US20170059807A1 - Thermal compensation to adjust camera lens focus - Google Patents

Thermal compensation to adjust camera lens focus Download PDF

Info

Publication number
US20170059807A1
US20170059807A1 US14/839,881 US201514839881A US2017059807A1 US 20170059807 A1 US20170059807 A1 US 20170059807A1 US 201514839881 A US201514839881 A US 201514839881A US 2017059807 A1 US2017059807 A1 US 2017059807A1
Authority
US
United States
Prior art keywords
lens
image sensor
camera
collet
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/839,881
Other versions
US9594228B1 (en
Inventor
Chen Feng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GoPro Inc
Original Assignee
GoPro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GoPro Inc filed Critical GoPro Inc
Priority to US14/839,881 priority Critical patent/US9594228B1/en
Assigned to GOPRO, INC. reassignment GOPRO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FENG, CHEN
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: GOPRO, INC.
Publication of US20170059807A1 publication Critical patent/US20170059807A1/en
Application granted granted Critical
Publication of US9594228B1 publication Critical patent/US9594228B1/en
Assigned to GOPRO, INC. reassignment GOPRO, INC. RELEASE OF PATENT SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • H04N5/2253
    • H04N5/2254

Definitions

  • This disclosure relates to a camera mount system, and more specifically, to a passive thermal compensation mechanism for adjusting focus in a camera lens system.
  • a lens mount is connected to a lens barrel via a collet such that the image sensor is aligned to maintain lens focus.
  • the materials used for the camera lens mount, lens barrel, and collet may expand or contract due to changes in temperature of the lens assembly.
  • the lens optical elements inside the lens barrel can increase or decrease the focal length of the lens due to changes in temperature.
  • the expansion or contraction of any of the components, along with the change in the focal length may cause the positions of the lenses to shift along the optical axis, thus altering the distance between the lenses and the image sensor. This affects the focus of the lenses and compromises performance and yield.
  • FIG. 1 illustrates an integrated image sensor and camera lens system, according to one embodiment.
  • FIG. 2 illustrates the shift of various components of the system to change in temperature, according to one embodiment.
  • the apparatus includes an image sensor, a camera lens mount comprising a first material that changes in length with the temperature change according to the material's coefficient of thermal expansion, a lens barrel comprising a second material that changes in length with the temperature change according to the material's coefficient of thermal expansion, a lens optical assembly secured by the lens barrel, the lens optical assembly comprises optical characteristics that cause a change in focal length with the temperature change according to a thermal optical coefficient.
  • the apparatus further includes a collet that connects the lens barrel and the camera lens mount, the collet comprising a third material that changes in length with the temperature change according to the material's coefficient of thermal expansion.
  • the collet is structured in a manner such that the change in the length of the collet compensates for the change in the lengths of the lens mount, the lens barrel and the lens optical assembly in order to keep the image plan approximately stationary and in focus in response to the temperature change.
  • FIG. 1 it illustrates an embodiment of an integrated image sensor and lens assembly 100 that includes a camera lens barrel 150 , a camera lens mount 120 , a collet 130 and an image sensor substrate 140 .
  • the image sensor substrate 140 has an image sensor 160 (e.g., a high-definition image sensor) for capturing images and/or video. For accurate focus, the image sensor 160 lies on an image plane 160 .
  • the camera lens mount 120 physically couples with the image sensor substrate 140 and couples to the camera lens barrel 150 via the collet 130 .
  • different portions of the camera lens mount 120 can be made of different types of material (e.g. brass, aluminum, plastic, etc.). Each material may have a different coefficient of thermal expansion defining how the material expands or contracts with change in temperature.
  • the linear expansion coefficient indicates the change in length of an object due to the change in temperature and is given by the following equation:
  • L is the length of the object and dL/dT is the rate of change in the linear dimension per unit change in temperature.
  • the camera lens mount 120 comprises a base portion 125 and a tube portion 128 .
  • the base portion 125 includes a bottom surface in a plane substantially parallel to a surface of the image sensor substrate 140 .
  • the tube portion 128 of the lens mount 120 extends away from the image sensor assembly along the optical axis and includes a substantially cylindrical channel for receiving the lens barrel 150 .
  • the lens barrel 150 comprises one or more lenses or other optical components to direct light to the image sensor 160 .
  • the lower portion of the lens barrel 116 is substantially cylindrical and structured to at least partially extend into the channel of the tube portion 128 of the camera lens mount 120 .
  • the lens arms 114 extend radially from the body of the lens barrel 150 and are outside the channel of the lens mount 120 when assembled.
  • the lens barrel 150 comprises a lower portion 116 and one or more barrel arms 114 .
  • the lens optical assembly 112 includes optical components (e.g. one or more lenses) to enable external light to enter the lens barrel 150 and be directed to the image sensor assembly 130 .
  • the optical components of the lens optical assembly 112 are generally positioned along the optical axis at various distances from the image plane and may include elements external to the barrel 150 or internal elements (not shown in the figure).
  • the lower portion 116 and barrel arms 114 may be made of different material (e.g., brass, aluminum, plastic, etc.) having different coefficients of thermal expansion.
  • the lens barrel 150 further includes a lens optical assembly 112 that may be made of a material such as optical glass or plastic. The material of the lens optical assembly 112 may also have a coefficient of thermal expansion different than the coefficients of thermal expansion for other portions of the integrated sensor and lens assembly 100 .
  • the collet physically couples the lens barrel 150 to the camera lens mount 120 .
  • the collet may be made of, for example, brass, aluminum, plastic, or other material.
  • FIG. 2 illustrates the effect of an increase in temperature on each of the lens barrel 150 , the lens mount 120 , the collet 130 , and the optical lens assembly 112 .
  • the integrated sensor and lens assembly 100 may experience a change in temperature due to, for example, external weather or heating from use of the camera.
  • a change in temperature causes the materials of the lens barrel 150 , camera lens mount 120 and the collet 130 to expand or contract. Expansion or contraction of these components shifts the position of the lens or lenses relative to the image sensor 160 which can cause defocus of the image.
  • temperature change in the lens optical assembly 112 causes expansion or contraction of its materials as well as a change in distances between the lens elements, which can further affect the overall focal length.
  • the materials for the lens mount 120 and lens barrel 150 generally have a positive coefficient of thermal expansion (CTE), thereby causing the lens mount 120 and the lens barrel 150 to expand with an increase in temperature and move the lens optical assembly 112 away from the image sensor, thereby contributing to an increase in the effective focal length with an increase in temperature.
  • CTE coefficient of thermal expansion
  • the collet 130 may also have a positive CTE and therefore expands with an increase in temperature. Due to the structure of the collet 130 , this expansion moves the lens optical assembly 112 towards the image sensor, 160 , thereby contributing to a decrease in the effective focal length.
  • the lens optical assembly 112 typically has a negative thermal optical coefficient in which the net effect of a temperature increase on the lens optical assembly 112 generally contributes to a decrease in the effective focal length.
  • the materials for each of the lens barrel 150 , collet 130 , lens optical assembly 112 and the lens mount 120 are selected based on the following equation:
  • is the change in the distance between the lens focal plane and the image sensor
  • L m is the length of the lens mount
  • CTE m is the coefficient of thermal expansion of the lens mount material
  • L c is the length of the collet
  • CTE c is the coefficient of thermal expansion of the collet material
  • L B is the length of the lens barrel
  • CTE B is the coefficient of thermal expansion of the lens barrel material
  • L f is the effective focal length of the lens optical assembly
  • CTE f is the thermal optical coefficient representing the change of the lens focal length in the lens optical assembly for a change in temperature
  • ⁇ T is the change in temperature.
  • the materials and dimensions of the collet 130 , lens mount 120 , the lens barrel 150 and the optical characteristics of the lens optical assembly 112 are chosen such that ⁇ is zero or approximately zero.
  • ⁇ for a given temperature change is within a predefined tolerance of zero representing an acceptable level of defocus to one of skill in the art (e.g., within 1% tolerance, 2% tolerance, 5% tolerance, etc.). Because the characteristics of the lens mount 130 , lens barrel 150 , and lens optical assembly 112 are often dictated by other design constraints of the camera 200 , the most flexibility may exist in choosing the material and dimensions of the collet 130 to balance the thermal effects of the other components.
  • the material for the collet 130 is selected with a CTE c such that (L c ⁇ CTE c ⁇ T) has a same amount of change at temperature ⁇ T as the net change caused by the other components at temperature ⁇ T.
  • the ideal collet material and length are given by:
  • the thermal coefficient for the mount CTE m may be around 5-20 ppm per degree C.
  • An example material may be a metal or plastic.
  • the barrel material is generally is selected to have good precision and manufacturability for the lens optical element assembly.
  • the barrel CTE B material may be around 30 to 50 ppm per degree C. in one embodiment.
  • An example material for the barrel 150 is injection mold plastic.
  • the optical materials for the lens optical elements 112 are selected based on the best optical performance in terms of resolution and aberrations.
  • the lens optical materials 112 generally includes glass lens elements and may have an thermal optical coefficient CTE f of approximately ⁇ 10 to ⁇ 20 ppm per degree C. in one embodiment.
  • the collet length is selected such that it compensates for the net effect on focal length due to thermal expansion of the three other components.
  • the material chosen for the collet may have a much higher CTE c than the CTEs of the other components.
  • the thermal coefficient for the collet CTE c may be around 100 ppm per degree C. or higher in one embodiment.
  • An example material is a plastic material with high CTE.
  • the thermal focus shift can be adjusted to stay within a predetermined threshold range. To achieve this fine tuning of the thermal focus shift within the threshold range, the connecting point of the collet to the barrel is adjusted.
  • other materials may be used with different CTEs that could include either positive or negative CTEs. Effectively, the materials and dimensions are selected such that the net change in focal length caused by thermal effects of the lens mount, lens barrel and the lens optical assembly is approximately zero.
  • Coupled along with its derivatives.
  • the term “coupled” as used herein is not necessarily limited to two or more elements being in direct physical or electrical contact. Rather, the term “coupled” may also encompass two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other, or are structured to provide a thermal conduction path between the elements.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

An integrated image sensor and a camera lens apparatus comprising of an image sensor substrate, a camera lens mount, a lens barrel, a lens optical assembly and a collet. The camera lens mount comprises a first material, the lens barrel comprises a second material and the collet comprises a third material, the first, second and third materials change in length with a temperature change according to their respective coefficient of thermal expansion. The lens optical assembly comprises optical elements that cause a change in focal length with a temperature change according to a thermal optical coefficient. The first, second, and third material, the lengths of the camera lens mount, lens barrel, and collet, and the thermal optical coefficient of the lens optical assembly are such that the image plane is approximately stationary relative to the sensor surface in response to the temperature change.

Description

    BACKGROUND
  • Technical Field
  • This disclosure relates to a camera mount system, and more specifically, to a passive thermal compensation mechanism for adjusting focus in a camera lens system.
  • Description of the Related Art
  • In an integrated image sensor and camera lens system a lens mount is connected to a lens barrel via a collet such that the image sensor is aligned to maintain lens focus. The materials used for the camera lens mount, lens barrel, and collet may expand or contract due to changes in temperature of the lens assembly. Additionally, the lens optical elements inside the lens barrel can increase or decrease the focal length of the lens due to changes in temperature. The expansion or contraction of any of the components, along with the change in the focal length may cause the positions of the lenses to shift along the optical axis, thus altering the distance between the lenses and the image sensor. This affects the focus of the lenses and compromises performance and yield.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • The disclosed embodiments have other advantages and features which will be more readily apparent from the following detailed description of the invention and the appended claims, when taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates an integrated image sensor and camera lens system, according to one embodiment.
  • FIG. 2 illustrates the shift of various components of the system to change in temperature, according to one embodiment.
  • DETAILED DESCRIPTION
  • The figures and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.
  • Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the disclosed system (or method) for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
  • Configuration Overview
  • Disclosed by way of example embodiment is an integrated image sensor and a camera lens apparatus that includes a method of thermal compensation to adjust the focus of the camera lens. The apparatus includes an image sensor, a camera lens mount comprising a first material that changes in length with the temperature change according to the material's coefficient of thermal expansion, a lens barrel comprising a second material that changes in length with the temperature change according to the material's coefficient of thermal expansion, a lens optical assembly secured by the lens barrel, the lens optical assembly comprises optical characteristics that cause a change in focal length with the temperature change according to a thermal optical coefficient. The apparatus further includes a collet that connects the lens barrel and the camera lens mount, the collet comprising a third material that changes in length with the temperature change according to the material's coefficient of thermal expansion. The collet is structured in a manner such that the change in the length of the collet compensates for the change in the lengths of the lens mount, the lens barrel and the lens optical assembly in order to keep the image plan approximately stationary and in focus in response to the temperature change.
  • Turning now to FIG. 1, it illustrates an embodiment of an integrated image sensor and lens assembly 100 that includes a camera lens barrel 150, a camera lens mount 120, a collet 130 and an image sensor substrate 140. The image sensor substrate 140 has an image sensor 160 (e.g., a high-definition image sensor) for capturing images and/or video. For accurate focus, the image sensor 160 lies on an image plane 160. The camera lens mount 120 physically couples with the image sensor substrate 140 and couples to the camera lens barrel 150 via the collet 130.
  • In one embodiment, different portions of the camera lens mount 120 can be made of different types of material (e.g. brass, aluminum, plastic, etc.). Each material may have a different coefficient of thermal expansion defining how the material expands or contracts with change in temperature. The linear expansion coefficient indicates the change in length of an object due to the change in temperature and is given by the following equation:

  • αL=1/L(dL/dT)  (1)
  • where L is the length of the object and dL/dT is the rate of change in the linear dimension per unit change in temperature.
  • The camera lens mount 120 comprises a base portion 125 and a tube portion 128. The base portion 125 includes a bottom surface in a plane substantially parallel to a surface of the image sensor substrate 140. The tube portion 128 of the lens mount 120 extends away from the image sensor assembly along the optical axis and includes a substantially cylindrical channel for receiving the lens barrel 150.
  • The lens barrel 150 comprises one or more lenses or other optical components to direct light to the image sensor 160. The lower portion of the lens barrel 116 is substantially cylindrical and structured to at least partially extend into the channel of the tube portion 128 of the camera lens mount 120. The lens arms 114 extend radially from the body of the lens barrel 150 and are outside the channel of the lens mount 120 when assembled. The lens barrel 150 comprises a lower portion 116 and one or more barrel arms 114. The lens optical assembly 112 includes optical components (e.g. one or more lenses) to enable external light to enter the lens barrel 150 and be directed to the image sensor assembly 130. The optical components of the lens optical assembly 112 are generally positioned along the optical axis at various distances from the image plane and may include elements external to the barrel 150 or internal elements (not shown in the figure).
  • The lower portion 116 and barrel arms 114 may be made of different material (e.g., brass, aluminum, plastic, etc.) having different coefficients of thermal expansion. The lens barrel 150 further includes a lens optical assembly 112 that may be made of a material such as optical glass or plastic. The material of the lens optical assembly 112 may also have a coefficient of thermal expansion different than the coefficients of thermal expansion for other portions of the integrated sensor and lens assembly 100.
  • The collet physically couples the lens barrel 150 to the camera lens mount 120. The collet may be made of, for example, brass, aluminum, plastic, or other material.
  • Thermal Compensation
  • FIG. 2 illustrates the effect of an increase in temperature on each of the lens barrel 150, the lens mount 120, the collet 130, and the optical lens assembly 112. The integrated sensor and lens assembly 100 may experience a change in temperature due to, for example, external weather or heating from use of the camera. A change in temperature causes the materials of the lens barrel 150, camera lens mount 120 and the collet 130 to expand or contract. Expansion or contraction of these components shifts the position of the lens or lenses relative to the image sensor 160 which can cause defocus of the image. Furthermore, temperature change in the lens optical assembly 112 causes expansion or contraction of its materials as well as a change in distances between the lens elements, which can further affect the overall focal length.
  • The materials for the lens mount 120 and lens barrel 150 generally have a positive coefficient of thermal expansion (CTE), thereby causing the lens mount 120 and the lens barrel 150 to expand with an increase in temperature and move the lens optical assembly 112 away from the image sensor, thereby contributing to an increase in the effective focal length with an increase in temperature. The collet 130 may also have a positive CTE and therefore expands with an increase in temperature. Due to the structure of the collet 130, this expansion moves the lens optical assembly 112 towards the image sensor, 160, thereby contributing to a decrease in the effective focal length.
  • The lens optical assembly 112 typically has a negative thermal optical coefficient in which the net effect of a temperature increase on the lens optical assembly 112 generally contributes to a decrease in the effective focal length.
  • To avoid lens defocus due to thermal effects, the materials for each of the lens barrel 150, collet 130, lens optical assembly 112 and the lens mount 120 are selected based on the following equation:

  • Δ=(L m·CTEm ·ΔT)−(L c·CTE·ΔT)+(L B·CTEB ·ΔT)−(L f·CTEf ·ΔT)  (2)
  • where Δ is the change in the distance between the lens focal plane and the image sensor, Lm is the length of the lens mount, CTEm is the coefficient of thermal expansion of the lens mount material, Lc is the length of the collet, CTEc is the coefficient of thermal expansion of the collet material, LB is the length of the lens barrel, CTEB is the coefficient of thermal expansion of the lens barrel material, Lf is the effective focal length of the lens optical assembly, CTEf is the thermal optical coefficient representing the change of the lens focal length in the lens optical assembly for a change in temperature, and ΔT is the change in temperature.
  • To minimize or eliminate defocus caused by temperature change, the materials and dimensions of the collet 130, lens mount 120, the lens barrel 150 and the optical characteristics of the lens optical assembly 112 are chosen such that Δ is zero or approximately zero. For example, in one embodiment, Δ for a given temperature change is within a predefined tolerance of zero representing an acceptable level of defocus to one of skill in the art (e.g., within 1% tolerance, 2% tolerance, 5% tolerance, etc.). Because the characteristics of the lens mount 130, lens barrel 150, and lens optical assembly 112 are often dictated by other design constraints of the camera 200, the most flexibility may exist in choosing the material and dimensions of the collet 130 to balance the thermal effects of the other components. For example, the material for the collet 130 is selected with a CTEc such that (Lc·CTEc·ΔT) has a same amount of change at temperature ΔT as the net change caused by the other components at temperature ΔT. For example, in one embodiment the ideal collet material and length are given by:

  • L c·CTEc =L m·CTEm +L B·CTEB −L f·CTEf  (3)
  • In an example, embodiment, the thermal coefficient for the mount CTEm may be around 5-20 ppm per degree C. An example material may be a metal or plastic. The barrel material is generally is selected to have good precision and manufacturability for the lens optical element assembly. The barrel CTEB material may be around 30 to 50 ppm per degree C. in one embodiment. An example material for the barrel 150 is injection mold plastic. The optical materials for the lens optical elements 112 are selected based on the best optical performance in terms of resolution and aberrations. The lens optical materials 112 generally includes glass lens elements and may have an thermal optical coefficient CTEf of approximately −10 to −20 ppm per degree C. in one embodiment. Presuming these characteristics of the other components, the collet length is selected such that it compensates for the net effect on focal length due to thermal expansion of the three other components. The material chosen for the collet may have a much higher CTEc than the CTEs of the other components. For example, the thermal coefficient for the collet CTEc may be around 100 ppm per degree C. or higher in one embodiment. An example material is a plastic material with high CTE.
  • The thermal focus shift can be adjusted to stay within a predetermined threshold range. To achieve this fine tuning of the thermal focus shift within the threshold range, the connecting point of the collet to the barrel is adjusted.
  • In other alternative embodiments, other materials may be used with different CTEs that could include either positive or negative CTEs. Effectively, the materials and dimensions are selected such that the net change in focal length caused by thermal effects of the lens mount, lens barrel and the lens optical assembly is approximately zero.
  • Additional Configuration Considerations
  • Throughout this specification, some embodiments have used the expression “coupled” along with its derivatives. The term “coupled” as used herein is not necessarily limited to two or more elements being in direct physical or electrical contact. Rather, the term “coupled” may also encompass two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other, or are structured to provide a thermal conduction path between the elements.
  • Likewise, as used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
  • Finally, as used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs as disclosed from the principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope defined in the appended claims.

Claims (19)

1. An integrated image sensor and a camera lens apparatus comprising:
an image sensor substrate comprising an image sensor on an image plane;
a camera lens mount comprising a first material that expands in length with an increase in temperature according to a first positive coefficient of thermal expansion, the camera lens mount comprising:
a base portion including a lower surface adjacent to the image sensor substrate; and
a tube portion extending from the base portion in a direction of an optical axis substantially perpendicular to the image plane, the tube portion having a channel;
a lens barrel having a first portion extending into the channel of the tube portion, and a second portion outside the channel of the tube portion, the lens barrel comprising a second material that expands in length with the increase in temperature according to a second positive coefficient of thermal expansion;
a lens optical assembly secured by the lens barrel, the lens optical assembly comprising optical characteristics that cause a negative change in focal length with the increase in temperature according to a negative thermal optical coefficient;
a collet connecting the interior surface of the camera lens mount and an exterior surface of the lens barrel, wherein the interior surface of the lens mount, the collet and the exterior surface of the lower portion of the lens barrel are each longitudinally oriented in a direction substantially parallel to the optical axis, the collet to couple the lens barrel to the camera lens mount, the collet comprising a third material that expands in length with the increase in temperature according to a third positive coefficient of thermal expansion;
wherein the first material, second material, third material, lengths of the camera lens mount, lens barrel, and collet, and the thermal optical coefficient of the lens optical assembly are such that the focal plane is maintained in approximate alignment with the image plane in response to the increase in temperature.
2. (canceled)
3. The integrated image sensor and a camera lens apparatus of claim 1, wherein a change in length of the collet with the increase in temperature is approximately equal in magnitude to a sum of changes in length of the camera mount, the lens barrel and the effective focal length of the lens optical assembly with the increase in temperature.
4. The integrated image sensor and a camera lens apparatus of claim 1, wherein a change in length of the collet with the increase in temperature moves the lens optical assembly towards the image sensor.
5. The integrated image sensor and a camera lens apparatus of claim 1, wherein a change in length of the lens barrel with the increase in temperature moves the lens optical assembly away from the image sensor.
6. The integrated image sensor and a camera lens apparatus of claim 1, wherein a change in length of the lens mount with the increase in temperature moves the lens optical assembly away from the image sensor.
7. The integrated image sensor and camera lens apparatus of claim 1, wherein the first positive coefficient of thermal expansion for the camera lens mount is in a range of 5 to 20 parts per million per degree Celsius.
8. The integrated image sensor and camera lens apparatus of claim 1, wherein the second positive coefficient of thermal expansion for the lens barrel is in a range of 30 to 50 parts per million per degree Celsius.
9. The integrated image sensor and camera lens apparatus of claim 1, wherein the third positive coefficient of thermal expansion for the collet is approximately 100 parts per million per degree Celsius.
10. The integrated image sensor and camera lens apparatus of claim 1, wherein the negative thermal optical coefficient of the lens optical assembly is in a range of −10 to −20 parts per million per degree Celsius.
11. A camera comprising:
an image sensor substrate comprising an image sensor on an image plane, the image sensor for capturing images or video;
a camera lens mount comprising a first material that expands in length with an increase in temperature according to a first positive coefficient of thermal expansion, the camera lens mount comprising:
a base portion including a lower surface adjacent to the image sensor substrate; and
a tube portion extending from the base portion in a direction of an optical axis substantially perpendicular to the image plane, the tube portion having a channel;
a lens barrel having a first portion extending into the channel of the tube portion, and a second portion outside the channel of the tube portion, the lens barrel comprising a second material that expands in length with the increase in temperature according to a second positive coefficient of thermal expansion;
a lens optical assembly secured by the lens barrel for directing to the image sensor, the lens optical assembly comprising optical characteristics that cause a negative change in focal length with the increase in temperature according to a negative thermal optical coefficient;
a collet connecting the interior surface of the camera lens mount and an exterior surface of the lens barrel, wherein the interior surface of the lens mount, the collet and the exterior surface of the lower portion of the lens barrel are each longitudinally oriented in a direction substantially parallel to the optical axis, the collet to couple the lens barrel to the camera lens mount, the collet comprising a third material that expands in length with the increase in temperature according to a third positive coefficient of thermal expansion;
wherein the first material, second material, third material, lengths of the camera lens mount, lens barrel, and collet, and the thermal optical coefficient of the lens optical assembly are such that the focal plane is maintained in approximate alignment with the image plane in response to the increase in temperature.
12. The camera of claim 11, wherein a change in length of the collet with the increase in temperature is approximately equal in magnitude to a sum of changes in length of the camera mount, the lens barrel and the effective focal length of the lens optical assembly with the increase in temperature.
13. The camera of claim 11, wherein a change in length of the collet with the increase in temperature moves the lens optical assembly towards the image sensor.
14. The camera of claim 11, wherein a change in length of the lens barrel with the increase in temperature moves the lens optical assembly away from the image sensor.
15. The camera of claim 11, wherein a change in length of the lens mount with the increase in temperature moves the lens optical assembly away from the image sensor.
16. The camera of claim 11, wherein the first positive coefficient of thermal expansion for the camera lens mount is in a range of 5 to 20 parts per million per degree Celsius.
17. The camera of claim 11, wherein the second positive coefficient of thermal expansion for the lens barrel is in a range of 30 to 50 parts per million per degree Celsius.
18. The camera of claim 11, wherein the third positive coefficient of thermal expansion for the collet is approximately 100 parts per million per degree Celsius.
19. The camera of claim 11, wherein the negative thermal optical coefficient of the lens optical assembly is in a range of −10 to −20 parts per million per degree Celsius.
US14/839,881 2015-08-28 2015-08-28 Thermal compensation to adjust camera lens focus Active US9594228B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/839,881 US9594228B1 (en) 2015-08-28 2015-08-28 Thermal compensation to adjust camera lens focus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/839,881 US9594228B1 (en) 2015-08-28 2015-08-28 Thermal compensation to adjust camera lens focus

Publications (2)

Publication Number Publication Date
US20170059807A1 true US20170059807A1 (en) 2017-03-02
US9594228B1 US9594228B1 (en) 2017-03-14

Family

ID=58098001

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/839,881 Active US9594228B1 (en) 2015-08-28 2015-08-28 Thermal compensation to adjust camera lens focus

Country Status (1)

Country Link
US (1) US9594228B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227730A1 (en) * 2015-08-14 2017-08-10 Gopro, Inc. Prism-Based Focal Plane Adjustment for Thermal Compensation in a Lens Assembly
US20180307000A1 (en) * 2017-04-21 2018-10-25 Ability Opto-Electronics Technology Co.Ltd. Optical image capturing system and electronic device
WO2019213812A1 (en) * 2018-05-07 2019-11-14 深圳市伯森光电科技有限公司 Image capture device
US20200128196A1 (en) * 2016-10-21 2020-04-23 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
CN111596431A (en) * 2020-06-12 2020-08-28 青岛镭创光电技术有限公司 Temperature compensation type plastic optical system and manufacturing method thereof
EP3715929A1 (en) * 2019-03-29 2020-09-30 Apple Inc. Lens holder to compensate for optical focal shift by thermo-mechanical expansion
US10834338B2 (en) 2014-05-01 2020-11-10 Rebllion Photonics, Inc. Mobile gas and chemical imaging camera
CN111999840A (en) * 2020-07-24 2020-11-27 北京空间机电研究所 Focal plane structure with focal length compensation capability
US10948404B2 (en) 2016-10-21 2021-03-16 Rebellion Photonics, Inc. Gas imaging system
US10955355B2 (en) 2017-02-22 2021-03-23 Rebellion Photonics, Inc. Systems and methods for monitoring remote installations
CN113391419A (en) * 2020-02-27 2021-09-14 Aptiv技术有限公司 Optical device and method for manufacturing the same
US11140303B2 (en) * 2018-05-07 2021-10-05 Bosen Opto-Electronic Technology Co. Limited Camera
US11290662B2 (en) 2014-05-01 2022-03-29 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
CN114979440A (en) * 2022-05-23 2022-08-30 广东亿嘉和科技有限公司 High-precision optical navigation equipment and heat influence precision compensation method thereof
US11796454B2 (en) 2014-07-07 2023-10-24 Rebellion Photonics, Inc. Gas leak emission quantification with a gas cloud imager

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391122B2 (en) * 2015-10-26 2018-09-19 カンタツ株式会社 Lens assembly and imaging device
US11708263B2 (en) 2020-05-13 2023-07-25 Sheba Microsystems Inc. Thermal compensation of lens assembly focus using image sensor shift
US11921343B2 (en) 2020-09-29 2024-03-05 Zf Friedrichshafen Ag Optical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8567678B2 (en) * 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11290662B2 (en) 2014-05-01 2022-03-29 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
US10893220B2 (en) 2014-05-01 2021-01-12 Rebellion Photonics, Inc. Dual-band divided-aperture infra-red spectral imaging system
US11917321B2 (en) 2014-05-01 2024-02-27 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
US11805221B2 (en) 2014-05-01 2023-10-31 Rebellion Photonics, Inc. Dual-band divided-aperture infra-red spectral imaging system
US10834338B2 (en) 2014-05-01 2020-11-10 Rebllion Photonics, Inc. Mobile gas and chemical imaging camera
US11796454B2 (en) 2014-07-07 2023-10-24 Rebellion Photonics, Inc. Gas leak emission quantification with a gas cloud imager
US10031314B2 (en) * 2015-08-14 2018-07-24 Gopro, Inc. Prism-based focal plane adjustment for thermal compensation in a lens assembly
US20170227730A1 (en) * 2015-08-14 2017-08-10 Gopro, Inc. Prism-Based Focal Plane Adjustment for Thermal Compensation in a Lens Assembly
US11044423B2 (en) * 2016-10-21 2021-06-22 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
US10948404B2 (en) 2016-10-21 2021-03-16 Rebellion Photonics, Inc. Gas imaging system
US20200128196A1 (en) * 2016-10-21 2020-04-23 Rebellion Photonics, Inc. Mobile gas and chemical imaging camera
US11733158B2 (en) 2016-10-21 2023-08-22 Rebellion Photonics, Inc. Gas imaging system
US11467098B2 (en) 2017-02-22 2022-10-11 Rebellion Photonics, Inc. Systems and methods for monitoring remote installations
US10955355B2 (en) 2017-02-22 2021-03-23 Rebellion Photonics, Inc. Systems and methods for monitoring remote installations
US10514523B2 (en) * 2017-04-21 2019-12-24 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system and electronic device
US20180307000A1 (en) * 2017-04-21 2018-10-25 Ability Opto-Electronics Technology Co.Ltd. Optical image capturing system and electronic device
CN111566534A (en) * 2018-05-07 2020-08-21 深圳市伯森光电科技有限公司 Image pickup apparatus
WO2019213812A1 (en) * 2018-05-07 2019-11-14 深圳市伯森光电科技有限公司 Image capture device
US11140303B2 (en) * 2018-05-07 2021-10-05 Bosen Opto-Electronic Technology Co. Limited Camera
CN114885083A (en) * 2019-03-29 2022-08-09 苹果公司 Lens holder with compensation for optical focus shift by thermo-mechanical expansion
JP6999728B2 (en) 2019-03-29 2022-01-19 アップル インコーポレイテッド Lens holder to compensate for optical focus shift due to thermomechanical expansion
CN111756966A (en) * 2019-03-29 2020-10-09 苹果公司 Lens holder with compensation for optical focus shift by thermo-mechanical expansion
JP2020166270A (en) * 2019-03-29 2020-10-08 アップル インコーポレイテッドApple Inc. Lens holder to compensate for optical focal shift by thermo-mechanical expansion
EP3715929A1 (en) * 2019-03-29 2020-09-30 Apple Inc. Lens holder to compensate for optical focal shift by thermo-mechanical expansion
CN113391419A (en) * 2020-02-27 2021-09-14 Aptiv技术有限公司 Optical device and method for manufacturing the same
CN111596431A (en) * 2020-06-12 2020-08-28 青岛镭创光电技术有限公司 Temperature compensation type plastic optical system and manufacturing method thereof
CN111999840A (en) * 2020-07-24 2020-11-27 北京空间机电研究所 Focal plane structure with focal length compensation capability
CN114979440A (en) * 2022-05-23 2022-08-30 广东亿嘉和科技有限公司 High-precision optical navigation equipment and heat influence precision compensation method thereof

Also Published As

Publication number Publication date
US9594228B1 (en) 2017-03-14

Similar Documents

Publication Publication Date Title
US9594228B1 (en) Thermal compensation to adjust camera lens focus
US10911647B2 (en) Vehicular camera with thermal compensating means
US9778435B2 (en) Lens barrel
US20200195820A1 (en) Thermal Compensation in an Integrated Image Sensor and Lens Assembly
US9664877B2 (en) Prism-based focal plane adjustment for thermal compensation in a lens assembly
US9977216B2 (en) Passive lens athermalization using liquid lens
US9465187B2 (en) Thermal despace compensation systems and methods
US20150241636A1 (en) Optical module and light transmission method
US10795112B2 (en) Focal plane shift measurement and adjustment in a lens assembly
JP6056696B2 (en) Optical device
US10244153B2 (en) Imaging apparatus
JP2003262778A (en) Photographing equipment
JP2002014269A (en) Optical device
JPS62111223A (en) Range finding optical system with mechanism for correcting out-of-focus due to temperature of photographic lens
JP2014112156A (en) Lens unit, and imaging device
US11140303B2 (en) Camera
US9742951B2 (en) Lens unit, image reading device, and image forming apparatus
KR20200061852A (en) Lens Module
JP6217193B2 (en) Optical lens device
JP2003262777A (en) Photographing equipment
CN106443984A (en) F 110 millimeter optical passive athermalizing lens
JP2022095200A (en) Lens barrel and imaging apparatus having the same
KR101457701B1 (en) Zoom lens camera
JP2013073045A (en) Lens barrel
JP2013257491A (en) Camera module and range finder

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOPRO, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FENG, CHEN;REEL/FRAME:036747/0376

Effective date: 20150821

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:GOPRO, INC.;REEL/FRAME:038184/0779

Effective date: 20160325

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GOPRO, INC.;REEL/FRAME:038184/0779

Effective date: 20160325

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: GOPRO, INC., CALIFORNIA

Free format text: RELEASE OF PATENT SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:055106/0434

Effective date: 20210122