US20170101432A1 - Crystalline 3',5'-cyclic diguanylic acid - Google Patents
Crystalline 3',5'-cyclic diguanylic acid Download PDFInfo
- Publication number
- US20170101432A1 US20170101432A1 US15/123,328 US201515123328A US2017101432A1 US 20170101432 A1 US20170101432 A1 US 20170101432A1 US 201515123328 A US201515123328 A US 201515123328A US 2017101432 A1 US2017101432 A1 US 2017101432A1
- Authority
- US
- United States
- Prior art keywords
- crystal
- cyclic diguanylic
- acid
- crystals
- diguanylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PKFDLKSEZWEFGL-JDHWUNNLSA-N NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(=O)(O)OC4[C@H](O)[C@H](N5C=NC6=C5N=C(N)NC6=O)O[C@@H]4COP(=O)(O)O[C@@H]3C2O)C(=O)N1 Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(=O)(O)OC4[C@H](O)[C@H](N5C=NC6=C5N=C(N)NC6=O)O[C@@H]4COP(=O)(O)O[C@@H]3C2O)C(=O)N1 PKFDLKSEZWEFGL-JDHWUNNLSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
- C07H19/207—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
- C07H19/213—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids containing cyclic phosphate
Definitions
- the present invention is related to a crystal of 3′,5′-cyclic diguanylic acid deemed to be a useful substance as an adjuvant and to a manufacturing method of said crystal.
- 3′,5′-Cyclic diguanylic acid is a signal transmitter involved in biofilm formation of bacteria or the like, and recently, expected in applications as an adjuvant, an antiviral agent, and an anticancer agent (Non-Patent Document 1).
- Non-Patent Document 1 As a manufacturing method of 3′,5′-cyclic diguanylic acid, a synthetic method by an enzyme is known thus far, in which diguanylate cyclase from Genus Geobacillusis, for example, is used (Patent Document 1).
- Non-Patent Documents 2 and 3 Conventionally, 3′,5′-cyclic diguanylic acid is obtained as a freeze-dried product or a co-crystal with a metal salt with cobalt or magnesium (Non-Patent Documents 2 and 3).
- 3′,5′-cyclic diguanylic acid is provided as co-crystals containing a metal salt with cobalt or the like, and thus, in a case where the crystals are intended for utilization in a pharmaceutical raw material and the like, problems concerning safety or the like may arise.
- crystals of free acid of 3′,5′-cyclic diguanylic acid that do not contain the metal salt nothing is conventionally known including methods of obtaining them.
- all of conventional methods of obtaining crystals employ the vapor diffusion method, so that they are not suitable for obtaining a large amount of crystals in a short period of time, and thus, development of a method of obtaining a large amount of crystals easily has been desired.
- the present inventors studied earnestly crystallization of 3′,5′-cyclic diguanylic acid and succeeded in obtaining crystals of the free acid of 3′,5′-cyclic diguanylic acid for the first time.
- the crystals of 3′,5′-cyclic diguanylic acid obtained by the method of the present invention exhibit stability comparable to the existing crystals, and are very easy to handle in various applications, since no superfluous metal ions are included, and thus, useful as a raw material of pharmaceutical compositions and the like.
- FIG. 1 shows a photograph of crystals of 3′,5′-cyclic diguanylic acid.
- FIG. 2 shows a photograph of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium.
- FIG. 3 shows a photograph of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt.
- FIG. 4 shows a result of thermogravimetric measurement/differential thermal analysis of crystals of 3′,5′-cyclic diguanylic acid.
- FIG. 5 shows a result of thermogravimetric measurement/differential thermal analysis of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium.
- FIG. 6 shows a result of thermogravimetric measurement/differential thermal analysis of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt.
- FIG. 7 shows an infrared absorption spectrum of crystals of 3′,5′-cyclic diguanylic acid.
- FIG. 8 shows an infrared absorption spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium.
- FIG. 9 shows an infrared absorption spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt.
- FIG. 10 shows an X-ray diffraction spectrum of crystals of 3′,5′-cyclic diguanylic acid.
- FIG. 11 shows an X-ray diffraction spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium.
- FIG. 12 shows an X-ray diffraction spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt.
- the present invention provides a crystal of 3′,5′-cyclic diguanylic acid represented by the following structural formula.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention is a crystal of free acid containing no metal salt, which is obtained without utilizing a metal such as cobalt and magnesium at all in a crystalizing step.
- a ‘crystal of 3’,5′-cyclic diguanylic acid′ in this description means a crystal of free acid containing none of said metal salts, unless specifically mentioned.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has purity of 97% or more or preferably 99% or more as purity-tested by the high-performance liquid chromatography method.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has water content of 9.3 to 13.9% as measured by the Karl Fischer method. That is, in the crystal of 3′,5′-cyclic diguanylic acid of the present invention, 4 to 6 molecules of water, more specifically, 3.9 to 6.2 molecules of water bond or attach to one molecule of 3′,5′-cyclic diguanylic acid.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has an endothermic peak at 213 to 217° C. as analyzed by a thermogravimetric measurement/differential thermal analysis (TG/DTA) apparatus (temperature elevation rate of 5° C./min). Said temperature is lower than those of the known co-crystals with a metal.
- TG/DTA thermogravimetric measurement/differential thermal analysis
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention is obtained as a cubic crystal.
- the conventionally known co-crystals with a metal are a hexagonal tabular crystal or a square bipyramidal crystal, and thus, the crystal of the present invention and the conventionally known co-crystals with a metal are different in structure.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has characteristic peaks around 3163, 1712, 1637, 1601, 1530, 1470, 1386 and 1339 (cm ⁇ 1 ) when an infrared absorption spectrum is measured.
- an error range less than 2 (cm ⁇ 1 ) is sometimes included in measuring an infrared absorption spectrum, so that not only crystals whose peak positions in an infrared absorption spectrum coincide exactly with the values noted above but also crystals whose peak positions coincide within the error range less than 2 cm ⁇ 1 are included in the crystal of 3′,5′-cyclic diguanylic acid of the present invention.
- characteristic peaks are observed at 3163 ⁇ 1.9, 1712 ⁇ 1.9, 1637 ⁇ 1.9, 1601 ⁇ 1.9, 1530 ⁇ 1.9, 1470 ⁇ 1.9, 1386 ⁇ 1.9 and 1339 ⁇ 1.9 (cm ⁇ 1 ).
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has characteristic peaks in X-ray powder analysis, and, for example, when the crystal of the present invention is subjected to an analysis by an X-ray powder diffractometer using the Cu-K ⁇ ray, characteristic peaks are observed, as shown in Example below, around 8.1, 8.3, 10.8, 11.8, 16.9, 19.1, 19.5, 22.4, 25.0, 26.7, 27.0 and 27.7 (°) in diffraction angle (2 ⁇ ) (see FIG. 10 ).
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention has a decreasing rate of purity less than 1% as a value measured by high performance liquid chromatography after being stored at 50° C. for 167 days in a desiccator containing saturated saline, and thus, is a very stable crystal.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention can be obtained by adding acid to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3.
- 3′,5′-Cyclic diguanylic acid used in crystallization may be synthesized by a known method such as the enzymatic synthesis method or the chemical synthesis method, and one synthesized by the enzymatic synthesis method is preferable. Enzymatic synthesis may be performed following the known method, and, for example, the method described in Patent Document 1 may be used. After the reaction, 3′,5′-cyclic diguanylic acid generated in a reaction solution can be isolated and purified by the usual chromatography method using activated carbon, an ion-exchange resin or the like.
- acid is added to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3, preferably, to 1.5 to 2.0.
- the acid used are hydrochloric acid, sulfuric acid and nitric acid.
- slow addition is preferable. Note that if a yield of crystals is low, second crystals may be obtained from the filtrate of said crystals by performing said process of crystal precipitation.
- crystallization may be performed by a method comprising (1) a step of heating an aqueous solution of isolated and purified 3′,5′-cyclic diguanylic acid to 50 to 70° C., (2) a step of adding acid to said solution so as to lower pH to 1 to 3, preferably to 1.5 to 2.0, and (3) a step of cooling said solution until the solution reaches 1 to 10° C., preferably 4 to 8° C.
- cooling in step (3) is performed slowly. Specifically, cooling with a temperature gradient of ⁇ 3 to ⁇ 11° C./hr is preferable.
- steps (1) and (2) or steps (2) and (3) may be performed simultaneously.
- the crystals of 3′,5′-cyclic diguanylic acid obtained by the manufacturing method described above may be collected by filtration and then dried at 30 to 70° C. for 1 to 10 hours, to be a product.
- an appropriate method may be employed such as drying under reduced pressure.
- 3′,5′-Cyclic diguanylic acid was synthesized enzymatically and purified according to a known method (Patent Document 1).
- a 59.9 mM solution (191 mL) of 3′,5′-cyclic diguanylic acid obtained by purification was warmed to 60° C. in an incubator and 27.5 mL of 1 N hydrochloric acid solution was added while stirring over two hours so as to make pH at 1.9.
- Co-crystals of 3′,5′-cyclic diguanylic acid with magnesium or cobalt were obtained in the following manner with reference to the descriptions of Non-Patent Documents 2 and 3.
- the starting solution for crystallization was concentrated by an evaporator while being warmed at 55° C., filled up to 500 mL again at the time white turbidity was observed, and warmed at 55° C. for 30 minutes to achieve complete dissolution.
- the solution was concentrated again, allowed to clarify, and left to stand overnight at 25° C., in which precipitation of hexagonal tabular crystals were observed, so that the crystals were grown sufficiently by the vapor diffusion method to obtain co-crystals with magnesium.
- the starting solution for crystallization was concentrated by an evaporator while being warmed at 55° C. and left to stand overnight at 25° C., in which precipitation of square bipyramidal crystals were observed, so that the crystals were grown by the vapor diffusion method.
- Detection method detection by UV 260 nm
- FIGS. 1 to 3 Representative photographs of the crystals of 3′,5′-cyclic diguanylic acid prepared in Example 1 and the co-crystals of 3′,5′-cyclic diguanylic acid with magnesium and the co-crystals with cobalt prepared in Reference Examples are shown in FIGS. 1 to 3 .
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention is a cubic crystal
- the co-crystal with magnesium is a hexagonal tabular crystal
- the co-crystal with cobalt is a square bipyramidal crystal, and thus, the crystal of the present invention exhibited a completely different crystalline shape from those of the conventional crystals.
- Water content of the crystals of 3′,5′-cyclic diguanylic acid prepared in Example 1 was measured by the Karl Fischer method and water content was found to be 9.3 to 13.9%. That is, it was revealed that, in the crystal of 3′,5′-cyclic diguanylic acid of the present invention, 4 to 6 molecules of water, more specifically, 3.9 to 6.2 molecules of water bonded or attached to one molecule of 3′,5′-cyclic diguanylic acid.
- thermogravimetric measurement/differential thermal analysis (TG/DTA) apparatus temperature elevation rate of 5° C./min
- the crystals of 3′,5′-cyclic diguanylic acid of the present invention showed a characteristic endothermic peak at 213 to 217° C.
- the co-crystals of 3′,5′-cyclic diguanylic acid with magnesium showed a characteristic endothermic peak around 221° C.
- co-crystals with cobalt showed a characteristic endothermic peak around 239° C. ( FIGS. 5 and 6 , respectively).
- Infrared absorption spectrum was measured on each of the crystal of 3′,5′-cyclic diguanylic acid of the present invention, and the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium and the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt of Reference Examples using a Fourier transform infrared spectrophotometer, Spectrum One (product of PerkinElmer Co., Ltd.) by the ATR (Attenuated Total Reflectance) method.
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention had characteristic peaks around 3163, 1712, 1637, 1601, 1530, 1470, 1386 and 1339 (cm ⁇ 1 ).
- the co-crystal with magnesium had characteristic peaks around 3226, 1702, 1634, 1597, 1531, 1477 and 1345 (cm ⁇ 1 ) and the co-crystal with cobalt had characteristic peaks around 3179, 1638, 1576, 1534, 1487 and 1383 (cm ⁇ 1 ).
- X-ray diffraction spectra of the crystal of 3′,5′-cyclic diguanylic acid of the present invention, and the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt and the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium of Reference Examples were measured using an X-ray diffractometer X′Pert PRO MPD (product of Spectris Co., Ltd.) under the following measurement condition.
- Scan range: 20 4.0 to 40.0°
- Pretreatment Pulverization using an agate mortar
- the crystal of 3′,5′-cyclic diguanylic acid of the present invention showed characteristic peaks around 8.1, 8.3, 10.8, 11.8, 16.9, 19.1, 19.5, 22.4, 25.0, 26.7, 27.0 and 27.7(°) in diffraction angle (2 ⁇ ).
- the result of the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium is shown in FIG. 11 and Table 3 and the result of the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt in FIG. 12 and Table 4.
- a decrease rate of HPLC purity of 3′,5′-cyclic diguanylic acid of the present invention is less than 1% after storing at 50° C. for 167 days, showing a very high stability. This value is comparable with those of the conventional co-crystals with a metal, meaning that practical use is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Saccharide Compounds (AREA)
Abstract
A crystal of free acid of 3′,5′-cyclic diguanylic acid containing no metal salt with cobalt, magnesium or the like is provided. A method is sought for obtaining said crystal in a large amount and with ease. By a manufacturing method comprising a step of adding acid to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3, crystals of 3′,5′-cyclic diguanylic acid can be obtained in a large amount with ease. Said crystals are free acid crystals which do not contain a metal salt with cobalt, magnesium or the like.
Description
- The present invention is related to a crystal of 3′,5′-cyclic diguanylic acid deemed to be a useful substance as an adjuvant and to a manufacturing method of said crystal.
- 3′,5′-Cyclic diguanylic acid is a signal transmitter involved in biofilm formation of bacteria or the like, and recently, expected in applications as an adjuvant, an antiviral agent, and an anticancer agent (Non-Patent Document 1). As a manufacturing method of 3′,5′-cyclic diguanylic acid, a synthetic method by an enzyme is known thus far, in which diguanylate cyclase from Genus Geobacillusis, for example, is used (Patent Document 1).
- Conventionally, 3′,5′-cyclic diguanylic acid is obtained as a freeze-dried product or a co-crystal with a metal salt with cobalt or magnesium (Non-Patent Documents 2 and 3).
-
- Patent Document 1: PCT International Publication No. WO 2013-129427
-
- Non-Patent Document 1: Vaccine, 28, 3080-3085 (2010)
- Non-Patent Document 2: Proc. Natl. Acad. Sci. USA, 87, 3235-3239(1990)
- Non-Patent Document 3: FEBS Letters, 264, 223-227(1990)
- Conventionally, 3′,5′-cyclic diguanylic acid is provided as co-crystals containing a metal salt with cobalt or the like, and thus, in a case where the crystals are intended for utilization in a pharmaceutical raw material and the like, problems concerning safety or the like may arise. However, for crystals of free acid of 3′,5′-cyclic diguanylic acid that do not contain the metal salt, nothing is conventionally known including methods of obtaining them. Further, all of conventional methods of obtaining crystals employ the vapor diffusion method, so that they are not suitable for obtaining a large amount of crystals in a short period of time, and thus, development of a method of obtaining a large amount of crystals easily has been desired.
- The present inventors studied earnestly crystallization of 3′,5′-cyclic diguanylic acid and succeeded in obtaining crystals of the free acid of 3′,5′-cyclic diguanylic acid for the first time.
- Further, as for a manufacturing method of the crystals, it was also found newly that preparation is possible by adding acid to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3, which is a very simple and easy step as compared with manufacturing methods of the conventional co-crystals with a metal salt.
- The crystals of 3′,5′-cyclic diguanylic acid obtained by the method of the present invention exhibit stability comparable to the existing crystals, and are very easy to handle in various applications, since no superfluous metal ions are included, and thus, useful as a raw material of pharmaceutical compositions and the like.
-
FIG. 1 shows a photograph of crystals of 3′,5′-cyclic diguanylic acid. -
FIG. 2 shows a photograph of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium. -
FIG. 3 shows a photograph of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt. -
FIG. 4 shows a result of thermogravimetric measurement/differential thermal analysis of crystals of 3′,5′-cyclic diguanylic acid. -
FIG. 5 shows a result of thermogravimetric measurement/differential thermal analysis of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium. -
FIG. 6 shows a result of thermogravimetric measurement/differential thermal analysis of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt. -
FIG. 7 shows an infrared absorption spectrum of crystals of 3′,5′-cyclic diguanylic acid. -
FIG. 8 shows an infrared absorption spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium. -
FIG. 9 shows an infrared absorption spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt. -
FIG. 10 shows an X-ray diffraction spectrum of crystals of 3′,5′-cyclic diguanylic acid. -
FIG. 11 shows an X-ray diffraction spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with magnesium. -
FIG. 12 shows an X-ray diffraction spectrum of co-crystals of 3′,5′-cyclic diguanylic acid with cobalt. - The present invention provides a crystal of 3′,5′-cyclic diguanylic acid represented by the following structural formula.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention is a crystal of free acid containing no metal salt, which is obtained without utilizing a metal such as cobalt and magnesium at all in a crystalizing step. Note that a ‘crystal of 3’,5′-cyclic diguanylic acid′ in this description means a crystal of free acid containing none of said metal salts, unless specifically mentioned.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has purity of 97% or more or preferably 99% or more as purity-tested by the high-performance liquid chromatography method.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has water content of 9.3 to 13.9% as measured by the Karl Fischer method. That is, in the crystal of 3′,5′-cyclic diguanylic acid of the present invention, 4 to 6 molecules of water, more specifically, 3.9 to 6.2 molecules of water bond or attach to one molecule of 3′,5′-cyclic diguanylic acid.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has an endothermic peak at 213 to 217° C. as analyzed by a thermogravimetric measurement/differential thermal analysis (TG/DTA) apparatus (temperature elevation rate of 5° C./min). Said temperature is lower than those of the known co-crystals with a metal.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention is obtained as a cubic crystal. In contrast, the conventionally known co-crystals with a metal are a hexagonal tabular crystal or a square bipyramidal crystal, and thus, the crystal of the present invention and the conventionally known co-crystals with a metal are different in structure.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has characteristic peaks around 3163, 1712, 1637, 1601, 1530, 1470, 1386 and 1339 (cm−1) when an infrared absorption spectrum is measured.
- Note that generally an error range less than 2 (cm−1) is sometimes included in measuring an infrared absorption spectrum, so that not only crystals whose peak positions in an infrared absorption spectrum coincide exactly with the values noted above but also crystals whose peak positions coincide within the error range less than 2 cm−1 are included in the crystal of 3′,5′-cyclic diguanylic acid of the present invention. For example, when an infrared absorption spectrum is measured, characteristic peaks are observed at 3163±1.9, 1712±1.9, 1637±1.9, 1601±1.9, 1530±1.9, 1470±1.9, 1386±1.9 and 1339±1.9 (cm−1).
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has characteristic peaks in X-ray powder analysis, and, for example, when the crystal of the present invention is subjected to an analysis by an X-ray powder diffractometer using the Cu-Kα ray, characteristic peaks are observed, as shown in Example below, around 8.1, 8.3, 10.8, 11.8, 16.9, 19.1, 19.5, 22.4, 25.0, 26.7, 27.0 and 27.7 (°) in diffraction angle (2θ) (see
FIG. 10 ). - Note that generally an error range less than 5% is sometimes included in diffraction angle (2θ) of X-ray powder diffraction, so that not only crystals whose diffraction angles of peaks in X-ray powder diffraction coincide exactly but also crystals whose diffraction angles of peaks coincide within the error range less than 5% are included in the crystal of 3′,5′-cyclic diguanylic acid of the present invention. For example, in X-ray powder diffraction, characteristic peaks are observed at 8.1±0.4, 8.3±0.4, 10.8±0.5, 11.8±0.5, 16.9±0.8, 19.1±0.9, 19.5±0.9, 22.4±1.1, 25.0±1.2, 26.7±1.3, 27.0±1.3 and 27.7±1.3(°) in diffraction angle (2θ).
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention has a decreasing rate of purity less than 1% as a value measured by high performance liquid chromatography after being stored at 50° C. for 167 days in a desiccator containing saturated saline, and thus, is a very stable crystal.
- The crystal of 3′,5′-cyclic diguanylic acid of the present invention can be obtained by adding acid to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3.
- 3′,5′-Cyclic diguanylic acid used in crystallization may be synthesized by a known method such as the enzymatic synthesis method or the chemical synthesis method, and one synthesized by the enzymatic synthesis method is preferable. Enzymatic synthesis may be performed following the known method, and, for example, the method described in
Patent Document 1 may be used. After the reaction, 3′,5′-cyclic diguanylic acid generated in a reaction solution can be isolated and purified by the usual chromatography method using activated carbon, an ion-exchange resin or the like. - In crystallization, acid is added to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3, preferably, to 1.5 to 2.0. Examples of the acid used are hydrochloric acid, sulfuric acid and nitric acid. In order to prevent amorphism or rapid crystal precipitation from being caused by adding acid rapidly, slow addition is preferable. Note that if a yield of crystals is low, second crystals may be obtained from the filtrate of said crystals by performing said process of crystal precipitation.
- Further, crystallization may be performed by a method comprising (1) a step of heating an aqueous solution of isolated and purified 3′,5′-cyclic diguanylic acid to 50 to 70° C., (2) a step of adding acid to said solution so as to lower pH to 1 to 3, preferably to 1.5 to 2.0, and (3) a step of cooling said solution until the solution reaches 1 to 10° C., preferably 4 to 8° C. In order to ensure crystal precipitation, it is preferable that cooling in step (3) is performed slowly. Specifically, cooling with a temperature gradient of −3 to −11° C./hr is preferable. Further, steps (1) and (2) or steps (2) and (3) may be performed simultaneously.
- The crystals of 3′,5′-cyclic diguanylic acid obtained by the manufacturing method described above may be collected by filtration and then dried at 30 to 70° C. for 1 to 10 hours, to be a product. In drying, an appropriate method may be employed such as drying under reduced pressure.
- Hereafter, examples will be shown to explain the present invention specifically, however, it is apparent that the present invention is not limited thereto.
- 3′,5′-Cyclic diguanylic acid was synthesized enzymatically and purified according to a known method (Patent Document 1).
- A 59.9 mM solution (191 mL) of 3′,5′-cyclic diguanylic acid obtained by purification was warmed to 60° C. in an incubator and 27.5 mL of 1 N hydrochloric acid solution was added while stirring over two hours so as to make pH at 1.9.
- After the addition of the hydrochloric acid solution, cooling was performed using a programmable incubator with a temperature gradient of −7° C./hr until the temperature of the solution reached 5° C. to cause crystals to precipitate. The crystals thus precipitated were collected with a glass filter (17G3) to obtain wet crystals. The wet crystals were dried at 30° C. for 9 hours and 8.095 g of dry crystals were obtained.
- Co-crystals of 3′,5′-cyclic diguanylic acid with magnesium or cobalt were obtained in the following manner with reference to the descriptions of Non-Patent Documents 2 and 3.
- 500 mL of a starting solution for crystallization (2 mM 3′,5′-cyclic diguanylic acid, 20 mM MgCl2, 20 mM glycine-HCl (pH 2.1), 7% (v/v) 2-MPD) was prepared.
- The starting solution for crystallization was concentrated by an evaporator while being warmed at 55° C., filled up to 500 mL again at the time white turbidity was observed, and warmed at 55° C. for 30 minutes to achieve complete dissolution. The solution was concentrated again, allowed to clarify, and left to stand overnight at 25° C., in which precipitation of hexagonal tabular crystals were observed, so that the crystals were grown sufficiently by the vapor diffusion method to obtain co-crystals with magnesium.
- 500 mL of a starting solution for crystallization (2 mM 3′,5′-cyclic diguanylic acid, 11 mM CoC12, 20 mM glycine-HCl (pH 2.1), 7% (v/v) 2-MPD) was prepared.
- The starting solution for crystallization was concentrated by an evaporator while being warmed at 55° C. and left to stand overnight at 25° C., in which precipitation of square bipyramidal crystals were observed, so that the crystals were grown by the vapor diffusion method. In the vapor diffusion method, 800 mL of 50% 2-MPD (water:MPD=1:1) was placed in an airtight container (TLC developing vessel) and both beakers were left to stand therein for 6 months to obtain co-crystals with cobalt.
- Instrumental analyses were performed on the crystals of 3′,5′-cyclic diguanylic acid prepared in Example 1 above, whose results are shown below.
- Purity of the crystals of 3′,5′-cyclic diguanylic acid obtained in Example 1 was analyzed by the high performance liquid chromatography method and it was found that purity of 3′,5′-cyclic diguanylic acid was 99.0%. Note that the high performance liquid chromatography method was performed under the following condition.
- Column: Hydrosphere C18 (product of YMC Co., Ltd.)
- Eluate: 0.1M TEA-P (pH 6.0)
- Detection method: detection by UV 260 nm
- Representative photographs of the crystals of 3′,5′-cyclic diguanylic acid prepared in Example 1 and the co-crystals of 3′,5′-cyclic diguanylic acid with magnesium and the co-crystals with cobalt prepared in Reference Examples are shown in
FIGS. 1 to 3 . As shown inFIG. 1 , the crystal of 3′,5′-cyclic diguanylic acid of the present invention is a cubic crystal, whereas, as shown inFIGS. 2 and 3 , the co-crystal with magnesium is a hexagonal tabular crystal and the co-crystal with cobalt is a square bipyramidal crystal, and thus, the crystal of the present invention exhibited a completely different crystalline shape from those of the conventional crystals. - Water content of the crystals of 3′,5′-cyclic diguanylic acid prepared in Example 1 was measured by the Karl Fischer method and water content was found to be 9.3 to 13.9%. That is, it was revealed that, in the crystal of 3′,5′-cyclic diguanylic acid of the present invention, 4 to 6 molecules of water, more specifically, 3.9 to 6.2 molecules of water bonded or attached to one molecule of 3′,5′-cyclic diguanylic acid.
- When analyzed by a thermogravimetric measurement/differential thermal analysis (TG/DTA) apparatus (temperature elevation rate of 5° C./min), the crystals of 3′,5′-cyclic diguanylic acid of the present invention showed a characteristic endothermic peak at 213 to 217° C. (
FIG. 4 ). In contrast, the co-crystals of 3′,5′-cyclic diguanylic acid with magnesium showed a characteristic endothermic peak around 221° C. and co-crystals with cobalt showed a characteristic endothermic peak around 239° C. (FIGS. 5 and 6 , respectively). - Infrared absorption spectrum was measured on each of the crystal of 3′,5′-cyclic diguanylic acid of the present invention, and the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium and the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt of Reference Examples using a Fourier transform infrared spectrophotometer, Spectrum One (product of PerkinElmer Co., Ltd.) by the ATR (Attenuated Total Reflectance) method.
- The values of characteristic peaks (cm−1) observed for each of the crystals are shown in Table 1. Further, infrared absorption spectra of the crystal of 3′,5′-cyclic diguanylic acid of the present invention, the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium, and the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt are shown in
FIGS. 7, 8 and 9 , respectively. - The crystal of 3′,5′-cyclic diguanylic acid of the present invention had characteristic peaks around 3163, 1712, 1637, 1601, 1530, 1470, 1386 and 1339 (cm−1). In contrast, the co-crystal with magnesium had characteristic peaks around 3226, 1702, 1634, 1597, 1531, 1477 and 1345 (cm−1) and the co-crystal with cobalt had characteristic peaks around 3179, 1638, 1576, 1534, 1487 and 1383 (cm−1). These results are shown in Table 1.
-
TABLE 1 Present Co-crystal Co-crystal invention with Mg with Co (cm−1) (cm−1) (cm−1) 3163 3226 3179 1712 1702 1637 1634 1638 1601 1597 1576 1530 1531 1534 1470 1477 1487 1386 1383 1338.79 1345 - X-ray diffraction spectra of the crystal of 3′,5′-cyclic diguanylic acid of the present invention, and the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt and the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium of Reference Examples were measured using an X-ray diffractometer X′Pert PRO MPD (product of Spectris Co., Ltd.) under the following measurement condition.
- Target: Cu
- X-ray tube current: 40 mA
- X-ray tube voltage: 45 kV
- Scan range: 20=4.0 to 40.0°
- Pretreatment: Pulverization using an agate mortar
- As shown in
FIG. 10 and Table 2, the crystal of 3′,5′-cyclic diguanylic acid of the present invention showed characteristic peaks around 8.1, 8.3, 10.8, 11.8, 16.9, 19.1, 19.5, 22.4, 25.0, 26.7, 27.0 and 27.7(°) in diffraction angle (2θ). Note that, as comparative data, the result of the co-crystal of 3′,5′-cyclic diguanylic acid with magnesium is shown inFIG. 11 and Table 3 and the result of the co-crystal of 3′,5′-cyclic diguanylic acid with cobalt inFIG. 12 and Table 4. -
TABLE 2 Present Invention Relative 2θ (°) Intensity 8.1 45.0 8.3 56.9 10.8 23.3 11.8 22.1 16.9 21.0 19.1 40.8 19.5 40.6 22.4 22.6 25.0 25.9 26.7 70.1 27.0 100 27.7 26.1 -
TABLE 3 Co-crystal with Mg Relative 2θ (°) Intensity 7.1 34.9 7.3 100 18.8 8.3 21.7 33.8 28.0 10.0 29.1 11.8 -
TABLE 4 Co-crystal with Co Relative 2θ (°) Intensity 5.1 75.0 8.8 58.8 9.2 88.7 10.5 74.4 15.2 75.1 16.7 69.7 17.0 66.8 18.6 79.2 19.1 100 20.1 91.6 20.5 68.3 22.4 90.5 23.2 82.1 24.0 61.0 25.7 70.2 26.7 80.7 - The crystals of 3′,5′-cyclic diguanylic acid of the present invention and the co-crystals with cobalt and the co-crystals with magnesium of Reference Examples were stored at 50° C. in a desiccator containing saturated saline, and HPLC purity of each of them was measured on
days 0, 7, 31, 84 and 167 after the start of storage. The result of measurement of HPLC purity (%) is shown in Table 5 below and relative residual ratios (%) on each day for measurement after the start of storage, taking the purity ofday 0 of measurement as 100%, are shown in Table 6. - As a result, a decrease rate of HPLC purity of 3′,5′-cyclic diguanylic acid of the present invention is less than 1% after storing at 50° C. for 167 days, showing a very high stability. This value is comparable with those of the conventional co-crystals with a metal, meaning that practical use is possible.
-
TABLE 5 (Days) 0 7 31 84 167 Present Invention (%) 99.0 99.1 98.6 98.9 98.9 Mg (%) 99.8 99.7 99.6 99.8 99.3 Co (%) 99.9 99.9 99.7 99.7 99.4 -
TABLE 6 (Days) 0 7 31 84 167 Present Invention (%) 100 100.1 99.6 99.9 100.0 Mg (%) 100 100 99.8 100.0 99.5 Co (%) 100 100 99.8 99.8 99.6
Claims (9)
1. A crystal of 3′,5′-cyclic diguanylic acid.
2. A crystal of claim 1 having purity of 97% or more as measured by high-performance liquid chromatography.
3. A crystal of claim 1 having purity of 99% or more as measured by high-performance liquid chromatography.
4. A crystal of claim 1 , wherein approximately 4 to 6 molecules of water bond or attach to one molecule of 3′,5′-cyclic diguanylic acid.
5. A crystal of claim 1 , wherein an endothermic peak is observed at 213 to 217° C. as measured by a thermogravimetric measurement/differential thermal analysis (TG/DTA) apparatus.
6. A crystal of claim 1 , wherein characteristic peaks are observed around 3163, 1712, 1637, 1601, 1530, 1470, 1386 and 1339 (cm−1) when an infrared absorption spectrum is measured.
7. A crystal of claim 1 , wherein characteristic peaks are observed around 8.1, 8.3, 10.8, 11.8, 16.9, 19.1, 19.5, 22.4, 25.0, 26.7, 27.0 and 27.7(°) in diffraction angle (2θ) in X-ray powder analysis.
8. A manufacturing method of a crystal of 3′,5′-cyclic diguanylic acid comprising a step of adding acid to an aqueous solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3.
9. A manufacturing method of a crystal of 3′,5′-cyclic diguanylic acid comprising the following steps (1) to (3):
(1) a step of heating an aqueous solution of 3′,5′-cyclic diguanylic acid to 50 to 70° C.,
(2) a step of adding acid to the solution of 3′,5′-cyclic diguanylic acid so as to lower pH to 1 to 3, and
(3) a step of cooling the solution of 3′,5′-cyclic diguanylic acid until it reaches 1 to 10° C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014040108 | 2014-03-03 | ||
JP2014-040108 | 2014-03-03 | ||
PCT/JP2015/055975 WO2015133411A1 (en) | 2014-03-03 | 2015-02-27 | Crystalline 3',5'-cyclic diguanylic acid |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055975 A-371-Of-International WO2015133411A1 (en) | 2014-03-03 | 2015-02-27 | Crystalline 3',5'-cyclic diguanylic acid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/441,484 Division US10787479B2 (en) | 2014-03-03 | 2019-06-14 | Crystalline 3′,5′-cyclic diguanylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170101432A1 true US20170101432A1 (en) | 2017-04-13 |
Family
ID=54055217
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/123,328 Abandoned US20170101432A1 (en) | 2014-03-03 | 2015-02-27 | Crystalline 3',5'-cyclic diguanylic acid |
US16/441,484 Active US10787479B2 (en) | 2014-03-03 | 2019-06-14 | Crystalline 3′,5′-cyclic diguanylic acid |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/441,484 Active US10787479B2 (en) | 2014-03-03 | 2019-06-14 | Crystalline 3′,5′-cyclic diguanylic acid |
Country Status (7)
Country | Link |
---|---|
US (2) | US20170101432A1 (en) |
EP (1) | EP3121188B1 (en) |
JP (1) | JP6392320B2 (en) |
KR (1) | KR101946808B1 (en) |
CN (1) | CN106061988B (en) |
CA (1) | CA2941353C (en) |
WO (1) | WO2015133411A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10787479B2 (en) | 2014-03-03 | 2020-09-29 | Yamasa Corporation | Crystalline 3′,5′-cyclic diguanylic acid |
US10836783B2 (en) | 2014-03-14 | 2020-11-17 | Yamasa Corporation | Inclusion compound of 3′ ,5′-cyclic diadenylic acid and manufacturing method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005450A1 (en) | 2003-07-15 | 2005-01-20 | Mitsui Chemicals, Inc. | Method of synthesizing cyclic bisdinucleoside |
EP1782826A1 (en) | 2005-11-08 | 2007-05-09 | GBF Gesellschaft für Biotechnologische Forschung mbH | PQS and c-diGMP and its conjugates as adjuvants and their uses in pharmaceutical compositions |
WO2010101526A1 (en) * | 2009-03-02 | 2010-09-10 | Nanyang Technological University | A diguanylate cyclase, method of producing the same and its use in the manufacture of cyclic-di-gmp and analogues thereof |
CN102199183B (en) * | 2010-03-26 | 2013-12-18 | 北京大学 | C-di-GMP, analogues thereof and preparation method thereof |
US9061048B2 (en) | 2010-12-15 | 2015-06-23 | The Regents Of The University Of California | Cyclic di-AMP induction of type I interferon |
WO2013129427A1 (en) | 2012-02-29 | 2013-09-06 | ヤマサ醤油株式会社 | Practical method for enzymatically synthesizing cyclic di-gmp |
CN106061988B (en) | 2014-03-03 | 2019-12-10 | 雅玛山酱油株式会社 | Crystalline 3 ', 5' -cyclic diguanylic acid |
CA2942283C (en) | 2014-03-14 | 2020-07-28 | Yamasa Corporation | Inclusion compound of 3',5'-cyclic diadenylic acid and manufacturing method thereof |
-
2015
- 2015-02-27 CN CN201580010888.XA patent/CN106061988B/en active Active
- 2015-02-27 EP EP15759144.7A patent/EP3121188B1/en active Active
- 2015-02-27 US US15/123,328 patent/US20170101432A1/en not_active Abandoned
- 2015-02-27 KR KR1020167025780A patent/KR101946808B1/en active IP Right Grant
- 2015-02-27 JP JP2016506468A patent/JP6392320B2/en active Active
- 2015-02-27 CA CA2941353A patent/CA2941353C/en active Active
- 2015-02-27 WO PCT/JP2015/055975 patent/WO2015133411A1/en active Application Filing
-
2019
- 2019-06-14 US US16/441,484 patent/US10787479B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10787479B2 (en) | 2014-03-03 | 2020-09-29 | Yamasa Corporation | Crystalline 3′,5′-cyclic diguanylic acid |
US10836783B2 (en) | 2014-03-14 | 2020-11-17 | Yamasa Corporation | Inclusion compound of 3′ ,5′-cyclic diadenylic acid and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101946808B1 (en) | 2019-02-12 |
EP3121188A4 (en) | 2017-02-22 |
EP3121188B1 (en) | 2021-12-29 |
CA2941353C (en) | 2019-08-20 |
JP6392320B2 (en) | 2018-09-19 |
KR20160123379A (en) | 2016-10-25 |
EP3121188A1 (en) | 2017-01-25 |
CN106061988A (en) | 2016-10-26 |
CA2941353A1 (en) | 2015-09-11 |
CN106061988B (en) | 2019-12-10 |
US20190315795A1 (en) | 2019-10-17 |
JPWO2015133411A1 (en) | 2017-04-06 |
WO2015133411A1 (en) | 2015-09-11 |
US10787479B2 (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10787479B2 (en) | Crystalline 3′,5′-cyclic diguanylic acid | |
US10836783B2 (en) | Inclusion compound of 3′ ,5′-cyclic diadenylic acid and manufacturing method thereof | |
AU2017304887A1 (en) | Polymorphic forms of belinostat and processes for preparation thereof | |
WO2017161985A1 (en) | Crystal form of rebaudioside b and preparation process therefor and use thereof | |
TWI678360B (en) | Method for producing diastereomers of citric acid derivatives | |
TWI496789B (en) | Crystallization of epirubicin hydrochloride | |
JP7201262B2 (en) | Hydrate crystals of 3',3'-cGAMP | |
RU2538593C2 (en) | NOVEL STABLE CRYSTALS OF 1-(2-β-D-ARABINOFURANOSYL)CYTOSINE MONOHYDRATE | |
WO2020090948A1 (en) | Cyclic-di-amp sodium salt crystal | |
WO2017143956A1 (en) | Crystal form sodium salt of rebaudioside b and preparation method and use thereof | |
JP5419570B2 (en) | Method for purifying 2-acetylaminomethyl-4- (4-fluorobenzyl) morpholine | |
CN110128289A (en) | New polymorphic forms of minocycline base and preparation method thereof | |
CN110483597A (en) | Pseudo-polymorphic, preparation method and its application of Arbekacin hydrochloride | |
CN106957311A (en) | Solvate of Raltitrexed and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: YAMASA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, HISAKI;ISHIGE, KAZUYA;REEL/FRAME:039852/0299 Effective date: 20160916 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |