US20170106264A1 - Surfboard Paddling Exercise Apparatus - Google Patents
Surfboard Paddling Exercise Apparatus Download PDFInfo
- Publication number
- US20170106264A1 US20170106264A1 US14/886,021 US201514886021A US2017106264A1 US 20170106264 A1 US20170106264 A1 US 20170106264A1 US 201514886021 A US201514886021 A US 201514886021A US 2017106264 A1 US2017106264 A1 US 2017106264A1
- Authority
- US
- United States
- Prior art keywords
- cable
- spool
- supporting structure
- person
- platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims 3
- 210000003205 muscle Anatomy 0.000 abstract description 7
- 230000007246 mechanism Effects 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 12
- 239000003570 air Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 210000001364 upper extremity Anatomy 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/0093—Training appliances or apparatus for special sports for surfing, i.e. without a sail; for skate or snow boarding
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/008—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using hydraulic or pneumatic force-resisters
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/02—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
- A63B21/055—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
- A63B21/0552—Elastic ropes or bands
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/151—Using flexible elements for reciprocating movements, e.g. ropes or chains
- A63B21/153—Using flexible elements for reciprocating movements, e.g. ropes or chains wound-up and unwound during exercise, e.g. from a reel
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4027—Specific exercise interfaces
- A63B21/4033—Handles, pedals, bars or platforms
- A63B21/4035—Handles, pedals, bars or platforms for operation by hand
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4041—Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
- A63B21/4043—Free movement, i.e. the only restriction coming from the resistance
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0002—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/03516—For both arms together or both legs together; Aspects related to the co-ordination between right and left side limbs of a user
- A63B23/03533—With separate means driven by each limb, i.e. performing different movements
- A63B23/03541—Moving independently from each other
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/12—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
- A63B23/1209—Involving a bending of elbow and shoulder joints simultaneously
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/12—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
- A63B23/1245—Primarily by articulating the shoulder joint
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/10—Swimming instruction apparatus for use without water
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/0054—Features for injury prevention on an apparatus, e.g. shock absorbers
- A63B2071/0063—Shock absorbers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/151—Using flexible elements for reciprocating movements, e.g. ropes or chains
- A63B21/154—Using flexible elements for reciprocating movements, e.g. ropes or chains using special pulley-assemblies
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/15—Arrangements for force transmissions
- A63B21/158—Hydraulic transmissions
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2208/00—Characteristics or parameters related to the user or player
- A63B2208/02—Characteristics or parameters related to the user or player posture
- A63B2208/0242—Lying down
- A63B2208/0257—Lying down prone
Definitions
- the present invention relates to exercising machines, particularly to exercise machines of the type using yielding elastic elements.
- a surfboard paddling exercise machine should develop all of the dorsal muscles needed to raise the shoulders upward while paddling. Furthermore, to simulate the absence of any drag on the arm through the water during paddling return strokes, the machine should first provide a full measure of muscle developing paddling resistance during the user's thrust strokes, but then offer zero tension or resistance to the user's arm motions during return strokes. Additionally, the exercise machine should allow the user to simulate paddling with both arms simultaneously, or with each arm in an alternating sequence, or in any variation thereof, and at any typical paddling speed just as when surfing.
- the present invention is an advancement over prior art in that it does fulfill all of those requirements to develop the full range of muscular strength for paddling that surfing demands.
- a preferred example of the present invention provides a horizontal platform that the user lays upon as when paddling on a surfboard.
- the top surface of the platform includes a raised section that is just large enough to support the user's lower torso and upper legs. That torso support design prompts the user to hold the shoulders and upper chest and legs up above the surrounding top surfaces of the platform while the user simulates surfboard paddling thrust strokes by pulling down and back on specialized hand harnesses.
- the right and left hand harnesses allow the user to cup the hands just as when paddling a surfboard, and they are connected to the unique cable systems of the invention.
- the cable systems use a combination of mechanisms and elastic cords to fully resist the user's thrust strokes, which strokes can be in an alternating or simultaneous sequence, or in any variation thereof.
- the cable systems are able to automatically fully return each hand harness back to its original starting position with just enough time delay, relative to the user's arm motions, that the existing elastic cord tension seemingly disappears to the user.
- That mechanical capability provides not only a very accurate paddling simulation, but also allows the user's arms to be raised above the shoulder level on the return strokes without causing discomfort or strain on the user's shoulder and elbow joints that could otherwise be caused by the strong tension and resistance from the elastic cords.
- FIG. 1 is a general perspective view of the front, left side, and top surfaces of an exercise apparatus A configured in accordance with an embodiment of the present invention.
- FIG. 2 is a plan view of the underside of the apparatus of FIG. 1 depicting a first preferred embodiment of the two cable systems of the invention mounted underneath the platform.
- FIG. 3 is an expanded view of FIG. 2 depicting the main components of the cable systems, showing one cable system in motion according to the direction arrows, and the other cable system at rest.
- FIG. 4 is an exploded perspective view of a typical spool within each cable system, and shows an additional embodiment of the spool hub at X.
- FIG. 5 is an expanded side perspective view depicting the spool assemblies within both cable systems, with leading and trailing cable segments wound around each spool.
- FIG. 6 is an expanded perspective view of a spool with a secondary elastic cord along side of the spool to take-up any excess cable slack.
- FIG. 7 is a plan view of the underside of the apparatus of FIG. 1 depicting a second preferred embodiment of the two cable systems of the invention.
- FIG. 8 is an expanded perspective of FIG. 7 depicting cutaway views, and showing one cable system in motion according to the direction arrows, and the other cable system at rest.
- FIG. 9 is an expanded side perspective view of the spool shown in motion in FIG. 8 .
- FIGS. 10 to 12 show sequential views of the apparatus of FIG. 1 in operation according to the direction arrows, wherein the user is at the initial position of a power stroke in FIG. 10 , and then in the middle position of the power stroke in FIG. 11 , and then at the end position of the power stroke in FIG. 12 .
- FIGS. 13 to 15 show sequential views of the apparatus of FIG. 1 in operation according to the direction arrows, wherein the user is at the initial position of a return stroke in FIG. 13 , and then in the middle position of the return stroke in FIG. 14 , and then at the end position of the return stroke in FIG. 15 .
- FIG. 16 is an expanded view of one of the hand harnesses shown in FIG. 1 .
- FIG. 17 is an expanded view of the torso support shown in FIG. 1 .
- FIG. 1 shows an elongated solid platform 1 configured in accordance with the present invention.
- the platform 1 is elevated and supported at each end by a front leg assembly 2 and a rear leg assembly 3 that are hingedly connected to the platform.
- the leg assemblies and platform may be made of wood or metal or plastic or any other suitable materials or combination thereof.
- the leg assemblies are shown in their extended positions and may be held there by metal folding brackets or any suitable means, but then may be folded into a collapsed position for storage or transportation of apparatus A.
- FIG. 1 also shows each hand harness 4 located at each side of apparatus A near its forward end. Just before operating the apparatus, the user places a hand harness on each hand, such as shown in the expanded view in FIG. 16 , and the hand harness construction is described later.
- FIG. 1 also shows a torso support 5 that the user's torso is positioned upon as shown in FIG. 10 . The torso support is also shown in the expanded view of FIG. 17 , and its construction will be described later.
- FIG. 2 shows matching cable systems of the present invention mounted to the underside of platform 1 (the hinged leg assemblies 2 and 3 are not depicted). Both cable systems generally operate independently of one another, but are designed as mirror images of one another and function similarly. Accordingly, the like structures and parts for the user's right-hand operated cable system and left-hand operated cable system will be referred to by like numerals.
- each cable system goes through two modes of operation. The first mode of operation is during each of the user's power strokes while the user is pulling on either the right-hand or left-hand harness 4 as shown in FIGS. 10-12 . The second mode of operation is during each of the user's return strokes while the user is returning either hand harness back to its original position on platform 1 , as shown in FIGS. 13-15 .
- FIG. 2 shows that the means of resistance to the user's power strokes is provided by a primary elastic cord 20 included within each cable system.
- a hand harness 4 such as shown by the direction arrow extending axially from one of the two hand harnesses depicted
- the leading cable 6 to which the hand harness is attached is also pulled, which causes its respective primary elastic cord 20 to be stretched in the direction depicted by the four arrows shown beside the primary elastic cord as it resists the user's pull.
- the cable system for that respective right-hand or left-hand side provides a means for the user to experience zero tension and resistance from the primary elastic cord 20 .
- FIG. 3 shows the main components of both cable systems, with one of the cable systems in motion during a user's power stroke according to the direction arrows, and the other cable system stationary at rest following a user's return stroke.
- FIG. 3 also shows that each leading cable 6 is threaded through its respective outboard pulley 7 and then is threaded through a passageway in the side frame member of platform 1 , as depicted by the cutaway views at the ends of the frame members, and then the leading cable is threaded through its inboard pulley 8 .
- the pulleys may be attached to the frame of platform 1 with screws or any suitable fasteners.
- each leading cable 6 After being threaded through each inboard pulley 8 , each leading cable 6 takes an approximately ninety degree turn from the inboard pulley, and goes directly to its respective spool hub 10 a. And the spool hub is also shown in FIG. 4 .
- FIG. 4 shows how each spool is constructed for each cable system by using a hollow hub 10 a that is made from a suitable material such as a short section of plastic pipe.
- the hub is centered upon and sandwiched between a top disc 10 b and a bottom disc 12 , and then secured in that position by a plurality of machine screws 10 c, that extend entirely through the spool at locations just inside of the hollow hub, and that are then screwed into lock nuts 10 d, so that the hub does not slip or rotate between the discs.
- the spool may be made from any suitable materials such as metal or plastic using cast or machined parts, and be held together by any suitable means, and the hub may be centered on the discs or held in place by grooves or lugs located in or on the cable spool.
- each spool When each spool has been fully assembled to include cable segments 6 and 14 as will be described, it is then rotatably mounted onto platform 1 by an axle bolt 9 a, that is threaded at each end as shown in FIG. 4 , and that extends through a hole 9 f in the top surface of platform 1 .
- the axle bolt 9 a is inserted into hole 9 f from the underside of platform 1 .
- axle bolt lock nut 9 b and a fender washer 9 e, are placed onto the end of the axle bolt that is then inserted through hole 9 f. Then another fender washer 9 e, and a cap nut 9 c, may be placed onto the end of the axle bolt 9 a that projects through the top surface of platform 1 . The cap nut 9 c is then fully tightened onto the end of axle bolt 9 a. Then the axle bolt lock nut 9 b is tightened down around the threads of the axle bolt to secure it on the platform in a protruding orientation to form a stable shaft for the spool to rotate upon as shown in FIG. 5 .
- Each spool top disc 10 b and bottom disc 12 has a hole at its center through which the axle bolt 9 a extends, allowing the spool to be rotatably held on the axle bolt with a spool retaining nut 9 d, and washer 9 e, that are located on the other threaded end of the axle bolt 9 a that protrudes through the top disc 10 b of the cable spool.
- FIG. 4 also shows that the hollow hub 10 a has two holes or slots in its side wall.
- the cable leading segment 6 is inserted into one hole or slot, and the cable trailing segment 14 is inserted into the other hole or slot.
- the end of each cable segment is knotted, so that the cable segments are secured on the spool hub once the spool is fully assembled.
- the machine screws 10 c are used to assemble the spool.
- the cable leading segment 6 is wound six times in a given direction around the spool hub 10 a.
- the cable trailing segment 14 is wound one time around the spool hub 10 a in the opposite direction as that of the cable leading segment.
- the spool assembly is ready to be placed on its axle bolt 9 a, and secured with retaining nut 9 d.
- the cable leading and trailing segments could as a variation be combined as a single continuous cable threaded through the spool hub, where the continuous cable enters into the hollow hub 10 a as the cable leading segment, and is then knotted as described above or anchored to the spool hub, and then exits from out of the spool hub as the cable trailing segment.
- the spool hub could also have openings of any shape for receiving or holding the cable segments.
- the spool hub 10 a comprises two different diameters wherein one portion of the hub 10 a is larger in diameter for the cable leading segment 6 to wind around, and the other portion of the hub 10 a is smaller in diameter for the cable trailing segment 14 to wind around. Then, when constructing the spool assembly as described previously, the cable leading segment is to be wound six times around the larger diameter portion of the hub in a given direction, and the cable trailing segment is to be wound once around the smaller diameter portion of the hub in the opposite direction.
- both portions of the spool hub rotate in unison and on the same axis, so that when the spool rotates, the ratio of the travel of the cable trailing segment will be less than that of the cable leading segment. That difference in the ratio of cable travel provides a means to actuate a piston pump as will be described later.
- FIG. 5 depicts the underside of apparatus A with both spools rotatably mounted onto their axle bolts and held in place with retaining nuts 9 d, and shows the cable leading and trailing segments 6 and 14 wrapped around the spool hubs 10 a.
- FIG. 5 also shows one cable system at rest, with its hand harness 4 returned to the start position, and with its cable leading segment 6 accordingly wound six times around that spool hub 10 a, and with its cable trailing segment 14 wound once around that spool hub.
- the other cable system is shown in motion according to the direction arrows, and indicates that its cable leading segment 6 is being pulled during a power stroke and is unwinding from off of its spool hub by rotating the spool hub 10 a through six revolutions, and that at the same time its cable trailing segment 14 is being reeled onto the spool hub 10 a by those same six revolutions of the hub. That depicted motion shows the cable system first mode of operation during a power stroke.
- FIGS. 3 and 5 show that each cable trailing segment 14 goes through a set of block-and-tackle pulleys 13 a and 13 b, and that each block set of pulleys 13 a is mounted to platform 1 in a fixed position, and that each tackle set of pulleys 13 b is connected to each forward yoke 15 , and that each forward yoke 15 is connected to each primary elastic cord 20 .
- the forward yoke 15 may be made of sheet metal or any suitable material, and the tackle set of pulleys 13 b may be attached to the forward yoke with screws or other suitable fasteners, but sheaves mounted in the forward yoke could alternatively function as the tackle set of pulleys.
- the forward yoke 15 is coupled to the ends of the primary elastic cord 20 with metal loops on the forward yoke into which the knotted ends of the primary elastic cord 20 are placed, but the primary elastic cord could alternatively be coupled to the forward yoke 15 by any other suitable means.
- each primary elastic cord 20 then goes from its connection on a forward yoke 15 to a rearward yoke 21 (and as will be described later, each rearward yoke 21 is adjustable by the user to alter the existing elastic force within the primary elastic cord 20 ). The result, as shown by the direction arrows in FIGS.
- each cable system includes a piston pump 17 , and each forward yoke 15 couples together not only the tackle set of pulleys 13 b and each primary elastic cord 20 , but also the piston rod 16 of each piston pump.
- the block-and-tackle pulleys reduce the sixty linear inches of cable leading segment travel produced by the reach of the user's arm motions during power strokes, down to about eighteen inches of closure between the block set of pulleys 13 a and the tackle set of pulleys 13 b to make it practical to employ a piston pump within the cable system.
- each cable trailing segment 14 is threaded between the block-and-tackle pulleys to produce a 3.5:1 mechanical advantage ratio.
- the mechanical advantage ratio could be produced by making the spool hub 10 a with two different diameters as shown in FIG. 4 at X as described previously.
- the present invention therefore includes the principle of employing a mechanical advantage ratio as the means to transmit and reduce approximately sixty inches of cable travel produced by the user's arm strokes, down to a lesser amount of linear motion to make it practical to operate a piston pump.
- the tackle set of pulleys 13 b is coupled to the forward yoke 15 which is coupled in turn to the piston pump rod 16 . That is done here by threading and screwing the end of the piston rod into a threaded nut on the forward yoke, but any suitable coupling means could be used.
- each forward yoke 15 links together the tackle pulleys 13 b and piston rod 16 and primary elastic cord 20 , so that during the user's return stroke, the piston rod is forced back into the pump chamber by the elastic force from the primary elastic cord which is transmitted through the forward yoke 15 to the piston rod which causes the piston pump 17 to push air out through the air hose 18 , and through the relief valve 19 , which relief valve can be pre-adjusted by the user to variably restrict the air exiting from the piston pump, thus causing the cable system and hand harness 4 to adjustably return to their starting positions more slowly.
- the present invention includes not only fluid resistance from the piston pumps described previously to dampen the cycling speed of the cable system, but also includes mass moment of inertia, as will now be described, to dampen the cycling speed of the cable system, and both or either of such means as described may be used as part of the invention.
- the mass moment of inertia design of the invention as shown in FIGS. 4 and 5 , includes weights 11 a that are attached proximate to the rotating perimeter of each spool to provide mass moment of inertia as the spool rotates during the user's power strokes.
- the weights 11 a are attached with suitable fasteners through holes 11 b as in FIG.
- the weights may be attached to or made a part of the spools and may be of any suitable material to provide a mass moment of inertia that is sufficient to significantly alter the cycling speed of the cable system as the user alternates from power stokes to return strokes, and the weights or mass may be located anywhere within the cable system and be rotated directly or indirectly by the travel of the cables as described here. And the positions or amounts of the mass may be adjustable manually or automatically to affect the mass moment of inertia during operation of apparatus A.
- the present invention also provides a means for the user to adjust the pre-existing elastic force within each primary elastic cord 20 so that the elastic cord offers greater or lesser tension resistance to the user's power strokes.
- either of the primary elastic cords may be set to a longer or shorter operating length by adjusting the position of either of the two rearward yokes 21 that serve as carriers to which the primary elastic cords 20 are linked.
- the rearward yokes are threaded onto threaded rods that are rotatably mounted on platform 1 , so that the carriers move along the threaded rods 22 as the user turns either of the rods 22 using the elastic cord adjustment cranks 43 to move the rearward yokes 21 closer to or father from the forward yokes 15 .
- Each rearward yoke has a pair of rearward yoke pulleys 23 , through which each primary elastic cord 20 is threaded, after which each primary elastic cord 20 then goes to an elastic cord fixed anchor point 24 on platform 1 .
- As the user turns either adjustment crank 43 thus moving the rearward yoke 21 , that movement of the rearward yoke adjustment can be seen while standing over apparatus A and looking through inspection slots 42 that are cut through the top of platform 1 .
- the rearward yokes may be made of sheet metal or any suitable material to provide suitable mounting points to which the rearward yoke pulleys 23 may be attached with suitable fasteners, or as an alternative, sheaves may be mounted into each rearward yoke 21 to serve the same purpose as the pulleys 23 .
- Each rearward yoke 21 has a threaded nut or other suitable threaded receiver into which the threaded elastic cord adjustment rod 22 may be installed.
- both primary elastic cords could simultaneously be adjusted by turning a single elastic cord adjustment crank, or within the principle of the design, such adjustment could be through a remote or motorized actuator, or by anchoring the elastic cords to alternative locations on apparatus A, or by adding or subtracting the number elastic cords, or by mechanisms to automatically coordinate the primary elastic cord adjustment with that of the relief valve 19 by the use of gears, or other suitable means.
- FIG. 6 shows a means within the present invention to automatically take-up any excess slack in the cable leading and trailing segments 6 and 14 that might occur if the relief valve 19 is for example adjusted too restrictively.
- the cable trailing segment 14 after being threaded through all block and tackle pulleys, then passes through a hole in the trailing cable end stop 44 .
- the end stop may be made of metal or any suitable material, and mounted to platform 1 with suitable fasteners, and the hole in the end stop is just large enough to accommodate the cable diameter size. After passing through the hole in the end stop, the cable trailing segment end is then coupled to a link 45 to which a secondary elastic cord 46 is also coupled.
- the secondary elastic cord 46 is threaded through the secondary cord pulley 48 , and the secondary elastic cord then goes from that pulley to an anchor point 47 that is attached to the frame of platform 1 .
- the secondary elastic cord then provides relatively weak, but continuous, tension on the end of the trailing cable to take-up any excess slack.
- the cable end stop 44 and link 45 may be placed on the opposite side of the sheave of pulley 48 .
- the relief valve adjustment dial 49 is depicted as an example of a means to restrict the range of air valve adjustment.
- FIGS. 7-9 show another embodiment of apparatus A that is structured in accord with the principles of the present invention, wherein the cable systems are generally similar to those in FIGS. 2 and 3 . Accordingly, the like parts and structures of both embodiments will be referred to by like reference numerals.
- a set of rack and pinion gears 25 and 31 is used for the same purpose of reducing about sixty inches of cable leading segment travel down to approximately eighteen inches of linear motion for actuating the piston pumps.
- FIG. 9 shows how each pinion gear 31 and gear rack 25 mesh together due to the gear rack guide 32 mounted in the spool bracket 27 using a gear rack guide mounting bracket 34 that is fastened to the spool bracket with screws 26 .
- the spool bracket 27 is fastened to the underside of platform 1 and the gear rack guide 32 slidably holds the gear rack 25 against the pinion gear 31 , allowing the gear rack 25 to slide in a linear manner upon the gear rack bearing insert 33 that is made of any suitably low-friction material, and which is fastened into the gear rack guide using screws with countersunk heads.
- the pinion gear 31 is coupled to the top disc 10 b of the spool, here using set screws, and rotates in unison with the spool hub 10 a on the same axle bolt 9 a that is attached to platform 1 as described previously.
- the result, as in the first embodiment, is that during a power stroke the spool rotates. And according to the rotation direction arrow in FIG.
- FIG. 8 also shows that each gear rack 25 is coupled to the end of each piston rod 16 .
- each gear rack 25 is coupled to the end of each piston rod 16 .
- any suitable material and coupling means could be used.
- each cable trailing segment 14 may, as a variation, go directly from its cable spool hub 10 a, through a link 28 to the primary elastic cord 20 , and the opposite end of the primary elastic cord 20 may be anchored to the frame of platform 1 by a pin 29 that may be placed into various locations along on a notched rack, or the like, on platform 1 , and elastic cord transom pulleys 30 may be used to extend the operating length of the elastic cords 20 .
- Other parts shown numbered in FIGS. 7 through 9 are the same parts providing the same functions as those described previously for the first embodiment of the invention.
- FIG. 16 depicts the design for each hand harness 4 that is coupled by any suitable means to each leading cable 6 .
- the hand harness is not designed to provide, or attribute, any significant conditioning or developing of muscles found in the region beyond the user's forearms, but is instead designed to easily remain on the user's hand while the user is exercising on the apparatus A.
- the “hand harness” is defined as a device that provides at least one flexible loop into which one or more of the fingers of a person's hand may be snuggly inserted, and although there could be one or more of such finger loops provided, the ideal is that an individual finger loop is provided for each one of the user's four fingers on the hand, so that while the hand harness is on the hand it will not tend to slip off even when the hand is inverted in any position, and so that the user may comfortably cup the hand while pulling on leading cable 6 as when paddling a surfboard.
- the hand harness design of the present invention may be made from one length of strap formed into finger loops that are then riveted together at their top ends as depicted, and with one last loop over a “D” ring with a lap joint that can be sewn or glued over the “D” ring.
- the hand harness 4 of the present invention may as a variation be constructed from any flexible material or webbing, or made by molding or forming the hand harness from rubber or flexible plastic or the like, or by making the hand harness from more or fewer parts, or by holding it together or attaching it to a cable by any suitable means.
- FIG. 17 depicts the torso support 5 of apparatus A
- the “torso support” is defined as a plate 35 that may be made from any suitable material such as plywood, and that may be padded with any suitable material such as foam, and the torso support is designed to be suitably large enough to primarily support only the user's mid to lower torso and upper legs as shown in FIG. 10 .
- the torso support may be mounted on platform 1 by a means that allows the user's body to tilt side to side with the torso support during operation of apparatus A.
- Plate 35 is accordingly mounted on the elongate center line of platform 1 to the top surface of the platform over a length of round pipe, or the like, serving as an axle 36 that is centered under plate 35 and rotatably held onto the top surface of platform 1 by straps 37 and 38 at the forward and rearward ends of axle 36 .
- the tilting movement of plate 35 is subject to a plurality of compression springs 39 , or the like, mounted proximate to and between the side edges of plate 35 and the top surface of platform 1 .
- the springs could be made of other alternative elastic materials such as rubber blocks, and the user may add or remove such elastic elements to compensate for user body weight in order to best simulate the challenge of remaining balanced on a tilting buoyant surfboard.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Rehabilitation Tools (AREA)
Abstract
The invention is an exercise apparatus providing an advanced level of surfboard paddling simulation and muscle development. The design includes a specialized platform, unique hand harnesses, and cable systems with mechanical advantage and mass moment of inertia mechanisms, piston pumps, cable spools, and elastic elements. They allow the user to simulate paddling in an alternating or simultaneous sequence at any speed while strong elastic tension resists the user's thrust strokes, but during paddling return strokes the user feels no elastic tension or resistance. The design also prompts the user to engage and strengthen all dorsal muscles to maintain an appropriately arched body position while paddling.
Description
- Field of the Invention
- The present invention relates to exercising machines, particularly to exercise machines of the type using yielding elastic elements.
- Description of the Related Art
- There are numerous exercise machines available to develop the muscle groups needed for performing particular sports activities. However, there has been no exercise machine available to effectively develop the unique combination of muscle groups needed when paddling on a surfboard while surfing. That is because paddling while surfing requires more than just stroking one's arms through the water to thrust the surfboard forward. It also requires the strength and coordination to raise and hold the shoulders and upper chest and both legs upward, and well above the deck of the surfboard while paddling. The reason for arching the shoulders upward in that manner while paddling, is so that each arm can be lifted completely out of even very choppy water to avoid dragging the arm through the water while swinging it forward during each paddling return stroke. Accordingly, a surfboard paddling exercise machine should develop all of the dorsal muscles needed to raise the shoulders upward while paddling. Furthermore, to simulate the absence of any drag on the arm through the water during paddling return strokes, the machine should first provide a full measure of muscle developing paddling resistance during the user's thrust strokes, but then offer zero tension or resistance to the user's arm motions during return strokes. Additionally, the exercise machine should allow the user to simulate paddling with both arms simultaneously, or with each arm in an alternating sequence, or in any variation thereof, and at any typical paddling speed just as when surfing. The present invention is an advancement over prior art in that it does fulfill all of those requirements to develop the full range of muscular strength for paddling that surfing demands.
- A preferred example of the present invention provides a horizontal platform that the user lays upon as when paddling on a surfboard. The top surface of the platform includes a raised section that is just large enough to support the user's lower torso and upper legs. That torso support design prompts the user to hold the shoulders and upper chest and legs up above the surrounding top surfaces of the platform while the user simulates surfboard paddling thrust strokes by pulling down and back on specialized hand harnesses. The right and left hand harnesses allow the user to cup the hands just as when paddling a surfboard, and they are connected to the unique cable systems of the invention. The cable systems use a combination of mechanisms and elastic cords to fully resist the user's thrust strokes, which strokes can be in an alternating or simultaneous sequence, or in any variation thereof. Then, during the user's return strokes, and at any paddling speed, the cable systems are able to automatically fully return each hand harness back to its original starting position with just enough time delay, relative to the user's arm motions, that the existing elastic cord tension seemingly disappears to the user. That mechanical capability provides not only a very accurate paddling simulation, but also allows the user's arms to be raised above the shoulder level on the return strokes without causing discomfort or strain on the user's shoulder and elbow joints that could otherwise be caused by the strong tension and resistance from the elastic cords.
-
FIG. 1 is a general perspective view of the front, left side, and top surfaces of an exercise apparatus A configured in accordance with an embodiment of the present invention. -
FIG. 2 is a plan view of the underside of the apparatus ofFIG. 1 depicting a first preferred embodiment of the two cable systems of the invention mounted underneath the platform. -
FIG. 3 is an expanded view ofFIG. 2 depicting the main components of the cable systems, showing one cable system in motion according to the direction arrows, and the other cable system at rest. -
FIG. 4 is an exploded perspective view of a typical spool within each cable system, and shows an additional embodiment of the spool hub at X. -
FIG. 5 is an expanded side perspective view depicting the spool assemblies within both cable systems, with leading and trailing cable segments wound around each spool. -
FIG. 6 is an expanded perspective view of a spool with a secondary elastic cord along side of the spool to take-up any excess cable slack. -
FIG. 7 is a plan view of the underside of the apparatus ofFIG. 1 depicting a second preferred embodiment of the two cable systems of the invention. -
FIG. 8 is an expanded perspective ofFIG. 7 depicting cutaway views, and showing one cable system in motion according to the direction arrows, and the other cable system at rest. -
FIG. 9 is an expanded side perspective view of the spool shown in motion inFIG. 8 . -
FIGS. 10 to 12 show sequential views of the apparatus ofFIG. 1 in operation according to the direction arrows, wherein the user is at the initial position of a power stroke inFIG. 10 , and then in the middle position of the power stroke inFIG. 11 , and then at the end position of the power stroke inFIG. 12 . -
FIGS. 13 to 15 show sequential views of the apparatus ofFIG. 1 in operation according to the direction arrows, wherein the user is at the initial position of a return stroke inFIG. 13 , and then in the middle position of the return stroke inFIG. 14 , and then at the end position of the return stroke inFIG. 15 . -
FIG. 16 is an expanded view of one of the hand harnesses shown inFIG. 1 . -
FIG. 17 is an expanded view of the torso support shown inFIG. 1 . - 1—platform
- 2—hinged front leg assembly
- 3—hinged rear leg assembly
- 4—right hand and left hand harness
- 5—torso support
- 6—cable leading segment
- 7—outboard pulley
- 8—inboard pulley
- 9 a—spool axle bolt
- 9 b—axle bolt lock nut
- 9 c—axle bolt cap nut
- 9 d—spool retaining nut
- 9 e—axle bolt washers
- 10 a—spool hub
- 10 b—spool top disc
- 10 c—spool machine screw
- 10 d—machine screw lock nut
- 11 a—cable spool weight
- 11 b—weight mounting screw
- 12—spool bottom disc
- 13 a —block set of pulleys
- 13 b —tackle set of pulleys
- 14—cable trailing segment
- 15—forward yoke
- 16—piston pump rod
- 17—piston pump
- 18—pump hose
- 19—relief valve
- 20—primary elastic cord
- 21—rearward yoke
- 22—elastic cord adjustment rod
- 23—rearward yoke pulley
- 24—elastic cord fixed anchor
- 25—gear racks
- 26—rack guide mount screw
- 27—spool bracket
- 28—cable to primary cord link
- 29—elastic cord movable anchor
- 30—elastic cord transom pulley
- 31—pinion gear
- 32—gear rack guide
- 33—gear rack bearing insert
- 34—gear rack guide mounting bracket
- 35—tilting plate
- 36—tilting plate axle
- 37—tilting plate to axle strap
- 38—axle to platform strap
- 39—tilting plate spring
- 40—pump crossbar strap
- 41—pump crossbar
- 42—adjustment inspection slot
- 43—elastic cord adjustment crank
- 44—trailing cable end stop
- 45—secondary cable to cord link
- 46—secondary elastic cord
- 47—secondary cord anchor
- 48—secondary cord pulley
- 49—air valve adjustment dial
-
FIG. 1 shows an elongatedsolid platform 1 configured in accordance with the present invention. Theplatform 1 is elevated and supported at each end by afront leg assembly 2 and a rear leg assembly 3 that are hingedly connected to the platform. The leg assemblies and platform may be made of wood or metal or plastic or any other suitable materials or combination thereof. The leg assemblies are shown in their extended positions and may be held there by metal folding brackets or any suitable means, but then may be folded into a collapsed position for storage or transportation of apparatus A.FIG. 1 also shows eachhand harness 4 located at each side of apparatus A near its forward end. Just before operating the apparatus, the user places a hand harness on each hand, such as shown in the expanded view inFIG. 16 , and the hand harness construction is described later.FIG. 1 also shows atorso support 5 that the user's torso is positioned upon as shown inFIG. 10 . The torso support is also shown in the expanded view ofFIG. 17 , and its construction will be described later. -
FIG. 2 shows matching cable systems of the present invention mounted to the underside of platform 1 (the hingedleg assemblies 2 and 3 are not depicted). Both cable systems generally operate independently of one another, but are designed as mirror images of one another and function similarly. Accordingly, the like structures and parts for the user's right-hand operated cable system and left-hand operated cable system will be referred to by like numerals. As the user simulates surfboard paddling onplatform 1, each cable system goes through two modes of operation. The first mode of operation is during each of the user's power strokes while the user is pulling on either the right-hand or left-hand harness 4 as shown inFIGS. 10-12 . The second mode of operation is during each of the user's return strokes while the user is returning either hand harness back to its original position onplatform 1, as shown inFIGS. 13-15 . -
FIG. 2 shows that the means of resistance to the user's power strokes is provided by a primaryelastic cord 20 included within each cable system. As the user pulls ahand harness 4, such as shown by the direction arrow extending axially from one of the two hand harnesses depicted, the leadingcable 6 to which the hand harness is attached, is also pulled, which causes its respective primaryelastic cord 20 to be stretched in the direction depicted by the four arrows shown beside the primary elastic cord as it resists the user's pull. Conversely, while either hand harness is being returned to its original resting position during a user's return stroke, the cable system for that respective right-hand or left-hand side provides a means for the user to experience zero tension and resistance from the primaryelastic cord 20. That is because the cable system provides a slight amount of slack in theleading cable 6, as shown inFIGS. 14 and 15 . And almost all such slack in theleading cable 6 will be gone by the time that the user's hand has returned to the start position for the next power stroke as depicted inFIG. 15 . Either cable system can independently provide that effect regardless of how fast or slow the user pulls on theleading cable 6, or returns the leading cable back to its start position. -
FIG. 3 shows the main components of both cable systems, with one of the cable systems in motion during a user's power stroke according to the direction arrows, and the other cable system stationary at rest following a user's return stroke.FIG. 3 also shows that eachleading cable 6 is threaded through its respective outboard pulley 7 and then is threaded through a passageway in the side frame member ofplatform 1, as depicted by the cutaway views at the ends of the frame members, and then the leading cable is threaded through itsinboard pulley 8. The pulleys may be attached to the frame ofplatform 1 with screws or any suitable fasteners. After being threaded through eachinboard pulley 8, eachleading cable 6 takes an approximately ninety degree turn from the inboard pulley, and goes directly to itsrespective spool hub 10 a. And the spool hub is also shown inFIG. 4 . -
FIG. 4 shows how each spool is constructed for each cable system by using ahollow hub 10 a that is made from a suitable material such as a short section of plastic pipe. The hub is centered upon and sandwiched between atop disc 10 b and abottom disc 12, and then secured in that position by a plurality of machine screws 10 c, that extend entirely through the spool at locations just inside of the hollow hub, and that are then screwed intolock nuts 10 d, so that the hub does not slip or rotate between the discs. The spool may be made from any suitable materials such as metal or plastic using cast or machined parts, and be held together by any suitable means, and the hub may be centered on the discs or held in place by grooves or lugs located in or on the cable spool. When each spool has been fully assembled to include 6 and 14 as will be described, it is then rotatably mounted ontocable segments platform 1 by an axle bolt 9 a, that is threaded at each end as shown inFIG. 4 , and that extends through a hole 9 f in the top surface ofplatform 1. The axle bolt 9 a is inserted into hole 9 f from the underside ofplatform 1. However before the axle bolt is inserted through hole 9 f, the axle bolt lock nut 9 b, and a fender washer 9 e, are placed onto the end of the axle bolt that is then inserted through hole 9 f. Then another fender washer 9 e, and a cap nut 9 c, may be placed onto the end of the axle bolt 9 a that projects through the top surface ofplatform 1. The cap nut 9 c is then fully tightened onto the end of axle bolt 9 a. Then the axle bolt lock nut 9 b is tightened down around the threads of the axle bolt to secure it on the platform in a protruding orientation to form a stable shaft for the spool to rotate upon as shown inFIG. 5 . That leaves the cap nut 9 c visible on the top surface ofplatform 1 as shown inFIG. 1 . Eachspool top disc 10 b andbottom disc 12 has a hole at its center through which the axle bolt 9 a extends, allowing the spool to be rotatably held on the axle bolt with aspool retaining nut 9 d, and washer 9 e, that are located on the other threaded end of the axle bolt 9 a that protrudes through thetop disc 10 b of the cable spool. -
FIG. 4 also shows that thehollow hub 10 a has two holes or slots in its side wall. Thecable leading segment 6 is inserted into one hole or slot, and thecable trailing segment 14 is inserted into the other hole or slot. Then the end of each cable segment is knotted, so that the cable segments are secured on the spool hub once the spool is fully assembled. Then the machine screws 10 c are used to assemble the spool. Then thecable leading segment 6 is wound six times in a given direction around thespool hub 10 a. Then thecable trailing segment 14 is wound one time around thespool hub 10 a in the opposite direction as that of the cable leading segment. Then the spool assembly is ready to be placed on its axle bolt 9 a, and secured with retainingnut 9 d. In the present invention, the cable leading and trailing segments could as a variation be combined as a single continuous cable threaded through the spool hub, where the continuous cable enters into thehollow hub 10 a as the cable leading segment, and is then knotted as described above or anchored to the spool hub, and then exits from out of the spool hub as the cable trailing segment. And the spool hub could also have openings of any shape for receiving or holding the cable segments. - Additionally, referring now to
FIG. 4 at X, there is shown a variation of thespool hub 10 a. In said variation, the spool hub comprises two different diameters wherein one portion of thehub 10 a is larger in diameter for thecable leading segment 6 to wind around, and the other portion of thehub 10 a is smaller in diameter for thecable trailing segment 14 to wind around. Then, when constructing the spool assembly as described previously, the cable leading segment is to be wound six times around the larger diameter portion of the hub in a given direction, and the cable trailing segment is to be wound once around the smaller diameter portion of the hub in the opposite direction. And during operation of the apparatus, both portions of the spool hub rotate in unison and on the same axis, so that when the spool rotates, the ratio of the travel of the cable trailing segment will be less than that of the cable leading segment. That difference in the ratio of cable travel provides a means to actuate a piston pump as will be described later. -
FIG. 5 depicts the underside of apparatus A with both spools rotatably mounted onto their axle bolts and held in place with retainingnuts 9 d, and shows the cable leading and trailing 6 and 14 wrapped around thesegments spool hubs 10 a.FIG. 5 also shows one cable system at rest, with itshand harness 4 returned to the start position, and with itscable leading segment 6 accordingly wound six times around thatspool hub 10 a, and with itscable trailing segment 14 wound once around that spool hub. The other cable system is shown in motion according to the direction arrows, and indicates that itscable leading segment 6 is being pulled during a power stroke and is unwinding from off of its spool hub by rotating thespool hub 10 a through six revolutions, and that at the same time itscable trailing segment 14 is being reeled onto thespool hub 10 a by those same six revolutions of the hub. That depicted motion shows the cable system first mode of operation during a power stroke. - In the second mode of operation of each cable system during a return stroke, the rotation direction of the spool reverses due to the structures and connections shown in
FIGS. 2, 3 and 5 .FIGS. 3 and 5 for example show that eachcable trailing segment 14 goes through a set of block-and-tackle pulleys 13 a and 13 b, and that each block set ofpulleys 13 a is mounted toplatform 1 in a fixed position, and that each tackle set ofpulleys 13 b is connected to eachforward yoke 15, and that eachforward yoke 15 is connected to each primaryelastic cord 20. Theforward yoke 15 may be made of sheet metal or any suitable material, and the tackle set ofpulleys 13 b may be attached to the forward yoke with screws or other suitable fasteners, but sheaves mounted in the forward yoke could alternatively function as the tackle set of pulleys. Theforward yoke 15 is coupled to the ends of the primaryelastic cord 20 with metal loops on the forward yoke into which the knotted ends of the primaryelastic cord 20 are placed, but the primary elastic cord could alternatively be coupled to theforward yoke 15 by any other suitable means.FIG. 2 shows that each primaryelastic cord 20 then goes from its connection on aforward yoke 15 to a rearward yoke 21 (and as will be described later, eachrearward yoke 21 is adjustable by the user to alter the existing elastic force within the primary elastic cord 20). The result, as shown by the direction arrows inFIGS. 2 and 3 , is that whenever ahand harness 4 is being pulled axially during the user's power stroke, that pulling motion is transmitted through the cable leading segment to rotate the spool which reels-in thecable trailing segment 14 causing the cable trailing segment to pull the tackle set ofpulleys 13 b toward the block set ofpulleys 13 a, which causes the tackle set ofpulleys 13 b to pull theforward yoke 15, which causes the forward yoke to pull on its respective primaryelastic cord 20. Accordingly, whenever the user is pulling on ahand harness 4, the user is also indirectly pulling on and stretching the respective primaryelastic cord 20 which resists the user's pull. - As also shown in
FIG. 3 , each cable system includes apiston pump 17, and eachforward yoke 15 couples together not only the tackle set ofpulleys 13 b and each primaryelastic cord 20, but also thepiston rod 16 of each piston pump. The block-and-tackle pulleys reduce the sixty linear inches of cable leading segment travel produced by the reach of the user's arm motions during power strokes, down to about eighteen inches of closure between the block set ofpulleys 13 a and the tackle set ofpulleys 13 b to make it practical to employ a piston pump within the cable system. In order to do that, eachcable trailing segment 14 is threaded between the block-and-tackle pulleys to produce a 3.5:1 mechanical advantage ratio. However as a variation of that design within the present invention, the mechanical advantage ratio could be produced by making thespool hub 10 a with two different diameters as shown inFIG. 4 at X as described previously. The present invention therefore includes the principle of employing a mechanical advantage ratio as the means to transmit and reduce approximately sixty inches of cable travel produced by the user's arm strokes, down to a lesser amount of linear motion to make it practical to operate a piston pump. In accordance with that principle, the tackle set ofpulleys 13 b is coupled to theforward yoke 15 which is coupled in turn to thepiston pump rod 16. That is done here by threading and screwing the end of the piston rod into a threaded nut on the forward yoke, but any suitable coupling means could be used. The result of that coupling, as depicted inFIG. 3 is that while ahand harness 4 is being pulled according to the direction arrows, theforward yoke 15 and thepiston rod 16 to which it is coupled, are pulled outward frompiston pump 17, while a one-way air valve operatively connected to the piston pump allows ambient air to enter into the pump chamber without restriction during the user's power stroke. Accordingly, since eachpiston pump 17 is held in place bystraps 40 fastened tocrossbars 41 that are fastened to the frame ofplatform 1, there is no significant resistance from thepiston pump 17 while air is drawn into its chamber during the user's power stroke. However, during the user's return stroke, all aforementioned motion of the identified components is reversed because of the way that eachforward yoke 15 links together the tackle pulleys 13 b andpiston rod 16 and primaryelastic cord 20, so that during the user's return stroke, the piston rod is forced back into the pump chamber by the elastic force from the primary elastic cord which is transmitted through theforward yoke 15 to the piston rod which causes thepiston pump 17 to push air out through theair hose 18, and through therelief valve 19, which relief valve can be pre-adjusted by the user to variably restrict the air exiting from the piston pump, thus causing the cable system andhand harness 4 to adjustably return to their starting positions more slowly. - The present invention includes not only fluid resistance from the piston pumps described previously to dampen the cycling speed of the cable system, but also includes mass moment of inertia, as will now be described, to dampen the cycling speed of the cable system, and both or either of such means as described may be used as part of the invention. The mass moment of inertia design of the invention, as shown in
FIGS. 4 and 5 , includesweights 11 a that are attached proximate to the rotating perimeter of each spool to provide mass moment of inertia as the spool rotates during the user's power strokes. Theweights 11 a are attached with suitable fasteners throughholes 11 b as inFIG. 4 , so that during the power strokes, theweights 11 a rotate with the spool around its axle bolt 9 a. But when the user begins a return stroke, the mass of the weights resists any sudden reversal of rotation direction being applied to the spool from the accumulated elastic force of the stretched primaryelastic cord 20 that is being transmitted to each spool through its respectivecable trailing segment 14 as described previously. Since the mass moment of inertia from the weighted spool resists that sudden reversal of rotation direction, that dampens the cable system's cycling speed in order to make the tension from the primaryelastic cord 20 seemingly disappear to the user in the first few moments of a return stroke. The weights may be attached to or made a part of the spools and may be of any suitable material to provide a mass moment of inertia that is sufficient to significantly alter the cycling speed of the cable system as the user alternates from power stokes to return strokes, and the weights or mass may be located anywhere within the cable system and be rotated directly or indirectly by the travel of the cables as described here. And the positions or amounts of the mass may be adjustable manually or automatically to affect the mass moment of inertia during operation of apparatus A. - The present invention also provides a means for the user to adjust the pre-existing elastic force within each primary
elastic cord 20 so that the elastic cord offers greater or lesser tension resistance to the user's power strokes. As shown inFIG. 2 , either of the primary elastic cords may be set to a longer or shorter operating length by adjusting the position of either of the tworearward yokes 21 that serve as carriers to which the primaryelastic cords 20 are linked. The rearward yokes are threaded onto threaded rods that are rotatably mounted onplatform 1, so that the carriers move along the threadedrods 22 as the user turns either of therods 22 using the elastic cord adjustment cranks 43 to move the rearward yokes 21 closer to or father from the forward yokes 15. Each rearward yoke has a pair of rearward yoke pulleys 23, through which each primaryelastic cord 20 is threaded, after which each primaryelastic cord 20 then goes to an elastic cord fixedanchor point 24 onplatform 1. As the user turns either adjustment crank 43, thus moving therearward yoke 21, that movement of the rearward yoke adjustment can be seen while standing over apparatus A and looking throughinspection slots 42 that are cut through the top ofplatform 1. The rearward yokes may be made of sheet metal or any suitable material to provide suitable mounting points to which the rearward yoke pulleys 23 may be attached with suitable fasteners, or as an alternative, sheaves may be mounted into eachrearward yoke 21 to serve the same purpose as thepulleys 23. Eachrearward yoke 21 has a threaded nut or other suitable threaded receiver into which the threaded elasticcord adjustment rod 22 may be installed. As a variation, both primary elastic cords could simultaneously be adjusted by turning a single elastic cord adjustment crank, or within the principle of the design, such adjustment could be through a remote or motorized actuator, or by anchoring the elastic cords to alternative locations on apparatus A, or by adding or subtracting the number elastic cords, or by mechanisms to automatically coordinate the primary elastic cord adjustment with that of therelief valve 19 by the use of gears, or other suitable means. -
FIG. 6 shows a means within the present invention to automatically take-up any excess slack in the cable leading and trailing 6 and 14 that might occur if thesegments relief valve 19 is for example adjusted too restrictively. As depicted, thecable trailing segment 14, after being threaded through all block and tackle pulleys, then passes through a hole in the trailingcable end stop 44. The end stop may be made of metal or any suitable material, and mounted toplatform 1 with suitable fasteners, and the hole in the end stop is just large enough to accommodate the cable diameter size. After passing through the hole in the end stop, the cable trailing segment end is then coupled to alink 45 to which a secondaryelastic cord 46 is also coupled. After coupling to link 45, the secondaryelastic cord 46 is threaded through thesecondary cord pulley 48, and the secondary elastic cord then goes from that pulley to ananchor point 47 that is attached to the frame ofplatform 1. The secondary elastic cord then provides relatively weak, but continuous, tension on the end of the trailing cable to take-up any excess slack. As a variation, thecable end stop 44 and link 45 may be placed on the opposite side of the sheave ofpulley 48. The reliefvalve adjustment dial 49 is depicted as an example of a means to restrict the range of air valve adjustment. -
FIGS. 7-9 show another embodiment of apparatus A that is structured in accord with the principles of the present invention, wherein the cable systems are generally similar to those inFIGS. 2 and 3 . Accordingly, the like parts and structures of both embodiments will be referred to by like reference numerals. As shown by the cutaway views inFIG. 8 , a set of rack and pinion gears 25 and 31 is used for the same purpose of reducing about sixty inches of cable leading segment travel down to approximately eighteen inches of linear motion for actuating the piston pumps.FIG. 9 shows how eachpinion gear 31 andgear rack 25 mesh together due to thegear rack guide 32 mounted in thespool bracket 27 using a gear rackguide mounting bracket 34 that is fastened to the spool bracket with screws 26. Thespool bracket 27 is fastened to the underside ofplatform 1 and thegear rack guide 32 slidably holds thegear rack 25 against thepinion gear 31, allowing thegear rack 25 to slide in a linear manner upon the gearrack bearing insert 33 that is made of any suitably low-friction material, and which is fastened into the gear rack guide using screws with countersunk heads. Thepinion gear 31 is coupled to thetop disc 10 b of the spool, here using set screws, and rotates in unison with thespool hub 10 a on the same axle bolt 9 a that is attached toplatform 1 as described previously. The result, as in the first embodiment, is that during a power stroke the spool rotates. And according to the rotation direction arrow inFIG. 8 , that spool rotation causes thepinion gear 31 to rotate, which causes thegear rack 25 to move in a linear direction toward theinboard pulley 8. Then during the user's return stroke, the motion of the spool and pinion gear and gear rack will be reversed due to the elastic force from the primaryelastic cord 20 as in the first embodiment of the invention.FIG. 8 also shows that eachgear rack 25 is coupled to the end of eachpiston rod 16. Here, that is done by drilling and tapping the end of each metal gear rack to accept the threaded end of eachpiston rod 16, but any suitable material and coupling means could be used. As shown by the direction arrows inFIG. 7 , during a user's power stroke, thegear rack 25 pulls thepiston rod 16 of thepiston pump 17, causing the pump to draw ambient air into its chamber. Then, during the user's return stroke, the elastic force from the primaryelastic cord 20 causes the spool and pinion gear and gear rack to reverse direction, which pushes thepiston rod 16 intopiston pump 17 and which forces the air out of the pump into thepump air hose 18 andrelief valve 19. In this embodiment of the invention perFIG. 7 , eachcable trailing segment 14 may, as a variation, go directly from itscable spool hub 10 a, through alink 28 to the primaryelastic cord 20, and the opposite end of the primaryelastic cord 20 may be anchored to the frame ofplatform 1 by apin 29 that may be placed into various locations along on a notched rack, or the like, onplatform 1, and elastic cord transom pulleys 30 may be used to extend the operating length of theelastic cords 20. Other parts shown numbered inFIGS. 7 through 9 are the same parts providing the same functions as those described previously for the first embodiment of the invention. -
FIG. 16 depicts the design for eachhand harness 4 that is coupled by any suitable means to eachleading cable 6. The hand harness is not designed to provide, or attribute, any significant conditioning or developing of muscles found in the region beyond the user's forearms, but is instead designed to easily remain on the user's hand while the user is exercising on the apparatus A. Within the context of this application, the “hand harness” is defined as a device that provides at least one flexible loop into which one or more of the fingers of a person's hand may be snuggly inserted, and although there could be one or more of such finger loops provided, the ideal is that an individual finger loop is provided for each one of the user's four fingers on the hand, so that while the hand harness is on the hand it will not tend to slip off even when the hand is inverted in any position, and so that the user may comfortably cup the hand while pulling on leadingcable 6 as when paddling a surfboard. The hand harness design of the present invention may be made from one length of strap formed into finger loops that are then riveted together at their top ends as depicted, and with one last loop over a “D” ring with a lap joint that can be sewn or glued over the “D” ring. However, thehand harness 4 of the present invention may as a variation be constructed from any flexible material or webbing, or made by molding or forming the hand harness from rubber or flexible plastic or the like, or by making the hand harness from more or fewer parts, or by holding it together or attaching it to a cable by any suitable means. -
FIG. 17 depicts thetorso support 5 of apparatus A, and within the context of this application, the “torso support” is defined as aplate 35 that may be made from any suitable material such as plywood, and that may be padded with any suitable material such as foam, and the torso support is designed to be suitably large enough to primarily support only the user's mid to lower torso and upper legs as shown inFIG. 10 . The torso support may be mounted onplatform 1 by a means that allows the user's body to tilt side to side with the torso support during operation ofapparatus A. Plate 35 is accordingly mounted on the elongate center line ofplatform 1 to the top surface of the platform over a length of round pipe, or the like, serving as anaxle 36 that is centered underplate 35 and rotatably held onto the top surface ofplatform 1 by 37 and 38 at the forward and rearward ends ofstraps axle 36. The tilting movement ofplate 35 is subject to a plurality of compression springs 39, or the like, mounted proximate to and between the side edges ofplate 35 and the top surface ofplatform 1. As variations within the invention, the springs could be made of other alternative elastic materials such as rubber blocks, and the user may add or remove such elastic elements to compensate for user body weight in order to best simulate the challenge of remaining balanced on a tilting buoyant surfboard. - The principles of the present invention may be adapted to the construction of a variety of other embodiments, and alternative sizes or shapes or locations or numbers or orientations or materials of the components depicted and described above may also be used without departing from the scope of the present invention. It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions have been disclosed in their preferred forms, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions described and depicted above includes all novel and non-obvious combinations and sub-combinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions herein. Similarly where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Inventions embodied in other combinations and sub-combinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a new invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
Claims (20)
1. An exercising apparatus comprising:
a. a supporting structure including a cable system;
b. the cable system including cable anchored by a means to a location on a spool;
c. the spool rotatably mounted on the supporting structure, so that the cable winds onto the spool when the spool rotates in a given direction, and when the spool rotates in the opposing direction the cable unwinds from the spool;
d. the cable including a leading segment having a free-end upon which an axial pull is exerted by a person using the apparatus, and having an opposite end anchored by said means to the location on the spool;
e. the cable including a trailing segment having an end anchored by said means to the location on the spool, and having an opposite end coupled to an elastic element;
f. the elastic element coupled by a means to the supporting structure;
g. the cable leading segment and cable trailing segment each winding around the spool in opposite directions, so that the axial pull on the cable leading segment causes the spool to reel-in the cable trailing segment;
h. at least one rotatable component as a means to provide an operating mass moment of inertia within the cable system of at least nine Ounce Mass-Square Inch (9 ozm-in2) while the cable system is in motion relative to the supporting structure.
2. The apparatus of claim 1 , wherein said spool includes portions of different diameters upon which the cable segments wind and unwind, and the different diameter portions of the spool rotate in unison with the spool.
3. The apparatus of claim 1 , wherein the cable is connected by a means to a piston pump that is operatively connected to an adjustable relief valve, so that the piston pump draws a fluid into the pump chamber when the cable is pulled, and then expels the fluid through the relief valve when the cable is released.
4. The apparatus of claim 3 , wherein the means of connecting the cable to the piston pump includes a plurality of sheaves around which the cable is threaded to transmit the pull on the cable to the piston pump.
5. The apparatus of claim 3 , wherein the means of connecting the cable to the piston pump includes rack-and-pinion gears, so that as the cable is pulled the rotating spool turns the pinion gear which causes the gear rack to actuate the piston pump.
6. The apparatus of claim 1 , wherein the supporting structure comprises a platform adapted to rest on a horizontal supporting surface, and a torso support assembly mounted on the platform to support the torso of a person up to six inches above the platform.
7. The apparatus of claim 6 , wherein the torso support assembly is rotatably mounted on the platform by a means allowing the torso support assembly to tilt side to side subject to elastic components that moderate the tilting motion.
8. The apparatus of claim 1 , wherein a hand harness for engagement by the hand of a person using the apparatus is coupled by a means to said cable, and the hand harness includes at least one flexible loop that fits around at least one of the fingers on the hand of the person.
9. The apparatus of claim 1 , wherein the amount of existing elastic force present within said elastic element may be selectively adjusted by a means, so that a person can vary and pre-set the amount of elastic force exerted upon the cable system.
10. The apparatus of claim 9 , wherein the elastic element is linked to a carrier that is threaded to move along a similarly threaded rod as the rod rotates axially, and the rod is rotatably mounted on the supporting structure, so that axially rotating the rod moves the carrier and deforms the elastic element.
11. An exercising apparatus comprising:
a. a supporting structure including a cable system;
b. the cable system including cable anchored by a means to a location on a spool;
c. the spool rotatably mounted on the supporting structure, so that the cable winds onto the spool when the spool rotates in a given direction, and when the spool rotates in the opposing direction the cable unwinds from the spool;
d. the cable including a leading segment having a free-end upon which an axial pull is exerted by a person using the apparatus, and having an opposite end anchored by said means to the location on the spool;
e. the cable including a trailing segment having an end anchored by said means to the location on the spool, and having an opposite end coupled to an elastic element;
f. the elastic element coupled by a means to the supporting structure;
g. the cable leading segment and cable trailing segment each winding around the spool in opposite directions, so that the axial pull on the cable leading segment causes the spool to reel-in the cable trailing segment;
h. the cable is threaded around a plurality of sheaves to transmit the pull on the cable to a piston pump by a means, so that the piston pump draws a fluid into the pump chamber when the cable is pulled, and then expels the fluid when the cable is released.
12. The apparatus of claim 11 , wherein the cable system includes rotatable components providing a total mass moment of inertia of at least nine Ounce Mass-Square Inch (9 ozm-in2) while the cable system is in motion relative to the supporting structure.
13. The apparatus of claim 11 , wherein the supporting structure comprises a platform with a torso support assembly mounted on the platform to support the torso of a person up to six inches above the platform.
14. The apparatus of claim 11 , wherein a hand harness for engagement by the hand of a person using the apparatus is coupled by a means to the cable, and the hand harness includes a plurality of loops with each loop designed to receive one of the fingers on the hand of said person.
15. The apparatus of claim 11 , wherein the amount of existing elastic force present within said elastic element may be selectively adjusted by a means, so that a person can vary and pre-set the amount of elastic force exerted upon the cable system.
16. An exercising apparatus comprising:
a. a supporting structure including a cable system;
b. the cable system including cable anchored by a means to a location on a spool;
c. the spool rotatably mounted on the supporting structure, so that the cable winds onto the spool when the spool rotates in a given direction, and when the spool rotates in the opposing direction the cable unwinds from the spool;
d. the cable including a leading segment having a free-end upon which an axial pull is exerted by a person using the apparatus, and having an opposite end anchored by said means to the location on the spool;
e. the cable including a trailing segment having an end anchored by said means to the location on the spool, and having an opposite end coupled to an elastic element;
f. the elastic element coupled by a means to the supporting structure;
g. the cable leading segment and cable trailing segment each winding around the spool in opposite directions, so that the axial pull on the cable leading segment causes the spool to reel-in the cable trailing segment;
h. rack-and-pinion gears operatively connect the spool to a piston pump by a means wherein spool rotation turns the pinion gear which causes the gear rack to actuate the piston pump, so that the piston pump draws a fluid into the pump chamber when the c cable is pulled, and then expels the fluid when the cable is released.
17. The apparatus of claim 16 , wherein the cable system includes rotatable components as a means to provide an operating mass moment of inertia of at least nine Ounce Mass-Square Inch (9 oz.-in2) while the cable system is in motion relative to the supporting structure.
18. The apparatus of claim 16 , wherein the supporting structure comprises a platform adapted to rest on a horizontal supporting surface, and a torso support assembly mounted on the platform to support the torso of a person up to six inches above the platform.
19. The apparatus of claim 16 , wherein a hand harness for engagement by the hand of a person using the apparatus is coupled by a means to the cable, and the hand harness includes a plurality of loops with each loop designed to receive one of the fingers on the hand of said person.
20. The apparatus of claim 16 , wherein the amount of existing elastic force present within said elastic element may be selectively adjusted by a means, so that a person can vary and pre-set the amount of elastic force exerted upon the cable system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/886,021 US10010779B2 (en) | 2015-10-17 | 2015-10-17 | Surfboard paddling exercise apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/886,021 US10010779B2 (en) | 2015-10-17 | 2015-10-17 | Surfboard paddling exercise apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170106264A1 true US20170106264A1 (en) | 2017-04-20 |
| US10010779B2 US10010779B2 (en) | 2018-07-03 |
Family
ID=58523391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/886,021 Active 2036-05-26 US10010779B2 (en) | 2015-10-17 | 2015-10-17 | Surfboard paddling exercise apparatus |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US10010779B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113877156A (en) * | 2021-11-19 | 2022-01-04 | 黄宏伟 | Cardiology rehabilitation device and method of using the same |
| CN115397523A (en) * | 2020-01-16 | 2022-11-25 | 洛伊·敏·萨奇 | exercise equipment |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US679784A (en) * | 1900-03-29 | 1901-08-06 | Michael B Ryan | Exercising-machine. |
| US4480832A (en) * | 1982-09-30 | 1984-11-06 | Robert Bulmash | Exercising apparatus |
| US4685670A (en) * | 1984-10-01 | 1987-08-11 | Harold Zinkin | Elastic tension exercising apparatus with multiple pass cable and pulley |
| US4921242A (en) * | 1988-07-20 | 1990-05-01 | Weslo, Inc. | Exercise apparatus resistance system |
| US6142919A (en) * | 1999-04-12 | 2000-11-07 | Jorgensen; Adam A. | Multi-purpose low profile physical exercising device |
| US20040138033A1 (en) * | 2003-01-15 | 2004-07-15 | Van Straaten Willem Johannes | Exercise machine |
| US20040254050A1 (en) * | 2003-06-16 | 2004-12-16 | Morgan Curtis Wayne | Automatic variable resistance exercise system |
| US20050233868A1 (en) * | 2004-04-20 | 2005-10-20 | Mills Alden M | Stability adjustable unit |
| US20060100074A1 (en) * | 2002-10-18 | 2006-05-11 | Murdoch Jason John W | Resistance exercising device |
| US7862489B2 (en) * | 2006-07-17 | 2011-01-04 | Studio Moderna Sa | Multipurpose exercise system |
| US7887468B2 (en) * | 2007-07-20 | 2011-02-15 | Exersmart, Llc | Resistance system for fitness equipment |
| US20130157823A1 (en) * | 2011-12-14 | 2013-06-20 | Neil F. Gilman | Functional power grip |
| US20160107023A1 (en) * | 2014-10-21 | 2016-04-21 | Total Gym Global Corp. | Rowing exercise device and method of using same |
-
2015
- 2015-10-17 US US14/886,021 patent/US10010779B2/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US679784A (en) * | 1900-03-29 | 1901-08-06 | Michael B Ryan | Exercising-machine. |
| US4480832A (en) * | 1982-09-30 | 1984-11-06 | Robert Bulmash | Exercising apparatus |
| US4685670A (en) * | 1984-10-01 | 1987-08-11 | Harold Zinkin | Elastic tension exercising apparatus with multiple pass cable and pulley |
| US4921242A (en) * | 1988-07-20 | 1990-05-01 | Weslo, Inc. | Exercise apparatus resistance system |
| US6142919A (en) * | 1999-04-12 | 2000-11-07 | Jorgensen; Adam A. | Multi-purpose low profile physical exercising device |
| US20060100074A1 (en) * | 2002-10-18 | 2006-05-11 | Murdoch Jason John W | Resistance exercising device |
| US20040138033A1 (en) * | 2003-01-15 | 2004-07-15 | Van Straaten Willem Johannes | Exercise machine |
| US20040254050A1 (en) * | 2003-06-16 | 2004-12-16 | Morgan Curtis Wayne | Automatic variable resistance exercise system |
| US20050233868A1 (en) * | 2004-04-20 | 2005-10-20 | Mills Alden M | Stability adjustable unit |
| US7862489B2 (en) * | 2006-07-17 | 2011-01-04 | Studio Moderna Sa | Multipurpose exercise system |
| US7887468B2 (en) * | 2007-07-20 | 2011-02-15 | Exersmart, Llc | Resistance system for fitness equipment |
| US20130157823A1 (en) * | 2011-12-14 | 2013-06-20 | Neil F. Gilman | Functional power grip |
| US20160107023A1 (en) * | 2014-10-21 | 2016-04-21 | Total Gym Global Corp. | Rowing exercise device and method of using same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115397523A (en) * | 2020-01-16 | 2022-11-25 | 洛伊·敏·萨奇 | exercise equipment |
| CN113877156A (en) * | 2021-11-19 | 2022-01-04 | 黄宏伟 | Cardiology rehabilitation device and method of using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US10010779B2 (en) | 2018-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10376735B2 (en) | Multi-functional exercise rower | |
| US8235874B2 (en) | Simulated rowing machine | |
| US10279214B2 (en) | Exercise apparatus | |
| US4884800A (en) | Rowing machine | |
| US6790163B1 (en) | Swim stroke exercise device | |
| EP2326393B1 (en) | Continuous rope pulling exercise apparatus | |
| US5222927A (en) | Collapsible stepper climber exerciser | |
| US8608626B2 (en) | Rowing machine simulator | |
| US9878200B2 (en) | Gravity return rowing exercise device | |
| US8708867B2 (en) | Exercise methods and apparatus simulating stand-up paddle boarding | |
| US4846460A (en) | Rowing machine | |
| US8647239B1 (en) | Vertical swim trainer | |
| US9675861B2 (en) | Hydro eliminator full body exercise swim machine | |
| US4524711A (en) | Swimming harness | |
| US4477073A (en) | Exercise device for boardsailing | |
| EP4090437B1 (en) | Exercise apparatus | |
| MX2014014824A (en) | Hybrid resistance system. | |
| US20080261782A1 (en) | Rowing Machine Simulators | |
| US20230338770A1 (en) | Rope pull training device | |
| US5133545A (en) | Progressive accommodating resistance exercise device | |
| US10010779B2 (en) | Surfboard paddling exercise apparatus | |
| US7618355B1 (en) | Resistance exercise apparatus | |
| US6053850A (en) | Variable resistance exercise device | |
| US20220362623A1 (en) | Rowing machine including a gear shift mechanism | |
| US8083656B2 (en) | Multi-functional exercise apparatus with adjustable resistance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |