution of a disclosed kit can comprise DMSO. In an aspect, the solvent of the solution of a disclosed kit can comprise alcohol. In an aspect, the solvent of the solution of a disclosed kit can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- HBSS Hank's Balanced Salt Solution
- EBSS Earle's Balanced Salt Solution
- PBS Phosphate-Buffered Saline
- DPBS Dulbecco's Phosphate-Buffered Saline
- a disclosed kit can comprise one or more agents.
- the one or more agents can be added to a solution.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- kits comprising (i) bone microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution.
- kits comprising (i) bone microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- kits comprising (i) bone microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- kits comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution.
- kits comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- kits comprising (i) cartilage microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition disclosed herein.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a solution.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a disclosed method can comprise preparing the composition.
- preparing the composition can comprise adding bone microparticles to a solvent to generate a solution.
- the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- HBSS Hank's Balanced Salt Solution
- EBSS Earle's Balanced Salt Solution
- PBS Phosphate-Buffered Saline
- DPBS Dulbecco's Phosphate-Buffered Saline
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- preparing the composition can comprise adding to the solution one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the method can comprise adding to a mold the composition.
- the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- the size of the bone microparticles in a disclosed composition can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- the bone microparticles can be non-decalcified. In an aspect, the bone microparticles can be decalcified. In an aspect, the bone microparticles can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP).
- a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP). In an aspect, a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component.
- the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component.
- the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- desiccating the composition can occur in a vacuum.
- the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- desiccating the composition can comprise freeze-drying the composition.
- freeze-drying can comprise an amount of time from about 24 hours to about 120 hours.
- freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- freeze-drying can occur at a temperature from about ⁇ 40° C. to about ⁇ 80° C.
- freeze-drying can occur at ⁇ 40° C., ⁇ 50° C., ⁇ 60° C., ⁇ 70° C., or ⁇ 80° C., or at some temperature between ⁇ 40° C. and ⁇ 50° C., ⁇ 50° C. and ⁇ 60° C., ⁇ 60° C. and ⁇ 70° C., or -70° C. and ⁇ 80° C.
- desiccating the composition can comprise subjecting the composition to hypothermic dehydration.
- hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C.
- hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C.
- hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours.
- hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- the bioactive implant can be osteogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a disclosed composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a composition comprising bone microparticles in a solution; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition disclosed herein.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition disclosed herein.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a solution.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a disclosed method can comprise preparing the composition.
- preparing the composition can comprise adding cartilage microparticles to a solvent to generate a solution.
- the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- HBSS Hank's Balanced Salt Solution
- EBSS Earle's Balanced Salt Solution
- PBS Phosphate-Buffered Saline
- DPBS Dulbecco's Phosphate-Buffered Saline
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- preparing the composition can comprise adding to the solution one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the method can comprise adding to a mold the composition.
- the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- the size of the cartilage microparticles can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900 ⁇ m.
- the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- the cartilage microparticles can be non-decalcified. In an aspect, the cartilage microparticles can be decalcified.
- desiccating the composition can occur in a vacuum.
- the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- desiccating the composition can comprise freeze-drying the composition.
- freeze-drying can comprise an amount of time from about 24 hours to about 120 hours.
- freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- freeze-drying can occur at a temperature from about ⁇ 40° C. to about ⁇ 80° C.
- freeze-drying can occur at ⁇ 40° C., ⁇ 50° C., ⁇ 60° C., ⁇ 70° C., or ⁇ 80° C., or at some temperature between ⁇ 40° C. and ⁇ 50° C., ⁇ 50° C. and ⁇ 60° C., ⁇ 60° C. and ⁇ 70° C., or -70° C. and ⁇ 80° C.
- desiccating the composition can comprise subjecting the composition to hypothermic dehydration.
- hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C.
- hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C.
- hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours.
- hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- the bioactive implant can be chondrogenic.
- the bioactive implant can have one or more smooth and even surfaces.
- the bioactive implant can have one or more rough and uneven surfaces.
- the rough and uneven surface can be pitted.
- the rough and uneven surfaces can facilitate vascular ingrowth.
- the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a disclosed composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a composition comprising cartilage microparticles in a solution; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding to a mold the composition; and desiccating the composition.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition disclosed herein.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition disclosed herein.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more smooth and even surfaces comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- a method of making a bioactive implant with one or more rough and uneven surfaces comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising making a bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone defect a bioactive implant.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone defect a bioactive implant made by a method disclosed herein.
- a method of treating or repairing a bone defect comprising: preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- a method of treating or repairing a bone defect comprising: preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m, and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a solution, and desiccating the composition.
- a mold can have a predetermined size and a predetermined shape. In an aspect, a mold can have a volume from about 1 mL to about 120 mL. In an aspect, a mold can have a volume from about 500 mL to about 2000 mL. In an aspect, a mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- the size of the bone microparticles in a disclosed composition can range from about 20 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 700 ⁇ m, or from about 700 ⁇ m to about 800 ⁇ m.
- making the bioactive implant can comprise preparing a disclosed composition.
- preparing a disclosed composition can comprise adding bone microparticles to a solvent to generate a solution.
- the solvent can comprise water.
- the solvent can comprise saline.
- the solvent can comprise DMSO.
- the solvent can comprise alcohol.
- the solvent can comprise a balanced salt solution.
- a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- preparing a disclosed composition can comprise adding to the solution one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- PVP polyvinyl pyrrolidone
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a povidone iodine solution; and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m; and desiccating the composition.
- the implanted bioactive implant can be replaced by the subject's bone.
- one or more bioactive implants can be implanted.
- a subject can receive one or more bioactive implants.
- a disclosed method of treating or repairing a bone defect can comprise evaluating the effect of the implanted bioactive implant at one or more pre-determined times.
- the pre-determined times can comprise 1 to 7 days day post-implantation, or a time between 1 and 7 days post-implantation.
- the pre-determined times can comprise 1 to 4 weeks post-implantation, or a time between 1 and 4 weeks post-implantation.
- the pre-determined times can comprise 1 to 12 months post-implantation, or a time between 1 and 12 months post-implantation.
- the pre-determined times comprise 1 to 10 years post-implantation, or a time between 1 and 10 years post-implantation.
- evaluating the effect of the implanted bioactive implant can comprise examining the incorporation of the bioactive implant.
- examining the incorporation of the bioactive implant can use one or more radiograph.
- the skilled person e.g., a radiologist, an orthopedic surgeon, etc.
- a disclosed method of treating or repairing a bone defect can comprise evaluating the effect of the bioactive implant at one or more times post-implantation.
- a disclosed method of treating or repairing a bone defect can comprise comprises systemically administering to the subject one or more agents.
- the one or more of agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents, growth factors, growth hormone, antibiotics, antioxidants, painkillers, vitamins, sterilizing agents, or a combination thereof.
- the one or more agents can be administered pre-implantation, during implantation, post-implantation, or a combination thereof.
- the one or more agents can be administered at one or more times. In an aspect, the one or more agents can be administered intravenously or orally.
- one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising making a bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of cartilage defect a bioactive implant.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of a cartilage defect a bioactive implant made by a method disclosed herein.
- a method of treating or repairing a cartilage defect comprising: preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- a method of treating or repairing a cartilage defect comprising: preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof.
- the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a solution, and desiccating the composition.
- a mold can have a predetermined size and a predetermined shape. In an aspect, a mold can have a volume from about 1 mL to about 120 mL. In an aspect, a mold can have a volume from about 500 mL to about 2000 mL. In an aspect, a mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- the size of the cartilage microparticles can range from about 50 ⁇ m to about 100 ⁇ m, from about 100 ⁇ m to about 150 ⁇ m, from about 150 ⁇ m to about 200 ⁇ m, from about 200 ⁇ m to about 250 ⁇ m, from about 250 ⁇ m to about 300 ⁇ m, from about 300 ⁇ m to about 350 ⁇ m, from about 350 ⁇ m to about 400 ⁇ m, from about 400 ⁇ m to about 450 ⁇ m, from about 450 ⁇ m to about 500 ⁇ m, from about 500 ⁇ m to about 550 ⁇ m, from about 550 ⁇ m to about 600 ⁇ m, from about 600 ⁇ m to about 650 ⁇ m, from about 650 ⁇ m to about 700 ⁇ m, from about 700 ⁇ m to about 750 ⁇ m, from about 750 ⁇ m to about 800 ⁇ m, from about 800 ⁇ m to about 850 ⁇ m, or from about 850 ⁇ m to about 900 ⁇ m.
- making the bioactive implant can comprise preparing a disclosed composition.
- preparing a disclosed composition can comprise adding cartilage microparticles to a solvent to generate a solution.
- the solvent can comprise water.
- the solvent can comprise saline.
- the solvent can comprise DMSO.
- the solvent can comprise alcohol.
- the solvent can comprise a balanced salt solution.
- a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch.
- a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP).
- PVP polyvinyl pyrrolidone
- the PVP can comprise various molecular weights.
- the PVP can have an average molecular weight of 40,000.
- PVPs are known to the skilled person in the art.
- a PVP solution can be converted into a putty, a gel, or a paste.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed PVP solution is non-toxic.
- a disclosed PVP solution comprises non-toxic components.
- a disclosed PVP solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise povidone iodine.
- a povidone iodine solution can be converted into a putty, a gel, or a paste.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed povidone iodine solution is non-toxic.
- a disclosed povidone iodine solution comprises non-toxic components.
- a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise collagen.
- collagen can be tendon collagen, bone collagen, or a combination thereof.
- a collagen solution can be converted into a putty, a gel, or a paste.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed collagen solution is non-toxic.
- a disclosed collagen solution comprises non-toxic components.
- a disclosed collagen solution is safe for administration to human beings or other mammals.
- the solution of a disclosed composition can comprise albumin.
- albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof.
- an albumin solution can be converted into a putty, a gel, or a paste.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles.
- the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder.
- a disclosed albumin solution is non-toxic.
- a disclosed albumin solution comprises non-toxic components.
- a disclosed albumin solution is safe for administration to human beings or other mammals.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin).
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen tendon collagen
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- albumin e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin.
- the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin.
- HES hydroxyethyl starch
- PVP polyvinyl pyrrolidone
- povidone iodine povidone iodine
- bone collagen and tendon collagen, but not albumin.
- the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution.
- the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- preparing a disclosed composition can comprise adding to the solution one or more agents.
- the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- PVP polyvinyl pyrrolidone
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 ⁇ m to about 900 ⁇ m, and desiccating the composition.
- the implanted bioactive implant can be replaced by the subject's cartilage.
- one or more bioactive implants can be implanted.
- a subject can receive one or more bioactive implants.
- a disclosed method of treating or repairing a cartilage defect can comprise evaluating the effect of the implanted bioactive implant at one or more pre-determined times.
- the pre-determined times can comprise 1 to 7 days day post-implantation, or a time between 1 and 7 days post-implantation.
- the pre-determined times can comprise 1 to 4 weeks post-implantation, or a time between 1 and 4 weeks post-implantation.
- the pre-determined times can comprise 1 to 12 months post-implantation, or a time between 1 and 12 months post-implantation.
- the pre-determined times comprise 1 to 10 years post-implantation, or a time between 1 and 10 years post-implantation.
- evaluating the effect of the implanted bioactive implant can comprise examining the incorporation of the bioactive implant.
- examining the incorporation of the bioactive implant can use one or more radiograph. Using one or more radiographs, the skilled person (e.g., a radiologist, an orthopedic surgeon, etc.) can determine whether the bioactive implant has been successfully implanted.
- a disclosed method of treating or repairing a cartilage defect can comprise evaluating the effect of the bioactive implant at one or more times post-implantation.
- a disclosed method of treating or repairing a cartilage defect can comprise comprises systemically administering to the subject one or more agents.
- the one or more of agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents, growth factors, growth hormone, antibiotics, antioxidants, painkillers, vitamins, sterilizing agents, or a combination thereof.
- the one or more agents can be administered pre-implantation, during implantation, post-implantation, or a combination thereof.
- the one or more agents can be administered at one or more times.
- the one or more agents can be administered intravenously or orally.
- one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition.
- the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- a disclosed solution can comprise bone microparticles, wherein the size of the bone microparticles is from about 20 ⁇ m to about 800 ⁇ m.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Botany (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
The present application relates to bioactive implants, methods of making bioactive implants, and methods of using bioactive implants to treat or repair a bone defect or a cartilage defect. In an aspect, the present application relates to compositions comprising bone microparticles in a solution, wherein the compositions harden upon desiccation into bioactive implants. In an aspect, the present application relates to compositions comprising cartilage microparticles in a solution, wherein the compositions harden upon desiccation into bioactive implants. In an aspect, disclosed herein are methods of making and using the disclosed compositions comprising bone microparticles and the disclosed composition comprising cartilage microparticles. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Description
- The present application relates to bioactive implants, methods of making bioactive implants, and methods of using bioactive implants to treat or repair bone or cartilage defects.
- The basic elements required for bone formation include a three-dimensional, open-porosity tissue scaffold, cells, and osteoinductive signaling molecules to stimulate cell differentiation, proliferation, and matrix formation. The biologic, physical, and biomechanical properties of the materials, compositions, and constructs are some of the major factors in determining their suitability for the use in the treatment and repair of bone and cartilage defects. For example, successful bone formation requires that these elements be combined in a well-coordinated spatial and time dependent fashion. Moreover, the relative contribution of each element may vary, e.g., according to differences in patient age, gender, health, systemic conditions, habits, anatomical location, etc.
- Despite advances in the understanding in the treatment and repair of bone and cartilage defects, there is still a need for bioactive implants that are biocompatible, non-inflammatory, osteogenic, and chondrogenic, and can be replaced by a subject's natural bone and cartilage.
- Disclosed herein is a composition comprising bone microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μM.
- Disclosed herein is a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticle in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition disclosed herein.
- Disclosed herein is a container comprising a composition, wherein the composition comprises bone microparticles in a solution.
- Disclosed herein is a container comprising a composition, wherein the composition comprises bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is container comprising a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a kit comprising a container disclosed herein.
- Disclosed herein is a kit comprising a container disclosed herein, wherein the container comprises a composition disclosed herein.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a kit comprising (i) bone microparticles, and (ii) instructions for preparing a composition comprising bone microparticles in a solution.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition disclosed herein.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition disclosed herein.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a solution.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a disclosed composition; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising bone microparticles in a solution; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising generating a bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition disclosed herein.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition disclosed herein.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone a bioactive implant made by a method disclosed herein.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising: preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising: preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μM.
- Disclosed herein is a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μM.
- Disclosed herein is a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution.
- Disclosed herein is a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a container comprising a composition cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is container comprising a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a kit comprising (i) cartilage microparticles, and (ii) instructions for preparing a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising cartilage microparticles in a solution; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising generating a bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of a cartilage defect a bioactive implant made by a method disclosed herein.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising: preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising: preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
-
FIG. 1A shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles (25% w/v) in a 6% HES solution. The surface of the bioactive implant was smooth and glistening. -
FIG. 1B shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles (25% w/v) in a 25% w/v PVP solution (MW=40,000). -
FIG. 1C shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles in a human bone collage solution. Bone microparticles particles were visible in a thin layer of collagen, which escaped the mold. -
FIG. 1D shows a bioactive implant made by desiccating in a vacuum a composition comprising bone microparticles in an albumin solution. The surface of the bioactive implant was rough and uneven and the texture was brittle. The bar at the bottom of photograph is 1.5 cm long. -
FIG. 2A shows a section of bone microparticles embedded in an HES solution, when viewed in polarized light under 10% magnification. Evenly distributed bone particles were doubly refractile. -
FIG. 2B shows a 25× magnification of the image shown inFIG. 2A . Evenly spaced doubly refractile bone particles were clearly visible. - Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- The present invention can be understood more readily by reference to the following detailed description of the invention and the Examples included therein.
- Before the present compounds, compositions, articles, systems, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods unless otherwise specified, or to particular reagents unless otherwise specified, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, example methods and materials are now described.
- All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
- As used in the specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
- The phrase “consisting essentially of” limits the scope of a claim to the recited components in a composition or the recited steps in a method as well as those that do not materially affect the basic and novel characteristic or characteristics of the claimed composition or claimed method.
- The phrase “consisting of” excludes any component, step, or element that is not recited in the claim.
- The phrase “comprising” is synonymous with “including”, “containing”, or “characterized by”, and is inclusive or open-ended. “Comprising” does not exclude additional, unrecited components or steps.
- As used herein when referring to any numerical value, the term “about” means a value falling within a range that is ±10% of the stated value.
- Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, a further aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms a further aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
- References in the specification and concluding claims to parts by weight of a particular element or component in a composition denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed. Thus, in a compound containing 2 parts by weight of component X and 5 parts by weight component Y, X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
- As used herein, the terms “optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, in an aspect, a disclosed method can optionally comprise one or more additional steps, such as, for example, repeating an administering step or altering an administering step.
- As known to the art, a solution is a homogeneous mixture of two or more substances. A solution may exist in any phase. For example, a solution can be a homogeneous mixture composed of only one phase, wherein a solute (such as, e.g., HES, non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, albumin, or a combination thereof) is dissolved in a solvent (such as, e.g., water, saline, alcohol, DMSO, or a combination thereof). In an aspect, solution disclosed herein is non-toxic. In an aspect, a disclosed solution comprises non-toxic components. In an aspect, a disclosed solution is safe for administration to human beings or other mammals.
- As used herein, the term “subject” refers to the target of administration or implantation, e.g., an animal. The term “subject” also includes domesticated animals (e.g., cats, dogs, etc.), livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), and laboratory animals (e.g., mouse, rabbit, rat, guinea pig, fruit fly, etc.). Thus, the subject can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian. Alternatively, the subject can be a human, non-human primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea pig, or rodent. The term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered. In an aspect, a subject can be human. For example, a subject can have a bone or cartilage defect, or a subject can have multiple bone or cartilage defects.
- A “patient” refers to a subject afflicted with one or more diseases or disorders or conditions, such as, for example, one or more bone or cartilage defects. In an aspect, a bone or cartilage can require medical intervention. A patient can refer to a subject that has been diagnosed with or is suspected of having a bone or cartilage defect.
- As used herein, the term “treatment” refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder (such as, for example, a bone or cartilage defect). This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder. In various aspects, the term covers any treatment of a subject, including a mammal (e.g., a human), and includes: (i) preventing the disease from occurring in a subject that can be predisposed to the disease but has not yet been diagnosed as having it; (ii) inhibiting the disease, i.e., arresting its development; or (iii) relieving the disease, i.e., causing regression of the disease.
- In an aspect, “treating” means improving or eliminating a bone or cartilage defect. In an aspect, “treating” means reducing the effects of a bone or cartilage defect or the symptoms of a bone or cartilage defect. Thus, in an aspect of a disclosed method, treating can refer to a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% reduction in the severity of an established bone or cartilage defect or symptoms of a bone or cartilage defect. For example, a method for treating a bone or cartilage defect can reduce one or more symptoms of a bone or cartilage defect in a subject by 10% as compared to a control. In an aspect, a reduction of one or more symptoms can be 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or any percent reduction in between 10% and 100% as compared to a control. It is understood that treatment does not necessarily refer to a cure or complete ablation or eradication of the bone or cartilage defect. However, in an aspect, treatment can refer to a cure or complete ablation or eradication of the bone or cartilage defect.
- As used herein, the term “prevent” or “preventing” refers to precluding, averting, obviating, forestalling, stopping, or hindering something from happening, especially by advance action. It is understood that where reduce, inhibit or prevent are used herein, unless specifically indicated otherwise, the use of the other two words is also expressly disclosed. In an aspect, preventing the worsening of a bone or cartilage defect or the severity of a bone or cartilage defect is intended.
- As used herein, the term “diagnosed” means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by the composition, bioactive implants, and methods disclosed herein. For example, “diagnosed with a bone or cartilage defect” means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or can be treated by a composition or bioactive implant disclosed herein, such as, for example, a bioactive implant that can treat or prevent the worsening of severity of a bone or cartilage defect. For example, “suspected of having a bone or cartilage defect” can mean having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be likely be diagnosed as or can likely be treated by a composition or bioactive implant that can treat or repair a bone or cartilage defect.
- As used herein, the terms “administering” and “administration” refer to any method of providing a disclosed agent or a pharmaceutical preparation comprising a disclosed agent to a subject. Such methods are well known to those skilled in the art and include, but are not limited to: oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intracerebral administration, rectal administration, sublingual administration, buccal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, and subcutaneous administration. Administration can be continuous or intermittent. In an aspect, the skilled person can determine an efficacious dose, an efficacious schedule, and an efficacious route of administration for a disclosed composition or a disclosed complex so as to treat a subject or inhibit or prevent an inflammatory reaction. In an aspect, the skilled person can also alter, change, or modify an aspect of an administering step so as to improve efficacy of a disclosed agent or a pharmaceutical preparation comprising a disclosed agent.
- As used herein, “modifying the method” can comprise modifying or changing one or more features or aspects of one or more steps of a disclosed method. For example, in an aspect, a method can be altered by changing the dose or the amount of a disclosed agent or a pharmaceutical preparation comprising a disclosed agent, or by changing the duration or frequency of the administration of a disclosed agent or pharmaceutical preparation comprising a disclosed agent.
- As used herein, “growth factors” can refer to proteins that bind to receptors on the cell surface, with the primary result of activating cellular proliferation and/or differentiation. Many growth factors are quite versatile, stimulating cellular division in numerous different cell types; while others are specific to a particular cell-type. The art is familiar with growth factors, which include, but are not limited to, fibroblast growth factor-2 (FGF-2), insulin-like growth factor-I and -II (IGF-I and IGF-II), platelet derived growth factor (PDGF), and transforming growth factor-beta 1 (TGF-β).
- As used herein, “bone” can refer to two bone tissue categories. Cortical bone represents one category while cancellous bone, which is spongy interior bone tissue, represents the second category. Cortical bone has a much higher density than cancellous bone, but it is less porous (about 5-10% for cortical bone vs. about 50-90% for cancellous bone). This means compact bone has fewer spaces and cavities than spongy bone. Despite these differences, compact and spongy bone tissue work together as cortical tissue is the shell that covers the cancellous bone of the vertebrae and joint ends
- In an aspect, the disclosed cartilage microparticles can be prepared as follows. Articular cartilage can be obtained from the articular surfaces of joints, such as from distal femurs, proximal tibias, acetabulums, heads of femurs, and/or heads of radiuses. The cartilage can be removed, for example, with a scalpel blade and can be removed down to subchondral bone, without removing bone. The articular cartilage can include articular hyaline cartilage and/or fibrocartilage. In an aspect, the cartilage is not subjected to harsh chemical treatments, which can alter the inherent natural properties of material within the cartilage. For example, the cartilage is not subjected to demineralization treatments such as treatment with hydrochloric acid, ethylene diamine, and/or other demineralization agents. In an aspect, the non-demineralized articular cartilage can be subjected to microbiological testing or can be subjected to other testing protocols that do not deleteriously alter the cartilage. In an aspect, the articular cartilage is not subjected to any physical treatments that may demineralize and/or alter the inherent natural properties of the cartilage. For example, the articular cartilage is not subjected to elevated temperatures, e.g., temperatures greater than about 50° C., as elevated temperatures can diminish the chondrogenic activity of the cartilage. However, the articular cartilage can be preserved, e.g., freeze-dried, frozen, and/or dried, after being removed from the joint. In an aspect, a preferred method of preserving articular cartilage can be freeze-drying.
- In an aspect, the disclosed cartilage microparticles can be produced by grinding the cartilage. Prior to grinding, the cartilage can be dry cartilage, freeze-dried cartilage, frozen cartilage, wet cartilage, or a combination thereof. Pieces of cartilage obtained from the articular surface of one or more joints can be washed in several changes of normal saline, blotted dry, and frozen rapidly, e.g., at 10° C./min or faster, in the vapor phase of liquid nitrogen (about −150° C.), or alternatively, frozen rapidly in the liquid phase of liquid nitrogen (about −196° C.). After being frozen, the cartilage can be rapidly placed directly on the shelves of a freeze-drying apparatus maintained at about −40° C. to about −50° C. (the condenser being cooled to from about −70° C. to about −80° C.). In an aspect, a vacuum level of less than about 100 millitorr can be maintained in the freeze-drying chamber during the freeze-drying cycle. In an aspect, a vacuum level of about 100 millitorr to about 400 millitorr can be maintained in the freeze-drying chamber during the freeze-drying cycle. In an aspect, the freeze-drying cycle can last an average of about 5 days. In an aspect, during the initial 30-45 minutes of the cycle, the cartilage can warm from the initial frozen temperature (e.g., about −150° C.) to the temperature of the freeze-drying chamber (e.g., about −40° C.), after which it can be maintained at about −40° C. for the remainder of the cycle. In an aspect, the moisture content of the cartilage can be reduced to from about 4 to about 5%. Overdrying should be avoided, as this can result in the irreversible alterations of collagen and proteoglycan structures. In an aspect, at the end of the freeze-drying cycle, the chamber can be warmed to room temperature, the vacuum can be released, and the freeze-dried cartilage can be removed. The cartilage can be ground using any suitable grinding apparatus. For example, any grinding apparatus capable of grinding dry, hard, brittle material in seconds, such as turbo mills, disc mills, toothed disc mills, jet mills, or other similar apparatuses can be used.
- In an aspect, grinding can be performed under conditions that preclude raising the temperature of the cartilage to a level that can diminish the chondrogenic activity of the resulting composition. For example, in an aspect, grinding can be performed without raising the temperature of the articular cartilage above about 50° C. In an aspect, grinding can be performed without raising the temperature of the cartilage above about 40° C. The temperature of the cartilage can be measured in any suitable manner. For example, thermocouples can be used to monitor the temperature of the cartilage directly, e.g., by measuring the temperature of the cartilage immediately after grinding, or indirectly, e.g., by measuring the temperature of the metal in the grinding mill. Continuous grinding in conventional grinding mills for 3-5 minutes can raise the temperature of the material to 70° C. or above. However, operating a grinding mill intermittently can preclude an undesirable rise in temperature. In an aspect, freeze-dried pieces of cartilage, 1-4 mm in size, can be ground in a grinding mill operating intermittently for 20-30 second intervals. After each grinding cycle, the cartilage can be sieved. The cartilage can be sieved through sieves of various sizes. Sieving can be used to separate cartilage into cartilage powder (i.e., particle sizes of less than 250 microns) and cartilage granules. Grinding can be repeated until the desired distribution of particles sizes can be obtained, such as, for example, from about 50 μm to about 900 μm. See, e.g., U.S. Pat. No. 8,318,212.
- In an aspect, the disclosed bone microparticles can be prepared as follows. In an aspect, bone can be freeze-dried and processed, which can include repeated washing in warm saline or other balanced salt solutions to remove “undesirable constituents”. In an aspect, the bone can be immersed directly into liquid nitrogen vapor and can then be freeze-dried to achieve a residual moisture of 5%-6% or less. Residual moisture content can be determined gravimetrically. In an aspect, freeze-dried bone can be cut into cubes with a band saw, an oscillating or a rotary saw without heating the bone preparation, by avoiding pressure on the bone being cut, and by limiting the time of grinding to no more than 15 second for each surface being cut. In an aspect, cut bone cubes, rectangles, or other small configurations can be further cut in a turbo mill, micro hammer cutter mill, disc mill, toothed disc mill, jet mill, or other similar mills to obtain particles of a smaller size. In an aspect, dry bone can be ground. Alternatively, in an aspect, wet bone preparation can be ground.
- Heating bone above about 45° C. to about 50° C. can be undesirable as the heat can significantly reduce or can completely abolish osteoinductive properties of bone. For example, continuous grinding for 3 to 5 minutes in any of the conventional grinding mills can raise the temperature to 70° C. or above. Accordingly, in an aspect, a mill can be operated in cycles of about 8 seconds to about 18 seconds, then the bone can be sieved a duration of about 14 seconds to about 15 seconds. In an aspect, the temperature of bone or grinder can rise above about 33° C. from the initial temperature of the product (e.g., about 18° C. and about 20° C.). In an aspect, the cycle can operate for no longer than 3 minutes with an average operating time of about 2.5 minutes. In an aspect, after each grinding cycle, the bone can be sieved. In an aspect, the bone can be sieved through sieves of various sizes. Sieving can be used to separate bone into bone powder and bone granules. In an aspect, grinding can be repeated until the desired distribution of particles sizes can be obtained, such as, for example, from about 20 μm to about 800 μm. See, e.g., U.S. Pat. No. 7,335,381.
- The term “contacting” as used herein refers to bringing a disclosed composition or bioactive implant together with an intended target (such as at least a portion of a bone or cartilage defect) or targeted area (such as an area diagnosed with, suspected of having, or susceptible to developing a bone or cartilage defect) in such a manner that the disclosed composition or bioactive implant can exert an effect on the intended target or targeted area either directly or indirectly. In an aspect, “contacting” means to insert or implant a bioactive implant at the site of a bone or cartilage defect.
- The term “mixing” as used in a disclosed method of making a disclosed composition, for example, means to physically combine the recited components so as to achieve a homogenous solution. A person skilled in the art could ascertain without undue experimentation, the amount of time required to mix the recited components so as to achieve a solution.
- As used herein, the term “determining” can refer to measuring or ascertaining the presence and severity of a bone or cartilage defect. Methods and techniques used to determining the presence and/or severity of a bone or cartilage defect are known to the medical arts. For example, the art is familiar with ways (e.g., radiograph, imaging (e.g., CT scan, MRI, etc.) to identify and/or diagnose the presence, severity, or both of a bone or cartilage defect.
- As used herein, the terms “effective amount” and “amount effective” can refer to an amount that is sufficient to achieve the desired result such as, for example, the treatment and/or repair of a bone or cartilage defect. As used herein, the terms “effective amount” and “amount effective” can refer to an amount that is sufficient to achieve the desired an effect on an undesired condition (e.g., bone or cartilage defect). For example, a “therapeutically effective amount” refers to an amount that is sufficient to achieve the desired therapeutic result or to have an effect on undesired symptoms, but is generally insufficient to cause adverse side effects. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of a compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. If desired, then the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions can contain such amounts or submultiples thereof to make up the daily dose. The dosage can be adjusted by the individual physician in the event of any contraindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. In further various aspects, a preparation can be administered in a “prophylactically effective amount”; that is, an amount effective for prevention of a disease or condition.
- As used herein, “autografts” are bone grafts that use bone obtained from the same subject that is receiving the graft. In an aspect, bone can be harvested from non-essential bones, such as the iliac crest or the fibula, the chin, the ribs, the mandible, and even parts of the skull. Autogenous bone possesses all the properties essential for bone formation. In other words, it is osteoconductive and osteoinductive, and it houses growth factors and osteogenic cells with no associated immune or infection related risks (i.e., non-immunogenic). Autologous bone fracts are slowly replaced by newly formed host bone. The disadvantages of autografts include possible post-operative pain and complications as well as blood loss, hematomas, infection, fracture, neurovascular injury, and cosmetic deformity at the explantation site. Autografts also require longer operative time. Moreover, the availability of an autogenous bone graft is limited in a pediatric subject or in an elderly subject as well as those subjects afflicted with osteopenia and osteoporosis.
- As used herein, “allografts” can be derived from a subject other than the subject receiving the graft. Allograft bone can be collected from either living donors (e.g., patients receiving a total hip replacement surgery) or non-living donors. Allografts are typically processed by a bone tissue bank. An allograft can be osteoconductive and can be weakly osteoinductive. Processing an allograft can often require sterilization (i.e., gamma irradiation), which can detrimentally affect the mechanical properties of bone, and can deactivate proteins normally found in healthy bone.
- As used herein, “xenografts” are bone grafts that originate in a species other than the species of the subject receiving the graft. For example, if subject is human, then a xenograft can be derived from a bovine bone or a porcine bone. In an aspect, the xenograft can be freeze-dried and/or demineralized and deproteinized.
- Bone morphogenetic proteins (BMPs) are known to the art. As used herein, BMPs include, but are not limited to, BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, and BMP15. BMPs exist at high concentration within bone and are secreted by many bone-forming cell types. Cellular signaling is an important function of BMPs. The art generally considers BMP2, BMP4, BMP6, and BMP7 to be the most osteoinductive of all known BMPs.
- “Anti-fungal agents” are known to the art. As used herein, anti-fungal agents include, but are not limited to, abafungin, albaconazole, amorolfin, amphotericin b, anidulafungin, bifonazole, butenafine, butoconazole, candicidin, caspofungin, ciclopirox, clotrimazole, econazole, fenticonazole, filipin, fluconazole, flucytosine, griseofulvin, haloprogin, hamycin, isavuconazole, isoconazole, itraconazole, ketoconazole, micafungin, miconazole, naftifine, natamycin, nystatin, omoconazole, oxiconazole, polygodial, posaconazole, ravuconazole, rimocidin, sertaconazole, sulconazole, terbinafine, terconazole, tioconazole, tolnaftate, undecylenic acid, voriconazole, or a combination thereof.
- “Anti-bacterial agents” are known to the art. As used herein, anti-bacterial agents include, but are not limited to, afenide, amikacin, amoxicillin, ampicillin, arsphenamine, azithromycin, azlocillin, aztreonam, bacampicillin, bacitracin, carbacephem (loracarbef), carbenicillin, cefaclor, cefadroxil, cefalotin, cefamandole, cefazolin, cefdinir, cefditoren, cefepime, cefixime, cefoperazone, cefotaxime, cefoxitin, cefpodoxime, cefprozil, ceftazidime, ceftibuten, ceftizoxime, ceftobiprole, ceftriaxone, cefuroxime, cephalexin, chloramphenicol, chlorhexidine, ciprofloxacin, clarithromycin, clavulanic acid, clindamycin, cloxacillin, colimycin, colistimethate teicoplanin, colistin, demeclocycline, dicloxacillin, dirithromycin, doripenem, doxycycline, enoxacin, ertapenem, erythromycin, ethambutol, flucloxacillin, fosfomycin, furazolidone, gatifloxacin, geldanamycin, gentamicin, grepafloxacin, herbimycin, imipenem, isoniazid, kanamycin, levofloxacin, lincomycin, linezolid, lomefloxacin, meropenem, meticillin, metronidazole, mezlocillin, minocycline, mitomycin, moxifloxacin, mupirocin, nafcillin, neomycin, netilmicin, nitrofurantoin, norfloxacin, ofloxacin, oxacillin, oxytetracycline, paromomycin, penicillin G, penicillin V, piperacillin, pivmecillinam, platensimycin, polymyxin B, prontosil, pvampicillin, pyrazinamide, quinupristin/dalfopristin, rifampicin, rifampin, roxithromycin, sparfloxacin, spectinomycin, spiramycin, sulbactam, sulfacetamide, sulfamethizole, sulfamethoxazole, sulfanilimide, sulfisoxazole, sulphonamides, sultamicillin, telithromycin, tetracycline, thiamphenicol, ticarcillin, tobramycin, trimethoprim, trimethoprim-sulfamethoxazole, troleandomycin, trovafloxacin, or a combination thereof. Anti-bacterial agents include quinolones, such as, for example, ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, moxifloxacin, nalidixic acid, norfloxacin, ofloxacin, sparfloxacin, trovafloxacin, or a combination thereof. Anti-bacterial agents include aminoglycosides such as, for example, amikacin, gentamicin, kanamycin, neomycin, streptomycin, tobramycin, or a combination thereof.
- As used herein, “resorbable” refers to the ability of a material to be broken down over a period of time and assimilated into the biological environment.
- As used herein, “embedded” refers to the physical relationship of the bone microparticles, cartilage microparticles, or both in a specific solution. In an aspect, “embed” means to fix an object, such as bone and cartilage microparticles, firmly and deeply in a surrounding mass, such as, for example, a desiccated solution.
- As used herein, “biocompatible” refers to the ability of a composition or a bioactive implant disclosed herein to perform with an appropriate host response in a specific application, or at least to perform without having a toxic or otherwise deleterious effect on a biological system of the host (either locally or systemically).
- As used herein, “biodegradable” refers to the ability of a composition or a bioactive implant disclosed herein to be degraded, disassembled, and/or digested over time by action of a biological environment (including the action of living organisms, e.g., the patient's body) and/or in response to a change in physiological pH or temperature.
- As used herein, “osteoconductive” refers to the ability of a composition or a bioactive implant disclosed herein to passively permit bone growth (e.g., onto and/or into the composition or bioactive implant). As such, osteoconduction can be characterized as a passive process. A bioactive implant can be osteoconductive, for example, because it permits growth of bone on one or more surfaces. In an aspect, a bioactive implant disclosed herein can be osteoconductive.
- As used herein, “osteoinductive” refers to the ability of a composition or a bioactive implant disclosed herein to actively stimulate a biological response that induces bone formation. As such, osteoinduction can be characterized as an active process. Osteoinduction can include, but is not limited to, the formation and/or stimulation of osteoprogenitor cells, such as osteoprogenitor cells, in bodily tissue surrounding or proximate to a bioactive implant. In an aspect, a bioactive implant disclosed herein can be osteoinductive.
- As used herein, “demineralized bone matrix” (DBM) can be osteoconductive and osteoinductive. DBM retains much of the proteinaceous components native to bone, with small amounts of calcium-based solids, inorganic phosphates, and some trace cell debris. Many of these proteinaceous components (e.g., growth factors) are known to be potent osteogenic agents. DBM provides a degradable matrix facilitating endogenous release of these proteinaceous components at the site of a bone defect, thereby inducing new bone formation and accelerating healing.
- As used herein, “demineralized” is intended to encompass such expressions as “substantially demineralized”, “partially demineralized”, “surface demineralized”, and “fully demineralized.” In an aspect, “partially demineralized” can encompass “surface demineralized”.
- In an aspect, a bone or cartilage defect can be, for example, a void, gap, or other defect in a bone or other bony structure in a body of a subject. For example, a defect can be in the spine, pelvis, an extremity, the cranium, or another bone or bony structure in the subject's body. In an aspect, a defect can include a site requiring bone, joint, cartilage, or ligament repair, construction, fusion, regeneration, or augmentation. The defect can be an osteochondral defect, such as an osteochondral plug. Such a defect traverses the entirety of the overlying cartilage and enters, at least in part, the underlying bony structure. In contrast, a chondral or subchondral defect traverses the overlying cartilage, in part or in whole, respectively, but does not involve the underlying bone. Other defects amenable to repair using the composition, bioactive implants, and methods disclosed herein include, but are not limited to, non-union fractures; bone cavities; tumor resection; fresh fractures (distracted or undistracted); cranial, maxillofacial and facial abnormalities, for example, in facial skeletal reconstruction, specifically, orbital floor reconstruction, augmentation of the alveolar ridge or sinus, periodontal defects and tooth extraction socket; cranioplasty, genioplasty, chin augmentation, palate reconstruction, and other large bony reconstructions; vertebroplasty, interbody fusions in the cervical, thoracic and lumbar spine and posteriolateral fusions in the thoracic and lumbar spine; in osteomyelitis for bone regeneration; appendicular fusion, ankle fusion, total hip, knee and joint fusions or arthroplasty; correcting tendon and/or ligamentous tissue defects such as, for example, the anterior, posterior, lateral and medial ligaments of the knee, the patella and Achilles tendons, and the like as well as those defects resulting from diseases such as cancer, arthritis, including osteoarthritis, and other bone degenerative disorders such as osteochondritis dessicans.
- As used herein, “hydroxyethyl starch” (HES) is a derivative of amylopectin, which is a highly branched compound of starch. In humans and animals, amylopectin is rapidly hydrolyzed by amylase. Hydroxyethyl starches are identified by three numbers, e.g., 10% HES 200/0.5 or 6% HES 130/0.4. The first number indicates the concentration of the solution, the second represents the mean MW expressed in kiloDalton (kDa), and the third and most significant one is MS. These parameters are highly relevant to the pharmacokinetics of HES. See, e.g., Table 2.
-
TABLE 2 Characteristics of Various HES Preparations Concentration Mean Molecular Molar C2/C8 Maximum Daily and Solvent Weight, kDa Substitution Ratio Dose, ml/kg HES 670/0.75 6% balanced solution 670 0.75 4.5:1 20 HES 600/0.7 6% saline 600 0.7 5:1 20 HES 450/0.7 6% saline 480 0.7 5:1 20 HES 200/0.62 6% saline 200 0.62 9:1 20 HES 200/0.5 6% saline 200 0.5 5:1 33 10% saline 20 HES 130/0.42 6% saline 130 0.42 6:1 50 HES 130/0.42 6% balanced solution 130 0.42 6:1 50 10% balanced solution 33 HES 130/0.4 6% saline 130 0.4 9:1 50 10% saline 33 HES 130/0.4 6% balanced solution 130 0.4 9:1 50 HES 70/0.5 6% balanced solultion 70 0.5 3:1 20 - The FDA has approved HES products for the treatment and prophylaxis of hypovolemia: HESPAN (6% HES 450/0.7 in 0.9% Sodium Chloride Injection; B. Braun Medical Inc), Hetastarch (6% in 0.9% Sodium Chloride Injection, generic equivalent to HESPAN; Teva Pharmaceuticals USA), HEXTEND (6% HES 450/0.7 in physiological solution; BioTime Inc), and Voluven (6% HES 130/0.40 in normal saline; Fresenius Kabi USA, LLC).
- As used herein, “collagen” can be or can include soluble collagen, insoluble collagen, or a combination thereof. In an aspect, collagen can be or can include type I collagen, type II collagen, type III collagen, type VII collagen, another suitable type of collagen, or a combination thereof. In an aspect, collagen can be human, equine, bovine, or porcine collagen. In an aspect, collagen can include a combination of collagen from different species. In an aspect, collagen can be derived from several members of the same species. In an aspect, collagen can be collagen derived from human cartilage, human bone, or a combination thereof.
- As used herein, “a desiccant” can be a substance that absorbs water. Desiccants are most commonly used to remove humidity that would normally degrade or even destroy products sensitive to moisture. Desiccants include, but are not limited to, activated alumina, aerogel, benzophenone, bentonite clay, calcium chloride, calcium sulfate, cobalt(ii) chloride, copper(ii) sulfate, lithium chloride, lithium bromide, magnesium sulfate, magnesium perchlorate, molecular sieve, potassium carbonate, silica gel, sodium, sodium chlorate, sodium chloride, sodium hydroxide, sodium sulfate, and sucrose.
- Disclosed are the components to be used to prepare a composition or a bioactive implant disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the invention. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the methods of the invention.
- Disclosed herein is a composition comprising bone microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800.
- Disclosed herein is a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- In an aspect, a disclosed composition can be desiccated. In an aspect, a disclosed composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- In an aspect, the bioactive implant can be osteogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, the size of the bone microparticles in a disclosed composition can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, the bone microparticles in a disclosed composition can be non-decalcified. In an aspect, the bone microparticles in a disclosed composition can be decalcified. In an aspect, the bone microparticles in a disclosed composition can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP). In an aspect, a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP). In an aspect, a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). Table 1 provides a graphic representation of these various combinations.
-
TABLE 1 Listing of Various Combination of Types of Bone Microparticles NDP DP PDP DBM 1 X X X X 2 X X X 3 X X 4 X X 5 X X 6 X X 7 X X X 8 X X 9 X X - In an aspect, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component. Alternatively, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component. For example, the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- In an aspect, a disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, the bone microparticles of a disclosed composition can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source. In an aspect, an allogeneic source can be a cadaver. In an aspect, the bone microparticles can be obtained from one or more sources (i.e., one or more donors).
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed composition can comprise one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the solvent of a disclosed solution can comprise water. In an aspect, the solvent of a disclosed solution can comprise saline. In an aspect, the solvent of a disclosed solution can comprise DMSO. In an aspect, the solvent of a disclosed solution can comprise alcohol. In an aspect, the solvent of a disclosed solution can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- Disclosed herein is a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- In an aspect, a disclosed composition can be desiccated. In an aspect, a disclosed composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- In an aspect, the bioactive implant can be chondrogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, the size of the cartilage microparticles in a disclosed composition can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, the cartilage microparticles in a disclosed composition can be non-decalcified. In an aspect, the cartilage microparticles in a disclosed composition can be decalcified.
- In an aspect, a disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, the cartilage microparticles of a disclosed composition can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source. In an aspect, an allogeneic source can be a cadaver. In an aspect, the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed composition can comprise one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the solvent of a disclosed solution can comprise water. In an aspect, the solvent of a disclosed solution can comprise saline. In an aspect, the solvent of a disclosed solution can comprise DMSO. In an aspect, the solvent of a disclosed solution can comprise alcohol. In an aspect, the solvent of a disclosed solution can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- Disclosed herein is a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition disclosed herein.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding to a mold the composition; and desiccating the composition.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, the method can comprise preparing the composition.
- In an aspect, the method can comprise adding to a mold the composition.
- In an aspect, the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- In an aspect, the size of the bone microparticles in a disclosed composition can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, desiccating the composition can occur in a vacuum. In an aspect, the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- In an aspect, desiccating the composition can comprise freeze-drying the composition. In an aspect, freeze-drying can comprise an amount of time from about 24 hours to about 120 hours. For example, in an aspect, freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- In an aspect, freeze-drying can occur at a temperature from about −40° C. to about −80° C. For example, in an aspect, freeze-drying can occur at −40° C., −50° C., −60° C., −70° C., or −80° C., or at some temperature between −40° C. and −50° C., −50° C. and −60° C., −60° C. and −70° C., or -70° C. and −80° C.
- In an aspect, desiccating the composition can comprise subjecting the composition to hypothermic dehydration. In an aspect, hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C. In an aspect, for example, hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C. and 9° C., or 9° C. and 10° C. In an aspect, hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours. For example, in an aspect, hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- In an aspect, the bioactive implant can be osteogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant made by the disclosed method can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. n an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition disclosed herein.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a disclosed composition and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; and desiccating the composition.
- Disclosed herein is a bioactive implant made by a method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding to a mold the composition; and desiccating the composition.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, the method can comprise preparing the composition.
- In an aspect, the method can comprise adding to a mold the composition.
- In an aspect, the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- In an aspect, the size of the cartilage microparticles can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, desiccating the composition can occur in a vacuum. In an aspect, the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- In an aspect, desiccating the composition can comprise freeze-drying the composition. In an aspect, freeze-drying can comprise an amount of time from about 24 hours to about 120 hours. For example, in an aspect, freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- In an aspect, freeze-drying can occur at a temperature from about −40° C. to about −80° C. For example, in an aspect, freeze-drying can occur at −40° C., −50° C., −60° C., −70° C., or −80° C., or at some temperature between −40° C. and −50° C., −50° C. and −60° C., −60° C. and −70° C., or -70° C. and −80° C.
- In an aspect, desiccating the composition can comprise subjecting the composition to hypothermic dehydration. In an aspect, hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C. In an aspect, for example, hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C. and 9° C., or 9° C. and 10° C. In an aspect, hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours. For example, in an aspect, hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- In an aspect, the bioactive implant can be chondrogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a bioactive implant made by a method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a container comprising a composition disclosed herein.
- Disclosed herein is a container comprising a composition, wherein the composition comprises bone microparticles in a solution.
- Disclosed herein is a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution.
- Disclosed herein is a container comprising a composition, wherein the composition comprises bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800.
- Disclosed herein is a container comprising a composition, wherein the composition comprises cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- In an aspect, a disclosed container can be sterilized. In an aspect, a disclosed container can be autoclaved.
- In an aspect, a disclosed container does not contribute to the degradation of the composition contained therein. In an aspect of a disclosed contain, the composition contained therein can harden upon desiccation into a bioactive implant.
- In an aspect, a disclosed container can be a syringe. In an aspect, a syringe can be a glass syringe or a non-glass syringe. In an aspect, a syringe can comprise a perforated barrel. In an aspect, a syringe can comprise a distal end having no seal. In an aspect, a distal end having no seal can facilitate desiccation. In an aspect, a distal end having no seal can facilitate the extrusion or expelling of the composition. In an aspect, a disclosed container can be a glass container or a non-glass container. In an aspect, a disclosed container can be a glass vial or a non-glass vial. In an aspect, a disclosed container can comprise a stopper or a seal. In an aspect, a stopper or seal can comprise siliconized or non-siliconized rubber. In an aspect, a stopper or seal can comprise metal. In an aspect, the stopper or seal can comprise metal. In an aspect, a stopper or seal can comprise a Teflon coating or a Teflon treatment.
- In an aspect, the composition contained within a disclosed container can be desiccated. In an aspect, the composition contained within a disclosed container hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- In an aspect, the bioactive implant can be osteogenic. In an aspect, the bioactive implant can be chondrogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, a composition comprising bone microparticles can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these bone defects or conditions.
- In an aspect, a composition comprising cartilage microparticles can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these cartilage defects or conditions.
- In an aspect, the size of the bone microparticles in the composition contained within a disclosed container can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, the size of the cartilage microparticles in the composition contained within a disclosed container can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, the bone microparticles in a disclosed composition contained within a disclosed container can be non-decalcified. In an aspect, the bone microparticles in a disclosed composition contained within a disclosed container can be decalcified. In an aspect, the bone microparticles in a disclosed composition contained within a disclosed container can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP). In an aspect, a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP). In an aspect, a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- In an aspect, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component. Alternatively, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component. For example, the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- In an aspect, the cartilage microparticles in the composition contained within a disclosed container can be non-decalcified. In an aspect, the cartilage microparticles in the composition contained within a disclosed container can be decalcified.
- In an aspect, the composition comprising bone microparticles contained within a disclosed container can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, the composition a composition comprising cartilage microparticles contained within a disclosed container can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, the bone microparticles or the cartilage microparticles can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source. In an aspect, an allogeneic source can be a cadaver. In an aspect, the bone microparticles can be obtained from one or more sources (i.e., one or more donors). In an aspect, the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- In an aspect, the solution of a composition contained with a disclosed container can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, the composition contained within a disclosed container can comprise one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the solvent of the solution contained within a disclosed container can comprise water. In an aspect, the solvent of the solution contained within a disclosed container can comprise saline. In an aspect, the solvent of the solution contained within a disclosed container can comprise DMSO. In an aspect, the solvent of the solution contained within a disclosed container can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is container comprising a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is container comprising a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a container comprising a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the composition hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- Disclosed herein is a kit comprising a container disclosed herein.
- Disclosed herein is a kit comprising a container disclosed herein, wherein the container comprises a composition disclosed herein.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising bone microparticles in a solution.
- Disclosed herein is a kit comprising a container, wherein the container comprises a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a kit comprising (i) bone microparticles, and (ii) instructions for preparing a composition comprising bone microparticles in a solution.
- Disclosed herein is a kit comprising (i) cartilage microparticles, and (ii) instructions for preparing a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a kit comprising a container comprising a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- Disclosed herein is a kit comprising a container comprising a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- In an aspect, a disclosed kit can comprise instructions for using the composition.
- In an aspect, the composition of a disclosed kit can be desiccated. In an aspect, the composition of a disclosed kit hardens upon desiccation into a bioactive implant. In an aspect, the hardened bioactive implant has a predetermined size and shape.
- In an aspect, the bioactive implant can be osteogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the solution of the composition of a disclosed kit can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these bone defects or conditions.
- In an aspect, the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these cartilage defects or conditions.
- In an aspect, the solution of a composition contained with a disclosed container can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone microparticles, or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation, the introduction of additional bone chips, shavings, or powder, or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed kit can comprise at least one mold having a predetermined size and a predetermined shape. In an aspect, a mold can have a volume from about 1 mL to about 120 mL. In an aspect, a mold can have a volume from about 500 mL to about 2000 mL. In an aspect, a mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- In an aspect, the size of the bone microparticles in a disclosed composition can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, the composition of a disclosed kit can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, the bone microparticles in the composition of a disclosed kit can be non-decalcified. In an aspect, the bone microparticles in the composition of a disclosed kit can be decalcified. In an aspect, the bone microparticles in the composition of a disclosed kit can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP). In an aspect, a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP). In an aspect, a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- In an aspect, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component. Alternatively, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component. For example, the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- In an aspect, the size of the cartilage microparticles can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, the composition of a disclosed kit can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, the cartilage microparticles in the composition of a disclosed kit can be non-decalcified. In an aspect, the cartilage microparticles in the composition of a disclosed kit can be decalcified.
- In an aspect, the bone microparticles or the cartilage microparticles in a disclosed kit can be obtained from an allogeneic source, a syngeneic source, or an autogeneic source. In an aspect, an allogeneic source can be a cadaver. In an aspect, the bone microparticles can be obtained from one or more sources (i.e., one or more donors). In an aspect, the cartilage microparticles can be obtained from one or more sources (i.e., one or more donors).
- In an aspect, the solvent of the solution of a disclosed kit can comprise water. In an aspect, the solvent of the solution of a disclosed kit can comprise saline. In an aspect, the solvent of the solution of a disclosed kit can comprise DMSO. In an aspect, the solvent of the solution of a disclosed kit can comprise alcohol. In an aspect, the solvent of the solution of a disclosed kit can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, a disclosed kit can comprise one or more agents. In an aspect, the one or more agents can be added to a solution. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded bone microparticles. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- Disclosed herein is a kit comprising (i) bone microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, and (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) hydroxyethyl starch, (iii) at least one mold of a pre-determined size and shape, (iv) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (v) instructions for using the composition.
- Disclosed herein is a kit comprising (i) cartilage microparticles, (ii) at least one mold of a pre-determined size and shape, (iii) instructions for preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, and (iv) instructions for using the composition.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition disclosed herein.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a solution.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, a disclosed method can comprise preparing the composition.
- In an aspect, preparing the composition can comprise adding bone microparticles to a solvent to generate a solution.
- In an aspect, the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, preparing the composition can comprise adding to the solution one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the method can comprise adding to a mold the composition.
- In an aspect, the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- In an aspect, the size of the bone microparticles in a disclosed composition can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, the bone microparticles can be non-decalcified. In an aspect, the bone microparticles can be decalcified. In an aspect, the bone microparticles can comprise non-decalcified particles, decalcified particles, partially decalcified particles, demineralized bone matrix, or a combination thereof. In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise non-decalcified particles (NDP), decalcified particles (DP), and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and decalcified particles (DP). In an aspect, a combination can comprise non-decalcified particles (NDP) and partially decalcified particles (PDP). In an aspect, a combination can comprise non-decalcified particles (NDP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and partially decalcified particles (PDP). In an aspect, a combination can comprise decalcified particles (DP), partially decalcified particles (PDP), and demineralized bone matrix (DBM). In an aspect, a combination can comprise decalcified particles (DP) and demineralized bone matrix (DBM). In an aspect, a combination can comprise partially decalcified particles (PDP) and demineralized bone matrix (DBM). See, e.g., Table 1.
- In an aspect, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:1 to about 1:10 when compared to any other component. Alternatively, the amount of any one component (such as, for example, NDP, DP, PDP, or DMB) in a disclosed combination can range from about 1:10 to about 1:1 when compared to any other component. For example, the amount of one component (e.g., NDP microparticles) to a second component (e.g., DP microparticles) in a disclosed composition can be about 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10, or 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, or 2:1.
- In an aspect, desiccating the composition can occur in a vacuum. In an aspect, the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- In an aspect, desiccating the composition can comprise freeze-drying the composition. In an aspect, freeze-drying can comprise an amount of time from about 24 hours to about 120 hours. For example, in an aspect, freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- In an aspect, freeze-drying can occur at a temperature from about −40° C. to about −80° C. For example, in an aspect, freeze-drying can occur at −40° C., −50° C., −60° C., −70° C., or −80° C., or at some temperature between −40° C. and −50° C., −50° C. and −60° C., −60° C. and −70° C., or -70° C. and −80° C.
- In an aspect, desiccating the composition can comprise subjecting the composition to hypothermic dehydration. In an aspect, hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C. In an aspect, for example, hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C. and 9° C., or 9° C. and 10° C. In an aspect, hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours. For example, in an aspect, hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- In an aspect, the bioactive implant can be osteogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- In an aspect, the bone microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded bone microparticles.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a povidone iodine solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a disclosed composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising bone microparticles in a solution; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising bone microparticles in a solution; adding to a mold the composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding to a mold the composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition disclosed herein. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition disclosed herein. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a solution.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, a disclosed method can comprise preparing the composition.
- In an aspect, preparing the composition can comprise adding cartilage microparticles to a solvent to generate a solution.
- In an aspect, the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, preparing the composition can comprise adding to the solution one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the method can comprise adding to a mold the composition.
- In an aspect, the at least one mold can have a volume from about 1 mL to about 120 mL. In an aspect, the at least one mold can have a volume from about 500 mL to about 2000 mL. In an aspect, the at least one mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- In an aspect, the size of the cartilage microparticles can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, the cartilage microparticles can be non-decalcified. In an aspect, the cartilage microparticles can be decalcified.
- In an aspect, desiccating the composition can occur in a vacuum. In an aspect, the vacuum can measure at about 400 millitorr or less. In an aspect, the vacuum can measure at about 300 millitorr or less. In an aspect, the vacuum can measure at about 200 millitorr or less. In an aspect, the vacuum can measure at about 100 millitorr or less.
- In an aspect, desiccating the composition can comprise freeze-drying the composition. In an aspect, freeze-drying can comprise an amount of time from about 24 hours to about 120 hours. For example, in an aspect, freeze-drying can comprise 24 hours, 48 hours, 72 hours, 96 hours, or 120 hours, or some amount of time between 24 and 48 hours, between 48 and 72 hours, between 72 and 96 hours, or between 96 and 120 hours.
- In an aspect, freeze-drying can occur at a temperature from about −40° C. to about −80° C. For example, in an aspect, freeze-drying can occur at −40° C., −50° C., −60° C., −70° C., or −80° C., or at some temperature between −40° C. and −50° C., −50° C. and −60° C., −60° C. and −70° C., or -70° C. and −80° C.
- In an aspect, desiccating the composition can comprise subjecting the composition to hypothermic dehydration. In an aspect, hypothermic dehydration can occur at a temperature from about 2° C. to about 10° C. In an aspect, for example, hypothermic dehydration can occur at 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., or 10° C., or at some temperature between 2° C. and 3° C., 3° C. and 4° C., 4° C. and 5° C., 5° C. and 6° C., 6° C. and 7° C., 7° C. and 8° C., 8° C. and 9° C., or 9° C. and 10° C. In an aspect, hypothermic dehydration can comprise an amount of time from about 24 to about 72 hours. For example, in an aspect, hypothermic dehydration can occur 24 hours, 48 hours, or 72 hours, or some amount of time between 24 and 48 hours or between 48 and 72 hours.
- In an aspect, the bioactive implant can be chondrogenic. In an aspect, the bioactive implant can have one or more smooth and even surfaces. In an aspect, the bioactive implant can have one or more rough and uneven surfaces. In an aspect, the rough and uneven surface can be pitted. In an aspect, the rough and uneven surfaces can facilitate vascular ingrowth.
- In an aspect, the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising desiccating a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a disclosed composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising cartilage microparticles in a solution; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising cartilage microparticles in a solution; adding to a mold the composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant, the method comprising preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding to a mold the composition; and desiccating the composition. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition disclosed herein. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition disclosed herein. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more smooth and even surfaces, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of making a bioactive implant with one or more rough and uneven surfaces, the method comprising desiccating a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm. In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising making a bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone defect a bioactive implant.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising implanting at the site of a bone defect a bioactive implant made by a method disclosed herein.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising: preparing a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- Disclosed herein is a method of treating or repairing a bone defect, the method comprising: preparing a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a bone defect.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, the bioactive implant can be used in a spinal fusion, to treat or repair a maxillary defect, a mandibular defect, or both, to treat or repair a traumatic or a degenerative loss of bone, or both, to treat or repair a bone defect that follows a tumor resection, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a solution, and desiccating the composition.
- In an aspect, a mold can have a predetermined size and a predetermined shape. In an aspect, a mold can have a volume from about 1 mL to about 120 mL. In an aspect, a mold can have a volume from about 500 mL to about 2000 mL. In an aspect, a mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific bone defect or bone defects of the subject.
- In an aspect, the size of the bone microparticles in a disclosed composition can range from about 20 μm to about 100 μm, from about 100 μm to about 200 μm, from about 200 μm to about 300 μm, from about 300 μm to about 400 μm, from about 400 μm to about 500 μm, from about 500 μm to about 600 μm, from about 600 μm to about 700 μm, or from about 700 μm to about 800 μm.
- In an aspect, making the bioactive implant can comprise preparing a disclosed composition. In an aspect, preparing a disclosed composition can comprise adding bone microparticles to a solvent to generate a solution. In an aspect, the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional bone chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, preparing a disclosed composition can comprise adding to the solution one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of bone microparticles, or about 10% to about 35% w/v of bone microparticles, or about 25% w/v of bone microparticles, or about 50% w/v of bone microparticles.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a hydroxyethyl starch solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a povidone iodine solution; and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in a collagen solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising bone microparticles in an albumin solution, wherein the size of the bone microparticles is from about 20 μm to about 800 μm; and desiccating the composition.
- In a disclosed method of treating or repairing a bone defect, the implanted bioactive implant can be replaced by the subject's bone.
- In an aspect of a disclosed method, one or more bioactive implants can be implanted.
- In an aspect of a disclosed method, a subject can receive one or more bioactive implants.
- In an aspect, a disclosed method of treating or repairing a bone defect can comprise evaluating the effect of the implanted bioactive implant at one or more pre-determined times. In an aspect, the pre-determined times can comprise 1 to 7 days day post-implantation, or a time between 1 and 7 days post-implantation. In an aspect, the pre-determined times can comprise 1 to 4 weeks post-implantation, or a time between 1 and 4 weeks post-implantation. In an aspect, the pre-determined times can comprise 1 to 12 months post-implantation, or a time between 1 and 12 months post-implantation. In an aspect, the pre-determined times comprise 1 to 10 years post-implantation, or a time between 1 and 10 years post-implantation.
- In an aspect, evaluating the effect of the implanted bioactive implant can comprise examining the incorporation of the bioactive implant. In an aspect, examining the incorporation of the bioactive implant can use one or more radiograph. Using one or more radiographs, the skilled person (e.g., a radiologist, an orthopedic surgeon, etc.) can determine (i) the presence or absence of trabeculae within the grafted defect, (ii) the overall bone density, (iii) the quality of bone at the border of graft (can be described as well defined, hazy, or invisible), (iv) the bone density within the defect (can be described as same as, equal to, or less than adjacent normal bone), or (v) a combination thereof.
- In an aspect, a disclosed method of treating or repairing a bone defect can comprise evaluating the effect of the bioactive implant at one or more times post-implantation.
- In an aspect, a disclosed method of treating or repairing a bone defect can comprise comprises systemically administering to the subject one or more agents. In an aspect, the one or more of agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents, growth factors, growth hormone, antibiotics, antioxidants, painkillers, vitamins, sterilizing agents, or a combination thereof. In an aspect, the one or more agents can be administered pre-implantation, during implantation, post-implantation, or a combination thereof.
- In an aspect, the one or more agents can be administered at one or more times. In an aspect, the one or more agents can be administered intravenously or orally.
- In an aspect, one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising making a bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of cartilage defect a bioactive implant.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising implanting at the site of a cartilage defect a bioactive implant made by a method disclosed herein.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising: preparing a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- Disclosed herein is a method of treating or repairing a cartilage defect, the method comprising: preparing a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm; adding the composition to a mold; desiccating the composition, thereby producing the bioactive implant; and implanting the bioactive implant at the site of a cartilage defect.
- In an aspect, desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
- In an aspect, the bioactive implant can be to treat or repair a traumatic loss or a degenerative loss of cartilage, or both, to treat or repair a cartilage defect following a tumor resection, to treat or repair a degenerative chondrol lesion, a traumatic chondral lesion, or both, or a combination thereof. In an aspect, the bioactive implant can be used to treat or repair one or more of these defects or conditions.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a solution, and desiccating the composition.
- In an aspect, a mold can have a predetermined size and a predetermined shape. In an aspect, a mold can have a volume from about 1 mL to about 120 mL. In an aspect, a mold can have a volume from about 500 mL to about 2000 mL. In an aspect, a mold can have a volume greater than 2000 mL. In an aspect, a mold can be customized for a specific cartilage defect or cartilage defects of the subject.
- In an aspect, the size of the cartilage microparticles can range from about 50 μm to about 100 μm, from about 100 μm to about 150 μm, from about 150 μm to about 200 μm, from about 200 μm to about 250 μm, from about 250 μm to about 300 μm, from about 300 μm to about 350 μm, from about 350 μm to about 400 μm, from about 400 μm to about 450 μm, from about 450 μm to about 500 μm, from about 500 μm to about 550 μm, from about 550 μm to about 600 μm, from about 600 μm to about 650 μm, from about 650 μm to about 700 μm, from about 700 μm to about 750 μm, from about 750 μm to about 800 μm, from about 800 μm to about 850 μm, or from about 850 μm to about 900 μm.
- In an aspect, making the bioactive implant can comprise preparing a disclosed composition. In an aspect, preparing a disclosed composition can comprise adding cartilage microparticles to a solvent to generate a solution. In an aspect, the solvent can comprise water. In an aspect, the solvent can comprise saline. In an aspect, the solvent can comprise DMSO. In an aspect, the solvent can comprise alcohol. In an aspect, the solvent can comprise a balanced salt solution. In an aspect, a balanced salt solution includes, but is not limited to, Hank's Balanced Salt Solution (HBSS), Earle's Balanced Salt Solution (EBSS), Phosphate-Buffered Saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS), and combinations thereof.
- In an aspect, the solution of a disclosed composition can comprise hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise non-solubilized hydroxyethyl starch. In an aspect, the solution of a disclosed composition can comprise about 6% hydroxyethyl starch. In an aspect, a HES solution can be converted into a putty, a gel, or a paste. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of cartilage microparticles. In an aspect, the HES solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed HES solution is non-toxic. In an aspect, a disclosed HES solution comprises non-toxic components. In an aspect, a disclosed HES solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise polyvinyl pyrrolidone (PVP). In an aspect, the PVP can comprise various molecular weights. In an aspect, the PVP can have an average molecular weight of 40,000. PVPs are known to the skilled person in the art. In an aspect, a PVP solution can be converted into a putty, a gel, or a paste. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the PVP solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed PVP solution is non-toxic. In an aspect, a disclosed PVP solution comprises non-toxic components. In an aspect, a disclosed PVP solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise povidone iodine. In an aspect, a povidone iodine solution can be converted into a putty, a gel, or a paste. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the povidone iodine solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed povidone iodine solution is non-toxic. In an aspect, a disclosed povidone iodine solution comprises non-toxic components. In an aspect, a disclosed povidone iodine solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise collagen. In an aspect, collagen can be tendon collagen, bone collagen, or a combination thereof. In an aspect, a collagen solution can be converted into a putty, a gel, or a paste. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the collagen solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed collagen solution is non-toxic. In an aspect, a disclosed collagen solution comprises non-toxic components. In an aspect, a disclosed collagen solution is safe for administration to human beings or other mammals.
- In an aspect, the solution of a disclosed composition can comprise albumin. In an aspect, albumin can be human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin, or a combination thereof. In an aspect, an albumin solution can be converted into a putty, a gel, or a paste. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage microparticles. In an aspect, the albumin solution can be converted into a putty, a gel, or a paste via evaporation or the introduction of additional cartilage chips, shavings, or powder. In an aspect, a disclosed albumin solution is non-toxic. In an aspect, a disclosed albumin solution comprises non-toxic components. In an aspect, a disclosed albumin solution is safe for administration to human beings or other mammals.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, tendon collagen, and albumin (e.g., human albumin, recombinant albumin, bovine albumin, non-bovine albumin, egg albumin, transgenic albumin). In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, a disclosed solution can comprise one or more of the following solutes: hydroxyethyl starch (HES), non-solubilized HES, polyvinyl pyrrolidone (PVP), povidone iodine, bone collagen, and tendon collagen, but not albumin. In an aspect, the amount of the one or more solutes can be from about 10% to about 90% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 10% to about 20% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 20% to about 30% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 30% to about 40% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 40% to about 50% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 50% to about 60% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 60% to about 70% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 70% to about 80% w/v of the solution. In an aspect, the amount of the one or more solutes can be from about 80% to about 90% w/v of the solution.
- In an aspect, preparing a disclosed composition can comprise adding to the solution one or more agents. In an aspect, the agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents (e.g., anti-microbial agents, anti-fungal agents, and combinations thereof), growth factors, growth hormones, antibiotics, antioxidants, analgesics, vitamins (e.g., vitamin D, vitamin K, and combinations thereof), sterilizing agents (e.g., iodine, bromine, calcium salts, and combinations thereof).
- In an aspect, the disclosed composition can comprise about 10% to about 70% w/v of cartilage microparticles, or about 10% to about 35% w/v of cartilage microparticles, or about 25% w/v of cartilage microparticles, or about 50% w/v of cartilage microparticles.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a hydroxyethyl starch solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a polyvinyl pyrrolidone (PVP) solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a povidone iodine solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in a collagen solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In an aspect, making the bioactive implant can comprise adding to a mold a composition comprising cartilage microparticles in an albumin solution, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and desiccating the composition.
- In a disclosed method of treating or repairing a cartilage defect, the implanted bioactive implant can be replaced by the subject's cartilage.
- In an aspect of a disclosed method, one or more bioactive implants can be implanted.
- In an aspect of a disclosed method, a subject can receive one or more bioactive implants.
- In an aspect, a disclosed method of treating or repairing a cartilage defect can comprise evaluating the effect of the implanted bioactive implant at one or more pre-determined times. In an aspect, the pre-determined times can comprise 1 to 7 days day post-implantation, or a time between 1 and 7 days post-implantation. In an aspect, the pre-determined times can comprise 1 to 4 weeks post-implantation, or a time between 1 and 4 weeks post-implantation. In an aspect, the pre-determined times can comprise 1 to 12 months post-implantation, or a time between 1 and 12 months post-implantation. In an aspect, the pre-determined times comprise 1 to 10 years post-implantation, or a time between 1 and 10 years post-implantation.
- In an aspect, evaluating the effect of the implanted bioactive implant can comprise examining the incorporation of the bioactive implant. In an aspect, examining the incorporation of the bioactive implant can use one or more radiograph. Using one or more radiographs, the skilled person (e.g., a radiologist, an orthopedic surgeon, etc.) can determine whether the bioactive implant has been successfully implanted.
- In an aspect, a disclosed method of treating or repairing a cartilage defect can comprise evaluating the effect of the bioactive implant at one or more times post-implantation.
- In an aspect, a disclosed method of treating or repairing a cartilage defect can comprise comprises systemically administering to the subject one or more agents. In an aspect, the one or more of agents can comprise therapeutic agents, bone morphogenetic proteins, anti-infective agents, growth factors, growth hormone, antibiotics, antioxidants, painkillers, vitamins, sterilizing agents, or a combination thereof. In an aspect, the one or more agents can be administered pre-implantation, during implantation, post-implantation, or a combination thereof. In an aspect, the one or more agents can be administered at one or more times. In an aspect, the one or more agents can be administered intravenously or orally.
- In an aspect, one or more steps of a disclosed method can be modified, changed, repeated, or altered.
- In an aspect, the cartilage microparticles can be embedded evenly or embedded unevenly in the desiccated composition. In an aspect, the desiccated composition can comprise both evenly and unevenly embedded cartilage microparticles.
- In an aspect, a disclosed solution can comprise bone microparticles, wherein the size of the bone microparticles is from about 20 μm to about 800 μm.
Claims (21)
1. A composition, comprising: cartilage microparticles in a solution comprising povidone iodine, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, and wherein the composition is configured to harden upon desiccation into a bioactive implant.
2. The composition of claim 1 , wherein the hardened bioactive implant has a predetermined size and shape.
3. (canceled)
4. (canceled)
5. The composition of claim 1 , wherein the composition comprises about 25% w/v of cartilage microparticles.
6. The composition of claim 1 , wherein the solution comprises a solvent and wherein the solvent comprises water, saline, or a balanced salt solution.
7. The composition of claim 1 , further comprising: an agent, wherein the agent comprises one or more of a therapeutic agent, a bone morphogenetic protein, an anti-infective agent, a growth factor, a growth hormone, an antibiotic, an analgesic, a vitamin, a sterilizing agent, or a combination thereof.
8. The composition of claim 1 , wherein the bioactive implant is chondrogenic.
9. A bioactive implant made by a method comprising: desiccating a composition comprising cartilage microparticles in a solution comprising povidone iodine, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm, wherein the hardened bioactive implant has a predetermined size and shape.
10. (canceled)
11. The bioactive implant of claim 9 , wherein the composition comprises about 25% w/v of cartilage microparticles.
12. The bioactive implant of claim 9 , wherein the cartilage microparticles are evenly embedded in the implant.
13. The bioactive implant of claim 9 , wherein the bioactive implant is chondrogenic.
14. A method of preparing a bioactive implant, the method comprising:
desiccating a composition comprising cartilage microparticles in a solution comprising povidone iodine, wherein the size of the cartilage microparticles is from about 50 μm to about 900 μm.
15. The method of claim 14 , wherein desiccating comprises producing a hardened bioactive implant having a predetermined size and shape.
16. (canceled)
17. The method of claim 14 , wherein the composition comprises about 25% w/v of cartilage microparticles.
18. The method of claim 14 , wherein desiccating the composition comprises freeze-drying the composition.
19. The method of claim 14 , wherein desiccating the composition comprises subjecting the composition to hypothermic dehydration.
20. The method of claim 14 , comprising: preparing the composition, wherein preparing the composition comprises adding cartilage microparticles to a solvent to generate the solution.
21. The composition of claim 1 , wherein the cartilage microparticles comprise decalcified cartilage microparticles.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/937,206 US20170128633A1 (en) | 2015-11-10 | 2015-11-10 | Bioactive Implants and Methods of Making and Using |
| US16/148,289 US10624990B2 (en) | 2015-11-10 | 2018-10-01 | Bioactive implants and methods of making and using |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/937,206 US20170128633A1 (en) | 2015-11-10 | 2015-11-10 | Bioactive Implants and Methods of Making and Using |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/148,289 Division US10624990B2 (en) | 2015-11-10 | 2018-10-01 | Bioactive implants and methods of making and using |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170128633A1 true US20170128633A1 (en) | 2017-05-11 |
Family
ID=58667669
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/937,206 Abandoned US20170128633A1 (en) | 2015-11-10 | 2015-11-10 | Bioactive Implants and Methods of Making and Using |
| US16/148,289 Active US10624990B2 (en) | 2015-11-10 | 2018-10-01 | Bioactive implants and methods of making and using |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/148,289 Active US10624990B2 (en) | 2015-11-10 | 2018-10-01 | Bioactive implants and methods of making and using |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20170128633A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110402918A (en) * | 2018-04-27 | 2019-11-05 | 庄明华 | A method of preserving bone tissue material |
| US10549011B2 (en) | 2015-10-26 | 2020-02-04 | Osteolife Biomedical, Llc | Bone putty and gel systems and methods |
| US10624990B2 (en) | 2015-11-10 | 2020-04-21 | Osteolife Biomedical, Llc | Bioactive implants and methods of making and using |
| US11052175B2 (en) | 2015-08-19 | 2021-07-06 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5516532A (en) * | 1994-08-05 | 1996-05-14 | Children's Medical Center Corporation | Injectable non-immunogenic cartilage and bone preparation |
| US5756145A (en) * | 1995-11-08 | 1998-05-26 | Baylor College Of Medicine | Durable, Resilient and effective antimicrobial coating for medical devices and method of coating therefor |
| US20100274362A1 (en) * | 2009-01-15 | 2010-10-28 | Avner Yayon | Cartilage particle tissue mixtures optionally combined with a cancellous construct |
| US20140134212A1 (en) * | 2012-11-15 | 2014-05-15 | Allosource | Minced cartilage systems and methods |
Family Cites Families (95)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4172128A (en) | 1975-03-26 | 1979-10-23 | Erhard Thiele | Process of degrading and regenerating bone and tooth material and products |
| DE2657370C2 (en) | 1976-12-17 | 1982-11-11 | Hans Dr.med. Dr.med.dent. 8000 München Scheicher | Means for covering and / or filling in bone defects |
| JPS6045602B2 (en) | 1978-09-28 | 1985-10-11 | 正隆 片桐 | Biological implants and their production methods |
| US4394370A (en) | 1981-09-21 | 1983-07-19 | Jefferies Steven R | Bone graft material for osseous defects and method of making same |
| US4932973A (en) | 1983-09-30 | 1990-06-12 | El Gendler | Cartilage and bone induction by artificially perforated organic bone matrix |
| US5053049A (en) | 1985-05-29 | 1991-10-01 | Baxter International | Flexible prostheses of predetermined shapes and process for making same |
| US4851046A (en) | 1985-06-19 | 1989-07-25 | University Of Florida | Periodontal osseous defect repair |
| US4725234A (en) | 1985-08-15 | 1988-02-16 | Ethridge Edwin C | Alveolar bone grafting process with controlled surface active ceramics |
| US4743259A (en) | 1986-10-29 | 1988-05-10 | The University Of Virginia Alumni Patents Foundation | Use of demineralized bone matrix in the repair of segmental defects |
| GB8718627D0 (en) | 1987-08-06 | 1987-09-09 | Showell A W Sugicraft Ltd | Spinal implants |
| US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
| US5073373A (en) | 1989-09-21 | 1991-12-17 | Osteotech, Inc. | Flowable demineralized bone powder composition and its use in bone repair |
| US5290558A (en) | 1989-09-21 | 1994-03-01 | Osteotech, Inc. | Flowable demineralized bone powder composition and its use in bone repair |
| US5112354A (en) | 1989-11-16 | 1992-05-12 | Northwestern University | Bone allograft material and method |
| ES2076467T3 (en) | 1990-10-31 | 1995-11-01 | El Gendler | FLEXIBLE MEMBRANES PRODUCED WITH ORGANIC BONE MATTER FOR THE REPAIR AND RECONSTRUCTION OF PARTS OF THE SKELETON. |
| US6503277B2 (en) | 1991-08-12 | 2003-01-07 | Peter M. Bonutti | Method of transplanting human body tissue |
| US5507813A (en) | 1993-12-09 | 1996-04-16 | Osteotech, Inc. | Shaped materials derived from elongate bone particles |
| US5860973A (en) | 1995-02-27 | 1999-01-19 | Michelson; Gary Karlin | Translateral spinal implant |
| US6071284A (en) | 1995-10-30 | 2000-06-06 | Biomedical Enterprises, Inc. | Materials collection system and uses thereof |
| US5866155A (en) | 1996-11-20 | 1999-02-02 | Allegheny Health, Education And Research Foundation | Methods for using microsphere polymers in bone replacement matrices and composition produced thereby |
| US6241771B1 (en) | 1997-08-13 | 2001-06-05 | Cambridge Scientific, Inc. | Resorbable interbody spinal fusion devices |
| US6986788B2 (en) | 1998-01-30 | 2006-01-17 | Synthes (U.S.A.) | Intervertebral allograft spacer |
| US6123731A (en) | 1998-02-06 | 2000-09-26 | Osteotech, Inc. | Osteoimplant and method for its manufacture |
| US6030635A (en) | 1998-02-27 | 2000-02-29 | Musculoskeletal Transplant Foundation | Malleable paste for filling bone defects |
| US6224630B1 (en) | 1998-05-29 | 2001-05-01 | Advanced Bio Surfaces, Inc. | Implantable tissue repair device |
| US6293970B1 (en) | 1998-06-30 | 2001-09-25 | Lifenet | Plasticized bone and soft tissue grafts and methods of making and using same |
| US6200347B1 (en) | 1999-01-05 | 2001-03-13 | Lifenet | Composite bone graft, method of making and using same |
| US6245108B1 (en) | 1999-02-25 | 2001-06-12 | Spineco | Spinal fusion implant |
| AU4988700A (en) | 1999-05-05 | 2000-11-17 | Gary K. Michelson | Spinal fusion implants with opposed locking screws |
| US6277149B1 (en) | 1999-06-08 | 2001-08-21 | Osteotech, Inc. | Ramp-shaped intervertebral implant |
| US20050059953A1 (en) | 1999-09-03 | 2005-03-17 | Lifenet | Apparatus for demineralizing osteoinductive bone |
| US6709458B2 (en) | 2000-02-04 | 2004-03-23 | Gary Karlin Michelson | Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion |
| US6558390B2 (en) | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
| US6591581B2 (en) | 2000-03-08 | 2003-07-15 | Arthrex, Inc. | Method for preparing and inserting round, size specific osteochondral cores in the knee |
| AR027685A1 (en) | 2000-03-22 | 2003-04-09 | Synthes Ag | METHOD AND METHOD FOR CARRYING OUT |
| US6576249B1 (en) | 2000-11-13 | 2003-06-10 | El Gendler | Bone putty and method |
| EP1383549A1 (en) | 2001-02-14 | 2004-01-28 | Osteotech, Inc. | Implant derived from bone |
| JP4790917B2 (en) | 2001-02-23 | 2011-10-12 | 独立行政法人科学技術振興機構 | Artificial vertebral body |
| US6855169B2 (en) | 2001-02-28 | 2005-02-15 | Synthes (Usa) | Demineralized bone-derived implants |
| US7018412B2 (en) | 2001-08-20 | 2006-03-28 | Ebi, L.P. | Allograft spinal implant |
| US6949254B2 (en) | 2002-01-30 | 2005-09-27 | Bmg Incorporated | Bio-decomposable polymer composition showing good thermal decomposition |
| US20060204544A1 (en) | 2002-05-20 | 2006-09-14 | Musculoskeletal Transplant Foundation | Allograft bone composition having a gelatin binder |
| US20040068234A1 (en) | 2002-10-03 | 2004-04-08 | Jeff Martin | Bone graft particle delivery apparatus and method |
| CA2510420A1 (en) | 2002-12-12 | 2004-06-24 | Osteotech, Inc. | Formable and settable polymer bone composite and method of production thereof |
| US6868631B2 (en) | 2003-03-31 | 2005-03-22 | Guan-Ming Chen | Front sight night vision device |
| KR20060031808A (en) | 2003-06-11 | 2006-04-13 | 오스테오테크, 인코포레이티드 | Osteoimplants and methods for their manufacture |
| WO2005032612A2 (en) | 2003-10-02 | 2005-04-14 | Lostec, Inc. | A transplantable particulate bone composition and methods for making and using same |
| US20070231788A1 (en) | 2003-12-31 | 2007-10-04 | Keyvan Behnam | Method for In Vitro Assay of Demineralized Bone Matrix |
| US20120245703A1 (en) | 2004-01-02 | 2012-09-27 | Meredith Thomas L | Composite bone material implant and method |
| US20050196460A1 (en) | 2004-03-08 | 2005-09-08 | Malinin Theodore I. | Particulate cartilage compositions, processes for their preparation and methods for regenerating cartilage |
| US6942698B1 (en) | 2004-04-23 | 2005-09-13 | Roger P. Jackson | Spinal fusion interbody spacer |
| US7678385B2 (en) | 2004-04-28 | 2010-03-16 | Biomet Manufacturing Corp. | Irradiated implantable bone material |
| US20060074466A1 (en) | 2004-10-04 | 2006-04-06 | Lostec, Inc. | Compositions having improved osteogenesis and methods for making and using same |
| FR2876917B1 (en) | 2004-10-22 | 2007-03-09 | Tbf Banque De Tissus | BONE FILLING COMPOSITION |
| AU2006204730B2 (en) | 2005-01-14 | 2011-03-31 | Warsaw Orthopedic, Inc. | Expandable osteoimplant |
| EP1868539A2 (en) | 2005-04-15 | 2007-12-26 | Musculoskeletal Transplant Foundation | Vertebral disc repair |
| US7245312B2 (en) | 2005-06-10 | 2007-07-17 | Zih Corp. | Thermal printer with quick-release printhead assembly |
| US20070027543A1 (en) | 2005-08-01 | 2007-02-01 | Gimble Jeffrey M | Use of adipose tissue-derived stromal cells in spinal fusion |
| AU2006308534B2 (en) | 2005-11-01 | 2013-02-07 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
| CA2637616A1 (en) | 2006-01-19 | 2007-07-26 | Osteotech, Inc. | Injectable and moldable bone substitute materials |
| CN100430096C (en) | 2006-03-16 | 2008-11-05 | 王立飞 | Method for continuous hypothermal desiccation and sterilization of bony tissue, and equipment therefor |
| EP2034953A4 (en) | 2006-06-26 | 2013-05-15 | Capricorn Pharma Inc | Orally disintegrating layered compositions |
| US20080234822A1 (en) | 2007-01-26 | 2008-09-25 | Tutogen Medical, U.S., Inc. | Method and Apparatus for Stabilization and Fusion of Adjacent Bone Segments |
| US20080279825A1 (en) | 2007-05-10 | 2008-11-13 | Malinin Theodore I | Cartilage material |
| US8574825B2 (en) | 2007-06-01 | 2013-11-05 | Bacterin International, Inc. | Process for demineralization of bone matrix with preservation of natural growth factors |
| CA2690457C (en) | 2007-06-15 | 2018-02-20 | Osteotech, Inc. | Bone matrix compositions and methods |
| WO2008157492A2 (en) | 2007-06-15 | 2008-12-24 | Osteotech, Inc. | Osteoinductive demineralized cancellous bone |
| US20090018659A1 (en) | 2007-07-10 | 2009-01-15 | Malinin Theodore I | Invertebral spinal implant and method of making the same |
| JP5487973B2 (en) | 2007-11-22 | 2014-05-14 | 日本電気株式会社 | Communication system, communication method, and communication session aggregating apparatus |
| US20090312842A1 (en) | 2008-06-16 | 2009-12-17 | Predrag Bursac | Assembled Cartilage Repair Graft |
| US8741354B2 (en) | 2008-06-20 | 2014-06-03 | Cook Biotech Incorporated | Composite extracellular matrix materials and medical products formed therefrom |
| US8608801B2 (en) | 2008-07-06 | 2013-12-17 | The Trustees Of Columbia University In The City Of New York | Osteochondral implants, arthroplasty methods, devices, and systems |
| WO2010017288A1 (en) | 2008-08-05 | 2010-02-11 | The University Of Miami | Composite bone grafts, particulate bone-calcium sulfate constructs, and methods of treating joint injuries |
| US20110118850A1 (en) | 2008-12-13 | 2011-05-19 | Amit Prakash Govil | Bioactive Grafts and Composites |
| JP2012517246A (en) | 2009-02-04 | 2012-08-02 | ミッド コーポレーション | System, method and apparatus for performing dental implants |
| US20100310623A1 (en) | 2009-06-05 | 2010-12-09 | Laurencin Cato T | Synergetic functionalized spiral-in-tubular bone scaffolds |
| US8906028B2 (en) | 2009-09-18 | 2014-12-09 | Spinal Surgical Strategies, Llc | Bone graft delivery device and method of using the same |
| WO2011106387A2 (en) | 2010-02-23 | 2011-09-01 | University Of Connecticut | Natural polymer-based orthopedic fixation screw for bone repair and regeneration |
| CA2804842A1 (en) | 2010-07-09 | 2012-01-12 | Board Of Regents Of The University Of Texas System | Biodegradable scaffolds |
| US9649105B2 (en) | 2010-09-23 | 2017-05-16 | Chad Ringley | Self suturing trocar |
| WO2012068135A1 (en) | 2010-11-15 | 2012-05-24 | Zimmer Orthobiologics, Inc. | Bone void fillers |
| US20120195971A1 (en) | 2011-01-28 | 2012-08-02 | Biomet Manufacturing Corp. | Method for Preparing Mechanically Macerated Demineralized Bone Materials and Compositions Comprising the same |
| WO2013049373A2 (en) | 2011-09-27 | 2013-04-04 | Spillman Deborah Marie | Irradiated cortical bone sheet allografts and method of forming irradiated cortical bone sheet allografts |
| DE102012007251A1 (en) | 2012-04-11 | 2013-10-17 | Airbus Operations Gmbh | Aircraft climate control system and method for operating an aircraft climate control system |
| US20130338792A1 (en) | 2012-06-15 | 2013-12-19 | Arthrex, Inc. | Implantation of micronized allograft tissue over a microfractured defect |
| US20140005793A1 (en) | 2012-06-21 | 2014-01-02 | Keith Cameron Koford | Novel biological implant compositions, implants and methods |
| US8784908B1 (en) | 2013-07-03 | 2014-07-22 | Vivex Biomedical, Inc. | Composition of a bone repair mixture |
| JP2015021618A (en) | 2013-07-23 | 2015-02-02 | バット ホールディング アーゲー | Valve |
| US20150140096A1 (en) | 2013-11-21 | 2015-05-21 | Vivex Biomedical Inc. | Composition and method of preparation of bone allograft from endosteal portion of bone and isolated bone periosteum |
| US8888823B1 (en) | 2014-02-05 | 2014-11-18 | Theodore Malinin | Thin bendable bone plate for bone deficit repair and method of preparation |
| US9610143B2 (en) | 2014-06-19 | 2017-04-04 | Osteolife Biomedical, Llc | Compressed decalcified trabecular bone grafts and tooth socket repair |
| US9839524B2 (en) | 2015-06-22 | 2017-12-12 | Theodore Malinin | Modified, pliable, and compressible cortical bone for spinal fusions and other skeletal transplants |
| US10549011B2 (en) | 2015-10-26 | 2020-02-04 | Osteolife Biomedical, Llc | Bone putty and gel systems and methods |
| US20170128633A1 (en) | 2015-11-10 | 2017-05-11 | Theodore Malinin | Bioactive Implants and Methods of Making and Using |
| US20170128634A1 (en) | 2015-11-10 | 2017-05-11 | Theodore Malinin | Bioactive implants and methods of making and using |
-
2015
- 2015-11-10 US US14/937,206 patent/US20170128633A1/en not_active Abandoned
-
2018
- 2018-10-01 US US16/148,289 patent/US10624990B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5516532A (en) * | 1994-08-05 | 1996-05-14 | Children's Medical Center Corporation | Injectable non-immunogenic cartilage and bone preparation |
| US5756145A (en) * | 1995-11-08 | 1998-05-26 | Baylor College Of Medicine | Durable, Resilient and effective antimicrobial coating for medical devices and method of coating therefor |
| US20100274362A1 (en) * | 2009-01-15 | 2010-10-28 | Avner Yayon | Cartilage particle tissue mixtures optionally combined with a cancellous construct |
| US20140134212A1 (en) * | 2012-11-15 | 2014-05-15 | Allosource | Minced cartilage systems and methods |
Non-Patent Citations (1)
| Title |
|---|
| Povidone-Iodine Prevents Infection in Prosthetic Implants, Outpatient Surgery, March 7, 2011, accessed online at http://www.outpatientsurgery.net/newsletter/eweekly/2011/03/08/povidone-iodine-prevents-infection-in-prosthetic-implants. * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11052175B2 (en) | 2015-08-19 | 2021-07-06 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
| US11806443B2 (en) | 2015-08-19 | 2023-11-07 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
| US11938245B2 (en) | 2015-08-19 | 2024-03-26 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
| US10549011B2 (en) | 2015-10-26 | 2020-02-04 | Osteolife Biomedical, Llc | Bone putty and gel systems and methods |
| US10624990B2 (en) | 2015-11-10 | 2020-04-21 | Osteolife Biomedical, Llc | Bioactive implants and methods of making and using |
| CN110402918A (en) * | 2018-04-27 | 2019-11-05 | 庄明华 | A method of preserving bone tissue material |
Also Published As
| Publication number | Publication date |
|---|---|
| US10624990B2 (en) | 2020-04-21 |
| US20190030209A1 (en) | 2019-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10624990B2 (en) | Bioactive implants and methods of making and using | |
| US10368930B2 (en) | Milled bone graft materials and methods of use | |
| US8877221B2 (en) | Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same | |
| US8475824B2 (en) | Resorbable matrix having elongated particles | |
| US9107983B2 (en) | Osteoconductive matrices comprising statins | |
| AU2017248473A1 (en) | Lyophilized moldable implants containing an oxysterol | |
| AU2014331971B2 (en) | Processed bone particle compositions and related methods | |
| JP2019171025A (en) | Demineralized bone matrix having improved handling characteristics | |
| EP2528633A2 (en) | Osteogenic cell delivery matrix | |
| JP2019022650A (en) | Moldable formulations containing oxysterol in acellular tissue matrix | |
| US20170266355A1 (en) | Bioactive implants and methods of making and using | |
| ES2893354T3 (en) | Combination particle - active agent that helps bone regeneration | |
| WO2024137930A2 (en) | Injectable bone implant compositions, kits, and related methods | |
| US20200405364A1 (en) | Hydratable bone material and methods of use | |
| EP3768238B1 (en) | Injectable bone morphogenetic protein | |
| RU2255700C2 (en) | Method for stimulating reparative osteogenesis in animals and people | |
| Arnault et al. | Treatment of a nonunion, secondary to gunshot fracture, of the distal radius with circular external fixation and rhBMP-2 in a cat | |
| WO2021050566A1 (en) | Hydratable bone material and methods of use | |
| NL2030793B1 (en) | Malleable bone repair material | |
| Kovalchuk et al. | Physiological and Reparative Osteogenesis in the Norm and Under Conditions of Selenium Deficiency | |
| Agrawal et al. | Recombinant Human Bone Morphogenic Protein-2 (BMP-2): A Newer & Novel Osteoinductive Treatment Modality for Non-union of Bones. | |
| Magin et al. | BMP as an Alternative to Autograft for Spinal Arthrodesis | |
| 土屋紀子 | Effects of platelet-derived growth factor on bone augmentation beyond the skeletal envelope in rat calvaria |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OSTEOLIFE BIOMEDICAL, LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALININ, THEODORE;REEL/FRAME:043456/0414 Effective date: 20170717 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |