US20170089188A1 - Method of gas, oil, and mineral production using a clean process system and method - Google Patents

Method of gas, oil, and mineral production using a clean process system and method Download PDF

Info

Publication number
US20170089188A1
US20170089188A1 US14/756,683 US201514756683A US2017089188A1 US 20170089188 A1 US20170089188 A1 US 20170089188A1 US 201514756683 A US201514756683 A US 201514756683A US 2017089188 A1 US2017089188 A1 US 2017089188A1
Authority
US
United States
Prior art keywords
well
well bore
fracturing
carbonated water
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/756,683
Inventor
John Edward Vandigriff
Einar Arvid Orbeck, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/756,683 priority Critical patent/US20170089188A1/en
Publication of US20170089188A1 publication Critical patent/US20170089188A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the invention relates to a method and system for producing fracturing of shale and oil sands, and mineral containing material to release natural gases and oil utilizing CO 2 and a steam process without using other chemical contaminants.
  • An object of the invention is to provide a clean, non-contaminating process for producing fracturing of shale, limestone, sands, and other geological and mining formations to release natural gas and oil within a well, and to break up any mineral containing material.
  • Another object of the invention is to provide a system to produce on site the energy required to induce fracturing, removing natural gas and oil, and to recycle fluids used in fracturing for additional use.
  • Another object of the invention is to provide for movable storage of fracturing liquids for additional use at one or more sites.
  • FIG. 1 illustrates a diagram of the basis system of the invention and the process associated therewith.
  • FIG. 2 illustrates additional features which may be utilized with the present invention.
  • FIG. 3 illustrates a well configuration in which frozen CO 2 is inserted into a well and then expanded by pressurized steam to cause fracturing of the walls of the well.
  • FIGS. 4 a and 4 b illustrate two types of insertion tubes.
  • FIG. 1 illustrates the system and method for producing clean fracturing in a natural gas and oil well.
  • the well has a vertical drill bore and or pipe casing 1 a and a horizontal drill bore or pipe casing 1 b extending horizontally from the lower end of vertical drill bore and or pipe casing 1 a .
  • This is the standard method of drilling wells.
  • Inserted in the well is vertical pipe or tube 2 a which extends the length of vertical well bore 1 a and then extends horizontally, 2 b , into the horizontal well bore 1 b .
  • Well bore 1 a is then caped at the top with seal 15 . This is to prevent any gasses or other material from escaping out into the atmosphere and surrounding area.
  • This system is an example that can be used with the claimed fracturing process. Modification of the system and other configurations may be used with the fracturing process.
  • Clean water is supplied through input 14 through a processing system 8 , which includes a three way valve.
  • the water is directed through 23 into pipe 9 and then in to storage container 5 , which cools (or refrigerates) the carbonated the water, using the CO 2 from portable storage container 6 .
  • the refrigerated carbonated water from container 5 is then directed, through pipe 10 and valve 10 b , into the well at opening 10 a .
  • This carbonated water flows downward into the well and fills the horizontal portion 1 b with carbonated water.
  • the carbonated water in container 5 is refrigerated to keep the carbonated water cool, or partially frozen so as to prevent vaporization of the CO 2 from the water while it is being injected into the well.
  • the carbonated water may be lightly frozen to provide an icy slush.
  • Sand can be injected into the wellbore alone, or with the carbonated water to aid in the fracturing process. In the fracturing process the water and CO 2 need to be chilled and under high pressure.
  • the overall composition of the CO 2 , steam and water would be, for example 500 k gallons.
  • the three compounds would be supplied as follows: 30-40% CO 2 (ice or liquid) (150-200 k), 10-20% steam (50-100 k), and 50% water (250K).
  • a Second Process is about the Same at the First Process, however, the Liquid CO 2 is Introduced into the System at the Beginning Rather than Later.
  • pressurized steam generated in steam generator 4
  • pipe/tube 2 b has openings 16 around it periphery and along its length to distribute the steam throughout horizontal well bore 1 b .
  • the pressurized steam causes the carbonated water to literally explode creating a great pressure in the well causing fracturing of the walls of the well bore, thus releasing natural gas/oil from the underground sources.
  • processing unit 7 After the fracturing process, the remaining carbonated water, any loose sand, and the gas/oil is then pumped upward though well bore 1 a and pipe 2 a through pipes 11 a and 11 b to valve 11 c and though pipe 11 into processing unit 7 , which may have storage capacity.
  • Processing unit 7 filters out any particulate material and separates the gas/oil and CO 2 from the remaining water.
  • the CO 2 can be returned through pipe 28 to the CO 2 storage tank 6 for reuse.
  • the gas/oil is then stored or directed out pipe 13 for storage and/or transportation to another storage facility.
  • particulate filter 7 there could be at least two parallel particulate filters. One would be used at a time. When the flow of gas/petroleum/CO2 decreases to a lower determined level through the particulate filter, a sensor would detect this lower level and would switch the flow through a parallel filter. There would be a notification of this change, and the clogged filter could be cleaned to remove the particulate for use again.
  • the separated water is then passed through pipe 12 into processing system 8 .
  • the water can be directed back into the system though valve 21 for reuse, as needed, for additional fracturing of the well.
  • the water can also be processed to clean it, removing any and all chemical and/or foreign matter from the well and then sent through pipe 14 for storage and/or another use.
  • All of the units, Steam generator 4 , carbonated water unit 5 , CO 2 unit 6 , separator 7 and processing system may all be portable units for use at other locations.
  • the units may be incorporated in one movable unit for movement to other drilling sites.
  • a pressure sensor 30 measures the pressure. If the pressure exceeds a predetermined amount, then release valve 31 would open, and stay open, as long as the pressure exceeds the predetermined amount. When the pressure is reduced, then valve 31 would close.
  • refrigerated CO 2 can be injected into the well bore and then expanded with the pressurized steam. This would limit the amount of carbonated water needed in the well bore. Since steam is vaporized water, after the steam is injected into the refrigerated CO 2 , it would cool and become carbonated water. Additional steam injected into the refrigerated CO 2 would cause it to expand and cause fracturing. This would limit the amount of carbonated water to be removed from the well for cleaning and future use.
  • FIG. 2 illustrates the system and method for producing clean fracturing in a natural gas and oil well as in FIG. 1 with the following differences in the system and method.
  • an isolation plug 19 is placed near the bottom of the vertical portion 1 a of the well bore, or in any part of horizontal well bore 1 b .
  • the location of the isolation plug is determined where the fracturing of the well is to begin. Since carbonated water cannot be inserted into the well after the isolation plug seal 19 is in place, the valve 3 of FIG. 1 is replaced with valve 20 .
  • the carbonated water is then passed through pipe 17 into valve 20 into pipe 2 a to insert the carbonated water into the well bore.
  • the carbonated water will flow downward through pipe 2 a and horizontal pipe 2 b and into the well out openings 16 and out the end 2 d of horizontal pipe 2 b into the well bore.
  • the pressurized steam from steam generator 4 is directed through valve 20 into pipe 2 a and 2 b .
  • the steam is then evenly distributed into horizontal well bore 1 b through openings 16 , as in FIG. 1 , providing pressure to producing the fracturing required to release the natural gas or oil from the surrounding areas.
  • isolation plug 19 The advantage of using isolation plug 19 is that the pressure cannot pass upward into vertical well bore 1 a , or unwanted areas of 1 b , providing a greater pressure in the localized horizontal portion of 1 b of the well bore, increasing the fracturing pressure and increasing the result of the fracturing, releasing more natural gas and/or oil.
  • Isolation plug 19 could include a pressure sensor 38 and release valve 39 to prevent the pressure from exceeding a predetermined amount, to prevent over fracturing.
  • the isolation plug can be later removed or drilled out to allow flow in well bore 1 a.
  • the remaining carbonated water, any loose sand or other particulate material, and the gas/oil may be pumped upward though pipe 2 a and well bore 1 a through pipes 11 a and 11 b to valve 11 c , and then through pipe 11 into processing unit 7 .
  • FIG. 3 illustrates a well configuration in which frozen CO 2 is inserted into a pipe 45 and then expanded by pressurized steam to cause fracturing of the walls of the well bore 1 b .
  • This configuration involves cooling CO 2 in unit 50 to a temperature greater than or equal to ⁇ 109 degrees F. and injecting a snow like compound into well bore 1 b .
  • This is achieved through a flexible composite material or metal alloy insertion hose or tube 51 and 45 , which can be the same as tube 2 a , FIG. 2 , attached via a delivery hose or tubing from the surface.
  • the cooled CO 2 is released into the well bore through the perforations 43 in the insertion tube 42 , or by use of, or with a perforating gun.
  • a CO 2 sensor and release valve 41 When sufficient amounts of cooled CO 2 are achieved, a CO 2 sensor and release valve 41 immediately closes off the CO 2 induction and triggers a steam pressure sensor and release valve 40 for high pressure steam to immediately be injected through the same flexible perforated composite or metal alloy insertion tube 45 .
  • a pressure containment plate 46 seals the lower portion of the well to prevent pressure from rising upward to the top of the well. This process creates a catalytic reaction that rapidly heats and expands the cooled CO 2 causing the fracturing of the shale or other geological formation being addressed. This process can be carried out in one large stage or in multiple stages, depending upon the specific characteristics of the geological formation being fractured, and can be repeated until the required desire of fracturing is achieved.
  • This configuration can be used in combination with the basic system shown in FIG. 2 where the assembly in FIG. 3 replaces the structure at the lower end of tube 2 a , or any part of horizontal 1 b of FIG. 2 .
  • Pipe 45 in FIG. 3 may have several configurations and partitions for inserting the fracturing materials into the well.
  • FIGS. 4 a and 4 b below shows two possible configurations. Other configurations are possible to individually insert the fracturing materials in the order necessary to provide the fracturing.
  • the carbonated water, frozen CO 2 , and steam are alternately inserted though valve 20 a.
  • the system of FIG. 1 could be used to extract minerals other than gas and oil. In this configuration, there would be extreme fracturing to break up the mineral containing soil/rock in the structure. The mineral containing soil/rock would be vacuumed up out of the structure where the minerals could be separated from the soil/rock. This process would use a vacuum system similar to that used to mine minerals from the sea bottom. In this instance, the pressure system and release valves would not be used.
  • FIGS. 4 a and 4 b illustrate two types of insertion tubes.
  • FIGS. 4 a and 4 b are cross sectional views taken at A-A in FIG. 3 .
  • FIG. 4 a shows concentric used to insert particulate frozen CO 2 , pressurized steam and carbonated water and fracking sand as needed.
  • the outer structure is the well bore structure into which the concentric tubes are inserted.
  • FIG. 4 b shows parallel tubes into which pressurized steam, carbonated water and particulate frozen CO 2 are injected into the well bore structure.
  • valves 3 , 20 , 20 a , 10 b and 11 c and tubes 2 a and 2 b in FIGS. 1, 2 and 3 may remain onsite for future use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)

Abstract

The invention is a system and process for providing a clean, non-contaminating process, for producing fracturing of shale, limestone, sands and other geological and mining formations to release natural gas, oil and minerals within a formation. The system used in the process produces on site the energy required to induce fracturing, removing natural gas and oil, and to recycle fluids used in fracturing for additional use. Removable storage provides the necessary materials to provide fracturing, removal and processing of the fracturing liquids for addition use at one or more sites, and to provide processing, storage and transportation of the resulting natural gas and oil.

Description

  • This is a continuation-in-part application of Ser. No. 14/121,591, filed Sep. 22, 2014.
  • FIELD OF THE INVENTION
  • The invention relates to a method and system for producing fracturing of shale and oil sands, and mineral containing material to release natural gases and oil utilizing CO2 and a steam process without using other chemical contaminants.
  • BACKGROUND OF THE INVENTION
  • Most fracturing processes use various chemicals in their process to recover gas and oil. For example, U.S. Pat. No. 8,733,439 uses CO2, but also used H2O2 (hydrogen peroxide) which, when used medically in small amounts, is considered a mild antiseptic, and can be used as a bleaching agent. Hydrogen peroxide can be used for certain industrial or environmental purposes as well, because it can provide the effects of bleaching without the potential damage of chlorine-based agents. Because this substance can be unstable in high concentrations, it must be used with care. In higher concentrations, it can create strong chemical reactions when it interacts with other agents, and it can damage the skin or eyes of persons working with it. The use in wells may contaminate underground water if there is seepage into ground water. This patent also uses other chemicals that include Fe, Co, Ni and similar chemicals.
  • Other processes also use various chemicals, particulate material, and other catalysts which can contaminate water sources such as wells and aquifers. These processes utilize a large amount of water which often is not or cannot be recycled because of the toxic chemicals contained therein.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a clean, non-contaminating process for producing fracturing of shale, limestone, sands, and other geological and mining formations to release natural gas and oil within a well, and to break up any mineral containing material.
  • Another object of the invention is to provide a system to produce on site the energy required to induce fracturing, removing natural gas and oil, and to recycle fluids used in fracturing for additional use.
  • Another object of the invention is to provide for movable storage of fracturing liquids for additional use at one or more sites.
  • The technical advance represented by the invention as well as the objects thereof will become apparent from the following description of a preferred embodiment of the invention when considered in conjunction with the accompanying drawings, and the novel features set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a diagram of the basis system of the invention and the process associated therewith.
  • FIG. 2 illustrates additional features which may be utilized with the present invention.
  • FIG. 3 illustrates a well configuration in which frozen CO2 is inserted into a well and then expanded by pressurized steam to cause fracturing of the walls of the well.
  • FIGS. 4a and 4b illustrate two types of insertion tubes.
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • FIG. 1 illustrates the system and method for producing clean fracturing in a natural gas and oil well. The well has a vertical drill bore and or pipe casing 1 a and a horizontal drill bore or pipe casing 1 b extending horizontally from the lower end of vertical drill bore and or pipe casing 1 a. This is the standard method of drilling wells. Inserted in the well is vertical pipe or tube 2 a which extends the length of vertical well bore 1 a and then extends horizontally, 2 b, into the horizontal well bore 1 b. Well bore 1 a is then caped at the top with seal 15. This is to prevent any gasses or other material from escaping out into the atmosphere and surrounding area. This system is an example that can be used with the claimed fracturing process. Modification of the system and other configurations may be used with the fracturing process.
  • The rest of the system is described as follows. Clean water is supplied through input 14 through a processing system 8, which includes a three way valve. The water is directed through 23 into pipe 9 and then in to storage container 5, which cools (or refrigerates) the carbonated the water, using the CO2 from portable storage container 6.
  • The refrigerated carbonated water from container 5 is then directed, through pipe 10 and valve 10 b, into the well at opening 10 a. This carbonated water flows downward into the well and fills the horizontal portion 1 b with carbonated water. The carbonated water in container 5 is refrigerated to keep the carbonated water cool, or partially frozen so as to prevent vaporization of the CO2 from the water while it is being injected into the well. The carbonated water may be lightly frozen to provide an icy slush. Sand can be injected into the wellbore alone, or with the carbonated water to aid in the fracturing process. In the fracturing process the water and CO2 need to be chilled and under high pressure. To reach the necessary pressure for fracturing there will be a need of about 60-80% liquid CO2 and 20-40% steam. Frozen or refrigerated CO2, steam and water in these percentages may be used in these percentages to produce the required pressure for fracturing.
  • To produce the required fracturing, the overall composition of the CO2, steam and water would be, for example 500 k gallons. The three compounds would be supplied as follows: 30-40% CO2 (ice or liquid) (150-200 k), 10-20% steam (50-100 k), and 50% water (250K).
  • There are two possible processes to accomplish the fracturing. One is to put carbonated water into the well shaft and CO2 gas is introduced. The total mixture is put in high pressure just above the freezing temperature. This allows more CO2 to dissolve into the water and when the percentages are right. The CO2 will then separate into liquid CO2 and water. Both will be introduced into the wellbore with steam to create an explosion, thus producing the fracturing.
  • A Second Process is about the Same at the First Process, However, the Liquid CO2 is Introduced into the System at the Beginning Rather than Later.
  • Once the well, particularly the horizontal portion 1 b is filled with the carbonated water (frozen or refrigerated), then pressurized steam, generated in steam generator 4, is injected into the well though valve 3 into pipes or tubes 2 a and 2 b. Pipe/tube 2 b has openings 16 around it periphery and along its length to distribute the steam throughout horizontal well bore 1 b. The pressurized steam causes the carbonated water to literally explode creating a great pressure in the well causing fracturing of the walls of the well bore, thus releasing natural gas/oil from the underground sources. To keep all of the pressurized steam from exiting through the first holes at the beginning 2 c of horizontal pipe 2 b, there are fewer holes at the start of horizontal pipe 2 c to prevent exiting of a large quantity of pressurized gas. The number of holes increases towards the 2 d end of the horizontal pipe. This progressive increasing of holes helps to evenly distribute the pressurized gas throughout the horizontal portion 1 b of the well.
  • After the fracturing process, the remaining carbonated water, any loose sand, and the gas/oil is then pumped upward though well bore 1 a and pipe 2 a through pipes 11 a and 11 b to valve 11 c and though pipe 11 into processing unit 7, which may have storage capacity. Processing unit 7 filters out any particulate material and separates the gas/oil and CO2 from the remaining water. The CO2 can be returned through pipe 28 to the CO2 storage tank 6 for reuse. The gas/oil is then stored or directed out pipe 13 for storage and/or transportation to another storage facility.
  • To prevent the particulate filter 7 from becoming clogged with particulate material, there could be at least two parallel particulate filters. One would be used at a time. When the flow of gas/petroleum/CO2 decreases to a lower determined level through the particulate filter, a sensor would detect this lower level and would switch the flow through a parallel filter. There would be a notification of this change, and the clogged filter could be cleaned to remove the particulate for use again.
  • The separated water is then passed through pipe 12 into processing system 8. The water can be directed back into the system though valve 21 for reuse, as needed, for additional fracturing of the well. The water can also be processed to clean it, removing any and all chemical and/or foreign matter from the well and then sent through pipe 14 for storage and/or another use.
  • All of the units, Steam generator 4, carbonated water unit 5, CO2 unit 6, separator 7 and processing system may all be portable units for use at other locations. The units may be incorporated in one movable unit for movement to other drilling sites.
  • To prevent excess pressure that would cause over fracturing in the well, a pressure sensor 30 measures the pressure. If the pressure exceeds a predetermined amount, then release valve 31 would open, and stay open, as long as the pressure exceeds the predetermined amount. When the pressure is reduced, then valve 31 would close.
  • As an alternative to using carbonated water, refrigerated CO2 can be injected into the well bore and then expanded with the pressurized steam. This would limit the amount of carbonated water needed in the well bore. Since steam is vaporized water, after the steam is injected into the refrigerated CO2, it would cool and become carbonated water. Additional steam injected into the refrigerated CO2 would cause it to expand and cause fracturing. This would limit the amount of carbonated water to be removed from the well for cleaning and future use.
  • FIG. 2 illustrates the system and method for producing clean fracturing in a natural gas and oil well as in FIG. 1 with the following differences in the system and method. In the vertical part of the wellbore 1 a, an isolation plug 19 is placed near the bottom of the vertical portion 1 a of the well bore, or in any part of horizontal well bore 1 b. The location of the isolation plug is determined where the fracturing of the well is to begin. Since carbonated water cannot be inserted into the well after the isolation plug seal 19 is in place, the valve 3 of FIG. 1 is replaced with valve 20. The carbonated water is then passed through pipe 17 into valve 20 into pipe 2 a to insert the carbonated water into the well bore. The carbonated water will flow downward through pipe 2 a and horizontal pipe 2 b and into the well out openings 16 and out the end 2 d of horizontal pipe 2 b into the well bore. The pressurized steam from steam generator 4 is directed through valve 20 into pipe 2 a and 2 b. The steam is then evenly distributed into horizontal well bore 1 b through openings 16, as in FIG. 1, providing pressure to producing the fracturing required to release the natural gas or oil from the surrounding areas. The advantage of using isolation plug 19 is that the pressure cannot pass upward into vertical well bore 1 a, or unwanted areas of 1 b, providing a greater pressure in the localized horizontal portion of 1 b of the well bore, increasing the fracturing pressure and increasing the result of the fracturing, releasing more natural gas and/or oil.
  • Isolation plug 19 could include a pressure sensor 38 and release valve 39 to prevent the pressure from exceeding a predetermined amount, to prevent over fracturing. The isolation plug can be later removed or drilled out to allow flow in well bore 1 a.
  • After the fracturing process, the remaining carbonated water, any loose sand or other particulate material, and the gas/oil may be pumped upward though pipe 2 a and well bore 1 a through pipes 11 a and 11 b to valve 11 c, and then through pipe 11 into processing unit 7.
  • FIG. 3 illustrates a well configuration in which frozen CO2 is inserted into a pipe 45 and then expanded by pressurized steam to cause fracturing of the walls of the well bore 1 b. This configuration involves cooling CO2 in unit 50 to a temperature greater than or equal to −109 degrees F. and injecting a snow like compound into well bore 1 b. This is achieved through a flexible composite material or metal alloy insertion hose or tube 51 and 45, which can be the same as tube 2 a, FIG. 2, attached via a delivery hose or tubing from the surface. The cooled CO2 is released into the well bore through the perforations 43 in the insertion tube 42, or by use of, or with a perforating gun. When sufficient amounts of cooled CO2 are achieved, a CO2 sensor and release valve 41 immediately closes off the CO2 induction and triggers a steam pressure sensor and release valve 40 for high pressure steam to immediately be injected through the same flexible perforated composite or metal alloy insertion tube 45. A pressure containment plate 46 seals the lower portion of the well to prevent pressure from rising upward to the top of the well. This process creates a catalytic reaction that rapidly heats and expands the cooled CO2 causing the fracturing of the shale or other geological formation being addressed. This process can be carried out in one large stage or in multiple stages, depending upon the specific characteristics of the geological formation being fractured, and can be repeated until the required desire of fracturing is achieved. This configuration can be used in combination with the basic system shown in FIG. 2 where the assembly in FIG. 3 replaces the structure at the lower end of tube 2 a, or any part of horizontal 1 b of FIG. 2.
  • Pipe 45, in FIG. 3 may have several configurations and partitions for inserting the fracturing materials into the well. FIGS. 4a and 4b below, shows two possible configurations. Other configurations are possible to individually insert the fracturing materials in the order necessary to provide the fracturing.
  • The carbonated water, frozen CO2, and steam are alternately inserted though valve 20 a.
  • The system of FIG. 1 could be used to extract minerals other than gas and oil. In this configuration, there would be extreme fracturing to break up the mineral containing soil/rock in the structure. The mineral containing soil/rock would be vacuumed up out of the structure where the minerals could be separated from the soil/rock. This process would use a vacuum system similar to that used to mine minerals from the sea bottom. In this instance, the pressure system and release valves would not be used.
  • FIGS. 4a and 4b illustrate two types of insertion tubes. FIGS. 4a and 4b are cross sectional views taken at A-A in FIG. 3.
  • FIG. 4a shows concentric used to insert particulate frozen CO2, pressurized steam and carbonated water and fracking sand as needed. The outer structure is the well bore structure into which the concentric tubes are inserted.
  • FIG. 4b shows parallel tubes into which pressurized steam, carbonated water and particulate frozen CO2 are injected into the well bore structure.
  • These two configurations are examples for inducing the fracturing material. Other configurations may be used, for example some of the tubes may be used for more than one insertion path, different injection materials may be switched between the injection paths.
  • The valves 3, 20, 20 a, 10 b and 11 c and tubes 2 a and 2 b in FIGS. 1, 2 and 3 may remain onsite for future use.

Claims (14)

1. A method of providing fracturing in a well bore, to produce at least one of natural gas and oil, having vertical and horizontal well bore regions,
injecting liquid CO2 into the well bore;
Injecting pressurized steam into the carbonated water to cause fracturing of the walls of the well;
the proportion of liquid CO2 and steam being in the range of 60-80% liquid CO2 and 20-40% steam by volume.
2. The method according to claim 1, wherein the well bore has vertical and horizontal portions and a pipe in the well extends into the vertical and horizontal portions of the well bore;
Wherein, pressurized steam is injected into the horizontal region of the well bore through peripheral openings in the pipe in the horizontal region of the well bore; and
Injecting Fracking sand.
3. The method according to claim 1 wherein the liquid CO2 is refrigerated prior to injecting it into the well.
4. The method according to claim 1, wherein at least one of natural gas and oil, carbonated water, and any released CO2 are removed from the well, the carbonated water and CO2 being separated from at least one of natural gas and oil, and processed for further use.
5. (canceled)
6. A method of providing fracturing in a well bore, to produce at least one of natural gas and oil;
injecting refrigerated carbonated water into the well bore;
injecting pressurized steam into a region of the well bore through peripheral openings in a pipe extending downward into the well bore and into a horizontal region of the well bore.
7. The method according to claim 6, wherein the peripheral openings in the pipe are spaced apart to maximize the insertion of the pressurized steam in equal portions along the length of the horizontal portion of the pipe, the openings being spaced apart in decreasing spaces between the openings.
8. The method according to claim 1 including the triggering of a sensor valve when a sufficient amount of liquid CO2 has been released into the well bore to close off the insertion of cooled CO2 liquid CO2 and opening a second valve to allow pressurized steam to be injected into the well to rapidly expand the liquid CO2.
9. A system for producing fracturing in a well bore utilizing only refrigerated carbonated water, sand, and pressurized steam, comprising:
a well bore having a vertical and horizontal regions;
a pipe extending downward in the vertical region and into the horizontal region;
a storage unit for holding refrigerated carbonated water for injection into the well;
a steam generator for injecting pressurized steam into the carbonated water for producing fracturing in the well; and
separator for removing at least one of gas and oil released during the fracturing process.
10. The system according to claim 9, including an isolation plug to prevent the pressurized steam, contaminates and carbonated water from moving up the vertical portion of the well, and increasing the pressure in any portion of the well bore to produce greater fracturing in the well.
11. The system according to claim 9, including a seal at the top of the well to prevent any gases and other materials from leaving the well and entering the atmosphere.
12. (canceled)
13. The system according to claim 9, where any materials removed from the well bore pass through a particulate filter to remove particulate material from fluids removed from the well.
14. The system according to claim 13, wherein the system includes at least two particulate filters, only one filter being used at a time so that the one that is not being used can be cleaned for future use.
US14/756,683 2015-09-30 2015-09-30 Method of gas, oil, and mineral production using a clean process system and method Abandoned US20170089188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/756,683 US20170089188A1 (en) 2015-09-30 2015-09-30 Method of gas, oil, and mineral production using a clean process system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/756,683 US20170089188A1 (en) 2015-09-30 2015-09-30 Method of gas, oil, and mineral production using a clean process system and method

Publications (1)

Publication Number Publication Date
US20170089188A1 true US20170089188A1 (en) 2017-03-30

Family

ID=58408701

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/756,683 Abandoned US20170089188A1 (en) 2015-09-30 2015-09-30 Method of gas, oil, and mineral production using a clean process system and method

Country Status (1)

Country Link
US (1) US20170089188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230349267A1 (en) * 2022-04-28 2023-11-02 Patterson-Uti Drilling Company Llc Integrated Wellsite System and Method for In-situ CO2 Gas Capture, Carbonation and Sequestration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260022A1 (en) * 2008-01-23 2015-09-17 Ben M. Enis Method and apparatus for using frozen carbon dioxide blocks or cylinders to recover oil from abandoned oil wells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260022A1 (en) * 2008-01-23 2015-09-17 Ben M. Enis Method and apparatus for using frozen carbon dioxide blocks or cylinders to recover oil from abandoned oil wells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230349267A1 (en) * 2022-04-28 2023-11-02 Patterson-Uti Drilling Company Llc Integrated Wellsite System and Method for In-situ CO2 Gas Capture, Carbonation and Sequestration

Similar Documents

Publication Publication Date Title
US9605513B1 (en) Method of gas, oil and mineral production using a clean processing system and method
CA2904301C (en) Method of gas, oil and mineral production using a clean processing system and method
CN107109204B (en) y-grade liquefied natural gas production increasing fluid, system and method
EP2888440B1 (en) Reduced emissions method for recovering product from a hydraulic fracturing operation
CA2536763C (en) Simultaneous development of underground caverns and deposition of materials
US10760390B2 (en) Use of gaseous phase natural gas as a carrier fluid during a well intervention operation
US20080156482A1 (en) Method for the Treatment of the Obstructed Zones of the Parent Rock of Hydrocarbon-Producing Strata Adjacent to a Gas and Oil Well Drilling Zone in Order to Increase Productivity
RU2393340C1 (en) Method and system for pressure control in underground formations
US9297246B2 (en) Apparatus and methods for separating sand from well fracturing return water
PL222247B1 (en) Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings
MXPA05007415A (en) Advanced gas injection method and apparatus liquid hydrocarbon recovery complex.
US7757770B2 (en) Method of stimulating a coalbed methane well
US20170089188A1 (en) Method of gas, oil, and mineral production using a clean process system and method
JP3602534B2 (en) How to improve the flow of liquid in a well
US9004172B2 (en) Systems, materials, and methods for recovering material from bedrock using supercritical argon compositions
US20140251606A1 (en) Method For Increasing Hydrocarbon Extraction And For Ensuring The Continuous Operation Of Wells
US20140318773A1 (en) Methane enhanced liquid products recovery from wet natural gas
US9127542B2 (en) Subterranean well treatment process
KR20210024819A (en) Dual packer system for soil remediation that can be selectively installed in contaminated depths and sprayed with a purifier
US11041373B2 (en) Brine management system for salt cavern development and operations
US10648306B2 (en) Interval delivery of liquid carbon dioxide
CA2779238A1 (en) Selective leach recovery of oil (and asphaltene) from oil sands and like materials
CA2760267A1 (en) Apparatus for extracting crude oil from sand
US20040214726A1 (en) Well stimulation fluid and well stimulation fluid recycling process
US3397743A (en) Removal of foreign element from a well

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION