US20170079560A1 - System and method for measuring finger movements - Google Patents

System and method for measuring finger movements Download PDF

Info

Publication number
US20170079560A1
US20170079560A1 US15/310,569 US201515310569A US2017079560A1 US 20170079560 A1 US20170079560 A1 US 20170079560A1 US 201515310569 A US201515310569 A US 201515310569A US 2017079560 A1 US2017079560 A1 US 2017079560A1
Authority
US
United States
Prior art keywords
sensing module
joint
flexible wires
thumb
fingers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/310,569
Inventor
Joonbum BAE
Yeongyu PARK
Jeongsoo LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIST Academy Industry Research Corp
Original Assignee
UNIST Academy Industry Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIST Academy Industry Research Corp filed Critical UNIST Academy Industry Research Corp
Assigned to UNIST (ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY) reassignment UNIST (ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAE, JOONBUM, Lee, Jeongsoo, PARK, YEONGYU
Publication of US20170079560A1 publication Critical patent/US20170079560A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1114Tracking parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6806Gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1071Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers

Definitions

  • the present invention relates to a system and method of measuring motions of a thumb and fingers, and more particularly to a system and method of measuring motions of a thumb and fingers, which informs relation between positions varied depending on the motions of a thumb and fingers.
  • a hand is one of abundant sources in terms of tactile sensing, and it is impossible to achieve elaborate and complicated manipulation without the hand.
  • To develop a wearable system for the hand an unconstrained hand motion has to be previously analyzed. Accordingly, extensive researches about a simple system for measuring motions of a thumb and fingers have been carried out.
  • a 3D magnetic position sensor has been used in measuring angles at joints of a thumb and fingers, and thus three-dimensionally measured motions of the thumb and fingers.
  • required peripheral devices may obstruct the unconstrained hand motion.
  • an optical fiber sensor has been also used in measuring the angles.
  • the optical fiber sensor is mounted to a glove for the purpose of easy wearing, but the optical sensor has to be carefully bent to measure the angles at the joints.
  • the mobility of the optical sensor is extremely limited by required peripheral devices such as a laser diode and an optical power system.
  • a flexible resistor is commercially available and shows good performance with respect resolution and repeatability.
  • the flexible resistor is economically inefficient and difficult to combine with another system such as a hand exoskeleton system.
  • the optical encoder, the magnetic position sensor, the optical fiber sensor, the flexible resistor, and the like have been used, but not regarded as a compact and simple measuring system—capable of measuring unconstrained motions of a thumb and fingers—due to a limited space of a hand.
  • the present invention is conceived to solve the foregoing problems, and an aspect of the present invention is to provide a system for measuring motions of a thumb and fingers, which can relatively easily measure angles at joints of a thumb and fingers within a limited space of the thumb and fingers, and is lightweight and compact enough not to hinder a natural motion of a hand, and a method of using the same.
  • a system for measuring motions of a thumb and fingers including: a glove which is worn by a user; first and second flexible wires which are movable in accordance with motions of a thumb and fingers, include first ends attached to the glove and have predetermined lengths; and a sensing module which includes first and second linear potentiometers respectively connecting with second ends of the first and second flexible wires and including elastic members for maintaining tension of the flexible wires, wherein the first end of the first flexible wire is attached to a position on the glove corresponding to a position between a first joint and a second joint of a finger, and the first end of the second flexible wire is attached to a position on the glove corresponding to a position between the second joint and a third joint of the finger, wherein angles at the first and second joints are calculated based on changed distances of the attached positions measured by the flexible wires and the linear potentiometers of the sensing module in accordance with a motion of the finger.
  • the first and second flexible wires and the sensing module may be provided in each of a thumb and fingers.
  • the sensing module may be placed on a position of the glove corresponding to a back of a hand.
  • the elastic member of the sensing module may include a linear spring, and the first, second and third joints respectively correspond to a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal(DIP) joint.
  • PIP proximal interphalangeal
  • MCP metacarpophalangeal
  • DIP distal interphalangeal
  • a method of measuring motions of a thumb and fingers of a user who wears a glove including: attaching first ends of first and second flexible wires to positions of the glove respectively corresponding to middle and proximal phalanxes of each finger; connecting second ends of the first and second flexible wires to a sensing module so that the first and second flexible wires can move forward and backward while maintaining tension thereof in accordance with a motion of the finger; and by the sensing module, measuring moved distances of the first and second flexible wires, wherein rotary angles at corresponding joints in the thumb and fingers are calculated based on the measured moved distances.
  • the sensing module may be placed on a position of the glove corresponding to a back of a hand.
  • Each tension of the first and second flexible wires is constantly maintained by an elastic member provided in the sensing module, and the elastic member may include a linear spring.
  • the moved distances of the first and second flexible wires may be respectively measured by first and second linear potentiometers provided in the sensing module.
  • the sensing module may include a frame made of nylon and by rapid prototyping technology, but there are no limits to the material and technology as long as they have similar effects.
  • FIG. 1 is an anatomical schematic view of a hand
  • FIG. 2 is a cross-section view of a thumb and fingers
  • FIG. 3 is a conception view of a system according to the present invention.
  • FIG. 4 illustrates a system designed according to the present invention
  • FIG. 5 illustrates a system designed according to the present invention
  • FIG. 6 illustrates a test device
  • FIG. 7 is a graph of showing a relationship between a DIP joint and a PIP joint
  • FIG. 8 illustrates a sensing module designed according to an embodiment of the present invention
  • FIG. 9 is a photograph of a wearable sensing glove according to an embodiment of the present invention.
  • FIG. 10 shows a program interface according to an embodiment of the present invention.
  • the present invention proposes a system for measuring motions of a thumb and fingers, which employs a linear potentiometer, a flexible wire and a linear spring.
  • the flexible wires are attached to backsides of a thumb and fingers.
  • the linear potentiometer which has the linear spring for maintaining tension of the wire, is used in measuring the angles at the joints.
  • a proximal interphalangeal (PIP) motion is dependent on a distal interphalangeal (DIP) joint, and therefore only two linear potentiometers are applied to each of the thumb and fingers.
  • PIP distal interphalangeal
  • This compact sensing module with ten linear potentiometers and springs is attached to a glove. By just wearing such a glove, the motions of the thumb and fingers are easily measured by an easy program interface.
  • a hand consists of bones, muscles and ligaments of joints, which are complicatedly combined and determine a direction and range of a hand motion. To accurately measure motions of a thumb and fingers, it is required to understand an anatomical structure of a hand. Below, the anatomical structure of the hand will be described in brief.
  • each of the fingers except the thumb includes three bones, i.e. a distal phalanx, a middle phalanx and a proximal phalanx and three joints, i.e. a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal (DIP) joint.
  • the thumb includes two bones, i.e. a distal phalanx and a proximal phalanx, and two joints, i.e. an interphalangeal (IP) joint, and an MCP joint.
  • Metacarpal phalanx bones meet a wrist at carpometacarpal (CMC) joints.
  • the IP joint including the PIP and DIP joints has one degree of freedom for flexion/extension motions, and the MCP joint has two degrees of freedom for flexion/extension and abduction/adduction motions.
  • the motion of flexion/extension is typically more required than the motion of abduction/adduction. Accordingly, there is a great need of a system for measuring flexion/extension motions of a thumb and fingers without hindering natural motions of the thumb and fingers.
  • FIG. 2 shows a cross-section of a finger for a flexion/extension motion.
  • the lengths C 1 , C 2 and C 3 of the phalanxes are previously measured.
  • a tip position of the finger is expressed as follows.
  • Equations 1 and 2 only three angles at the joints are needed to describe the flexion/extension motion of each finger.
  • a limited space of the thumb makes it difficult to measure the angles at the joints of the finger.
  • a system for measuring the angle has to be lightweight and compact enough not to hinder natural motions of a hand.
  • the encoder attached to the thumb and fingers and the thick and wide wire cable for the optical encoder may interfere with a natural motion of the thumb and fingers.
  • required peripheral devices may obstruct the unconstrained hand motion.
  • the optical sensor has to be carefully bent to measure the angles at the joints, and by required peripheral devices such as a laser diode and an optical power system extremely limits the mobility of the optical sensor.
  • it is economically inefficient and difficult to combine with another system such as a hand exoskeleton system.
  • FIG. 3 shows basic concept of the present invention. For better understanding, an example of only one joint is shown in FIG. 3 .
  • the flexible wire e.g. a fishing line, etc.
  • a glove at a specific position (e.g. ‘A’) in a thumb and fingers by tying or the like method.
  • the joint motions of the thumb and fingers joint motion are regarded as rotary motions with respect to specific joints (e.g. ‘B’ inside the thumb or finger)
  • the motion with respect to one joint can be expressed as shown in FIG. 3( b ) .
  • the moved distance ⁇ L is calculated as follows.
  • r 1 is a diameter of the joint in the thumb or finger
  • ⁇ 1 is an angle at the joint.
  • the diameter of the joint in the thumb or finger may be directly measured.
  • the length change ⁇ L 1 is equal to ⁇ P and measured by the linear potentiometer length installed as shown in FIG. 3( c ) .
  • the angle at the joint is calculated as follows.
  • the thumb or finger wire When the thumb of finger is spread out to the initial position, the thumb or finger wire is also returned to the initial position by the spring installed in the potentiometer. If the spring is not given, the flexible wire is loosed as shown in FIG. 3( d ) and therefore the flexion of the thumb or finger can be measured only once by the system. In other words, the spring serves to keep constant tension of the flexible wire in accordance with motions of the thumb or finger.
  • ⁇ DIP and ⁇ PIP are angles at the DIP and PIP joints, respectively.
  • the present invention is designed as shown in FIG. 4 .
  • the angles at the respective joints are measured by the linear potentiometer. Based on such a relationship, the angle at the DIP joint can be obtained by the angle at the PIP joint. Accordingly, only two potentiometers are used in measuring the angles at the PIP and MCP joints, respectively.
  • the angles at the joints are calculated as follows.
  • ⁇ 1 ⁇ ⁇ ⁇ L 1 r 1 [ Equation ⁇ ⁇ 8 ]
  • ⁇ 2 ⁇ ⁇ ⁇ L 2 r 2 [ Equation ⁇ ⁇ 9 ]
  • ⁇ 1 ⁇ ⁇ ⁇ P 1 r 1 [ Equation ⁇ ⁇ 10 ]
  • ⁇ 2 ⁇ ⁇ ⁇ P 2 - ⁇ ⁇ ⁇ P 1 r 2 [ Equation ⁇ ⁇ 11 ]
  • a sensing module 30 which includes the potentiometer with the spring, is placed on a back of a hand, and a flexible wire 20 is tied on a glove 10 and connected to the sensing module 30 as shown in FIG. 5 .
  • two flexible wires 20 are used for each of the thumb and fingers, and respectively connected to the middle phalanx and proximal phalanx.
  • a thin cylindrical guide 40 is mounted to the glove so that the wire can be properly bent.
  • measured values of the present invention were compared with the measured values of a small wireless inertial measurement unit (IMU) sensor attached to the thumb and fingers.
  • IMU small wireless inertial measurement unit
  • the IMU sensor which is capable of an angle at orthogonal 3-axial joint, was used in measuring only the flexion/extension motion, and then compared with the measurements of the potentiometer.
  • the IMU sensor and the flexible wire were attached to the wooden hand as shown at the left side in FIG. 6 .
  • the IMU sensor was directly bonded to the wooden finger, and the flexible wire was used to connect the wooden finger (between the DIP and PIP joints) and the linear potentiometer having the restoring linear spring.
  • the potentiometer was placed on the back of the wooden hand.
  • the index finger was crooked at only the PIP joint but not moved at the MCP joint.
  • the signal measured by the potentiometer was converted by the Equation 9 into the angle at the PIP joint.
  • the test results showed that two measured values were matched with each other having an average error of 0.65 degrees.
  • FIG. 7 shows representative results. In the experiments, the participants were requested to freely bend and extend their own thumb and fingers without any constraint. The relation was derived by a curve-fitting method. Average data from the experiments were fitted by first-order and second-order as follows.
  • ⁇ DIP and ⁇ PIP are angles at the DIP and PIP joints, respectively.
  • Root mean square errors (RMSE) of first-order and second-order cases were 3.104 degrees and 2.251 degrees, respectively.
  • the curved-fitting results showed that the angles at the DIP and PIP joints are not linearly coupled, and the second-order fitting is better than the first-order fitting. However, this is significantly different from the well-known first-order approximation based on the Equation 5.
  • a simulator for measuring angles at joints of a finger is shown at the right side in FIG. 6 .
  • Three IMU sensors were attached to an index finger and measured the angles at the DIP, PIP and MCP joints.
  • Two wires were respectively tied on the proximal phalanx and middle phalanx of the glove and connected to two potentiometers.
  • a palm was kept flat and the index finger was bent forward and backward many times as a typical flexion/extension motion.
  • ten potentiometers are needed for measuring flexion/extension motions of a thumb and four fingers.
  • a small linear potentiometer having a stroke of 20 mm were used (see FIG. 8 ).
  • two potentiometers were arranged vertically to reduce the size of the sensing module.
  • the flexible wire was tied on each level of the potentiometer, and connected to the glove through a small hole in a frame.
  • the linear spring designed based on a manual was installed to return the potentiometer to the initial position when the thumb and fingers are extended.
  • FIG. 8( b ) shows the backside of the sensing module.
  • the potentiometer and the spring were installed through the backside of the sensing module.
  • the frame of the sensing module may be made of various materials/by various methods. In this embodiment, the frame of the sensing module was made of nylon and by rapid prototyping technology. The frame has a size of 45 ⁇ 61 ⁇ 17.4 mm and a weight of 39 g, which is compact enough not to hinder a hand motion.
  • the sensing module is attached to the glove, and a user wears the glove as shown in FIG. 9 .

Abstract

A system for and a method of measuring motions of a thumb and fingers of a user who wears a glove are provided. The method includes attaching first ends of first and second flexible wires to positions of the glove respectively corresponding to middle and proximal phalanxes of each finger, and connecting second ends of the first and second flexible wires to a sensing module so that the first and second flexible wires can move forward and backward while maintaining tension thereof in accordance with a motion of the finger. The method further includes, by the sensing module, measuring moved distances of the first and second flexible wires, such that rotary angles at corresponding joints in the thumb and fingers are calculated based on the measured moved distances.

Description

    TECHNICAL FIELD
  • The present invention relates to a system and method of measuring motions of a thumb and fingers, and more particularly to a system and method of measuring motions of a thumb and fingers, which informs relation between positions varied depending on the motions of a thumb and fingers.
  • BACKGROUND ART
  • A hand is one of abundant sources in terms of tactile sensing, and it is impossible to achieve elaborate and complicated manipulation without the hand. To develop a wearable system for the hand, an unconstrained hand motion has to be previously analyzed. Accordingly, extensive researches about a simple system for measuring motions of a thumb and fingers have been carried out.
  • First, a similarity approach using an optical linear encoder (OLE) has been tried, but the encoder attached to a thumb and fingers and a thick and wide wire cable for the optical encoder may interfere with a natural motion of the thumb and fingers.
  • Further, a 3D magnetic position sensor has been used in measuring angles at joints of a thumb and fingers, and thus three-dimensionally measured motions of the thumb and fingers. However, required peripheral devices may obstruct the unconstrained hand motion.
  • In addition, an optical fiber sensor has been also used in measuring the angles. The optical fiber sensor is mounted to a glove for the purpose of easy wearing, but the optical sensor has to be carefully bent to measure the angles at the joints. Besides, the mobility of the optical sensor is extremely limited by required peripheral devices such as a laser diode and an optical power system.
  • By the way, a flexible resistor is commercially available and shows good performance with respect resolution and repeatability. However, the flexible resistor is economically inefficient and difficult to combine with another system such as a hand exoskeleton system.
  • Like this, the optical encoder, the magnetic position sensor, the optical fiber sensor, the flexible resistor, and the like have been used, but not regarded as a compact and simple measuring system—capable of measuring unconstrained motions of a thumb and fingers—due to a limited space of a hand.
  • DISCLOSURE Technical Problem
  • The present invention is conceived to solve the foregoing problems, and an aspect of the present invention is to provide a system for measuring motions of a thumb and fingers, which can relatively easily measure angles at joints of a thumb and fingers within a limited space of the thumb and fingers, and is lightweight and compact enough not to hinder a natural motion of a hand, and a method of using the same.
  • Technical Solution
  • In accordance with one aspect of the present invention, there is provided a system for measuring motions of a thumb and fingers, the system including: a glove which is worn by a user; first and second flexible wires which are movable in accordance with motions of a thumb and fingers, include first ends attached to the glove and have predetermined lengths; and a sensing module which includes first and second linear potentiometers respectively connecting with second ends of the first and second flexible wires and including elastic members for maintaining tension of the flexible wires, wherein the first end of the first flexible wire is attached to a position on the glove corresponding to a position between a first joint and a second joint of a finger, and the first end of the second flexible wire is attached to a position on the glove corresponding to a position between the second joint and a third joint of the finger, wherein angles at the first and second joints are calculated based on changed distances of the attached positions measured by the flexible wires and the linear potentiometers of the sensing module in accordance with a motion of the finger.
  • The first and second flexible wires and the sensing module may be provided in each of a thumb and fingers.
  • The sensing module may be placed on a position of the glove corresponding to a back of a hand.
  • The elastic member of the sensing module may include a linear spring, and the first, second and third joints respectively correspond to a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal(DIP) joint.
  • In accordance with one aspect of the present invention, there is provided a method of measuring motions of a thumb and fingers of a user who wears a glove, the method including: attaching first ends of first and second flexible wires to positions of the glove respectively corresponding to middle and proximal phalanxes of each finger; connecting second ends of the first and second flexible wires to a sensing module so that the first and second flexible wires can move forward and backward while maintaining tension thereof in accordance with a motion of the finger; and by the sensing module, measuring moved distances of the first and second flexible wires, wherein rotary angles at corresponding joints in the thumb and fingers are calculated based on the measured moved distances.
  • The sensing module may be placed on a position of the glove corresponding to a back of a hand.
  • Each tension of the first and second flexible wires is constantly maintained by an elastic member provided in the sensing module, and the elastic member may include a linear spring.
  • The moved distances of the first and second flexible wires may be respectively measured by first and second linear potentiometers provided in the sensing module.
  • The sensing module may include a frame made of nylon and by rapid prototyping technology, but there are no limits to the material and technology as long as they have similar effects.
  • Advantageous Effects
  • In the system and method of measuring flexion/extension motions of thumb and finger motion according to an embodiment of the present invention, it is possible to relatively easily measure angles at joints of a thumb and fingers within a limited space of the thumb and fingers, and it is lightweight and compact enough not to hinder a natural motion of a hand.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is an anatomical schematic view of a hand,
  • FIG. 2 is a cross-section view of a thumb and fingers,
  • FIG. 3 is a conception view of a system according to the present invention,
  • FIG. 4 illustrates a system designed according to the present invention,
  • FIG. 5 illustrates a system designed according to the present invention,
  • FIG. 6 illustrates a test device,
  • FIG. 7 is a graph of showing a relationship between a DIP joint and a PIP joint,
  • FIG. 8 illustrates a sensing module designed according to an embodiment of the present invention,
  • FIG. 9 is a photograph of a wearable sensing glove according to an embodiment of the present invention, and
  • FIG. 10 shows a program interface according to an embodiment of the present invention.
  • REFERENCE NUMERALS
  • 100 System for measuring motions of a finger and thumbs
  • 10 user wearable glove 20 first and second flexible wires
  • 30 sensing module 40 cylindrical guide
  • BEST MODE
  • Embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to the description, it will be appreciated that terms and words used in the following description and claims have to be interpreted by not the limited meaning of the typical or dictionary definition, but the meaning and concept corresponding to the technical idea of the present invention on the assumption that the inventor can properly define the concept of the terms in order to describe his/her own invention in the best way.
  • Further, embodiments described in this specification and elements shown in the drawings are nothing but preferable examples, and do not represent the entirety of the present technical idea. Accordingly, it will be appreciated that they may be replaced by various equivalents and modifications on the filing date of the present invention. Prior
  • The present invention proposes a system for measuring motions of a thumb and fingers, which employs a linear potentiometer, a flexible wire and a linear spring. The flexible wires are attached to backsides of a thumb and fingers. As the flexible wire moves corresponding to motions of a thumb and fingers, angles at joints are calculated by measuring change in the length of the flexible wire. The linear potentiometer, which has the linear spring for maintaining tension of the wire, is used in measuring the angles at the joints. A proximal interphalangeal (PIP) motion is dependent on a distal interphalangeal (DIP) joint, and therefore only two linear potentiometers are applied to each of the thumb and fingers. This compact sensing module with ten linear potentiometers and springs is attached to a glove. By just wearing such a glove, the motions of the thumb and fingers are easily measured by an easy program interface.
  • Skeleton Structure Of Hand
  • A hand consists of bones, muscles and ligaments of joints, which are complicatedly combined and determine a direction and range of a hand motion. To accurately measure motions of a thumb and fingers, it is required to understand an anatomical structure of a hand. Below, the anatomical structure of the hand will be described in brief.
  • The hand motion is carried out by 19 bones, 19 joints and 29 muscles. As shown in FIG. 1, each of the fingers except the thumb includes three bones, i.e. a distal phalanx, a middle phalanx and a proximal phalanx and three joints, i.e. a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal (DIP) joint. The thumb includes two bones, i.e. a distal phalanx and a proximal phalanx, and two joints, i.e. an interphalangeal (IP) joint, and an MCP joint. Metacarpal phalanx bones meet a wrist at carpometacarpal (CMC) joints. The IP joint including the PIP and DIP joints has one degree of freedom for flexion/extension motions, and the MCP joint has two degrees of freedom for flexion/extension and abduction/adduction motions.
  • To control an object with a hand, the motion of flexion/extension is typically more required than the motion of abduction/adduction. Accordingly, there is a great need of a system for measuring flexion/extension motions of a thumb and fingers without hindering natural motions of the thumb and fingers.
  • System Elements
  • FIG. 2 shows a cross-section of a finger for a flexion/extension motion. In each of the fingers, the lengths C1, C2 and C3 of the phalanxes are previously measured. When angles of θ1, θ2 and θ3 between joints are measured, a tip position of the finger is expressed as follows.

  • I=C 1 cos(θ1)+C 2 cos(θ2)+C 3 cos(θ3)   [Equation 1]

  • y=C 1 sin(θ1)+C 2 sin(θ2)+C 3 sin(θ3)   [Equation 2]
  • As shown in the Equations 1 and 2, only three angles at the joints are needed to describe the flexion/extension motion of each finger. However, a limited space of the thumb makes it difficult to measure the angles at the joints of the finger. Further, a system for measuring the angle has to be lightweight and compact enough not to hinder natural motions of a hand.
  • As described above, there have been many tries for accurately measuring the joints of the thumb and fingers. That is, in the similarity approach using the optical linear encoder (OLE), the encoder attached to the thumb and fingers and the thick and wide wire cable for the optical encoder may interfere with a natural motion of the thumb and fingers. In the 3D magnetic position sensor 3 for measuring the angles at the joints of the thumb and fingers, required peripheral devices may obstruct the unconstrained hand motion. In the method of using the optical fiber sensor, the optical sensor has to be carefully bent to measure the angles at the joints, and by required peripheral devices such as a laser diode and an optical power system extremely limits the mobility of the optical sensor. In the method of using the flexible resistor, it is economically inefficient and difficult to combine with another system such as a hand exoskeleton system.
  • According to the present invention, a linear potentiometer with a flexible wire and a linear spring is used for measuring flexion/extension motions of a thumb and fingers. FIG. 3 shows basic concept of the present invention. For better understanding, an example of only one joint is shown in FIG. 3.
  • As shown in FIG. 3(a), the flexible wire (e.g. a fishing line, etc.) is attached to a glove at a specific position (e.g. ‘A’) in a thumb and fingers by tying or the like method. Since the joint motions of the thumb and fingers joint motion are regarded as rotary motions with respect to specific joints (e.g. ‘B’ inside the thumb or finger), the motion with respect to one joint can be expressed as shown in FIG. 3(b). As the thumb or finger is crooked, wrinkles at the joint of the thumb or finger are stretched out and thus the attached line moves. The moved distance ΔL is calculated as follows.

  • ΔL 1 =r 1θ1   [Equation 3]
  • where, r1 is a diameter of the joint in the thumb or finger, and θ1 is an angle at the joint.
  • The diameter of the joint in the thumb or finger may be directly measured. The length change ΔL1 is equal to ΔP and measured by the linear potentiometer length installed as shown in FIG. 3(c). Thus, the angle at the joint is calculated as follows.
  • θ 1 = Δ P r 1 [ Equation 4 ]
  • When the thumb of finger is spread out to the initial position, the thumb or finger wire is also returned to the initial position by the spring installed in the potentiometer. If the spring is not given, the flexible wire is loosed as shown in FIG. 3(d) and therefore the flexion of the thumb or finger can be measured only once by the system. In other words, the spring serves to keep constant tension of the flexible wire in accordance with motions of the thumb or finger.
  • Prior to description of multi-joint joint cases, dependency of between the joints of the finger has to be discussed. The DIP joint motion is not independently movable, and dependent on the PIP joint. A relationship between the DIP and PIP joints is approximated as follows.
  • θ DIP = 2 3 θ PIP [ Equation 5 ]
  • where, θDIP and θPIP are angles at the DIP and PIP joints, respectively.
  • However, a more accurate relationship is required to measure angles at two joints by measurement at only one PIP joint. By the accurate relationship between the DIP joint and the PIP joint, measurements are carried out only twice with regard to one finger having three degrees of freedom. The accurate relationship between the DIP joint and the PIP joint is experimentally obtained, and this will be described later.
  • Taking the dependency between the DIP joint and the PIP joint, the present invention is designed as shown in FIG. 4. Like a case of one joint, the angles at the respective joints are measured by the linear potentiometer. Based on such a relationship, the angle at the DIP joint can be obtained by the angle at the PIP joint. Accordingly, only two potentiometers are used in measuring the angles at the PIP and MCP joints, respectively.
  • If the finger is crooked from FIG. 4(a) to FIG. 4(b), the moved distances ΔL1 and ΔL2 of the tied positions are measured by two installed linear potentiometers as follows.

  • ΔP 1 =ΔL 1   [Equation 6]

  • ΔP 2 =ΔL 1 +ΔL 2   [Equation 7]
  • The angles at the joints are calculated as follows.
  • θ 1 = Δ L 1 r 1 [ Equation 8 ] θ 2 = Δ L 2 r 2 [ Equation 9 ]
  • Therefore, the angles at the joints are obtained by the potentiometers as follows.
  • θ 1 = Δ P 1 r 1 [ Equation 10 ] θ 2 = Δ P 2 - Δ P 1 r 2 [ Equation 11 ]
  • According to the present invention, only the changed distances of the tied positions, which can be measured by the flexible wire and the linear potentiometer, are required. One of the advantages in the present invention is that the flexible wire is bendable and thus there are no needs of aligning the wire with the finger. Therefore, a sensing module 30, which includes the potentiometer with the spring, is placed on a back of a hand, and a flexible wire 20 is tied on a glove 10 and connected to the sensing module 30 as shown in FIG. 5. For measurements at the PIP and MCP joints, two flexible wires 20 are used for each of the thumb and fingers, and respectively connected to the middle phalanx and proximal phalanx. In addition, a thin cylindrical guide 40 is mounted to the glove so that the wire can be properly bent.
  • Test
  • To test the performance of the system according to the present invention, measured values of the present invention were compared with the measured values of a small wireless inertial measurement unit (IMU) sensor attached to the thumb and fingers. The IMU sensor, which is capable of an angle at orthogonal 3-axial joint, was used in measuring only the flexion/extension motion, and then compared with the measurements of the potentiometer.
  • Before applying the system according to the present invention to a human's hand, the concept of the present invention was tested using a wooden hand. By the test using the wooden hand, uncertainties of a glove or human hand (e.g. extension of a glove, dependent rotation at each joint, etc.) were decreased.
  • The IMU sensor and the flexible wire were attached to the wooden hand as shown at the left side in FIG. 6. The IMU sensor was directly bonded to the wooden finger, and the flexible wire was used to connect the wooden finger (between the DIP and PIP joints) and the linear potentiometer having the restoring linear spring. The potentiometer was placed on the back of the wooden hand. In the test, the index finger was crooked at only the PIP joint but not moved at the MCP joint. The signal measured by the potentiometer was converted by the Equation 9 into the angle at the PIP joint. The test results showed that two measured values were matched with each other having an average error of 0.65 degrees.
  • As mentioned above, the dependency between the DIP and PIP joints will be discussed below, and relation between them will be derived. The motions of the thumb and fingers are generated by combination of flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) muscles. Since the FDP simultaneously generates motions at both the PIP and DIP joints, the motions at these joints are coupled. The relation between these motions is known as a linear relation, but a more accurate relation is experimentally obtained as follows.
  • The angles at the DIP and PIP joints were measured many times by the IMU sensor with respect to different participants. FIG. 7 shows representative results. In the experiments, the participants were requested to freely bend and extend their own thumb and fingers without any constraint. The relation was derived by a curve-fitting method. Average data from the experiments were fitted by first-order and second-order as follows.

  • θDIP=0.989θPIP−0.230   [Equation 12]

  • θDIP=0.006θPIP 2+0.674θPIP+0.104   [Equation 13]
  • where, θDIP and θPIP are angles at the DIP and PIP joints, respectively.
  • Root mean square errors (RMSE) of first-order and second-order cases were 3.104 degrees and 2.251 degrees, respectively. The curved-fitting results showed that the angles at the DIP and PIP joints are not linearly coupled, and the second-order fitting is better than the first-order fitting. However, this is significantly different from the well-known first-order approximation based on the Equation 5.
  • A simulator for measuring angles at joints of a finger is shown at the right side in FIG. 6. Three IMU sensors were attached to an index finger and measured the angles at the DIP, PIP and MCP joints. Two wires were respectively tied on the proximal phalanx and middle phalanx of the glove and connected to two potentiometers. In the experiment, a palm was kept flat and the index finger was bent forward and backward many times as a typical flexion/extension motion.
  • The values measured in the potentiometers were converted by the Equations 10 and 11 into angles. All the values obtained by the experiments generally showed that two measuring methods considerably coincided with each other. However, the two measuring methods were a little different in measuring the angle at the DIP joint. This difference may be caused by errors accumulated in measuring the angle at the PIP joint and modeling the relation between the DIP and PIP joints.
  • Realization of the Invention
  • According to the present invention, ten potentiometers are needed for measuring flexion/extension motions of a thumb and four fingers. To make a compact and lightweight sensing module that does not hinder a natural motion of a hand, a small linear potentiometer having a stroke of 20 mm were used (see FIG. 8). As shown in FIG. 8(a), two potentiometers were arranged vertically to reduce the size of the sensing module. The flexible wire was tied on each level of the potentiometer, and connected to the glove through a small hole in a frame. As shown in FIG. 8(a), the linear spring designed based on a manual was installed to return the potentiometer to the initial position when the thumb and fingers are extended.
  • FIG. 8(b) shows the backside of the sensing module. The potentiometer and the spring were installed through the backside of the sensing module. The frame of the sensing module may be made of various materials/by various methods. In this embodiment, the frame of the sensing module was made of nylon and by rapid prototyping technology. The frame has a size of 45×61×17.4 mm and a weight of 39 g, which is compact enough not to hinder a hand motion. The sensing module is attached to the glove, and a user wears the glove as shown in FIG. 9.
  • The measured angles at the joints were shown in FIG. 10. In this program, a stiff link body was modeled on a human's hand that has fourteen degrees of freedom—a thumb having two degrees of freedom and four fingers each having three degrees of freedom. This program provides an intuitive interface about a wearable sensing glove.
  • Although a few exemplary embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

Claims (17)

1. A system (100) for measuring motions of a thumb and fingers, the system comprising:
a glove (10) which is worn by a user;
first and second flexible wires (20) which are movable in accordance with motions of a thumb and fingers, comprise first ends attached to the glove and have predetermined lengths; and
a sensing module (30) which comprises first and second linear potentiometers respectively connecting with second ends of the first and second flexible wires and comprising elastic members for maintaining tension of the flexible wires,
wherein the first end of the first flexible wire is attached to a position on the glove corresponding to a position between a first joint and a second joint of a finger, and the first end of the second flexible wire is attached to a position on the glove corresponding to a position between the second joint and a third joint of the finger,
wherein angles at the first and second joints are calculated based on changed distances of the attached positions measured by the flexible wires and the linear potentiometers of the sensing module in accordance with a motion of the finger.
2. The system according to claim 1, wherein the first and second flexible wires and the sensing module are provided in each of a thumb and fingers.
3. The system according to claim 1, wherein the sensing module is placed on a position of the glove corresponding to a back of a hand.
4. The system according to claim 1, wherein the elastic member of the sensing module comprises a linear spring.
5. The system according to claim 1, wherein the first, second and third joints respectively correspond to a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal (DIP) joint.
6. A method of measuring motions of a thumb and fingers of a user who wears a glove, the method comprising:
attaching first ends of first and second flexible wires to positions of the glove respectively corresponding to middle and proximal phalanxes of each finger;
connecting second ends of the first and second flexible wires to a sensing module so that the first and second flexible wires can move forward and backward while maintaining tension thereof in accordance with a motion of the finger; and
by the sensing module, measuring moved distances of the first and second flexible wires,
wherein rotary angles at corresponding joints in the thumb and fingers are calculated based on the measured moved distances.
7. The method according to claim 6, wherein the sensing module is placed on a position of the glove corresponding to a back of a hand.
8. The method according to claim 6, wherein each tension of the first and second flexible wires is constantly maintained by an elastic member provided in the sensing module.
9. The method according to claim 8, wherein the elastic member comprises a linear spring.
10. The method according to claim 6, wherein the moved distances of the first and second flexible wires are respectively measured by first and second linear potentiometers provided in the sensing module.
11. The method according to claim 6, wherein the sensing module comprises a frame made of nylon and by rapid prototyping technology.
12. The system according to claim 2, wherein the sensing module is placed on a position of the glove corresponding to a back of a hand.
13. The system according to claim 2, wherein the elastic member of the sensing module comprises a linear spring.
14. The system according to claim 2, wherein the first, second and third joints respectively correspond to a proximal interphalangeal (PIP) joint, a metacarpophalangeal (MCP) joint and a distal interphalangeal(DIP) joint.
15. The method according to claim 7, wherein the moved distances of the first and second flexible wires are respectively measured by first and second linear potentiometers provided in the sensing module.
16. The method according to claim 8, wherein the moved distances of the first and second flexible wires are respectively measured by first and second linear potentiometers provided in the sensing module.
17. The method according to claim 9, wherein the moved distances of the first and second flexible wires are respectively measured by first and second linear potentiometers provided in the sensing module.
US15/310,569 2014-05-12 2015-04-30 System and method for measuring finger movements Abandoned US20170079560A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140056528A KR101609158B1 (en) 2014-05-12 2014-05-12 A finger motion measurement system and measurement method of finger motion
KR10-2014-0056528 2014-05-12
PCT/KR2015/004398 WO2015174667A1 (en) 2014-05-12 2015-04-30 System and method for measuring finger movements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004398 A-371-Of-International WO2015174667A1 (en) 2014-05-12 2015-04-30 System and method for measuring finger movements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/212,929 Division US10791963B2 (en) 2014-05-12 2018-12-07 Method for measuring finger movements

Publications (1)

Publication Number Publication Date
US20170079560A1 true US20170079560A1 (en) 2017-03-23

Family

ID=54480164

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/310,569 Abandoned US20170079560A1 (en) 2014-05-12 2015-04-30 System and method for measuring finger movements
US16/212,929 Active 2035-05-21 US10791963B2 (en) 2014-05-12 2018-12-07 Method for measuring finger movements

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/212,929 Active 2035-05-21 US10791963B2 (en) 2014-05-12 2018-12-07 Method for measuring finger movements

Country Status (3)

Country Link
US (2) US20170079560A1 (en)
KR (1) KR101609158B1 (en)
WO (1) WO2015174667A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983669B2 (en) * 2016-07-07 2018-05-29 Gangming Luo System for transmitting signals between a body of a living being and a virtual reality space
CN111920416A (en) * 2020-07-13 2020-11-13 张艳 Hand rehabilitation training effect measuring method, storage medium, terminal and system
CN112013881A (en) * 2020-09-07 2020-12-01 宿州赛尔沃德物联网科技有限公司 Method for collecting finger bending state data
CN112711333A (en) * 2021-01-12 2021-04-27 北京航空航天大学 Wearable glove based on sensitization plastic optical fiber
CN114734426A (en) * 2022-03-11 2022-07-12 中国科学院自动化研究所 Hand exoskeleton structure control method and device, electronic equipment and storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686585B1 (en) * 2016-06-07 2016-12-14 연합정밀주식회사 A hand motion tracking system for a operating of rotary knob in virtual reality flighting simulator
CN107468254A (en) * 2016-06-08 2017-12-15 北京天使在线科技有限公司 Intelligent rehabilitation device, intelligent rehabilitation gloves and its signal processing method
KR101869304B1 (en) * 2016-10-21 2018-06-20 주식회사 네오펙트 System, method and program for recognizing sign language
KR102096439B1 (en) * 2017-11-01 2020-04-02 영남대학교 산학협력단 Mirror movement evaluation device and method of evaluating a patient`s disability using the same
KR102070138B1 (en) 2017-11-23 2020-01-28 주식회사 네오펙트 Wearable type hand robot
CN110101390B (en) * 2019-06-03 2023-11-07 呜啦啦(广州)科技有限公司 Joint bidirectional bending measuring device
CN210282277U (en) * 2019-06-21 2020-04-10 深圳岱仕科技有限公司 Hand exoskeleton device
CN110888528B (en) * 2019-11-14 2021-06-15 南京航空航天大学 Wearable interphalangeal opening angle measuring device
KR102468421B1 (en) * 2021-03-10 2022-11-21 한국과학기술연구원 tendon-driven haptic device
WO2022215977A1 (en) * 2021-04-05 2022-10-13 옥재윤 Wearable motion sensor device using wire tension
WO2024075877A1 (en) * 2022-10-07 2024-04-11 옵티머스시스템 주식회사 Gloves using elastic member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916308A (en) * 1971-12-30 1975-10-28 Finike Italiana Marposs Visual indicating device for measuring apparatus
US4384478A (en) * 1981-03-05 1983-05-24 Nils Albertsson System for indicating optimum operating economy of internal combustion engines in boats
US5047952A (en) * 1988-10-14 1991-09-10 The Board Of Trustee Of The Leland Stanford Junior University Communication system for deaf, deaf-blind, or non-vocal individuals using instrumented glove
US20020198472A1 (en) * 1992-07-06 2002-12-26 Virtual Technologies, Inc. Determination of finger position
US20030126755A1 (en) * 2002-01-04 2003-07-10 Liberty Mutual Wrist motion measurement device
US7862522B1 (en) * 2005-08-08 2011-01-04 David Barclay Sensor glove
US20120029399A1 (en) * 2009-04-09 2012-02-02 Yoshiyuki Sankai Wearable type movement assisting apparatus
US20120078381A1 (en) * 2010-09-29 2012-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Human-machine interface based on task-specific temporal postural synergies
US20130197399A1 (en) * 2010-08-05 2013-08-01 Erwin B. Montgomery Apparatuses and methods for evaluating a patient

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641664A (en) * 1969-10-22 1972-02-15 William D Kirkendall Method for manufacturing electrical devices
JP4286571B2 (en) 2003-03-31 2009-07-01 独立行政法人科学技術振興機構 Surgical device
KR100838181B1 (en) * 2005-12-08 2008-06-16 한국전자통신연구원 Hand interface device using miniaturized absolute position sensors, system for hand interface using it
US20070132722A1 (en) 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Hand interface glove using miniaturized absolute position sensors and hand interface system using the same
WO2009146142A2 (en) * 2008-04-03 2009-12-03 University Of Washington Clinical force sensing glove
JP2010082342A (en) * 2008-10-02 2010-04-15 Nippon Densan Corp Auxiliary actuator for finger
JP2010134905A (en) 2008-11-09 2010-06-17 Kyokko Denki Kk Motion detection device
EP2844343B1 (en) * 2012-04-30 2018-11-21 The Regents Of The University Of Michigan Ultrasound transducer manufacturing using rapid-prototyping method
US8989902B1 (en) * 2013-03-05 2015-03-24 U.S. Department Of Energy User interface for a tele-operated robotic hand system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916308A (en) * 1971-12-30 1975-10-28 Finike Italiana Marposs Visual indicating device for measuring apparatus
US4384478A (en) * 1981-03-05 1983-05-24 Nils Albertsson System for indicating optimum operating economy of internal combustion engines in boats
US5047952A (en) * 1988-10-14 1991-09-10 The Board Of Trustee Of The Leland Stanford Junior University Communication system for deaf, deaf-blind, or non-vocal individuals using instrumented glove
US20020198472A1 (en) * 1992-07-06 2002-12-26 Virtual Technologies, Inc. Determination of finger position
US20030126755A1 (en) * 2002-01-04 2003-07-10 Liberty Mutual Wrist motion measurement device
US7862522B1 (en) * 2005-08-08 2011-01-04 David Barclay Sensor glove
US20120029399A1 (en) * 2009-04-09 2012-02-02 Yoshiyuki Sankai Wearable type movement assisting apparatus
US20130197399A1 (en) * 2010-08-05 2013-08-01 Erwin B. Montgomery Apparatuses and methods for evaluating a patient
US20120078381A1 (en) * 2010-09-29 2012-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Human-machine interface based on task-specific temporal postural synergies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983669B2 (en) * 2016-07-07 2018-05-29 Gangming Luo System for transmitting signals between a body of a living being and a virtual reality space
CN111920416A (en) * 2020-07-13 2020-11-13 张艳 Hand rehabilitation training effect measuring method, storage medium, terminal and system
CN112013881A (en) * 2020-09-07 2020-12-01 宿州赛尔沃德物联网科技有限公司 Method for collecting finger bending state data
CN112711333A (en) * 2021-01-12 2021-04-27 北京航空航天大学 Wearable glove based on sensitization plastic optical fiber
CN114734426A (en) * 2022-03-11 2022-07-12 中国科学院自动化研究所 Hand exoskeleton structure control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
KR101609158B1 (en) 2016-05-17
KR20150129919A (en) 2015-11-23
US10791963B2 (en) 2020-10-06
WO2015174667A1 (en) 2015-11-19
US20190104969A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US10791963B2 (en) Method for measuring finger movements
Park et al. Development of a wearable sensing glove for measuring the motion of fingers using linear potentiometers and flexible wires
Chossat et al. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing
US6497672B2 (en) Device and method for measuring the position of animate links
KR101740310B1 (en) A wearable hand exoskeleton system using cables
KR102184869B1 (en) Prosthetic hand system
Li et al. A wearable detector for simultaneous finger joint motion measurement
MEng Development of finger-motion capturing device based on optical linear encoder
KR101682951B1 (en) A finger motion measurement system and measurement method of finger motion
WO2016044251A1 (en) Method and System for Joint Position Measurement
KR101628703B1 (en) A finger motion measurement system and measurement method of finger motion
US10551927B2 (en) Force reflecting system
Lim et al. A low cost wearable optical-based goniometer for human joint monitoring
US20240081681A1 (en) Calibration of an Inertial Measurement Unit for Improving the Accuracy of a Biomechanical Skeleton
EP3401873A1 (en) Device for digitizing and evaluating movement
Park et al. Development of a finger motion measurement system using linear potentiometers
Li et al. Design and validation of a multi-finger sensing device based on optical linear encoder
US20060130347A1 (en) Device for gioniometric measurements
Saggio et al. Evaluation of an integrated sensory glove at decreasing joint flexion degree
KR101968740B1 (en) Hand motion measurement system
KR101701695B1 (en) A wearable hand exoskeleton system
Ro et al. Development of a wearable soft sensor system for measuring finger motions
Szelitzky et al. Data glove and virtual environment—A distance monitoring and rehabilitation solution
KR101743249B1 (en) Method, apparatus and program for finding reference vector for attaching sensor to determine movement of thumb
Silva Wearable sensors systems for human motion analysis: sports and rehabilitation

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIST (ULSAN NATIONAL INSTITUTE OF SCIENCE AND TEC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAE, JOONBUM;PARK, YEONGYU;LEE, JEONGSOO;REEL/FRAME:040288/0920

Effective date: 20161108

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION