US20170062398A1 - Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining - Google Patents

Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining Download PDF

Info

Publication number
US20170062398A1
US20170062398A1 US14/843,964 US201514843964A US2017062398A1 US 20170062398 A1 US20170062398 A1 US 20170062398A1 US 201514843964 A US201514843964 A US 201514843964A US 2017062398 A1 US2017062398 A1 US 2017062398A1
Authority
US
United States
Prior art keywords
wafer
inductor
soc
vias
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/843,964
Inventor
Karim Arabi
Ravindra Vaman Shenoy
Evgeni Petrovich Gousev
Mete Erturk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US14/843,964 priority Critical patent/US20170062398A1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARABI, KARIM, ERTURK, METE, GOUSEV, EVGENI PETROVICH, SHENOY, RAVINDRA VAMAN
Priority to CA2992855A priority patent/CA2992855A1/en
Priority to JP2018509890A priority patent/JP2018532260A/en
Priority to BR112018004288A priority patent/BR112018004288A2/en
Priority to CN201680048793.1A priority patent/CN108012565A/en
Priority to KR1020187009210A priority patent/KR102541387B1/en
Priority to PCT/US2016/045998 priority patent/WO2017039962A1/en
Priority to EP16751137.7A priority patent/EP3345218A1/en
Publication of US20170062398A1 publication Critical patent/US20170062398A1/en
Priority to US17/408,273 priority patent/US20210384292A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16265Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16265Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • H01L2224/16267Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16265Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • H01L2224/16268Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/19011Structure including integrated passive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19103Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device interposed between the semiconductor or solid-state device and the die mounting substrate, i.e. chip-on-passive

Definitions

  • Various embodiments described herein relate to integrated circuit devices, and more particularly, to integrated circuit devices with voltage regulators.
  • Voltage regulators have been implemented in conventional dedicated power management integrated circuits (PMICs).
  • PMICs dedicated power management integrated circuits
  • a conventional PMIC which is separate from other integrated circuits on a circuit board, may have difficulty meeting the droop (transient) and power (efficiency) requirements of a modem multi-core application processor or communication processor, for example.
  • Integrated voltage regulators may present several challenges in chip design and layout.
  • passive components such as inductors and capacitors in voltage regulators may pose a design challenge, because passive components, such as inductors and capacitors, especially those with large inductance and capacitance values, typically have large form factors requiring large surface areas in a typical layout for a silicon SOC die.
  • inductors in voltage regulators typically require very low resistances to minimize power losses in voltage regulation.
  • inductors may require thick metal traces on the SOC die in order to reduce the resistance values of the inductors.
  • thick metal traces may not be feasible.
  • conventional fabrication processes for integrating inductors as part of a voltage regulator on a silicon SOC die may require several additional masks, thereby increasing the cost of fabrication.
  • Exemplary embodiments of the disclosure are directed to integrated circuit devices and methods of making the same.
  • a voltage regulator is integrated or embedded in a system-on-chip (SOC) device which also includes one or more circuits using the voltage supplied by the voltage regulator.
  • SOC system-on-chip
  • a device comprising: a system-on-chip (SOC) wafer; an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, wherein the first surface of the inductor wafer is disposed adjacent to the SOC wafer; a magnetic layer on at least a portion of the first surface of the inductor wafer; and a conductive layer disposed on the magnetic layer, on at least a portion of the second surface of the inductor wafer, and on at least some of the sidewalls formed by the vias in the inductor wafer.
  • SOC system-on-chip
  • a device comprising: a voltage regulator, comprising: a die; an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, wherein the first surface of the inductor wafer is disposed adjacent to the die; a magnetic layer on at least a portion of the first surface of the inductor wafer; and a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer; and a system-on-chip (SOC) package configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
  • SOC system-on-chip
  • a method of making a device comprising: providing a first wafer having a first surface and a second surface; forming a plurality of vias through the first and second surfaces of the first wafer, wherein the vias are defined by a plurality of sidewalls within the first wafer; forming a patterned magnetic layer on at least a portion of the first surface of the first wafer; forming a conductive layer on the patterned magnetic layer over the patterned magnetic layer, at least a portion of the second surface of the first wafer, and at least some of the sidewalls of the vias; and joining a second wafer to the first wafer.
  • a method of making a device comprising: providing a system-on-chip (SOC) package; and forming a voltage regulator on the SOC package, comprising: providing an SOC die; providing an inductor wafer having first and second surfaces, wherein the first surface of the inductor wafer is disposed adjacent to the SOC die; forming a plurality of vias through the first and second surfaces of the inductor wafer, wherein the vias are defined by a plurality of sidewalls in the inductor wafer; and forming a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer, wherein the SOC package is configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
  • SOC system-on-chip
  • FIG. 1 is a perspective view illustrating an embodiment of a system-on-chip (SOC) wafer.
  • SOC system-on-chip
  • FIG. 2 is a perspective view illustrating an embodiment of an inductor wafer with through vias.
  • FIG. 3 is a perspective view illustrating an embodiment of face-to-face wafer-to-wafer bonding of an SOC wafer and an inductor wafer.
  • FIG. 4 is a sectional view illustrating an embodiment of a first process step in the manufacturing of an inductor on an inductor wafer with through vias.
  • FIG. 5 is a sectional view illustrating an embodiment of a second process step in the manufacturing of the inductor with a patterned thin-film magnetic layer.
  • FIG. 6 is a sectional view of an embodiment of a third process step in the manufacturing of the inductor with a dielectric on the thin-film magnetic layer.
  • FIG. 7 is a sectional view of an embodiment of a fourth process step in the manufacturing of the inductor with metal plating.
  • FIG. 8 is a top plan view of an inductor having a coil with multiple loops.
  • FIG. 9 is a sectional view illustrating an embodiment of a fifth process step in the manufacturing of a system-on-chip (SOC) device by joining an SOC wafer with an inductor wafer.
  • SOC system-on-chip
  • FIG. 10 is a sectional view illustrating an embodiment of the SOC device of FIG. 9 after the SOC wafer and the inductor wafer are joined together.
  • FIG. 11 is a perspective view illustrating an embodiment of an inductor die after dicing of the joined SOC wafer and inductor wafer.
  • FIG. 12 is a sectional view illustrating an embodiment of a system including a printed circuit board (PCB), an SOC package, and a voltage regulator which includes an inductor die.
  • PCB printed circuit board
  • SOC package SOC package
  • voltage regulator which includes an inductor die.
  • FIG. 13 is a diagram illustrating am embodiment of a system including a power management integrated circuit (PMIC) and an SOC device which includes an integrated or embedded voltage regulator and circuit using the voltage regulator.
  • PMIC power management integrated circuit
  • FIG. 1 is a perspective view illustrating an embodiment of a system-on-chip (SOC) wafer 100 having a first surface 102 and a second surface 104 opposite each other.
  • the SOC wafer 100 comprises a semiconductor wafer, such as a silicon wafer.
  • the SOC wafer 100 may comprise a glass wafer, a quartz wafer, an organic wafer, or a wafer made of another material.
  • the SOC wafer 100 may be integrated with an inductor wafer on which one or more inductors are provided.
  • FIG. 2 is a perspective view illustrating an embodiment of an inductor wafer 200 with a plurality of through vias 202 a , 202 b , 202 c , . . . .
  • the inductor wafer 200 has first and second surfaces 204 and 206 opposite each other, and the vias 202 a , 202 b , 202 c , . . . are formed through the first and second surfaces 204 and 206 of the inductor wafer 200 .
  • the inductor wafer 200 comprises a glass wafer.
  • the inductor wafer 200 may comprise a quartz wafer, an organic wafer, or another type of low-loss dielectric material, to ensure that the inductor fabricated on the inductor wafer 200 has a low parasitic loss.
  • the inductor wafer 200 may comprise a quartz wafer, an organic wafer, or another type of low-loss dielectric material, to ensure that the inductor fabricated on the inductor wafer 200 has a low parasitic loss.
  • detailed structure of the conductors in the vias 202 a , 202 b , 202 c , . . . and the patterned conductive layers on the first and second surfaces 204 and 206 of the inductor wafer 200 which form one or more coils of an integrated inductor are not shown in the perspective view of FIG. 2 .
  • Embodiments of the integrated inductor formed on the inductor wafer 200 will be described in further detail below with respect to FIGS. 4-7 and the top plan view of FIG. 8 .
  • FIG. 3 is a perspective view illustrating an embodiment of face-to-face wafer-to-wafer bonding of the SOC wafer 100 and the inductor wafer 200 .
  • the second surface 104 of the SOC wafer 100 is joined with the first surface 204 of the inductor wafer 200 .
  • detailed structure of the integrated inductor formed on the inductor wafer 200 is omitted in FIG. 3 for simplicity of illustration. Embodiments of the integrated inductor formed on the inductor wafer 200 will be described with respect to FIGS. 4-8 .
  • FIG. 4 is a sectional view illustrating an embodiment of a first process step in the manufacturing of an inductor on an inductor wafer with through vias.
  • an inductor wafer 400 having a first surface 402 and a second surface 404 is provided.
  • the inductor wafer 400 may be a glass wafer, a quartz wafer, or another type of wafer made of a low-loss dielectric material, for example.
  • first and second vias 406 and 408 are formed within the inductor wafer 400 through the first and second surfaces 402 and 404 .
  • FIG. 5 is a sectional view illustrating an embodiment of a second process step in the manufacturing of the inductor with a magnetic layer.
  • a magnetic layer such as a patterned thin-film magnetic layer 410 , is formed on the first surface 402 of the inductor wafer 400 .
  • the patterned thin-film magnetic layer 410 is formed on the first surface 402 of the portion of the inductor wafer 400 between the first and second vias 406 and 408 .
  • the patterned thin-film magnetic layer 410 may be fabricated in various manners.
  • a magnetic material such as cobalt-tantalum-zirconium (CoTaZr)
  • CoTaZr cobalt-tantalum-zirconium
  • Other magnetic materials such as alloys of nickel-iron (NiFe), cobalt-iron (CoFe), or cobalt-nickel-iron (CoNiFe), with added materials such as phosphorus (P), boron (B) or carbon (C), may be used for the patterned thin-film magnetic layer 410 to tailor the magnetic and electrical properties of the patterned thin-film magnetic layer 410 .
  • the magnetic material for the patterned thin-film magnetic layer 410 is chosen so as to enable a boost in the inductance value of the inductor at the appropriate operating frequencies.
  • Other types of magnetic materials may also be implemented as the patterned thin-film magnetic layer 410 .
  • the magnetic layer 410 may also be formed by other techniques, for example, by sputtering a magnetic material on the first surface 402 of the inductor wafer 400 .
  • FIG. 6 is a sectional view of an embodiment of a third process step in the manufacturing of the inductor with a dielectric on the patterned thin-film magnetic layer.
  • a dielectric layer 412 is formed on top of the patterned thin-film magnetic layer 410 .
  • the dielectric layer 412 covers the entire top and side surfaces of the thin-film magnetic layer 410 , as well as portions of the first surface 402 of the inductor wafer 400 surrounding the patterned thin-film magnetic layer 410 .
  • the dielectric layer 412 comprises a polymer dielectric material.
  • the dielectric layer 412 comprises an inorganic dielectric material, for example, silicon dioxide (SiO 2 ). Other types of dielectric materials may also be used for the dielectric layer 412 within the scope of the disclosure.
  • FIG. 7 is a sectional view of an embodiment of a fourth process step in the manufacturing of the inductor with metal plating.
  • the first via 406 has sidewalls 414 and 416
  • the second via 408 has sidewalls 418 and 420 between the first and second surfaces 402 and 404 of the inductor wafer 400 .
  • a conductive layer 422 is formed on the dielectric layer 412 , on the sidewall 416 of the first via 406 , on the sidewall 418 of the second via 408 , and on the second surface 404 of the inductor wafer 400 between the first and second vias 406 and 408 .
  • the conductive layer 422 is formed by metal plating.
  • the conductive layer is formed by semi-additive plating of a metal such as copper (Cu).
  • a metal such as copper (Cu).
  • the sidewall 414 opposite the sidewall 416 the first via 406 and at least portions of the first and second surfaces 402 and 404 of the inductor wafer 400 adjacent to the sidewall 414 are also covered by a conductive layer 424 .
  • the sidewall 420 opposite the sidewall 418 the second via 408 and at least portions of the first and second surfaces 402 and 404 of the inductor wafer 400 adjacent to the sidewall 420 are also covered by a conductive layer 426 .
  • the conductive layers 424 and 426 may also be formed by metal plating, such as semi-additive copper plating.
  • the conductive layer 422 is shown as a section of one loop of an inductor coil which comprises a plurality of loops.
  • a top plan view of an embodiment of a solenoid inductor which comprises an inductor coil with multiple loops is shown in FIG. 8 , which will be described in further detail below.
  • Other inductor topologies for example, spiral inductors, toroid inductors, or racetrack inductors, may also be implemented instead of the solenoid inductor in the embodiments described and illustrated herein.
  • a solenoid inductor may be chosen for its small footprint and easy, efficient integration closest to the circuitry on the SOC die.
  • the conductive layer 422 which is illustrated as the sectional view of one loop of coil of an inductor, surrounds the thin-film magnetic layer 410 , which is implemented as a magnetic core of the inductor.
  • another magnetic layer may be provided within the inductor coil, for example, a magnetic layer formed on the second surface 404 of the inductor wafer 400 opposite the magnetic layer 410 as shown in FIG. 7 , to increase the overall magnetic flux and thus the overall inductance of the inductor.
  • an inductor with multiple loops of coil, with each loop having a sectional view similar to the sectional view of the conductive layer 422 as shown in FIG. 7 may be provided without any magnetic layer inside the coil, although such an inductor with no magnetic core would have a lower inductance compared to an inductor of the same size and the same number of loops having one or more magnetic cores.
  • FIG. 8 is a top plan view of an inductor 800 having a coil 802 with multiple loops before the SOC wafer is joined with the inductor wafer.
  • a sectional view of one of the loops 804 taken along sectional line 806 a - 806 b is illustrated in FIG. 7 .
  • the inductor 800 has two terminals 808 and 810 at two opposite ends of the coil 802 for electrical connections with other circuit components in a voltage regulator, for example.
  • some of the pass-through vias in the inductor wafer 400 like the first via 406 and the second via 408 as illustrated in FIGS.
  • the conductive layer 422 which may comprise a thick Cu plating on the inductor wafer 200 , can be used as an additional routing layer to improve the performance of an advanced node SOC device with an advanced node SOC wafer 100 .
  • the thick Cu plating of the conductive layer 422 can be used to reduce the number of Cu layers in the advanced node SOC wafer 100 , or in the package substrate 1212 , or both.
  • FIG. 9 is a sectional view illustrating an embodiment of a fifth process step in the manufacturing of a system-on-chip (SOC) device by joining an SOC wafer with an inductor wafer.
  • the SOC wafer 100 is provided with a plurality of metal columns, such as metal column 902 on the second surface 104 of the SOC wafer.
  • a solder 904 is provided on the metal column 902 for joining with a respective metal-plated via of the inductor wafer.
  • the metal column 902 on the second surface 104 of the SOC wafer 100 is aligned with the via 408 in the inductor wafer 400 , which is described above with respect to FIG. 7 .
  • the thin-film magnetic layer 410 and the dielectric layer 412 are omitted in the sectional view of FIG. 9 .
  • FIG. 10 is a sectional view illustrating an embodiment of the SOC device of FIG. 9 after the SOC wafer and the inductor wafer are joined together.
  • the solder 904 connects the top portions of conductors 422 and 426 over the sidewalls 418 and 420 of the via 408 , respectively, and is positioned directly over the via 408 in the inductor wafer 400 .
  • the solder 904 may comprise a conventional solder material that melts under heat and solidifies when the temperature cools down.
  • FIG. 11 is a perspective view illustrating an embodiment of an inductor die after dicing of the joined SOC wafer and inductor wafer.
  • multiple identical chips may be fabricated on a single wafer with a large surface area.
  • a chip may be separated from a wafer by one of many dicing techniques known to persons skilled in the art.
  • the joined SOC wafer 100 and the inductor wafer 200 may be diced into a plurality of dies 1102 a , 1102 b , 1102 c , . . . .
  • Any one of the dies 1102 a , 1102 b , 1102 c , . . . may include one or more inductors and one or more other components, such as one or more capacitors, as part of an integrated or embedded voltage regulator.
  • FIG. 12 is a sectional view illustrating an embodiment of a system including a printed circuit board (PCB), an SOC package, and a voltage regulator which includes an inductor die.
  • a printed circuit board (PCB) 1202 is provided, and an IC package 1204 is provided on the PCB 1202 .
  • the IC package may include one or more analog integrated circuits, one or more digital integrated circuits, or a combination thereof.
  • the IC package 1204 may have one of various configurations known to persons skilled in the art, including but not limited to wirebond, flip-chip, or ball grid array (BGA), for example.
  • BGA ball grid array
  • a die 1206 that includes an inductor fabricated on an inductor wafer with through vias and joined with an SOC wafer in embodiments described above with respect to FIGS. 1-11 is integrated with the IC package 1204 .
  • the IC package 1204 includes a package substrate 1212 .
  • the die 1206 may be provided as a part of the circuitry for an integrated or embedded voltage regulator 1208 , which may also include other components.
  • the voltage regulator 1208 may include one or more additional passive components such as one or more capacitors.
  • the rest of the circuitry for the voltage regulator 1208 are generically indicated by block 1210 .
  • FIG. 13 is a simplified block diagram illustrating am embodiment of a system including a power management integrated circuit (PMIC) and an SOC device which includes an integrated or embedded voltage regulator and circuit using the voltage regulator.
  • the PMIC 1302 is shown as a chip separate from the SOC device 1304 . In an alternate embodiment, the PMIC 1302 may be integrated as part of the SOC device 1304 .
  • the SOC device includes an inductor and capacitor (L & C) block 1306 , a voltage regulator (VR) 1308 , and one or more circuits 1310 using the output voltage from the VR 1308 .
  • the inductor and capacitor in the L & C block 1306 may be integrated or embedded with the VR 1308 on the same chip as the circuits 1310 using the output voltage from the VR 1308 in an SOC device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)

Abstract

A voltage regulator having a coil inductor is integrated or embedded in a system-on-chip (SOC) device. The coil inductor is fabricated on an inductor wafer with through vias, and the inductor wafer is joined with an SOC wafer for integration with the SOC device.

Description

    FIELD OF DISCLOSURE
  • Various embodiments described herein relate to integrated circuit devices, and more particularly, to integrated circuit devices with voltage regulators.
  • BACKGROUND
  • Voltage regulators have been implemented in conventional dedicated power management integrated circuits (PMICs). A conventional PMIC, which is separate from other integrated circuits on a circuit board, may have difficulty meeting the droop (transient) and power (efficiency) requirements of a modem multi-core application processor or communication processor, for example.
  • There has been a growing interest in integrating voltage regulators as part of system-on-chip (SOC) integrated circuit devices. Integrated voltage regulators, however, may present several challenges in chip design and layout. For example, passive components such as inductors and capacitors in voltage regulators may pose a design challenge, because passive components, such as inductors and capacitors, especially those with large inductance and capacitance values, typically have large form factors requiring large surface areas in a typical layout for a silicon SOC die.
  • Moreover, inductors in voltage regulators typically require very low resistances to minimize power losses in voltage regulation. In addition to occupying a significant amount of surface area of a typical silicon SOC die, such inductors may require thick metal traces on the SOC die in order to reduce the resistance values of the inductors. In advanced-node SOC wafer fabrication, however, such thick metal traces may not be feasible. Moreover, even if thick metal traces are implementable on a silicon SOC die, conventional fabrication processes for integrating inductors as part of a voltage regulator on a silicon SOC die may require several additional masks, thereby increasing the cost of fabrication.
  • SUMMARY
  • Exemplary embodiments of the disclosure are directed to integrated circuit devices and methods of making the same. In an embodiment, a voltage regulator is integrated or embedded in a system-on-chip (SOC) device which also includes one or more circuits using the voltage supplied by the voltage regulator.
  • In an embodiment, a device is provided, the device comprising: a system-on-chip (SOC) wafer; an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, wherein the first surface of the inductor wafer is disposed adjacent to the SOC wafer; a magnetic layer on at least a portion of the first surface of the inductor wafer; and a conductive layer disposed on the magnetic layer, on at least a portion of the second surface of the inductor wafer, and on at least some of the sidewalls formed by the vias in the inductor wafer.
  • In another embodiment, a device is provided, the device comprising: a voltage regulator, comprising: a die; an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, wherein the first surface of the inductor wafer is disposed adjacent to the die; a magnetic layer on at least a portion of the first surface of the inductor wafer; and a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer; and a system-on-chip (SOC) package configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
  • In another embodiment, a method of making a device is provided, the method comprising: providing a first wafer having a first surface and a second surface; forming a plurality of vias through the first and second surfaces of the first wafer, wherein the vias are defined by a plurality of sidewalls within the first wafer; forming a patterned magnetic layer on at least a portion of the first surface of the first wafer; forming a conductive layer on the patterned magnetic layer over the patterned magnetic layer, at least a portion of the second surface of the first wafer, and at least some of the sidewalls of the vias; and joining a second wafer to the first wafer.
  • In yet another embodiment, a method of making a device is provided, the method comprising: providing a system-on-chip (SOC) package; and forming a voltage regulator on the SOC package, comprising: providing an SOC die; providing an inductor wafer having first and second surfaces, wherein the first surface of the inductor wafer is disposed adjacent to the SOC die; forming a plurality of vias through the first and second surfaces of the inductor wafer, wherein the vias are defined by a plurality of sidewalls in the inductor wafer; and forming a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer, wherein the SOC package is configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are presented to aid in the description of embodiments of the disclosure and are provided solely for illustration of the embodiments and not limitation thereof.
  • FIG. 1 is a perspective view illustrating an embodiment of a system-on-chip (SOC) wafer.
  • FIG. 2 is a perspective view illustrating an embodiment of an inductor wafer with through vias.
  • FIG. 3 is a perspective view illustrating an embodiment of face-to-face wafer-to-wafer bonding of an SOC wafer and an inductor wafer.
  • FIG. 4 is a sectional view illustrating an embodiment of a first process step in the manufacturing of an inductor on an inductor wafer with through vias.
  • FIG. 5 is a sectional view illustrating an embodiment of a second process step in the manufacturing of the inductor with a patterned thin-film magnetic layer.
  • FIG. 6 is a sectional view of an embodiment of a third process step in the manufacturing of the inductor with a dielectric on the thin-film magnetic layer.
  • FIG. 7 is a sectional view of an embodiment of a fourth process step in the manufacturing of the inductor with metal plating.
  • FIG. 8 is a top plan view of an inductor having a coil with multiple loops.
  • FIG. 9 is a sectional view illustrating an embodiment of a fifth process step in the manufacturing of a system-on-chip (SOC) device by joining an SOC wafer with an inductor wafer.
  • FIG. 10 is a sectional view illustrating an embodiment of the SOC device of FIG. 9 after the SOC wafer and the inductor wafer are joined together.
  • FIG. 11 is a perspective view illustrating an embodiment of an inductor die after dicing of the joined SOC wafer and inductor wafer.
  • FIG. 12 is a sectional view illustrating an embodiment of a system including a printed circuit board (PCB), an SOC package, and a voltage regulator which includes an inductor die.
  • FIG. 13 is a diagram illustrating am embodiment of a system including a power management integrated circuit (PMIC) and an SOC device which includes an integrated or embedded voltage regulator and circuit using the voltage regulator.
  • DETAILED DESCRIPTION
  • Aspects of the disclosure are described in the following description and related drawings directed to specific embodiments. Alternate embodiments may be devised without departing from the scope of the disclosure. Additionally, well-known elements will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
  • The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments” does not require that all embodiments include the discussed feature, advantage or mode of operation.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or groups thereof. Moreover, it is understood that the word “or” has the same meaning as the Boolean operator “OR,” that is, it encompasses the possibilities of “either” and “both” and is not limited to “exclusive or” (“XOR”), unless expressly stated otherwise. It is also understood that the symbol “I” between two adjacent words has the same meaning as “or” unless expressly stated otherwise. Moreover, phrases such as “connected to,” “coupled to” or “in communication with” are not limited to direct connections unless expressly stated otherwise.
  • FIG. 1 is a perspective view illustrating an embodiment of a system-on-chip (SOC) wafer 100 having a first surface 102 and a second surface 104 opposite each other. In an embodiment, the SOC wafer 100 comprises a semiconductor wafer, such as a silicon wafer. In alternate embodiments, the SOC wafer 100 may comprise a glass wafer, a quartz wafer, an organic wafer, or a wafer made of another material. In an embodiment, the SOC wafer 100 may be integrated with an inductor wafer on which one or more inductors are provided.
  • FIG. 2 is a perspective view illustrating an embodiment of an inductor wafer 200 with a plurality of through vias 202 a, 202 b, 202 c, . . . . In the embodiment illustrated in FIG. 2, the inductor wafer 200 has first and second surfaces 204 and 206 opposite each other, and the vias 202 a, 202 b, 202 c, . . . are formed through the first and second surfaces 204 and 206 of the inductor wafer 200. In an embodiment, the inductor wafer 200 comprises a glass wafer. In alternate embodiments, the inductor wafer 200 may comprise a quartz wafer, an organic wafer, or another type of low-loss dielectric material, to ensure that the inductor fabricated on the inductor wafer 200 has a low parasitic loss. For simplicity of illustration, detailed structure of the conductors in the vias 202 a, 202 b, 202 c, . . . and the patterned conductive layers on the first and second surfaces 204 and 206 of the inductor wafer 200 which form one or more coils of an integrated inductor are not shown in the perspective view of FIG. 2. Embodiments of the integrated inductor formed on the inductor wafer 200 will be described in further detail below with respect to FIGS. 4-7 and the top plan view of FIG. 8.
  • FIG. 3 is a perspective view illustrating an embodiment of face-to-face wafer-to-wafer bonding of the SOC wafer 100 and the inductor wafer 200. In this embodiment, the second surface 104 of the SOC wafer 100 is joined with the first surface 204 of the inductor wafer 200. Again, detailed structure of the integrated inductor formed on the inductor wafer 200 is omitted in FIG. 3 for simplicity of illustration. Embodiments of the integrated inductor formed on the inductor wafer 200 will be described with respect to FIGS. 4-8.
  • FIG. 4 is a sectional view illustrating an embodiment of a first process step in the manufacturing of an inductor on an inductor wafer with through vias. In FIG. 4, an inductor wafer 400 having a first surface 402 and a second surface 404 is provided. The inductor wafer 400 may be a glass wafer, a quartz wafer, or another type of wafer made of a low-loss dielectric material, for example. In the embodiment shown in FIG. 4, first and second vias 406 and 408 are formed within the inductor wafer 400 through the first and second surfaces 402 and 404.
  • FIG. 5 is a sectional view illustrating an embodiment of a second process step in the manufacturing of the inductor with a magnetic layer. In FIG. 5, a magnetic layer, such as a patterned thin-film magnetic layer 410, is formed on the first surface 402 of the inductor wafer 400. In the embodiment illustrated in FIG. 5, the patterned thin-film magnetic layer 410 is formed on the first surface 402 of the portion of the inductor wafer 400 between the first and second vias 406 and 408.
  • The patterned thin-film magnetic layer 410 may be fabricated in various manners. For example, a magnetic material, such as cobalt-tantalum-zirconium (CoTaZr), may be deposited by vacuum processes, plated, screen-printed, or laminated onto the first surface 402 of the inductor wafer 400 to form the thin-film magnetic layer 410. Other magnetic materials, such as alloys of nickel-iron (NiFe), cobalt-iron (CoFe), or cobalt-nickel-iron (CoNiFe), with added materials such as phosphorus (P), boron (B) or carbon (C), may be used for the patterned thin-film magnetic layer 410 to tailor the magnetic and electrical properties of the patterned thin-film magnetic layer 410. In an embodiment, the magnetic material for the patterned thin-film magnetic layer 410 is chosen so as to enable a boost in the inductance value of the inductor at the appropriate operating frequencies. Other types of magnetic materials may also be implemented as the patterned thin-film magnetic layer 410. The magnetic layer 410 may also be formed by other techniques, for example, by sputtering a magnetic material on the first surface 402 of the inductor wafer 400.
  • FIG. 6 is a sectional view of an embodiment of a third process step in the manufacturing of the inductor with a dielectric on the patterned thin-film magnetic layer. In FIG. 6, a dielectric layer 412 is formed on top of the patterned thin-film magnetic layer 410. In the embodiment illustrated in FIG. 6, the dielectric layer 412 covers the entire top and side surfaces of the thin-film magnetic layer 410, as well as portions of the first surface 402 of the inductor wafer 400 surrounding the patterned thin-film magnetic layer 410. In an embodiment, the dielectric layer 412 comprises a polymer dielectric material. In an alternate embodiment, the dielectric layer 412 comprises an inorganic dielectric material, for example, silicon dioxide (SiO2). Other types of dielectric materials may also be used for the dielectric layer 412 within the scope of the disclosure.
  • FIG. 7 is a sectional view of an embodiment of a fourth process step in the manufacturing of the inductor with metal plating. In the sectional view shown in FIG. 7, the first via 406 has sidewalls 414 and 416, and likewise, the second via 408 has sidewalls 418 and 420 between the first and second surfaces 402 and 404 of the inductor wafer 400. In an embodiment, a conductive layer 422 is formed on the dielectric layer 412, on the sidewall 416 of the first via 406, on the sidewall 418 of the second via 408, and on the second surface 404 of the inductor wafer 400 between the first and second vias 406 and 408. In an embodiment, the conductive layer 422 is formed by metal plating.
  • In a further embodiment, the conductive layer is formed by semi-additive plating of a metal such as copper (Cu). In the sectional view shown in FIG. 7, the sidewall 414 opposite the sidewall 416 the first via 406 and at least portions of the first and second surfaces 402 and 404 of the inductor wafer 400 adjacent to the sidewall 414 are also covered by a conductive layer 424. Likewise, as shown in FIG. 7, the sidewall 420 opposite the sidewall 418 the second via 408 and at least portions of the first and second surfaces 402 and 404 of the inductor wafer 400 adjacent to the sidewall 420 are also covered by a conductive layer 426. Similar to the conductive layer 422, the conductive layers 424 and 426 may also be formed by metal plating, such as semi-additive copper plating.
  • In the embodiment illustrated in the sectional view of FIG. 7, the conductive layer 422 is shown as a section of one loop of an inductor coil which comprises a plurality of loops. A top plan view of an embodiment of a solenoid inductor which comprises an inductor coil with multiple loops is shown in FIG. 8, which will be described in further detail below. Other inductor topologies, for example, spiral inductors, toroid inductors, or racetrack inductors, may also be implemented instead of the solenoid inductor in the embodiments described and illustrated herein. In an SOC package with a limited amount of space, however, a solenoid inductor may be chosen for its small footprint and easy, efficient integration closest to the circuitry on the SOC die.
  • Referring to the embodiment shown in FIG. 7, the conductive layer 422, which is illustrated as the sectional view of one loop of coil of an inductor, surrounds the thin-film magnetic layer 410, which is implemented as a magnetic core of the inductor. In an alternate embodiment, another magnetic layer may be provided within the inductor coil, for example, a magnetic layer formed on the second surface 404 of the inductor wafer 400 opposite the magnetic layer 410 as shown in FIG. 7, to increase the overall magnetic flux and thus the overall inductance of the inductor. In another alternate embodiment, an inductor with multiple loops of coil, with each loop having a sectional view similar to the sectional view of the conductive layer 422 as shown in FIG. 7, may be provided without any magnetic layer inside the coil, although such an inductor with no magnetic core would have a lower inductance compared to an inductor of the same size and the same number of loops having one or more magnetic cores.
  • FIG. 8 is a top plan view of an inductor 800 having a coil 802 with multiple loops before the SOC wafer is joined with the inductor wafer. In an embodiment, a sectional view of one of the loops 804 taken along sectional line 806 a-806 b is illustrated in FIG. 7. Referring to the top plan view of FIG. 8, the inductor 800 has two terminals 808 and 810 at two opposite ends of the coil 802 for electrical connections with other circuit components in a voltage regulator, for example. In an embodiment, some of the pass-through vias in the inductor wafer 400, like the first via 406 and the second via 408 as illustrated in FIGS. 4-7, may be used to form electrical connections between die pads on the SOC die and pads on the substrate. For example, some of the pass-through vias may be connected to enable power supply connections and/or to provide ground planes to improve power delivery to the SOC die. In an embodiment, the conductive layer 422, which may comprise a thick Cu plating on the inductor wafer 200, can be used as an additional routing layer to improve the performance of an advanced node SOC device with an advanced node SOC wafer 100. In a further embodiment, by using a combined design of the advanced node SOC wafer 100, the inductor wafer 200, and a package substrate 1212 on an integrated circuit (IC) package 1204, which will be described in further detail below with respect to FIG. 12, the thick Cu plating of the conductive layer 422 can be used to reduce the number of Cu layers in the advanced node SOC wafer 100, or in the package substrate 1212, or both.
  • FIG. 9 is a sectional view illustrating an embodiment of a fifth process step in the manufacturing of a system-on-chip (SOC) device by joining an SOC wafer with an inductor wafer. In an embodiment, the SOC wafer 100 is provided with a plurality of metal columns, such as metal column 902 on the second surface 104 of the SOC wafer. In an embodiment, a solder 904 is provided on the metal column 902 for joining with a respective metal-plated via of the inductor wafer. In the sectional view illustrated in FIG. 9, the metal column 902 on the second surface 104 of the SOC wafer 100 is aligned with the via 408 in the inductor wafer 400, which is described above with respect to FIG. 7. For simplicity of illustration, the thin-film magnetic layer 410 and the dielectric layer 412 are omitted in the sectional view of FIG. 9.
  • FIG. 10 is a sectional view illustrating an embodiment of the SOC device of FIG. 9 after the SOC wafer and the inductor wafer are joined together. In the embodiment illustrated in FIG. 10, the solder 904 connects the top portions of conductors 422 and 426 over the sidewalls 418 and 420 of the via 408, respectively, and is positioned directly over the via 408 in the inductor wafer 400. In an embodiment, the solder 904 may comprise a conventional solder material that melts under heat and solidifies when the temperature cools down.
  • FIG. 11 is a perspective view illustrating an embodiment of an inductor die after dicing of the joined SOC wafer and inductor wafer. In typical wafer fabrication processes, multiple identical chips may be fabricated on a single wafer with a large surface area. In an embodiment, a chip may be separated from a wafer by one of many dicing techniques known to persons skilled in the art. In the embodiment shown in FIG. 11, the joined SOC wafer 100 and the inductor wafer 200 may be diced into a plurality of dies 1102 a, 1102 b, 1102 c, . . . . Any one of the dies 1102 a, 1102 b, 1102 c, . . . may include one or more inductors and one or more other components, such as one or more capacitors, as part of an integrated or embedded voltage regulator.
  • FIG. 12 is a sectional view illustrating an embodiment of a system including a printed circuit board (PCB), an SOC package, and a voltage regulator which includes an inductor die. In FIG. 12, a printed circuit board (PCB) 1202 is provided, and an IC package 1204 is provided on the PCB 1202. In an embodiment, the IC package may include one or more analog integrated circuits, one or more digital integrated circuits, or a combination thereof. In an embodiment, the IC package 1204 may have one of various configurations known to persons skilled in the art, including but not limited to wirebond, flip-chip, or ball grid array (BGA), for example.
  • Referring to FIG. 12, a die 1206 that includes an inductor fabricated on an inductor wafer with through vias and joined with an SOC wafer in embodiments described above with respect to FIGS. 1-11 is integrated with the IC package 1204. In an embodiment, the IC package 1204 includes a package substrate 1212. In an embodiment, the die 1206 may be provided as a part of the circuitry for an integrated or embedded voltage regulator 1208, which may also include other components. For example, the voltage regulator 1208 may include one or more additional passive components such as one or more capacitors. In FIG. 12, the rest of the circuitry for the voltage regulator 1208 are generically indicated by block 1210.
  • FIG. 13 is a simplified block diagram illustrating am embodiment of a system including a power management integrated circuit (PMIC) and an SOC device which includes an integrated or embedded voltage regulator and circuit using the voltage regulator. In the embodiment illustrated in FIG. 13, the PMIC 1302 is shown as a chip separate from the SOC device 1304. In an alternate embodiment, the PMIC 1302 may be integrated as part of the SOC device 1304. Referring to FIG. 13, the SOC device includes an inductor and capacitor (L & C) block 1306, a voltage regulator (VR) 1308, and one or more circuits 1310 using the output voltage from the VR 1308. In an embodiment, the inductor and capacitor in the L & C block 1306 may be integrated or embedded with the VR 1308 on the same chip as the circuits 1310 using the output voltage from the VR 1308 in an SOC device.
  • While the foregoing disclosure shows illustrative embodiments, it should be noted that various changes and modifications could be made herein without departing from the scope of the appended claims. The functions, steps or actions of the method claims in accordance with embodiments described herein need not be performed in any particular order unless expressly stated otherwise. Furthermore, although elements may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (30)

What is claimed is:
1. A device, comprising:
a system-on-chip (SOC) wafer;
an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, the first surface of the inductor wafer disposed adjacent to the SOC wafer;
a magnetic layer on at least a portion of the first surface of the inductor wafer; and
a conductive layer disposed on the magnetic layer, on at least a portion of the second surface of the inductor wafer, and on at least some of the sidewalls formed by the vias in the inductor wafer.
2. The device of claim 1, wherein the magnetic layer comprises a thin-film magnetic layer.
3. The device of claim 1, wherein the conductive layer comprises a copper plating.
4. The device of claim 3, wherein the copper plating comprises a copper semi-additive plating.
5. The device of claim 1, further comprising a conductor disposed between the SOC wafer and the inductor wafer.
6. The device of claim 5, wherein the conductor comprises a solder.
7. The device of claim 6, wherein the solder is positioned directly over at least one of the vias.
8. The device of claim 6, wherein the solder is in direct contact with at least a portion of the conductive layer.
9. The device of claim 1, wherein the inductor wafer comprises a glass wafer.
10. The device of claim 1, wherein the inductor wafer comprises a quartz wafer.
11. A device, comprising:
a voltage regulator, comprising:
a die;
an inductor wafer having first and second surfaces and a plurality of vias therethrough, the vias forming a plurality of sidewalls in the inductor wafer, the first surface of the inductor wafer disposed adjacent to the die;
a magnetic layer on at least a portion of the first surface of the inductor wafer; and
a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer; and
a system-on-chip (SOC) package configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
12. The device of claim 11, further comprising a printed circuit board (PCB) coupled to the SOC package.
13. The device of claim 11, wherein the magnetic layer comprises a thin-film magnetic layer.
14. The device of claim 11, wherein the voltage regulator further comprises a plurality of additional conductors disposed on the first and second surfaces of the inductor wafer, the additional conductors on the first and second surfaces of the inductor wafer and the conductors within at least some of the vias in the inductor wafer forming a coil of an inductor.
15. The device of claim 14, wherein the coil at least partially surrounds the magnetic layer.
16. The device of claim 1, wherein the inductor wafer comprises a glass wafer.
17. The device of claim 1, wherein the inductor wafer comprises a quartz wafer.
18. A method of making a device, comprising:
providing a first wafer having a first surface and a second surface;
forming a plurality of vias through the first and second surfaces of the first wafer, the vias defined by a plurality of sidewalls within the first wafer;
forming a patterned magnetic layer on at least a portion of the first surface of the first wafer;
forming a conductive layer on the patterned magnetic layer over the patterned magnetic layer, at least a portion of the second surface of the first wafer, and at least some of the sidewalls of the vias; and
joining a second wafer to the first wafer.
19. The method of claim 18, wherein the first wafer comprises an inductor wafer.
20. The method of claim 19, wherein the inductor wafer comprises a glass wafer.
21. The method of claim 19, wherein the inductor wafer comprises a quartz wafer.
22. The method of claim 18, further comprising forming a plurality of solders on the second wafer.
23. The method of claim 18, wherein forming the conductive layer comprises forming a semi-additive plating of copper.
24. The method of claim 18, wherein forming the patterned magnetic layer comprises sputtering a magnetic material on at least a portion of the first surface of the first wafer.
25. The method of claim 24, wherein the magnetic material comprises cobalt-tantalum-zirconium (CoTaZr).
26. A method of making a device, comprising:
providing a system-on-chip (SOC) package; and
forming a voltage regulator on the SOC package, comprising:
providing an SOC die;
providing an inductor wafer having first and second surfaces, the first surface of the inductor wafer disposed adjacent to the SOC die;
forming a plurality of vias through the first and second surfaces of the inductor wafer, the vias defined by a plurality of sidewalls in the inductor wafer; and
forming a plurality of conductors disposed within at least some of the vias in the inductor wafer, the conductors having respective first ends adjacent to the first surface of the inductor wafer and second ends adjacent to the second surface of the inductor wafer,
wherein the SOC package is configured to receive a power supply voltage from the voltage regulator, the SOC package having at least one conductor connected to at least one of the first and second ends of the conductors.
27. The method of claim 26, further comprising providing a printed circuit board (PCB) coupled to the SOC package.
28. The method of claim 26, further comprising forming patterned conductive layers on the first and second surfaces of the inductor wafer, the patterned conductive layers on the first and second surfaces of the inductor wafer and the conductors within at least some of the vias in the inductor wafer forming a coil of an inductor.
29. The method of claim 26, further comprising forming a patterned magnetic layer on the inductor wafer.
30. The method of claim 29, wherein the patterned magnetic layer comprises cobalt-tantalum-zirconium (CoTaZr).
US14/843,964 2015-09-02 2015-09-02 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining Abandoned US20170062398A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/843,964 US20170062398A1 (en) 2015-09-02 2015-09-02 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
EP16751137.7A EP3345218A1 (en) 2015-09-02 2016-08-08 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
CN201680048793.1A CN108012565A (en) 2015-09-02 2016-08-08 It is using chip glass that inductor and advanced node system-on-chip (SOC) is integrated by inductor and wafer to wafer engagement
JP2018509890A JP2018532260A (en) 2015-09-02 2016-08-08 Inductor integration and wafer-to-wafer bonding by advanced node system on chip (SOC) using glass wafer with inductor
BR112018004288A BR112018004288A2 (en) 2015-09-02 2016-08-08 advanced node chip (soc) system inductor integration using inductor glass blade and blade to blade junction
CA2992855A CA2992855A1 (en) 2015-09-02 2016-08-08 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
KR1020187009210A KR102541387B1 (en) 2015-09-02 2016-08-08 Integration and wafer-to-wafer coupling of inductors with advanced-node SYSTEM-ON-CHIP (SOC) using a glass wafer with inductors
PCT/US2016/045998 WO2017039962A1 (en) 2015-09-02 2016-08-08 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
US17/408,273 US20210384292A1 (en) 2015-09-02 2021-08-20 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/843,964 US20170062398A1 (en) 2015-09-02 2015-09-02 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/408,273 Division US20210384292A1 (en) 2015-09-02 2021-08-20 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining

Publications (1)

Publication Number Publication Date
US20170062398A1 true US20170062398A1 (en) 2017-03-02

Family

ID=56684312

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/843,964 Abandoned US20170062398A1 (en) 2015-09-02 2015-09-02 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
US17/408,273 Pending US20210384292A1 (en) 2015-09-02 2021-08-20 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/408,273 Pending US20210384292A1 (en) 2015-09-02 2021-08-20 Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining

Country Status (8)

Country Link
US (2) US20170062398A1 (en)
EP (1) EP3345218A1 (en)
JP (1) JP2018532260A (en)
KR (1) KR102541387B1 (en)
CN (1) CN108012565A (en)
BR (1) BR112018004288A2 (en)
CA (1) CA2992855A1 (en)
WO (1) WO2017039962A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169934A1 (en) * 2015-12-15 2017-06-15 Globalfoundries Inc. Patterned magnetic shields for inductors and transformers
WO2020005435A1 (en) * 2018-06-29 2020-01-02 Intel Corporation Integrated magnetic core inductors on glass core substrates
US20200203067A1 (en) * 2017-09-29 2020-06-25 Intel Corporation Magnetic core/shell particles for inductor arrays
US11450628B2 (en) * 2019-12-15 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure including a solenoid inductor laterally aside a die and method of fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9935076B1 (en) * 2015-09-30 2018-04-03 Apple Inc. Structure and method for fabricating a computing system with an integrated voltage regulator module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105225A1 (en) * 2003-08-06 2005-05-19 Micron Technology, Inc. Microtransformer for system-on-chip power supply
US6976300B2 (en) * 1999-07-09 2005-12-20 Micron Technology, Inc. Integrated circuit inductors
US20140264734A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Inductor With Magnetic Material
US20150137342A1 (en) * 2013-11-20 2015-05-21 Marvell World Trade Ltd. Inductor/transformer outside of silicon wafer
US20160254342A1 (en) * 2015-02-26 2016-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic core, inductor, and method for fabricating the magnetic core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088971A1 (en) * 2004-10-27 2006-04-27 Crawford Ankur M Integrated inductor and method of fabrication
US7463131B1 (en) 2005-01-24 2008-12-09 National Semiconductor Corporation Patterned magnetic layer on-chip inductor
US9105627B2 (en) * 2011-11-04 2015-08-11 International Business Machines Corporation Coil inductor for on-chip or on-chip stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976300B2 (en) * 1999-07-09 2005-12-20 Micron Technology, Inc. Integrated circuit inductors
US20050105225A1 (en) * 2003-08-06 2005-05-19 Micron Technology, Inc. Microtransformer for system-on-chip power supply
US20140264734A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Inductor With Magnetic Material
US20150137342A1 (en) * 2013-11-20 2015-05-21 Marvell World Trade Ltd. Inductor/transformer outside of silicon wafer
US20160254342A1 (en) * 2015-02-26 2016-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic core, inductor, and method for fabricating the magnetic core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169934A1 (en) * 2015-12-15 2017-06-15 Globalfoundries Inc. Patterned magnetic shields for inductors and transformers
US20200203067A1 (en) * 2017-09-29 2020-06-25 Intel Corporation Magnetic core/shell particles for inductor arrays
WO2020005435A1 (en) * 2018-06-29 2020-01-02 Intel Corporation Integrated magnetic core inductors on glass core substrates
US11538617B2 (en) 2018-06-29 2022-12-27 Intel Corporation Integrated magnetic core inductors on glass core substrates
US11450628B2 (en) * 2019-12-15 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure including a solenoid inductor laterally aside a die and method of fabricating the same

Also Published As

Publication number Publication date
CN108012565A (en) 2018-05-08
WO2017039962A1 (en) 2017-03-09
US20210384292A1 (en) 2021-12-09
KR20180048948A (en) 2018-05-10
KR102541387B1 (en) 2023-06-08
BR112018004288A2 (en) 2018-10-09
EP3345218A1 (en) 2018-07-11
JP2018532260A (en) 2018-11-01
CA2992855A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US20210384292A1 (en) Integration of inductors with advanced-node system-on-chip (soc) using glass wafer with inductors and wafer-to-wafer joining
US9640604B2 (en) Small size and fully integrated power converter with magnetics on chip
JP6285617B1 (en) Integrated device package comprising a magnetic core inductor having a guard ring embedded in a package substrate
US20170309700A1 (en) Integrated inductor for integrated circuit devices
US9153547B2 (en) Integrated inductor structure and method of fabrication
TWI611437B (en) Substrate-less discrete coupled inductor structure, inductor structure apparatus, and method for providing the inductor structure
CN107210231B (en) Switched-mode power stage with integrated passive components
US9888577B2 (en) Passive electrical devices with a polymer carrier
WO2011025897A1 (en) Transformer signal coupling for flip-chip integration
US11723222B2 (en) Integrated circuit (IC) package with integrated inductor having core magnetic field (B field) extending parallel to substrate
US11557420B2 (en) Coupling inductors in an IC device using interconnecting elements with solder caps and resulting devices
US9006862B2 (en) Electronic semiconductor device with integrated inductor, and manufacturing method
US10879169B2 (en) Integrated inductors for power management circuits
US10470309B2 (en) Inductor and capacitor integrated on a substrate
US20150137342A1 (en) Inductor/transformer outside of silicon wafer
US20150311271A1 (en) Landside embedded inductor for fanout packaging
TWI658567B (en) Electronic package and its substrate structure
US20230082743A1 (en) Integrated passive devices
TW202418311A (en) Method for constructing solenoid inductor and solenoid inductor constructed by the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARABI, KARIM;SHENOY, RAVINDRA VAMAN;GOUSEV, EVGENI PETROVICH;AND OTHERS;REEL/FRAME:037073/0397

Effective date: 20151014

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION