US20170063991A1 - Utilizing site write thresholds in a dispersed storage network - Google Patents

Utilizing site write thresholds in a dispersed storage network Download PDF

Info

Publication number
US20170063991A1
US20170063991A1 US15/225,203 US201615225203A US2017063991A1 US 20170063991 A1 US20170063991 A1 US 20170063991A1 US 201615225203 A US201615225203 A US 201615225203A US 2017063991 A1 US2017063991 A1 US 2017063991A1
Authority
US
United States
Prior art keywords
site
storage
slice
dispersal
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/225,203
Inventor
Greg R. Dhuse
Jason K. Resch
Ilya Volvovski
Ethan S. Wozniak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pure Storage Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US15/225,203 priority Critical patent/US20170063991A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DHUSE, GREG R., RESCH, JASON K., VOLVOVSKI, ILYA, WOZNIAK, ETHAN S.
Publication of US20170063991A1 publication Critical patent/US20170063991A1/en
Assigned to PURE STORAGE, INC. reassignment PURE STORAGE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to PURE STORAGE, INC. reassignment PURE STORAGE, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE DELETE 15/174/279 AND 15/174/596 PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 49555 FRAME: 530. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0619Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1076Parity data used in redundant arrays of independent storages, e.g. in RAID systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1076Parity data used in redundant arrays of independent storages, e.g. in RAID systems
    • G06F11/1092Rebuilding, e.g. when physically replacing a failing disk
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3034Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1408Protection against unauthorised use of memory or access to memory by using cryptography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0611Improving I/O performance in relation to response time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/062Securing storage systems
    • G06F3/0622Securing storage systems in relation to access
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0635Configuration or reconfiguration of storage systems by changing the path, e.g. traffic rerouting, path reconfiguration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0637Permissions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0662Virtualisation aspects
    • G06F3/0665Virtualisation aspects at area level, e.g. provisioning of virtual or logical volumes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0689Disk arrays, e.g. RAID, JBOD
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3761Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using code combining, i.e. using combining of codeword portions which may have been transmitted separately, e.g. Digital Fountain codes, Raptor codes or Luby Transform [LT] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1052Security improvement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes

Definitions

  • This invention relates generally to computer networks and more particularly to dispersing error encoded data.
  • Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day.
  • a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
  • a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer.
  • cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function.
  • Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
  • a computer may use “cloud storage” as part of its memory system.
  • cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system.
  • the Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention.
  • FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention.
  • FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention.
  • FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention.
  • FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention.
  • FIG. 9 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention.
  • FIG. 10 is a logic diagram of an example of a method of utilizing site write thresholds in accordance with the present invention.
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12 - 16 , a managing unit 18 , an integrity processing unit 20 , and a DSN memory 22 .
  • the components of the DSN 10 are coupled to a network 24 , which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public interne systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN).
  • LAN local area network
  • WAN wide area network
  • the DSN memory 22 includes a plurality of storage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSN memory 22 includes eight storage units 36 , each storage unit is located at a different site. As another example, if the DSN memory 22 includes eight storage units 36 , all eight storage units are located at the same site. As yet another example, if the DSN memory 22 includes eight storage units 36 , a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site.
  • geographically different sites e.g., one in Chicago, one in Milwaukee, etc.
  • each storage unit is located at a different site.
  • all eight storage units are located at the same site.
  • a first pair of storage units are at a first common site
  • a DSN memory 22 may include more or less than eight storage units 36 . Further note that each storage unit 36 includes a computing core (as shown in FIG. 2 , or components thereof) and a plurality of memory devices for storing dispersed error encoded data.
  • each of the storage units operates as a distributed storage and task (DST) execution unit, and is operable to store dispersed error encoded data and/or to execute, in a distributed manner, one or more tasks on data.
  • the tasks may be a simple function (e.g., a mathematical function, a logic function, an identify function, a find function, a search engine function, a replace function, etc.), a complex function (e.g., compression, human and/or computer language translation, text-to-voice conversion, voice-to-text conversion, etc.), multiple simple and/or complex functions, one or more algorithms, one or more applications, etc.
  • a storage unit may be interchangeably referred to as a dispersed storage and task (DST) execution unit and a set of storage units may be interchangeably referred to as a set of DST execution units.
  • Each of the computing devices 12 - 16 , the managing unit 18 , and the integrity processing unit 20 include a computing core 26 , which includes network interfaces 30 - 33 .
  • Computing devices 12 - 16 may each be a portable computing device and/or a fixed computing device.
  • a portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core.
  • a fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment.
  • each managing unit 18 and the integrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12 - 16 and/or into one or more of the storage units 36 .
  • computing devices 12 - 16 can include user devices and/or can be utilized by a requesting entity generating access requests, which can include requests to read or write data to storage units in the DSN.
  • Each interface 30 , 32 , and 33 includes software and hardware to support one or more communication links via the network 24 indirectly and/or directly.
  • interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via the network 24 , etc.) between computing devices 14 and 16 .
  • interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24 ) between computing devices 12 & 16 and the DSN memory 22 .
  • interface 33 supports a communication link for each of the managing unit 18 and the integrity processing unit 20 to the network 24 .
  • Computing devices 12 and 16 include a dispersed storage (DS) client module 34 , which enables the computing device to dispersed storage error encode and decode data as subsequently described with reference to one or more of FIGS. 3-8 .
  • computing device 16 functions as a dispersed storage processing agent for computing device 14 .
  • computing device 16 dispersed storage error encodes and decodes data on behalf of computing device 14 .
  • the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data).
  • the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12 - 14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault.
  • distributed data storage parameters e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.
  • the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSN memory 22 for a user device, a group of devices, or for public access and establishes
  • the managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10 , where the registry information may be stored in the DSN memory 22 , a computing device 12 - 16 , the managing unit 18 , and/or the integrity processing unit 20 .
  • the DSN managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the DSN memory 22 .
  • the user profile information includes authentication information, permissions, and/or the security parameters.
  • the security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.
  • the DSN managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the DSN managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the DSN managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
  • the managing unit 18 performs network operations, network administration, and/or network maintenance.
  • Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34 ) to/from the DSN 10 , and/or establishing authentication credentials for the storage units 36 .
  • Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of the DSN 10 .
  • Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of the DSN 10 .
  • the integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices.
  • the integrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from the DSN memory 22 .
  • retrieved encoded slices they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice.
  • encoded data slices that were not received and/or not listed they are flagged as missing slices.
  • Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices.
  • the rebuilt slices are stored in the DSN memory 22 .
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core 26 that includes a processing module 50 , a memory controller 52 , main memory 54 , a video graphics processing unit 55 , an input/output ( 10 ) controller 56 , a peripheral component interconnect (PCI) interface 58 , an 10 interface module 60 , at least one 10 device interface module 62 , a read only memory (ROM) basic input output system (BIOS) 64 , and one or more memory interface modules.
  • a processing module 50 a memory controller 52 , main memory 54 , a video graphics processing unit 55 , an input/output ( 10 ) controller 56 , a peripheral component interconnect (PCI) interface 58 , an 10 interface module 60 , at least one 10 device interface module 62 , a read only memory (ROM) basic input output system (BIOS) 64 , and one or more memory interface modules.
  • ROM read only memory
  • BIOS basic input output system
  • the one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66 , a host bus adapter (HBA) interface module 68 , a network interface module 70 , a flash interface module 72 , a hard drive interface module 74 , and a DSN interface module 76 .
  • USB universal serial bus
  • HBA host bus adapter
  • the DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.).
  • OS operating system
  • the DSN interface module 76 and/or the network interface module 70 may function as one or more of the interface 30 - 33 of FIG. 1 .
  • the 10 device interface module 62 and/or the memory interface modules 66 - 76 may be collectively or individually referred to as 10 ports.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data.
  • a computing device 12 or 16 has data to store it disperse storage error encodes the data in accordance with a dispersed storage error encoding process based on dispersed storage error encoding parameters.
  • the computing device stores data object 40 , which can include a file (e.g., text, video, audio, etc.), or other data arrangement.
  • the dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values.
  • an encoding function e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.
  • a data segmenting protocol e.g., data segment size, fixed, variable, etc.
  • the per data segment encoding values include a total, or pillar width, number (T) of encoded data slices per encoding of a data segment i.e., in a set of encoded data slices); a decode threshold number (D) of encoded data slices of a set of encoded data slices that are needed to recover the data segment; a read threshold number (R)of encoded data slices to indicate a number of encoded data slices per set to be read from storage for decoding of the data segment; and/or a write threshold number (W) to indicate a number of encoded data slices per set that must be accurately stored before the encoded data segment is deemed to have been properly stored.
  • T total, or pillar width, number
  • D decode threshold number
  • R read threshold number
  • W write threshold number
  • the dispersed storage error encoding parameters may further include slicing information (e.g., the number of encoded data slices that will be created for each data segment) and/or slice security information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).
  • slicing information e.g., the number of encoded data slices that will be created for each data segment
  • slice security information e.g., per encoded data slice encryption, compression, integrity checksum, etc.
  • the encoding function has been selected as Cauchy Reed-Solomon (a generic example is shown in FIG. 4 and a specific example is shown in FIG. 5 );
  • the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4.
  • the computing device 12 or 16 divides data object 40 into a plurality of fixed sized data segments (e.g., 1 through Y of a fixed size in range of Kilo-bytes to Tera-bytes or more). The number of data segments created is dependent of the size of the data and the data segmenting protocol.
  • FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM).
  • the size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values.
  • EM encoding matrix
  • T pillar width number
  • D decode threshold number
  • Z is a function of the number of data blocks created from the data segment and the decode threshold number (D).
  • the coded matrix is produced by matrix multiplying the data matrix by the encoding matrix.
  • FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three.
  • a first data segment is divided into twelve data blocks (D1-D12).
  • the coded matrix includes five rows of coded data blocks, where the first row of X11-X14 corresponds to a first encoded data slice (EDS 1_1), the second row of X21-X24 corresponds to a second encoded data slice (EDS 2_1), the third row of X31-X34 corresponds to a third encoded data slice (EDS 3_1), the fourth row of X41-X44 corresponds to a fourth encoded data slice (EDS 4_1), and the fifth row of X51-X54 corresponds to a fifth encoded data slice (EDS 5_1).
  • the second number of the EDS designation corresponds to the data segment number.
  • the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices.
  • a typical format for a slice name 80 is shown in FIG. 6 .
  • the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1-T), a data segment number (e.g., one of 1-Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices.
  • the slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from the DSN memory 22 .
  • the computing device 12 or 16 produces a plurality of sets of encoded data slices, which are provided with their respective slice names to the storage units for storage.
  • the first set of encoded data slices includes EDS 1_1 through EDS 5_1 and the first set of slice names includes SN 1_1 through SN 5_1 and the last set of encoded data slices includes EDS 1_Y through EDS 5_Y and the last set of slice names includes SN 1_Y through SN 5_Y.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example of FIG. 4 .
  • the computing device 12 or 16 retrieves from the storage units at least the decode threshold number of encoded data slices per data segment. As a specific example, the computing device retrieves a read threshold number of encoded data slices.
  • the computing device uses a decoding function as shown in FIG. 8 .
  • the decoding function is essentially an inverse of the encoding function of FIG. 4 .
  • the coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includes rows 1, 2, and 4, the encoding matrix is reduced to rows 1, 2, and 4, and then inverted to produce the decoding matrix.
  • FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes a plurality of sites 1 -S, the network 24 of FIG. 1 , and a distributed storage and task (DST) processing unit 916 .
  • Each site includes one or more storage units 1 -x, and each site can include the same or a different number of storage units.
  • Each storage unit can be implemented utilizing storage unit 36 of FIG. 1 .
  • the DST processing unit can be implemented utilizing computing device 16 , functioning as a dispersed storage processing agent for computing device 14 as described previously, and can include the computing core 26 of FIG. 1 and the DS client module 34 of FIG. 1 .
  • the DSN functions to utilize site write thresholds.
  • a DST processing system may institute a “site write threshold”. For example, in a 36 wide IDA configuration across 3 sites, there may be 12 ds units at each site. If the Write threshold is 30, and the IDA threshold is 22, the system cannot tolerate the destruction of any storage site. For example, if 12 slices were written to site A and B, and 8 to site C, then the destruction of site A or B would cause data loss as only 20 slices would remain.
  • site write thresholds reduces availability for the case when an entire storage site is down, it makes up for this in terms of improving resilience against storage site destruction events. Site write thresholds are especially useful for cases of Trimmed Writes or Target Widths, where there may be many more possible storage locations than the number of slices persisted.
  • the DST processing unit 916 can determine a site write threshold number based on an information dispersal algorithm (IDA) threshold (such as a decode threshold) and a desired maximum number of available sites to recover stored data, where the data is divided into a plurality of data segments, and where each data segment is dispersed storage error encoded into a set of encoded data slices for storage in some of the storage units of at least two sites of the DSN.
  • IDA information dispersal algorithm
  • the DST processing unit obtains the IDA threshold, for example, by interpreting system registry information and/or receiving it via the network.
  • the DST processing unit can also obtain the maximum number of available sites to recover the data, for example, by interpreting system registry information and/or receiving it via the network.
  • the site threshold is known and/or received as a parameter via the network, and thus is not calculated by the DST processing unit itself.
  • a processing system of a dispersed storage and task (DST) processing unit includes at least one processor and a memory that stores operational instructions, that when executed by the at least one processor cause the processing system to receive a data object for storage via a network.
  • a plurality of encoded slices are generated by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value.
  • IDA information dispersal algorithm
  • Site dispersal data indicating a plurality of site slice sets is generated, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value.
  • the site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets.
  • Each of the plurality of site slice sets is transmitted to the corresponding designated one of the plurality of storage sites via the network.
  • dispersal parameter data is generated, indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value.
  • generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value.
  • the maximum number of sites value is calculated based on at least one of: a site availability level or a site reliability level.
  • each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites. Transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
  • each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value.
  • each of the plurality of storage sites are located in different physical locations.
  • FIG. 10 is a flowchart illustrating an example of utilizing site write thresholds.
  • a method is presented for use in association with one or more functions and features described in conjunction with FIGS. 1-9 , for execution by a dispersed storage and task (DST) processing unit that includes a processor or via another processing system of a dispersed storage network that includes at least one processor and memory that stores instruction that configure the processor or processors to perform the steps described below.
  • Step 1002 includes receiving a data object for storage via a network.
  • Step 1004 includes generating a plurality of encoded slices by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value.
  • IDA information dispersal algorithm
  • Step 1006 includes generating site dispersal data indicating a plurality of site slice sets, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value, and where the site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets.
  • Step 1008 includes transmitting each of the plurality of site slice sets to the corresponding designated one of the plurality of storage sites via the network.
  • dispersal parameter data is generated, indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value.
  • generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value.
  • the maximum number of sites value is calculated based on at least one of: a site availability level or a site reliability level.
  • each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites. Transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
  • each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value.
  • each of the plurality of storage sites are located in different physical locations.
  • a non-transitory computer readable storage medium includes at least one memory section that stores operational instructions that, when executed by a processing system of a dispersed storage network (DSN) that includes a processor and a memory, causes the processing system to receive a data object for storage via a network.
  • a plurality of encoded slices are generated by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value.
  • IDA information dispersal algorithm
  • Site dispersal data indicating a plurality of site slice sets is generated, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value.
  • the site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets. Each of the plurality of site slice sets is transmitted to the corresponding designated one of the plurality of storage sites via the network.
  • the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
  • the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
  • inferred coupling i.e., where one element is coupled to another element by inference
  • the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items.
  • the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
  • the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
  • processing module may be a single processing device or a plurality of processing devices.
  • a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.
  • the processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit.
  • a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
  • the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures.
  • Such a memory device or memory element can be included in an article of manufacture.
  • a flow diagram may include a “start” and/or “continue” indication.
  • the “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines.
  • start indicates the beginning of the first step presented and may be preceded by other activities not specifically shown.
  • continue indicates that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown.
  • a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
  • the one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples.
  • a physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein.
  • the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
  • signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
  • signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
  • a signal path is shown as a single-ended path, it also represents a differential signal path.
  • a signal path is shown as a differential path, it also represents a single-ended signal path.
  • module is used in the description of one or more of the embodiments.
  • a module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions.
  • a module may operate independently and/or in conjunction with software and/or firmware.
  • a module may contain one or more sub-modules, each of which may be one or more modules.
  • a computer readable memory includes one or more memory elements.
  • a memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device.
  • Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • the memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Probability & Statistics with Applications (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Storage Device Security (AREA)
  • Detection And Correction Of Errors (AREA)
  • Information Transfer Between Computers (AREA)
  • Computer And Data Communications (AREA)

Abstract

A method for execution by a dispersed storage and task (DST) processing unit that includes a processor includes receiving a data object for storage via a network. A plurality of encoded slices are generated by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value. Site dispersal data indicating a plurality of site slice sets is generated, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value. The site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets. Each of the plurality of site slice sets is transmitted to the corresponding designated one of the plurality of storage sites via the network.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present U.S. Utility Patent Application claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional Application No. 62/211,975, entitled “STORING ENCODED DATA SLICES IN A DISPERSED STORAGE NETWORK”, filed Aug. 31, 2015, which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • Not applicable.
  • BACKGROUND OF THE INVENTION Technical Field of the Invention
  • This invention relates generally to computer networks and more particularly to dispersing error encoded data.
  • Description of Related Art
  • Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day. In general, a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
  • As is further known, a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer. Further, for large services, applications, and/or functions, cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function. For example, Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
  • In addition to cloud computing, a computer may use “cloud storage” as part of its memory system. As is known, cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system. The Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention;
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention;
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention;
  • FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention;
  • FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention;
  • FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention;
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention;
  • FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention;
  • FIG. 9 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention; and
  • FIG. 10 is a logic diagram of an example of a method of utilizing site write thresholds in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12 -16, a managing unit 18, an integrity processing unit 20, and a DSN memory 22. The components of the DSN 10 are coupled to a network 24, which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public interne systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN).
  • The DSN memory 22 includes a plurality of storage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSN memory 22 includes eight storage units 36, each storage unit is located at a different site. As another example, if the DSN memory 22 includes eight storage units 36, all eight storage units are located at the same site. As yet another example, if the DSN memory 22 includes eight storage units 36, a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site. Note that a DSN memory 22 may include more or less than eight storage units 36. Further note that each storage unit 36 includes a computing core (as shown in FIG. 2, or components thereof) and a plurality of memory devices for storing dispersed error encoded data.
  • In various embodiments, each of the storage units operates as a distributed storage and task (DST) execution unit, and is operable to store dispersed error encoded data and/or to execute, in a distributed manner, one or more tasks on data. The tasks may be a simple function (e.g., a mathematical function, a logic function, an identify function, a find function, a search engine function, a replace function, etc.), a complex function (e.g., compression, human and/or computer language translation, text-to-voice conversion, voice-to-text conversion, etc.), multiple simple and/or complex functions, one or more algorithms, one or more applications, etc. Hereafter, a storage unit may be interchangeably referred to as a dispersed storage and task (DST) execution unit and a set of storage units may be interchangeably referred to as a set of DST execution units.
  • Each of the computing devices 12-16, the managing unit 18, and the integrity processing unit 20 include a computing core 26, which includes network interfaces 30-33. Computing devices 12-16 may each be a portable computing device and/or a fixed computing device. A portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core. A fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment. Note that each managing unit 18 and the integrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12-16 and/or into one or more of the storage units 36. In various embodiments, computing devices 12-16 can include user devices and/or can be utilized by a requesting entity generating access requests, which can include requests to read or write data to storage units in the DSN.
  • Each interface 30, 32, and 33 includes software and hardware to support one or more communication links via the network 24 indirectly and/or directly. For example, interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via the network 24, etc.) between computing devices 14 and 16. As another example, interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24) between computing devices 12 & 16 and the DSN memory 22. As yet another example, interface 33 supports a communication link for each of the managing unit 18 and the integrity processing unit 20 to the network 24.
  • Computing devices 12 and 16 include a dispersed storage (DS) client module 34, which enables the computing device to dispersed storage error encode and decode data as subsequently described with reference to one or more of FIGS. 3-8. In this example embodiment, computing device 16 functions as a dispersed storage processing agent for computing device 14. In this role, computing device 16 dispersed storage error encodes and decodes data on behalf of computing device 14. With the use of dispersed storage error encoding and decoding, the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data).
  • In operation, the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12-14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault. The managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10, where the registry information may be stored in the DSN memory 22, a computing device 12-16, the managing unit 18, and/or the integrity processing unit 20.
  • The DSN managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the DSN memory 22. The user profile information includes authentication information, permissions, and/or the security parameters. The security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.
  • The DSN managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the DSN managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the DSN managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
  • As another example, the managing unit 18 performs network operations, network administration, and/or network maintenance. Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34) to/from the DSN 10, and/or establishing authentication credentials for the storage units 36. Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of the DSN 10. Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of the DSN 10.
  • The integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices. At a high level, the integrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from the DSN memory 22. For retrieved encoded slices, they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice. For encoded data slices that were not received and/or not listed, they are flagged as missing slices. Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices. The rebuilt slices are stored in the DSN memory 22.
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core 26 that includes a processing module 50, a memory controller 52, main memory 54, a video graphics processing unit 55, an input/output (10) controller 56, a peripheral component interconnect (PCI) interface 58, an 10 interface module 60, at least one 10 device interface module 62, a read only memory (ROM) basic input output system (BIOS) 64, and one or more memory interface modules. The one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66, a host bus adapter (HBA) interface module 68, a network interface module 70, a flash interface module 72, a hard drive interface module 74, and a DSN interface module 76.
  • The DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.). The DSN interface module 76 and/or the network interface module 70 may function as one or more of the interface 30-33 of FIG. 1. Note that the 10 device interface module 62 and/or the memory interface modules 66-76 may be collectively or individually referred to as 10 ports.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data. When a computing device 12 or 16 has data to store it disperse storage error encodes the data in accordance with a dispersed storage error encoding process based on dispersed storage error encoding parameters. Here, the computing device stores data object 40, which can include a file (e.g., text, video, audio, etc.), or other data arrangement. The dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values. The per data segment encoding values include a total, or pillar width, number (T) of encoded data slices per encoding of a data segment i.e., in a set of encoded data slices); a decode threshold number (D) of encoded data slices of a set of encoded data slices that are needed to recover the data segment; a read threshold number (R)of encoded data slices to indicate a number of encoded data slices per set to be read from storage for decoding of the data segment; and/or a write threshold number (W) to indicate a number of encoded data slices per set that must be accurately stored before the encoded data segment is deemed to have been properly stored. The dispersed storage error encoding parameters may further include slicing information (e.g., the number of encoded data slices that will be created for each data segment) and/or slice security information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).
  • In the present example, Cauchy Reed-Solomon has been selected as the encoding function (a generic example is shown in FIG. 4 and a specific example is shown in FIG. 5); the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4. In accordance with the data segmenting protocol, the computing device 12 or 16 divides data object 40 into a plurality of fixed sized data segments (e.g., 1 through Y of a fixed size in range of Kilo-bytes to Tera-bytes or more). The number of data segments created is dependent of the size of the data and the data segmenting protocol.
  • The computing device 12 or 16 then disperse storage error encodes a data segment using the selected encoding function (e.g., Cauchy Reed-Solomon) to produce a set of encoded data slices. FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM). The size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values. To produce the data matrix (DM), the data segment is divided into a plurality of data blocks and the data blocks are arranged into D number of rows with Z data blocks per row. Note that Z is a function of the number of data blocks created from the data segment and the decode threshold number (D). The coded matrix is produced by matrix multiplying the data matrix by the encoding matrix.
  • FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three. In this example, a first data segment is divided into twelve data blocks (D1-D12). The coded matrix includes five rows of coded data blocks, where the first row of X11-X14 corresponds to a first encoded data slice (EDS 1_1), the second row of X21-X24 corresponds to a second encoded data slice (EDS 2_1), the third row of X31-X34 corresponds to a third encoded data slice (EDS 3_1), the fourth row of X41-X44 corresponds to a fourth encoded data slice (EDS 4_1), and the fifth row of X51-X54 corresponds to a fifth encoded data slice (EDS 5_1). Note that the second number of the EDS designation corresponds to the data segment number.
  • Returning to the discussion of FIG. 3, the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices. A typical format for a slice name 80 is shown in FIG. 6. As shown, the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1-T), a data segment number (e.g., one of 1-Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices. The slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from the DSN memory 22.
  • As a result of encoding, the computing device 12 or 16 produces a plurality of sets of encoded data slices, which are provided with their respective slice names to the storage units for storage. As shown, the first set of encoded data slices includes EDS 1_1 through EDS 5_1 and the first set of slice names includes SN 1_1 through SN 5_1 and the last set of encoded data slices includes EDS 1_Y through EDS 5_Y and the last set of slice names includes SN 1_Y through SN 5_Y.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example of FIG. 4. In this example, the computing device 12 or 16 retrieves from the storage units at least the decode threshold number of encoded data slices per data segment. As a specific example, the computing device retrieves a read threshold number of encoded data slices.
  • To recover a data segment from a decode threshold number of encoded data slices, the computing device uses a decoding function as shown in FIG. 8. As shown, the decoding function is essentially an inverse of the encoding function of FIG. 4. The coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includes rows 1, 2, and 4, the encoding matrix is reduced to rows 1, 2, and 4, and then inverted to produce the decoding matrix.
  • FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes a plurality of sites 1-S, the network 24 of FIG. 1, and a distributed storage and task (DST) processing unit 916. Each site includes one or more storage units 1-x, and each site can include the same or a different number of storage units. Each storage unit can be implemented utilizing storage unit 36 of FIG. 1. The DST processing unit can be implemented utilizing computing device 16, functioning as a dispersed storage processing agent for computing device 14 as described previously, and can include the computing core 26 of FIG. 1 and the DS client module 34 of FIG. 1. The DSN functions to utilize site write thresholds.
  • In a DSN with storage units distributed across different physical locations, tolerance of site destruction and site unavailability is important due to the risk of correlated failures that come with site destruction and unavailability scenarios. To ensure better reliability and availability properties of such location-correlated outages, a DST processing system may institute a “site write threshold”. For example, in a 36 wide IDA configuration across 3 sites, there may be 12 ds units at each site. If the Write threshold is 30, and the IDA threshold is 22, the system cannot tolerate the destruction of any storage site. For example, if 12 slices were written to site A and B, and 8 to site C, then the destruction of site A or B would cause data loss as only 20 slices would remain. Alternatively, if there were a site write threshold of 11 storage units at each storage site, then following any site destruction, it is guaranteed that at least 22 slices would remain, since there would be at least 11 slices at the other two sites. While site write thresholds reduces availability for the case when an entire storage site is down, it makes up for this in terms of improving resilience against storage site destruction events. Site write thresholds are especially useful for cases of Trimmed Writes or Target Widths, where there may be many more possible storage locations than the number of slices persisted.
  • In an example of operation of the selection of the dispersal parameters for the reliable storage of the data, the DST processing unit 916 can determine a site write threshold number based on an information dispersal algorithm (IDA) threshold (such as a decode threshold) and a desired maximum number of available sites to recover stored data, where the data is divided into a plurality of data segments, and where each data segment is dispersed storage error encoded into a set of encoded data slices for storage in some of the storage units of at least two sites of the DSN. For example, the DST processing unit obtains the IDA threshold, for example, by interpreting system registry information and/or receiving it via the network. The DST processing unit can also obtain the maximum number of available sites to recover the data, for example, by interpreting system registry information and/or receiving it via the network. The DST processing unit can divide the IDA threshold by the maximum number of available sites to recover the data to produce the site write threshold number. For instance, the DST processing unit determines the site write threshold number=22/2=11, when the IDA threshold=22, and the maximum number of sites to recover the data=2. In various embodiments, the site threshold is known and/or received as a parameter via the network, and thus is not calculated by the DST processing unit itself.
  • In various embodiments, having determined the site write threshold number, the DST processing unit can facilitate storage of at least a site write threshold number of unique encoded data slices of the set of encoded data slices for each storage site. For example, the DST processing unit selects the at least the site write threshold number of unique encoded data slices for each site (e.g., 11 slices), and for each site, sends, via the network 24, the selected slices to storage units of the site for storage. For instance, the DST processing unit sends 11 slices to storage units of site 1, another 11 slices to storage units of site 2, another 11 slices to storage units of site 3, and three remaining slices to storage units of site 3, when the set of encoded data slices includes 36 encoded data slices (e.g., IDA width=36).
  • In various embodiments, a processing system of a dispersed storage and task (DST) processing unit includes at least one processor and a memory that stores operational instructions, that when executed by the at least one processor cause the processing system to receive a data object for storage via a network. A plurality of encoded slices are generated by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value. Site dispersal data indicating a plurality of site slice sets is generated, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value. The site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets. Each of the plurality of site slice sets is transmitted to the corresponding designated one of the plurality of storage sites via the network.
  • In various embodiments, dispersal parameter data is generated, indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value. In various embodiments, generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value. In various embodiments, the maximum number of sites value is calculated based on at least one of: a site availability level or a site reliability level.
  • In various embodiments, each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites. Transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
  • In various embodiments, each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value. In various embodiments, each of the plurality of storage sites are located in different physical locations.
  • FIG. 10 is a flowchart illustrating an example of utilizing site write thresholds. In particular, a method is presented for use in association with one or more functions and features described in conjunction with FIGS. 1-9, for execution by a dispersed storage and task (DST) processing unit that includes a processor or via another processing system of a dispersed storage network that includes at least one processor and memory that stores instruction that configure the processor or processors to perform the steps described below. Step 1002 includes receiving a data object for storage via a network. Step 1004 includes generating a plurality of encoded slices by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value. Step 1006 includes generating site dispersal data indicating a plurality of site slice sets, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value, and where the site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets. Step 1008 includes transmitting each of the plurality of site slice sets to the corresponding designated one of the plurality of storage sites via the network.
  • In various embodiments, dispersal parameter data is generated, indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value. In various embodiments, generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value. In various embodiments, the maximum number of sites value is calculated based on at least one of: a site availability level or a site reliability level.
  • In various embodiments, each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites. Transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
  • In various embodiments, each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value. In various embodiments, each of the plurality of storage sites are located in different physical locations.
  • In various embodiments, a non-transitory computer readable storage medium includes at least one memory section that stores operational instructions that, when executed by a processing system of a dispersed storage network (DSN) that includes a processor and a memory, causes the processing system to receive a data object for storage via a network. A plurality of encoded slices are generated by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value. Site dispersal data indicating a plurality of site slice sets is generated, where each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value. The site dispersal data further indicates a designated one of a plurality storage sites for each of the plurality of site slice sets. Each of the plurality of site slice sets is transmitted to the corresponding designated one of the plurality of storage sites via the network.
  • It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, audio, etc. any of which may generally be referred to as ‘data’).
  • As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. As may be used herein, the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
  • As may also be used herein, the terms “processing module”, “processing circuit”, “processor”, and/or “processing unit” may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
  • One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.
  • To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof
  • In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
  • The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
  • Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.
  • The term “module” is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.
  • As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. The memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
  • While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.

Claims (20)

What is claimed is:
1. A method for execution by a dispersed storage and task (DST) processing unit that includes a processor, the method comprises:
receiving a data object for storage via a network;
generating a plurality of encoded slices by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value;
generating site dispersal data indicating a plurality of site slice sets, wherein each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value, and wherein the site dispersal data further indicates a designated one of a plurality of storage sites for each of the plurality of site slice sets; and
transmitting each of the plurality of site slice sets to the corresponding designated one of the plurality of storage sites via the network.
2. The method of claim 1, further comprising generating dispersal parameter data indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value.
3. The method of claim 2, wherein generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value.
4. The method of claim 2, further comprising calculating the maximum number of sites value based on at least one of: a site availability level or a site reliability level.
5. The method of claim 1, wherein each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites, and wherein transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
6. The method of claim 1, wherein each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value.
7. The method of claim 1, wherein each of the plurality of storage sites are located in different physical locations.
8. A processing system of a dispersed storage and task (DST) processing unit comprises:
at least one processor;
a memory that stores operational instructions, that when executed by the at least one processor cause the processing system to:
receive a data object for storage via a network;
generate a plurality of encoded slices by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value;
generate site dispersal data indicating a plurality of site slice sets, wherein each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value, and wherein the site dispersal data further indicates a designated one of a plurality of storage sites for each of the plurality of site slice sets; and
transmit each of the plurality of site slice sets to the corresponding designated one of the plurality of storage sites via the network.
9. The processing system of claim 8, wherein the operational instructions, when executed by the at least one processor, further cause the processing unit to generate dispersal parameter data indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value.
10. The processing system of claim 9, wherein generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value.
11. The processing system of claim 9, wherein the operational instructions, when executed by the at least one processor, further cause the processing unit to calculate the maximum number of sites value based on at least one of: a site availability level or a site reliability level.
12. The processing system of claim 8, wherein each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites, and wherein transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
13. The processing system of claim 8, wherein each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value.
14. The processing system of claim 8, wherein each of the plurality of storage sites are located in different physical locations.
15. A non-transitory computer readable storage medium comprises:
at least one memory section that stores operational instructions that, when executed by a processing system of a dispersed storage network (DSN) that includes a processor and a memory, causes the processing system to:
receive a data object for storage via a network;
generate a plurality of encoded slices by executing an encoding function on the data object based on an information dispersal algorithm (IDA) threshold value;
generate site dispersal data indicating a plurality of site slice sets, wherein each site slice set includes a number of unique encoded slices of the plurality of encoded slices that is greater than or equal to a site write threshold value, and wherein the site dispersal data further indicates a designated one of a plurality of storage sites for each of the plurality of site slice sets; and
transmit each of the plurality of site slice sets to the corresponding designated one of the plurality of storage sites via the network.
16. The non-transitory computer readable storage medium of claim 15 wherein the operational instructions, when executed by the processing system, further cause the non-transitory computer readable storage medium to generate dispersal parameter data indicating the site write threshold value based on the information dispersal algorithm (IDA) threshold value and a maximum number of sites value.
17. The non-transitory computer readable storage medium of claim 16, wherein generating the dispersal parameter data includes dividing the IDA threshold value by the maximum number of sites value to determine the site write threshold value.
18. The non-transitory computer readable storage medium of claim 16, wherein the operational instructions, when executed by the processing system, further cause the non-transitory computer readable storage medium to calculate the maximum number of sites value based on at least one of: a site availability level or a site reliability level.
19. The non-transitory computer readable storage medium of claim 15, wherein each of the plurality of storage sites includes a plurality of storage units, wherein the site dispersal data further indicates a designated storage unit for each encoded slice in each of the plurality of site slice sets that is located at the corresponding designated one of the plurality of storage sites, and wherein transmitting each of the plurality of site slice sets includes transmitting each encoded slice in each of the plurality of site slice sets to the corresponding designated storage unit indicated by the site dispersal data.
20. The non-transitory computer readable storage medium of claim 15, wherein each of the plurality of site slice sets is a proper subset of the plurality of encoded slices, and wherein the number of unique encoded slices of each site slice set is equal to the site write threshold value.
US15/225,203 2015-08-31 2016-08-01 Utilizing site write thresholds in a dispersed storage network Abandoned US20170063991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/225,203 US20170063991A1 (en) 2015-08-31 2016-08-01 Utilizing site write thresholds in a dispersed storage network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562211975P 2015-08-31 2015-08-31
US15/225,203 US20170063991A1 (en) 2015-08-31 2016-08-01 Utilizing site write thresholds in a dispersed storage network

Publications (1)

Publication Number Publication Date
US20170063991A1 true US20170063991A1 (en) 2017-03-02

Family

ID=58095432

Family Applications (16)

Application Number Title Priority Date Filing Date
US15/218,967 Active 2037-10-09 US10466914B2 (en) 2015-08-31 2016-07-25 Verifying authorized access in a dispersed storage network
US15/221,299 Expired - Fee Related US10126961B2 (en) 2015-08-31 2016-07-27 Securely recovering stored data in a dispersed storage network
US15/221,198 Active 2036-12-28 US10013191B2 (en) 2015-08-31 2016-07-27 Encoding data for storage in a dispersed storage network
US15/224,118 Expired - Fee Related US9996283B2 (en) 2015-08-31 2016-07-29 Handling storage unit latency in a dispersed storage network
US15/225,203 Abandoned US20170063991A1 (en) 2015-08-31 2016-08-01 Utilizing site write thresholds in a dispersed storage network
US15/249,187 Expired - Fee Related US10042566B2 (en) 2015-08-31 2016-08-26 Intelligent read strategy within a dispersed storage network (DSN)
US15/248,939 Expired - Fee Related US10241692B2 (en) 2015-08-31 2016-08-26 Extra write scaling for performance and reliability
US15/249,084 Expired - Fee Related US10120596B2 (en) 2015-08-31 2016-08-26 Adaptive extra write issuance within a dispersed storage network (DSN)
US15/252,444 Active 2036-12-08 US10289319B2 (en) 2015-08-31 2016-08-31 Varying rebuild task priorities
US15/976,341 Abandoned US20180260150A1 (en) 2015-08-31 2018-05-10 Intelligent read strategy within a dispersed storage network (dsn)
US16/102,940 Active US10372357B2 (en) 2015-08-31 2018-08-14 Securely recovering stored data in a dispersed storage network
US16/143,744 Abandoned US20190026036A1 (en) 2015-08-31 2018-09-27 Adaptive extra write issuance within a dispersed storage network (dsn)
US16/255,986 Active US10871905B2 (en) 2015-08-31 2019-01-24 Extra write scaling for performance and reliability
US17/107,135 Active US11422711B1 (en) 2015-08-31 2020-11-30 Write performance distribution monitoring for write operation adaptation
US17/817,443 Active US11640248B2 (en) 2015-08-31 2022-08-04 Variable write threshold storage replication sites in a distributed storage network
US18/192,335 Pending US20230236741A1 (en) 2015-08-31 2023-03-29 Managing Correlated Outages in a Dispersed Storage Network

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US15/218,967 Active 2037-10-09 US10466914B2 (en) 2015-08-31 2016-07-25 Verifying authorized access in a dispersed storage network
US15/221,299 Expired - Fee Related US10126961B2 (en) 2015-08-31 2016-07-27 Securely recovering stored data in a dispersed storage network
US15/221,198 Active 2036-12-28 US10013191B2 (en) 2015-08-31 2016-07-27 Encoding data for storage in a dispersed storage network
US15/224,118 Expired - Fee Related US9996283B2 (en) 2015-08-31 2016-07-29 Handling storage unit latency in a dispersed storage network

Family Applications After (11)

Application Number Title Priority Date Filing Date
US15/249,187 Expired - Fee Related US10042566B2 (en) 2015-08-31 2016-08-26 Intelligent read strategy within a dispersed storage network (DSN)
US15/248,939 Expired - Fee Related US10241692B2 (en) 2015-08-31 2016-08-26 Extra write scaling for performance and reliability
US15/249,084 Expired - Fee Related US10120596B2 (en) 2015-08-31 2016-08-26 Adaptive extra write issuance within a dispersed storage network (DSN)
US15/252,444 Active 2036-12-08 US10289319B2 (en) 2015-08-31 2016-08-31 Varying rebuild task priorities
US15/976,341 Abandoned US20180260150A1 (en) 2015-08-31 2018-05-10 Intelligent read strategy within a dispersed storage network (dsn)
US16/102,940 Active US10372357B2 (en) 2015-08-31 2018-08-14 Securely recovering stored data in a dispersed storage network
US16/143,744 Abandoned US20190026036A1 (en) 2015-08-31 2018-09-27 Adaptive extra write issuance within a dispersed storage network (dsn)
US16/255,986 Active US10871905B2 (en) 2015-08-31 2019-01-24 Extra write scaling for performance and reliability
US17/107,135 Active US11422711B1 (en) 2015-08-31 2020-11-30 Write performance distribution monitoring for write operation adaptation
US17/817,443 Active US11640248B2 (en) 2015-08-31 2022-08-04 Variable write threshold storage replication sites in a distributed storage network
US18/192,335 Pending US20230236741A1 (en) 2015-08-31 2023-03-29 Managing Correlated Outages in a Dispersed Storage Network

Country Status (1)

Country Link
US (16) US10466914B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210350031A1 (en) * 2017-04-17 2021-11-11 EMC IP Holding Company LLC Method and device for managing storage system
US20230236741A1 (en) * 2015-08-31 2023-07-27 Pure Storage, Inc. Managing Correlated Outages in a Dispersed Storage Network

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170357666A1 (en) * 2012-12-05 2017-12-14 International Business Machines Corporation Implementing queues (fifo) and stacks (filo) on top dispersed storage
US10437671B2 (en) * 2015-06-30 2019-10-08 Pure Storage, Inc. Synchronizing replicated stored data
US10073652B2 (en) * 2015-09-24 2018-09-11 International Business Machines Corporation Performance optimized storage vaults in a dispersed storage network
US10158654B2 (en) 2016-10-31 2018-12-18 Acentium Inc. Systems and methods for computer environment situational awareness
US10412110B2 (en) * 2016-10-31 2019-09-10 Acentium, Inc. Systems and methods for multi-tier cache visual system and visual modes
TWI642002B (en) * 2017-04-14 2018-11-21 李雨暹 Method and system for managing viewability of location-based spatial object
CN108089963B (en) * 2017-11-27 2021-03-26 温州大学瓯江学院 Multimedia classroom computer allowance detection method and device
US10592340B2 (en) 2018-02-28 2020-03-17 International Business Machines Corporation Dynamic authorization batching in a dispersed storage network
CN109828719B (en) * 2018-12-15 2022-04-01 平安科技(深圳)有限公司 CommitLog file located disk control method and device based on cloud monitoring and related equipment
US10728334B1 (en) 2019-03-18 2020-07-28 International Business Machines Corporation Compare-and-swap rebuilder for a distributed storage network
CN110186962B (en) * 2019-05-10 2021-06-25 天津大学 Incomplete measurement data imaging method for capacitance tomography
US10996894B2 (en) 2019-07-17 2021-05-04 International Business Machines Corporation Application storage segmentation reallocation
CN116414295A (en) * 2021-12-31 2023-07-11 戴尔产品有限公司 Method, apparatus and computer program product for storage management

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629264B1 (en) * 2000-03-30 2003-09-30 Hewlett-Packard Development Company, L.P. Controller-based remote copy system with logical unit grouping
US20100094950A1 (en) * 2008-10-15 2010-04-15 Patentvc Ltd. Methods and systems for controlling fragment load on shared links
US20130212440A1 (en) * 2012-02-13 2013-08-15 Li-Raz Rom System and method for virtual system management
US8706914B2 (en) * 2007-04-23 2014-04-22 David D. Duchesneau Computing infrastructure
US9390055B2 (en) * 2012-07-17 2016-07-12 Coho Data, Inc. Systems, methods and devices for integrating end-host and network resources in distributed memory
US9432298B1 (en) * 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
US9665427B2 (en) * 2014-09-02 2017-05-30 Netapp, Inc. Hierarchical data storage architecture
US20170262191A1 (en) * 2016-03-08 2017-09-14 Netapp, Inc. Reducing write tail latency in storage systems

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092732A (en) 1977-05-31 1978-05-30 International Business Machines Corporation System for recovering data stored in failed memory unit
US5485474A (en) 1988-02-25 1996-01-16 The President And Fellows Of Harvard College Scheme for information dispersal and reconstruction
US6070003A (en) * 1989-11-17 2000-05-30 Texas Instruments Incorporated System and method of memory access in apparatus having plural processors and plural memories
US5454101A (en) 1992-09-15 1995-09-26 Universal Firmware Industries, Ltd. Data storage system with set lists which contain elements associated with parents for defining a logical hierarchy and general record pointers identifying specific data sets
US5987622A (en) 1993-12-10 1999-11-16 Tm Patents, Lp Parallel computer system including parallel storage subsystem including facility for correction of data in the event of failure of a storage device in parallel storage subsystem
US6175571B1 (en) 1994-07-22 2001-01-16 Network Peripherals, Inc. Distributed memory switching hub
US5848230A (en) 1995-05-25 1998-12-08 Tandem Computers Incorporated Continuously available computer memory systems
US5774643A (en) 1995-10-13 1998-06-30 Digital Equipment Corporation Enhanced raid write hole protection and recovery
US5809285A (en) 1995-12-21 1998-09-15 Compaq Computer Corporation Computer system having a virtual drive array controller
US6012159A (en) 1996-01-17 2000-01-04 Kencast, Inc. Method and system for error-free data transfer
US5802364A (en) 1996-04-15 1998-09-01 Sun Microsystems, Inc. Metadevice driver rename/exchange technique for a computer system incorporating a plurality of independent device drivers
US5890156A (en) 1996-05-02 1999-03-30 Alcatel Usa, Inc. Distributed redundant database
US6058454A (en) 1997-06-09 2000-05-02 International Business Machines Corporation Method and system for automatically configuring redundant arrays of disk memory devices
US6088330A (en) 1997-09-09 2000-07-11 Bruck; Joshua Reliable array of distributed computing nodes
US5991414A (en) 1997-09-12 1999-11-23 International Business Machines Corporation Method and apparatus for the secure distributed storage and retrieval of information
US6272658B1 (en) 1997-10-27 2001-08-07 Kencast, Inc. Method and system for reliable broadcasting of data files and streams
JPH11161505A (en) 1997-12-01 1999-06-18 Matsushita Electric Ind Co Ltd Media send-out device
JPH11167443A (en) 1997-12-02 1999-06-22 Casio Comput Co Ltd Interface device
US6415373B1 (en) 1997-12-24 2002-07-02 Avid Technology, Inc. Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner
US6374336B1 (en) 1997-12-24 2002-04-16 Avid Technology, Inc. Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner
CA2341014A1 (en) 1998-08-19 2000-03-02 Alexander Roger Deas A system and method for defining transforms of memory device addresses
JP3490622B2 (en) * 1998-12-17 2004-01-26 富士通株式会社 Tracking control method and storage device
US6356949B1 (en) 1999-01-29 2002-03-12 Intermec Ip Corp. Automatic data collection device that receives data output instruction from data consumer
US6609223B1 (en) 1999-04-06 2003-08-19 Kencast, Inc. Method for packet-level fec encoding, in which on a source packet-by-source packet basis, the error correction contributions of a source packet to a plurality of wildcard packets are computed, and the source packet is transmitted thereafter
US20080282128A1 (en) * 1999-08-04 2008-11-13 Super Talent Electronics, Inc. Method of Error Correction Code on Solid State Disk to Gain Data Security and Higher Performance
US6571282B1 (en) 1999-08-31 2003-05-27 Accenture Llp Block-based communication in a communication services patterns environment
US6826711B2 (en) 2000-02-18 2004-11-30 Avamar Technologies, Inc. System and method for data protection with multidimensional parity
US20010034846A1 (en) * 2000-02-28 2001-10-25 Peter Beery Digital data and software security protection
US6718361B1 (en) 2000-04-07 2004-04-06 Network Appliance Inc. Method and apparatus for reliable and scalable distribution of data files in distributed networks
US7272613B2 (en) 2000-10-26 2007-09-18 Intel Corporation Method and system for managing distributed content and related metadata
US7103915B2 (en) 2000-11-13 2006-09-05 Digital Doors, Inc. Data security system and method
US8176563B2 (en) 2000-11-13 2012-05-08 DigitalDoors, Inc. Data security system and method with editor
US7146644B2 (en) 2000-11-13 2006-12-05 Digital Doors, Inc. Data security system and method responsive to electronic attacks
US7140044B2 (en) 2000-11-13 2006-11-21 Digital Doors, Inc. Data security system and method for separation of user communities
GB2369206B (en) 2000-11-18 2004-11-03 Ibm Method for rebuilding meta-data in a data storage system and a data storage system
US6785783B2 (en) 2000-11-30 2004-08-31 International Business Machines Corporation NUMA system with redundant main memory architecture
US7080101B1 (en) 2000-12-01 2006-07-18 Ncr Corp. Method and apparatus for partitioning data for storage in a database
US20020080888A1 (en) 2000-12-22 2002-06-27 Li Shu Message splitting and spatially diversified message routing for increasing transmission assurance and data security over distributed networks
US6857059B2 (en) 2001-01-11 2005-02-15 Yottayotta, Inc. Storage virtualization system and methods
US20020156973A1 (en) 2001-01-29 2002-10-24 Ulrich Thomas R. Enhanced disk array
US20030037261A1 (en) 2001-03-26 2003-02-20 Ilumin Corporation Secured content delivery system and method
US6879596B1 (en) 2001-04-11 2005-04-12 Applied Micro Circuits Corporation System and method for systolic array sorting of information segments
US7024609B2 (en) 2001-04-20 2006-04-04 Kencast, Inc. System for protecting the transmission of live data streams, and upon reception, for reconstructing the live data streams and recording them into files
GB2377049A (en) 2001-06-30 2002-12-31 Hewlett Packard Co Billing for utilisation of a data storage array
US6944785B2 (en) 2001-07-23 2005-09-13 Network Appliance, Inc. High-availability cluster virtual server system
US7636724B2 (en) 2001-08-31 2009-12-22 Peerify Technologies LLC Data storage system and method by shredding and deshredding
US7024451B2 (en) 2001-11-05 2006-04-04 Hewlett-Packard Development Company, L.P. System and method for maintaining consistent independent server-side state among collaborating servers
US7003688B1 (en) 2001-11-15 2006-02-21 Xiotech Corporation System and method for a reserved memory area shared by all redundant storage controllers
US7171493B2 (en) 2001-12-19 2007-01-30 The Charles Stark Draper Laboratory Camouflage of network traffic to resist attack
US6678828B1 (en) * 2002-07-22 2004-01-13 Vormetric, Inc. Secure network file access control system
EP1547252A4 (en) 2002-07-29 2011-04-20 Robert Halford Multi-dimensional data protection and mirroring method for micro level data
US7051155B2 (en) 2002-08-05 2006-05-23 Sun Microsystems, Inc. Method and system for striping data to accommodate integrity metadata
US20040122917A1 (en) 2002-12-18 2004-06-24 Menon Jaishankar Moothedath Distributed storage system for data-sharing among client computers running defferent operating system types
JP2006526204A (en) 2003-03-13 2006-11-16 ディーアールエム テクノロジーズ、エルエルシー Secure streaming container
US7185144B2 (en) 2003-11-24 2007-02-27 Network Appliance, Inc. Semi-static distribution technique
GB0308264D0 (en) 2003-04-10 2003-05-14 Ibm Recovery from failures within data processing systems
GB0308262D0 (en) 2003-04-10 2003-05-14 Ibm Recovery from failures within data processing systems
US7415115B2 (en) 2003-05-14 2008-08-19 Broadcom Corporation Method and system for disaster recovery of data from a storage device
CN101566931B (en) 2003-08-14 2011-05-18 克姆佩棱特科技公司 Virtual disk drive system and method
US20050080898A1 (en) * 2003-10-08 2005-04-14 Block Jerald J. System and method for managing computer usage
US7899059B2 (en) 2003-11-12 2011-03-01 Agere Systems Inc. Media delivery using quality of service differentiation within a media stream
JP4426262B2 (en) * 2003-11-26 2010-03-03 株式会社日立製作所 Disk array device and failure avoiding method for disk array device
US8332483B2 (en) 2003-12-15 2012-12-11 International Business Machines Corporation Apparatus, system, and method for autonomic control of grid system resources
US7206899B2 (en) 2003-12-29 2007-04-17 Intel Corporation Method, system, and program for managing data transfer and construction
US7222133B1 (en) 2004-02-05 2007-05-22 Unisys Corporation Method for reducing database recovery time
US7240236B2 (en) 2004-03-23 2007-07-03 Archivas, Inc. Fixed content distributed data storage using permutation ring encoding
US7231578B2 (en) 2004-04-02 2007-06-12 Hitachi Global Storage Technologies Netherlands B.V. Techniques for detecting and correcting errors using multiple interleave erasure pointers
US7203871B2 (en) * 2004-06-03 2007-04-10 Cisco Technology, Inc. Arrangement in a network node for secure storage and retrieval of encoded data distributed among multiple network nodes
JP4446839B2 (en) 2004-08-30 2010-04-07 株式会社日立製作所 Storage device and storage management device
JP2006126894A (en) * 2004-10-26 2006-05-18 Sony Corp Content delivery method, program and information processor
US7680771B2 (en) 2004-12-20 2010-03-16 International Business Machines Corporation Apparatus, system, and method for database provisioning
US7386758B2 (en) 2005-01-13 2008-06-10 Hitachi, Ltd. Method and apparatus for reconstructing data in object-based storage arrays
US8365293B2 (en) * 2005-01-25 2013-01-29 Redphone Security, Inc. Securing computer network interactions between entities with authorization assurances
US7733868B2 (en) * 2005-01-26 2010-06-08 Internet Broadcasting Corp. Layered multicast and fair bandwidth allocation and packet prioritization
US7672930B2 (en) 2005-04-05 2010-03-02 Wal-Mart Stores, Inc. System and methods for facilitating a linear grid database with data organization by dimension
US8880799B2 (en) * 2005-09-30 2014-11-04 Cleversafe, Inc. Rebuilding data on a dispersed storage network
US8285878B2 (en) * 2007-10-09 2012-10-09 Cleversafe, Inc. Block based access to a dispersed data storage network
US7546427B2 (en) 2005-09-30 2009-06-09 Cleversafe, Inc. System for rebuilding dispersed data
US7574579B2 (en) 2005-09-30 2009-08-11 Cleversafe, Inc. Metadata management system for an information dispersed storage system
US8171101B2 (en) 2005-09-30 2012-05-01 Cleversafe, Inc. Smart access to a dispersed data storage network
US7904475B2 (en) 2007-10-09 2011-03-08 Cleversafe, Inc. Virtualized data storage vaults on a dispersed data storage network
US7953937B2 (en) 2005-09-30 2011-05-31 Cleversafe, Inc. Systems, methods, and apparatus for subdividing data for storage in a dispersed data storage grid
US7574570B2 (en) 2005-09-30 2009-08-11 Cleversafe Inc Billing system for information dispersal system
US8555109B2 (en) * 2009-07-30 2013-10-08 Cleversafe, Inc. Method and apparatus for distributed storage integrity processing
US7644303B2 (en) * 2005-10-07 2010-01-05 Agere Systems Inc. Back-annotation in storage-device array
US20070214285A1 (en) 2006-03-08 2007-09-13 Omneon Video Networks Gateway server
US8549351B2 (en) * 2007-10-09 2013-10-01 Cleversafe, Inc. Pessimistic data reading in a dispersed storage network
US10142115B2 (en) * 2008-03-31 2018-11-27 International Business Machines Corporation Distributed storage network data revision control
JP5277991B2 (en) * 2009-01-27 2013-08-28 富士通株式会社 Allocation control program, allocation control device, and allocation control method
US8365053B2 (en) * 2009-05-27 2013-01-29 International Business Machines Corporation Encoding and decoding data using store and exclusive or operations
US8706980B2 (en) * 2009-07-30 2014-04-22 Cleversafe, Inc. Method and apparatus for slice partial rebuilding in a dispersed storage network
US9009575B2 (en) * 2009-07-30 2015-04-14 Cleversafe, Inc. Rebuilding a data revision in a dispersed storage network
US9558059B2 (en) * 2009-07-30 2017-01-31 International Business Machines Corporation Detecting data requiring rebuilding in a dispersed storage network
US8966194B2 (en) * 2009-10-29 2015-02-24 Cleversafe, Inc. Processing a write request in a dispersed storage network
US8954667B2 (en) * 2010-01-28 2015-02-10 Cleversafe, Inc. Data migration in a dispersed storage network
US9043548B2 (en) * 2010-01-28 2015-05-26 Cleversafe, Inc. Streaming content storage
US8719923B1 (en) * 2010-02-05 2014-05-06 Netapp, Inc. Method and system for managing security operations of a storage server using an authenticated storage module
US8625635B2 (en) * 2010-04-26 2014-01-07 Cleversafe, Inc. Dispersed storage network frame protocol header
US9081715B2 (en) * 2011-02-01 2015-07-14 Cleversafe, Inc. Utilizing a dispersed storage network access token module to retrieve data from a dispersed storage network memory
US10102063B2 (en) * 2011-03-02 2018-10-16 International Business Machines Corporation Transferring data utilizing a transfer token module
US8725684B1 (en) * 2011-03-31 2014-05-13 Amazon Technologies, Inc. Synchronizing data stores
US8656253B2 (en) * 2011-06-06 2014-02-18 Cleversafe, Inc. Storing portions of data in a dispersed storage network
EP2737431A4 (en) * 2011-07-27 2015-03-25 Cleversafe Inc Generating dispersed storage network event records
WO2013028901A2 (en) * 2011-08-23 2013-02-28 Visa International Service Association Authentication process for value transfer machine
US9164841B2 (en) * 2012-06-05 2015-10-20 Cleversafe, Inc. Resolution of a storage error in a dispersed storage network
US10120574B2 (en) * 2012-06-25 2018-11-06 International Business Machines Corporation Reversible data modifications within DS units
US9043499B2 (en) * 2013-02-05 2015-05-26 Cleversafe, Inc. Modifying a dispersed storage network memory data access response plan
US9104353B2 (en) * 2013-03-28 2015-08-11 Hewlett-Packard Development Company, L.P. Printing of confidential documents
US20140298061A1 (en) * 2013-04-01 2014-10-02 Cleversafe, Inc. Power control in a dispersed storage network
US9832640B2 (en) * 2013-05-22 2017-11-28 Panasonic Intellectual Property Corporation Of America Wireless connection authentication method and server
US9432341B2 (en) * 2013-05-30 2016-08-30 International Business Machines Corporation Securing data in a dispersed storage network
US20150012300A1 (en) * 2013-07-03 2015-01-08 Virtual Viewbox, L.L.C. Methods for Establishing a Cloud-based, Interactive Medical Pre-Registration System
KR20150061258A (en) * 2013-11-27 2015-06-04 한국전자통신연구원 Operating System and Method for Parity chunk update processing in distributed Redundant Array of Inexpensive Disks system
US9742757B2 (en) * 2013-11-27 2017-08-22 International Business Machines Corporation Identifying and destroying potentially misappropriated access tokens
US9552261B2 (en) * 2014-01-31 2017-01-24 International Business Machines Corporation Recovering data from microslices in a dispersed storage network
US9778987B2 (en) * 2014-01-31 2017-10-03 International Business Machines Corporation Writing encoded data slices in a dispersed storage network
US10020826B2 (en) * 2014-04-02 2018-07-10 International Business Machines Corporation Generating molecular encoding information for data storage
US20150356305A1 (en) * 2014-06-05 2015-12-10 Cleversafe, Inc. Secure data access in a dispersed storage network
US10049120B2 (en) * 2014-09-05 2018-08-14 International Business Machines Corporation Consistency based access of data in a dispersed storage network
US9591076B2 (en) * 2014-09-08 2017-03-07 International Business Machines Corporation Maintaining a desired number of storage units
US9727427B2 (en) * 2014-12-31 2017-08-08 International Business Machines Corporation Synchronizing storage of data copies in a dispersed storage network
US10178098B2 (en) * 2015-05-11 2019-01-08 Adobe Systems Incorporated Controlling user access to content
US20170132079A1 (en) * 2015-05-29 2017-05-11 International Business Machines Corporation Rebuilding and verifying an encoded data slice utilizing slice verification information
US10437671B2 (en) * 2015-06-30 2019-10-08 Pure Storage, Inc. Synchronizing replicated stored data
US10466914B2 (en) * 2015-08-31 2019-11-05 Pure Storage, Inc. Verifying authorized access in a dispersed storage network
US10031809B2 (en) * 2016-07-20 2018-07-24 International Business Machines Corporation Efficient method for rebuilding a set of encoded data slices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629264B1 (en) * 2000-03-30 2003-09-30 Hewlett-Packard Development Company, L.P. Controller-based remote copy system with logical unit grouping
US8706914B2 (en) * 2007-04-23 2014-04-22 David D. Duchesneau Computing infrastructure
US20100094950A1 (en) * 2008-10-15 2010-04-15 Patentvc Ltd. Methods and systems for controlling fragment load on shared links
US9432298B1 (en) * 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
US20130212440A1 (en) * 2012-02-13 2013-08-15 Li-Raz Rom System and method for virtual system management
US9390055B2 (en) * 2012-07-17 2016-07-12 Coho Data, Inc. Systems, methods and devices for integrating end-host and network resources in distributed memory
US9665427B2 (en) * 2014-09-02 2017-05-30 Netapp, Inc. Hierarchical data storage architecture
US20170262191A1 (en) * 2016-03-08 2017-09-14 Netapp, Inc. Reducing write tail latency in storage systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230236741A1 (en) * 2015-08-31 2023-07-27 Pure Storage, Inc. Managing Correlated Outages in a Dispersed Storage Network
US20210350031A1 (en) * 2017-04-17 2021-11-11 EMC IP Holding Company LLC Method and device for managing storage system
US11907410B2 (en) * 2017-04-17 2024-02-20 EMC IP Holding Company LLC Method and device for managing storage system

Also Published As

Publication number Publication date
US10289319B2 (en) 2019-05-14
US10120596B2 (en) 2018-11-06
US11422711B1 (en) 2022-08-23
US10871905B2 (en) 2020-12-22
US20190026036A1 (en) 2019-01-24
US10372357B2 (en) 2019-08-06
US20220374153A1 (en) 2022-11-24
US20170060689A1 (en) 2017-03-02
US20170060454A1 (en) 2017-03-02
US20190155525A1 (en) 2019-05-23
US20170060440A1 (en) 2017-03-02
US20180260150A1 (en) 2018-09-13
US20170060685A1 (en) 2017-03-02
US20170060778A1 (en) 2017-03-02
US10466914B2 (en) 2019-11-05
US20170060459A1 (en) 2017-03-02
US10042566B2 (en) 2018-08-07
US10126961B2 (en) 2018-11-13
US10013191B2 (en) 2018-07-03
US20170060684A1 (en) 2017-03-02
US11640248B2 (en) 2023-05-02
US10241692B2 (en) 2019-03-26
US20170060686A1 (en) 2017-03-02
US20180356999A1 (en) 2018-12-13
US20230236741A1 (en) 2023-07-27
US9996283B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
US10387080B2 (en) Rebuilding slices in a dispersed storage network
US10042708B2 (en) System for rebuilding data in a dispersed storage network
US10169148B2 (en) Apportioning storage units amongst storage sites in a dispersed storage network
US11582299B2 (en) Allocating cache memory in a dispersed storage network
US20170063991A1 (en) Utilizing site write thresholds in a dispersed storage network
US10748055B2 (en) Validating system registry files in a dispersed storage network
US9875158B2 (en) Slice storage in a dispersed storage network
US20190146876A1 (en) Slice rebuilding in a dispersed storage network
US10268554B2 (en) Using dispersed computation to change dispersal characteristics
US10057351B2 (en) Modifying information dispersal algorithm configurations in a dispersed storage network
US10996895B1 (en) Selecting a subset of storage units in a dispersed storage network
US10509577B2 (en) Reliable storage in a dispersed storage network
US10417253B2 (en) Multi-level data storage in a dispersed storage network
US20170003915A1 (en) Retrieving data in a dispersed storage network
US10402395B2 (en) Facilitating data consistency in a dispersed storage network
US10459792B2 (en) Using an eventually consistent dispersed memory to implement storage tiers
US10530861B2 (en) Utilizing multiple storage pools in a dispersed storage network
US20180107551A1 (en) Rebuilding encoded data slices in a dispersed storage network

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DHUSE, GREG R.;RESCH, JASON K.;VOLVOVSKI, ILYA;AND OTHERS;SIGNING DATES FROM 20160727 TO 20160801;REEL/FRAME:039305/0661

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: PURE STORAGE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:049555/0530

Effective date: 20190611

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: PURE STORAGE, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE DELETE 15/174/279 AND 15/174/596 PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 49555 FRAME: 530. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:051495/0831

Effective date: 20190611

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE