US20170066716A1 - Energetic n-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof - Google Patents

Energetic n-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof Download PDF

Info

Publication number
US20170066716A1
US20170066716A1 US14/844,377 US201514844377A US2017066716A1 US 20170066716 A1 US20170066716 A1 US 20170066716A1 US 201514844377 A US201514844377 A US 201514844377A US 2017066716 A1 US2017066716 A1 US 2017066716A1
Authority
US
United States
Prior art keywords
substituted
dinitroazetidine
aryl
alkyl
dnaz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/844,377
Other versions
US9573894B1 (en
Inventor
Seung-Hee Kim
Jinseuk KIM
Chang-Woo Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agency for Defence Development
Original Assignee
Agency for Defence Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency for Defence Development filed Critical Agency for Defence Development
Priority to US14/844,377 priority Critical patent/US9573894B1/en
Assigned to AGENCY FOR DEFENSE DEVELOPMENT reassignment AGENCY FOR DEFENSE DEVELOPMENT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, CHANG-WOO, KIM, JINSEUK, KIM, SEUNG-HEE
Application granted granted Critical
Publication of US9573894B1 publication Critical patent/US9573894B1/en
Publication of US20170066716A1 publication Critical patent/US20170066716A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members

Definitions

  • the present invention relates to N-substituted 3, 3-dinitroazetidine as a high-performance, energetic plasticizer, and a method for preparing the same.
  • Plastic-bonded explosives have been developed to improve both the performance and insensitivity of explosives.
  • a plastic-bonded explosive consists of a granular explosive, responsible for explosive power, such as RDX (Research Department Explosive), and a binder system.
  • the binder system is used in an amount of about 2-20% by weight based on the total weight of the plastic-bonded explosive, and functions to provide dimensional stability and insensitivity for the granular explosive. Lacking a nitro group, which plays an essential, role in explosive performance, however, the binder system degrades the overall performance of the explosive.
  • a nitro group-introduced plasticizer is called an energetic binder or plasticizer.
  • the high energetic plasticizers bis(2,2-dinitropropoxy)methane (Chemical Formula 1) and N, N′-methylenebis(N-methylnitramide) (Chemical Formula 2) make a great contribution to the performance of plastic-bonded explosives, but are highly sensitive.
  • formal/acetal-based plasticizers (F/A plasticizers) which use two different plasticizers, as shown in Chemical Formula 3, may be prone to dissociation of the components during long-term storage.
  • the present inventors found that the high sensitivity of plastic-bonded explosives is attributed to the introduction of excessive nitro groups into energetic plasticizers. That is, it was found that abundant nitro groups, when introduced into energetic plasticizers, are advantageous in terms of energy density, but cause the plasticizer to increase in viscosity and polarity, and that such high polarity induces the dissolution of the granular explosive, causing the granular explosive to be morphologically altered.
  • DNAZ 3-dinitroazetidine
  • N-substituted 3, 3-dinitroazetidine represented by the following Chemical Formula I, as a high-performance, energetic plasticizer.
  • the present invention provides an N-substituted 3, 3-dinitroazetidine represented by the following Chemical Formula I:
  • R 1 and R 2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • the present invention provides a method for preparing a compound represented by the following Chemical Formula I, comprising: dissolving dinitroazetidine (DNAZ) and/or at least one DNAZ acid salt selected from the group consisting of dinitroazetidine hydrochloride (DNAZ.HCl), dinitroazetidine sulfate (DNAZ.H2SO4), and dinitroazetidine nitrate (DNAZ.HNO3), represented by the following Chemical Formula II, in an organic solvent, and reacting, the solution with an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following Chemical Formula III in the presence of a base:
  • DNAZ dinitroazetidine
  • DNAZ.HCl dinitroazetidine hydrochloride
  • DNAZ.H2SO4 dinitroazetidine sulfate
  • DNAZ.HNO3 dinitroazetidine nitrate
  • R 1 and R 2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • the present invention provides a plasticizer comprising the N-substituted 3, 3-dinitroazetidine represented by Chemical Formula I.
  • FIG. 1 is a thermal profile of 6-(3,3-dinitroazetidin-1-yl)-2-methylundecan-4-one (Example 5), as measured by differential scanning calorimetry (DSC);
  • FIG. 2 is a thermal profile of 6-(3,3-dinitroazetidin-1-yl)-2-methylundecan-4-one (Example 5), as measured by thermogravimetric analysis (TGA);
  • FIG. 3 is a thermal profile of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7), as measured by differential scanning calorimetry (DSC);
  • FIG. 4 is a thermal profile of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7), as measured by thermogravimetric analysis (TGA); and
  • FIG. 5 is a thermal profile showing the glass transition temperature (Tg) of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7).
  • An aspect of the present invention addresses an N-substituted 3,3-dinitroazetidine represented by the following Chemical Formula I:
  • R 1 and R 2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • the alkyl radical is a C1-C10 alkyl.
  • contemplated in accordance with another aspect of the present invention is a method for preparing a compound represented by the following Chemical Formula I, comprising: dissolving dinitroazetidine (DNAZ) and/or at least one DNAZ acid salt selected from the group consisting of dinitroazetidine hydrochloride (DNAZ.HCl), dinitroazetidine sulfate (DNAZ.H2SO4), and dinitroazetidine nitrate (DNAZ.HNO3), represented by the following Chemical Formula II, in an organic solvent, and reacting the solution with an ⁇ , ⁇ -unsaturated carbonyl compound, represented by the following Chemical Formula III, in the presence of a base:
  • R 1 and R 2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • Dinitroazetidine is structurally symmetric with structural brevity, and thus shows structural regularity. For this reason, DNAZ is an energetic material that has too high a melting point to be used as a plasticizer.
  • the N-substituted 3, 3-dinitroazetidine according to the present invention can be used as a plasticizer having a high energy density due to the structural stress of the dinitroazetidine moiety.
  • the N-substituted 3, 3-dinitroazetidine can be, synthesized through a coupling reaction in which 3, 3-dinitroazetidine or an acid salt thereof serves as a nucleophile for the ⁇ , ⁇ -unsaturated carbonyl compound as a substrate.
  • the ⁇ , ⁇ -unsaturated carbonyl compound represented by Chemical Formula III is versatile, so that the N-substituent can be controlled to give chemical structures that decrease the melting points of the resulting compounds, thereby minimizing the side effect of dissolving granular explosives.
  • R 1 and R 2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • the organic solvent may be at least one selected from the group consisting of toluene, dichloromethane, chloroform, tetrahydrofuran, diethylether, methanol, ethanol, and propanol.
  • the base may be at least one selected from the group consisting of potassium hydroxide, lithium hydroxide, sodium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • a tetraalkylammonium halide such as tetrabutylammonium iodide (TBAI), tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), or the like, may be used as a phase-transition catalyst to increase the reaction rate.
  • TBAI tetrabutylammonium iodide
  • TBAB tetrabutylammonium bromide
  • TBAC tetrabutylammonium chloride
  • the N-substituted 3, 3-dinitroazetidine according to the present invention can be used as an energetic plasticizer that takes advantage of the structural stress of the energetic material dinitroazetidine in increasing the energy density thereof, and which can be modified with the N-substituent to reduce the melting point thereof and to minimize the side effect of dissolving granular explosives.
  • the N-substituted 3, 3-dinitroazetidine of the present invention has physical properties suitable for use as an energetic plasticizer and can increase the energy density of plastic-bonded explosives and reduce the side effect of dissolving granular explosives as much as possible.
  • the N-substituted 3,3-dinitroazetidine of the present invention can be used as a high-performance, energetic plasticizer in which abundant nitro groups of conventional energetic plasticizers are converted into a ring energy.
  • N-substituted 3,3-dinitroazetidine represented by Chemical Formula 1, according to the present invention can be used as a plasticizer.
  • novel preparation method of N-substituted 3,3-dinitroazetidine according to the present invention is characterized by a coupling reaction.
  • the plasticizer comprising the N-substituted 3,3-dinitroazetidine of Chemical Formula 1 in accordance with the present invention can increase the energy density of plastic-bonded explosives, and nitro groups comprised in conventional energetic plasticizer of Chemical Formula 1, 2 and 3 are converted into a ring energy, thus minimizing the side effect of solubilizing granular explosives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

N-substituted 3,3-dinitroazetidine, represented by the following Chemical Formula I, as an energetic plasticizer, and a method for preparing the same through a coupling reaction in which the energetic material 3, 3-dinitroazetidine or an acid salt thereof serves as a nucleophile for the α, β-unsaturated carbonyl compound as a substrate are provided.
Figure US20170066716A1-20170309-C00001
wherein R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to N-substituted 3, 3-dinitroazetidine as a high-performance, energetic plasticizer, and a method for preparing the same.
  • 2. Description of the Related Art
  • Plastic-bonded explosives have been developed to improve both the performance and insensitivity of explosives. Generally, a plastic-bonded explosive consists of a granular explosive, responsible for explosive power, such as RDX (Research Department Explosive), and a binder system. The binder system is used in an amount of about 2-20% by weight based on the total weight of the plastic-bonded explosive, and functions to provide dimensional stability and insensitivity for the granular explosive. Lacking a nitro group, which plays an essential, role in explosive performance, however, the binder system degrades the overall performance of the explosive.
  • To maximize the performance of plastic-bonded explosives, extensive research has been directed toward the introduction of a nitro group into a plasticizer. A nitro group-introduced plasticizer is called an energetic binder or plasticizer. The high energetic plasticizers bis(2,2-dinitropropoxy)methane (Chemical Formula 1) and N, N′-methylenebis(N-methylnitramide) (Chemical Formula 2) make a great contribution to the performance of plastic-bonded explosives, but are highly sensitive. Further, formal/acetal-based plasticizers (F/A plasticizers), which use two different plasticizers, as shown in Chemical Formula 3, may be prone to dissociation of the components during long-term storage.
  • Figure US20170066716A1-20170309-C00002
  • SUMMARY OF THE INVENTION
  • With the problems encountered in the related arts in mind, the present inventors found that the high sensitivity of plastic-bonded explosives is attributed to the introduction of excessive nitro groups into energetic plasticizers. That is, it was found that abundant nitro groups, when introduced into energetic plasticizers, are advantageous in terms of energy density, but cause the plasticizer to increase in viscosity and polarity, and that such high polarity induces the dissolution of the granular explosive, causing the granular explosive to be morphologically altered.
  • In addition, intensive and thorough research by the present inventors resulted in the finding that 3, 3-dinitroazetidine (DNAZ) itself has a symmetrical structure with synthetic convenience and structural brevity and that the structural regularity makes DNAZ an energetic material that has too high a melting point to use as a plasticizer.
  • It is therefore an object of the present invention to provide N-substituted 3, 3-dinitroazetidine, represented by the following Chemical Formula I, as a high-performance, energetic plasticizer.
  • It is another object of the present invention to provide a method for preparing the N-substituted 3,3-dinitroazetidine.
  • It is a further object of the present invention to provide a plasticizer comprising the N-substituted 3,3-dinitroazetidine.
  • In accordance with an aspect thereof, the present invention provides an N-substituted 3, 3-dinitroazetidine represented by the following Chemical Formula I:
  • Figure US20170066716A1-20170309-C00003
  • wherein R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • In accordance with another aspect thereof, the present invention provides a method for preparing a compound represented by the following Chemical Formula I, comprising: dissolving dinitroazetidine (DNAZ) and/or at least one DNAZ acid salt selected from the group consisting of dinitroazetidine hydrochloride (DNAZ.HCl), dinitroazetidine sulfate (DNAZ.H2SO4), and dinitroazetidine nitrate (DNAZ.HNO3), represented by the following Chemical Formula II, in an organic solvent, and reacting, the solution with an α, β-unsaturated carbonyl compound represented by the following Chemical Formula III in the presence of a base:
  • Figure US20170066716A1-20170309-C00004
  • wherein R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • In accordance with a further aspect thereof, the present invention provides a plasticizer comprising the N-substituted 3, 3-dinitroazetidine represented by Chemical Formula I.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a thermal profile of 6-(3,3-dinitroazetidin-1-yl)-2-methylundecan-4-one (Example 5), as measured by differential scanning calorimetry (DSC);
  • FIG. 2 is a thermal profile of 6-(3,3-dinitroazetidin-1-yl)-2-methylundecan-4-one (Example 5), as measured by thermogravimetric analysis (TGA);
  • FIG. 3 is a thermal profile of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7), as measured by differential scanning calorimetry (DSC);
  • FIG. 4 is a thermal profile of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7), as measured by thermogravimetric analysis (TGA); and
  • FIG. 5 is a thermal profile showing the glass transition temperature (Tg) of 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7).
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will be described in detail below with reference to the accompanying drawings. Repeated descriptions and descriptions of known functions and configurations which have been deemed to make the gist of the present invention unnecessarily obscure will be omitted below. The embodiments of the present invention are intended to fully describe the present invention to a person having ordinary knowledge in the art to which the present invention pertains. Accordingly, the shapes, sizes, etc. of components in the drawings may be exaggerated to make the description clearer.
  • An aspect of the present invention addresses an N-substituted 3,3-dinitroazetidine represented by the following Chemical Formula I:
  • Figure US20170066716A1-20170309-C00005
  • wherein R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof. Preferably, the alkyl radical is a C1-C10 alkyl.
  • Also, contemplated in accordance with another aspect of the present invention is a method for preparing a compound represented by the following Chemical Formula I, comprising: dissolving dinitroazetidine (DNAZ) and/or at least one DNAZ acid salt selected from the group consisting of dinitroazetidine hydrochloride (DNAZ.HCl), dinitroazetidine sulfate (DNAZ.H2SO4), and dinitroazetidine nitrate (DNAZ.HNO3), represented by the following Chemical Formula II, in an organic solvent, and reacting the solution with an α, β-unsaturated carbonyl compound, represented by the following Chemical Formula III, in the presence of a base:
  • Figure US20170066716A1-20170309-C00006
  • wherein R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • Dinitroazetidine (DNAZ) is structurally symmetric with structural brevity, and thus shows structural regularity. For this reason, DNAZ is an energetic material that has too high a melting point to be used as a plasticizer. In contrast, the N-substituted 3, 3-dinitroazetidine according to the present invention can be used as a plasticizer having a high energy density due to the structural stress of the dinitroazetidine moiety. The N-substituted 3, 3-dinitroazetidine can be, synthesized through a coupling reaction in which 3, 3-dinitroazetidine or an acid salt thereof serves as a nucleophile for the α, β-unsaturated carbonyl compound as a substrate. In addition, the α, β-unsaturated carbonyl compound represented by Chemical Formula III is versatile, so that the N-substituent can be controlled to give chemical structures that decrease the melting points of the resulting compounds, thereby minimizing the side effect of dissolving granular explosives.
  • In the α, β-unsaturated carbonyl compound used in the preparation method, R1 and R2 are each independently alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, hydroxy, nitro, or a halogen atom, wherein the substituent of the substituted radicals is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, thioalkyl, amino, nitro, hydroxy, a halogen atom, and a combination thereof.
  • In the preparation method, the organic solvent may be at least one selected from the group consisting of toluene, dichloromethane, chloroform, tetrahydrofuran, diethylether, methanol, ethanol, and propanol.
  • For use in the preparation method, the base may be at least one selected from the group consisting of potassium hydroxide, lithium hydroxide, sodium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • In the preparation method, when the reaction mixture is stirred, a tetraalkylammonium halide, such as tetrabutylammonium iodide (TBAI), tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), or the like, may be used as a phase-transition catalyst to increase the reaction rate.
  • After completion of the reaction, purification by column chromatography may afford the N-substituted 3,3-dinitroazetidine.
  • A better understanding of the present invention may be obtained through the following examples, which are set forth to illustrate, but are not to be construed as limiting the present invention.
  • All of the materials used in the following Examples, including potassium hydroxide, tetrabutylammonium iodide, tetrabutylammonium bromide, and toluene, were of reagent grades from Sigma-Aldrich. Dinitroazetidine and a hydrochloride thereof were synthesized as disclosed previously (Kown, Y.-H., U.S. Pat. No. 7,829,729 B2). The α, β-unsaturated carbonyl compounds were synthesized using a method known in the art.
  • EXAMPLE 1 Synthesis of 3-(3,3-Dinitroazetidin-1-yl)-1-phenyloctan-1-one
  • Figure US20170066716A1-20170309-C00007
  • To a solution of the starting material DNAZ.HCI (0.028 g, 0.15 mmol) in toluene (1.5 mL, 0.1 M) were added (E)-1-phenyloct-2-en-1-one (0.06 g, 2 eq), tetrabutylammonium iodide (0.006 g, 0.1 eq), and potassium hydroxide (0.019 g, 2.2 eq), followed by stirring at room temperature for 24 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 74% (0.039 g, 0.11 mmol)
  • 1NMR (400 MHz, CDCl3) δ 7.96-7.93 (m, 2-H), 7.62-7.58 (m, 1H), 7.51-7.47 (m, 2H), 4.15-4.05 (m, 4H), 3.30-3.24 (m, 1H), 3.10-2.95 (m, 2H), 1.51-1.44 (m, 1H), 1.42-1.20 (m, 7H), 0.87 (t, J=6.8 Hz, 3H) HRMS (FAB) calcd for [M+H]+ C17H24O5N3 350.1716, found 350.1718
  • EXAMPLE 2 Synthesis of 4-(3,3-Dinitroazetidin-1-yl)-6-methylheptan-2-one
  • Figure US20170066716A1-20170309-C00008
  • To a solution of the starting material DNAZ.HCl (0.055 g, 0.3 mmol) in toluene (3 mL, 0.1 M) were added (E)-6-methylhept-3-en-2-one (0.075 g, 2 eq), tetrabutylammonium bromide (0.010 g, 0.1 eq), and potassium hydroxide (0.037 g, 2.2 eq), followed by stirring at room temperature for 24 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 32% (0.026 g, 0.1 mmol).
  • 1H NMR (400 MHz, CDCl3) δ 4.11-4.02 (m, 4H), 3.12-3.06 (m, 1H), 2.57-2.43 (m, 2H), 2.19 (s, 3H), 1.60-1.50 (m, 1H), 1.19-1.15 (m, 2H), 0.93 (d, J=6.4 Hz, 3H), 0.89 (d, J=6.4 Hz, 3H) HRMS (FAB) calcd for [M+H]+ C11H20O5N3 274.1403, found 274.1406
  • EXAMPLE 3 Synthesis of 2-(3,3-Dinitroazetidin-1-yl)-6-methylheptan-4-one
  • Figure US20170066716A1-20170309-C00009
  • To a solution of, the starting material DNAZ.HCl (0.018 g, 0.1 mmol) in toluene (1 mL, 0.1 M) were added [(E)-6-methylhept-2-en-4-one (0.025 g, 2 eq), tetrabutylammonium bromide (0.003 g, 0.1 eq), and potassium hydroxide (0.012 g, 2.2 eq), followed by stirring at room temperature for 24 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 84% (0.023 g, 0.08 mmol).
  • 1H NMR (400 MHz, CDCl3) δ 4.11-4.04 (m, 4H), 3.09-3.01 (m, 1H), 2.48-2.33 (m, 2H), 2.28 (d, J=6.8 Hz, 2H), 2.19-2.04 (m, 1H), 1.00 (d, J=6.0 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H) HRMS (FAB) calcd for [M+H]+ C11H20O5N3 274.1403, found 274.1405
  • EXAMPLE 4 Synthesis of 6-(3,3-dinitroazetidin-1-yl)-2,8-dimethylnonan-4-one
  • Figure US20170066716A1-20170309-C00010
  • To a solution of the starting material DNAZ.HCI (0.055 g, 0.3 mmol) in toluene (3 mL, 0.1 M) were added (E)-2,8-dimethylnon-5-en-4-one (0.1 g, 2 eq), tetrabutylammonium bromide (0.010 g, 0.1 eq), and potassium hydroxide (0.037 g, 2.2 eq), followed by stirring at room temperature for 24 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 80% (0.028 g, 0.12 mmol).
  • 1H NMR (400 MHz, CDCl3) δ 4.11-4.01 (m, 4H), 3.14-3.08 (m, 1H), 2.52-2.38 (m, 2H), 2.30 (d, J=6.8 Hz, 2H), 2.18-2.08 (m, 1H), 1.59-1.49 (m, 1H), 1.18-1.14 (m, 2H), 0.92 (d, J=6.8 Hz, 3H), 0.92 (d, J=6.4 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H), 0.88 (d, J=6.8 Hz, 3H) HRMS (FAB) calcd for [M+H]4 C14H26O5N3 316.1872, found 316.1870
  • EXAMPLE 5 Synthesis of 6-(3, 3-Dinitroazetidin-1-yl)-2-methylundecan-4-one
  • Figure US20170066716A1-20170309-C00011
  • To a solution of the starting material DNAZ.HCl (0.037 g, 0.2 mmol) in toluene (2 mL, 0.1 M) were added (E)-2-methylundec-5-en-4-one (0.073 g, 2 eq), tetrabutylammonium bromide (0.006 g, 0.1 eq), and potassium hydroxide (0.025 g, 2.2 eq), followed by stirring at room temperature for 36 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 53% (0.035 g, 0.11 mmol).
  • 1H NMR (400 MHz, CDCl3) δ 4.11-4.02 (m, 4H), 3.06-3.01 (m, 1H), 2.53-2.35 (m, 2H), 2.30 (d, J=6.8 Hz, 2H), 2.17-2.07 (m, 1H), 1.41-1.35 (m, 1H), 1.31-1.19 (m, 7H), 0.91 (d, J=6.8 Hz, 6H), 0.88 (t, J=6.4 Hz, 3H) HRMS (FAB) calcd for [M+H]+ C15H28O5N3 330.2029, found 330.2030
  • EXAMPLE 6 Synthesis of 6-Cyclohexyl-4-(3,3-dinitroazetidin-1-yl)hexan-2-one
  • Figure US20170066716A1-20170309-C00012
  • To a solution of the starting material DNAZ.HCl (0.037 g, 0.2 mmol) in toluene (2 mL, 0.1 M) were added (E)-6-cyclohexylhex-3-en-2-one (0.072 g, 2 eq), tetrabutylammonium bromide (0.006 g, 0.1 eq), and potassium hydroxide (0.025 g, 2.2 eq), followed by stirring at room temperature for 24 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 65% (0.043 g, 0.13 mmol).
  • 1H NMR (400 MHz, CDCl3) δ 4.10-4.03 (m, 4H), 3.03-2.97 (m, 1H), 2.57-2.40 (m, 2H), 2.18 (s, 3H), 1.68-1.64 (m, 5H), 1.45-1.36 (m, 1H), 1.34-1.06 (m, 7H), 0.89-0.79 (m, 2H) HRMS (FAB) calcd for [M+H]+ C15H26O5N3 328.1872, found 328.1869
  • EXAMPLE 7 Synthesis of 8-Cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one
  • Figure US20170066716A1-20170309-C00013
  • To a solution of the starting material DNAZ.HCl (0.057 g, 0.31 mmol) in toluene (3.1 mL, 0.1 M) were added (E)-8-cyclohexyl2-methyloct-5-en-4-one (0.161 g, 2 eq), tetrabutylammonium bromide (0.01 g, 0.1 eq), and potassium hydroxide (0.038 g, 2.2 eq), followed by stirring at room temperature for 48 hrs. After completion of the reaction, column chromatographic purification afforded the title compound as a yellowish oil: yield 74% (0.086 g, 0.23 mmol).
  • 1H NMR (400 MHz, CDCI3) δ 4.10-4.02 (m, 4H), 3.05-2.99 (m, 1H), 2.52-2.34 (m, 2H), 2.29 (d, J=7.2 Hz, 2H), 2.17-2.07 (m, 1H), 1.72-1.61 (m, 5H), 1.44-1.36 (m, 1H), 1.33-1.05 (m, 7H), 0.91 (d, J=6.8 Hz, 6H), 0.89-0.80 (m, 2H) HRMS (FAB) calcd for [M+H]+ C18H32O5N3 370.2342, found 370.2339
  • EXAMPLE 8 Glass Transition Temperature and Thermal Decomposition for Energetic Plasticizer
  • Of the N-substituted 3,3-dinitroazetidines synthesized above, 6-(3,3-dinitroazetidin-1-yl)-2-methylundecan-4-one (Example 5) and 8-cyclohexyl-6-(3,3-dinitroazetidin-1-yl)-2-methyloctan-4-one (Example 7) were measured for glass transition temperature (Tg) and thermal decomposition temperature in order to examine whether the compounds have physical properties suitable for use as energetic plasticizers.
  • Glass transition temperatures were measured by differential scanning calorimetry (DSC, Differential Scanning calorimeter, DSC821e Mettler Toledo or Q2000, TA Instruments) while thermal decomposition temperatures were determined by thermogravimetric analysis (TGA, SDTA851e, Mettler Toledo, or Q600, TA Instruments). For these analyses, the samples were heated with a temperature increase of 10° C./min under a nitrogen atmosphere.
  • The results are depicted in FIGS. 1 to 5. As can be seen from the data on the glass transition temperature and thermal decomposition, the N-substituted 3, 3-dinitroazetidine of the present invention is identified as being suitable for use as an energetic plasticizer.
  • As described above, the N-substituted 3, 3-dinitroazetidine according to the present invention can be used as an energetic plasticizer that takes advantage of the structural stress of the energetic material dinitroazetidine in increasing the energy density thereof, and which can be modified with the N-substituent to reduce the melting point thereof and to minimize the side effect of dissolving granular explosives. Hence, the N-substituted 3, 3-dinitroazetidine of the present invention has physical properties suitable for use as an energetic plasticizer and can increase the energy density of plastic-bonded explosives and reduce the side effect of dissolving granular explosives as much as possible.
  • Therefore, the N-substituted 3,3-dinitroazetidine of the present invention can be used as a high-performance, energetic plasticizer in which abundant nitro groups of conventional energetic plasticizers are converted into a ring energy.
  • As described hitherto, the N-substituted 3,3-dinitroazetidine, represented by Chemical Formula 1, according to the present invention can be used as a plasticizer.
  • Also the novel preparation method of N-substituted 3,3-dinitroazetidine according to the present invention is characterized by a coupling reaction.
  • Further, the plasticizer comprising the N-substituted 3,3-dinitroazetidine of Chemical Formula 1 in accordance with the present invention can increase the energy density of plastic-bonded explosives, and nitro groups comprised in conventional energetic plasticizer of Chemical Formula 1, 2 and 3 are converted into a ring energy, thus minimizing the side effect of solubilizing granular explosives.
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
  • As described above, optimal embodiments of the present invention have been disclosed in the drawings and the specification. Although specific terms have been used in the present specification, these are merely intended to describe the present invention, and are not intended to limit the meanings thereof or the scope of the present invention described in the accompanying claims. Therefore, those skilled in the art will appreciate that various modifications and other equivalent embodiments are possible from the embodiments. Therefore, the technical scope of the present invention should be defined by the technical spirit of the claims.

Claims (3)

What is claimed is:
1. N-substituted 3,3-dinitroazetidine, represented by the following Chemical Formula
Figure US20170066716A1-20170309-C00014
wherein R1 and R2 are each independently an alkyl of C1˜C10, a substituted alkyl of C1˜C10, an aryl of C6˜C12, or a substituted aryl of C6˜C12 wherein the substituent of the substituted radicals is selected from the group consisting of an alkyl, of C1˜C4, a cycloalkyl of C4˜C12, an aryl of C6˜C12, and a combination thereof.
2. A method for preparing a compound represented by the following Chemical Formula I, comprising:
dissolving dinitroazetidine (DNAZ) and/or at least one DNAZ acid salt selected from the group consisting of dinitroazetidine hydrochloride (DNAZ.HCl), dinitroazetidine sulfate (DNAZ.H2SO4), and dinitroazetidine nitrate (DNAZ.HNO3), represented by the following Chemical Formula II, in an organic solvent; and
reacting the solution with an α, β-unsaturated carbonyl compound represented by the following Chemical Formula III in the presence of a base:
Figure US20170066716A1-20170309-C00015
wherein R1 and R2 are each independently an alkyl of C1˜C10, a substituted alkyl of C1˜C10, an aryl of C6˜C12, or a substituted aryl of C6˜C12, wherein the substituent of the substituted radicals is selected from the group consisting of an alkyl of C1˜C4, a cycloalkyl of C4˜C12, an aryl of C6˜C12, and a combination thereof.
3. A plasticizer, comprising the N-substituted 3, 3-dinitroazetidine, represented by Chemical Formula I, of claim 1.
US14/844,377 2015-09-03 2015-09-03 Energetic N-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof Active US9573894B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/844,377 US9573894B1 (en) 2015-09-03 2015-09-03 Energetic N-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/844,377 US9573894B1 (en) 2015-09-03 2015-09-03 Energetic N-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof

Publications (2)

Publication Number Publication Date
US9573894B1 US9573894B1 (en) 2017-02-21
US20170066716A1 true US20170066716A1 (en) 2017-03-09

Family

ID=58017522

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/844,377 Active US9573894B1 (en) 2015-09-03 2015-09-03 Energetic N-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof

Country Status (1)

Country Link
US (1) US9573894B1 (en)

Also Published As

Publication number Publication date
US9573894B1 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
Xie et al. (NHC) Cu-catalyzed mild C–H amidation of (hetero) arenes with deprotectable carbamates: scope and mechanistic studies
JP4889737B2 (en) Production of N-substituted isothiazolinone derivatives
CA2775229C (en) Process for the preparation of sorafenib tosylate
EP3337786B1 (en) Asymmetric bisamidation of malonic ester derivatives
CN107954906B (en) Synthetic method of aryl sulfonyl tertiary amine compound
ES2646003T3 (en) Carboxamide Production Procedure
US9108990B2 (en) Cyclopropyl MIDA boronate
US9573894B1 (en) Energetic N-substituted 3, 3-dinitroazetidine plasticizer and preparation method thereof
AU2013215796B2 (en) Method for preparing compound by novel Michael addition reaction using water or various acids as additive
HAUSER et al. Substitutions at the α-or γ-positions in pyridyl ring systems by basic reagents1
JP6224529B2 (en) Method for producing polyhydroxyurethane
US8609861B1 (en) Hexaaza [3.3.3] propellane compounds as key intermediates for new molecular explosives and a method for preparing the same
KR101496681B1 (en) N-substituted 3, 3- dinitroazetidine energetic plasticizer and preparation method thereof
SU677657A3 (en) Method of producing n-formylated compounds
JP2019536746A (en) Method for producing phenylalanine compound
CN103073483A (en) Preparation method of mepivacaine and optical enantiomer of mepivacaine
KR101264166B1 (en) Method for preparing 1,2-bis(5-aminotetrazol-1-yl)ethane
JP2017144424A (en) Catalyst, method for forming amide bond, and method for producing amide compound
US8697886B2 (en) Di(aminoguanidium) 4,4′,5,5′-tetranitro-2,2′-biimidazole, and preparation method thereof
JP6894608B2 (en) New Cyclic Urea Derivative-Hydrogen Bromide
CN102675197A (en) Method for preparing 4-chlorin-N-methylpyridine-2-formamide serving as sorafenib intermediate
BR112019009760A2 (en) t-Butyl 2-carbamothioyl-2- (3- (5- (4-cyanophenoxy) pyridin-2-yl) -2- (2,4-difluorophenyl) -3,3-difluoro-2-hydroxypropyl) hydrazine-1 - carboxylate and preparation processes
JP2004511548A (en) Method for preparing N-substituted 2-sulfanilimidazole
JP7316228B2 (en) Compounds and methods for producing compounds
EP3638647B1 (en) Process for mono n-alkylation of aminophenol

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGENCY FOR DEFENSE DEVELOPMENT, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SEUNG-HEE;KIM, JINSEUK;CHO, CHANG-WOO;SIGNING DATES FROM 20150824 TO 20150825;REEL/FRAME:036493/0734

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4