US20170068698A1 - Domain-specific language for dataset transformations - Google Patents
Domain-specific language for dataset transformations Download PDFInfo
- Publication number
- US20170068698A1 US20170068698A1 US14/874,690 US201514874690A US2017068698A1 US 20170068698 A1 US20170068698 A1 US 20170068698A1 US 201514874690 A US201514874690 A US 201514874690A US 2017068698 A1 US2017068698 A1 US 2017068698A1
- Authority
- US
- United States
- Prior art keywords
- dataset
- transformation
- source
- transformations
- tables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009466 transformation Effects 0.000 title claims abstract description 201
- 238000000844 transformation Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000000153 supplemental effect Effects 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims description 7
- 230000002085 persistent effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 6
- 238000004891 communication Methods 0.000 description 16
- 238000013459 approach Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004870 electrical engineering Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 101150102561 GPA1 gene Proteins 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101150080898 GPA4 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/258—Data format conversion from or to a database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/254—Extract, transform and load [ETL] procedures, e.g. ETL data flows in data warehouses
-
- G06F17/30345—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2282—Tablespace storage structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2453—Query optimisation
- G06F16/24534—Query rewriting; Transformation
- G06F16/24539—Query rewriting; Transformation using cached or materialised query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9024—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9027—Trees
-
- G06F17/30958—
-
- G06F17/30961—
Definitions
- Embodiments relate to database technology and more specifically, to a domain-specific language for dataset transformations.
- a database management system supports generating and modifying stored data.
- DBMS database management system
- a data definition language (DDL) or a data manipulation language (DML) may be used to interact with a database.
- DDL data definition language
- DML data manipulation language
- database interactions may be limited to the basic operations available in the DDL or DML.
- complex operations written using these basic operations may be error-prone and result in slow processing times.
- a DBMS may manage multiple datasets, and data in different datasets are often related by dependencies. Thus, a data change in one dataset may require propagating the data change to another dataset. However, propagating data changes to datasets may involve re-computing an entire dataset. This may tie up computing resources, especially if the data change is relatively small compared to unchanged data.
- FIG. 1 depicts an example computer architecture on which embodiments may be implemented.
- FIG. 2 depicts an example graphical representation of a table definition that includes dataset transformations.
- FIG. 3 depicts a detailed view of a dataset transformation, in an example embodiment.
- FIG. 4 depicts an example optimization involving parallel computing.
- FIGS. 5A-B depict example graphical representations of incremental computation.
- FIG. 6 is a flow diagram that depicts an approach for executing a table definition.
- FIG. 7 is a flow diagram that depicts an approach for performing incremental computation.
- FIG. 8 depicts a computer system upon which an embodiment may be implemented.
- a domain-specific language may interface with an existing DDL and/or DML to offer greater flexibility.
- the DSL may facilitate generating and/or manipulating datasets stored in volatile and/or non-volatile memory.
- Datasets may be manipulated based on commands referred to herein as “dataset transformations”.
- Dataset transformations may be created and/or customized by an end user of the DSL. Each dataset transformation may generate an output dataset based on one or more input datasets.
- Zero or more dataset transformations may be included in a table definition.
- the table definition may generate an output table based on zero or more input tables.
- a sequence for the one or more dataset transformations may be determined based on a graphical representation of the one or more dataset transformations.
- the DSL may support efficiently updating tables based on an incremental computation without explicitly invoking the incremental computation.
- the incremental computation may avoid re-computing a particular table to reflect an update to a dependent table. Instead, the incremental computation may involve performing one or more dataset transformations on a portion of the dependent table that includes the update. The transformed portion may then be incorporated into an older version of the particular table to generate a new version of the particular table that reflects the update.
- FIG. 1 depicts an example computer architecture on which embodiments may be implemented.
- storage computer 100 is communicatively coupled to server computer 104 , which is communicatively coupled to client computer 108 .
- Storage 100 includes source tables 102 .
- Server computer 104 includes references 106 to source tables 102 .
- Client computer 108 includes client application 110 .
- Storage 100 may include one or more database servers, one or more storage devices, and/or one or more of any other system for maintaining source tables 102 .
- storage 100 may be a repository that supports maintaining multiple versions of each source table 102 in such a manner that enables merging changes at any time that is convenient.
- Tables may include tabular data that is persisted in storage 100 and/or server computer 104 .
- source tables 102 may be distributed database tables that are stored in a collective non-volatile memory of a cluster of database computers.
- Tables may be stored in any format, such as JavaScript Object Notation (JSON), Extensible Markup Language (XML), comma-separated values (CSV), a B-tree, and/or a binary encoding.
- JSON JavaScript Object Notation
- XML Extensible Markup Language
- CSV comma-separated values
- B-tree a binary encoding
- Server computer 104 may generate tables and/or datasets (e.g., unpersisted data). Server computer 104 may materialize datasets and store them in a volatile memory. Server computer 104 may cause particular datasets to be stored as tables in a non-volatile memory and/or storage 100 .
- datasets e.g., unpersisted data. Server computer 104 may materialize datasets and store them in a volatile memory. Server computer 104 may cause particular datasets to be stored as tables in a non-volatile memory and/or storage 100 .
- Server computer 104 may include one or more web servers, one or more file servers, and/or one or more of any other interface between storage 100 and client computer 108 .
- Server computer 104 may store copies of tables and/or references 106 to the tables.
- References 106 may include pointers, memory addresses, symbolic links, and/or any other indirect reference to a table. Storing references 106 to tables may reduce memory usage and enable data integration in O(1) time.
- Storage 100 may be on a separate device from server computer 104 .
- storage 100 may be a persistent storage on server computer 104 .
- Storage 100 and server computer 104 may communicate using a Representational State Transfer (REST) application programming interface (API), a Simple Object Access Protocol (SOAP), and/or any other set of constraints for exchanging information.
- REST Representational State Transfer
- API application programming interface
- SOAP Simple Object Access Protocol
- Source tables 102 in any of a number of different formats may be uploaded to storage 100 and/or server computer 104 based on a plugin that causes source tables 102 to be stored in a common format.
- Client application 110 may be a browser, an integrated development environment (IDE), and/or any other user interface. Client application 110 may enable composing a table definition in a DSL. As shall be described in greater detail hereafter, the table definition may include a sequence of one or more dataset transformations to be performed on one or more source tables 102 to generate a target table. The one or more dataset transformations may define the contents of the target table.
- IDE integrated development environment
- the DSL may be independent and different from a DDL and/or a DML used with source tables 102 .
- server computer 104 may translate between a DSL used with client application 110 and a DDL and/or DML used with source tables 102 .
- a “computer” may be one or more physical computers, virtual computers, and/or computing devices.
- a computer may be one or more server computers, cloud-based computers, cloud-based cluster of computers, virtual machine instances or virtual machine computing elements such as virtual processors, storage and memory, data centers, storage devices, desktop computers, laptop computers, mobile devices, and/or any other special-purpose computing devices.
- a computer may be a client and/or a server. Any reference to “a computer” herein may mean one or more computers, unless expressly stated otherwise.
- FIG. 2 depicts an example graphical representation of a table definition that includes dataset transformations.
- directed acyclic graph 200 includes leaf node 202 and non-leaf node 204 .
- Leaf node 202 includes source tables 102 A-B.
- Non-leaf node 204 includes transformations 206 A-B and customized transformation 208 .
- Target table 210 is generated based on performing transformations 206 A-B and customized transformation 208 on source tables 102 A-B.
- a directed acyclic graph 200 may be a graphical representation of a table definition for a target table 210 .
- the table definition may include one or more dataset transformations (e.g., transformations 206 A-B, customized transformation 208 ) to be performed on one or more source tables 102 .
- the one or more dataset transformations may be represented as verbs, such as “aggregate”, “sort”, and “drop”, that describe an operation that is to be performed in terms of the problem domain instead of how to perform the operation as a sequence of programming language primitives.
- table definitions may be composed using declarative programming.
- table definition 1 generates target table 210 based on performing transformation 206 A on source table 102 A.
- Line 3 of table definition 1 indicates that transformation 206 A is performed. However, in an embodiment, line 3 may indicate that customized transformation 208 is performed. Dataset transformations shall be described in greater detail hereafter.
- directed acyclic graph 200 may be a graphical representation of table definition 2.
- Table definition 2 generates target table 210 based on performing transformations 206 A-B and customized transformation 208 on source tables 102 A-B.
- Lines 6-9 of table definition 2 appear to be a separate table definition but may operate more like a dataset definition. Typically, “dataset” is materialized but remains unpersisted. In effect, lines 6-9 may be analogous to a Structured Query Language (SQL) CREATE VIEW statement. The dataset resulting from lines 6-9 may be transparent only to table definition 2.
- SQL Structured Query Language
- Declarative programming may be used to express the logic of a table definition without describing the control flow of the table definition.
- a sequence for the one or more dataset transformations may be determined based on the graphical representation.
- directed acyclic graph 200 indicates that both transformation 206 A and customized transformation 208 must be performed prior to transformation 206 B.
- transformation 206 A and customized transformation 208 may be performed at any time relative to each other.
- the directed acyclic graph 200 may include zero or more leaf nodes 202 and zero or more non-leaf nodes 204 .
- the zero or more leaf nodes 202 may represent zero or more tables.
- each leaf node 202 corresponds to a source table 102 .
- a target table 210 may also be represented by a leaf node 202 .
- Each non-leaf node 204 may represent a dataset transformation.
- FIG. 3 depicts a detailed view of a dataset transformation, in an example embodiment.
- dataset transformation 302 causes generating output dataset 304 based on an input of source dataset 300 .
- Dataset transformation 302 includes implementation 306 .
- a dataset (e.g., source dataset 300 , output dataset 304 ) may be a collection of data that is stored in storage 100 and/or server computer 104 .
- Datasets may be stored in a volatile memory and/or persisted in a non-volatile memory. Datasets that are persisted may be called tables.
- a dataset that is taken as an input of a dataset transformation 302 is called a source dataset 300
- a dataset that is generated as an output of a dataset transformation 302 is called an output dataset 304 .
- source table 102 A is a source dataset 300 for transformation 206 A
- an output dataset 304 for transformation 206 A is a source dataset 300 for transformation 206 B.
- source table 102 B is a source dataset 300 for customized transformation 208
- an output dataset 304 for customized transformation 208 is a source dataset 300 for transformation 206 B.
- transformation 206 B generates an output dataset 304 based on multiple source datasets 300 .
- the output dataset 304 for transformation 206 B becomes target table 210 when it is persisted.
- a dataset transformation 302 may be any of a number of operations that are performed on one or more datasets to generate yet another dataset. Each dataset transformation may be associated with an implementation 306 that includes code for causing a particular operation to be performed. As mentioned above, dataset transformations 302 may describe what is to be accomplished without describing how to accomplish it. Thus, an implementation 306 may describe how a dataset transformation 302 is to be performed.
- dataset transformation 302 may be transformation 206 A, transformation 206 B, or customized transformation 208 of FIG. 2 .
- dataset transformation 302 may be an operation that is available in a DSL by default (e.g., transformation 206 A-B) or an operation that is defined by an end user of the DSL (e.g., customized transformation 208 ).
- source table 102 A may represent the following table:
- Transformation 206 A may be an operation that filters out non-engineering majors.
- An implementation 306 of transformation 206 A may include a function that compares each string value in a particular column with the string values in an enumerated list and returns a Boolean value.
- Source table 102 A may be a source dataset 300 that is provided as input to transformation 206 A to generate an output dataset 304 that represents the following data:
- Source table 102 B may represent the following table:
- Customized transformation 208 may be an operation that increments numeric values by two.
- An implementation 306 of customized transformation 208 may include a function that adds two to each numeric value in a particular column.
- source table 102 B may be a source dataset 300 that is provided as input to customized transformation 208 to generate an output dataset 304 that represents the following data:
- Transformation 206 B may be an operation that joins datasets into a composite dataset based on matching values in a respective column of each dataset.
- An implementation 306 of transformation 206 B may include a function that performs an operation similar to a SQL INNER JOIN operation.
- the output datasets 304 for transformation 206 A and customized transformation 208 may be provided as input to transformation 206 B to generate an output dataset 304 that represents the following data:
- FIG. 4 depicts an example optimization involving parallel computing.
- processes 400 A-B perform transformation 206 A and customized transformation 208 in parallel to generate target table 210 based on source tables 102 A-B.
- Processes 400 A-B may exist on a single computer or on multiple computers.
- processes 400 A-B may represent different threads on server computer 104 or two different server computers 104 .
- a sequence of one or more dataset transformations 302 may be determined based on a graphical representation of the one or more dataset transformations 302 .
- the graphical representation depicted in FIG. 2 may indicate that transformation 206 A and customized transformation 208 may be performed concurrently in a multi-threaded application.
- a source table 102 When a source table 102 is updated with a data change, the data change may be incorporated into a table that depends on the source table 102 . However, incorporating the data change may involve completely rebuilding the table that depends on the source table 102 .
- a particular table may be generated based on performing a particular dataset transformation 302 on a source table 102 .
- the source table 102 may be updated.
- the particular dataset transformation 302 may be performed on the updated source table 102 to generate an updated version of the particular table.
- Source table 102 A may be updated to generate the following table:
- the updated source table is generated based on appending the last row to the previous version of source table 102 A.
- the transformed appended portion may then be combined with the table previously generated based on the previous version of source table 102 A. This is called incremental computation.
- FIGS. 5A-B depict example graphical representations of incremental computation.
- intermediate table 500 is generated based on performing transformations 206 A-B and customized transformation 208 on source tables 102 A-B.
- Supplemental portion 504 is generated based on performing transformations 206 A-B and customized transformation 208 on appended portion 502 and source table 102 B.
- supplemental portion 504 may be generated based on performing one or more transformations 206 on source table 102 A as well as appended portion 502 .
- Target table 508 is generated based on performing transformation 506 on intermediate table 500 and supplemental portion 504 .
- incremental computation may be an optimization that is performed without an end user specifying transformation 506 and any of the operations used to generate supplemental portion 504 .
- Intermediate table 500 of FIG. 5A corresponds to target table 210 of FIG. 2 .
- Intermediate table 500 is generated and persisted prior to generating supplemental portion 504 .
- intermediate table 500 may be retrieved from storage 100 and/or server computer 104 prior to generating target table 508 .
- appended portion 502 is a portion of an updated source table that was appended to a previous version of source table 102 A. Although depicted in the example updated source table above as the last row, appended portion 502 may be data that is added at any of a number of locations. For example, appended portion 502 may be a new first row, a new column, etc.
- a supplemental portion 504 may be a portion of an intermediate table 500 that reflects an update to a source table 102 .
- the supplemental portion 504 may be generated based on performing a set of one or more dataset transformations 302 on an appended portion 502 and/or one or more source tables 102 .
- the set of one or more dataset transformations 302 may be similar to that used to generate an intermediate table 500 .
- supplemental portion 504 may represent the following data:
- GPA 4 Electrical Engineering 3.5 Supplemental portion 504 may be a dataset and/or a table.
- Transformation 506 may be an operation that combines one dataset with another dataset to generate a composite dataset.
- intermediate table 500 and supplemental portion 504 are provided as input to transformation 506 to generate an output dataset 304 that represents the following data:
- transformation 206 C may be similar to or different from transformation 206 A
- transformation 206 D may be similar to or different from transformation 206 B.
- FIG. 5B differs from FIG. 5A in that supplemental portion 504 depends on source table 102 A as well as appended portion 502 .
- transformation 206 A may be an operation that takes the last two rows of source table 102 A.
- appended portion 502 may consist of only one row.
- transformation 206 C may take as input the last row of source table 102 A in addition to appended portion 502 .
- Incremental computation may be an optimization that is available for deriving a target table 508 based on one or more criteria.
- the one or more criteria may include one or more of the following:
- An incremental status of a source table 102 A refers to a manner in which an update is incorporated into the source table 102 A.
- An incremental status of “full” indicates that a target table 210 that depends on an updated source table must be completely rebuilt, whereas an incremental status of “incremental” indicates that incremental computation may be used to generate a target table 508 based on the updated source table.
- a source table 102 B without any updates may have an incremental status of “full”.
- the source table 102 A may have an incremental status of “full”.
- an update that adds data to a source table 102 A without replacing any data in the source table 102 A may have an incremental status of “incremental”.
- a target table 508 may be derived based on incremental computation if the target table 508 depends on at least one source table 102 A with an incremental status of “incremental”. In other words, incremental computation may be available if at least one source table 102 A incorporates an update by appending the update.
- An incremental computability of a dataset transformation 302 may be categorized as one or more of the following:
- a “concatenate” type corresponds to a dataset transformation 302 that can be computed efficiently by appending data to a previous result of the dataset transformation 302 without requiring access to the previous result.
- a “rename” transformation may correspond to a “concatenate” type, because the “rename” transformation can change the name of a column in an update without accessing a previous renaming of the column.
- a “merge and append” type corresponds to a dataset transformation 302 that can be computed efficiently by appending data to a previous result of the dataset transformation 302 .
- the “merge and append” type requires access to the previous result.
- a “distinct” transformation may correspond to a “merge and append” type, because the “distinct” transformation removes duplicate rows. Removing duplicate rows in an update cannot be performed confidently without checking for duplicate rows between the update and, for example, the previous result of removing duplicate rows.
- a “merge and replace” type corresponds to a dataset transformation 302 that can be computed efficiently by replacing data in a previous result of the dataset transformation 302 .
- the “merge and replace” type requires access to the previous result.
- an “aggregate” transformation consisting of a “sum” operation may correspond to a “merge and replace” type, because the “sum” operation calculates a subtotal for an update, which is then added to a previous total to calculate a new total that replaces the previous total.
- an “impossible” type corresponds to a dataset transformation 302 that cannot take advantage of a previous result to perform incremental computation.
- the “impossible” type may correspond to a dataset transformation 302 that does not correspond to one of the aforementioned types.
- an “aggregate” transformation including a “mostFrequentValue” operation may correspond to an “impossible” type, because the statistical mode of a previous result does not necessarily inform the statistical mode of an updated set of data.
- dataset transformations 302 may be associated with an incremental status.
- An incremental status of “full” corresponds to a “merge and replace” type of incremental computability.
- an incremental status of “incremental” corresponds to either a “concatenate” type or a “merge and append” type of incremental computability.
- a dataset transformation 302 may be associated with multiple types of incremental computability based on one or more dependencies of the dataset transformation 302 .
- the one or more dependencies may include source tables 102 and/or other dataset transformations that provide input to the dataset transformation 302 .
- a dataset transformation 302 with two dependencies may correspond to a “concatenate” type if the first dependency has an incremental status of “incremental”, a “merge and append” type if the second dependency has an incremental status of “incremental”, and an “impossible” type if each dependency has an incremental status of “incremental”.
- a dependency of a dataset transformation 302 may be characterized as “reversible” if the dependency can be reconstructed from an output of the dataset transformation 302 .
- a reversible dependency may be a dependency that can be derived based on performing an inverse dataset transformation on an output dataset 304 .
- a source dataset 300 of a dataset transformation 302 that adds one to particular values is “reversible”, because an output dataset 304 of the dataset transformation 302 can be subjected to an inverse operation that subtracts one from the particular values to derive the source dataset 300 .
- incremental computation may be available if both of the following criteria are satisfied:
- source table 102 A has an incremental status of “incremental”, and source table 102 B has an incremental status of “full”. Since source table 102 A is a dependency of transformation 206 A, the incremental computability of transformation 206 A must be assessed. Thus, in order for target table 508 to be generated based on incremental computation, transformation 206 A must correspond to a “concatenate” type, a “merge and append” type, and/or a “merge and replace” type of incremental computability.
- Transformation 206 A may be an operation that filters out non-engineering majors. Since two portions of a dataset can be filtered independently and then combined to yield the same result as filtering the dataset in its entirety, transformation 206 A corresponds to a “concatenate” type of incremental computability. Furthermore, since a dataset transformation 302 corresponding to a “concatenate” type is a dependency that has an incremental status of “incremental,” transformation 206 A has an incremental status of “incremental”. Thus, in order for target table 508 to be generated based on incremental computation, the incremental computability of transformation 206 B must also be assessed.
- Transformation 206 B may be analogous to a SQL INNER JOIN operation. Since performing transformation 206 B on a dataset in its entirety yields the same result as combining two portions of the dataset upon which transformation 206 B has been performed separately, transformation 206 B corresponds to a “concatenate” type of incremental computability.
- transformation 506 is irrelevant to determining whether target table 508 can be generated based on incremental computation, because transformation 506 will become part of the implementation of incremental computation once it is determined to be appropriate. In other words, only the dataset transformations 302 depicted in FIG. 2 are relevant to the incremental computation analysis.
- server computer 104 may determine that target table 508 can be generated using incremental computation.
- Server computer 104 may be configured to perform incremental computation whenever server computer 104 determines that incremental computation is available.
- FIG. 6 is a flow diagram that depicts an approach for executing a table definition.
- a server computer 104 may process a dataset transformation 302 .
- the dataset transformation 302 may be included in a table definition that was received from a client computer 108 .
- the table definition may be composed in a DSL.
- the DSL may be specialized for expressing dataset transformations 302 using declarative programming.
- the server computer 104 may obtain an implementation 306 of the dataset transformation 302 .
- the table definition may exclude the implementation 306 to facilitate manipulating data.
- the implementation 306 may be obtained from a separate file at the server computer 104 .
- the server computer 104 may provide the implementation 306 with one or more source datasets 300 as input.
- the one or more source datasets 300 may be retrieved from a storage 100 and/or from the server computer 104 .
- the server computer 104 may rebuild a source dataset 300 that was previously retrieved from a storage 100 but subsequently removed from a volatile memory due to a failure.
- Rebuilding lost datasets may be based on logs maintained by the server computer 104 that record a lineage (e.g., a table definition, source datasets 300 , dataset transformations 302 ) of a lost dataset.
- a lineage e.g., a table definition, source datasets 300 , dataset transformations 302
- the server computer 104 may generate an output dataset 304 based on executing the implementation 306 .
- the output dataset 304 may be a transformed source dataset and/or a composite of multiple source datasets 300 .
- the output dataset 304 may be stored in volatile memory.
- the server computer 104 may determine whether the table definition includes any subsequent dataset transformations 302 .
- a subsequent dataset transformation 302 may be determined based on a graphical representation of the table definition. If the table definition includes any subsequent dataset transformations 302 , the output dataset 304 may be used as a source dataset 300 for an immediately subsequent dataset transformation 302 . Processing the immediately subsequent dataset transformation 302 may involve a process (not shown) similar to repeating blocks 600 - 606 . However, if the table definition fails to include any subsequent dataset transformations 302 , block 608 may proceed to block 610 .
- the server computer 104 may generate a target table 210 , 508 based on persisting the output dataset 304 .
- the target table 210 , 508 may be stored at server computer 104 and/or storage 100 .
- FIG. 7 is a flow diagram that depicts an approach for performing incremental computation.
- a server computer 104 may identify dataset transformations 302 with a dependency that has an incremental status of “incremental”. In other words, the server computer 104 may determine whether one or more source tables 102 were updated based on appending (e.g., adding without replacing) data. Furthermore, the server computer 104 may identify any dataset transformations 302 that depend directly or indirectly on the one or more source tables 102 and determine whether any dataset transformations 302 have an incremental status of “incremental”. Thus, block 700 may be performed concurrently with block 702 .
- the server computer 104 may determine whether each dataset transformation 302 identified at block 700 corresponds to a “concatenate” type, a “merge and append” type, and/or a “merge and replace” type of incremental computability. If each dataset transformation 302 is determined to correspond to an incremental computability type other than an “impossible” type, block 702 proceeds to block 704 . Otherwise, the incremental computation analysis ends and incremental computation is determined to be unavailable.
- the server computer 104 may identify any dependencies that are or depend on a dataset transformation corresponding to a “merge and append” type and/or a “merge and replace” type. Incremental computation may still be available if such dependencies are reversible.
- the server computer 104 may determine whether each dependency identified at block 704 is reversible. If any of the identified dependencies is not reversible, the incremental computation analysis ends and incremental computation is determined to be unavailable. Otherwise, block 705 proceeds to block 706 .
- the server computer 104 may obtain an intermediate table 500 generated based on performing one or more dataset transformations 302 on a source table 102 .
- block 706 may be performed prior to block 700 , after block 708 , or at any other suitable time.
- block 706 of FIG. 7 may correspond to block 610 of FIG. 6 .
- the server computer 104 may generate a supplemental portion 504 for the intermediate table 500 based on performing the one or more dataset transformations 302 on at least an appended portion 502 of the source table 102 .
- the one or more dataset transformations 302 may also be performed on the source table 102 .
- the server computer 104 may generate a target table 210 , 508 based on combining the supplemental portion 504 with the intermediate table 500 .
- Combining the supplemental portion 504 with the intermediate table 500 may involve performing a dataset transformation 302 on the supplemental portion 504 and the intermediate table 500 .
- combining the supplemental portion 504 with the intermediate table 500 may involve performing a square root operation to derive subtotals for the supplemental portion 504 and the intermediate table 500 , adding the subtotals to derive a total, and squaring the total.
- An output dataset 304 of the dataset transformation 302 may be persisted to generate the target table 210 , 508 .
- the techniques described herein are implemented by one or more special-purpose computing devices.
- the special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination.
- ASICs application-specific integrated circuits
- FPGAs field programmable gate arrays
- Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques.
- the special-purpose computing devices may be desktop computer systems, portable computer systems, handheld devices, networking devices or any other device that incorporates hard-wired and/or program logic to implement the techniques.
- FIG. 8 is a block diagram that depicts a computer system 800 upon which an embodiment may be implemented.
- Computer system 800 includes a bus 802 or other communication mechanism for communicating information, and a hardware processor 804 coupled with bus 802 for processing information.
- Hardware processor 804 may be, for example, a general purpose microprocessor.
- Computer system 800 also includes a main memory 806 , such as a random access memory (RAM) or other dynamic storage device, coupled to bus 802 for storing information and instructions to be executed by processor 804 .
- Main memory 806 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 804 .
- Such instructions when stored in non-transitory storage media accessible to processor 804 , render computer system 800 into a special-purpose machine that is customized to perform the operations specified in the instructions.
- Computer system 800 further includes a read only memory (ROM) 808 or other static storage device coupled to bus 802 for storing static information and instructions for processor 804 .
- ROM read only memory
- a storage device 810 such as a magnetic disk or optical disk, is provided and coupled to bus 802 for storing information and instructions.
- Computer system 800 may be coupled via bus 802 to a display 812 , such as a cathode ray tube (CRT), for displaying information to a computer user.
- a display 812 such as a cathode ray tube (CRT)
- An input device 814 is coupled to bus 802 for communicating information and command selections to processor 804 .
- cursor control 816 is Another type of user input device
- cursor control 816 such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 804 and for controlling cursor movement on display 812 .
- This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
- Computer system 800 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 800 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 800 in response to processor 804 executing one or more sequences of one or more instructions contained in main memory 806 . Such instructions may be read into main memory 806 from another storage medium, such as storage device 810 . Execution of the sequences of instructions contained in main memory 806 causes processor 804 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
- Non-volatile media includes, for example, optical or magnetic disks, such as storage device 810 .
- Volatile media includes dynamic memory, such as main memory 806 .
- Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.
- Storage media is distinct from but may be used in conjunction with transmission media.
- Transmission media participates in transferring information between storage media.
- transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 802 .
- transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
- Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 804 for execution.
- the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer.
- the remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem.
- a modem local to computer system 800 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
- An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 802 .
- Bus 802 carries the data to main memory 806 , from which processor 804 retrieves and executes the instructions.
- the instructions received by main memory 806 may optionally be stored on storage device 810 either before or after execution by processor 804 .
- Computer system 800 also includes a communication interface 818 coupled to bus 802 .
- Communication interface 818 provides a two-way data communication coupling to a network link 820 that is connected to a local network 822 .
- communication interface 818 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line.
- ISDN integrated services digital network
- communication interface 818 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN.
- LAN local area network
- Wireless links may also be implemented.
- communication interface 818 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
- Network link 820 typically provides data communication through one or more networks to other data devices.
- network link 820 may provide a connection through local network 822 to a host computer 824 or to data equipment operated by an Internet Service Provider (ISP) 826 .
- ISP 826 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 828 .
- Internet 828 uses electrical, electromagnetic or optical signals that carry digital data streams.
- the signals through the various networks and the signals on network link 820 and through communication interface 818 which carry the digital data to and from computer system 800 , are example forms of transmission media.
- Computer system 800 can send messages and receive data, including program code, through the network(s), network link 820 and communication interface 818 .
- a server 830 might transmit a requested code for an application program through Internet 828 , ISP 826 , local network 822 and communication interface 818 .
- the received code may be executed by processor 804 as it is received, and/or stored in storage device 810 , or other non-volatile storage for later execution.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
- This application claims the benefit of Provisional Appln. 62/216,192, filed Sep. 9, 2015, the entire contents of which is hereby incorporated by reference as if fully set forth herein, under 35 U.S.C. §119(e).
- Embodiments relate to database technology and more specifically, to a domain-specific language for dataset transformations.
- The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
- A database management system (DBMS) supports generating and modifying stored data. For example, a data definition language (DDL) or a data manipulation language (DML) may be used to interact with a database. However, database interactions may be limited to the basic operations available in the DDL or DML. Furthermore, complex operations written using these basic operations may be error-prone and result in slow processing times.
- A DBMS may manage multiple datasets, and data in different datasets are often related by dependencies. Thus, a data change in one dataset may require propagating the data change to another dataset. However, propagating data changes to datasets may involve re-computing an entire dataset. This may tie up computing resources, especially if the data change is relatively small compared to unchanged data.
- In the drawings:
-
FIG. 1 depicts an example computer architecture on which embodiments may be implemented. -
FIG. 2 depicts an example graphical representation of a table definition that includes dataset transformations. -
FIG. 3 depicts a detailed view of a dataset transformation, in an example embodiment. -
FIG. 4 depicts an example optimization involving parallel computing. -
FIGS. 5A-B depict example graphical representations of incremental computation. -
FIG. 6 is a flow diagram that depicts an approach for executing a table definition. -
FIG. 7 is a flow diagram that depicts an approach for performing incremental computation. -
FIG. 8 depicts a computer system upon which an embodiment may be implemented. - While each of the drawing figures depicts a particular embodiment for purposes of depicting a clear example, other embodiments may omit, add to, reorder, and/or modify any of the elements shown in the drawing figures. For purposes of depicting clear examples, one or more figures may be described with reference to one or more other figures, but using the particular arrangement depicted in the one or more other figures is not required in other embodiments.
- In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, that the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present disclosure. Modifiers such as “first” and “second” may be used to differentiate elements, but the modifiers do not necessarily indicate any particular order. For example, a second dataset may be so named although, in reality, it may correspond to a first, second, and/or third dataset.
- In an embodiment, a domain-specific language (DSL) may interface with an existing DDL and/or DML to offer greater flexibility. For example, the DSL may facilitate generating and/or manipulating datasets stored in volatile and/or non-volatile memory. Datasets may be manipulated based on commands referred to herein as “dataset transformations”. Dataset transformations may be created and/or customized by an end user of the DSL. Each dataset transformation may generate an output dataset based on one or more input datasets.
- Zero or more dataset transformations may be included in a table definition. The table definition may generate an output table based on zero or more input tables. A sequence for the one or more dataset transformations may be determined based on a graphical representation of the one or more dataset transformations.
- The DSL may support efficiently updating tables based on an incremental computation without explicitly invoking the incremental computation. The incremental computation may avoid re-computing a particular table to reflect an update to a dependent table. Instead, the incremental computation may involve performing one or more dataset transformations on a portion of the dependent table that includes the update. The transformed portion may then be incorporated into an older version of the particular table to generate a new version of the particular table that reflects the update.
-
FIG. 1 depicts an example computer architecture on which embodiments may be implemented. Referring toFIG. 1 ,storage computer 100 is communicatively coupled toserver computer 104, which is communicatively coupled toclient computer 108.Storage 100 includes source tables 102.Server computer 104 includesreferences 106 to source tables 102.Client computer 108 includesclient application 110. -
Storage 100 may include one or more database servers, one or more storage devices, and/or one or more of any other system for maintaining source tables 102. For example,storage 100 may be a repository that supports maintaining multiple versions of each source table 102 in such a manner that enables merging changes at any time that is convenient. - Tables (e.g., source tables 102, target tables) may include tabular data that is persisted in
storage 100 and/orserver computer 104. For example, source tables 102 may be distributed database tables that are stored in a collective non-volatile memory of a cluster of database computers. Tables may be stored in any format, such as JavaScript Object Notation (JSON), Extensible Markup Language (XML), comma-separated values (CSV), a B-tree, and/or a binary encoding. -
Server computer 104 may generate tables and/or datasets (e.g., unpersisted data).Server computer 104 may materialize datasets and store them in a volatile memory.Server computer 104 may cause particular datasets to be stored as tables in a non-volatile memory and/orstorage 100. -
Server computer 104 may include one or more web servers, one or more file servers, and/or one or more of any other interface betweenstorage 100 andclient computer 108.Server computer 104 may store copies of tables and/orreferences 106 to the tables. -
References 106 may include pointers, memory addresses, symbolic links, and/or any other indirect reference to a table. Storingreferences 106 to tables may reduce memory usage and enable data integration in O(1) time. -
Storage 100 may be on a separate device fromserver computer 104. Alternatively,storage 100 may be a persistent storage onserver computer 104.Storage 100 andserver computer 104 may communicate using a Representational State Transfer (REST) application programming interface (API), a Simple Object Access Protocol (SOAP), and/or any other set of constraints for exchanging information. Source tables 102 in any of a number of different formats may be uploaded tostorage 100 and/orserver computer 104 based on a plugin that causes source tables 102 to be stored in a common format. -
Client application 110 may be a browser, an integrated development environment (IDE), and/or any other user interface.Client application 110 may enable composing a table definition in a DSL. As shall be described in greater detail hereafter, the table definition may include a sequence of one or more dataset transformations to be performed on one or more source tables 102 to generate a target table. The one or more dataset transformations may define the contents of the target table. - The DSL may be independent and different from a DDL and/or a DML used with source tables 102. In other words,
server computer 104 may translate between a DSL used withclient application 110 and a DDL and/or DML used with source tables 102. - A “computer” may be one or more physical computers, virtual computers, and/or computing devices. As an example, a computer may be one or more server computers, cloud-based computers, cloud-based cluster of computers, virtual machine instances or virtual machine computing elements such as virtual processors, storage and memory, data centers, storage devices, desktop computers, laptop computers, mobile devices, and/or any other special-purpose computing devices. A computer may be a client and/or a server. Any reference to “a computer” herein may mean one or more computers, unless expressly stated otherwise.
-
FIG. 2 depicts an example graphical representation of a table definition that includes dataset transformations. Referring toFIG. 2 , directedacyclic graph 200 includesleaf node 202 andnon-leaf node 204.Leaf node 202 includes source tables 102A-B. Non-leaf node 204 includestransformations 206A-B and customizedtransformation 208. Target table 210 is generated based on performingtransformations 206A-B and customizedtransformation 208 on source tables 102A-B. - A directed
acyclic graph 200 may be a graphical representation of a table definition for a target table 210. The table definition may include one or more dataset transformations (e.g.,transformations 206A-B, customized transformation 208) to be performed on one or more source tables 102. The one or more dataset transformations may be represented as verbs, such as “aggregate”, “sort”, and “drop”, that describe an operation that is to be performed in terms of the problem domain instead of how to perform the operation as a sequence of programming language primitives. In other words, table definitions may be composed using declarative programming. - For example, table definition 1 generates target table 210 based on performing
transformation 206A on source table 102A. - Table Definition 1
-
line 1: newTable(“target table 210”) { line 2: startWith “source table 102A” line 3: transformation 206Aline 4: } - Line 3 of table definition 1 indicates that
transformation 206A is performed. However, in an embodiment, line 3 may indicate that customizedtransformation 208 is performed. Dataset transformations shall be described in greater detail hereafter. - In the example of
FIG. 2 , directedacyclic graph 200 may be a graphical representation of table definition 2. Table definition 2 generates target table 210 based on performingtransformations 206A-B and customizedtransformation 208 on source tables 102A-B. - Table Definition 2
-
line 1: newTable(“target table 210”) { line 2: startWith “source table 102A” line 3: transformation 206Aline 4: transformation 206B [ “dataset” ]line 5: } line 6: privateTable(“dataset”) { line 7: startWith “source table 102B” line 8: customized transformation 208line 9: } - Lines 6-9 of table definition 2 appear to be a separate table definition but may operate more like a dataset definition. Typically, “dataset” is materialized but remains unpersisted. In effect, lines 6-9 may be analogous to a Structured Query Language (SQL) CREATE VIEW statement. The dataset resulting from lines 6-9 may be transparent only to table definition 2.
- Declarative programming may be used to express the logic of a table definition without describing the control flow of the table definition. Thus, a sequence for the one or more dataset transformations may be determined based on the graphical representation. In the example of
FIG. 2 , directedacyclic graph 200 indicates that bothtransformation 206A and customizedtransformation 208 must be performed prior totransformation 206B. However,transformation 206A and customizedtransformation 208 may be performed at any time relative to each other. - The directed
acyclic graph 200 may include zero ormore leaf nodes 202 and zero or morenon-leaf nodes 204. The zero ormore leaf nodes 202 may represent zero or more tables. In the example ofFIG. 2 , eachleaf node 202 corresponds to a source table 102. In an embodiment, a target table 210 may also be represented by aleaf node 202. Eachnon-leaf node 204 may represent a dataset transformation. -
FIG. 3 depicts a detailed view of a dataset transformation, in an example embodiment. Referring toFIG. 3 ,dataset transformation 302 causes generatingoutput dataset 304 based on an input ofsource dataset 300.Dataset transformation 302 includesimplementation 306. - A dataset (e.g.,
source dataset 300, output dataset 304) may be a collection of data that is stored instorage 100 and/orserver computer 104. Datasets may be stored in a volatile memory and/or persisted in a non-volatile memory. Datasets that are persisted may be called tables. - A dataset that is taken as an input of a
dataset transformation 302 is called asource dataset 300, and a dataset that is generated as an output of adataset transformation 302 is called anoutput dataset 304. In the example ofFIG. 2 , source table 102A is asource dataset 300 fortransformation 206A, and anoutput dataset 304 fortransformation 206A is asource dataset 300 fortransformation 206B. Likewise, source table 102B is asource dataset 300 for customizedtransformation 208, and anoutput dataset 304 for customizedtransformation 208 is asource dataset 300 fortransformation 206B. Thus,transformation 206B generates anoutput dataset 304 based onmultiple source datasets 300. Theoutput dataset 304 fortransformation 206B becomes target table 210 when it is persisted. - A
dataset transformation 302 may be any of a number of operations that are performed on one or more datasets to generate yet another dataset. Each dataset transformation may be associated with animplementation 306 that includes code for causing a particular operation to be performed. As mentioned above,dataset transformations 302 may describe what is to be accomplished without describing how to accomplish it. Thus, animplementation 306 may describe how adataset transformation 302 is to be performed. - Referring to
FIG. 3 ,dataset transformation 302 may betransformation 206A,transformation 206B, or customizedtransformation 208 ofFIG. 2 . Thus,dataset transformation 302 may be an operation that is available in a DSL by default (e.g.,transformation 206A-B) or an operation that is defined by an end user of the DSL (e.g., customized transformation 208). - For example, in
FIG. 2 , source table 102A may represent the following table: -
ID Major 1 Peace Studies 2 Software Engineering 3 Computer Engineering -
Transformation 206A may be an operation that filters out non-engineering majors. Animplementation 306 oftransformation 206A may include a function that compares each string value in a particular column with the string values in an enumerated list and returns a Boolean value. Source table 102A may be asource dataset 300 that is provided as input totransformation 206A to generate anoutput dataset 304 that represents the following data: -
ID Major 2 Software Engineering 3 Computer Engineering - Source table 102B may represent the following table:
-
ID GPA 1 2.0 2 1.7 3 0.9 4 1.5 -
Customized transformation 208 may be an operation that increments numeric values by two. Animplementation 306 of customizedtransformation 208 may include a function that adds two to each numeric value in a particular column. Thus, source table 102B may be asource dataset 300 that is provided as input to customizedtransformation 208 to generate anoutput dataset 304 that represents the following data: -
ID GPA 1 4.0 2 3.7 3 2.9 4 3.5 -
Transformation 206B may be an operation that joins datasets into a composite dataset based on matching values in a respective column of each dataset. Animplementation 306 oftransformation 206B may include a function that performs an operation similar to a SQL INNER JOIN operation. For example, theoutput datasets 304 fortransformation 206A and customizedtransformation 208 may be provided as input totransformation 206B to generate anoutput dataset 304 that represents the following data: -
ID Major GPA 2 Software Engineering 3.7 3 Computer Engineering 2.9
If this data is persisted, it may be called target table 210. -
FIG. 4 depicts an example optimization involving parallel computing. Referring toFIG. 4 , processes 400A-B perform transformation 206A and customizedtransformation 208 in parallel to generate target table 210 based on source tables 102A-B. - Processes 400A-B may exist on a single computer or on multiple computers. For example, processes 400A-B may represent different threads on
server computer 104 or twodifferent server computers 104. - As mentioned above, a sequence of one or
more dataset transformations 302 may be determined based on a graphical representation of the one ormore dataset transformations 302. For example, the graphical representation depicted inFIG. 2 may indicate thattransformation 206A and customizedtransformation 208 may be performed concurrently in a multi-threaded application. - When a source table 102 is updated with a data change, the data change may be incorporated into a table that depends on the source table 102. However, incorporating the data change may involve completely rebuilding the table that depends on the source table 102. For example, at T1, a particular table may be generated based on performing a
particular dataset transformation 302 on a source table 102. At T2, the source table 102 may be updated. Thus, at T3, theparticular dataset transformation 302 may be performed on the updated source table 102 to generate an updated version of the particular table. - Completely rebuilding a table may be computationally intensive, especially if updates are frequent. Furthermore, in some situations, completely rebuilding a table may inefficiently incorporate updates. For example, in the example datasets above for
FIG. 2 , source table 102A may be updated to generate the following table: -
ID Major 1 Peace Studies 2 Software Engineering 3 Computer Engineering 4 Electrical Engineering
Note that the updated source table is generated based on appending the last row to the previous version of source table 102A. In this situation, instead of performingrelevant dataset transformations 302 on the updated source table in its entirety, it would be more efficient to perform therelevant dataset transformations 302 on an appended portion (e.g., the last row) of the updated source table. The transformed appended portion may then be combined with the table previously generated based on the previous version of source table 102A. This is called incremental computation. -
FIGS. 5A-B depict example graphical representations of incremental computation. Referring toFIG. 5A , intermediate table 500 is generated based on performingtransformations 206A-B and customizedtransformation 208 on source tables 102A-B.Supplemental portion 504 is generated based on performingtransformations 206A-B and customizedtransformation 208 on appendedportion 502 and source table 102B. However, in an embodiment (e.g.,FIG. 5B ),supplemental portion 504 may be generated based on performing one or more transformations 206 on source table 102A as well as appendedportion 502. Target table 508 is generated based on performingtransformation 506 on intermediate table 500 andsupplemental portion 504. Note that incremental computation may be an optimization that is performed without an enduser specifying transformation 506 and any of the operations used to generatesupplemental portion 504. - Intermediate table 500 of
FIG. 5A corresponds to target table 210 ofFIG. 2 . Intermediate table 500 is generated and persisted prior to generatingsupplemental portion 504. Thus, intermediate table 500 may be retrieved fromstorage 100 and/orserver computer 104 prior to generating target table 508. - In the example of
FIG. 5A , appendedportion 502 is a portion of an updated source table that was appended to a previous version of source table 102A. Although depicted in the example updated source table above as the last row, appendedportion 502 may be data that is added at any of a number of locations. For example, appendedportion 502 may be a new first row, a new column, etc. - A
supplemental portion 504 may be a portion of an intermediate table 500 that reflects an update to a source table 102. Thesupplemental portion 504 may be generated based on performing a set of one ormore dataset transformations 302 on an appendedportion 502 and/or one or more source tables 102. The set of one ormore dataset transformations 302 may be similar to that used to generate an intermediate table 500. InFIG. 5A ,supplemental portion 504 may represent the following data: -
ID Major GPA 4 Electrical Engineering 3.5
Supplemental portion 504 may be a dataset and/or a table. -
Transformation 506 may be an operation that combines one dataset with another dataset to generate a composite dataset. In the example ofFIG. 5A , intermediate table 500 andsupplemental portion 504 are provided as input totransformation 506 to generate anoutput dataset 304 that represents the following data: -
ID Major GPA 2 Software Engineering 3.7 3 Computer Engineering 2.9 4 Electrical Engineering 3.5
If this data is persisted, it may be called target table 508. - Referring to
FIG. 5B ,transformation 206C may be similar to or different fromtransformation 206A, andtransformation 206D may be similar to or different fromtransformation 206B.FIG. 5B differs fromFIG. 5A in thatsupplemental portion 504 depends on source table 102A as well as appendedportion 502. For example, inFIG. 5B ,transformation 206A may be an operation that takes the last two rows of source table 102A. However, appendedportion 502 may consist of only one row. Thus,transformation 206C may take as input the last row of source table 102A in addition to appendedportion 502. - Incremental computation may be an optimization that is available for deriving a target table 508 based on one or more criteria. The one or more criteria may include one or more of the following:
- an incremental status of a source table 102A
- an incremental computability of a
dataset transformation 302 - An incremental status of a source table 102A refers to a manner in which an update is incorporated into the source table 102A. An incremental status of “full” indicates that a target table 210 that depends on an updated source table must be completely rebuilt, whereas an incremental status of “incremental” indicates that incremental computation may be used to generate a target table 508 based on the updated source table. For example, a source table 102B without any updates may have an incremental status of “full”. Similarly, if an update replaces any data in a source table 102A, the source table 102A may have an incremental status of “full”. In contrast, an update that adds data to a source table 102A without replacing any data in the source table 102A may have an incremental status of “incremental”.
- A target table 508 may be derived based on incremental computation if the target table 508 depends on at least one source table 102A with an incremental status of “incremental”. In other words, incremental computation may be available if at least one source table 102A incorporates an update by appending the update.
- An incremental computability of a
dataset transformation 302 may be categorized as one or more of the following: - a “concatenate” type
- a “merge and append” type
- a “merge and replace” type
- an “impossible” type
- A “concatenate” type corresponds to a
dataset transformation 302 that can be computed efficiently by appending data to a previous result of thedataset transformation 302 without requiring access to the previous result. For example, a “rename” transformation may correspond to a “concatenate” type, because the “rename” transformation can change the name of a column in an update without accessing a previous renaming of the column. - Like the “concatenate” type, a “merge and append” type corresponds to a
dataset transformation 302 that can be computed efficiently by appending data to a previous result of thedataset transformation 302. However, the “merge and append” type requires access to the previous result. For example, a “distinct” transformation may correspond to a “merge and append” type, because the “distinct” transformation removes duplicate rows. Removing duplicate rows in an update cannot be performed confidently without checking for duplicate rows between the update and, for example, the previous result of removing duplicate rows. - A “merge and replace” type corresponds to a
dataset transformation 302 that can be computed efficiently by replacing data in a previous result of thedataset transformation 302. Like the “merge and append” type, the “merge and replace” type requires access to the previous result. For example, an “aggregate” transformation consisting of a “sum” operation may correspond to a “merge and replace” type, because the “sum” operation calculates a subtotal for an update, which is then added to a previous total to calculate a new total that replaces the previous total. - An “impossible” type corresponds to a
dataset transformation 302 that cannot take advantage of a previous result to perform incremental computation. In other words, the “impossible” type may correspond to adataset transformation 302 that does not correspond to one of the aforementioned types. For example, an “aggregate” transformation including a “mostFrequentValue” operation may correspond to an “impossible” type, because the statistical mode of a previous result does not necessarily inform the statistical mode of an updated set of data. - Like source tables 102,
dataset transformations 302 may be associated with an incremental status. An incremental status of “full” corresponds to a “merge and replace” type of incremental computability. However, an incremental status of “incremental” corresponds to either a “concatenate” type or a “merge and append” type of incremental computability. - A
dataset transformation 302 may be associated with multiple types of incremental computability based on one or more dependencies of thedataset transformation 302. The one or more dependencies may include source tables 102 and/or other dataset transformations that provide input to thedataset transformation 302. For example, adataset transformation 302 with two dependencies may correspond to a “concatenate” type if the first dependency has an incremental status of “incremental”, a “merge and append” type if the second dependency has an incremental status of “incremental”, and an “impossible” type if each dependency has an incremental status of “incremental”. - Furthermore, a dependency of a
dataset transformation 302 may be characterized as “reversible” if the dependency can be reconstructed from an output of thedataset transformation 302. In other words, a reversible dependency may be a dependency that can be derived based on performing an inverse dataset transformation on anoutput dataset 304. For example, asource dataset 300 of adataset transformation 302 that adds one to particular values is “reversible”, because anoutput dataset 304 of thedataset transformation 302 can be subjected to an inverse operation that subtracts one from the particular values to derive thesource dataset 300. - In an embodiment, incremental computation may be available if both of the following criteria are satisfied:
-
- Each
dataset transformation 302 with at least one dependency that has an incremental status of “incremental” corresponds to a “concatenate” type, a “merge and append” type, and/or a “merge and replace” type of incremental computability. - Each dependency that is and/or depends on a
dataset transformation 302 corresponding to a “merge and append” type and/or a “merge and replace” type of incremental computability is a reversible dependency.
- Each
- In the example of
FIG. 5A , source table 102A has an incremental status of “incremental”, and source table 102B has an incremental status of “full”. Since source table 102A is a dependency oftransformation 206A, the incremental computability oftransformation 206A must be assessed. Thus, in order for target table 508 to be generated based on incremental computation,transformation 206A must correspond to a “concatenate” type, a “merge and append” type, and/or a “merge and replace” type of incremental computability. -
Transformation 206A may be an operation that filters out non-engineering majors. Since two portions of a dataset can be filtered independently and then combined to yield the same result as filtering the dataset in its entirety,transformation 206A corresponds to a “concatenate” type of incremental computability. Furthermore, since adataset transformation 302 corresponding to a “concatenate” type is a dependency that has an incremental status of “incremental,”transformation 206A has an incremental status of “incremental”. Thus, in order for target table 508 to be generated based on incremental computation, the incremental computability oftransformation 206B must also be assessed. -
Transformation 206B may be analogous to a SQL INNER JOIN operation. Since performingtransformation 206B on a dataset in its entirety yields the same result as combining two portions of the dataset upon whichtransformation 206B has been performed separately,transformation 206B corresponds to a “concatenate” type of incremental computability. - Note that
transformation 506 is irrelevant to determining whether target table 508 can be generated based on incremental computation, becausetransformation 506 will become part of the implementation of incremental computation once it is determined to be appropriate. In other words, only thedataset transformations 302 depicted inFIG. 2 are relevant to the incremental computation analysis. - As a result of the foregoing incremental computation analysis,
server computer 104 may determine that target table 508 can be generated using incremental computation.Server computer 104 may be configured to perform incremental computation wheneverserver computer 104 determines that incremental computation is available. -
FIG. 6 is a flow diagram that depicts an approach for executing a table definition. Atblock 600, aserver computer 104 may process adataset transformation 302. Thedataset transformation 302 may be included in a table definition that was received from aclient computer 108. The table definition may be composed in a DSL. The DSL may be specialized for expressingdataset transformations 302 using declarative programming. - At
block 602, theserver computer 104 may obtain animplementation 306 of thedataset transformation 302. The table definition may exclude theimplementation 306 to facilitate manipulating data. Theimplementation 306 may be obtained from a separate file at theserver computer 104. - At
block 604, theserver computer 104 may provide theimplementation 306 with one ormore source datasets 300 as input. The one ormore source datasets 300 may be retrieved from astorage 100 and/or from theserver computer 104. For example, theserver computer 104 may rebuild asource dataset 300 that was previously retrieved from astorage 100 but subsequently removed from a volatile memory due to a failure. Rebuilding lost datasets may be based on logs maintained by theserver computer 104 that record a lineage (e.g., a table definition,source datasets 300, dataset transformations 302) of a lost dataset. - At
block 606, theserver computer 104 may generate anoutput dataset 304 based on executing theimplementation 306. Theoutput dataset 304 may be a transformed source dataset and/or a composite ofmultiple source datasets 300. Theoutput dataset 304 may be stored in volatile memory. - At
block 608, theserver computer 104 may determine whether the table definition includes anysubsequent dataset transformations 302. Asubsequent dataset transformation 302 may be determined based on a graphical representation of the table definition. If the table definition includes anysubsequent dataset transformations 302, theoutput dataset 304 may be used as asource dataset 300 for an immediatelysubsequent dataset transformation 302. Processing the immediatelysubsequent dataset transformation 302 may involve a process (not shown) similar to repeating blocks 600-606. However, if the table definition fails to include anysubsequent dataset transformations 302, block 608 may proceed to block 610. - At
block 610, theserver computer 104 may generate a target table 210, 508 based on persisting theoutput dataset 304. The target table 210, 508 may be stored atserver computer 104 and/orstorage 100. -
FIG. 7 is a flow diagram that depicts an approach for performing incremental computation. At block 700, aserver computer 104 may identifydataset transformations 302 with a dependency that has an incremental status of “incremental”. In other words, theserver computer 104 may determine whether one or more source tables 102 were updated based on appending (e.g., adding without replacing) data. Furthermore, theserver computer 104 may identify anydataset transformations 302 that depend directly or indirectly on the one or more source tables 102 and determine whether anydataset transformations 302 have an incremental status of “incremental”. Thus, block 700 may be performed concurrently withblock 702. - At
block 702, theserver computer 104 may determine whether eachdataset transformation 302 identified at block 700 corresponds to a “concatenate” type, a “merge and append” type, and/or a “merge and replace” type of incremental computability. If eachdataset transformation 302 is determined to correspond to an incremental computability type other than an “impossible” type, block 702 proceeds to block 704. Otherwise, the incremental computation analysis ends and incremental computation is determined to be unavailable. - At
block 704, theserver computer 104 may identify any dependencies that are or depend on a dataset transformation corresponding to a “merge and append” type and/or a “merge and replace” type. Incremental computation may still be available if such dependencies are reversible. - At
block 705, theserver computer 104 may determine whether each dependency identified atblock 704 is reversible. If any of the identified dependencies is not reversible, the incremental computation analysis ends and incremental computation is determined to be unavailable. Otherwise, block 705 proceeds to block 706. - At block 706, the
server computer 104 may obtain an intermediate table 500 generated based on performing one ormore dataset transformations 302 on a source table 102. Although depicted inFIG. 7 as being performed after block 700, block 706 may be performed prior to block 700, afterblock 708, or at any other suitable time. For example, block 706 ofFIG. 7 may correspond to block 610 ofFIG. 6 . - At
block 708, theserver computer 104 may generate asupplemental portion 504 for the intermediate table 500 based on performing the one ormore dataset transformations 302 on at least an appendedportion 502 of the source table 102. In an embodiment, the one ormore dataset transformations 302 may also be performed on the source table 102. - At
block 710, theserver computer 104 may generate a target table 210, 508 based on combining thesupplemental portion 504 with the intermediate table 500. Combining thesupplemental portion 504 with the intermediate table 500 may involve performing adataset transformation 302 on thesupplemental portion 504 and the intermediate table 500. For example, combining thesupplemental portion 504 with the intermediate table 500 may involve performing a square root operation to derive subtotals for thesupplemental portion 504 and the intermediate table 500, adding the subtotals to derive a total, and squaring the total. Anoutput dataset 304 of thedataset transformation 302 may be persisted to generate the target table 210, 508. - According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, portable computer systems, handheld devices, networking devices or any other device that incorporates hard-wired and/or program logic to implement the techniques.
- For example,
FIG. 8 is a block diagram that depicts acomputer system 800 upon which an embodiment may be implemented.Computer system 800 includes abus 802 or other communication mechanism for communicating information, and ahardware processor 804 coupled withbus 802 for processing information.Hardware processor 804 may be, for example, a general purpose microprocessor. -
Computer system 800 also includes amain memory 806, such as a random access memory (RAM) or other dynamic storage device, coupled tobus 802 for storing information and instructions to be executed byprocessor 804.Main memory 806 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed byprocessor 804. Such instructions, when stored in non-transitory storage media accessible toprocessor 804, rendercomputer system 800 into a special-purpose machine that is customized to perform the operations specified in the instructions. -
Computer system 800 further includes a read only memory (ROM) 808 or other static storage device coupled tobus 802 for storing static information and instructions forprocessor 804. Astorage device 810, such as a magnetic disk or optical disk, is provided and coupled tobus 802 for storing information and instructions. -
Computer system 800 may be coupled viabus 802 to adisplay 812, such as a cathode ray tube (CRT), for displaying information to a computer user. Aninput device 814, including alphanumeric and other keys, is coupled tobus 802 for communicating information and command selections toprocessor 804. Another type of user input device iscursor control 816, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections toprocessor 804 and for controlling cursor movement ondisplay 812. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. -
Computer system 800 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes orprograms computer system 800 to be a special-purpose machine. According to one embodiment, the techniques herein are performed bycomputer system 800 in response toprocessor 804 executing one or more sequences of one or more instructions contained inmain memory 806. Such instructions may be read intomain memory 806 from another storage medium, such asstorage device 810. Execution of the sequences of instructions contained inmain memory 806 causesprocessor 804 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions. - The term “storage media” as used herein refers to any non-transitory media that store data and/or instructions that cause a machine to operation in a specific fashion. Such storage media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as
storage device 810. Volatile media includes dynamic memory, such asmain memory 806. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge. - Storage media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise
bus 802. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications. - Various forms of media may be involved in carrying one or more sequences of one or more instructions to
processor 804 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local tocomputer system 800 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data onbus 802.Bus 802 carries the data tomain memory 806, from whichprocessor 804 retrieves and executes the instructions. The instructions received bymain memory 806 may optionally be stored onstorage device 810 either before or after execution byprocessor 804. -
Computer system 800 also includes acommunication interface 818 coupled tobus 802.Communication interface 818 provides a two-way data communication coupling to anetwork link 820 that is connected to alocal network 822. For example,communication interface 818 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example,communication interface 818 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation,communication interface 818 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information. - Network link 820 typically provides data communication through one or more networks to other data devices. For example,
network link 820 may provide a connection throughlocal network 822 to ahost computer 824 or to data equipment operated by an Internet Service Provider (ISP) 826.ISP 826 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 828.Local network 822 andInternet 828 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals onnetwork link 820 and throughcommunication interface 818, which carry the digital data to and fromcomputer system 800, are example forms of transmission media. -
Computer system 800 can send messages and receive data, including program code, through the network(s),network link 820 andcommunication interface 818. In the Internet example, aserver 830 might transmit a requested code for an application program throughInternet 828,ISP 826,local network 822 andcommunication interface 818. - The received code may be executed by
processor 804 as it is received, and/or stored instorage device 810, or other non-volatile storage for later execution. - In the foregoing specification, embodiments have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the disclosure, and what is intended by the applicants to be the scope of the disclosure, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction.
Claims (16)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/874,690 US9576015B1 (en) | 2015-09-09 | 2015-10-05 | Domain-specific language for dataset transformations |
EP16188060.4A EP3142027A1 (en) | 2015-09-09 | 2016-09-09 | Domain-specific language for dataset transformations |
US15/369,753 US9965534B2 (en) | 2015-09-09 | 2016-12-05 | Domain-specific language for dataset transformations |
US15/913,721 US11080296B2 (en) | 2015-09-09 | 2018-03-06 | Domain-specific language for dataset transformations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562216192P | 2015-09-09 | 2015-09-09 | |
US14/874,690 US9576015B1 (en) | 2015-09-09 | 2015-10-05 | Domain-specific language for dataset transformations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/369,753 Continuation US9965534B2 (en) | 2015-09-09 | 2016-12-05 | Domain-specific language for dataset transformations |
Publications (2)
Publication Number | Publication Date |
---|---|
US9576015B1 US9576015B1 (en) | 2017-02-21 |
US20170068698A1 true US20170068698A1 (en) | 2017-03-09 |
Family
ID=56893860
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/874,690 Active US9576015B1 (en) | 2015-09-09 | 2015-10-05 | Domain-specific language for dataset transformations |
US15/369,753 Active US9965534B2 (en) | 2015-09-09 | 2016-12-05 | Domain-specific language for dataset transformations |
US15/913,721 Active 2037-04-23 US11080296B2 (en) | 2015-09-09 | 2018-03-06 | Domain-specific language for dataset transformations |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/369,753 Active US9965534B2 (en) | 2015-09-09 | 2016-12-05 | Domain-specific language for dataset transformations |
US15/913,721 Active 2037-04-23 US11080296B2 (en) | 2015-09-09 | 2018-03-06 | Domain-specific language for dataset transformations |
Country Status (2)
Country | Link |
---|---|
US (3) | US9576015B1 (en) |
EP (1) | EP3142027A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9946738B2 (en) | 2014-11-05 | 2018-04-17 | Palantir Technologies, Inc. | Universal data pipeline |
US9965534B2 (en) | 2015-09-09 | 2018-05-08 | Palantir Technologies, Inc. | Domain-specific language for dataset transformations |
US9996595B2 (en) | 2015-08-03 | 2018-06-12 | Palantir Technologies, Inc. | Providing full data provenance visualization for versioned datasets |
US10007674B2 (en) | 2016-06-13 | 2018-06-26 | Palantir Technologies Inc. | Data revision control in large-scale data analytic systems |
US10754822B1 (en) | 2018-04-18 | 2020-08-25 | Palantir Technologies Inc. | Systems and methods for ontology migration |
US10956406B2 (en) | 2017-06-12 | 2021-03-23 | Palantir Technologies Inc. | Propagated deletion of database records and derived data |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10503497B2 (en) | 2018-01-30 | 2019-12-10 | Microsoft Technology Licensing, Llc | Techniques for utilizing an expression language in service configuration files |
US11507554B2 (en) * | 2019-12-26 | 2022-11-22 | Yahoo Assets Llc | Tree-like metadata structure for composite datasets |
US12038940B2 (en) * | 2020-09-10 | 2024-07-16 | Open Text Holdings, Inc. | Architecture for data map converters |
Family Cites Families (725)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5109399A (en) | 1989-08-18 | 1992-04-28 | Alamo City Technologies, Inc. | Emergency call locating system |
FR2684214B1 (en) | 1991-11-22 | 1997-04-04 | Sepro Robotique | INDEXING CARD FOR GEOGRAPHIC INFORMATION SYSTEM AND SYSTEM INCLUDING APPLICATION. |
US5632009A (en) | 1993-09-17 | 1997-05-20 | Xerox Corporation | Method and system for producing a table image showing indirect data representations |
US5670987A (en) | 1993-09-21 | 1997-09-23 | Kabushiki Kaisha Toshiba | Virtual manipulating apparatus and method |
US5437032A (en) | 1993-11-04 | 1995-07-25 | International Business Machines Corporation | Task scheduler for a miltiprocessor system |
US6877137B1 (en) | 1998-04-09 | 2005-04-05 | Rose Blush Software Llc | System, method and computer program product for mediating notes and note sub-notes linked or otherwise associated with stored or networked web pages |
US5818737A (en) | 1994-08-04 | 1998-10-06 | City Of Scottsdale | Method for guiding development of muncipality |
US5777549A (en) | 1995-03-29 | 1998-07-07 | Cabletron Systems, Inc. | Method and apparatus for policy-based alarm notification in a distributed network management environment |
US6366933B1 (en) | 1995-10-27 | 2002-04-02 | At&T Corp. | Method and apparatus for tracking and viewing changes on the web |
AU1119097A (en) | 1995-11-13 | 1997-06-05 | Answersoft, Inc. | Intelligent information routing system and method |
US8725493B2 (en) | 2004-01-06 | 2014-05-13 | Neuric Llc | Natural language parsing method to provide conceptual flow |
US5845300A (en) | 1996-06-05 | 1998-12-01 | Microsoft Corporation | Method and apparatus for suggesting completions for a partially entered data item based on previously-entered, associated data items |
US5798769A (en) | 1996-08-15 | 1998-08-25 | Xerox Corporation | Method and apparatus for maintaining links between graphic objects in a free-form graphics display system |
CA2187704C (en) | 1996-10-11 | 1999-05-04 | Darcy Kim Rossmo | Expert system method of performing crime site analysis |
US5870559A (en) | 1996-10-15 | 1999-02-09 | Mercury Interactive | Software system and associated methods for facilitating the analysis and management of web sites |
US5974572A (en) | 1996-10-15 | 1999-10-26 | Mercury Interactive Corporation | Software system and methods for generating a load test using a server access log |
US6430305B1 (en) | 1996-12-20 | 2002-08-06 | Synaptics, Incorporated | Identity verification methods |
JP2940501B2 (en) | 1996-12-25 | 1999-08-25 | 日本電気株式会社 | Document classification apparatus and method |
US6026233A (en) | 1997-05-27 | 2000-02-15 | Microsoft Corporation | Method and apparatus for presenting and selecting options to modify a programming language statement |
US6091956A (en) | 1997-06-12 | 2000-07-18 | Hollenberg; Dennis D. | Situation information system |
US6463404B1 (en) | 1997-08-08 | 2002-10-08 | British Telecommunications Public Limited Company | Translation |
US6014670A (en) * | 1997-11-07 | 2000-01-11 | Informatica Corporation | Apparatus and method for performing data transformations in data warehousing |
US6094650A (en) | 1997-12-15 | 2000-07-25 | Manning & Napier Information Services | Database analysis using a probabilistic ontology |
JP3636272B2 (en) | 1998-02-09 | 2005-04-06 | 富士通株式会社 | Icon display method, apparatus thereof, and recording medium |
US6247019B1 (en) | 1998-03-17 | 2001-06-12 | Prc Public Sector, Inc. | Object-based geographic information system (GIS) |
US6167405A (en) * | 1998-04-27 | 2000-12-26 | Bull Hn Information Systems Inc. | Method and apparatus for automatically populating a data warehouse system |
US7168039B2 (en) | 1998-06-02 | 2007-01-23 | International Business Machines Corporation | Method and system for reducing the horizontal space required for displaying a column containing text data |
US6742003B2 (en) | 2001-04-30 | 2004-05-25 | Microsoft Corporation | Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications |
US6510504B2 (en) | 1998-06-29 | 2003-01-21 | Oracle Corporation | Methods and apparatus for memory allocation for object instances in an object-oriented software environment |
US6577304B1 (en) | 1998-08-14 | 2003-06-10 | I2 Technologies Us, Inc. | System and method for visually representing a supply chain |
US6161098A (en) | 1998-09-14 | 2000-12-12 | Folio (Fn), Inc. | Method and apparatus for enabling small investors with a portfolio of securities to manage taxable events within the portfolio |
US6232971B1 (en) | 1998-09-23 | 2001-05-15 | International Business Machines Corporation | Variable modality child windows |
US6560578B2 (en) | 1999-03-12 | 2003-05-06 | Expanse Networks, Inc. | Advertisement selection system supporting discretionary target market characteristics |
US6523172B1 (en) | 1998-12-17 | 2003-02-18 | Evolutionary Technologies International, Inc. | Parser translator system and method |
US6279018B1 (en) | 1998-12-21 | 2001-08-21 | Kudrollis Software Inventions Pvt. Ltd. | Abbreviating and compacting text to cope with display space constraint in computer software |
US6631496B1 (en) | 1999-03-22 | 2003-10-07 | Nec Corporation | System for personalizing, organizing and managing web information |
US6748481B1 (en) | 1999-04-06 | 2004-06-08 | Microsoft Corporation | Streaming information appliance with circular buffer for receiving and selectively reading blocks of streaming information |
US6369835B1 (en) | 1999-05-18 | 2002-04-09 | Microsoft Corporation | Method and system for generating a movie file from a slide show presentation |
US6714936B1 (en) | 1999-05-25 | 2004-03-30 | Nevin, Iii Rocky Harry W. | Method and apparatus for displaying data stored in linked nodes |
US6307573B1 (en) | 1999-07-22 | 2001-10-23 | Barbara L. Barros | Graphic-information flow method and system for visually analyzing patterns and relationships |
US7039863B1 (en) | 1999-07-23 | 2006-05-02 | Adobe Systems Incorporated | Computer generation of documents using layout elements and content elements |
US7373592B2 (en) | 1999-07-30 | 2008-05-13 | Microsoft Corporation | Modeless child windows for application programs |
US6560620B1 (en) | 1999-08-03 | 2003-05-06 | Aplix Research, Inc. | Hierarchical document comparison system and method |
US6976210B1 (en) | 1999-08-31 | 2005-12-13 | Lucent Technologies Inc. | Method and apparatus for web-site-independent personalization from multiple sites having user-determined extraction functionality |
GB2371901B (en) | 1999-09-21 | 2004-06-23 | Andrew E Borthwick | A probabilistic record linkage model derived from training data |
US20020174201A1 (en) | 1999-09-30 | 2002-11-21 | Ramer Jon E. | Dynamic configuration of context-sensitive personal sites and membership channels |
US7630986B1 (en) | 1999-10-27 | 2009-12-08 | Pinpoint, Incorporated | Secure data interchange |
US7216115B1 (en) | 1999-11-10 | 2007-05-08 | Fastcase.Com, Inc. | Apparatus and method for displaying records responsive to a database query |
US7716077B1 (en) | 1999-11-22 | 2010-05-11 | Accenture Global Services Gmbh | Scheduling and planning maintenance and service in a network-based supply chain environment |
FR2806183B1 (en) | 1999-12-01 | 2006-09-01 | Cartesis S A | DEVICE AND METHOD FOR INSTANT CONSOLIDATION, ENRICHMENT AND "REPORTING" OR BACKGROUND OF INFORMATION IN A MULTIDIMENSIONAL DATABASE |
US7194680B1 (en) | 1999-12-07 | 2007-03-20 | Adobe Systems Incorporated | Formatting content by example |
US20040117387A1 (en) | 2000-02-25 | 2004-06-17 | Vincent Civetta | Database sizing and diagnostic utility |
US6859909B1 (en) | 2000-03-07 | 2005-02-22 | Microsoft Corporation | System and method for annotating web-based documents |
US6456997B1 (en) | 2000-04-12 | 2002-09-24 | International Business Machines Corporation | System and method for dynamically generating an invisible hierarchy in a planning system |
JP4325075B2 (en) | 2000-04-21 | 2009-09-02 | ソニー株式会社 | Data object management device |
US6915289B1 (en) | 2000-05-04 | 2005-07-05 | International Business Machines Corporation | Using an index to access a subject multi-dimensional database |
US7269786B1 (en) | 2000-05-04 | 2007-09-11 | International Business Machines Corporation | Navigating an index to access a subject multi-dimensional database |
US6642945B1 (en) | 2000-05-04 | 2003-11-04 | Microsoft Corporation | Method and system for optimizing a visual display for handheld computer systems |
US6594672B1 (en) | 2000-06-01 | 2003-07-15 | Hyperion Solutions Corporation | Generating multidimensional output using meta-models and meta-outlines |
US6839745B1 (en) | 2000-07-19 | 2005-01-04 | Verizon Corporate Services Group Inc. | System and method for generating reports in a telecommunication system |
US7278105B1 (en) | 2000-08-21 | 2007-10-02 | Vignette Corporation | Visualization and analysis of user clickpaths |
GB2366498A (en) | 2000-08-25 | 2002-03-06 | Copyn Ltd | Method of bookmarking a section of a web-page and storing said bookmarks |
US6795868B1 (en) | 2000-08-31 | 2004-09-21 | Data Junction Corp. | System and method for event-driven data transformation |
US20020065708A1 (en) | 2000-09-22 | 2002-05-30 | Hikmet Senay | Method and system for interactive visual analyses of organizational interactions |
AUPR033800A0 (en) | 2000-09-25 | 2000-10-19 | Telstra R & D Management Pty Ltd | A document categorisation system |
US6640231B1 (en) | 2000-10-06 | 2003-10-28 | Ontology Works, Inc. | Ontology for database design and application development |
US6829621B2 (en) | 2000-10-06 | 2004-12-07 | International Business Machines Corporation | Automatic determination of OLAP cube dimensions |
US8707185B2 (en) | 2000-10-10 | 2014-04-22 | Addnclick, Inc. | Dynamic information management system and method for content delivery and sharing in content-, metadata- and viewer-based, live social networking among users concurrently engaged in the same and/or similar content |
US8117281B2 (en) | 2006-11-02 | 2012-02-14 | Addnclick, Inc. | Using internet content as a means to establish live social networks by linking internet users to each other who are simultaneously engaged in the same and/or similar content |
JP2002123530A (en) | 2000-10-12 | 2002-04-26 | Hitachi Ltd | Method and device for visualizing multidimensional data |
US7027974B1 (en) | 2000-10-27 | 2006-04-11 | Science Applications International Corporation | Ontology-based parser for natural language processing |
US6754640B2 (en) | 2000-10-30 | 2004-06-22 | William O. Bozeman | Universal positive pay match, authentication, authorization, settlement and clearing system |
US6738770B2 (en) | 2000-11-04 | 2004-05-18 | Deep Sky Software, Inc. | System and method for filtering and sorting data |
US6978419B1 (en) | 2000-11-15 | 2005-12-20 | Justsystem Corporation | Method and apparatus for efficient identification of duplicate and near-duplicate documents and text spans using high-discriminability text fragments |
US20020103705A1 (en) | 2000-12-06 | 2002-08-01 | Forecourt Communication Group | Method and apparatus for using prior purchases to select activities to present to a customer |
US7529698B2 (en) | 2001-01-16 | 2009-05-05 | Raymond Anthony Joao | Apparatus and method for providing transaction history information, account history information, and/or charge-back information |
JP2002222083A (en) | 2001-01-29 | 2002-08-09 | Fujitsu Ltd | Device and method for instance storage |
US9053222B2 (en) | 2002-05-17 | 2015-06-09 | Lawrence A. Lynn | Patient safety processor |
AUPR313301A0 (en) | 2001-02-15 | 2001-03-08 | Topshop Holdings Pty Ltd | Method & system for avoiding channel conflict in electronic commerce |
US6516268B2 (en) | 2001-02-16 | 2003-02-04 | Wizeguides.Com Inc. | Bundled map guide |
US20100057622A1 (en) | 2001-02-27 | 2010-03-04 | Faith Patrick L | Distributed Quantum Encrypted Pattern Generation And Scoring |
US7117430B2 (en) | 2001-02-27 | 2006-10-03 | Microsoft Corporation | Spreadsheet error checker |
US6985950B1 (en) | 2001-03-06 | 2006-01-10 | Microsoft Corporation | System for creating a space-efficient document categorizer for training and testing of automatic categorization engines |
US7043702B2 (en) | 2001-03-15 | 2006-05-09 | Xerox Corporation | Method for visualizing user path through a web site and a path's associated information scent |
US9256356B2 (en) | 2001-03-29 | 2016-02-09 | International Business Machines Corporation | Method and system for providing feedback for docking a content pane in a host window |
US6775675B1 (en) | 2001-04-04 | 2004-08-10 | Sagemetrics Corporation | Methods for abstracting data from various data structures and managing the presentation of the data |
CA2446162A1 (en) | 2001-05-11 | 2002-11-21 | Computer Associates Think, Inc. | Method and system for transforming legacy software applications into modern object-oriented systems |
US6980984B1 (en) | 2001-05-16 | 2005-12-27 | Kanisa, Inc. | Content provider systems and methods using structured data |
US7877421B2 (en) | 2001-05-25 | 2011-01-25 | International Business Machines Corporation | Method and system for mapping enterprise data assets to a semantic information model |
US7865427B2 (en) | 2001-05-30 | 2011-01-04 | Cybersource Corporation | Method and apparatus for evaluating fraud risk in an electronic commerce transaction |
US6828920B2 (en) | 2001-06-04 | 2004-12-07 | Lockheed Martin Orincon Corporation | System and method for classifying vehicles |
US8001465B2 (en) | 2001-06-26 | 2011-08-16 | Kudrollis Software Inventions Pvt. Ltd. | Compacting an information array display to cope with two dimensional display space constraint |
US6643613B2 (en) | 2001-07-03 | 2003-11-04 | Altaworks Corporation | System and method for monitoring performance metrics |
EP1421518A1 (en) | 2001-08-08 | 2004-05-26 | Quiver, Inc. | Document categorization engine |
US20030039948A1 (en) | 2001-08-09 | 2003-02-27 | Donahue Steven J. | Voice enabled tutorial system and method |
US7028223B1 (en) | 2001-08-13 | 2006-04-11 | Parasoft Corporation | System and method for testing of web services |
US20040205524A1 (en) | 2001-08-15 | 2004-10-14 | F1F9 | Spreadsheet data processing system |
US7082365B2 (en) | 2001-08-16 | 2006-07-25 | Networks In Motion, Inc. | Point of interest spatial rating search method and system |
US7058567B2 (en) | 2001-10-10 | 2006-06-06 | Xerox Corporation | Natural language parser |
WO2003032125A2 (en) | 2001-10-11 | 2003-04-17 | Visualsciences, Llc | System, method, and computer program product for processing and visualization of information |
US7756728B2 (en) | 2001-10-31 | 2010-07-13 | Siemens Medical Solutions Usa, Inc. | Healthcare system and user interface for consolidating patient related information from different sources |
US7089541B2 (en) | 2001-11-30 | 2006-08-08 | Sun Microsystems, Inc. | Modular parser architecture with mini parsers |
CN1296692C (en) | 2001-12-06 | 2007-01-24 | 三菱化学株式会社 | Method for analyzing easily polymerizable compound |
US7611602B2 (en) | 2001-12-13 | 2009-11-03 | Urban Mapping, Llc | Method of producing maps and other objects configured for presentation of spatially-related layers of data |
US7970240B1 (en) | 2001-12-17 | 2011-06-28 | Google Inc. | Method and apparatus for archiving and visualizing digital images |
US20070203771A1 (en) | 2001-12-17 | 2007-08-30 | Caballero Richard J | System and method for processing complex orders |
US20030172368A1 (en) | 2001-12-26 | 2003-09-11 | Elizabeth Alumbaugh | System and method for autonomously generating heterogeneous data source interoperability bridges based on semantic modeling derived from self adapting ontology |
US7139800B2 (en) | 2002-01-16 | 2006-11-21 | Xerox Corporation | User interface for a message-based system having embedded information management capabilities |
US7454466B2 (en) | 2002-01-16 | 2008-11-18 | Xerox Corporation | Method and system for flexible workflow management |
US7640173B2 (en) | 2002-01-17 | 2009-12-29 | Applied Medical Software, Inc. | Method and system for evaluating a physician's economic performance and gainsharing of physician services |
US7546245B2 (en) | 2002-01-17 | 2009-06-09 | Amsapplied Medical Software, Inc. | Method and system for gainsharing of physician services |
US7305444B2 (en) | 2002-01-23 | 2007-12-04 | International Business Machines Corporation | Method and system for controlling delivery of information in a forum |
US7225183B2 (en) | 2002-01-28 | 2007-05-29 | Ipxl, Inc. | Ontology-based information management system and method |
AU2003269798A1 (en) | 2002-02-01 | 2004-01-06 | John Fairweather | A system for exchanging binary data |
US20030171942A1 (en) | 2002-03-06 | 2003-09-11 | I-Centrix Llc | Contact relationship management system and method |
CA3077873A1 (en) | 2002-03-20 | 2003-10-02 | Catalina Marketing Corporation | Targeted incentives based upon predicted behavior |
US7533026B2 (en) | 2002-04-12 | 2009-05-12 | International Business Machines Corporation | Facilitating management of service elements usable in providing information technology service offerings |
US7162475B2 (en) | 2002-04-17 | 2007-01-09 | Ackerman David M | Method for user verification and authentication and multimedia processing for interactive database management and method for viewing the multimedia |
US7171427B2 (en) | 2002-04-26 | 2007-01-30 | Oracle International Corporation | Methods of navigating a cube that is implemented as a relational object |
US20040126840A1 (en) | 2002-12-23 | 2004-07-01 | Affymetrix, Inc. | Method, system and computer software for providing genomic ontological data |
US20040012633A1 (en) | 2002-04-26 | 2004-01-22 | Affymetrix, Inc., A Corporation Organized Under The Laws Of Delaware | System, method, and computer program product for dynamic display, and analysis of biological sequence data |
US7237192B1 (en) | 2002-04-30 | 2007-06-26 | Oracle International Corporation | Methods and systems for naming and indexing children in a hierarchical nodal structure |
US7703021B1 (en) | 2002-05-24 | 2010-04-20 | Sparta Systems, Inc. | Defining user access in highly-configurable systems |
JP2003345810A (en) | 2002-05-28 | 2003-12-05 | Hitachi Ltd | Method and system for document retrieval and document retrieval result display system |
US20030229848A1 (en) | 2002-06-05 | 2003-12-11 | Udo Arend | Table filtering in a computer user interface |
US7103854B2 (en) | 2002-06-27 | 2006-09-05 | Tele Atlas North America, Inc. | System and method for associating text and graphical views of map information |
CA2398103A1 (en) | 2002-08-14 | 2004-02-14 | March Networks Corporation | Multi-dimensional table filtering system |
US7305659B2 (en) | 2002-09-03 | 2007-12-04 | Sap Ag | Handling parameters in test scripts for computer program applications |
GB0221257D0 (en) | 2002-09-13 | 2002-10-23 | Ibm | Automated testing |
US7127352B2 (en) | 2002-09-30 | 2006-10-24 | Lucent Technologies Inc. | System and method for providing accurate local maps for a central service |
WO2004036461A2 (en) | 2002-10-14 | 2004-04-29 | Battelle Memorial Institute | Information reservoir |
US20040078251A1 (en) | 2002-10-16 | 2004-04-22 | Demarcken Carl G. | Dividing a travel query into sub-queries |
US20040143602A1 (en) | 2002-10-18 | 2004-07-22 | Antonio Ruiz | Apparatus, system and method for automated and adaptive digital image/video surveillance for events and configurations using a rich multimedia relational database |
US20040083466A1 (en) | 2002-10-29 | 2004-04-29 | Dapp Michael C. | Hardware parser accelerator |
US20040085318A1 (en) | 2002-10-31 | 2004-05-06 | Philipp Hassler | Graphics generation and integration |
US7162501B2 (en) | 2002-11-26 | 2007-01-09 | Microsoft Corporation | Hierarchical differential document representative of changes between versions of hierarchical document |
US20040111480A1 (en) | 2002-12-09 | 2004-06-10 | Yue Jonathan Zhanjun | Message screening system and method |
US8589273B2 (en) | 2002-12-23 | 2013-11-19 | Ge Corporate Financial Services, Inc. | Methods and systems for managing risk management information |
US7752117B2 (en) | 2003-01-31 | 2010-07-06 | Trading Technologies International, Inc. | System and method for money management in electronic trading environment |
US20040153418A1 (en) | 2003-02-05 | 2004-08-05 | Hanweck Gerald Alfred | System and method for providing access to data from proprietary tools |
US7627552B2 (en) | 2003-03-27 | 2009-12-01 | Microsoft Corporation | System and method for filtering and organizing items based on common elements |
US7280038B2 (en) | 2003-04-09 | 2007-10-09 | John Robinson | Emergency response data transmission system |
KR100996029B1 (en) | 2003-04-29 | 2010-11-22 | 삼성전자주식회사 | Apparatus and method for coding of low density parity check code |
US9607092B2 (en) | 2003-05-20 | 2017-03-28 | Excalibur Ip, Llc | Mapping method and system |
US20050027705A1 (en) | 2003-05-20 | 2005-02-03 | Pasha Sadri | Mapping method and system |
US7620648B2 (en) | 2003-06-20 | 2009-11-17 | International Business Machines Corporation | Universal annotation configuration and deployment |
US20040267746A1 (en) | 2003-06-26 | 2004-12-30 | Cezary Marcjan | User interface for controlling access to computer objects |
US8412566B2 (en) | 2003-07-08 | 2013-04-02 | Yt Acquisition Corporation | High-precision customer-based targeting by individual usage statistics |
WO2005010686A2 (en) | 2003-07-18 | 2005-02-03 | Corestreet, Ltd. | Disseminating additional data used for controlling access |
US7055110B2 (en) | 2003-07-28 | 2006-05-30 | Sig G Kupka | Common on-screen zone for menu activation and stroke input |
US7363581B2 (en) | 2003-08-12 | 2008-04-22 | Accenture Global Services Gmbh | Presentation generator |
US20060143075A1 (en) | 2003-09-22 | 2006-06-29 | Ryan Carr | Assumed demographics, predicted behaviour, and targeted incentives |
US7516086B2 (en) | 2003-09-24 | 2009-04-07 | Idearc Media Corp. | Business rating placement heuristic |
US7454045B2 (en) | 2003-10-10 | 2008-11-18 | The United States Of America As Represented By The Department Of Health And Human Services | Determination of feature boundaries in a digital representation of an anatomical structure |
US7334195B2 (en) | 2003-10-14 | 2008-02-19 | Microsoft Corporation | System and process for presenting search results in a histogram/cluster format |
US7584172B2 (en) | 2003-10-16 | 2009-09-01 | Sap Ag | Control for selecting data query and visual configuration |
US7536696B2 (en) | 2003-10-24 | 2009-05-19 | Microsoft Corporation | Mechanism for handling input parameters |
US7080104B2 (en) | 2003-11-07 | 2006-07-18 | Plaxo, Inc. | Synchronization and merge engines |
US20050125715A1 (en) | 2003-12-04 | 2005-06-09 | Fabrizio Di Franco | Method of saving data in a graphical user interface |
US7818658B2 (en) | 2003-12-09 | 2010-10-19 | Yi-Chih Chen | Multimedia presentation system |
US7917376B2 (en) | 2003-12-29 | 2011-03-29 | Montefiore Medical Center | System and method for monitoring patient care |
US20050154628A1 (en) | 2004-01-13 | 2005-07-14 | Illumen, Inc. | Automated management of business performance information |
US20050154769A1 (en) | 2004-01-13 | 2005-07-14 | Llumen, Inc. | Systems and methods for benchmarking business performance data against aggregated business performance data |
US7872669B2 (en) | 2004-01-22 | 2011-01-18 | Massachusetts Institute Of Technology | Photo-based mobile deixis system and related techniques |
US20050166144A1 (en) | 2004-01-22 | 2005-07-28 | Mathcom Inventions Ltd. | Method and system for assigning a background to a document and document having a background made according to the method and system |
US7343552B2 (en) | 2004-02-12 | 2008-03-11 | Fuji Xerox Co., Ltd. | Systems and methods for freeform annotations |
US20050180330A1 (en) | 2004-02-17 | 2005-08-18 | Touchgraph Llc | Method of animating transitions and stabilizing node motion during dynamic graph navigation |
US20050182793A1 (en) | 2004-02-18 | 2005-08-18 | Keenan Viktor M. | Map structure and method for producing |
US20050182739A1 (en) | 2004-02-18 | 2005-08-18 | Tamraparni Dasu | Implementing data quality using rule based and knowledge engineering |
US7596285B2 (en) | 2004-02-26 | 2009-09-29 | International Business Machines Corporation | Providing a portion of an electronic mail message at a reduced resolution |
US20050210409A1 (en) | 2004-03-19 | 2005-09-22 | Kenny Jou | Systems and methods for class designation in a computerized social network application |
US7865301B2 (en) | 2004-03-23 | 2011-01-04 | Google Inc. | Secondary map in digital mapping system |
US7599790B2 (en) | 2004-03-23 | 2009-10-06 | Google Inc. | Generating and serving tiles in a digital mapping system |
WO2005104039A2 (en) | 2004-03-23 | 2005-11-03 | Google, Inc. | A digital mapping system |
US20060026120A1 (en) | 2004-03-24 | 2006-02-02 | Update Publications Lp | Method and system for collecting, processing, and distributing residential property data |
US7269801B2 (en) | 2004-03-30 | 2007-09-11 | Autodesk, Inc. | System for managing the navigational usability of an interactive map |
US8086607B2 (en) | 2004-04-26 | 2011-12-27 | Right90, Inc. | Annotation of data in an operating plan data aggregation system |
US20050246327A1 (en) | 2004-04-30 | 2005-11-03 | Yeung Simon D | User interfaces and methods of using the same |
EP1759280A4 (en) | 2004-05-04 | 2009-08-26 | Boston Consulting Group Inc | Method and apparatus for selecting, analyzing and visualizing related database records as a network |
US20050251786A1 (en) | 2004-05-07 | 2005-11-10 | International Business Machines Corporation | System and method for dynamic software installation instructions |
JP4829223B2 (en) | 2004-05-25 | 2011-12-07 | グーグル インコーポレイテッド | Electronic message source reputation information system |
GB2415317B (en) | 2004-06-15 | 2007-08-15 | Orange Personal Comm Serv Ltd | Provision of group services in a telecommunications network |
FR2872653B1 (en) | 2004-06-30 | 2006-12-29 | Skyrecon Systems Sa | SYSTEM AND METHODS FOR SECURING COMPUTER STATIONS AND / OR COMMUNICATIONS NETWORKS |
US8289390B2 (en) | 2004-07-28 | 2012-10-16 | Sri International | Method and apparatus for total situational awareness and monitoring |
US7552116B2 (en) | 2004-08-06 | 2009-06-23 | The Board Of Trustees Of The University Of Illinois | Method and system for extracting web query interfaces |
US7290698B2 (en) | 2004-08-25 | 2007-11-06 | Sony Corporation | Progress bar with multiple portions |
US7617232B2 (en) | 2004-09-02 | 2009-11-10 | Microsoft Corporation | Centralized terminology and glossary development |
US7933862B2 (en) | 2004-09-27 | 2011-04-26 | Microsoft Corporation | One click conditional formatting method and system for software programs |
US7712049B2 (en) | 2004-09-30 | 2010-05-04 | Microsoft Corporation | Two-dimensional radial user interface for computer software applications |
US7788589B2 (en) | 2004-09-30 | 2010-08-31 | Microsoft Corporation | Method and system for improved electronic task flagging and management |
US20060074881A1 (en) | 2004-10-02 | 2006-04-06 | Adventnet, Inc. | Structure independent searching in disparate databases |
US7284198B2 (en) | 2004-10-07 | 2007-10-16 | International Business Machines Corporation | Method and system for document draft reminder based on inactivity |
US8892571B2 (en) | 2004-10-12 | 2014-11-18 | International Business Machines Corporation | Systems for associating records in healthcare database with individuals |
US7739246B2 (en) | 2004-10-14 | 2010-06-15 | Microsoft Corporation | System and method of merging contacts |
US7574409B2 (en) | 2004-11-04 | 2009-08-11 | Vericept Corporation | Method, apparatus, and system for clustering and classification |
US20060129992A1 (en) | 2004-11-10 | 2006-06-15 | Oberholtzer Brian K | Software test and performance monitoring system |
US7529734B2 (en) | 2004-11-12 | 2009-05-05 | Oracle International Corporation | Method and apparatus for facilitating a database query using a query criteria template |
US7797197B2 (en) | 2004-11-12 | 2010-09-14 | Amazon Technologies, Inc. | Method and system for analyzing the performance of affiliate sites |
US8938434B2 (en) | 2004-11-22 | 2015-01-20 | Intelius, Inc. | Household grouping based on public records |
US7899796B1 (en) | 2004-11-23 | 2011-03-01 | Andrew Borthwick | Batch automated blocking and record matching |
US7620628B2 (en) | 2004-12-06 | 2009-11-17 | Yahoo! Inc. | Search processing with automatic categorization of queries |
US20060129746A1 (en) | 2004-12-14 | 2006-06-15 | Ithink, Inc. | Method and graphic interface for storing, moving, sending or printing electronic data to two or more locations, in two or more formats with a single save function |
US7849395B2 (en) | 2004-12-15 | 2010-12-07 | Microsoft Corporation | Filter and sort by color |
US7451397B2 (en) | 2004-12-15 | 2008-11-11 | Microsoft Corporation | System and method for automatically completing spreadsheet formulas |
US20060143079A1 (en) | 2004-12-29 | 2006-06-29 | Jayanta Basak | Cross-channel customer matching |
US8700414B2 (en) | 2004-12-29 | 2014-04-15 | Sap Ag | System supported optimization of event resolution |
US7660823B2 (en) | 2004-12-30 | 2010-02-09 | Sas Institute Inc. | Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format |
US7418461B2 (en) | 2005-01-14 | 2008-08-26 | Microsoft Corporation | Schema conformance for database servers |
US9436945B2 (en) | 2005-02-01 | 2016-09-06 | Redfin Corporation | Interactive map-based search and advertising |
US7614006B2 (en) | 2005-02-11 | 2009-11-03 | International Business Machines Corporation | Methods and apparatus for implementing inline controls for transposing rows and columns of computer-based tables |
US8646080B2 (en) | 2005-09-16 | 2014-02-04 | Avg Technologies Cy Limited | Method and apparatus for removing harmful software |
US20060242630A1 (en) | 2005-03-09 | 2006-10-26 | Maxis Co., Ltd. | Process for preparing design procedure document and apparatus for the same |
US8091784B1 (en) | 2005-03-09 | 2012-01-10 | Diebold, Incorporated | Banking system controlled responsive to data bearing records |
US7657868B2 (en) | 2005-03-14 | 2010-02-02 | Research In Motion Limited | System and method for applying development patterns for component based applications |
US7483028B2 (en) | 2005-03-15 | 2009-01-27 | Microsoft Corporation | Providing 1D and 2D connectors in a connected diagram |
US7725728B2 (en) | 2005-03-23 | 2010-05-25 | Business Objects Data Integration, Inc. | Apparatus and method for dynamically auditing data migration to produce metadata |
US7676845B2 (en) | 2005-03-24 | 2010-03-09 | Microsoft Corporation | System and method of selectively scanning a file on a computing device for malware |
US7596528B1 (en) | 2005-03-31 | 2009-09-29 | Trading Technologies International, Inc. | System and method for dynamically regulating order entry in an electronic trading environment |
US7426654B2 (en) | 2005-04-14 | 2008-09-16 | Verizon Business Global Llc | Method and system for providing customer controlled notifications in a managed network services system |
US7525422B2 (en) | 2005-04-14 | 2009-04-28 | Verizon Business Global Llc | Method and system for providing alarm reporting in a managed network services environment |
US20060242040A1 (en) | 2005-04-20 | 2006-10-26 | Aim Holdings Llc | Method and system for conducting sentiment analysis for securities research |
US8639757B1 (en) | 2011-08-12 | 2014-01-28 | Sprint Communications Company L.P. | User localization using friend location information |
US8082172B2 (en) | 2005-04-26 | 2011-12-20 | The Advisory Board Company | System and method for peer-profiling individual performance |
US7958120B2 (en) | 2005-05-10 | 2011-06-07 | Netseer, Inc. | Method and apparatus for distributed community finding |
US7672968B2 (en) | 2005-05-12 | 2010-03-02 | Apple Inc. | Displaying a tooltip associated with a concurrently displayed database object |
US8024778B2 (en) | 2005-05-24 | 2011-09-20 | CRIF Corporation | System and method for defining attributes, decision rules, or both, for remote execution, claim set I |
US8825370B2 (en) | 2005-05-27 | 2014-09-02 | Yahoo! Inc. | Interactive map-based travel guide |
US7962842B2 (en) | 2005-05-30 | 2011-06-14 | International Business Machines Corporation | Method and systems for accessing data by spelling discrimination letters of link names |
US8161122B2 (en) | 2005-06-03 | 2012-04-17 | Messagemind, Inc. | System and method of dynamically prioritized electronic mail graphical user interface, and measuring email productivity and collaboration trends |
US8341259B2 (en) | 2005-06-06 | 2012-12-25 | Adobe Systems Incorporated | ASP for web analytics including a real-time segmentation workbench |
EP1732034A1 (en) | 2005-06-06 | 2006-12-13 | First Data Corporation | System and method for authorizing electronic payment transactions |
AU2006263703A1 (en) | 2005-06-28 | 2007-01-04 | Nokia Corporation | User interface for geographic search |
US20070016363A1 (en) | 2005-07-15 | 2007-01-18 | Oracle International Corporation | Interactive map-based user interface for transportation planning |
CA2615659A1 (en) | 2005-07-22 | 2007-05-10 | Yogesh Chunilal Rathod | Universal knowledge management and desktop search system |
US7421429B2 (en) | 2005-08-04 | 2008-09-02 | Microsoft Corporation | Generate blog context ranking using track-back weight, context weight and, cumulative comment weight |
JP3989527B2 (en) | 2005-08-04 | 2007-10-10 | 松下電器産業株式会社 | Search article estimation apparatus and method, and search article estimation apparatus server |
EP1917544A2 (en) | 2005-08-23 | 2008-05-07 | R.A. Smith & Associates, Inc. | High accuracy survey-grade gis system |
WO2007025279A2 (en) | 2005-08-25 | 2007-03-01 | Fortify Software, Inc. | Apparatus and method for analyzing and supplementing a program to provide security |
US7917841B2 (en) | 2005-08-29 | 2011-03-29 | Edgar Online, Inc. | System and method for rendering data |
JP2007079641A (en) | 2005-09-09 | 2007-03-29 | Canon Inc | Information processor and processing method, program, and storage medium |
US8095866B2 (en) | 2005-09-09 | 2012-01-10 | Microsoft Corporation | Filtering user interface for a data summary table |
US7716226B2 (en) | 2005-09-27 | 2010-05-11 | Patentratings, Llc | Method and system for probabilistically quantifying and visualizing relevance between two or more citationally or contextually related data objects |
US7792814B2 (en) | 2005-09-30 | 2010-09-07 | Sap, Ag | Apparatus and method for parsing unstructured data |
US20070078832A1 (en) | 2005-09-30 | 2007-04-05 | Yahoo! Inc. | Method and system for using smart tags and a recommendation engine using smart tags |
US7870493B2 (en) | 2005-10-03 | 2011-01-11 | Microsoft Corporation | Distributed clipboard |
US7574428B2 (en) | 2005-10-11 | 2009-08-11 | Telmap Ltd | Geometry-based search engine for navigation systems |
US7933897B2 (en) | 2005-10-12 | 2011-04-26 | Google Inc. | Entity display priority in a distributed geographic information system |
US7487139B2 (en) | 2005-10-12 | 2009-02-03 | International Business Machines Corporation | Method and system for filtering a table |
US20070094389A1 (en) | 2005-10-23 | 2007-04-26 | Bill Nussey | Provision of rss feeds based on classification of content |
US7627812B2 (en) | 2005-10-27 | 2009-12-01 | Microsoft Corporation | Variable formatting of cells |
US20090168163A1 (en) | 2005-11-01 | 2009-07-02 | Global Bionic Optics Pty Ltd. | Optical lens systems |
US20100198858A1 (en) | 2005-11-21 | 2010-08-05 | Anti-Gang Enforcement Networking Technology, Inc. | System and Methods for Linking Multiple Events Involving Firearms and Gang Related Activities |
US7730082B2 (en) | 2005-12-12 | 2010-06-01 | Google Inc. | Remote module incorporation into a container document |
US7730109B2 (en) | 2005-12-12 | 2010-06-01 | Google, Inc. | Message catalogs for remote modules |
US8185819B2 (en) | 2005-12-12 | 2012-05-22 | Google Inc. | Module specification for a module to be incorporated into a container document |
US7725530B2 (en) | 2005-12-12 | 2010-05-25 | Google Inc. | Proxy server collection of data for module incorporation into a container document |
US8726144B2 (en) | 2005-12-23 | 2014-05-13 | Xerox Corporation | Interactive learning-based document annotation |
US20070150369A1 (en) | 2005-12-28 | 2007-06-28 | Zivin Michael A | Method and system for determining the optimal travel route by which customers can purchase local goods at the lowest total cost |
US8712828B2 (en) | 2005-12-30 | 2014-04-29 | Accenture Global Services Limited | Churn prediction and management system |
CN100481077C (en) | 2006-01-12 | 2009-04-22 | 国际商业机器公司 | Visual method and device for strengthening search result guide |
US7634717B2 (en) | 2006-01-23 | 2009-12-15 | Microsoft Corporation | Multiple conditional formatting |
US7818291B2 (en) | 2006-02-03 | 2010-10-19 | The General Electric Company | Data object access system and method using dedicated task object |
US20070185867A1 (en) | 2006-02-03 | 2007-08-09 | Matteo Maga | Statistical modeling methods for determining customer distribution by churn probability within a customer population |
US7770100B2 (en) | 2006-02-27 | 2010-08-03 | Microsoft Corporation | Dynamic thresholds for conditional formats |
US8271948B2 (en) | 2006-03-03 | 2012-09-18 | Telefonaktiebolaget L M Ericsson (Publ) | Subscriber identity module (SIM) application toolkit test method and system |
US7579965B2 (en) | 2006-03-03 | 2009-08-25 | Andrew Bucholz | Vehicle data collection and processing system |
US7899611B2 (en) | 2006-03-03 | 2011-03-01 | Inrix, Inc. | Detecting anomalous road traffic conditions |
US20070208498A1 (en) | 2006-03-03 | 2007-09-06 | Inrix, Inc. | Displaying road traffic condition information and user controls |
US20080052142A1 (en) | 2006-03-13 | 2008-02-28 | Bailey Maurice G T | System and method for real-time display of emergencies, resources and personnel |
US7512578B2 (en) | 2006-03-30 | 2009-03-31 | Emc Corporation | Smart containers |
US7743056B2 (en) | 2006-03-31 | 2010-06-22 | Aol Inc. | Identifying a result responsive to a current location of a client device |
DE602006002873D1 (en) | 2006-03-31 | 2008-11-06 | Research In Motion Ltd | A user interface method and apparatus for controlling the visual display of maps with selectable map elements in mobile communication devices |
US20070240062A1 (en) | 2006-04-07 | 2007-10-11 | Christena Jennifer Y | Method and System for Restricting User Operations in a Graphical User Inerface Window |
US20080040275A1 (en) | 2006-04-25 | 2008-02-14 | Uc Group Limited | Systems and methods for identifying potentially fraudulent financial transactions and compulsive spending behavior |
US8739278B2 (en) | 2006-04-28 | 2014-05-27 | Oracle International Corporation | Techniques for fraud monitoring and detection using application fingerprinting |
US7756843B1 (en) | 2006-05-25 | 2010-07-13 | Juniper Networks, Inc. | Identifying and processing confidential information on network endpoints |
US9195985B2 (en) | 2006-06-08 | 2015-11-24 | Iii Holdings 1, Llc | Method, system, and computer program product for customer-level data verification |
US7657626B1 (en) | 2006-09-19 | 2010-02-02 | Enquisite, Inc. | Click fraud detection |
US7468662B2 (en) | 2006-06-16 | 2008-12-23 | International Business Machines Corporation | Method for spatio-temporal event detection using composite definitions for camera systems |
US9124609B2 (en) | 2006-06-26 | 2015-09-01 | International Business Machines Corporation | Ensuring consistency over time of data gathered by distinct software applications |
US8290943B2 (en) | 2006-07-14 | 2012-10-16 | Raytheon Company | Geographical information display system and method |
US7853566B2 (en) | 2006-08-04 | 2010-12-14 | Apple Inc. | Navigation of electronic backups |
AU2007286064B2 (en) | 2006-08-10 | 2011-01-27 | Loma Linda University Medical Center | Advanced emergency geographical information system |
US20130150004A1 (en) | 2006-08-11 | 2013-06-13 | Michael Rosen | Method and apparatus for reducing mobile phone usage while driving |
US20080040684A1 (en) | 2006-08-14 | 2008-02-14 | Richard Crump | Intelligent Pop-Up Window Method and Apparatus |
US20080077597A1 (en) | 2006-08-24 | 2008-03-27 | Lance Butler | Systems and methods for photograph mapping |
US20080051989A1 (en) | 2006-08-25 | 2008-02-28 | Microsoft Corporation | Filtering of data layered on mapping applications |
JP4778865B2 (en) | 2006-08-30 | 2011-09-21 | 株式会社ソニー・コンピュータエンタテインメント | Image viewer, image display method and program |
US8230332B2 (en) | 2006-08-30 | 2012-07-24 | Compsci Resources, Llc | Interactive user interface for converting unstructured documents |
US7725547B2 (en) | 2006-09-06 | 2010-05-25 | International Business Machines Corporation | Informing a user of gestures made by others out of the user's line of sight |
US8271429B2 (en) | 2006-09-11 | 2012-09-18 | Wiredset Llc | System and method for collecting and processing data |
US8054756B2 (en) | 2006-09-18 | 2011-11-08 | Yahoo! Inc. | Path discovery and analytics for network data |
CN101641674B (en) | 2006-10-05 | 2012-10-10 | 斯普兰克公司 | Time series search engine |
US7761407B1 (en) | 2006-10-10 | 2010-07-20 | Medallia, Inc. | Use of primary and secondary indexes to facilitate aggregation of records of an OLAP data cube |
US7698336B2 (en) | 2006-10-26 | 2010-04-13 | Microsoft Corporation | Associating geographic-related information with objects |
US20080148398A1 (en) | 2006-10-31 | 2008-06-19 | Derek John Mezack | System and Method for Definition and Automated Analysis of Computer Security Threat Models |
US7912875B2 (en) | 2006-10-31 | 2011-03-22 | Business Objects Software Ltd. | Apparatus and method for filtering data using nested panels |
US7792353B2 (en) | 2006-10-31 | 2010-09-07 | Hewlett-Packard Development Company, L.P. | Retraining a machine-learning classifier using re-labeled training samples |
US8943332B2 (en) | 2006-10-31 | 2015-01-27 | Hewlett-Packard Development Company, L.P. | Audit-log integrity using redactable signatures |
US8229902B2 (en) | 2006-11-01 | 2012-07-24 | Ab Initio Technology Llc | Managing storage of individually accessible data units |
US7792868B2 (en) | 2006-11-10 | 2010-09-07 | Microsoft Corporation | Data object linking and browsing tool |
US7962495B2 (en) | 2006-11-20 | 2011-06-14 | Palantir Technologies, Inc. | Creating data in a data store using a dynamic ontology |
JP4923990B2 (en) | 2006-12-04 | 2012-04-25 | 株式会社日立製作所 | Failover method and its computer system. |
WO2008070860A2 (en) | 2006-12-07 | 2008-06-12 | Linker Sheldon O | Method and system for machine understanding, knowledge, and conversation |
US7680939B2 (en) | 2006-12-20 | 2010-03-16 | Yahoo! Inc. | Graphical user interface to manipulate syndication data feeds |
US7809703B2 (en) | 2006-12-22 | 2010-10-05 | International Business Machines Corporation | Usage of development context in search operations |
US20080162616A1 (en) | 2006-12-29 | 2008-07-03 | Sap Ag | Skip relation pattern for graph structures |
US8290838B1 (en) | 2006-12-29 | 2012-10-16 | Amazon Technologies, Inc. | Indicating irregularities in online financial transactions |
GB0701915D0 (en) | 2007-02-01 | 2007-03-14 | Tomkins Paul | System and method of conclusively verifying the correctness of an information system without needing to test every combination of behaviour at run-time |
US8249932B1 (en) | 2007-02-02 | 2012-08-21 | Resource Consortium Limited | Targeted advertising in a situational network |
US8368695B2 (en) | 2007-02-08 | 2013-02-05 | Microsoft Corporation | Transforming offline maps into interactive online maps |
US8196184B2 (en) | 2007-02-16 | 2012-06-05 | Microsoft Corporation | Efficient data structures for multi-dimensional security |
US8930331B2 (en) | 2007-02-21 | 2015-01-06 | Palantir Technologies | Providing unique views of data based on changes or rules |
US8006094B2 (en) | 2007-02-21 | 2011-08-23 | Ricoh Co., Ltd. | Trustworthy timestamps and certifiable clocks using logs linked by cryptographic hashes |
US7920963B2 (en) | 2007-02-22 | 2011-04-05 | Iac Search & Media, Inc. | Map interface with a movable marker |
US8352881B2 (en) | 2007-03-08 | 2013-01-08 | International Business Machines Corporation | Method, apparatus and program storage device for providing customizable, immediate and radiating menus for accessing applications and actions |
WO2008115519A1 (en) | 2007-03-20 | 2008-09-25 | President And Fellows Of Harvard College | A system for estimating a distribution of message content categories in source data |
US7814084B2 (en) | 2007-03-21 | 2010-10-12 | Schmap Inc. | Contact information capture and link redirection |
JP5268274B2 (en) | 2007-03-30 | 2013-08-21 | キヤノン株式会社 | Search device, method, and program |
US8036971B2 (en) | 2007-03-30 | 2011-10-11 | Palantir Technologies, Inc. | Generating dynamic date sets that represent market conditions |
US8229458B2 (en) | 2007-04-08 | 2012-07-24 | Enhanced Geographic Llc | Systems and methods to determine the name of a location visited by a user of a wireless device |
US20080255973A1 (en) | 2007-04-10 | 2008-10-16 | Robert El Wade | Sales transaction analysis tool and associated method of use |
JP5624881B2 (en) | 2007-04-17 | 2014-11-12 | イー・エム・デイー・ミリポア・コーポレイシヨン | Graphic user interface for analyzing and comparing position-specific multi-parameter data sets |
US8312546B2 (en) | 2007-04-23 | 2012-11-13 | Mcafee, Inc. | Systems, apparatus, and methods for detecting malware |
US20080267107A1 (en) | 2007-04-27 | 2008-10-30 | Outland Research, Llc | Attraction wait-time inquiry apparatus, system and method |
DE102008010419A1 (en) | 2007-05-03 | 2008-11-13 | Navigon Ag | Apparatus and method for creating a text object |
US7962904B2 (en) | 2007-05-10 | 2011-06-14 | Microsoft Corporation | Dynamic parser |
US8090603B2 (en) | 2007-05-11 | 2012-01-03 | Fansnap, Inc. | System and method for selecting event tickets |
WO2009038822A2 (en) | 2007-05-25 | 2009-03-26 | The Research Foundation Of State University Of New York | Spectral clustering for multi-type relational data |
US8515207B2 (en) | 2007-05-25 | 2013-08-20 | Google Inc. | Annotations in panoramic images, and applications thereof |
US7809785B2 (en) | 2007-05-28 | 2010-10-05 | Google Inc. | System using router in a web browser for inter-domain communication |
US8739123B2 (en) | 2007-05-28 | 2014-05-27 | Google Inc. | Incorporating gadget functionality on webpages |
US7930547B2 (en) | 2007-06-15 | 2011-04-19 | Alcatel-Lucent Usa Inc. | High accuracy bloom filter using partitioned hashing |
WO2009009623A1 (en) | 2007-07-09 | 2009-01-15 | Tailwalker Technologies, Inc. | Integrating a methodology management system with project tasks in a project management system |
US20090027418A1 (en) | 2007-07-24 | 2009-01-29 | Maru Nimit H | Map-based interfaces for storing and locating information about geographical areas |
US8234298B2 (en) | 2007-07-25 | 2012-07-31 | International Business Machines Corporation | System and method for determining driving factor in a data cube |
US7644106B2 (en) | 2007-07-30 | 2010-01-05 | Oracle International Corporation | Avoiding lock contention by using a wait for completion mechanism |
US9342551B2 (en) | 2007-08-14 | 2016-05-17 | John Nicholas and Kristin Gross Trust | User based document verifier and method |
US20090055251A1 (en) | 2007-08-20 | 2009-02-26 | Weblistic, Inc., A California Corporation | Directed online advertising system and method |
US20130066673A1 (en) | 2007-09-06 | 2013-03-14 | Digg, Inc. | Adapting thresholds |
US20090088964A1 (en) | 2007-09-28 | 2009-04-02 | Dave Schaaf | Map scrolling method and apparatus for navigation system for selectively displaying icons |
US8849728B2 (en) | 2007-10-01 | 2014-09-30 | Purdue Research Foundation | Visual analytics law enforcement tools |
US8484115B2 (en) | 2007-10-03 | 2013-07-09 | Palantir Technologies, Inc. | Object-oriented time series generator |
US8214308B2 (en) | 2007-10-23 | 2012-07-03 | Sas Institute Inc. | Computer-implemented systems and methods for updating predictive models |
US20090125369A1 (en) | 2007-10-26 | 2009-05-14 | Crowe Horwath Llp | System and method for analyzing and dispositioning money laundering suspicious activity alerts |
US7650310B2 (en) | 2007-10-30 | 2010-01-19 | Intuit Inc. | Technique for reducing phishing |
US8510743B2 (en) | 2007-10-31 | 2013-08-13 | Google Inc. | Terminating computer applications |
US8200618B2 (en) | 2007-11-02 | 2012-06-12 | International Business Machines Corporation | System and method for analyzing data in a report |
WO2009061501A1 (en) | 2007-11-09 | 2009-05-14 | Telecommunication Systems, Inc. | Points-of-interest panning on a displayed map with a persistent search on a wireless phone |
US8019709B2 (en) | 2007-11-09 | 2011-09-13 | Vantrix Corporation | Method and system for rule-based content filtering |
US9898767B2 (en) | 2007-11-14 | 2018-02-20 | Panjiva, Inc. | Transaction facilitating marketplace platform |
US8626618B2 (en) | 2007-11-14 | 2014-01-07 | Panjiva, Inc. | Using non-public shipper records to facilitate rating an entity based on public records of supply transactions |
WO2011085360A1 (en) | 2010-01-11 | 2011-07-14 | Panjiva, Inc. | Evaluating public records of supply transactions for financial investment decisions |
US8145703B2 (en) | 2007-11-16 | 2012-03-27 | Iac Search & Media, Inc. | User interface and method in a local search system with related search results |
KR20090050577A (en) | 2007-11-16 | 2009-05-20 | 삼성전자주식회사 | User interface for displaying and playing multimedia contents and apparatus comprising the same and control method thereof |
US20090132953A1 (en) | 2007-11-16 | 2009-05-21 | Iac Search & Media, Inc. | User interface and method in local search system with vertical search results and an interactive map |
WO2009073637A2 (en) | 2007-11-29 | 2009-06-11 | Iqzone | Systems and methods for personal information management and contact picture synchronization and distribution |
US20090144262A1 (en) | 2007-12-04 | 2009-06-04 | Microsoft Corporation | Search query transformation using direct manipulation |
US8869098B2 (en) * | 2007-12-05 | 2014-10-21 | International Business Machines Corporation | Computer method and apparatus for providing model to model transformation using an MDA approach |
US8001482B2 (en) | 2007-12-21 | 2011-08-16 | International Business Machines Corporation | Method of displaying tab titles |
US8230333B2 (en) | 2007-12-26 | 2012-07-24 | Vistracks, Inc. | Analysis of time-based geospatial mashups using AD HOC visual queries |
US7865308B2 (en) | 2007-12-28 | 2011-01-04 | Yahoo! Inc. | User-generated activity maps |
US20090172669A1 (en) | 2007-12-28 | 2009-07-02 | International Business Machines Corporation | Use of redundancy groups in runtime computer management of business applications |
US8010886B2 (en) | 2008-01-04 | 2011-08-30 | Microsoft Corporation | Intelligently representing files in a view |
US8055633B2 (en) | 2008-01-21 | 2011-11-08 | International Business Machines Corporation | Method, system and computer program product for duplicate detection |
KR100915295B1 (en) | 2008-01-22 | 2009-09-03 | 성균관대학교산학협력단 | System and method for search service having a function of automatic classification of search results |
US8239245B2 (en) | 2008-01-22 | 2012-08-07 | International Business Machines Corporation | Method and apparatus for end-to-end retail store site optimization |
US20090199047A1 (en) | 2008-01-31 | 2009-08-06 | Yahoo! Inc. | Executing software performance test jobs in a clustered system |
US7805457B1 (en) | 2008-02-14 | 2010-09-28 | Securus Technologies, Inc. | System and method for identifying members of a gang or security threat group |
US20090222760A1 (en) | 2008-02-29 | 2009-09-03 | Halverson Steven G | Method, System and Computer Program Product for Automating the Selection and Ordering of Column Data in a Table for a User |
WO2009111581A1 (en) | 2008-03-04 | 2009-09-11 | Nextbio | Categorization and filtering of scientific data |
US20090234720A1 (en) | 2008-03-15 | 2009-09-17 | Gridbyte | Method and System for Tracking and Coaching Service Professionals |
US8229945B2 (en) | 2008-03-20 | 2012-07-24 | Schooner Information Technology, Inc. | Scalable database management software on a cluster of nodes using a shared-distributed flash memory |
US9830366B2 (en) | 2008-03-22 | 2017-11-28 | Thomson Reuters Global Resources | Online analytic processing cube with time stamping |
US20090254970A1 (en) | 2008-04-04 | 2009-10-08 | Avaya Inc. | Multi-tier security event correlation and mitigation |
WO2009132106A2 (en) | 2008-04-22 | 2009-10-29 | Oxford J Craig | System and method for interactive map, database, and social networking engine |
US8121962B2 (en) | 2008-04-25 | 2012-02-21 | Fair Isaac Corporation | Automated entity identification for efficient profiling in an event probability prediction system |
US8620641B2 (en) | 2008-05-16 | 2013-12-31 | Blackberry Limited | Intelligent elision |
US20090307049A1 (en) | 2008-06-05 | 2009-12-10 | Fair Isaac Corporation | Soft Co-Clustering of Data |
US8219555B1 (en) | 2008-06-13 | 2012-07-10 | Ustringer LLC | Method and apparatus for distributing content |
US8190633B2 (en) | 2008-06-16 | 2012-05-29 | The University Of Utah Research Foundation | Enabling provenance management for pre-existing applications |
US8860754B2 (en) | 2008-06-22 | 2014-10-14 | Tableau Software, Inc. | Methods and systems of automatically generating marks in a graphical view |
US8301904B1 (en) | 2008-06-24 | 2012-10-30 | Mcafee, Inc. | System, method, and computer program product for automatically identifying potentially unwanted data as unwanted |
US9720971B2 (en) * | 2008-06-30 | 2017-08-01 | International Business Machines Corporation | Discovering transformations applied to a source table to generate a target table |
AU2009266403A1 (en) | 2008-07-02 | 2010-01-07 | Pacific Knowledge Systems Pty. Ltd. | Method and system for generating text |
US20100011282A1 (en) | 2008-07-11 | 2010-01-14 | iCyte Pty Ltd. | Annotation system and method |
WO2010006334A1 (en) | 2008-07-11 | 2010-01-14 | Videosurf, Inc. | Apparatus and software system for and method of performing a visual-relevance-rank subsequent search |
US8301464B1 (en) | 2008-07-18 | 2012-10-30 | Cave Consulting Group, Inc. | Method and system for producing statistical analysis of medical care information |
WO2010017229A1 (en) | 2008-08-04 | 2010-02-11 | Younoodle, Inc. | Entity performance analysis engines |
US8010545B2 (en) | 2008-08-28 | 2011-08-30 | Palo Alto Research Center Incorporated | System and method for providing a topic-directed search |
US20110078055A1 (en) | 2008-09-05 | 2011-03-31 | Claude Faribault | Methods and systems for facilitating selecting and/or purchasing of items |
US8429194B2 (en) | 2008-09-15 | 2013-04-23 | Palantir Technologies, Inc. | Document-based workflows |
US8041714B2 (en) | 2008-09-15 | 2011-10-18 | Palantir Technologies, Inc. | Filter chains with associated views for exploring large data sets |
US20100070845A1 (en) | 2008-09-17 | 2010-03-18 | International Business Machines Corporation | Shared web 2.0 annotations linked to content segments of web documents |
US8380657B2 (en) * | 2008-09-19 | 2013-02-19 | Oracle International Corporation | Techniques for performing ETL over a WAN |
US8214361B1 (en) | 2008-09-30 | 2012-07-03 | Google Inc. | Organizing search results in a topic hierarchy |
US8554579B2 (en) | 2008-10-13 | 2013-10-08 | Fht, Inc. | Management, reporting and benchmarking of medication preparation |
US20100114887A1 (en) | 2008-10-17 | 2010-05-06 | Google Inc. | Textual Disambiguation Using Social Connections |
US8391584B2 (en) | 2008-10-20 | 2013-03-05 | Jpmorgan Chase Bank, N.A. | Method and system for duplicate check detection |
US8108933B2 (en) | 2008-10-21 | 2012-01-31 | Lookout, Inc. | System and method for attack and malware prevention |
US8411046B2 (en) | 2008-10-23 | 2013-04-02 | Microsoft Corporation | Column organization of content |
US9032254B2 (en) | 2008-10-29 | 2015-05-12 | Aternity Information Systems Ltd. | Real time monitoring of computer for determining speed and energy consumption of various processes |
US9053437B2 (en) | 2008-11-06 | 2015-06-09 | International Business Machines Corporation | Extracting enterprise information through analysis of provenance data |
US8126791B2 (en) | 2008-11-14 | 2012-02-28 | Mastercard International Incorporated | Methods and systems for providing a decision making platform |
US8717364B2 (en) | 2008-11-15 | 2014-05-06 | New BIS Safe Luxco S.a.r.l | Data visualization methods |
US20100131502A1 (en) | 2008-11-25 | 2010-05-27 | Fordham Bradley S | Cohort group generation and automatic updating |
US20100131457A1 (en) | 2008-11-26 | 2010-05-27 | Microsoft Corporation | Flattening multi-dimensional data sets into de-normalized form |
US8332354B1 (en) | 2008-12-15 | 2012-12-11 | American Megatrends, Inc. | Asynchronous replication by tracking recovery point objective |
US8762869B2 (en) | 2008-12-23 | 2014-06-24 | Intel Corporation | Reduced complexity user interface |
US8719350B2 (en) | 2008-12-23 | 2014-05-06 | International Business Machines Corporation | Email addressee verification |
US20100262688A1 (en) | 2009-01-21 | 2010-10-14 | Daniar Hussain | Systems, methods, and devices for detecting security vulnerabilities in ip networks |
US20100191563A1 (en) | 2009-01-23 | 2010-07-29 | Doctors' Administrative Solutions, Llc | Physician Practice Optimization Tracking |
WO2010085773A1 (en) | 2009-01-24 | 2010-07-29 | Kontera Technologies, Inc. | Hybrid contextual advertising and related content analysis and display techniques |
US8601401B2 (en) | 2009-01-30 | 2013-12-03 | Navico Holding As | Method, apparatus and computer program product for synchronizing cursor events |
EP2221733A1 (en) | 2009-02-17 | 2010-08-25 | AMADEUS sas | Method allowing validation in a production database of new entered data prior to their release |
EP2221725A1 (en) | 2009-02-19 | 2010-08-25 | Mecel Aktiebolag | Validator for validating conformity of a software configuration |
US20100228752A1 (en) | 2009-02-25 | 2010-09-09 | Microsoft Corporation | Multi-condition filtering of an interactive summary table |
US9177264B2 (en) | 2009-03-06 | 2015-11-03 | Chiaramail, Corp. | Managing message categories in a network |
US20100228786A1 (en) | 2009-03-09 | 2010-09-09 | Toeroek Tibor | Assessment of corporate data assets |
US8473454B2 (en) | 2009-03-10 | 2013-06-25 | Xerox Corporation | System and method of on-demand document processing |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US8447722B1 (en) | 2009-03-25 | 2013-05-21 | Mcafee, Inc. | System and method for data mining and security policy management |
US20100257015A1 (en) | 2009-04-01 | 2010-10-07 | National Information Solutions Cooperative, Inc. | Graphical client interface resource and work management scheduler |
US8762971B2 (en) | 2009-04-02 | 2014-06-24 | International Business Machines Corporation | Servicing a production program in an integrated development environment |
IL197961A0 (en) | 2009-04-05 | 2009-12-24 | Guy Shaked | Methods for effective processing of time series |
US9767427B2 (en) | 2009-04-30 | 2017-09-19 | Hewlett Packard Enterprise Development Lp | Modeling multi-dimensional sequence data over streams |
US8719249B2 (en) | 2009-05-12 | 2014-05-06 | Microsoft Corporation | Query classification |
US20100306285A1 (en) | 2009-05-28 | 2010-12-02 | Arcsight, Inc. | Specifying a Parser Using a Properties File |
US8418085B2 (en) | 2009-05-29 | 2013-04-09 | Microsoft Corporation | Gesture coach |
US9141911B2 (en) | 2009-05-29 | 2015-09-22 | Aspen Technology, Inc. | Apparatus and method for automated data selection in model identification and adaptation in multivariable process control |
US8856691B2 (en) | 2009-05-29 | 2014-10-07 | Microsoft Corporation | Gesture tool |
US8495151B2 (en) | 2009-06-05 | 2013-07-23 | Chandra Bodapati | Methods and systems for determining email addresses |
US9268761B2 (en) | 2009-06-05 | 2016-02-23 | Microsoft Technology Licensing, Llc | In-line dynamic text with variable formatting |
US20100321399A1 (en) | 2009-06-18 | 2010-12-23 | Patrik Ellren | Maps from Sparse Geospatial Data Tiles |
KR101076887B1 (en) | 2009-06-26 | 2011-10-25 | 주식회사 하이닉스반도체 | Method of fabricating landing plug in semiconductor device |
US20110004498A1 (en) | 2009-07-01 | 2011-01-06 | International Business Machines Corporation | Method and System for Identification By A Cardholder of Credit Card Fraud |
EP2454661A1 (en) | 2009-07-15 | 2012-05-23 | Proviciel - Mlstate | System and method for creating a parser generator and associated computer program |
US9104695B1 (en) | 2009-07-27 | 2015-08-11 | Palantir Technologies, Inc. | Geotagging structured data |
US8713018B2 (en) | 2009-07-28 | 2014-04-29 | Fti Consulting, Inc. | System and method for displaying relationships between electronically stored information to provide classification suggestions via inclusion |
US8665108B2 (en) | 2009-08-03 | 2014-03-04 | Baker Hughes Incorporated | Apparatus and method for quality assessment of downhole data |
AU2010282260B2 (en) | 2009-08-14 | 2015-02-19 | Telogis, Inc. | Real time map rendering with data clustering and expansion and overlay |
US8560548B2 (en) | 2009-08-19 | 2013-10-15 | International Business Machines Corporation | System, method, and apparatus for multidimensional exploration of content items in a content store |
US20110047540A1 (en) | 2009-08-24 | 2011-02-24 | Embarcadero Technologies Inc. | System and Methodology for Automating Delivery, Licensing, and Availability of Software Products |
US8334773B2 (en) | 2009-08-28 | 2012-12-18 | Deal Magic, Inc. | Asset monitoring and tracking system |
JP5431235B2 (en) | 2009-08-28 | 2014-03-05 | 株式会社日立製作所 | Equipment condition monitoring method and apparatus |
US9280777B2 (en) | 2009-09-08 | 2016-03-08 | Target Brands, Inc. | Operations dashboard |
US8214490B1 (en) | 2009-09-15 | 2012-07-03 | Symantec Corporation | Compact input compensating reputation data tracking mechanism |
US8756489B2 (en) | 2009-09-17 | 2014-06-17 | Adobe Systems Incorporated | Method and system for dynamic assembly of form fragments |
US20110074811A1 (en) | 2009-09-25 | 2011-03-31 | Apple Inc. | Map Layout for Print Production |
US20110078173A1 (en) | 2009-09-30 | 2011-03-31 | Avaya Inc. | Social Network User Interface |
US8595058B2 (en) | 2009-10-15 | 2013-11-26 | Visa U.S.A. | Systems and methods to match identifiers |
US20110119100A1 (en) | 2009-10-20 | 2011-05-19 | Jan Matthias Ruhl | Method and System for Displaying Anomalies in Time Series Data |
US9165304B2 (en) | 2009-10-23 | 2015-10-20 | Service Management Group, Inc. | Analyzing consumer behavior using electronically-captured consumer location data |
US20110112995A1 (en) | 2009-10-28 | 2011-05-12 | Industrial Technology Research Institute | Systems and methods for organizing collective social intelligence information using an organic object data model |
CN102054015B (en) | 2009-10-28 | 2014-05-07 | 财团法人工业技术研究院 | System and method of organizing community intelligent information by using organic matter data model |
US8312367B2 (en) | 2009-10-30 | 2012-11-13 | Synopsys, Inc. | Technique for dynamically sizing columns in a table |
JP5869490B2 (en) | 2009-11-13 | 2016-02-24 | ゾール メディカル コーポレイションZOLL Medical Corporation | Community-based response system |
US20110131547A1 (en) | 2009-12-01 | 2011-06-02 | International Business Machines Corporation | Method and system defining and interchanging diagrams of graphical modeling languages |
US11122009B2 (en) | 2009-12-01 | 2021-09-14 | Apple Inc. | Systems and methods for identifying geographic locations of social media content collected over social networks |
US8700577B2 (en) | 2009-12-07 | 2014-04-15 | Accenture Global Services Limited GmbH | Method and system for accelerated data quality enhancement |
US20110137875A1 (en) * | 2009-12-09 | 2011-06-09 | Oracle International Corporation | Incremental materialized view refresh with enhanced dml compression |
US8645478B2 (en) | 2009-12-10 | 2014-02-04 | Mcafee, Inc. | System and method for monitoring social engineering in a computer network environment |
US20110153384A1 (en) | 2009-12-17 | 2011-06-23 | Matthew Donald Horne | Visual comps builder |
US8676597B2 (en) | 2009-12-28 | 2014-03-18 | General Electric Company | Methods and systems for mapping healthcare services analytics for volume and trends |
US20110161132A1 (en) | 2009-12-29 | 2011-06-30 | Sukriti Goel | Method and system for extracting process sequences |
US8564596B2 (en) | 2010-01-12 | 2013-10-22 | Palantir Technologies, Inc. | Techniques for density mapping |
US8271461B2 (en) | 2010-01-18 | 2012-09-18 | Battelle Memorial Institute | Storing and managing information artifacts collected by information analysts using a computing device |
US9026552B2 (en) | 2010-01-18 | 2015-05-05 | Salesforce.Com, Inc. | System and method for linking contact records to company locations |
US8290926B2 (en) | 2010-01-21 | 2012-10-16 | Microsoft Corporation | Scalable topical aggregation of data feeds |
US8843855B2 (en) | 2010-01-25 | 2014-09-23 | Linx Systems, Inc. | Displaying maps of measured events |
US8683363B2 (en) | 2010-01-26 | 2014-03-25 | Apple Inc. | Device, method, and graphical user interface for managing user interface content and user interface elements |
WO2011094484A1 (en) | 2010-01-28 | 2011-08-04 | Drexel University | Detection, diagnosis, and mitigation of software faults |
US20110208565A1 (en) | 2010-02-23 | 2011-08-25 | Michael Ross | complex process management |
US20110219321A1 (en) | 2010-03-02 | 2011-09-08 | Microsoft Corporation | Web-based control using integrated control interface having dynamic hit zones |
US20110218934A1 (en) | 2010-03-03 | 2011-09-08 | Jeremy Elser | System and methods for comparing real properties for purchase and for generating heat maps to aid in identifying price anomalies of such real properties |
US8478709B2 (en) | 2010-03-08 | 2013-07-02 | Hewlett-Packard Development Company, L.P. | Evaluation of client status for likelihood of churn |
US8863279B2 (en) | 2010-03-08 | 2014-10-14 | Raytheon Company | System and method for malware detection |
US20110231296A1 (en) | 2010-03-16 | 2011-09-22 | UberMedia, Inc. | Systems and methods for interacting with messages, authors, and followers |
US8577911B1 (en) | 2010-03-23 | 2013-11-05 | Google Inc. | Presenting search term refinements |
US20110238553A1 (en) | 2010-03-26 | 2011-09-29 | Ashwin Raj | Electronic account-to-account funds transfer |
US8306846B2 (en) | 2010-04-12 | 2012-11-06 | First Data Corporation | Transaction location analytics systems and methods |
US8572023B2 (en) | 2010-04-14 | 2013-10-29 | Bank Of America Corporation | Data services framework workflow processing |
US20110258216A1 (en) | 2010-04-20 | 2011-10-20 | International Business Machines Corporation | Usability enhancements for bookmarks of browsers |
US8874432B2 (en) | 2010-04-28 | 2014-10-28 | Nec Laboratories America, Inc. | Systems and methods for semi-supervised relationship extraction |
US8255399B2 (en) | 2010-04-28 | 2012-08-28 | Microsoft Corporation | Data classifier |
US8489331B2 (en) | 2010-04-29 | 2013-07-16 | Microsoft Corporation | Destination maps user interface |
US8799812B2 (en) | 2010-04-29 | 2014-08-05 | Cheryl Parker | System and method for geographic based data visualization and extraction |
US8595234B2 (en) | 2010-05-17 | 2013-11-26 | Wal-Mart Stores, Inc. | Processing data feeds |
US20110289407A1 (en) | 2010-05-18 | 2011-11-24 | Naik Devang K | Font recommendation engine |
US20110289397A1 (en) | 2010-05-19 | 2011-11-24 | Mauricio Eastmond | Displaying Table Data in a Limited Display Area |
JP5161267B2 (en) | 2010-05-19 | 2013-03-13 | 株式会社日立製作所 | Screen customization support system, screen customization support method, and screen customization support program |
US8723679B2 (en) | 2010-05-25 | 2014-05-13 | Public Engines, Inc. | Systems and methods for transmitting alert messages relating to events that occur within a pre-defined area |
US20110295795A1 (en) * | 2010-05-28 | 2011-12-01 | Oracle International Corporation | System and method for enabling extract transform and load processes in a business intelligence server |
US20110295649A1 (en) | 2010-05-31 | 2011-12-01 | International Business Machines Corporation | Automatic churn prediction |
US8799867B1 (en) | 2010-06-08 | 2014-08-05 | Cadence Design Systems, Inc. | Methods, systems, and articles of manufacture for synchronizing software verification flows |
US8756224B2 (en) | 2010-06-16 | 2014-06-17 | Rallyverse, Inc. | Methods, systems, and media for content ranking using real-time data |
US20110310005A1 (en) | 2010-06-17 | 2011-12-22 | Qualcomm Incorporated | Methods and apparatus for contactless gesture recognition |
US8380719B2 (en) | 2010-06-18 | 2013-02-19 | Microsoft Corporation | Semantic content searching |
KR101196935B1 (en) | 2010-07-05 | 2012-11-05 | 엔에이치엔(주) | Method and system for providing reprsentation words of real-time popular keyword |
US8489641B1 (en) | 2010-07-08 | 2013-07-16 | Google Inc. | Displaying layers of search results on a map |
US8407341B2 (en) | 2010-07-09 | 2013-03-26 | Bank Of America Corporation | Monitoring communications |
US8885942B2 (en) | 2010-07-09 | 2014-11-11 | Panasonic Intellectual Property Corporation Of America | Object mapping device, method of mapping object, program and recording medium |
US20120019559A1 (en) | 2010-07-20 | 2012-01-26 | Siler Lucas C | Methods and Apparatus for Interactive Display of Images and Measurements |
US9298768B2 (en) | 2010-07-21 | 2016-03-29 | Sqream Technologies Ltd | System and method for the parallel execution of database queries over CPUs and multi core processors |
US8554653B2 (en) | 2010-07-22 | 2013-10-08 | Visa International Service Association | Systems and methods to identify payment accounts having business spending activities |
DE102010036906A1 (en) | 2010-08-06 | 2012-02-09 | Tavendo Gmbh | Configurable pie menu |
US20120036013A1 (en) | 2010-08-09 | 2012-02-09 | Brent Lee Neuhaus | System and method for determining a consumer's location code from payment transaction data |
US20120050293A1 (en) | 2010-08-25 | 2012-03-01 | Apple, Inc. | Dynamically smoothing a curve |
US8775530B2 (en) | 2010-08-25 | 2014-07-08 | International Business Machines Corporation | Communication management method and system |
US20120066166A1 (en) | 2010-09-10 | 2012-03-15 | International Business Machines Corporation | Predictive Analytics for Semi-Structured Case Oriented Processes |
US8661335B2 (en) | 2010-09-20 | 2014-02-25 | Blackberry Limited | Methods and systems for identifying content elements |
US9069842B2 (en) | 2010-09-28 | 2015-06-30 | The Mitre Corporation | Accessing documents using predictive word sequences |
US8549004B2 (en) | 2010-09-30 | 2013-10-01 | Hewlett-Packard Development Company, L.P. | Estimation of unique database values |
US20120084118A1 (en) | 2010-09-30 | 2012-04-05 | International Business Machines Corporation | Sales predication for a new store based on on-site market survey data and high resolution geographical information |
US8463036B1 (en) | 2010-09-30 | 2013-06-11 | A9.Com, Inc. | Shape-based search of a collection of content |
EP2444134A1 (en) | 2010-10-19 | 2012-04-25 | Travian Games GmbH | Methods, server system and browser clients for providing a game map of a browser-based online multi-player game |
US8781169B2 (en) | 2010-11-03 | 2014-07-15 | Endeavoring, Llc | Vehicle tracking and locating system |
US8316030B2 (en) | 2010-11-05 | 2012-11-20 | Nextgen Datacom, Inc. | Method and system for document classification or search using discrete words |
EP2638682A4 (en) | 2010-11-12 | 2014-07-23 | Realnetworks Inc | Traffic management in adaptive streaming protocols |
CN102467596B (en) | 2010-11-15 | 2016-09-21 | 商业对象软件有限公司 | Instrument board evaluator |
JP5706137B2 (en) | 2010-11-22 | 2015-04-22 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Method and computer program for displaying a plurality of posts (groups of data) on a computer screen in real time along a plurality of axes |
AU2011332881B2 (en) | 2010-11-24 | 2016-06-30 | LogRhythm Inc. | Advanced intelligence engine |
WO2012071571A2 (en) | 2010-11-26 | 2012-05-31 | Agency For Science, Technology And Research | Method for creating a report from radiological images using electronic report templates |
US20120137235A1 (en) | 2010-11-29 | 2012-05-31 | Sabarish T S | Dynamic user interface generation |
US8839133B2 (en) | 2010-12-02 | 2014-09-16 | Microsoft Corporation | Data visualizations including interactive time line representations |
CN102546446A (en) | 2010-12-13 | 2012-07-04 | 太仓市浏河镇亿网行网络技术服务部 | Email device |
US9141405B2 (en) | 2010-12-15 | 2015-09-22 | International Business Machines Corporation | User interface construction |
US8949166B2 (en) | 2010-12-16 | 2015-02-03 | International Business Machines Corporation | Creating and processing a data rule for data quality |
US20120159399A1 (en) | 2010-12-17 | 2012-06-21 | International Business Machines Corporation | System for organizing and navigating data within a table |
US9378294B2 (en) | 2010-12-17 | 2016-06-28 | Microsoft Technology Licensing, Llc | Presenting source regions of rendered source web pages in target regions of target web pages |
US9881257B2 (en) | 2010-12-29 | 2018-01-30 | Tickr, Inc. | Multi-dimensional visualization of temporal information |
US20120173381A1 (en) | 2011-01-03 | 2012-07-05 | Stanley Benjamin Smith | Process and system for pricing and processing weighted data in a federated or subscription based data source |
US8510154B2 (en) | 2011-01-27 | 2013-08-13 | Leroy Robinson | Method and system for searching for, and monitoring assessment of, original content creators and the original content thereof |
US8447263B2 (en) | 2011-01-28 | 2013-05-21 | Don Reich | Emergency call analysis system |
US8437731B2 (en) | 2011-01-28 | 2013-05-07 | Don Reich | Emergency call analysis system |
IL211163A0 (en) | 2011-02-10 | 2011-04-28 | Univ Ben Gurion | A method for generating a randomized data structure for representing sets, based on bloom filters |
JP6002159B2 (en) | 2011-02-24 | 2016-10-05 | レクシスネクシス ア ディヴィジョン オブ リード エルザヴィア インコーポレイテッド | Electronic document search method and electronic document search graphical display method |
US20120246148A1 (en) | 2011-03-22 | 2012-09-27 | Intergraph Technologies Company | Contextual Display and Scrolling of Search Results in Graphical Environment |
US9449010B2 (en) | 2011-04-02 | 2016-09-20 | Open Invention Network, Llc | System and method for managing sensitive data using intelligent mobile agents on a network |
US10185932B2 (en) | 2011-05-06 | 2019-01-22 | Microsoft Technology Licensing, Llc | Setting permissions for links forwarded in electronic messages |
US8386419B2 (en) * | 2011-05-12 | 2013-02-26 | Narendar Yalamanchilli | Data extraction and testing method and system |
US8881101B2 (en) | 2011-05-24 | 2014-11-04 | Microsoft Corporation | Binding between a layout engine and a scripting engine |
US20120311151A1 (en) | 2011-06-03 | 2012-12-06 | Uc Group Limited | Systems and methods for establishing and enforcing user exclusion criteria across multiple websites |
US9104765B2 (en) | 2011-06-17 | 2015-08-11 | Robert Osann, Jr. | Automatic webpage characterization and search results annotation |
US8799240B2 (en) | 2011-06-23 | 2014-08-05 | Palantir Technologies, Inc. | System and method for investigating large amounts of data |
US9092482B2 (en) | 2013-03-14 | 2015-07-28 | Palantir Technologies, Inc. | Fair scheduling for mixed-query loads |
US8725307B2 (en) | 2011-06-28 | 2014-05-13 | Schneider Electric It Corporation | System and method for measurement aided prediction of temperature and airflow values in a data center |
US20130006725A1 (en) | 2011-06-30 | 2013-01-03 | Accenture Global Services Limited | Tolling integration technology |
CN103827906B (en) | 2011-07-01 | 2018-01-05 | 真车股份有限公司 | For selecting, filtering or presenting the method and system of available Sales Channel |
US8533165B2 (en) | 2011-07-03 | 2013-09-10 | Microsoft Corporation | Conflict resolution via metadata examination |
US9026944B2 (en) | 2011-07-14 | 2015-05-05 | Microsoft Technology Licensing, Llc | Managing content through actions on context based menus |
US8751399B2 (en) | 2011-07-15 | 2014-06-10 | Wal-Mart Stores, Inc. | Multi-channel data driven, real-time anti-money laundering system for electronic payment cards |
US8726379B1 (en) | 2011-07-15 | 2014-05-13 | Norse Corporation | Systems and methods for dynamic protection from electronic attacks |
US8982130B2 (en) | 2011-07-15 | 2015-03-17 | Green Charge Networks | Cluster mapping to highlight areas of electrical congestion |
US20130024268A1 (en) | 2011-07-22 | 2013-01-24 | Ebay Inc. | Incentivizing the linking of internet content to products for sale |
US8666919B2 (en) | 2011-07-29 | 2014-03-04 | Accenture Global Services Limited | Data quality management for profiling, linking, cleansing and migrating data |
US9280532B2 (en) | 2011-08-02 | 2016-03-08 | Palantir Technologies, Inc. | System and method for accessing rich objects via spreadsheets |
EP2560134A1 (en) | 2011-08-19 | 2013-02-20 | Agor Services BVBA | A platform and method enabling collaboration between value chain partners |
US20130046635A1 (en) | 2011-08-19 | 2013-02-21 | Bank Of America Corporation | Triggering offers based on detected location of a mobile point of sale device |
US8838556B1 (en) | 2011-08-30 | 2014-09-16 | Emc Corporation | Managing data sets by reasoning over captured metadata |
US8630892B2 (en) | 2011-08-31 | 2014-01-14 | Accenture Global Services Limited | Churn analysis system |
US8854371B2 (en) | 2011-08-31 | 2014-10-07 | Sap Ag | Method and system for generating a columnar tree map |
US8533204B2 (en) | 2011-09-02 | 2013-09-10 | Xerox Corporation | Text-based searching of image data |
US8504542B2 (en) | 2011-09-02 | 2013-08-06 | Palantir Technologies, Inc. | Multi-row transactions |
US10031646B2 (en) | 2011-09-07 | 2018-07-24 | Mcafee, Llc | Computer system security dashboard |
US8949164B1 (en) | 2011-09-08 | 2015-02-03 | George O. Mohler | Event forecasting system |
US10140620B2 (en) | 2011-09-15 | 2018-11-27 | Stephan HEATH | Mobile device system and method providing combined delivery system using 3D geo-target location-based mobile commerce searching/purchases, discounts/coupons products, goods, and services, or service providers-geomapping-company/local and socially-conscious information/social networking (“PS-GM-C/LandSC/I-SN”) |
WO2013044141A2 (en) | 2011-09-22 | 2013-03-28 | Capgemini U.S. Llc | Process transformation and transitioning apparatuses, methods and systems |
CA2791350C (en) | 2011-09-26 | 2019-10-01 | Solacom Technologies Inc. | Answering or releasing emergency calls from a map display for an emergency services platform |
US8560494B1 (en) | 2011-09-30 | 2013-10-15 | Palantir Technologies, Inc. | Visual data importer |
US20130086482A1 (en) | 2011-09-30 | 2013-04-04 | Cbs Interactive, Inc. | Displaying plurality of content items in window |
US20130096988A1 (en) | 2011-10-05 | 2013-04-18 | Mastercard International, Inc. | Nomination engine |
US10460238B2 (en) | 2011-10-11 | 2019-10-29 | Leidos Innovations Technology, Inc. | Data quality issue detection through ontological inferencing |
US20130097482A1 (en) | 2011-10-13 | 2013-04-18 | Microsoft Corporation | Search result entry truncation using pixel-based approximation |
US8849776B2 (en) | 2011-10-17 | 2014-09-30 | Yahoo! Inc. | Method and system for resolving data inconsistency |
US20130101159A1 (en) | 2011-10-21 | 2013-04-25 | Qualcomm Incorporated | Image and video based pedestrian traffic estimation |
JP2015505382A (en) | 2011-10-26 | 2015-02-19 | グーグル・インコーポレーテッド | Display location status |
US9411797B2 (en) | 2011-10-31 | 2016-08-09 | Microsoft Technology Licensing, Llc | Slicer elements for filtering tabular data |
US8918424B2 (en) | 2011-10-31 | 2014-12-23 | Advanced Community Services | Managing homeowner association messages |
US8843421B2 (en) | 2011-11-01 | 2014-09-23 | Accenture Global Services Limited | Identification of entities likely to engage in a behavior |
US20130117202A1 (en) | 2011-11-03 | 2013-05-09 | Microsoft Corporation | Knowledge-based data quality solution |
US9009183B2 (en) * | 2011-11-03 | 2015-04-14 | Microsoft Technology Licensing, Llc | Transformation of a system change set from machine-consumable form to a form that is readily consumable by a human |
US9053083B2 (en) | 2011-11-04 | 2015-06-09 | Microsoft Technology Licensing, Llc | Interaction between web gadgets and spreadsheets |
US20130124193A1 (en) | 2011-11-15 | 2013-05-16 | Business Objects Software Limited | System and Method Implementing a Text Analysis Service |
US9159024B2 (en) | 2011-12-07 | 2015-10-13 | Wal-Mart Stores, Inc. | Real-time predictive intelligence platform |
CN103167093A (en) | 2011-12-08 | 2013-06-19 | 青岛海信移动通信技术股份有限公司 | Filling method of mobile phone email address |
US9026364B2 (en) | 2011-12-12 | 2015-05-05 | Toyota Jidosha Kabushiki Kaisha | Place affinity estimation |
US20130151388A1 (en) | 2011-12-12 | 2013-06-13 | Visa International Service Association | Systems and methods to identify affluence levels of accounts |
US20130157234A1 (en) | 2011-12-14 | 2013-06-20 | Microsoft Corporation | Storyline visualization |
US9026480B2 (en) | 2011-12-21 | 2015-05-05 | Telenav, Inc. | Navigation system with point of interest classification mechanism and method of operation thereof |
US20130166550A1 (en) | 2011-12-21 | 2013-06-27 | Sap Ag | Integration of Tags and Object Data |
US8880420B2 (en) | 2011-12-27 | 2014-11-04 | Grubhub, Inc. | Utility for creating heatmaps for the study of competitive advantage in the restaurant marketplace |
WO2013102892A1 (en) | 2012-01-06 | 2013-07-11 | Technologies Of Voice Interface Ltd | A system and method for generating personalized sensor-based activation of software |
US9189556B2 (en) | 2012-01-06 | 2015-11-17 | Google Inc. | System and method for displaying information local to a selected area |
US9116994B2 (en) | 2012-01-09 | 2015-08-25 | Brightedge Technologies, Inc. | Search engine optimization for category specific search results |
US8843431B2 (en) | 2012-01-16 | 2014-09-23 | International Business Machines Corporation | Social network analysis for churn prediction |
US8909648B2 (en) | 2012-01-18 | 2014-12-09 | Technion Research & Development Foundation Limited | Methods and systems of supervised learning of semantic relatedness |
US8965422B2 (en) | 2012-02-23 | 2015-02-24 | Blackberry Limited | Tagging instant message content for retrieval using mobile communication devices |
EP2805224A4 (en) | 2012-02-24 | 2016-06-22 | Jerry Wolfe | System and method for providing flavor advisement and enhancement |
GB2508573A (en) | 2012-02-28 | 2014-06-11 | Qatar Foundation | A computer-implemented method and computer program for detecting a set of inconsistent data records in a database including multiple records |
AU2013226134B9 (en) | 2012-02-29 | 2017-12-14 | Google Llc | Interactive query completion templates |
US9485300B2 (en) | 2012-03-13 | 2016-11-01 | Yahoo! Inc. | Publish-subscribe platform for cloud file distribution |
JP2013191187A (en) | 2012-03-15 | 2013-09-26 | Fujitsu Ltd | Processing device, program and processing system |
US8787939B2 (en) | 2012-03-27 | 2014-07-22 | Facebook, Inc. | Dynamic geographic beacons for geographic-positioning-capable devices |
US20130263019A1 (en) | 2012-03-30 | 2013-10-03 | Maria G. Castellanos | Analyzing social media |
US8738665B2 (en) | 2012-04-02 | 2014-05-27 | Apple Inc. | Smart progress indicator |
US8983936B2 (en) | 2012-04-04 | 2015-03-17 | Microsoft Corporation | Incremental visualization for structured data in an enterprise-level data store |
US9071653B2 (en) | 2012-04-05 | 2015-06-30 | Verizon Patent And Licensing Inc. | Reducing cellular network traffic |
US8792677B2 (en) | 2012-04-19 | 2014-07-29 | Intelligence Based Integrated Security Systems, Inc. | Large venue security method |
US9298856B2 (en) | 2012-04-23 | 2016-03-29 | Sap Se | Interactive data exploration and visualization tool |
US9043710B2 (en) | 2012-04-26 | 2015-05-26 | Sap Se | Switch control in report generation |
US8742934B1 (en) | 2012-04-29 | 2014-06-03 | Intel-Based Solutions, LLC | System and method for facilitating the execution of law enforcement duties and enhancing anti-terrorism and counter-terrorism capabilities |
US10304036B2 (en) | 2012-05-07 | 2019-05-28 | Nasdaq, Inc. | Social media profiling for one or more authors using one or more social media platforms |
EP2662782A1 (en) | 2012-05-10 | 2013-11-13 | Siemens Aktiengesellschaft | Method and system for storing data in a database |
US20140032506A1 (en) | 2012-06-12 | 2014-01-30 | Quality Attributes Software, Inc. | System and methods for real-time detection, correction, and transformation of time series data |
US10089335B2 (en) | 2012-07-10 | 2018-10-02 | Microsoft Technology Licensing, Llc | Data lineage across multiple marketplaces |
US8966441B2 (en) | 2012-07-12 | 2015-02-24 | Oracle International Corporation | Dynamic scripts to extend static applications |
JP5843965B2 (en) | 2012-07-13 | 2016-01-13 | 株式会社日立ソリューションズ | Search device, search device control method, and recording medium |
US8830322B2 (en) | 2012-08-06 | 2014-09-09 | Cloudparc, Inc. | Controlling use of a single multi-vehicle parking space and a restricted location within the single multi-vehicle parking space using multiple cameras |
US20140047319A1 (en) | 2012-08-13 | 2014-02-13 | Sap Ag | Context injection and extraction in xml documents based on common sparse templates |
US8554875B1 (en) | 2012-08-13 | 2013-10-08 | Ribbon Labs, Inc. | Communicating future locations in a social network |
US10311062B2 (en) | 2012-08-21 | 2019-06-04 | Microsoft Technology Licensing, Llc | Filtering structured data using inexact, culture-dependent terms |
US8676857B1 (en) | 2012-08-23 | 2014-03-18 | International Business Machines Corporation | Context-based search for a data store related to a graph node |
US10163158B2 (en) | 2012-08-27 | 2018-12-25 | Yuh-Shen Song | Transactional monitoring system |
JP5904909B2 (en) | 2012-08-31 | 2016-04-20 | 株式会社日立製作所 | Supplier search device and supplier search program |
US20140068487A1 (en) | 2012-09-05 | 2014-03-06 | Roche Diagnostics Operations, Inc. | Computer Implemented Methods For Visualizing Correlations Between Blood Glucose Data And Events And Apparatuses Thereof |
US20140095273A1 (en) | 2012-09-28 | 2014-04-03 | Catalina Marketing Corporation | Basket aggregator and locator |
US20140095509A1 (en) | 2012-10-02 | 2014-04-03 | Banjo, Inc. | Method of tagging content lacking geotags with a location |
CN107678412B (en) | 2012-10-08 | 2020-05-15 | 费希尔-罗斯蒙特系统公司 | Method for configuring graphic element objects with definitions of derivatives and links using overlays |
CN103731447B (en) | 2012-10-11 | 2019-03-26 | 腾讯科技(深圳)有限公司 | A kind of data query method and system |
US9104786B2 (en) | 2012-10-12 | 2015-08-11 | International Business Machines Corporation | Iterative refinement of cohorts using visual exploration and data analytics |
US8688573B1 (en) | 2012-10-16 | 2014-04-01 | Intuit Inc. | Method and system for identifying a merchant payee associated with a cash transaction |
US20140108068A1 (en) | 2012-10-17 | 2014-04-17 | Jonathan A. Williams | System and Method for Scheduling Tee Time |
US9081975B2 (en) | 2012-10-22 | 2015-07-14 | Palantir Technologies, Inc. | Sharing information between nexuses that use different classification schemes for information access control |
US8914886B2 (en) | 2012-10-29 | 2014-12-16 | Mcafee, Inc. | Dynamic quarantining for malware detection |
US9501799B2 (en) | 2012-11-08 | 2016-11-22 | Hartford Fire Insurance Company | System and method for determination of insurance classification of entities |
US9378030B2 (en) | 2013-10-01 | 2016-06-28 | Aetherpal, Inc. | Method and apparatus for interactive mobile device guidance |
US10504127B2 (en) | 2012-11-15 | 2019-12-10 | Home Depot Product Authority, Llc | System and method for classifying relevant competitors |
US20140143009A1 (en) | 2012-11-16 | 2014-05-22 | International Business Machines Corporation | Risk reward estimation for company-country pairs |
US9146969B2 (en) | 2012-11-26 | 2015-09-29 | The Boeing Company | System and method of reduction of irrelevant information during search |
US20140157172A1 (en) | 2012-11-30 | 2014-06-05 | Drillmap | Geographic layout of petroleum drilling data and methods for processing data |
US20140156527A1 (en) | 2012-11-30 | 2014-06-05 | Bank Of America Corporation | Pre-payment authorization categorization |
US10672008B2 (en) | 2012-12-06 | 2020-06-02 | Jpmorgan Chase Bank, N.A. | System and method for data analytics |
US9497289B2 (en) | 2012-12-07 | 2016-11-15 | Genesys Telecommunications Laboratories, Inc. | System and method for social message classification based on influence |
US9195506B2 (en) | 2012-12-21 | 2015-11-24 | International Business Machines Corporation | Processor provisioning by a middleware processing system for a plurality of logical processor partitions |
US9294576B2 (en) | 2013-01-02 | 2016-03-22 | Microsoft Technology Licensing, Llc | Social media impact assessment |
US20140195515A1 (en) | 2013-01-10 | 2014-07-10 | I3 Analytics | Methods and systems for querying and displaying data using interactive three-dimensional representations |
US20140222793A1 (en) | 2013-02-07 | 2014-08-07 | Parlance Corporation | System and Method for Automatically Importing, Refreshing, Maintaining, and Merging Contact Sets |
US20140222521A1 (en) | 2013-02-07 | 2014-08-07 | Ibms, Llc | Intelligent management and compliance verification in distributed work flow environments |
US9264393B2 (en) | 2013-02-13 | 2016-02-16 | International Business Machines Corporation | Mail server-based dynamic workflow management |
US8744890B1 (en) | 2013-02-14 | 2014-06-03 | Aktana, Inc. | System and method for managing system-level workflow strategy and individual workflow activity |
US20140244388A1 (en) | 2013-02-28 | 2014-08-28 | MetroStar Systems, Inc. | Social Content Synchronization |
US9286618B2 (en) | 2013-03-08 | 2016-03-15 | Mastercard International Incorporated | Recognizing and combining redundant merchant designations in a transaction database |
US10140664B2 (en) | 2013-03-14 | 2018-11-27 | Palantir Technologies Inc. | Resolving similar entities from a transaction database |
US9740369B2 (en) | 2013-03-15 | 2017-08-22 | Palantir Technologies Inc. | Systems and methods for providing a tagging interface for external content |
US9230280B1 (en) | 2013-03-15 | 2016-01-05 | Palantir Technologies Inc. | Clustering data based on indications of financial malfeasance |
US8868486B2 (en) | 2013-03-15 | 2014-10-21 | Palantir Technologies Inc. | Time-sensitive cube |
GB2513007A (en) | 2013-03-15 | 2014-10-15 | Palantir Technologies Inc | Transformation of data items from data sources using a transformation script |
US8937619B2 (en) | 2013-03-15 | 2015-01-20 | Palantir Technologies Inc. | Generating an object time series from data objects |
AU2014233672B2 (en) | 2013-03-15 | 2018-03-01 | Ab Initio Technology Llc | System for metadata management |
GB2513720A (en) | 2013-03-15 | 2014-11-05 | Palantir Technologies Inc | Computer-implemented systems and methods for comparing and associating objects |
US9501202B2 (en) | 2013-03-15 | 2016-11-22 | Palantir Technologies, Inc. | Computer graphical user interface with genomic workflow |
US8930897B2 (en) | 2013-03-15 | 2015-01-06 | Palantir Technologies Inc. | Data integration tool |
US8924388B2 (en) | 2013-03-15 | 2014-12-30 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8903717B2 (en) | 2013-03-15 | 2014-12-02 | Palantir Technologies Inc. | Method and system for generating a parser and parsing complex data |
US8917274B2 (en) | 2013-03-15 | 2014-12-23 | Palantir Technologies Inc. | Event matrix based on integrated data |
GB2513721A (en) | 2013-03-15 | 2014-11-05 | Palantir Technologies Inc | Computer-implemented systems and methods for comparing and associating objects |
US8855999B1 (en) | 2013-03-15 | 2014-10-07 | Palantir Technologies Inc. | Method and system for generating a parser and parsing complex data |
US9898167B2 (en) | 2013-03-15 | 2018-02-20 | Palantir Technologies Inc. | Systems and methods for providing a tagging interface for external content |
US9372929B2 (en) | 2013-03-20 | 2016-06-21 | Securboration, Inc. | Methods and systems for node and link identification |
US20140310266A1 (en) | 2013-04-10 | 2014-10-16 | Google Inc. | Systems and Methods for Suggesting Places for Persons to Meet |
US9390162B2 (en) | 2013-04-25 | 2016-07-12 | International Business Machines Corporation | Management of a database system |
US8799799B1 (en) | 2013-05-07 | 2014-08-05 | Palantir Technologies Inc. | Interactive geospatial map |
GB2542517B (en) | 2013-05-07 | 2018-01-24 | Palantir Technologies Inc | Interactive Geospatial map |
US20140351070A1 (en) | 2013-05-22 | 2014-11-27 | Cube, Co. | Role-based transaction management system for multi-point merchants |
US9576248B2 (en) | 2013-06-01 | 2017-02-21 | Adam M. Hurwitz | Record linkage sharing using labeled comparison vectors and a machine learning domain classification trainer |
CN104243425B (en) | 2013-06-19 | 2018-09-04 | 深圳市腾讯计算机系统有限公司 | A kind of method, apparatus and system carrying out Content Management in content distributing network |
US8601326B1 (en) | 2013-07-05 | 2013-12-03 | Palantir Technologies, Inc. | Data quality monitors |
DE102014213036A1 (en) | 2013-07-05 | 2015-01-22 | Palantir Technologies, Inc. | Data Quality Monitors |
US20150019394A1 (en) | 2013-07-11 | 2015-01-15 | Mastercard International Incorporated | Merchant information correction through transaction history or detail |
US8620790B2 (en) | 2013-07-11 | 2013-12-31 | Scvngr | Systems and methods for dynamic transaction-payment routing |
US9047480B2 (en) | 2013-08-01 | 2015-06-02 | Bitglass, Inc. | Secure application access system |
US9223773B2 (en) | 2013-08-08 | 2015-12-29 | Palatir Technologies Inc. | Template system for custom document generation |
US9565152B2 (en) | 2013-08-08 | 2017-02-07 | Palantir Technologies Inc. | Cable reader labeling |
US9335897B2 (en) | 2013-08-08 | 2016-05-10 | Palantir Technologies Inc. | Long click display of a context menu |
US9477372B2 (en) | 2013-08-08 | 2016-10-25 | Palantir Technologies Inc. | Cable reader snippets and postboard |
GB2518745A (en) | 2013-08-08 | 2015-04-01 | Palantir Technologies Inc | Template system for custom document generation |
US8713467B1 (en) | 2013-08-09 | 2014-04-29 | Palantir Technologies, Inc. | Context-sensitive views |
US8689108B1 (en) | 2013-09-24 | 2014-04-01 | Palantir Technologies, Inc. | Presentation and analysis of user interaction data |
US9787760B2 (en) | 2013-09-24 | 2017-10-10 | Chad Folkening | Platform for building virtual entities using equity systems |
US9785317B2 (en) | 2013-09-24 | 2017-10-10 | Palantir Technologies Inc. | Presentation and analysis of user interaction data |
US8938686B1 (en) | 2013-10-03 | 2015-01-20 | Palantir Technologies Inc. | Systems and methods for analyzing performance of an entity |
US8812960B1 (en) | 2013-10-07 | 2014-08-19 | Palantir Technologies Inc. | Cohort-based presentation of user interaction data |
US9116975B2 (en) | 2013-10-18 | 2015-08-25 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
US8924872B1 (en) | 2013-10-18 | 2014-12-30 | Palantir Technologies Inc. | Overview user interface of emergency call data of a law enforcement agency |
US9792194B2 (en) | 2013-10-18 | 2017-10-17 | International Business Machines Corporation | Performance regression manager for large scale systems |
US8832594B1 (en) | 2013-11-04 | 2014-09-09 | Palantir Technologies Inc. | Space-optimized display of multi-column tables with selective text truncation based on a combined text width |
US9021384B1 (en) | 2013-11-04 | 2015-04-28 | Palantir Technologies Inc. | Interactive vehicle information map |
US8868537B1 (en) | 2013-11-11 | 2014-10-21 | Palantir Technologies, Inc. | Simple web search |
US9235638B2 (en) | 2013-11-12 | 2016-01-12 | International Business Machines Corporation | Document retrieval using internal dictionary-hierarchies to adjust per-subject match results |
US9356937B2 (en) | 2013-11-13 | 2016-05-31 | International Business Machines Corporation | Disambiguating conflicting content filter rules |
US10025834B2 (en) | 2013-12-16 | 2018-07-17 | Palantir Technologies Inc. | Methods and systems for analyzing entity performance |
EP2884441A1 (en) | 2013-12-16 | 2015-06-17 | Palantir Technologies, Inc. | Methods and systems for analyzing entity performance |
US10356032B2 (en) | 2013-12-26 | 2019-07-16 | Palantir Technologies Inc. | System and method for detecting confidential information emails |
US9338013B2 (en) | 2013-12-30 | 2016-05-10 | Palantir Technologies Inc. | Verifiable redactable audit log |
US20150187036A1 (en) | 2014-01-02 | 2015-07-02 | Palantir Technologies Inc. | Computer-implemented methods and systems for analyzing healthcare data |
US9043696B1 (en) | 2014-01-03 | 2015-05-26 | Palantir Technologies Inc. | Systems and methods for visual definition of data associations |
US8832832B1 (en) | 2014-01-03 | 2014-09-09 | Palantir Technologies Inc. | IP reputation |
US9836502B2 (en) | 2014-01-30 | 2017-12-05 | Splunk Inc. | Panel templates for visualization of data within an interactive dashboard |
US9009827B1 (en) | 2014-02-20 | 2015-04-14 | Palantir Technologies Inc. | Security sharing system |
US9009171B1 (en) | 2014-05-02 | 2015-04-14 | Palantir Technologies Inc. | Systems and methods for active column filtering |
US20150324868A1 (en) | 2014-05-12 | 2015-11-12 | Quixey, Inc. | Query Categorizer |
KR102147246B1 (en) | 2014-05-26 | 2020-08-24 | 삼성전자 주식회사 | Method and apparatus to improve performance in communication network |
US9536329B2 (en) | 2014-05-30 | 2017-01-03 | Adobe Systems Incorporated | Method and apparatus for performing sentiment analysis based on user reactions to displayable content |
US9129219B1 (en) | 2014-06-30 | 2015-09-08 | Palantir Technologies, Inc. | Crime risk forecasting |
US9619557B2 (en) | 2014-06-30 | 2017-04-11 | Palantir Technologies, Inc. | Systems and methods for key phrase characterization of documents |
US9256664B2 (en) | 2014-07-03 | 2016-02-09 | Palantir Technologies Inc. | System and method for news events detection and visualization |
US9021260B1 (en) | 2014-07-03 | 2015-04-28 | Palantir Technologies Inc. | Malware data item analysis |
US9454281B2 (en) | 2014-09-03 | 2016-09-27 | Palantir Technologies Inc. | System for providing dynamic linked panels in user interface |
US9785328B2 (en) | 2014-10-06 | 2017-10-10 | Palantir Technologies Inc. | Presentation of multivariate data on a graphical user interface of a computing system |
US9146954B1 (en) | 2014-10-09 | 2015-09-29 | Splunk, Inc. | Creating entity definition from a search result set |
US9229952B1 (en) | 2014-11-05 | 2016-01-05 | Palantir Technologies, Inc. | History preserving data pipeline system and method |
US9043894B1 (en) | 2014-11-06 | 2015-05-26 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US9996595B2 (en) | 2015-08-03 | 2018-06-12 | Palantir Technologies, Inc. | Providing full data provenance visualization for versioned datasets |
US9576015B1 (en) * | 2015-09-09 | 2017-02-21 | Palantir Technologies, Inc. | Domain-specific language for dataset transformations |
-
2015
- 2015-10-05 US US14/874,690 patent/US9576015B1/en active Active
-
2016
- 2016-09-09 EP EP16188060.4A patent/EP3142027A1/en not_active Ceased
- 2016-12-05 US US15/369,753 patent/US9965534B2/en active Active
-
2018
- 2018-03-06 US US15/913,721 patent/US11080296B2/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9946738B2 (en) | 2014-11-05 | 2018-04-17 | Palantir Technologies, Inc. | Universal data pipeline |
US10191926B2 (en) | 2014-11-05 | 2019-01-29 | Palantir Technologies, Inc. | Universal data pipeline |
US10853338B2 (en) | 2014-11-05 | 2020-12-01 | Palantir Technologies Inc. | Universal data pipeline |
US9996595B2 (en) | 2015-08-03 | 2018-06-12 | Palantir Technologies, Inc. | Providing full data provenance visualization for versioned datasets |
US9965534B2 (en) | 2015-09-09 | 2018-05-08 | Palantir Technologies, Inc. | Domain-specific language for dataset transformations |
US11080296B2 (en) | 2015-09-09 | 2021-08-03 | Palantir Technologies Inc. | Domain-specific language for dataset transformations |
US10007674B2 (en) | 2016-06-13 | 2018-06-26 | Palantir Technologies Inc. | Data revision control in large-scale data analytic systems |
US11106638B2 (en) | 2016-06-13 | 2021-08-31 | Palantir Technologies Inc. | Data revision control in large-scale data analytic systems |
US10956406B2 (en) | 2017-06-12 | 2021-03-23 | Palantir Technologies Inc. | Propagated deletion of database records and derived data |
US10754822B1 (en) | 2018-04-18 | 2020-08-25 | Palantir Technologies Inc. | Systems and methods for ontology migration |
Also Published As
Publication number | Publication date |
---|---|
EP3142027A1 (en) | 2017-03-15 |
US11080296B2 (en) | 2021-08-03 |
US9965534B2 (en) | 2018-05-08 |
US20180196862A1 (en) | 2018-07-12 |
US9576015B1 (en) | 2017-02-21 |
US20170083595A1 (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11080296B2 (en) | Domain-specific language for dataset transformations | |
US20220147500A1 (en) | System and methods for live data migration | |
US10929417B2 (en) | Transforming and loading data utilizing in-memory processing | |
US10387497B2 (en) | Storing graph data in a relational database | |
US10331740B2 (en) | Systems and methods for operating a server-side data abstraction layer | |
US8892504B2 (en) | Method and system for reconciling meta-data in a data warehouse | |
US10572551B2 (en) | Application containers in container databases | |
US10114859B2 (en) | Extensions of structured query language for database-native support of graph data | |
CN108475276B (en) | In-memory key-value storage for multi-model databases | |
CN116955316A (en) | Performing in-memory rank analysis queries on externally resident data | |
US20200311095A1 (en) | System and method for automated source code generation for database conversion | |
US20120191679A1 (en) | Database server apparatus, method for updating database, and recording medium for database update program | |
US20180121492A1 (en) | Two-tier storage protocol for committing changes in a storage system | |
US9600299B2 (en) | Application object framework | |
US20230334031A1 (en) | Versioned relational dataset management | |
US20200104121A1 (en) | Efficient storage and analysis of source code modification history data | |
US12079623B2 (en) | Consolidation spaces providing access to multiple instances of application content | |
Sreemathy et al. | Data validation in ETL using TALEND | |
US11188228B1 (en) | Graphing transaction operations for transaction compliance analysis | |
US10936572B2 (en) | Method, apparatus, and computer program product for improved tracking of state data | |
US11789971B1 (en) | Adding replicas to a multi-leader replica group for a data set | |
US11327961B2 (en) | Action queue for hierarchy maintenance | |
WO2021247109A1 (en) | Version control system | |
Donselaar | Low latency asynchronous database synchronization and data transformation using the replication log. | |
US12034594B2 (en) | Mechanized modify/add/create/delete for network configuration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOLNAY, DAVID;BISWAL, PUNYASHLOKA;COLOMBI, ANDREW;AND OTHERS;SIGNING DATES FROM 20151009 TO 20151124;REEL/FRAME:037196/0136 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:051713/0149 Effective date: 20200127 Owner name: ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT, CANADA Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:051709/0471 Effective date: 20200127 |
|
AS | Assignment |
Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052856/0382 Effective date: 20200604 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:052856/0817 Effective date: 20200604 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY LISTED PATENT BY REMOVING APPLICATION NO. 16/832267 FROM THE RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 052856 FRAME 0382. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:057335/0753 Effective date: 20200604 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, N.A., NORTH CAROLINA Free format text: ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:060572/0640 Effective date: 20220701 Owner name: WELLS FARGO BANK, N.A., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:060572/0506 Effective date: 20220701 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |