US20170103377A1 - Augmented beacon and geo-fence systems and methods - Google Patents

Augmented beacon and geo-fence systems and methods Download PDF

Info

Publication number
US20170103377A1
US20170103377A1 US15/387,075 US201615387075A US2017103377A1 US 20170103377 A1 US20170103377 A1 US 20170103377A1 US 201615387075 A US201615387075 A US 201615387075A US 2017103377 A1 US2017103377 A1 US 2017103377A1
Authority
US
United States
Prior art keywords
beacon
augmented
target device
interest
geographical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/387,075
Inventor
William W. Jack
Benjamin J. Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frensee LLC
Original Assignee
Frensee LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frensee LLC filed Critical Frensee LLC
Priority to US15/387,075 priority Critical patent/US20170103377A1/en
Publication of US20170103377A1 publication Critical patent/US20170103377A1/en
Assigned to Frensee LLC reassignment Frensee LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JACK, WILLIAM W., TAYLOR, BENJAMIN J.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/322Aspects of commerce using mobile devices [M-devices]
    • G06Q20/3224Transactions dependent on location of M-devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4015Transaction verification using location information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4016Transaction verification involving fraud or risk level assessment in transaction processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals

Definitions

  • the present disclosure relates generally to augmented beacon technology and, more particularly, to systems and methods for providing digital content to devices based on geographical proximity to virtually-defined areas of interest.
  • Augmented beacons can be used to replace and/or enhance a physical beacon network.
  • personalized and user-defined geo-fences provide an experience that avoids the dependence upon radio strength and connectivity, as well as advertiser-driven choices, by restricting unwanted beacon messages while accessing desirable and locally relevant augmented and phantom augmented messages from the cloud. This combination of both real and augmented beacons within a geo-fence of a user's design optimizes the user's experience.
  • a computer-implemented method includes the steps of receiving a definition of an augmented beacon including a geographical area of interest, wherein digital content is associated with the augmented beacon; determining that a target device is within the geographical area of interest of the augmented beacon; and, in response to the determination, providing a unique identifier associated with the augmented beacon to the target device, wherein the unique identifier includes an indication that the digital content associated with the augmented beacon can be displayed by the target device.
  • the geographical area of interest includes geographical coordinates and a defined area based on the geographical coordinates.
  • the digital content can be a text message, an image, a digital credential or certificate, machine-readable code, a videographic message, a multi-dimensionally-projected message, and/or other content of interest to the user.
  • the target device can be a smartphone, a tablet, a smart watch, smart glasses, a laptop, a vehicle, a stand-alone sensor, an appliance, a robot, or other mobile device.
  • an object in motion associated with the augmented beacon is identified and a geographical location of the object as it moves over time is determined.
  • the definition of the augmented beacon is updated based on the geographical location of the object.
  • the object can be a vehicle, a person, or a mobile device.
  • the location of the object can be determined by periodically receiving location data associated with the object or determining an approximate location of the object based on a predefined schedule.
  • an application is provided for creation and configuration of the augmented beacon.
  • the definition of the augmented beacon can be editable by a defined group of users.
  • Information associated with the augmented beacon can be provided to a geographical mapping interface on the device.
  • a source of the digital content can be whitelisted based on a preexisting association of a user of the target device with the source of the digital content.
  • a notification is provided to the device from one of the augmented beacon and a physical beacon; a confirmation is received from the other of the augmented beacon and the physical beacon; and, in response to receiving the confirmation, an indication is provided that digital content associated with at least one of the augmented beacon and the physical beacon can be delivered to the target device.
  • the physical beacon can be geographically colocated with the augmented beacon.
  • a transaction is authorized based on the determination that a target device is within the geographical area of interest of the augmented beacon.
  • FIG. 1 depicts a high-level architecture of an augmented beacon and geo-fence system according to one implementation of the invention
  • FIG. 2 depicts a method for providing an augmented beacon and delivering content associated with the augmented beacon according to one implementation of the invention
  • FIG. 3 depicts an example table of information associated with a set of augmented beacons
  • FIG. 4 depicts an example geographical layout of areas defined by a set of augmented beacons
  • FIG. 5 depicts an example user interface for presenting graphical indicators of augmented beacons overlaid on a map
  • FIG. 6 depicts an example technique for two-factor authentication using colocated augmented and physical beacons.
  • An augmented beacon generally refers to a software-based definition of an area of interest that corresponds to a physical, geographical location, and which can be associated with digital content that is delivered to and/or displayed by a user device when the user device is within the area of interest.
  • the area of interest can be one or more points corresponding to one or more global positioning system (GPS) coordinates (e.g., latitude and longitude coordinates) or other coordinates in two or three dimensions (e.g., x, y, and z coordinates).
  • GPS global positioning system
  • the area of interest can also include a two- or three-dimensional area based on one or more point coordinates (e.g., a rectangle, circle, or other complex or simple shape encompassing or representing a geographical area, for example, a complex shape reflecting the boundaries of a campus or retail center).
  • the area of interest includes a geo-fence or a physical area in which communication between an augmented beacon and a target device is permitted.
  • An augmented beacon can have associated digital information and can share the information with target devices on the internet or other networks without the need for physical hardware in proximity to the target device.
  • a physical Apple® iBeaconTM device can transmit a commercial offer to a potential customer walking near a store where the device is located
  • the present system allows the same prospective customer to access that signal remotely, to learn if the store is making an offer.
  • a competitor of the first store could use an augmented beacon to make a competing offer to the prospective customer walking past the first store.
  • Other implementations of augmented beacons are contemplated and are described further herein.
  • beacon server 102 stores data associated with augmented beacons in data store 106 .
  • Data store 106 can take various forms, for example, it can be a database such as the MySQL Database Server or Oracle® Database Server, the PostgreSQL Database Server, or the IBM DB2 Database Server.
  • Augmented beacon data stored in data store 106 can include augmented beacon locations (e.g., coordinates), defined areas around the augmented beacon locations, information associated with augmented beacon owners, sponsors, editors, or other persons or entities that are permitted to access and/or configure particular augmented beacons, identifiers associated with content that can be delivered by augmented beacons, and other useful data.
  • Beacon server 102 determines when a target device 130 is within an augmented beacon's defined area, based on the information in data store 106 and target device location information (e.g., GPS coordinates, Wi-Fi signal information, etc.) received directly or indirectly from a target device 130 .
  • target device location information e.g., GPS coordinates, Wi-Fi signal information, etc.
  • beacon server 102 can deliver content associated with the augmented beacon (or indicate that such content should be delivered) to the target device 130 .
  • Beacon server 102 can also take other action depending on whether target device 130 is determined to be within or outside the defined area, for example, in the instances of location verification or fraud detection, further described below.
  • the target device 130 can be a smartphone, tablet computer, smart watch, smart glasses, portable computer, mobile telephone, laptop, palmtop, smart television, vehicle, robot, stand-alone sensor, desktop computer, wireless device, appliance, workstation, and/or other computing device that is operated as a general purpose computer or as a special purpose hardware device and that can execute the functionality described herein as provided by the target device 130 .
  • the target device 130 can include a GPS sensor, wireless radio, or other sensor, transmitter or receiver that can be used to determine the exact or approximate location of the target device 130 .
  • Information indicating the location of the target device 130 can be transmitted over a network 114 to the beacon server 102 .
  • the target device 130 can receive content associated from an augmented beacon, when the target device 130 is within a defined geographic area associated with the augmented beacon.
  • the target device 130 can include one or more software applications having a beacon configuration module 144 and/or a beacon display module 148 .
  • the beacon configuration module 144 can include a user interface that allows a user of the target device 130 to add, delete, modify, or otherwise configure augmented beacons.
  • the beacon display module 148 can include a visual display of a map or other visual representation of an area around the target device 130 , where textual or graphical indicators representing augmented and/or physical beacons can be displayed and, in some instances, interacted with by a user of the target device.
  • implementations of the system can use appropriate hardware or software; for example, software on the beacon server 102 and/or the target device 130 can execute on a system capable of running an operating system such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google AndroidTM platform, the Linux® operating system and other variants of UNIX® operating systems, and the like.
  • the software can be implemented on a general purpose computing device in the form of a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
  • Some or all of the functionality described herein can be performed remotely, in the cloud, or via software-as-a-service.
  • certain functions such as those provided by beacon server 102
  • the remote functionality can execute on server class computers that have sufficient memory, data storage, and processing power and that run a server class operating system (e.g., Oracle® Solaris®, GNU/Linux®, and the Microsoft® Windows® family of operating systems).
  • server class operating system e.g., Oracle® Solaris®, GNU/Linux®, and the Microsoft® Windows® family of operating systems.
  • the system can include a plurality of software processing modules stored in a memory and executed on a processor.
  • the program modules can be in the form of one or more suitable programming languages, which are converted to machine language or object code to allow the processor or processors to execute the instructions.
  • the software can be in the form of a standalone application implemented in a suitable programming language or framework.
  • Method steps of the techniques described herein can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. Method steps can also be performed by, and systems can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
  • FPGA field programmable gate array
  • ASIC application-specific integrated circuit
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors.
  • a processor receives instructions and data from a read-only memory or a random access memory or both.
  • the essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data.
  • Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components.
  • media assets e.g., audio, video, graphics, interface elements, and/or other media files
  • configuration files e.g., configuration files
  • instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
  • the target devices 130 include a web browser, native application, or both, that facilitates execution of the functionality described herein.
  • a web browser allows the device to request a web page or other program, applet, document, or resource (e.g., from a remote server, such as a web server) with an HTTP request.
  • a web page is a data file that includes computer executable or interpretable information, graphics, sound, text, and/or video, that can be displayed, executed, played, processed, streamed, and/or stored and that can contain links, or pointers, to other web pages.
  • Examples of commercially available web browser software include the Google® ChromeTM, Microsoft® Internet Explorer®, Mozilla® Firefox®, and Apple® Safari® browsers.
  • the target devices 130 include client software that provides for the implementation and execution of certain features described herein.
  • the client software can be implemented in various forms.
  • the client software can be in the form of a native application, web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the device and runs in conjunction with a web browser.
  • the client software and the web browser can be part of a single client-server interface; for example, the client software can be implemented as a plug-in to the web browser or to another framework or operating system.
  • Other suitable client software architecture including but not limited to widget frameworks and applet technology, can also be employed with the client software.
  • a communications network 114 can connect the beacon server 102 and target devices 130 .
  • the communication can take place over media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56kb, X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless links (802.11 (Wi-Fi), Bluetooth, GSM, CDMA, etc.), for example.
  • standard telephone lines LAN or WAN links (e.g., T1, T3, 56kb, X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless links (802.11 (Wi-Fi), Bluetooth, GSM, CDMA, etc.), for example.
  • Other communication media are contemplated.
  • the network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between the client device and servers can be communicated over such TCP/IP networks. Other communication protocols are contemplated.
  • the system can also be practiced in distributed computing environments, where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules can be located in both local and remote computer storage media including memory storage devices.
  • Other types of system hardware and software than that described herein can also be used, depending on the capacity of the device and the amount of required data processing capability.
  • the system can also be implemented on one or more virtual machines executing virtualized operating systems, such as those mentioned above, and that operate on one or more computers having hardware, such as that described herein.
  • implementations of the systems and methods can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture.
  • the program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.
  • a computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them.
  • a computer storage medium is not a propagated signal
  • a computer storage medium can be a source or destination of computer program instructions encoded in an artificially-generated propagated signal.
  • the computer storage medium can also be, or be included in, one or more separate physical components or media (e.g., multiple CDs, disks, or other storage devices).
  • the present system is a network-based system that renders the physical beacon hardware requirement unnecessary, either for the operating system of a target device or within a single application on the device.
  • augmented beacon sponsors, administrators, or other users provide information to a cloud-based database that can be queried by target devices (STEP 202 ).
  • the provided information can be a definition of an augmented beacon that includes the geographic coordinates of the augmented beacon, a geo-fence associated with the augmented beacon, a unique identifier associated with the augmented beacon, digital content associated with the augmented beacon, and so on.
  • the location of a target device is received.
  • the system establishes the exact or approximate location of the target device based on information derived from, e.g., a GPS sensor or a nearby Wi-Fi hub. Various methods are known for determining the location of a mobile device and are not described in detail here.
  • the system compares the target device location to points/areas of interest established by augmented beacon creators (e.g., sponsors).
  • the points/areas of interest can be polled from a custom database and/or publicly available mapping sources, such as the Google MapsTM mapping service.
  • the system can indicate that content should be delivered to and/or displayed by the target device (STEP 206 ). For example, the system can generate and direct a notification or data message to the target device that can provide general information about the augmented beacon itself or its sponsor, or transmit an offer, such as a coupon encoded within a machine-readable code, or transmit an advertisement on behalf of the sponsor.
  • the information provided on behalf of the augmented beacon can include text messages, images, digital credentials or certificates, machine-readable codes, videographic messages and/or multi-dimensionally-projected messages.
  • confirming that the target device is within the geographical area defined by an augmented beacon is a requirement for allowing the user to complete a transaction within the area. For instance, if a user's mobile payment method is being spoofed by a fraudulent party who attempts to purchase a meal within the geographical boundaries of a restaurant associated h an augmented beacon the transaction can be declined and a fraud alert can be issued if the user's mobile device is not determined also to be within those boundaries.
  • augmented beacon sponsors upload augmented beacon configuration information to a cloud-based database that can be queried directly or indirectly by target devices.
  • a target device updates its location, it provides the location information to a remote server that queries the database (or, alternatively, the target device queries the database directly), searching for augmented beacons near the location of the target device (e.g., where the target device is within a geographical area defined by the augmented beacon). For example, if the target device is determined to be within 200 meters of the GPS latitude and longitude (43.329, ⁇ 71.234), the message “we122csc23”, serving as a unique identifier of that augmented beacon, is delivered to the device.
  • the message can be interpreted locally on the target device, for example, by an application that recognizes the identifier (e.g., an app associated with a sponsor of the augmented beacon, Starbucks), such that content associated with the augmented beacon is displayed.
  • the content can exist on the target device before the augmented beacon is encountered, or it can be downloaded from the database, a content server, or other source of content following interpretation of the message by the target device. In other implementations, some or all of the content is pushed to the target device by the augmented beacon.
  • FIGS. 3 and 4 illustrate example geo-fence functionality provided by the present system with respect to augmented beacons sponsored by the “Outside Lands Festival.”
  • a “general” augmented beacon that covers the entire festival (i.e., within a 500-meter rectangle of GPS coordinates (50.223, ⁇ 74.123)), as well as separate augmented beacons that respectively cover the area near the festival's North Stage and South Stage, and which are visible when a target device is within 500 meters east/west of the respective augmented beacon's coordinate location and up to 250 meters north/south of the augmented beacon's coordinate location.
  • “Target 1” would receive content via the North Stage augmented beacon and the general augmented beacon
  • “Target 2” would receive content via the South Stage augmented beacon and the general augmented beacon
  • “Target 3” would receive no content.
  • FIG. 3 Another example of geo-fence functionality provided by the present system is highlighted by the “Polo Ralph Lauren” augmented beacons shown in FIG. 3 .
  • this configuration there is one beacon with a 200-meter range that serves as a source of advertisements for a nearby Polo Ralph Lauren store, as well as a second co-located beacon with a smaller signal radius of 20 meters, which serves to deliver coupons to users that are inside the store.
  • an augmented beacon can be a “phantom” beacon, i.e., an augmented beacon that is associated with a geo-fence in a location that has no connection to the sponsor of the beacon.
  • a phantom beacon can be located arbitrarily, without physical control of the geographic space. For example, retailers can enjoy roadside signage in the form of beacon messages without having to make arrangements with local authorities (e.g., “Starbucks on the right in two miles.”) Other use cases include competitive offerings. For example, Verizon could sponsor a phantom augmented beacon corresponding to a physical location that is on a sidewalk in front of a Sprint store. The phantom beacon can offer target devices deals from Verizon, such as six months of free texting, if they switch their carrier contract from Sprint to Verizon.
  • augmented beacons are stationary and have associated static locations within the database of the system.
  • augmented beacon information is dynamic and can be associated with an object in motion, such as a vehicle, person, mobile device, and the like, or other dynamic systems.
  • Actual or approximate locations for augmented beacons in motion can be established either parametrically, through periodic database refreshes, or by other known methods.
  • An example of parametric determination is the use of an Amtrak schedule to determine the approximate location of an Acela. train,
  • An example of a database refresh is periodically scraping the location of a jitney bus from a publicly available jitney website or location database.
  • an augmented beacon is associated. with a point-of-sale system in a taxi, and GPS location data streamed from a transmitter on the taxi is used to update the location data associated with the augmented beacon, effectively causing the beacon to follow the taxi as it moves around.
  • Dynamic beacon information can also be temporal.
  • augmented beacon notifications can be disabled during hours that a particular sponsor's store is closed.
  • a temporal phantom augmented beacon associated with an elementary school crosswalk can be activated during morning hours before school starts and during afternoon hours when school lets out when school children are likely to be present and safety concerns are heightened.
  • the present system does not separate the generation of the augmented beacon signal from message transmission but, instead, both are incorporated into a single instance.
  • the application can provide for self-service of augmented beacons by sponsors or other users.
  • a sponsor can set up augmented beacons on the fly, programming them as either stationary or plotting their movement, and can set up and personalize messages and related data streams, inclusive of text messages, images, digital credentials or certificates, machine-readable codes, videographic messages and multi-dimensionally-projected messages.
  • the application permits a geo-fence associated with an augmented beacon to be dynamically controlled and scaled by the application user, as opposed to a map vendor, a service provider, or a data vendor who is marketing data to advertisers.
  • a role-based access system permits data associated with an augmented beacon to be accessed and/or edited by all or a select group of users, such as community members within a sponsor. Editing of augmented beacons can include the creation, modification, and deletion of the augmented beacons.
  • a college living group is able to configure one or more augmented beacons for secure access and notifications within the community.
  • the beacon configuration application and/or a separate application can include a user interface that displays graphical or textual indicators of augmented and/or physical beacons on a map.
  • the user interface can be displayed on a mobile device and beacon indicators within a threshold distance from the location of the mobile device (e.g., a configurable range from 1 to 2000 meters or more) can be shown on the map.
  • FIG. 5 depicts one example of such a user interface 500 , wherein graphical indicator 502 represents an augmented beacon corresponding to the geographical location on a map 510 where the augmented beacon is located.
  • the present system can provide information associated with augmented beacons to the target device, such as augmented beacon labels, messages, and coordinates, to facilitate the display of the augmented beacon indicators.
  • mapped information can be integrated with the beacon display to provide a complete, user-controlled pictorial view.
  • location markers 520 can designate events or locations of interest on the map 510
  • friend indicators 526 can display lists of names, icons, avatars, or other designations associated with friends or contacts of a user and/or other persons using the user interface application, whether or not known to the user, who are geographically located at or around corresponding locations on the map 510 .
  • Some markers on the map 510 can be interactive. For example, by selecting a chat icon 530 on the map 510 , a user can send and/or receive messages to/from another user or communication device.
  • a technique for two-factor authentication for blacklisting unwanted content from beacons includes geographically colocating an augmented beacon with a physical beacon.
  • the pairing of particular beacons is known to all target devices in the system; whereas, in other instances, the pairing of particular beacons is known only to a subset of target devices.
  • a target device 620 first receives a first message from one of a pairing of beacons (either a physical beacon 602 or an augmented beacon 612 ).
  • the first message can include a unique identifier associated with the beacon sending the message, digital content, authentication information, or other data.
  • the target device 620 stores the first message in memory and waits for a second message from the other beacon in the pairing. That is, if the first message was sent by the physical beacon 602 , the target device 620 waits for a message from the augmented beacon 612 , and vice-versa.
  • the target device 620 Upon receiving the second message from the other beacon (the second message can include a unique identifier associated with the other beacon, digital content, authentication information, etc.), the target device 620 displays messages and/or digital content associated with the physical beacon 602 and/or the augmented beacon. In some implementations, the content displayed on the target device 620 is received directly from the beacon 602 or 612 . In other implementations, the message provided by a particular beacon 602 or 612 includes an identifier that causes the target device 620 to display content already existing on the device 620 and/or retrieve content from an external server 630 . If the second message is not received by the target device 620 , no content associated with the physical beacon 602 or the augmented beacon 612 is delivered to or displayed on the device 620 .
  • beacon frameworks such as the Apple iBeaconTM framework
  • the beacon's identifier is publicly available. This exposes the framework to spoofing or imitation of physical beacons and eliminates the possibility of secure beacon systems.
  • the system is unable to be imitated or spoofed. Further, this serves as a functional “blacklist” for unapproved beacons. For example, if a sponsor were to set up such a system of associated physical and augmented beacons, scammers and other malicious parties would not be able to replicate sponsor beacons merely by mimicking the sponsor's physical beacons.
  • the presence of the physical beacon enhances the integrity of the geo-fence, because it provides evidence that the sponsor has physical site access.
  • a sponsor e.g., a clothing retailer places physical beacons in all of its stores, and places an augmented beacon associated with a target (Person A) at the store if Person A has recommended the retailer on social media.
  • Another target (Person B) is connected in some manner to Personal A via social media. If Person B walks by the store, the system will only deliver a message to Person B when both the beacon associated with Person A and the store's physical beacon are visible to Person B (i.e., Person B is in an area defined by the range of both beacons). In this manner, the system provides more valuable messages to targets than would a traditional physical beacon implementation, as targets will receive messages only if their social media contacts also support the sponsor of the messages.
  • federated authentication such as a Facebook login, is used to determinate a whitelist of approved sponsors of augmented beacon messages. For example, if a target device is logged into a Facebook account and the account has “liked” the sponsor Amazon.com, then beacon messages from Amazon.com would automatically be permitted to be received by the target device. If, on the other hand, the target is not logged into a particular account or if the sponsor is unknown, the target device can be configured to accept a single initial message, a subset of messages, or no messages. After the target device accepts a message from a sponsor via an augmented beacon, the target device can then be prompted to whitelist or blacklist future messages from the sponsor and/or the augmented beacon from which the message was received. In other implementations, the target device allows for the blocking of all notifications from sponsors not included on a whitelist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Finance (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

Systems and methods for providing augmented beacons are described. In one implementation, an augmented beacon server receives a definition of an augmented beacon defining a geographical area of interest, where digital content is associated with the augmented beacon. Based on a determination that a target device is within the geographical area of interest of the augmented beacon, the augmented beacon server provides an unique identifier associated with the augmented beacon to the target device, where the unique identifier comprises an indication that the digital content associated with the augmented beacon can be displayed by the target device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/091,265, filed on Apr. 5, 2016, and entitled “Augmented Beacon and Geo-fence Systems and Methods,” which claims priority to and the benefit of U.S. Provisional Patent Application 62/146,606, filed on Apr. 13, 2015, and entitled “Augmented Beacon and Geo-fence Systems and Methods,” the entireties of which are incorporated by reference herein.
  • TECHNICAL FIELD
  • The present disclosure relates generally to augmented beacon technology and, more particularly, to systems and methods for providing digital content to devices based on geographical proximity to virtually-defined areas of interest.
  • BACKGROUND
  • The modern internet has evolved past the need for stationary networked computing devices to transmit data. The profusion of billions of networked devices which are primarily mobile has given rise to the need to isolate smaller groups of devices, proximate to one another, for communications. This proximate area, termed a geo-fence, is often set by a low-power radio signal using, for example, the Bluetooth® wireless transmission standard. However, this approach, as manifested by beacons from vendors such as Apple, Inc., has numerous disadvantages, such as requiring a separate network and a radio connection. In addition, these devices must be individually powered and maintained in order to function properly.
  • BRIEF SUMMARY
  • Systems and methods for an augmented beacon and geo-fence system are described herein. Augmented beacons can be used to replace and/or enhance a physical beacon network. In addition, personalized and user-defined geo-fences provide an experience that avoids the dependence upon radio strength and connectivity, as well as advertiser-driven choices, by restricting unwanted beacon messages while accessing desirable and locally relevant augmented and phantom augmented messages from the cloud. This combination of both real and augmented beacons within a geo-fence of a user's design optimizes the user's experience.
  • Accordingly, in one aspect, a computer-implemented method includes the steps of receiving a definition of an augmented beacon including a geographical area of interest, wherein digital content is associated with the augmented beacon; determining that a target device is within the geographical area of interest of the augmented beacon; and, in response to the determination, providing a unique identifier associated with the augmented beacon to the target device, wherein the unique identifier includes an indication that the digital content associated with the augmented beacon can be displayed by the target device.
  • In one implementation, the geographical area of interest includes geographical coordinates and a defined area based on the geographical coordinates. The digital content can be a text message, an image, a digital credential or certificate, machine-readable code, a videographic message, a multi-dimensionally-projected message, and/or other content of interest to the user. The target device can be a smartphone, a tablet, a smart watch, smart glasses, a laptop, a vehicle, a stand-alone sensor, an appliance, a robot, or other mobile device.
  • In another implementation, an object in motion associated with the augmented beacon is identified and a geographical location of the object as it moves over time is determined. The definition of the augmented beacon is updated based on the geographical location of the object. The object can be a vehicle, a person, or a mobile device. The location of the object can be determined by periodically receiving location data associated with the object or determining an approximate location of the object based on a predefined schedule.
  • In a further implementation, an application is provided for creation and configuration of the augmented beacon. The definition of the augmented beacon can be editable by a defined group of users. Information associated with the augmented beacon can be provided to a geographical mapping interface on the device. A source of the digital content can be whitelisted based on a preexisting association of a user of the target device with the source of the digital content.
  • In yet another embodiment, a notification is provided to the device from one of the augmented beacon and a physical beacon; a confirmation is received from the other of the augmented beacon and the physical beacon; and, in response to receiving the confirmation, an indication is provided that digital content associated with at least one of the augmented beacon and the physical beacon can be delivered to the target device. The physical beacon can be geographically colocated with the augmented beacon.
  • In another embodiment, a transaction is authorized based on the determination that a target device is within the geographical area of interest of the augmented beacon.
  • Other embodiments of the above aspect include corresponding systems and computer programs. The details of one or more implementations of the subject matter described in the present specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims to persons of ordinary skill in the art and are considered to be within the scope of this disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the implementations. In the following description, various implementations are described with reference to the following drawings, in which:
  • FIG. 1 depicts a high-level architecture of an augmented beacon and geo-fence system according to one implementation of the invention;
  • FIG. 2 depicts a method for providing an augmented beacon and delivering content associated with the augmented beacon according to one implementation of the invention;
  • FIG. 3 depicts an example table of information associated with a set of augmented beacons;
  • FIG. 4 depicts an example geographical layout of areas defined by a set of augmented beacons;
  • FIG. 5 depicts an example user interface for presenting graphical indicators of augmented beacons overlaid on a map; and
  • FIG. 6 depicts an example technique for two-factor authentication using colocated augmented and physical beacons.
  • DETAILED DESCRIPTION
  • Described herein are systems and methods for providing software-based augmented beacons that can replace and/or enhance a physical local radio network. An augmented beacon generally refers to a software-based definition of an area of interest that corresponds to a physical, geographical location, and which can be associated with digital content that is delivered to and/or displayed by a user device when the user device is within the area of interest. The area of interest can be one or more points corresponding to one or more global positioning system (GPS) coordinates (e.g., latitude and longitude coordinates) or other coordinates in two or three dimensions (e.g., x, y, and z coordinates). The area of interest can also include a two- or three-dimensional area based on one or more point coordinates (e.g., a rectangle, circle, or other complex or simple shape encompassing or representing a geographical area, for example, a complex shape reflecting the boundaries of a campus or retail center). In one implementation, the area of interest includes a geo-fence or a physical area in which communication between an augmented beacon and a target device is permitted. An augmented beacon can have associated digital information and can share the information with target devices on the internet or other networks without the need for physical hardware in proximity to the target device. As an example, whereas a physical Apple® iBeacon™ device can transmit a commercial offer to a potential customer walking near a store where the device is located, the present system allows the same prospective customer to access that signal remotely, to learn if the store is making an offer. In the same manner, a competitor of the first store could use an augmented beacon to make a competing offer to the prospective customer walking past the first store. Other implementations of augmented beacons are contemplated and are described further herein.
  • Referring to FIG. 1, one implementation of a system for providing augmented beacons includes beacon server 102 and one or more target devices 130, typically many target devices 130. Beacon server 102 stores data associated with augmented beacons in data store 106. Data store 106 can take various forms, for example, it can be a database such as the MySQL Database Server or Oracle® Database Server, the PostgreSQL Database Server, or the IBM DB2 Database Server. Augmented beacon data stored in data store 106 can include augmented beacon locations (e.g., coordinates), defined areas around the augmented beacon locations, information associated with augmented beacon owners, sponsors, editors, or other persons or entities that are permitted to access and/or configure particular augmented beacons, identifiers associated with content that can be delivered by augmented beacons, and other useful data. Beacon server 102 determines when a target device 130 is within an augmented beacon's defined area, based on the information in data store 106 and target device location information (e.g., GPS coordinates, Wi-Fi signal information, etc.) received directly or indirectly from a target device 130. If a target device 130 is determined to be within the area defined by an augmented beacon, beacon server 102 can deliver content associated with the augmented beacon (or indicate that such content should be delivered) to the target device 130. Beacon server 102 can also take other action depending on whether target device 130 is determined to be within or outside the defined area, for example, in the instances of location verification or fraud detection, further described below.
  • The target device 130 can be a smartphone, tablet computer, smart watch, smart glasses, portable computer, mobile telephone, laptop, palmtop, smart television, vehicle, robot, stand-alone sensor, desktop computer, wireless device, appliance, workstation, and/or other computing device that is operated as a general purpose computer or as a special purpose hardware device and that can execute the functionality described herein as provided by the target device 130. The target device 130 can include a GPS sensor, wireless radio, or other sensor, transmitter or receiver that can be used to determine the exact or approximate location of the target device 130. Information indicating the location of the target device 130 can be transmitted over a network 114 to the beacon server 102. The target device 130 can receive content associated from an augmented beacon, when the target device 130 is within a defined geographic area associated with the augmented beacon.
  • The target device 130 can include one or more software applications having a beacon configuration module 144 and/or a beacon display module 148. The beacon configuration module 144 can include a user interface that allows a user of the target device 130 to add, delete, modify, or otherwise configure augmented beacons. The beacon display module 148 can include a visual display of a map or other visual representation of an area around the target device 130, where textual or graphical indicators representing augmented and/or physical beacons can be displayed and, in some instances, interacted with by a user of the target device.
  • More generally, implementations of the system can use appropriate hardware or software; for example, software on the beacon server 102 and/or the target device 130 can execute on a system capable of running an operating system such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like. The software can be implemented on a general purpose computing device in the form of a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
  • Some or all of the functionality described herein can be performed remotely, in the cloud, or via software-as-a-service. For example, as described above, certain functions, such as those provided by beacon server 102, can be performed on one or more servers or other devices that can communicate with target devices 130 and/or with each other. The remote functionality can execute on server class computers that have sufficient memory, data storage, and processing power and that run a server class operating system (e.g., Oracle® Solaris®, GNU/Linux®, and the Microsoft® Windows® family of operating systems).
  • The system can include a plurality of software processing modules stored in a memory and executed on a processor. By way of illustration, the program modules can be in the form of one or more suitable programming languages, which are converted to machine language or object code to allow the processor or processors to execute the instructions. The software can be in the form of a standalone application implemented in a suitable programming language or framework.
  • Method steps of the techniques described herein can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. Method steps can also be performed by, and systems can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
  • Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors. Generally, a processor receives instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
  • In some implementations, the target devices 130 include a web browser, native application, or both, that facilitates execution of the functionality described herein. A web browser allows the device to request a web page or other program, applet, document, or resource (e.g., from a remote server, such as a web server) with an HTTP request. One example of a web page is a data file that includes computer executable or interpretable information, graphics, sound, text, and/or video, that can be displayed, executed, played, processed, streamed, and/or stored and that can contain links, or pointers, to other web pages. Examples of commercially available web browser software include the Google® Chrome™, Microsoft® Internet Explorer®, Mozilla® Firefox®, and Apple® Safari® browsers.
  • In other implementations, the target devices 130 include client software that provides for the implementation and execution of certain features described herein. The client software can be implemented in various forms. For example, the client software can be in the form of a native application, web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the device and runs in conjunction with a web browser. The client software and the web browser can be part of a single client-server interface; for example, the client software can be implemented as a plug-in to the web browser or to another framework or operating system. Other suitable client software architecture, including but not limited to widget frameworks and applet technology, can also be employed with the client software.
  • A communications network 114 can connect the beacon server 102 and target devices 130. The communication can take place over media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56kb, X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless links (802.11 (Wi-Fi), Bluetooth, GSM, CDMA, etc.), for example. Other communication media are contemplated. The network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between the client device and servers can be communicated over such TCP/IP networks. Other communication protocols are contemplated.
  • The system can also be practiced in distributed computing environments, where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote computer storage media including memory storage devices. Other types of system hardware and software than that described herein can also be used, depending on the capacity of the device and the amount of required data processing capability. The system can also be implemented on one or more virtual machines executing virtualized operating systems, such as those mentioned above, and that operate on one or more computers having hardware, such as that described herein.
  • It should also be noted that implementations of the systems and methods can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. A computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them. Moreover, while a computer storage medium is not a propagated signal, a computer storage medium can be a source or destination of computer program instructions encoded in an artificially-generated propagated signal. The computer storage medium can also be, or be included in, one or more separate physical components or media (e.g., multiple CDs, disks, or other storage devices).
  • In one implementation, the present system is a network-based system that renders the physical beacon hardware requirement unnecessary, either for the operating system of a target device or within a single application on the device. In one implementation, referring to FIG. 2, augmented beacon sponsors, administrators, or other users provide information to a cloud-based database that can be queried by target devices (STEP 202). The provided information can be a definition of an augmented beacon that includes the geographic coordinates of the augmented beacon, a geo-fence associated with the augmented beacon, a unique identifier associated with the augmented beacon, digital content associated with the augmented beacon, and so on.
  • In STEP 204, the location of a target device is received. The system establishes the exact or approximate location of the target device based on information derived from, e.g., a GPS sensor or a nearby Wi-Fi hub. Various methods are known for determining the location of a mobile device and are not described in detail here. The system compares the target device location to points/areas of interest established by augmented beacon creators (e.g., sponsors). The points/areas of interest can be polled from a custom database and/or publicly available mapping sources, such as the Google Maps™ mapping service.
  • If the target device is determined to be within the area defined by a particular augmented beacon, the system can indicate that content should be delivered to and/or displayed by the target device (STEP 206). For example, the system can generate and direct a notification or data message to the target device that can provide general information about the augmented beacon itself or its sponsor, or transmit an offer, such as a coupon encoded within a machine-readable code, or transmit an advertisement on behalf of the sponsor. The information provided on behalf of the augmented beacon can include text messages, images, digital credentials or certificates, machine-readable codes, videographic messages and/or multi-dimensionally-projected messages. Of note, there is no need for a physical beacon to obtain a wireless connection to the target device. Multiple connections are neither required nor juggled, and the augmented beacon requires neither local administration, geographic control, nor a power supply. These features of the augmented beacon system provide heretofore unknown flexibility and functionality in beacon deployment and capabilities.
  • Other use cases are contemplated. For example, the techniques described herein can be applied to location verification, authorization, and fraud detection, among other uses. In one example, confirming that the target device is within the geographical area defined by an augmented beacon is a requirement for allowing the user to complete a transaction within the area. For instance, if a user's mobile payment method is being spoofed by a fraudulent party who attempts to purchase a meal within the geographical boundaries of a restaurant associated h an augmented beacon the transaction can be declined and a fraud alert can be issued if the user's mobile device is not determined also to be within those boundaries.
  • Referring now to FIG. 3, in one example of the present system, augmented beacon sponsors upload augmented beacon configuration information to a cloud-based database that can be queried directly or indirectly by target devices. When a target device updates its location, it provides the location information to a remote server that queries the database (or, alternatively, the target device queries the database directly), searching for augmented beacons near the location of the target device (e.g., where the target device is within a geographical area defined by the augmented beacon). For example, if the target device is determined to be within 200 meters of the GPS latitude and longitude (43.329, −71.234), the message “we122csc23”, serving as a unique identifier of that augmented beacon, is delivered to the device. The message can be interpreted locally on the target device, for example, by an application that recognizes the identifier (e.g., an app associated with a sponsor of the augmented beacon, Starbucks), such that content associated with the augmented beacon is displayed. The content can exist on the target device before the augmented beacon is encountered, or it can be downloaded from the database, a content server, or other source of content following interpretation of the message by the target device. In other implementations, some or all of the content is pushed to the target device by the augmented beacon.
  • FIGS. 3 and 4 illustrate example geo-fence functionality provided by the present system with respect to augmented beacons sponsored by the “Outside Lands Festival.” In this implementation, there exists a “general” augmented beacon that covers the entire festival (i.e., within a 500-meter rectangle of GPS coordinates (50.223, −74.123)), as well as separate augmented beacons that respectively cover the area near the festival's North Stage and South Stage, and which are visible when a target device is within 500 meters east/west of the respective augmented beacon's coordinate location and up to 250 meters north/south of the augmented beacon's coordinate location. Thus, as shown in FIG. 4, “Target 1” would receive content via the North Stage augmented beacon and the general augmented beacon, “Target 2” would receive content via the South Stage augmented beacon and the general augmented beacon, and “Target 3” would receive no content.
  • Another example of geo-fence functionality provided by the present system is highlighted by the “Polo Ralph Lauren” augmented beacons shown in FIG. 3. In this configuration, there is one beacon with a 200-meter range that serves as a source of advertisements for a nearby Polo Ralph Lauren store, as well as a second co-located beacon with a smaller signal radius of 20 meters, which serves to deliver coupons to users that are inside the store.
  • In one implementation, an augmented beacon can be a “phantom” beacon, i.e., an augmented beacon that is associated with a geo-fence in a location that has no connection to the sponsor of the beacon. A phantom beacon can be located arbitrarily, without physical control of the geographic space. For example, retailers can enjoy roadside signage in the form of beacon messages without having to make arrangements with local authorities (e.g., “Starbucks on the right in two miles.”) Other use cases include competitive offerings. For example, Verizon could sponsor a phantom augmented beacon corresponding to a physical location that is on a sidewalk in front of a Sprint store. The phantom beacon can offer target devices deals from Verizon, such as six months of free texting, if they switch their carrier contract from Sprint to Verizon.
  • In some implementations, augmented beacons are stationary and have associated static locations within the database of the system. In other instances, augmented beacon information is dynamic and can be associated with an object in motion, such as a vehicle, person, mobile device, and the like, or other dynamic systems. Actual or approximate locations for augmented beacons in motion can be established either parametrically, through periodic database refreshes, or by other known methods. An example of parametric determination is the use of an Amtrak schedule to determine the approximate location of an Acela. train, An example of a database refresh is periodically scraping the location of a jitney bus from a publicly available jitney website or location database. As another example, an augmented beacon is associated. with a point-of-sale system in a taxi, and GPS location data streamed from a transmitter on the taxi is used to update the location data associated with the augmented beacon, effectively causing the beacon to follow the taxi as it moves around.
  • Dynamic beacon information can also be temporal. For example, augmented beacon notifications can be disabled during hours that a particular sponsor's store is closed. In another example, a temporal phantom augmented beacon associated with an elementary school crosswalk can be activated during morning hours before school starts and during afternoon hours when school lets out when school children are likely to be present and safety concerns are heightened.
  • In one implementation, the present system does not separate the generation of the augmented beacon signal from message transmission but, instead, both are incorporated into a single instance. In this way, the management of augmented beacons, their locations, and their messaging configuration can be personalized and managed within a single application. The application can provide for self-service of augmented beacons by sponsors or other users. In one instance, with access to the system, a sponsor can set up augmented beacons on the fly, programming them as either stationary or plotting their movement, and can set up and personalize messages and related data streams, inclusive of text messages, images, digital credentials or certificates, machine-readable codes, videographic messages and multi-dimensionally-projected messages. Moreover, the application permits a geo-fence associated with an augmented beacon to be dynamically controlled and scaled by the application user, as opposed to a map vendor, a service provider, or a data vendor who is marketing data to advertisers.
  • In one implementation, a role-based access system permits data associated with an augmented beacon to be accessed and/or edited by all or a select group of users, such as community members within a sponsor. Editing of augmented beacons can include the creation, modification, and deletion of the augmented beacons. In one example of role-based access, a college living group is able to configure one or more augmented beacons for secure access and notifications within the community.
  • The beacon configuration application and/or a separate application can include a user interface that displays graphical or textual indicators of augmented and/or physical beacons on a map. For example, the user interface can be displayed on a mobile device and beacon indicators within a threshold distance from the location of the mobile device (e.g., a configurable range from 1 to 2000 meters or more) can be shown on the map. FIG. 5 depicts one example of such a user interface 500, wherein graphical indicator 502 represents an augmented beacon corresponding to the geographical location on a map 510 where the augmented beacon is located. The present system can provide information associated with augmented beacons to the target device, such as augmented beacon labels, messages, and coordinates, to facilitate the display of the augmented beacon indicators. Other mapped information can be integrated with the beacon display to provide a complete, user-controlled pictorial view. For example, as shown in FIG. 5, location markers 520 can designate events or locations of interest on the map 510, and friend indicators 526 can display lists of names, icons, avatars, or other designations associated with friends or contacts of a user and/or other persons using the user interface application, whether or not known to the user, who are geographically located at or around corresponding locations on the map 510. Some markers on the map 510 can be interactive. For example, by selecting a chat icon 530 on the map 510, a user can send and/or receive messages to/from another user or communication device.
  • In another implementation, a technique for two-factor authentication for blacklisting unwanted content from beacons includes geographically colocating an augmented beacon with a physical beacon. In some instances, the pairing of particular beacons is known to all target devices in the system; whereas, in other instances, the pairing of particular beacons is known only to a subset of target devices.
  • Referring to FIG. 6, in one example of this technique, a target device 620 first receives a first message from one of a pairing of beacons (either a physical beacon 602 or an augmented beacon 612). The first message can include a unique identifier associated with the beacon sending the message, digital content, authentication information, or other data. The target device 620 stores the first message in memory and waits for a second message from the other beacon in the pairing. That is, if the first message was sent by the physical beacon 602, the target device 620 waits for a message from the augmented beacon 612, and vice-versa. Upon receiving the second message from the other beacon (the second message can include a unique identifier associated with the other beacon, digital content, authentication information, etc.), the target device 620 displays messages and/or digital content associated with the physical beacon 602 and/or the augmented beacon. In some implementations, the content displayed on the target device 620 is received directly from the beacon 602 or 612. In other implementations, the message provided by a particular beacon 602 or 612 includes an identifier that causes the target device 620 to display content already existing on the device 620 and/or retrieve content from an external server 630. If the second message is not received by the target device 620, no content associated with the physical beacon 602 or the augmented beacon 612 is delivered to or displayed on the device 620.
  • This authentication technique provides an added layer of security over physical beacon frameworks. In many beacon frameworks, such as the Apple iBeacon™ framework, the beacon's identifier is publicly available. This exposes the framework to spoofing or imitation of physical beacons and eliminates the possibility of secure beacon systems. By pairing a physical beacon with an augmented beacon that is associated with content stored in a secure, private relational database, the system is unable to be imitated or spoofed. Further, this serves as a functional “blacklist” for unapproved beacons. For example, if a sponsor were to set up such a system of associated physical and augmented beacons, scammers and other malicious parties would not be able to replicate sponsor beacons merely by mimicking the sponsor's physical beacons. Moreover, in this case, the presence of the physical beacon enhances the integrity of the geo-fence, because it provides evidence that the sponsor has physical site access.
  • In another example, a sponsor (e.g., a clothing retailer) places physical beacons in all of its stores, and places an augmented beacon associated with a target (Person A) at the store if Person A has recommended the retailer on social media. Another target (Person B) is connected in some manner to Personal A via social media. If Person B walks by the store, the system will only deliver a message to Person B when both the beacon associated with Person A and the store's physical beacon are visible to Person B (i.e., Person B is in an area defined by the range of both beacons). In this manner, the system provides more valuable messages to targets than would a traditional physical beacon implementation, as targets will receive messages only if their social media contacts also support the sponsor of the messages.
  • In some implementations, federated authentication, such as a Facebook login, is used to determinate a whitelist of approved sponsors of augmented beacon messages. For example, if a target device is logged into a Facebook account and the account has “liked” the sponsor Amazon.com, then beacon messages from Amazon.com would automatically be permitted to be received by the target device. If, on the other hand, the target is not logged into a particular account or if the sponsor is unknown, the target device can be configured to accept a single initial message, a subset of messages, or no messages. After the target device accepts a message from a sponsor via an augmented beacon, the target device can then be prompted to whitelist or blacklist future messages from the sponsor and/or the augmented beacon from which the message was received. In other implementations, the target device allows for the blocking of all notifications from sponsors not included on a whitelist.
  • The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain implementations in the present disclosure, it will be apparent to those of ordinary skill in the art that other implementations incorporating the concepts disclosed herein can be used without departing from the spirit and scope of the invention.
  • The features and functions of the various implementations can be arranged in various combinations and permutations, and all are considered to be within the scope of the disclosed invention. Accordingly, the described implementations are to be considered in all respects as illustrative and not restrictive. The configurations, materials, and dimensions described herein are also intended as illustrative and in no way limiting. Similarly, although physical explanations have been provided for explanatory purposes, there is no intent to be bound by any particular theory or mechanism, or to limit the claims in accordance therewith.

Claims (30)

What is claimed is:
1. A computer-implemented method comprising:
defining an augmented beacon comprising a geographical area of interest;
receiving a request to authorize a transaction occurring at a physical location within the geographical area of interest of the augmented beacon, wherein the transaction appears to be initiated by a particular user;
in response to receiving the request, determining whether a device associated with the particular user is located within the geographical area of interest of the augmented beacon; and
authorizing or declining the transaction based on the determining of whether the device is located within the geographical area of interest.
2. The method of claim 1, wherein the geographical area of interest comprises geographical coordinates and a defined area based on the geographical coordinates.
3. The method of claim 1, further comprising:
identifying an object in motion associated with the augmented beacon;
determining geographical locations of the object moving over time; and
updating the definition of the augmented beacon based on the geographical locations of the object.
4. The method of claim 3, wherein the object is selected from the group consisting of a vehicle, a person, and a mobile device.
5. The method of claim 3, wherein determining the location of the object comprises periodically receiving location data associated with the object.
6. The method of claim 3, wherein determining the location of the object comprises determining an approximate location of the object based on a predefined schedule.
7. The method of claim 1, further comprising issuing a fraud alert in response to declining the transaction.
8. The method of claim 1, further comprising determining that the device is located within the geographical area of interest and, based thereon, providing a unique identifier associated with the augmented beacon to the device to indicate that digital content associated with the augmented beacon can be displayed by the target device.
9. The method of claim 8, wherein the digital content comprises at least one of a text message, an image, a digital credential or certificate, machine-readable code, a videographic message, and a multi-dimensionally-projected message.
10. The method of claim 1, wherein the target device is selected from the group consisting of a smartphone, a tablet, a smart watch, smart glasses, a laptop, a vehicle, a stand-alone sensor, an appliance, and a robot.
11. The method of claim 1, further comprising providing an application for creation and configuration of the augmented beacon.
12. The method of claim 1, wherein the definition of the augmented beacon is editable by a defined group of users.
13. The method of claim 1, further comprising providing information associated with the augmented beacon to a geographical mapping interface on the target device.
14. The method of claim 1, further comprising whitelisting a source of the digital content based on a preexisting association of a user of the target device with the source of the digital content.
15. The method of claim 1, further comprising geographically collocating a physical beacon with the augmented beacon.
16. A system comprising:
at least one memory for storing computer-executable instructions; and
at least one processor for executing the instructions stored on the at least one memory, wherein execution of the instructions programs the at least one processor to perform operations comprising:
defining an augmented beacon comprising a geographical area of interest;
receiving a request to authorize a transaction occurring at a physical location within the geographical area of interest of the augmented beacon, wherein the transaction appears to be initiated by a particular user;
in response to receiving the request, determining whether a device associated with the particular user is located within the geographical area of interest of the augmented beacon; and
authorizing or declining the transaction based on the determining of whether the device is located within the geographical area of interest.
17. The system of claim 1, wherein the geographical area of interest comprises geographical coordinates and a defined area based on the geographical coordinates.
18. The system of claim 16, wherein the operations further comprise:
identifying an object in motion associated with the augmented beacon;
determining geographical locations of the object moving over time; and
updating the definition of the augmented beacon based on the geographical locations of the object.
19. The system of claim 18, wherein the object is selected from the group consisting of a vehicle, a person, and a mobile device.
20. The system of claim 18, wherein determining the location of the object comprises periodically receiving location data associated with the object.
21. The system of claim 18, wherein determining the location of the object comprises determining an approximate location of the object based on a predefined schedule.
22. The system of claim 16, wherein the operations further comprise issuing a fraud alert in response to declining the transaction.
23. The system of claim 16, wherein the operations further comprise determining that the device is located within the geographical area of interest and, based thereon, providing a unique identifier associated with the augmented beacon to the device to indicate that digital content associated with the augmented beacon can be displayed by the target device.
24. The system of claim 23, wherein the digital content comprises at least one of a text message, an image, a digital credential or certificate, machine-readable code, a videographic message, and a multi-dimensionally-projected message.
25. The system of claim 16, wherein the target device is selected from the group consisting of a smartphone, a tablet, a smart watch, smart glasses, a laptop, a vehicle, a stand-alone sensor, an appliance, and a robot.
26. The system of claim 16, wherein the operations further comprise providing an application for creation and configuration of the augmented beacon.
27. The system of claim 16, wherein the definition of the augmented beacon is editable by a defined group of users.
28. The system of claim 16, wherein the operations further comprise providing information associated with the augmented beacon to a geographical mapping interface on the target device.
29. The system of claim 16, wherein the operations further comprise whitelisting a source of the digital content based on a preexisting association of a user of the target device with the source of the digital content.
30. The system of claim 16, wherein the operations further comprise geographically collocating a physical beacon with the augmented beacon.
US15/387,075 2015-04-13 2016-12-21 Augmented beacon and geo-fence systems and methods Abandoned US20170103377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/387,075 US20170103377A1 (en) 2015-04-13 2016-12-21 Augmented beacon and geo-fence systems and methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562146606P 2015-04-13 2015-04-13
US15/091,265 US9565531B2 (en) 2015-04-13 2016-04-05 Augmented beacon and geo-fence systems and methods
US15/387,075 US20170103377A1 (en) 2015-04-13 2016-12-21 Augmented beacon and geo-fence systems and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/091,265 Continuation US9565531B2 (en) 2015-04-13 2016-04-05 Augmented beacon and geo-fence systems and methods

Publications (1)

Publication Number Publication Date
US20170103377A1 true US20170103377A1 (en) 2017-04-13

Family

ID=57112067

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/091,265 Expired - Fee Related US9565531B2 (en) 2015-04-13 2016-04-05 Augmented beacon and geo-fence systems and methods
US15/387,075 Abandoned US20170103377A1 (en) 2015-04-13 2016-12-21 Augmented beacon and geo-fence systems and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/091,265 Expired - Fee Related US9565531B2 (en) 2015-04-13 2016-04-05 Augmented beacon and geo-fence systems and methods

Country Status (1)

Country Link
US (2) US9565531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021500A1 (en) * 2014-07-16 2016-01-21 Samsung Electronics Co., Ltd. Method of processing beacon of electronic device and electronic device thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715366B2 (en) * 2015-09-16 2017-07-25 International Business Machines Corporation Digital map of a physical location based on a user's field of interest and a specific sound pattern
EP3539307A4 (en) * 2016-11-08 2020-06-03 IOT Eye, Inc. Fog-based internet of things (i t) platform for real time locating system (rtls)
CN110771187B (en) * 2017-04-18 2023-10-27 瑞典爱立信有限公司 Virtual beacons
US10574662B2 (en) 2017-06-20 2020-02-25 Bank Of America Corporation System for authentication of a user based on multi-factor passively acquired data
US10360733B2 (en) 2017-06-20 2019-07-23 Bank Of America Corporation System controlled augmented resource facility
US10791077B2 (en) 2017-08-08 2020-09-29 Snap Inc. Application-independent messaging system
JP6667938B2 (en) 2017-09-27 2020-03-18 楽天株式会社 Information processing apparatus, information processing method, program, and storage medium
WO2019064381A1 (en) * 2017-09-27 2019-04-04 楽天株式会社 Information processing device, information processing method, program, and storage medium
US10257708B1 (en) * 2018-08-20 2019-04-09 OpenPath Security Inc. Device for triggering continuous application execution using beacons
EP3699856A1 (en) * 2019-02-21 2020-08-26 INL - International Iberian Nanotechnology Laboratory Tagging of an object
US11206505B2 (en) * 2019-05-06 2021-12-21 Universal City Studios Llc Systems and methods for dynamically loading area-based augmented reality content
KR102712589B1 (en) * 2019-05-14 2024-10-04 라인플러스 주식회사 Method, system, and non-transitory computer readable record medium for controlling joining a chat room based on location
US11134036B2 (en) 2019-07-05 2021-09-28 Snap Inc. Event planning in a content sharing platform
US11411900B2 (en) * 2020-03-30 2022-08-09 Snap Inc. Off-platform messaging system
EP3917188B1 (en) * 2020-05-28 2023-06-21 Nxp B.V. Methods and systems for committing transactions utilizing rf ranging while protecting user privacy
US11973730B2 (en) 2022-06-02 2024-04-30 Snap Inc. External messaging function for an interaction system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020152273A1 (en) * 2001-04-17 2002-10-17 Salil Pradhan Creating a virtual link between a physical location and its web representation
US20030158815A1 (en) * 2001-12-28 2003-08-21 Sony Corporation Information processing apparatus and information processing method
US20100023878A1 (en) * 2008-07-23 2010-01-28 Yahoo! Inc. Virtual notes in a reality overlay
US20110053618A1 (en) * 2009-08-31 2011-03-03 Verizon Patent And Licensing Inc. Method and system for providing messaging gateway services
US20120209773A1 (en) * 2011-02-10 2012-08-16 Ebay, Inc. Fraud alerting using mobile phone location
US8321497B1 (en) * 2001-04-17 2012-11-27 Hewlett-Packard Development Company, L.P. Data structure disposed in a computer readable memory that provides information corresponding to a location
US20140004885A1 (en) * 2012-06-28 2014-01-02 Experience Proximity, Inc. dba OOOii Systems and methods for associating virtual content relative to real-world locales
US20150206349A1 (en) * 2012-08-22 2015-07-23 Goldrun Corporation Augmented reality virtual content platform apparatuses, methods and systems

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122520A (en) 1998-02-13 2000-09-19 Xerox Corporation System and method for obtaining and using location specific information
US20020091568A1 (en) 2001-01-10 2002-07-11 International Business Machines Corporation Personalized profile based advertising system and method with integration of physical location using GPS
US8738024B1 (en) 2008-03-29 2014-05-27 Nexrf, Corp. Delivering content within a boundary with beacons
GB2415071B (en) 2002-08-06 2006-05-17 Hewlett Packard Development Co Method and arrangement for guiding a user along a target path
US8392609B2 (en) 2002-09-17 2013-03-05 Apple Inc. Proximity detection for media proxies
US20060166740A1 (en) 2004-03-08 2006-07-27 Joaquin Sufuentes Method and system for identifying, matching and transacting information among portable devices within radio frequency proximity
US7305245B2 (en) 2004-10-29 2007-12-04 Skyhook Wireless, Inc. Location-based services that choose location algorithms based on number of detected access points within range of user device
US8311543B2 (en) 2005-07-07 2012-11-13 Qualcomm Incorporated Methods and devices for interworking of wireless wide area networks and wireless local area networks or wireless personal area networks
WO2007059241A2 (en) 2005-11-15 2007-05-24 Enpresence, Inc. Proximity-a ware virtual agents for use with wireless mobile devices
US20070214041A1 (en) * 2006-03-10 2007-09-13 Cisco Technologies, Inc. System and method for location-based mapping of soft-keys on a mobile communication device
EP1883185B1 (en) 2006-07-28 2009-04-08 NTT DoCoMo, Inc. Method and apparatus for obtaining virtual coordinates
US9043222B1 (en) * 2006-11-30 2015-05-26 NexRf Corporation User interface for geofence associated content
US8838477B2 (en) * 2011-06-09 2014-09-16 Golba Llc Method and system for communicating location of a mobile device for hands-free payment
US7904064B2 (en) 2007-01-31 2011-03-08 AT&T International Property I, LP Methods and systems for targeted delivery of information based on current location of wireless device
US20090227374A1 (en) 2008-03-05 2009-09-10 Motorola, Inc. Seamless mobility of location-based gaming across virtual and physical worlds
US10269057B2 (en) 2010-07-19 2019-04-23 Payme, Inc. Mobile system and method for payments and non-financial transactions
GB201106314D0 (en) 2011-04-14 2011-06-01 Edwards Ltd Plasma torch
US8805352B2 (en) 2011-10-07 2014-08-12 Newaer Inc. Determining virtual location based upon scanned wireless signals
US8862067B2 (en) 2012-03-27 2014-10-14 Microsoft Corporation Proximate beacon identification
US8847754B2 (en) 2012-11-15 2014-09-30 James Buchheim Locator beacon and radar application for mobile device
US20150332325A1 (en) * 2013-04-19 2015-11-19 xAd, Inc. System and Method for Visualizing Real-Time Location-Based Events
US9125014B2 (en) 2013-06-09 2015-09-01 Apple Inc. Location-based ticket books
AU2015236575A1 (en) 2014-03-22 2016-09-15 Retailmenot, Inc. Caching geolocated offers
US10565619B2 (en) * 2014-07-02 2020-02-18 Oath Inc. Systems and methods for enabling access to digital content based on geographic locations visited by mobile device users
US20160073264A1 (en) * 2014-09-05 2016-03-10 Alcatel Lucent Distributed and mobile virtual fences
US20160163121A1 (en) * 2014-12-05 2016-06-09 Angela Lea MARTIN System and method for vehicle retrieval
US9363784B1 (en) * 2015-04-30 2016-06-07 Mist Systems Inc. Methods and apparatus relating to the use of real and/or virtual beacons

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020152273A1 (en) * 2001-04-17 2002-10-17 Salil Pradhan Creating a virtual link between a physical location and its web representation
US8321497B1 (en) * 2001-04-17 2012-11-27 Hewlett-Packard Development Company, L.P. Data structure disposed in a computer readable memory that provides information corresponding to a location
US20030158815A1 (en) * 2001-12-28 2003-08-21 Sony Corporation Information processing apparatus and information processing method
US20100023878A1 (en) * 2008-07-23 2010-01-28 Yahoo! Inc. Virtual notes in a reality overlay
US20110053618A1 (en) * 2009-08-31 2011-03-03 Verizon Patent And Licensing Inc. Method and system for providing messaging gateway services
US20120209773A1 (en) * 2011-02-10 2012-08-16 Ebay, Inc. Fraud alerting using mobile phone location
US20140004885A1 (en) * 2012-06-28 2014-01-02 Experience Proximity, Inc. dba OOOii Systems and methods for associating virtual content relative to real-world locales
US20150206349A1 (en) * 2012-08-22 2015-07-23 Goldrun Corporation Augmented reality virtual content platform apparatuses, methods and systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ron White, How Computers Work, October 15, 2003, Que Publishing, 7th Ed, PG 4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021500A1 (en) * 2014-07-16 2016-01-21 Samsung Electronics Co., Ltd. Method of processing beacon of electronic device and electronic device thereof
US9832607B2 (en) * 2014-07-16 2017-11-28 Samsung Electronics Co., Ltd Method of processing beacon of electronic device and electronic device thereof

Also Published As

Publication number Publication date
US20160302037A1 (en) 2016-10-13
US9565531B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
US9565531B2 (en) Augmented beacon and geo-fence systems and methods
US11334919B2 (en) Systems and methods for enabling access to digital content based on geographic locations visited by mobile device users
US11997560B2 (en) System and method for mobile device location tracking with a communication event trigger in a wireless network
JP6017457B2 (en) Ad-based location ranking for geosocial networking systems
AU2016200873B2 (en) Persistent location tracking on mobile devices and location profiling
US11026042B2 (en) Geofencing messaging system
JP6022481B2 (en) Mobile advertising using social elements in a geosocial networking system
US20180048756A1 (en) Avatar-Based Communications Launching System
US20160241997A1 (en) Geofence entry timestamps from diverse sources
US9425869B1 (en) User-defined coverage of media-player devices on online social networks
US20140199970A1 (en) Methods and systems relating to privacy in location based mobile applications
US10163132B2 (en) Systems and methods to create a geographic heatmap
US20150242086A1 (en) Drag and drop event system and method
US11165876B2 (en) Systems and methods for providing location services
US9282432B1 (en) Aggregated geo-fencing area based information delivery
US20130066986A1 (en) Aggregating check-in social networking system and method
KR20190042764A (en) Identification, location, and authentication systems and methods
AU2014403366A1 (en) Expanded tracking and advertising targeting of social networking users
KR102290755B1 (en) Method and apparatus for providing information based on proximity
US10163134B2 (en) Platform content moderation
US20140236808A1 (en) Social Networking System for Users Having Portable Electronic Devices with GPS Capabilities and Its Associated Method of Operation
US20150312715A1 (en) Arrangement and method for location based content provision
Buczkowski Location-based marketing: the academic framework
KR20140021122A (en) System and method for mobile advertisement linked with messaging service application
US11310307B2 (en) Computer-based platforms/systems, computing devices/components and/or computing methods for one or more technological applications involving real-time data processing between a server, one or more mobile computing devices and near field communication connected interactive posters

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: FRENSEE LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACK, WILLIAM W.;TAYLOR, BENJAMIN J.;SIGNING DATES FROM 20160620 TO 20161024;REEL/FRAME:052379/0315

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION