US20170058261A1 - Augmentation of Cell Therapy Efficacy Including Treatment With Alpha 1,3 Fucosyltransferase - Google Patents
Augmentation of Cell Therapy Efficacy Including Treatment With Alpha 1,3 Fucosyltransferase Download PDFInfo
- Publication number
- US20170058261A1 US20170058261A1 US15/347,500 US201615347500A US2017058261A1 US 20170058261 A1 US20170058261 A1 US 20170058261A1 US 201615347500 A US201615347500 A US 201615347500A US 2017058261 A1 US2017058261 A1 US 2017058261A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell
- population
- stem cells
- fucosyltransferase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 35
- 108010001671 galactoside 3-fucosyltransferase Proteins 0.000 title claims description 38
- 230000003416 augmentation Effects 0.000 title abstract description 5
- 238000002659 cell therapy Methods 0.000 title description 17
- 238000000034 method Methods 0.000 claims abstract description 93
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 210000004027 cell Anatomy 0.000 claims description 286
- 210000000130 stem cell Anatomy 0.000 claims description 175
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 57
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 claims description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 23
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 claims description 22
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 claims description 22
- 208000035475 disorder Diseases 0.000 claims description 20
- LQEBEXMHBLQMDB-QIXZNPMTSA-N GDP-L-fucose Chemical group O[C@H]1[C@H](O)[C@H](O)[C@H](C)OC1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-QIXZNPMTSA-N 0.000 claims description 19
- 210000003289 regulatory T cell Anatomy 0.000 claims description 19
- 230000002708 enhancing effect Effects 0.000 claims description 18
- 102000003800 Selectins Human genes 0.000 claims description 17
- 108090000184 Selectins Proteins 0.000 claims description 17
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 15
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 claims description 11
- 206010028980 Neoplasm Diseases 0.000 claims description 9
- 230000001404 mediated effect Effects 0.000 claims description 9
- 206010010356 Congenital anomaly Diseases 0.000 claims description 7
- 208000030289 Lymphoproliferative disease Diseases 0.000 claims description 6
- 208000006011 Stroke Diseases 0.000 claims description 6
- 208000023275 Autoimmune disease Diseases 0.000 claims description 5
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 5
- 208000014767 Myeloproliferative disease Diseases 0.000 claims description 5
- 208000021161 Plasma cell disease Diseases 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 5
- 210000003743 erythrocyte Anatomy 0.000 claims description 5
- 208000019622 heart disease Diseases 0.000 claims description 5
- 208000019423 liver disease Diseases 0.000 claims description 5
- 210000001539 phagocyte Anatomy 0.000 claims description 5
- 208000024827 Alzheimer disease Diseases 0.000 claims description 4
- 208000018737 Parkinson disease Diseases 0.000 claims description 4
- 208000027418 Wounds and injury Diseases 0.000 claims description 4
- 230000006378 damage Effects 0.000 claims description 4
- 208000026278 immune system disease Diseases 0.000 claims description 4
- 208000014674 injury Diseases 0.000 claims description 4
- 201000006938 muscular dystrophy Diseases 0.000 claims description 4
- 208000020431 spinal cord injury Diseases 0.000 claims description 4
- 208000020084 Bone disease Diseases 0.000 claims description 3
- 206010061225 Limb injury Diseases 0.000 claims description 3
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 claims description 3
- 208000005764 Peripheral Arterial Disease Diseases 0.000 claims description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 3
- 208000014759 blood platelet disease Diseases 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 208000000509 infertility Diseases 0.000 claims description 3
- 230000036512 infertility Effects 0.000 claims description 3
- 231100000535 infertility Toxicity 0.000 claims description 3
- 230000000302 ischemic effect Effects 0.000 claims description 3
- 201000001268 lymphoproliferative syndrome Diseases 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 206010019196 Head injury Diseases 0.000 claims description 2
- 230000004048 modification Effects 0.000 abstract description 17
- 238000012986 modification Methods 0.000 abstract description 17
- 230000001413 cellular effect Effects 0.000 abstract description 3
- 239000012528 membrane Substances 0.000 abstract 1
- 230000033581 fucosylation Effects 0.000 description 37
- 102100035277 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6 Human genes 0.000 description 28
- 101710185185 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6 Proteins 0.000 description 26
- 210000001185 bone marrow Anatomy 0.000 description 26
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 25
- 102000004190 Enzymes Human genes 0.000 description 23
- 108090000790 Enzymes Proteins 0.000 description 23
- 108010024212 E-Selectin Proteins 0.000 description 22
- 101000908391 Homo sapiens Dipeptidyl peptidase 4 Proteins 0.000 description 22
- 108010019236 Fucosyltransferases Proteins 0.000 description 20
- 102000006471 Fucosyltransferases Human genes 0.000 description 20
- 102100023471 E-selectin Human genes 0.000 description 19
- 239000003112 inhibitor Substances 0.000 description 19
- 239000012981 Hank's balanced salt solution Substances 0.000 description 18
- 235000000346 sugar Nutrition 0.000 description 18
- 108010035766 P-Selectin Proteins 0.000 description 17
- 238000012546 transfer Methods 0.000 description 17
- 102000008100 Human Serum Albumin Human genes 0.000 description 16
- 108091006905 Human Serum Albumin Proteins 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 16
- 102100023472 P-selectin Human genes 0.000 description 15
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 13
- 108700023372 Glycosyltransferases Proteins 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 210000004700 fetal blood Anatomy 0.000 description 12
- 238000011534 incubation Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 210000000440 neutrophil Anatomy 0.000 description 12
- 210000001671 embryonic stem cell Anatomy 0.000 description 11
- 238000000684 flow cytometry Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 210000004413 cardiac myocyte Anatomy 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 230000001537 neural effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 10
- 102000051366 Glycosyltransferases Human genes 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- NIGUVXFURDGQKZ-UQTBNESHSA-N alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](O[C@]3(O[C@H]([C@H](NC(C)=O)[C@@H](O)C3)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O NIGUVXFURDGQKZ-UQTBNESHSA-N 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 230000002500 effect on skin Effects 0.000 description 9
- 210000003038 endothelium Anatomy 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 210000004991 placental stem cell Anatomy 0.000 description 9
- 210000000577 adipose tissue Anatomy 0.000 description 8
- 210000004381 amniotic fluid Anatomy 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 230000003511 endothelial effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 210000003780 hair follicle Anatomy 0.000 description 8
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 8
- 210000005259 peripheral blood Anatomy 0.000 description 8
- 239000011886 peripheral blood Substances 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 230000000392 somatic effect Effects 0.000 description 8
- 150000008163 sugars Chemical class 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 210000002540 macrophage Anatomy 0.000 description 7
- 210000001665 muscle stem cell Anatomy 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 6
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 6
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 6
- 101000684208 Homo sapiens Prolyl endopeptidase FAP Proteins 0.000 description 6
- 108010002350 Interleukin-2 Proteins 0.000 description 6
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 6
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 210000000601 blood cell Anatomy 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 150000004676 glycans Chemical class 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 210000005087 mononuclear cell Anatomy 0.000 description 6
- 210000001178 neural stem cell Anatomy 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 5
- LQEBEXMHBLQMDB-JGQUBWHWSA-N GDP-beta-L-fucose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-JGQUBWHWSA-N 0.000 description 5
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 5
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 230000003394 haemopoietic effect Effects 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000008672 reprogramming Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 5
- 206010000830 Acute leukaemia Diseases 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 210000004504 adult stem cell Anatomy 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 4
- 208000024207 chronic leukemia Diseases 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- 208000024908 graft versus host disease Diseases 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 201000005992 juvenile myelomonocytic leukemia Diseases 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001617 migratory effect Effects 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 3
- 241000700198 Cavia Species 0.000 description 3
- 102100034405 Headcase protein homolog Human genes 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101001066896 Homo sapiens Headcase protein homolog Proteins 0.000 description 3
- 102000004856 Lectins Human genes 0.000 description 3
- 108090001090 Lectins Proteins 0.000 description 3
- 208000015439 Lysosomal storage disease Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 3
- 208000037538 Myelomonocytic Juvenile Leukemia Diseases 0.000 description 3
- 229940122344 Peptidase inhibitor Drugs 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 208000033501 Refractory anemia with excess blasts Diseases 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 3
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 3
- 208000014951 hematologic disease Diseases 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 239000002523 lectin Substances 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 239000011565 manganese chloride Substances 0.000 description 3
- 208000025919 mucopolysaccharidosis type 7 Diseases 0.000 description 3
- 208000016586 myelodysplastic syndrome with excess blasts Diseases 0.000 description 3
- 206010028537 myelofibrosis Diseases 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 210000001778 pluripotent stem cell Anatomy 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000012342 propidium iodide staining Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- LAQPKDLYOBZWBT-NYLDSJSYSA-N (2s,4s,5r,6r)-5-acetamido-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r)-5-acetamido-1,2-dihydroxy-6-oxo-4-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hexan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-[(1r,2r)-1,2,3-trihydrox Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@@H](NC(C)=O)C=O)[C@@H]([C@H](O)CO)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 LAQPKDLYOBZWBT-NYLDSJSYSA-N 0.000 description 2
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 2
- LKDMKWNDBAVNQZ-UHFFFAOYSA-N 4-[[1-[[1-[2-[[1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)NC(C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-UHFFFAOYSA-N 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 2
- 101710188695 Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 2
- 102100021333 Alpha-(1,3)-fucosyltransferase 7 Human genes 0.000 description 2
- 101710188694 Alpha-(1,3)-fucosyltransferase 7 Proteins 0.000 description 2
- 241000795427 Anticla Species 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 102000003930 C-Type Lectins Human genes 0.000 description 2
- 108090000342 C-Type Lectins Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 108090000617 Cathepsin G Proteins 0.000 description 2
- 102000004173 Cathepsin G Human genes 0.000 description 2
- 206010068051 Chimerism Diseases 0.000 description 2
- 206010010099 Combined immunodeficiency Diseases 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000194 Dipeptidyl-peptidases and tripeptidyl-peptidases Proteins 0.000 description 2
- 102000003779 Dipeptidyl-peptidases and tripeptidyl-peptidases Human genes 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000015689 E-Selectin Human genes 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- LQEBEXMHBLQMDB-UHFFFAOYSA-N GDP-L-fucose Natural products OC1C(O)C(O)C(C)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C3=C(C(N=C(N)N3)=O)N=C2)O1 LQEBEXMHBLQMDB-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 2
- 101000622123 Homo sapiens E-selectin Proteins 0.000 description 2
- 101000622137 Homo sapiens P-selectin Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 208000008955 Mucolipidoses Diseases 0.000 description 2
- 206010072928 Mucolipidosis type II Diseases 0.000 description 2
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 2
- 206010056886 Mucopolysaccharidosis I Diseases 0.000 description 2
- 206010056893 Mucopolysaccharidosis VII Diseases 0.000 description 2
- 102000005348 Neuraminidase Human genes 0.000 description 2
- 108010006232 Neuraminidase Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000008212 P-Selectin Human genes 0.000 description 2
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 2
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 2
- 208000013544 Platelet disease Diseases 0.000 description 2
- 102000001393 Platelet-Derived Growth Factor alpha Receptor Human genes 0.000 description 2
- 108010068588 Platelet-Derived Growth Factor alpha Receptor Proteins 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 2
- 101000893698 Rattus norvegicus Galactoside alpha-(1,2)-fucosyltransferase 2 Proteins 0.000 description 2
- 206010038270 Refractory anaemia with an excess of blasts Diseases 0.000 description 2
- 208000009527 Refractory anemia Diseases 0.000 description 2
- 206010072684 Refractory cytopenia with unilineage dysplasia Diseases 0.000 description 2
- 208000032411 Refractory with Excess of Blasts Anemia Diseases 0.000 description 2
- 201000001828 Sly syndrome Diseases 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 208000013685 acquired idiopathic sideroblastic anemia Diseases 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000003848 cartilage regeneration Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000003399 chemotactic effect Effects 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 2
- 210000003040 circulating cell Anatomy 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 102000051210 human SELE Human genes 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 201000002818 limb ischemia Diseases 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 208000020460 mucolipidosis II alpha/beta Diseases 0.000 description 2
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 2
- 208000022018 mucopolysaccharidosis type 2 Diseases 0.000 description 2
- 208000011045 mucopolysaccharidosis type 3 Diseases 0.000 description 2
- 230000001400 myeloablative effect Effects 0.000 description 2
- 210000003098 myoblast Anatomy 0.000 description 2
- 210000004967 non-hematopoietic stem cell Anatomy 0.000 description 2
- 210000004248 oligodendroglia Anatomy 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000036560 skin regeneration Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000001839 systemic circulation Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 238000006276 transfer reaction Methods 0.000 description 2
- 238000010865 video microscopy Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- JNTMAZFVYNDPLB-PEDHHIEDSA-N (2S,3S)-2-[[[(2S)-1-[(2S,3S)-2-amino-3-methyl-1-oxopentyl]-2-pyrrolidinyl]-oxomethyl]amino]-3-methylpentanoic acid Chemical group CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JNTMAZFVYNDPLB-PEDHHIEDSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- IHBAVXVTGLANPI-QMMMGPOBSA-N 2-amino-3-methyl-1-pyrrolidin-1-yl-butan-1-one Chemical compound CC(C)[C@H](N)C(=O)N1CCCC1 IHBAVXVTGLANPI-QMMMGPOBSA-N 0.000 description 1
- 208000010543 22q11.2 deletion syndrome Diseases 0.000 description 1
- 102100024643 ATP-binding cassette sub-family D member 1 Human genes 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000016585 Acute panmyelosis with myelofibrosis Diseases 0.000 description 1
- 201000011452 Adrenoleukodystrophy Diseases 0.000 description 1
- 102100027714 Alpha-(1,3)-fucosyltransferase 10 Human genes 0.000 description 1
- 101710197986 Alpha-(1,3)-fucosyltransferase 10 Proteins 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000035462 Biphenotypic Acute Leukemia Diseases 0.000 description 1
- 208000033932 Blackfan-Diamond anemia Diseases 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000004918 Cartilage-hair hypoplasia Diseases 0.000 description 1
- 241001227713 Chiron Species 0.000 description 1
- 208000031879 Chédiak-Higashi syndrome Diseases 0.000 description 1
- 201000003874 Common Variable Immunodeficiency Diseases 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 206010062759 Congenital dyskeratosis Diseases 0.000 description 1
- 208000034958 Congenital erythropoietic porphyria Diseases 0.000 description 1
- 208000025212 Constitutional neutropenia Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 208000000398 DiGeorge Syndrome Diseases 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 208000007209 Erythropoietic Porphyria Diseases 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 201000004939 Fanconi anemia Diseases 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108060003306 Galactosyltransferase Proteins 0.000 description 1
- 102000030902 Galactosyltransferase Human genes 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 208000013607 Glanzmann thrombasthenia Diseases 0.000 description 1
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 description 1
- 239000006173 Good's buffer Substances 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100031547 HLA class II histocompatibility antigen, DO alpha chain Human genes 0.000 description 1
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 1
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000032672 Histiocytosis haematophagic Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000866278 Homo sapiens HLA class II histocompatibility antigen, DO alpha chain Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101001067100 Homo sapiens Uroporphyrinogen-III synthase Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 206010052210 Infantile genetic agranulocytosis Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 208000012565 Kostmann syndrome Diseases 0.000 description 1
- 208000028226 Krabbe disease Diseases 0.000 description 1
- 201000005099 Langerhans cell histiocytosis Diseases 0.000 description 1
- 206010069698 Langerhans' cell histiocytosis Diseases 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 1
- 208000035809 Lymphohistiocytosis Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 108010049137 Member 1 Subfamily D ATP Binding Cassette Transporter Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- 206010028095 Mucopolysaccharidosis IV Diseases 0.000 description 1
- 208000025915 Mucopolysaccharidosis type 6 Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100310657 Mus musculus Sox1 gene Proteins 0.000 description 1
- 206010067387 Myelodysplastic syndrome transformation Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 208000033833 Myelomonocytic Chronic Leukemia Diseases 0.000 description 1
- 238000011789 NOD SCID mouse Methods 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 208000003670 Pure Red-Cell Aplasia Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038272 Refractory anaemia with ringed sideroblasts Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000021811 Sandhoff disease Diseases 0.000 description 1
- 201000002883 Scheie syndrome Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 241000030538 Thecla Species 0.000 description 1
- 208000000392 Thrombasthenia Diseases 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100034397 Uroporphyrinogen-III synthase Human genes 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 1
- 208000026589 Wolman disease Diseases 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 208000036677 acute biphenotypic leukemia Diseases 0.000 description 1
- 208000036676 acute undifferentiated leukemia Diseases 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 201000009628 adenosine deaminase deficiency Diseases 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229960001667 alogliptin Drugs 0.000 description 1
- ZSBOMTDTBDDKMP-OAHLLOKOSA-N alogliptin Chemical compound C=1C=CC=C(C#N)C=1CN1C(=O)N(C)C(=O)C=C1N1CCC[C@@H](N)C1 ZSBOMTDTBDDKMP-OAHLLOKOSA-N 0.000 description 1
- 201000008333 alpha-mannosidosis Diseases 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SHZGCJCMOBCMKK-KGJVWPDLSA-N beta-L-fucose Chemical compound C[C@@H]1O[C@H](O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-KGJVWPDLSA-N 0.000 description 1
- 208000022806 beta-thalassemia major Diseases 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 208000016532 chronic granulomatous disease Diseases 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000024389 cytopenia Diseases 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940119744 dextran 40 Drugs 0.000 description 1
- 239000003968 dna methyltransferase inhibitor Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 208000009356 dyskeratosis congenita Diseases 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 230000002392 erythrophagocytic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000002446 fucosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)[C@@H](O1)C)* 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 108010007811 human immunodeficiency virus p17 gag peptide Proteins 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008102 immune modulation Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 201000002273 mucopolysaccharidosis II Diseases 0.000 description 1
- 208000005340 mucopolysaccharidosis III Diseases 0.000 description 1
- 208000000690 mucopolysaccharidosis VI Diseases 0.000 description 1
- 208000010978 mucopolysaccharidosis type 4 Diseases 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 208000002865 osteopetrosis Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 208000031223 plasma cell leukemia Diseases 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 230000030786 positive chemotaxis Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 208000023933 refractory anemia with excess blasts in transformation Diseases 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 201000007153 reticular dysgenesis Diseases 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229960004937 saxagliptin Drugs 0.000 description 1
- QGJUIPDUBHWZPV-SGTAVMJGSA-N saxagliptin Chemical compound C1C(C2)CC(C3)CC2(O)CC13[C@H](N)C(=O)N1[C@H](C#N)C[C@@H]2C[C@@H]21 QGJUIPDUBHWZPV-SGTAVMJGSA-N 0.000 description 1
- 108010033693 saxagliptin Proteins 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 208000027390 severe congenital neutropenia 3 Diseases 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 229960004034 sitagliptin Drugs 0.000 description 1
- MFFMDFFZMYYVKS-SECBINFHSA-N sitagliptin Chemical compound C([C@H](CC(=O)N1CC=2N(C(=NN=2)C(F)(F)F)CC1)N)C1=CC(F)=C(F)C=C1F MFFMDFFZMYYVKS-SECBINFHSA-N 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960001254 vildagliptin Drugs 0.000 description 1
- SYOKIDBDQMKNDQ-XWTIBIIYSA-N vildagliptin Chemical compound C1C(O)(C2)CC(C3)CC1CC32NCC(=O)N1CCC[C@H]1C#N SYOKIDBDQMKNDQ-XWTIBIIYSA-N 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/48—Blood cells, e.g. leukemia or lymphoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4621—Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/46434—Antigens related to induction of tolerance to non-self
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0006—Modification of the membrane of cells, e.g. cell decoration
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0623—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0637—Immunosuppressive T lymphocytes, e.g. regulatory T cells or Treg
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0647—Haematopoietic stem cells; Uncommitted or multipotent progenitors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0663—Bone marrow mesenchymal stem cells (BM-MSC)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01065—3-Galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase (2.4.1.65), i.e. alpha-1-3 fucosyltransferase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/724—Glycosyltransferases (EC 2.4.)
Definitions
- Cell therapy offers immense possibilities for treatment of a wide variety of medical conditions.
- cell therapy is practiced in numerous embodiments, for example, bone marrow transplantation for treatment of hematopoietic malignancies.
- the successful establishment of procedures for transplantation of donor cells into recipients whose own cells are malignant (leukemia), altered (stroke, limb ischemia, etc.), or insufficient (due to chemotherapy, radiotherapy, or congenital abnormality) constitutes a major medical breakthrough in the therapeutic management of these conditions.
- hematopoietic stem cells As a particular example, it is known that only a small percentage of these cells home to the bone marrow microenvironment when administered systemically. This migration is regulated in part by adhesive factors present on the luminal surface of endothelial cells that constitute the microvascular lining of the bone marrow and in part by chemotactic gradients secreted at a constant rate by bone marrow stromal cells.
- adhesive factors present on the luminal surface of endothelial cells that constitute the microvascular lining of the bone marrow and in part by chemotactic gradients secreted at a constant rate by bone marrow stromal cells.
- myocardial infarction or stroke only a small fraction of injected stem cells actually home and enter the area of tissue damage. Thus, there exists a need to administer a high number of stem cells, sometimes prohibitively too high to be obtained in an autologous or even allogeneic setting.
- FIG. 1 illustrates the effect of pretreatment of human neural stem cells (HNSCs) with ⁇ 1,3 fucosyltransferase-VI (FTVI) on the level of fucosylation.
- HNSCs human neural stem cells
- FTVI fucosyltransferase-VI
- the expression of CLA was used to determine the levels of fucosylation.
- the CLA expression by hNSCs was determined by FACS analysis with untreated cells (A) or following pre-incubation with the fucosylation mix (GDP-Fucose, manganese and FTVI conditioned medium) (B). Isotype-matched IgG was used as the negative control. Fluorescence intensity (FL2) of samples was evaluated by FACSCantoTM cell analyzer (BD Biosciences, San Jose, Calif.). The results of one experiment are shown.
- FIG. 2 graphically depicts the ex vivo expansion technique utilized herein for T cells.
- FIG. 3 contains a flow cytometry analysis of expanded Regulatory T cells (Tregs).
- FIG. 4 contains a flow cytometry analysis of Tregs fucosylated with TZ101 (FTVI+GDP-fucose; Targazyme, Inc., Carlsbad, Calif.).
- FIG. 5 graphically illustrates the ability of TZ101 to fucosylate various types of cells.
- FIG. 6 graphically illustrates the ability of fucosylated Tregs to prevent graft-versus-host disease (GVHD) in a mouse model.
- FIG. 7 graphically illustrates the ability of TZ102 (FTVII+GDP-fucose; Targazyme, Inc., Carlsbad, Calif.) to fucosylate ex vivo expanded cytotoxic T cells (CTL).
- TZ102 FVII+GDP-fucose; Targazyme, Inc., Carlsbad, Calif.
- FIG. 8 contains an analysis of the ability of FTVII-treated CTL to kill leukemia cells in a xenogeneic AML mouse model.
- inventive concept(s) Before explaining at least one embodiment of the inventive concept(s) in detail by way of exemplary drawings, experimentation, results, and laboratory procedures, it is to be understood that the inventive concept(s) is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings, experimentation, and/or results.
- inventive concept(s) is capable of other embodiments or of being practiced or carried out in various ways.
- the language used herein is intended to be given the broadest possible scope and meaning; and the embodiments are meant to be exemplary—not exhaustive.
- phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
- Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein.
- the foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Coligan et al. Current Protocols in Immunology (Current Protocols, Wiley Interscience (1994)), which are incorporated herein by reference.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of the inventive concept(s) have been described in terms of particular embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the presently disclosed and claimed inventive concept(s). All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the inventive concept(s) as defined by the appended claims.
- the designated value may vary by ⁇ 20% or ⁇ 10%, or ⁇ 5%, or ⁇ 1%, or ⁇ 0.1% from the specified value, as such variations are appropriate to perform the disclosed methods and as understood by persons having ordinary skill in the art.
- the use of the term “at least one” will be understood to include one as well as any quantity more than one, including but not limited to, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100, etc.
- the term “at least one” may extend up to 100 or 1000 or more, depending on the term to which it is attached; in addition, the quantities of 100/1000 are not to be considered limiting, as higher limits may also produce satisfactory results.
- the terms “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
- “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
- expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AAB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
- BB BB
- AAA AAA
- AAB BBC
- AAABCCCCCC CBBAAA
- CABABB CABABB
- the term “substantially” means that the subsequently described event or circumstance completely occurs or that the subsequently described event or circumstance occurs to a great extent or degree.
- the term “substantially” means that the subsequently described event or circumstance occurs at least 90% of the time, or at least 95% of the time, or at least 98% of the time.
- the present embodiments relate generally to the field of cell therapy. More specifically, some embodiments relate to methods of enhancing the natural process of cell migration through augmentation of specific glycosylation features on the surface of various cell types. More specifically, some embodiments relate to treatment of cells with fucosyltransferases in order to enhance the interaction between blood-borne stem cells, progenitor cells and endothelial cells facilitating entry into biological niches and tissues where they may function on a number of different levels for therapeutic and restorative intervention.
- the term “patient” is meant to broadly include any animal.
- the animal can be a mammal, a bird, a fish, a reptile, a fish, an insect or any other animal.
- mammals may include humans and other primates, equines such as horses, bovines such as cows, mice, rats, rabbits, Guinea Pigs, pigs, and the like.
- the compositions and methods can be used with or applied to individual cells (for example ex vivo treatment or modification), to insect cells, etc.
- cells that have been modified to enhance homing and engraftment.
- the embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- One embodiment provides a method of enhancing homing and engraftment of a therapeutically-administered cell in a patient in need of treatment with a cell population; providing cells that may have been contacted with an agent that modifies at least one surface molecule on the cells, resulting in a population of modified cells; and providing or administering the population of modified cells to a patient in need thereof.
- the cell surface molecule may be modified so as to result in an alteration of cell charge.
- a method of enhancing homing and engraftment of a cell may comprise providing one or more cells selected from stem cells, progenitor cells, neutrophils, macrophages, T-cells, and combinations thereof.
- the stem or progenitor cells may be embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, placental stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells, or somatic nuclear transfer and side population stem cells, as well as any combination thereof.
- One or more cells may have been contacted with an agent that modifies at least one surface molecule on the cell that may result in enhanced selectin-mediated binding. This may result in a population of modified cells.
- These cells may be provided to animals. Such animals may include birds, reptiles, fish, insects, and mammals including but not limited to humans, equines such as horses, bovines such as cows, dogs, mice, rats, pigs, guinea pigs, rabbits and the like.
- the cell surface molecule may be modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge.
- the enzyme may be a glycosidase, glycosyltransferase, a fucosyltransferase, a neuraminidase, an acetylglucosaminyltransferase, or any glycosyltransferase capable of increasing the number or affinity of cell surface selectin binding components.
- the enzyme may be alpha 1,3-fucosyltransferase I, alpha 1,3-fucosyltransferase III, alpha 1,3-fucosyltransferase IV, alpha 1,3-fucosyltransferase V, alpha 1,3-fucosyltransferase VI, alpha 1,3-fucosyltransferase VII, or alpha 1,3-fucosyltransferase IX.
- the cell may be treated with a reagent or reagents that link a binding unit to the cell surface.
- the binding unit may consist of a particle as well as a ligand of natural or non-natural sugars shown to possess binding affinity for receptors present on endothelial cells similar to that seen with natural sugars.
- the added binding unit may increase the functionalization of the cell.
- the cell may be treated with a single or plurality of molecules having ability to cause alpha 1-3 fucosylation of glycan determinants.
- the molecule may be an alpha 1-3 fucosyltransferase mixed together with a concentration of a fucose carrier under conditions sufficient to provide enhanced alpha 1-3 fucosylation of glycan determinants.
- the fucose carrier may be guanosine diphosphate fucose.
- the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VI.
- the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VII.
- the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase IV.
- the population of modified cells prior to the providing or administering, has been further contacted for a period of time insufficient for cell division to occur with a CD26 peptidase inhibitor in an amount effective to inhibit CD26 peptidase activity and effective to increase the migratory response to CXCL12.
- a CD26 peptidase inhibitor in an amount effective to inhibit CD26 peptidase activity and effective to increase the migratory response to CXCL12.
- a recipient prior to providing modified cells, may be contacted for a period of time and with sufficient dosing of a CD26 peptidase inhibitor in an amount effective to inhibit recipient CD26 peptidase activity effective to increase the migratory response of donor cells to chemotractant agents such as stromal cell-derived factor.
- the cell population may comprise or consist essentially of a population of stem cells, both embryonic and adult and expanded cell populations.
- the stem cells may be embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and immobilized peripheral blood stem cells, endothelial progenitor cells, monocyte-derived stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells.
- the embryonic stem cells may be totipotent.
- the stem cell may be hematopoietic, mesenchymal, neural or cardiomyocyte stem cells.
- the hematopoietic stem cells may be further defined and differentiated as CD38-, lin- or ALDH-bright cells.
- the cell population may comprise or consist essentially of a population of committed progenitor cells or differentiated cells.
- the cell population may be a mature blood cell population.
- the mature blood cell may be neutrophils, macrophages, T-cells, activated T-cells, helper T cells, cytolytic T-cells, memory T-cells, regulatory T-cells, natural killer (NK) cells, or reprogrammed cells.
- the T-cells may be from a heterogeneous population of T-cells.
- the patient in need of treatment with a cell population suffers from a malignant or non-malignant blood disorder such as an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a lysosomal storage disease, an age related disorder, an arterial or blood vessel or cardiovascular disorder, an enzyme deficiency disorder, a congenital immune system disorder, an inherited erythrocyte abnormality, an inherited platelet abnormality, a plasma cell disorder, a tumor or an autoimmune disease.
- a malignant or non-malignant blood disorder such as an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder,
- the patient in need of treatment with a cell population may suffer from peripheral arterial diseases, ischemic limb injury, diabetes, heart disease, bone disease, liver disease, muscular dystrophy, Alzheimer's disease, ALS, multiple sclerosis, Parkinson's disease, spinal cord injury, stroke or infertility.
- the population of modified cells may be administered intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intrathecally intracranially, intravitreally, or directly into the microvascular compartment of bone or into spinal fluid.
- the population of modified cells may be administered in or proximal to a site of injury.
- the homing and engraftment may take place within the bone marrow of the patient in need thereof.
- a composition may comprise an isolated population of cells modified for enhanced selectin-mediated binding.
- the isolated population of cells may be neutrophils, macrophages, T-cells, subpopulation of T-cells, or stem or progenitor cells selected from a group consisting of: embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, or reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells and a pharmaceutically-acceptable carrier.
- the isolated population may comprise a cell surface modification.
- the cell surface molecule may be modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge.
- the enzyme is selected from a group comprising of: a glycosidase, a glycosyltransferase, a fucosyltransferase, a neuraminidase, and an acetylglucosaminyltransferase or any other glycotransferases capable of increasing cell surface selectin binding components.
- the enzyme is selected from a group comprising of alpha 1,3-fucosyltransferase I, alpha 1,3-fucosyltransferase III, alpha 1,3-fucosyltransferase IV, alpha 1,3-fucosyltransferase V, alpha 1,3-fucosyltransferase VI, alpha 1,3-fucosyltransferase VII and alpha 1,3-fucosyltransferase IX.
- the cell may be treated with a single or plurality of molecules having ability to cause alpha 1-3 fucosylation of glycan determinants.
- the molecule may be an alpha 1-3 fucosyltransferase mixed together with a concentration of a fucose carrier under conditions sufficient to provide enhanced alpha 1-3 fucosylation of glycan determinants.
- the fucose carrier may be guanosine diphosphate fucose.
- the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VI.
- the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VII.
- alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase IV.
- the molecule may be a non-naturally occurring enzyme having the ability to add a glycan determinant or a non-natural sugar that mimics the activity of fucose or other sugars that enhance the selectin binding process.
- the cell population may comprise or consist essentially of a population of stem cells both embryonic and adult.
- the stem cells may be embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and mobilized peripheral blood stem cells, endothelial progenitor cells, monocyte-derived stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells.
- the embryonic stem cells may be totipotent.
- the stem cell may be hematopoietic, mesenchymal, neural or cardiomyocyte stem cells.
- the cell may be a mature blood cell.
- the mature blood cell may be a neutrophil, macrophage, or T-cell.
- the T-cells may be from a heterogeneous population of T-cells or from an ex vivo expanded cell population.
- Another embodiment provides a method of enhancing homing and engraftment of a cell, comprising providing one or more cells selected from stem cells, progenitor cells, neutrophils, macrophages and T-cells.
- the stem or progenitor cells may be embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and immobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells.
- One or more cells may be contacted with an agent that modifies at least one surface molecule on the cell(s) to result in enhanced selectin-mediated binding,
- the cells may be mature fully differentiated cells whose homing to specific targets is desired, such as islets, hepatocytes, or neutrophils or cells may be progenitor cells capable of differentiating into functional cells such as hepatic, renal, cardiac, or islet progenitors, or alternatively, the cells may be stem cells with multilineage differentiation ability such as embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, circulating and mobilized peripheral blood stem cells, mesenchymal stem cells, endothelial stem cells, cardiomyocyte stem cells, germinal stem cells, committed endothelial progenitor cells, committed progenitor cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells,
- cells useful for immune therapy are “reprogrammed” ex vivo with endowment of distinct immunological properties.
- Surface modification may be performed before reprogramming, during reprogramming or after reprogramming.
- Reprogramming may be performed so as to increase immune stimulatory properties of the immune cells, or may be performed to allow the immune cells to suppress other immune cells.
- Reprogramming may be performed during expansion of cells, or to cells that have already been expanded.
- the cells can be fucosylated so as to enhance ability to home. Fucosylation may be performed on specific molecules present on the cells, or may be performed globally in a non-specific manner.
- Cells may be fucosylated through culture with an enzyme such as a fucosyltransferase capable of transferring fucose groups such as a fucosyltransferase.
- the fucosyltransferase may be an alpha 1,3 fucosyltransferase.
- the enzyme is selected from a group comprising of alpha 1,3-fucosyltransferase IX, alpha 1,3-fucosyltransferase III, alpha 1,3-fucosyltransferase IV, alpha 1,3-fucosyltransferase V, alpha 1,3-fucosyltransferase VI and alpha 1,3-fucosyltransferase VII.
- Appropriate culture conditions and substrates are also provided within the scope of the embodiments in order to allow proper fucosylation to occur.
- the conditions may include addition of substrates such as GDP-fucose or other similar compounds that provide a source of fucose.
- cells may be treated with a single or plurality of agents in order to augment expression of proteins involved in migration. Since the proteins involved in migration, when expressed de-novo, are not properly fucosylated, the addition of exogenous fucose groups increases ability of the de-novo expressed proteins to interact with endothelium and properly home.
- Specific molecules may include histone deacetylase inhibitors or DNA methyltransferase inhibitors.
- Some embodiments relate generally to compositions for and methods of enhancing homing and engraftment of a therapeutically-administered cell in a patient. Also, some embodiments relate to cells that have been modified to enhance homing and engraftment. The embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- the process by which cells exit the systemic circulation and enter distinct biologically niches is a complex coordinated process that involves numerous molecules.
- the process of cellular exit is a bi-directional communication between the vascular endothelium cells and the circulating stem and progenitor cells. This process has been best characterized in the description of leukocyte exit from systemic circulation.
- An important family of molecules involved critically and initially in the process of cellular trafficking is the selectins. These molecules are type 1 transmembrane proteins that contain what is known as C-type lectin domains. Lectins are proteins that bind sugars. Most commonly known lectins include conconavalin-A and phytohemagglutinin.
- the C-type lectin domains on the selectins reside at the N-terminal of the selectins and interact with a wide array of glycoprotein ligands. Since the lectin domains bind sugar moieties, it is important that proper placement of sugars onto the proteins such that interaction of the selectins occurs. Since placement of sugars (glycosylation) usually occurs as a post-translational event, the mere genetic manipulation of cells is not sufficient usually to alter ability of cells to interact with selectins. The exception to this is, of course, genetic manipulation in the sense of transfecting cells with enzymes that are involved in the addition of sugars.
- mesenchymal stem cells which do not express E-selectin ligands, can be glycosylated enzymatically in an effort to enhance migration of these cells to the bone marrow (Sackstein et al. Nature Medicine 2008 14:181-187; which is incorporated herein by reference in its entirety).
- embodiments presented herein are based in part on the novel observation that fucosylation of ligands increases binding to tissue and can be used to enhance migration of various types of cells, enumerated herein, to an area of need.
- some embodiments provided herein relate in part to the surprising finding that augmentation of the tethering and rolling process through various means is useful for enhancing functional capabilities of a wide variety of non-hematopoietic cells and stem cells. Accordingly, the methods and compositions provided herein may be useful for treatment of a wide variety of medical conditions that are amenable to cell therapy.
- provided herein are methods of enhancing homing and engraftment of a therapeutically-administered cell in a patient.
- methods of modification of sugar residues, both natural and non-natural, on the surface of cells used for cell therapy so as to enhance their interaction with members of the selectin family, thereby enhancing trafficking of the cells administered systemically to an area of need.
- cells that have been modified to enhance homing and engraftment.
- the embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- Examples of cells include, without being limited thereto, neutrophils, macrophages and T-cells, wherein the stem or progenitor cells are selected from a group consisting of: embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, hematopoietic stem cells, mesenchymal stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells.
- the stem or progenitor cells are selected from a group consisting of: embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem
- a method of enhancing homing and engraftment of a therapeutically-administered cell in a patient comprising selecting a patient in need of treatment with a cell population; providing cells that have been contacted with an agent that modifies at least one surface molecule on the cells, resulting in a population of modified cells; and providing or administering the population of modified cells to a patient in need thereof.
- the cell surface molecule is modified so as to result in an alteration of cell charge.
- the cell surface molecule is modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge.
- Enyzmes that modify cell surface molecules are known in the art.
- Such enzymes include a purified glycosyltransferase polypeptide.
- Glycosyltransferase include for example, fucosyltransferase, galactosyltransferase, sialytransferase and N-acetylglucosaminotransferase.
- the fucosyltransferase can be, for example, an alpha 1,3 fucosyltransferase such as an alpha 1,3-fucosyltransferase I, alpha 1,3-fucosyltransferase III, alpha 1,3-fucosyltransferase IV, alpha 1,3-fucosyltransferase V, alpha 1,3-fucosyltransferase VI, alpha 1,3-fucosyltransferase VII, and alpha 1,3-fucosyltransferase IX.
- an alpha 1,3 fucosyltransferase such as an alpha 1,3-fucosyltransferase I, alpha 1,3-fucosyltransferase III, alpha 1,3-fucosyltransferase IV, alpha 1,3-fucosyltransferase V, alpha 1,3-fucosyltransferase VI, alpha 1,3-fucosyltransfer
- the cell surface molecule is modified in the presence of a sugar donor suitable for the specific glycosyltransferase.
- Sugar donors for glycosyltransferases are known in the art.
- the glycoslytransferase is a fucosyltransferase
- the donor is GDP-fucose.
- the glycosyltransferase is a siayltransferase
- the donor is eMP-sialic acid.
- the sugar can be a non natural sugar added by a natural or modified glycosyltransferase.
- the glycosyltransferases are biologically active.
- biologically active is meant that the glycosyltransferases are capable of transferring a sugar molecule from a donor to acceptor.
- the glycosyltransferase is capable of transferring 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 5, 10 or more ⁇ moles of sugar per minute at pH 6.5 at 37° C.
- Physiologically acceptable solution is any solution that does not cause cell damage, e.g. death.
- the viability of the cell or cell particle is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more after treatment according to the methods presented herein.
- Suitable physiologically acceptable solutions include for example, Hank's Balanced Salt Solution (HBSS), Dulbecco's Modified Eagle Medium (DMEM), a Good's buffer (see N. E. Good, G. D. Winget, W. Winter, T. N. Conolly, S. Izawa and R. M. M. Singh, Biochemistry 5, 467 (1966); N. E. Good, S. Izawa, Methods Enzymol.
- HEPES 2-Morpholinoethanesulfonic acid
- PBS phosphate buffered saline
- cells can be treated ex vivo with a kit that contains some or all of the agents, such as enzyme, buffer, cofactors and substrate necessary to achieve fucosylation of the cell surface glycoproteins that mediate adhesive interactions between the circulating cells following iv administration and endothelial cells at targeted tissue sites.
- agents such as enzyme, buffer, cofactors and substrate necessary to achieve fucosylation of the cell surface glycoproteins that mediate adhesive interactions between the circulating cells following iv administration and endothelial cells at targeted tissue sites.
- cells such as cord blood can be pretreated with the fucosylation kit prior to freezing or storage.
- the syn-anti and/or ⁇ - ⁇ substitution and orientation of the polysaccharide are modulated to provide the desired effect.
- Cell surface oligosaccharides are highly diversified in their structures and are associated with a variety of cell functions.
- neutrophils or leukocytes bind to injured tissues where the adhesion process occurs. This process has been found to be mediated by the tetrasaccharide sialyl Lewis X on neutrophiles or leukocytes and the receptor ELAM-1 (endothelial leukocyte adhesion molecule 1), a glycoprotein of the selectin family.
- the introduction of fucose onto surface glycans of the cells of interest can be accomplished by enzymatic transfer from a donor substrate utilizing an alpha 1-3-fucosyltransferase (FT) by a process well known to someone skilled in the art.
- FT alpha 1-3-fucosyltransferase
- the cells at varying concentrations can be exposed to an incubation buffer containing a number of ingredients each of which can be optimized for efficient transfer of the fucose.
- the selection of buffer can come from a number of available buffers with Hanks balanced salt solution (HBSS) serving as the primary example.
- HBSS Hanks balanced salt solution
- the substrate, guanosine diphosphate-fucose (GDP-fucose), at 1 mM can be mixed with the FT added at sufficient activity, expressed as Units/mL, to achieve maximal transfer of fucose to the cells of interest.
- GDP-fucose guanosine diphosphate-fucose
- MnC12 at a final concentration of 0-10 mM can be added, if needed, depending on the cell population to further accelerate the enzymatic transfer reaction.
- the temperature and time of incubation can also be optimized for maximal transfer of fucose under practical application conditions with minimum toxicity to the cells of interest but is generally conducted at 37° C. for 40 minutes.
- the population of modified cells prior to the administering, has been further contacted for a period of time insufficient for cell division to occur with a CD26 peptidase inhibitor in an amount effective to inhibit CD26 peptidase activity and effective to increase the migratory response to CXCL12.
- CD26 dipeptidylpeptidase
- the CD26 inhibitor is selected from the group consisting of Diprotin A (Ile-Pro-Ile), Valine-Pyrrolidide, sitagliptin, vildagliptin, saxagliptin, alogliptin or any other class of compounds shown to exhibit potent inhibition of either purified, soluble or cell surface (CD26) dipeptidylpeptiase.
- PCT Publication WO 2009/152186 which is incorporated herein by reference in its entirety, discloses and describes methods and compositions, any of which can be used with the technology of this application in any combination.
- the cell population is contacted with said CD26 inhibitor for about 5 minutes to about 12 hours or conditions suitable for sufficient inhibition of cell surface CD26 leading to an enhanced migratory response to chemotactic factors such as stromal cell-derived factor. In certain aspects, the cell population is contacted with said CD26 inhibitor for about 5 minutes to about 12 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 6 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 2 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 1 hour.
- the inhibitor is administered in a concentration of less than about 1 nM, about 1, ⁇ M, about 5, ⁇ M, about 10, ⁇ M, about 50, ⁇ M, about 100, ⁇ M, about 1 mM or about 5 mM. In certain aspects, the inhibitor is administered in a concentration of no less than about 5 mM.
- At least 1 donor cell is treated.
- at least 1 ⁇ 10 2 , 1 ⁇ 10 3 , 1 ⁇ 10 4 , 1 ⁇ 10 5 , 1 ⁇ 10 6 , 1 ⁇ 10 7 , 1 ⁇ 10 8 donor cells per mL are treated.
- the recipient can be treated with CD26 inhibitor simultaneous with injection of cell surface modified cells. In certain aspects the recipient can be treated with CD26 inhibitor prior to injection of cell surface modified cells. In certain aspects the recipient is pretreated with single or multiple doses of the CD26 inhibitor either simultaneous or prior to cell injection to achieve sustained inhibition of either or both administered cells and recipient CD26 activity leading to enhanced homing of administered cells.
- the cell population comprises or consists essentially of a population of stem cells.
- the stem cells are selected from a group consisting of: embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and immobilized peripheral blood stem cells, mesenchymal stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells or transdifferentiated cells.
- the embryonic stem cells are totipotent.
- a “mesenchymal cell” means a cell forming a mesenchymal tissue, such as osteoblast, chondrocyte, myoblast, adipocyte, stroma cell, tendon cell, and the like, a mesenchymal stem cell capable of differentiating into these cells, and its premesenchymal stem cell.
- Mesenchymal cells generated during the embryo development, mesenchymal cells within an animal body, and mesenchymal cells differentiated and generated from pluripotent stem cells in vitro or in vivo are all encompassed in the term “mesenchymal cell.”
- a “mesenchymal stem cell” means a mesenchymal cell possessing the ability of differentiating into mesenchymal cells of one or more types and the ability of self-replication.
- the mesenchymal stem cell differentiated from a pluripotent stem cell in vitro is positive for PDGFR ⁇ and negative for FLK1.
- Mesenchymal stem cells are able to differentiate into osteoblasts, chondrocytes, myoblasts, adipocytes, stroma cells, tendon cells, and the like, as with mesodermal cells.
- a “premesenchymal stem cell” means a mesenchymal cell possessing the ability of differentiating into mesenchymal stem cells of one or more types and the ability of self-replication.
- the premesenchymal stem cell differentiated from a pluripotent stem cell in vitro expresses Sox1, a neuroectodermal marker.
- Sox1 a neuroectodermal marker.
- the premesenchymal stem cell is able to differentiate into a mesenchymal stem cell which is PDGFR ⁇ -positive and FLK1-negative.
- a “neural stem cell” refers to a multipotent cell obtained from the central nervous system that can be caused to differentiate into cells that posses one or more biological activities of a neuronal cell type.
- Neural stem cells differentiate into neurons, astrocytes, and oligodendrocytes after plating onto substrates which stimulate adhesion and differentiation, for example poly-L-ornithine orlaminin.
- these multipotent CNS stem cells proliferate and expand in response to epidermal growth factor (“EGF”) and basic fibroblast growth factor (“bFGF”) and differentiate into neurons, astrocytes, oligodendrocytes, and muscle stem cells.
- EGF epidermal growth factor
- bFGF basic fibroblast growth factor
- the cell population comprises or consists essentially of a population of committed progenitor cells or differentiated cells or transdifferentiated cells.
- the cell population is a mature blood cell population.
- the mature blood cell is selected from the group consisting of: neutrophils, macrophages and T-cells.
- the T-cells are from a heterogeneous population of T-cells.
- the patient in need of treatment with a cell population suffers from a condition selected from the group consisting of: an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a lysosomal storage disease, a congenital immune system disorder, an inherited erythrocyte abnormality, an inherited platelet abnormality, a plasma cell disorder, a tumor and an autoimmune disease.
- a condition selected from the group consisting of: an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a lysosomal storage disease, a congenital immune system disorder, an inherited eryth
- the patient in need of treatment with a cell population suffers from a condition selected from the group consisting of: peripheral arterial diseases, ischemic limb injury, diabetes, heart disease, liver disease, bone disease, muscular dystrophy, Alzheimer's disease, ALS, multiple schlerosis, Parkinson's disease, spinal cord injury, stroke and infertility. Further examples of the above-described conditions are set forth in Table I below.
- CLL Acute Lymphocytic Leukemia
- ALL Chronic Myelogenous Leukemia
- AML Acute Myelogenous Leukemia
- JCML Juvenile Chronic Myelogenous Leukemia Acute Undifferentiated Leukemia
- JMML Juvenile Myelomonocytic Leukemia
- CMML Dyskeratosis Congenita Refractory Anemia
- RA Fanconi Anemia Refractory Anemia with Excess Blasts Paroxysmal Nocturnal Hemoglobinuria
- RAEB Paroxysmal Nocturnal Hemoglobinuria
- Cell therapy is also desirable for treatment of diseases in which the immune system is sought to be enhanced.
- One particular form of cell therapy involves the expansion of T cells that possess specificity for a distinct antigen, for example a tumor antigen.
- T cells are generated, and reprogrammed ex vivo for ability to kill a plurality of cells that express a plurality of markers. Examples of such cell therapy include expansion of autologous T cells with IL-2, stimulation with tumor cell lysates, and reintroduction of said cells into the patient.
- cell therapy may be performed in situations where suppression of an immune response is desired.
- expansion of cells such as CD4+CD25+ regulatory T cells is desirable since these cells are capable of inhibiting immune responses in an antigen-specific manner.
- Methods for expansion of these cells are commonly known and include use of cytokines such as TGF-b.
- bone marrow homing the receptors on endothelial cells for the glycosylated ligands of circulating cells are constitutively expressed. These receptors, such as P and E selectins, induce numerous activities after interacting with cells, including causing apoptosis or proliferative arrest (Winkler et al., Blood 2004 103: 1685-1692). Accordingly, the administration of hematopoietic cells and their subsequent homing to the bone marrow is dependent on molecules that are constitutively expressed.
- the trafficking/homing of cells to the targeted location is much more complex and involves ligands that are not constitutively expressed, but expressed as a result of inflammation or tissue damage.
- administration of stem cells for the purpose of treating myocardial infarction depends on homing of these cells to areas bathed in cytokine locally released which not only induces expression of E selectin and P selectin on the endothelium but also mediates chemoattraction to the site. This tissue localized upregulation of receptors and chemoattractant agents allows for homing of stem cells into areas of injury.
- routes of administration may include parenteral, e.g., intravenous, intradermal, microvascular bed of bone marrow, subcutaneous, oral (e.g., ingestion or inhalation), trans dermal (topical), transmucosal, and rectal administration.
- the population of modified cells is administered from a route selected from a group consisting of: intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intravitreally, via direct injection, into bone compartments or into spinal fluid.
- the cells, compositions or other materials can be used with a scaffolding support.
- the population of modified cells is administered in or proximal to a site of injury.
- the homing and engraftment takes place within the bone marrow of the patient in need thereof.
- the cells are administered by multiple routes and/or sites, either simultaneously or sequentially.
- the methods, compositions, cells and other materials can be useful for enhancing functional capabilities in a wide variety of not only hematological disorders but also non-hematological disorders.
- the methods, compositions, cells and other materials may be useful for the treatment of medical conditions which are amenable to cell therapy.
- the methods, compositions, cells and other materials may be useful for the treatment of acute leukemias, chronic leukemias, myelodysplastic syndromes, stem cell disorders, myeloproliferative disorders, lymphoproliferative disorders, phagocyte disorders, histiocytic disorders, lysosomal storage diseases, congenital immune system disorders, inherited erythrocyte abnormalities, other inherited disorders, inherited platelet abnormalities, plasma cell disorder, various malignancies such as brain tumors or Ewing sarcoma, Autoimmune Diseases, and other applications such as bone marrow transplants, diabetes, heart disease, liver disease, hematopoietic rescue situations following intense chemo/radiation, limb ischemia and limb regeneration (including cartilage regeneration, skin regeneration, blood vessel regeneration, etc), cartilage regeneration, skin regeneration, blood vessel regeneration, etc.
- P-selectin binding cells can be incubated with anti-CD34 + -PE and with P-selectin isolated from human platelets. P-selectin binding can be detected with FITC-labeled S12, a non-blocking mAb to human P-selectin.
- E-selectin binding cells can be incubated with E-selectin/IgM after Fe receptor blocking. E-selectin can then be detected with FITC-labeled goat anti-human IgM polyclonal antibodies. Visualization of binding can be achieved using FACS analysis. Incubation for both P and E-selectin can be carried out at 4° C. for 20 minutes.
- the cells can be examined for adhesion to either E-selectin or P-selectin under physiological shear forces using an in vitro flow chamber rolling assay system.
- P-selectin isolated from human platelets can be immobilized on plates in a parallel-plate flow chamber.
- a P-selectin site density of about 145 sites/ ⁇ m 2 can be used and measured by binding of 125 I-labeled anti-P-selectin mAb 512.
- E-selectin soluble human E-selectin can also be immobilized on plates in a parallel-plate flow chamber at a density of 200 sites/ ⁇ m 2 , as measured by binding of 125 I-labeled anti-human E-selectin mAb ES1.
- Sham-treated or FTVI-treated cells in Hanks' balanced salt solution and 0.5% human albumin
- the accumulated number of rolling cells can be measured with the aid of a videomicroscopy system coupled to an image analysis system. Specificity of interaction of cells with the coated plates can be confirmed with the inclusion of specific inhibitors to the binding and examination of rolling on plates coated only with human serum albumin.
- Enzymatic-mediated fucosylation ( ⁇ 1-3-linked fucose addition to cell-surface glycans) has shown both phenotypic and functional changes in MNC and CD34 + cell populations.
- This cell population suspended in fucosyltransferase VI (FTVI) reaction media constitutes the core preparation used to examine a range of various parameters in order to identify the optimal conditions for maximal activity of FTVI within this cell population.
- the parameters examined are Mn++(over final concentration ranging from 0.0 to 10 mM), GDP-fucose (over final concentration ranging from 0.3 to 10 mM), time course analysis with varying periods of incubation (ranging from 15 minutes to 60 minutes), FTVI (over a 20 fold range of enzyme concentration), temperature [10° C., 25° C. (considered as room temperature) and 37° C.] and cell concentration (over final concentration ranging from 0.5 ⁇ 10 6 to 1 ⁇ 10 9 per ml).
- Additional activities within these optimization efforts include assessing the stability of the fucosylated product with an examination of HECA-452 binding at 30, 60, 120, 180 and 240 minutes post termination of reaction and assessing the extent of fucosylation of additional cell populations.
- the cell preparation in reaction mix is incubated for 30 minutes (except for time course study) with occasional gently mixing.
- the solutions are then diluted with cold HBSS 1% HSA, filtered through 70 micron cell screen and subjected to chilled centrifugation for 12 minutes. The supernatant is discarded, pellet loosened and resuspended for either injection or analysis by FACS using a procedure that is familiar to someone skilled in the art.
- aliquots of the cells are centrifuged at 500 ⁇ g for 13 minutes at 4° C. The supernatant is discarded, pellet loosened for the addition of flow stain cocktail containing the appropriate staints) or control cocktail. The mixture is stored in the dark for 30-40 minutes with occasional mixing. Each tube is diluted with 3 ml of cold flow wash buffer followed by centrifugation at 500 ⁇ g for 12 minutes at 4° C. The supernatant is discarded, pellet loosened with the addition of approximately 200 ⁇ l of cold flow buffer or flow fix buffer.
- MNCs mononuclear cells
- HBSS Hank's Balanced Salt Solution
- a fucosylation mix consisting at final concentration of 5 mM GDP-fucose, purified human recombinant al-3 fucosyltransferase VI at a predetermined Units per ml (for maximal fucosylation), and 1-10 mM MnCL 2 in HBSS. This mix is incubated for 30 minutes at 37° C. or room temperature in a humidified atmosphere containing 5% CO 2 .
- this preparation of fucosylated mononuclear cells is either washed first or directly incubated with a potent DPPIV inhibitor for 5-15 minutes at room temperature at a concentration sufficient to achieve complete or nearly complete inhibition of DPPIV.
- the cell suspension is volume adjusted with HBSS or another clinically compatible solution to obtain the appropriate concentration of cells in preparation for iv injection.
- the patients are subjected to systemic administration of the DPPIV inhibitor at a dose sufficient to achieve a sustained level in the body for significant inhibition of bone marrow and circulating plasma DPPIV activity.
- MNCs exposed to conditions for maximal fucosylation are then injected into the patient.
- the DPPIV inhibitor can be added simultaneous with the injection of the fucosylated cell preparation or shortly before.
- the patients are prepared for this combined approach by subjecting them to conditions for myeloablation or even partial myeloablation (mini) prior to injection of the fucosylated and inhibitor treated cells.
- the rate of recovery and extent of chimerism is assessed with an examination of serially collected blood samples in addition to an examination of cells obtained from the bone marrow.
- a multilineage analysis of the rate of recovery and extent of engraftment and chimerism is accomplished using cell surface markers specific for cell types in addition to an examination of mature hematopoietic cells in the blood stream. These markers and cells are detected using preparation techniques and FACS analysis procedures that are familiar to one skilled in the art.
- the introduction of fucose onto surface glycans of mesenchymal stem cells is accomplished by enzymatic transfer from a donor substrate utilizing an alpha 1-3-fucosyltransferase (FT).
- FT alpha 1-3-fucosyltransferase
- the cells at varying concentrations are exposed to an incubation buffer containing a number of ingredients each of which has been optimized for efficient transfer of the fucose, and performed in Hanks balanced salt solution (HBSS).
- HBSS Hanks balanced salt solution
- the substrate, guanosine diphosphate-fucose (GDP-fucose), at 1 mM is mixed with the FT added at sufficient activity, in order to achieve maximal transfer of fucose to MSCs.
- MrrCl at a final concentration of 0-10 mM is added, as needed, to further accelerate the enzymatic transfer reaction.
- the incubation is performed at 37° C. for 40 minutes with minimum toxicity to
- P-selectin binding cells are incubated with anti-CD34 + -PE and with P-selectin isolated from human platelets. P-selectin binding is detected with FITC-labeled S12, a non-blocking mAb to human P-selectin.
- E-selectin binding cells are incubated with E-selectin/IgM after Fe receptor blocking. E-selectin is then detected with FITC-labeled goat anti-human IgM polyclonal antibodies. Visualization of binding is achieved using FACS analysis. Incubation for both P and E-selectin is carried out at 4° C. for 20 minutes.
- the cells are examined for adhesion to either E-selectin or P-selectin under physiological shear forces using an in vitro flow chamber rolling assay system.
- P-selectin isolated from human platelets is immobilized on plates in a parallel-plate flow chamber.
- a P-selectin site density of about 145 sites/ ⁇ m 2 is used and measured by binding of 125 I-labeled anti-P-selectin mAb S12.
- E-selectin soluble human E-selectin is also immobilized on plates in a parallel-plate flow chamber at a density of 200 sites/ ⁇ m 2 as measured by binding of 125 I-labeled anti-human E-selectin mAb ES1.
- Sham-treated or FTVI-treated cells in Hanks' balanced salt solution and 0.5% human albumin is perfused over P- or E-selectin coated plates at a wall shear stress of 1 dyn/cm 2 .
- the accumulated number of rolling cells is measured with the aid of a videomicroscopy system coupled to an image analysis system. Specificity of interaction of cells with the coated plates is then confirmed with the inclusion of specific inhibitors to the binding and examination of rolling on plates coated only with human serum albumin.
- Stem cells obtained from one of a number of different sources are incubated ex vivo with fucosyltransferase+GDP-fucose at sufficient concentrations and for a sufficient period of time to result in maximal formation of fucosylated product, such as sialyl Lewis X, on the cell surface.
- fucosylated product such as sialyl Lewis X
- a cell population consisting of neural stem cells is treated with conditions so as to endow increased surface ligands for enhanced interaction with endothelium.
- Cells are modified with the addition of alpha 1-3-linked fucose to cell-surface glycans by ex vivo treatment of cells with the enzyme alpha 1-2 fucosyltransferase VI.
- alpha 1-2 fucosyltransferase VI Specifically, cells are treated with 1 mM GDP fucose, 20 mU/mL ⁇ alpha ⁇ 1-3 fucosyltransferase VI, and 10 mM MnCl2 in 0.5 mL HBSS containing 1% human serum albumin (HSA) for 30 minutes at 37° C.
- HSA human serum albumin
- Said treated neural stem cells are subsequently assessed for fucosylation using flow cytometric methodology.
- the cells are placed on ice for 5 minutes followed by washing with PBS (1 ml).
- PBS 1 ml
- the cell preparation is treated with the 1 st antibody, anti-CLA 1:200 dilution in blocking buffer (400 ⁇ l), and then incubated for one hour at room temp or overnight at 4°. Cells are then washed three times with PBS.
- the secondary antibody (anti-rat-IgM-PE, 1:200) in blocking buffer (400 ⁇ l) is then added.
- the preparation is incubated for 2 hrs at room temperature then rinsed with PBS. The result of this treatment and analysis is shown in FIG. 1 .
- a cell population consisting of cells with immune modulatory potential is treated with certain conditions so as to endow increased surface ligands for endothelium.
- Cells are modified with alpha 1-3-linked fucose to cell-surface glycans by treatment of cells with the enzyme alpha 1-2 fucosyltransferase VI.
- cells are diluted to a concentration of 10(7) per ml and treated with 1 mM GDP fucose (EMD Bioscienees, San Diego, Calif.), 20 mU/mL ⁇ alpha ⁇ 1-3 fucosyltransferase VI (FTVI; EMD Bioscienees), and 10 mM MnCl 2 in 0.5 mL HBSS containing 1% human serum albumin (HSA) for 30 minutes at 37° C. in a humidified atmosphere containing 5% CO 2 under conditions that cause minimum toxicity to CD34 + cells as tested by propidium iodide staining measured by flow cytometry.
- Other modifications of this treatment procedure may be performed based on the knowledge of one skilled in the art.
- Said treated immune cells are subsequently assessed for fucosylation status using either a flow cytometrie methodology (assessment of HECA-453 binding) or functional methodology (assessment of rolling on endothelium). Cells are subsequently administered to a patient for immune modulation.
- Tumor infiltrating lymphocytes were collected as described by Zhou et al The Journal of Immunology, 2005, 175: 7046-7052. Briefly, explants of small (2 mm3) tumor fragments or 1 ⁇ 10 6 viable cells of tumor tissue digests were used to initiate TIL culture in 2 ml of RPMI 1640-based medium (Invitrogen Life Technologies) containing 10% human serum and 6000 IU/ml IL-2 (Chiron). After 2-4 weeks of culture, several million TIL cells were usually obtained and screened by IFN secretion assay for recognition of tumor cells.
- Antitumor TIL cultures were further expanded in AIM V medium (Invitrogen Life Technologies) supplemented with irradiated allogeneic feeder cells, anti-CD3 Ab (Ortho Biotech), and 6000 IU/ml IL-2. This expansion protocol typically resulted in 1000-fold expansions of cells by the time of administration 14-15 days after initiation of the expansions.
- FTVI produced in CHO cells was manufactured at Aragen Bioscience (Morgan Hill, Calif., final concentration 1100 ug/mL), and FTVII produced in a mouse lymphocyte line was obtained from Kyowa Hakko Kirin (Japan, final concentration 150 ug/mL).
- Frozen human umbilical cord bloods were purchased from the San Diego Blood Bank (San Diego, Calif.).
- cells were treated at 10 6 cells/ml for 30 minutes at room temperature with 1 mM GDP ⁇ -fucose (EMD Biosciences, San Diego, Calif.) in Phosphate Buffered Saline (PBS) containing 1% human serum albumin (HSA, Baxter Healthcare Corp., Westlake Village, Calif.) and in the presence of previously optimized concentrations of FTVI (100 mU/ml) or FTVII (75 ⁇ g/ml).
- PBS Phosphate Buffered Saline
- HSA human serum albumin
- TZ101 previously referred to as ASC-101; Targazyme, Inc., Carlsbad, Calif.
- FTVII+GDP-fucose composition is referred to herein as TZ102 (previously referred to as ASC-102; Targazyme, Inc., Carlsbad, Calif.).
- Untreated cells were incubated as above, except that no enzyme was added.
- Fucosylation levels were determined by flow cytometry using HECA-452 antibody (BD Biosciences, San Jose, Calif.), a directly conjugated (FITC), rat IgM antibody that reacts against a fucosylated (sialyl Lewis X (sLeX)-modified) form of P-selectin glycoprotein ligand (PSGL)-1 (CD162), also known as cutaneous lymphocyte antigen (CLA).
- FITC directly conjugated
- rat IgM antibody that reacts against a fucosylated (sialyl Lewis X (sLeX)-modified) form of P-selectin glycoprotein ligand (PSGL)-1 (CD162), also known as cutaneous lymphocyte antigen (CLA).
- Other antibodies to CD antigens were also obtained from BD Biosciences.
- Tregs Regulatory T cells
- FIG. 3 demonstrates a flow cytometry analysis of Tregs expanded in this manner.
- 97.2% of cells are within the lymphocyte gate, while 98.4% express Treg markers CD25/CD127.
- 98.6% of cells are CD25 + FoxP3 + ; 97.9% are CD4 + FoxP3 + ; 98.9% of cells are CD25 + CD4 + ; and 0.52% of cells are CD25 + CD8 + .
- Tregs were fucosylated with TZ101 (1/25 dilution of TZ101 in 1 mM GDP-Fucose, PBS 1% human serum albumin) for 30 minutes at room temperature, washed, and assayed for cell surface expression of sialyl Lewis X (sLeX) using the HECA 452 anti-CLA antibody.
- the left side of each dot plot of FIG. 4 shows the isotype control, while the right side shows the staining with percent CLA positive cells.
- treatment with TZ101 increased the percentage of fucosylated Tregs from about 9% to about 63%.
- GVHD xenogeneic graft-versus-host
- Treg or FT-Treg were received Treg or FT-Treg at a cell dose of 1 ⁇ 10 6 on Day-1 followed by tail vein injection of PBMC at cell dose of 1 ⁇ 10 7 on Day-0. The mice were followed for survival and weight. All the Treg recipients were dead at Day-20; however, the FT-Treg recipients were alive at the last follow up. While the Treg recipients started losing weight as early as Day-12, FT-Treg recipients maintained their weight until their last follow up.
- expanded CD8 + T cells were not fucosylated by TZ101 (FTVI+GDP-fucose) but were fucosylated by TZ102 (FTVII+GDP-fucose).
- DC dendritic cells
- HLA-A*0201 healthy donor monocytes by adherence and matured and subsequently used as antigen presenting cells (APC).
- Healthy donor PBMCs were adhered on 6-well plates at 37° C. in serum-free medium.
- Cells remaining in suspension (lymphocytes) from the same donor were removed and pulsed with 40 ⁇ g/mL of a peptide (CG1) derived from the myeloid primary granule protease (PGP) cathepsin G (CG) that has been established as a myeloid leukemia target.
- PGP myeloid primary granule protease
- the suspension cells were stimulated with IL-7 (10 ng/mL) and IL-2 (10 ng/mL) for 5 days.
- Adherent cells from the initial step were matured into monocyte-derived DC by addition of GM-CSF (100 ng/mL), IL-4 (50 ng/mL), and TNF- ⁇ (25 ng/mL).
- DC were detached and pulsed with appropriate peptides at 40 ⁇ g/mL and subsequently combined with the remainder of autologous lymphocyte population.
- Co-cultures were then re-stimulated with IL-7 (10 ng/mL) and IL-2 (25 ng/mL) for 7 days to allow for CTL proliferation.
- TZ102 (FTVII) was capable of fully fucosylating expanded CTL; however, FTVI did not fucosylate these cells (data not shown).
- a xenogeneic AML model was developed.
- Cells from the human U937 leukemia cell line transduced with HLA-A2 and GFP were administered to NSG mice on Day-0.
- Cytotoxic T cells were expanded against CG1 as described above. Fucosylated or non-fucosylated T cells were administered to NSG mice with U937 leukemia on Day-1, and bone marrow was harvested 14 days later and assessed for the presence of U937 cells (upper left quadrant of FIG. 8 ). There were significantly fewer leukemia cells in mice receiving fucosylated T cells (arrows in FIG. 8 ).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Neurology (AREA)
- Mycology (AREA)
- Neurosurgery (AREA)
- Oncology (AREA)
- Rheumatology (AREA)
- Physical Education & Sports Medicine (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Hospice & Palliative Care (AREA)
- Heart & Thoracic Surgery (AREA)
- Endocrinology (AREA)
- Orthopedic Medicine & Surgery (AREA)
Abstract
Disclosed are methods, compositions of matter, and kits useful for augmentation of cells through modification of cellular membrane properties following ex vivo treatment.
Description
- This application is a continuation of U.S. Ser. No. 14/182,141, filed Feb. 17, 2014; which is a continuation-in-part of U.S. Ser. No. 12/997,230, filed Jun. 9, 2009, now abandoned; which is a US national stage application filed under 35 USC §371 of International Application No. PCT/US2009/046800, filed Jun. 9, 2009; which claims priority to U.S. Provisional Application No. 61/060,084, filed Jun. 9, 2008. The entire contents of each of the above-referenced patents and patent applications are hereby expressly incorporated by reference.
- Cell therapy offers immense possibilities for treatment of a wide variety of medical conditions. Currently cell therapy is practiced in numerous embodiments, for example, bone marrow transplantation for treatment of hematopoietic malignancies. The successful establishment of procedures for transplantation of donor cells into recipients whose own cells are malignant (leukemia), altered (stroke, limb ischemia, etc.), or insufficient (due to chemotherapy, radiotherapy, or congenital abnormality) constitutes a major medical breakthrough in the therapeutic management of these conditions.
- One limiting factor of any cell therapy is the need for blood-borne or directly injected cells to migrate to the targeted tissue in order to maximize their therapeutic potential. With regard to hematopoietic stem cells as a particular example, it is known that only a small percentage of these cells home to the bone marrow microenvironment when administered systemically. This migration is regulated in part by adhesive factors present on the luminal surface of endothelial cells that constitute the microvascular lining of the bone marrow and in part by chemotactic gradients secreted at a constant rate by bone marrow stromal cells. In addition, for the treatment of myocardial infarction or stroke, only a small fraction of injected stem cells actually home and enter the area of tissue damage. Thus, there exists a need to administer a high number of stem cells, sometimes prohibitively too high to be obtained in an autologous or even allogeneic setting.
- This patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
FIG. 1 illustrates the effect of pretreatment of human neural stem cells (HNSCs) with α1,3 fucosyltransferase-VI (FTVI) on the level of fucosylation. The expression of CLA was used to determine the levels of fucosylation. The CLA expression by hNSCs was determined by FACS analysis with untreated cells (A) or following pre-incubation with the fucosylation mix (GDP-Fucose, manganese and FTVI conditioned medium) (B). Isotype-matched IgG was used as the negative control. Fluorescence intensity (FL2) of samples was evaluated by FACSCanto™ cell analyzer (BD Biosciences, San Jose, Calif.). The results of one experiment are shown. -
FIG. 2 graphically depicts the ex vivo expansion technique utilized herein for T cells. -
FIG. 3 contains a flow cytometry analysis of expanded Regulatory T cells (Tregs). -
FIG. 4 contains a flow cytometry analysis of Tregs fucosylated with TZ101 (FTVI+GDP-fucose; Targazyme, Inc., Carlsbad, Calif.). -
FIG. 5 graphically illustrates the ability of TZ101 to fucosylate various types of cells. -
FIG. 6 graphically illustrates the ability of fucosylated Tregs to prevent graft-versus-host disease (GVHD) in a mouse model. -
FIG. 7 graphically illustrates the ability of TZ102 (FTVII+GDP-fucose; Targazyme, Inc., Carlsbad, Calif.) to fucosylate ex vivo expanded cytotoxic T cells (CTL). -
FIG. 8 contains an analysis of the ability of FTVII-treated CTL to kill leukemia cells in a xenogeneic AML mouse model. - Before explaining at least one embodiment of the inventive concept(s) in detail by way of exemplary drawings, experimentation, results, and laboratory procedures, it is to be understood that the inventive concept(s) is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings, experimentation, and/or results. The inventive concept(s) is capable of other embodiments or of being practiced or carried out in various ways. As such, the language used herein is intended to be given the broadest possible scope and meaning; and the embodiments are meant to be exemplary—not exhaustive. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
- Unless otherwise defined herein, scientific and technical terms used in connection with the presently disclosed and claimed inventive concept(s) shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Coligan et al. Current Protocols in Immunology (Current Protocols, Wiley Interscience (1994)), which are incorporated herein by reference. The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
- All patents, published patent applications, and non-patent publications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this presently disclosed and claimed inventive concept(s) pertains. All patents, published patent applications, and non-patent publications referenced in any portion of this application are herein expressly incorporated by reference in their entirety to the same extent as if each individual patent or publication was specifically and individually indicated to be incorporated by reference.
- All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of the inventive concept(s) have been described in terms of particular embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the presently disclosed and claimed inventive concept(s). All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the inventive concept(s) as defined by the appended claims.
- As utilized in accordance with the present disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
- The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The singular forms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to “a compound” may refer to 1 or more, 2 or more, 3 or more, 4 or more or greater numbers of compounds. The term “plurality” refers to “two or more.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects. For example but not by way of limitation, when the term “about” is utilized, the designated value may vary by ±20% or ±10%, or ±5%, or ±1%, or ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods and as understood by persons having ordinary skill in the art. The use of the term “at least one” will be understood to include one as well as any quantity more than one, including but not limited to, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100, etc. The term “at least one” may extend up to 100 or 1000 or more, depending on the term to which it is attached; in addition, the quantities of 100/1000 are not to be considered limiting, as higher limits may also produce satisfactory results. In addition, the use of the term “at least one of X, Y and Z” will be understood to include X alone, Y alone, and Z alone, as well as any combination of X, Y and Z. The use of ordinal number terminology (i.e., “first”, “second”, “third”, “fourth”, etc.) is solely for the purpose of differentiating between two or more items and is not meant to imply any sequence or order or importance to one item over another or any order of addition, for example.
- As used in this specification and claim(s), the terms “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AAB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
- As used herein, the term “substantially” means that the subsequently described event or circumstance completely occurs or that the subsequently described event or circumstance occurs to a great extent or degree. For example, the term “substantially” means that the subsequently described event or circumstance occurs at least 90% of the time, or at least 95% of the time, or at least 98% of the time.
- The ability of cells such as leukocytes to interact with the endothelium has been known for decades. It has also been known that various glycosylation patterns are critical for cells such as leukocytes to “roll” on the endothelium prior to extravasation. What is desirable is the identification of novel methods that enhance cell trafficking and engraftment to areas of need in a simple and clinically applicable manner.
- The present embodiments relate generally to the field of cell therapy. More specifically, some embodiments relate to methods of enhancing the natural process of cell migration through augmentation of specific glycosylation features on the surface of various cell types. More specifically, some embodiments relate to treatment of cells with fucosyltransferases in order to enhance the interaction between blood-borne stem cells, progenitor cells and endothelial cells facilitating entry into biological niches and tissues where they may function on a number of different levels for therapeutic and restorative intervention.
- Accordingly, provided herein in certain embodiments are methods of enhancing homing and engraftment of therapeutically-administered cells in a patient. It should be noted that the term “patient” is meant to broadly include any animal. For example, the animal can be a mammal, a bird, a fish, a reptile, a fish, an insect or any other animal. Some non-limiting examples of mammals may include humans and other primates, equines such as horses, bovines such as cows, mice, rats, rabbits, Guinea Pigs, pigs, and the like. It is also worth noting that the compositions and methods can be used with or applied to individual cells (for example ex vivo treatment or modification), to insect cells, etc. Also provided are cells that have been modified to enhance homing and engraftment. The embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- One embodiment provides a method of enhancing homing and engraftment of a therapeutically-administered cell in a patient in need of treatment with a cell population; providing cells that may have been contacted with an agent that modifies at least one surface molecule on the cells, resulting in a population of modified cells; and providing or administering the population of modified cells to a patient in need thereof. In certain aspects, the cell surface molecule may be modified so as to result in an alteration of cell charge.
- In one embodiment, a method of enhancing homing and engraftment of a cell may comprise providing one or more cells selected from stem cells, progenitor cells, neutrophils, macrophages, T-cells, and combinations thereof. The stem or progenitor cells may be embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, placental stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells, or somatic nuclear transfer and side population stem cells, as well as any combination thereof. One or more cells may have been contacted with an agent that modifies at least one surface molecule on the cell that may result in enhanced selectin-mediated binding. This may result in a population of modified cells. These cells may be provided to animals. Such animals may include birds, reptiles, fish, insects, and mammals including but not limited to humans, equines such as horses, bovines such as cows, dogs, mice, rats, pigs, guinea pigs, rabbits and the like.
- In certain aspects of the above embodiments, the cell surface molecule may be modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge. In certain aspects, the enzyme may be a glycosidase, glycosyltransferase, a fucosyltransferase, a neuraminidase, an acetylglucosaminyltransferase, or any glycosyltransferase capable of increasing the number or affinity of cell surface selectin binding components. In certain aspects, the enzyme may be
alpha 1,3-fucosyltransferase I,alpha 1,3-fucosyltransferase III,alpha 1,3-fucosyltransferase IV,alpha 1,3-fucosyltransferase V,alpha 1,3-fucosyltransferase VI,alpha 1,3-fucosyltransferase VII, oralpha 1,3-fucosyltransferase IX. - In another aspect of the above embodiment, the cell may be treated with a reagent or reagents that link a binding unit to the cell surface. The binding unit may consist of a particle as well as a ligand of natural or non-natural sugars shown to possess binding affinity for receptors present on endothelial cells similar to that seen with natural sugars. The added binding unit may increase the functionalization of the cell.
- In certain further aspects of the above embodiment, the cell may be treated with a single or plurality of molecules having ability to cause alpha 1-3 fucosylation of glycan determinants. In certain aspects, the molecule may be an alpha 1-3 fucosyltransferase mixed together with a concentration of a fucose carrier under conditions sufficient to provide enhanced alpha 1-3 fucosylation of glycan determinants. In certain aspects, the fucose carrier may be guanosine diphosphate fucose. In certain aspects, the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VI. In other aspects, the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VII. In other aspects, the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase IV.
- In certain aspects of the above embodiment, prior to the providing or administering, the population of modified cells has been further contacted for a period of time insufficient for cell division to occur with a CD26 peptidase inhibitor in an amount effective to inhibit CD26 peptidase activity and effective to increase the migratory response to CXCL12. PCT Publication WO 2009/152186, which is incorporated herein by reference in its entirety, discloses and describes methods and compositions, any of which can be used with the technology of this application in any combination.
- In certain aspects, prior to providing modified cells, a recipient may be contacted for a period of time and with sufficient dosing of a CD26 peptidase inhibitor in an amount effective to inhibit recipient CD26 peptidase activity effective to increase the migratory response of donor cells to chemotractant agents such as stromal cell-derived factor.
- In certain aspects, the cell population may comprise or consist essentially of a population of stem cells, both embryonic and adult and expanded cell populations. In certain aspects, the stem cells may be embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and immobilized peripheral blood stem cells, endothelial progenitor cells, monocyte-derived stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells. In certain aspects, the embryonic stem cells may be totipotent. In certain aspects, the stem cell may be hematopoietic, mesenchymal, neural or cardiomyocyte stem cells. In certain aspects the hematopoietic stem cells may be further defined and differentiated as CD38-, lin- or ALDH-bright cells.
- In certain aspects, the cell population may comprise or consist essentially of a population of committed progenitor cells or differentiated cells. In certain aspects, the cell population may be a mature blood cell population. In certain aspects, the mature blood cell may be neutrophils, macrophages, T-cells, activated T-cells, helper T cells, cytolytic T-cells, memory T-cells, regulatory T-cells, natural killer (NK) cells, or reprogrammed cells. In certain aspects, the T-cells may be from a heterogeneous population of T-cells.
- In certain aspects, the patient in need of treatment with a cell population suffers from a malignant or non-malignant blood disorder such as an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a lysosomal storage disease, an age related disorder, an arterial or blood vessel or cardiovascular disorder, an enzyme deficiency disorder, a congenital immune system disorder, an inherited erythrocyte abnormality, an inherited platelet abnormality, a plasma cell disorder, a tumor or an autoimmune disease. In certain aspects, the patient in need of treatment with a cell population may suffer from peripheral arterial diseases, ischemic limb injury, diabetes, heart disease, bone disease, liver disease, muscular dystrophy, Alzheimer's disease, ALS, multiple sclerosis, Parkinson's disease, spinal cord injury, stroke or infertility.
- In certain aspects, the population of modified cells may be administered intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intrathecally intracranially, intravitreally, or directly into the microvascular compartment of bone or into spinal fluid. In certain aspects, the population of modified cells may be administered in or proximal to a site of injury. In certain aspects, the homing and engraftment may take place within the bone marrow of the patient in need thereof.
- In another embodiment, a composition may comprise an isolated population of cells modified for enhanced selectin-mediated binding. The isolated population of cells may be neutrophils, macrophages, T-cells, subpopulation of T-cells, or stem or progenitor cells selected from a group consisting of: embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, or reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells and a pharmaceutically-acceptable carrier.
- In certain aspects, the isolated population may comprise a cell surface modification. In certain aspects, the cell surface molecule may be modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge.
- In certain aspects, the enzyme is selected from a group comprising of: a glycosidase, a glycosyltransferase, a fucosyltransferase, a neuraminidase, and an acetylglucosaminyltransferase or any other glycotransferases capable of increasing cell surface selectin binding components. In certain aspects, the enzyme is selected from a group comprising of
alpha 1,3-fucosyltransferase I,alpha 1,3-fucosyltransferase III,alpha 1,3-fucosyltransferase IV,alpha 1,3-fucosyltransferase V,alpha 1,3-fucosyltransferase VI,alpha 1,3-fucosyltransferase VII andalpha 1,3-fucosyltransferase IX. - In certain aspects, the cell may be treated with a single or plurality of molecules having ability to cause alpha 1-3 fucosylation of glycan determinants. In certain aspects, the molecule may be an alpha 1-3 fucosyltransferase mixed together with a concentration of a fucose carrier under conditions sufficient to provide enhanced alpha 1-3 fucosylation of glycan determinants. In certain aspects, the fucose carrier may be guanosine diphosphate fucose. In certain aspects, the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VI. In certain aspects, the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase VII. In certain aspects the alpha 1-3 fucosyltransferase may be alpha 1-3 fucosyltransferase IV. In certain aspects the molecule may be a non-naturally occurring enzyme having the ability to add a glycan determinant or a non-natural sugar that mimics the activity of fucose or other sugars that enhance the selectin binding process.
- In certain aspects, the cell population may comprise or consist essentially of a population of stem cells both embryonic and adult. In certain aspects, the stem cells may be embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and mobilized peripheral blood stem cells, endothelial progenitor cells, monocyte-derived stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells. In certain aspects, the embryonic stem cells may be totipotent. In certain aspects, the stem cell may be hematopoietic, mesenchymal, neural or cardiomyocyte stem cells.
- In certain aspects, the cell may be a mature blood cell. In certain aspects, the mature blood cell may be a neutrophil, macrophage, or T-cell. In certain aspects, the T-cells may be from a heterogeneous population of T-cells or from an ex vivo expanded cell population.
- Another embodiment provides a method of enhancing homing and engraftment of a cell, comprising providing one or more cells selected from stem cells, progenitor cells, neutrophils, macrophages and T-cells. The stem or progenitor cells may be embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and immobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells. One or more cells may be contacted with an agent that modifies at least one surface molecule on the cell(s) to result in enhanced selectin-mediated binding, resulting in a population of modified cells.
- Also provided herein is a method of fucosylation of cells so as to increase the ability of the cells to traffic, home and engraft into an area of biological need. The cells may be mature fully differentiated cells whose homing to specific targets is desired, such as islets, hepatocytes, or neutrophils or cells may be progenitor cells capable of differentiating into functional cells such as hepatic, renal, cardiac, or islet progenitors, or alternatively, the cells may be stem cells with multilineage differentiation ability such as embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, neuronal stem cells, circulating and mobilized peripheral blood stem cells, mesenchymal stem cells, endothelial stem cells, cardiomyocyte stem cells, germinal stem cells, committed endothelial progenitor cells, committed progenitor cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, chemically, biologically, or electronically reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population of stem cells.
- Other aspects relate to enhancing the ability of cells to modulate the immune system through enabling the cells to function with augmented efficiency at trafficking and homing. In another aspect, cells useful for immune therapy are “reprogrammed” ex vivo with endowment of distinct immunological properties. Surface modification may be performed before reprogramming, during reprogramming or after reprogramming. Reprogramming may be performed so as to increase immune stimulatory properties of the immune cells, or may be performed to allow the immune cells to suppress other immune cells. Reprogramming may be performed during expansion of cells, or to cells that have already been expanded.
- In certain aspects, the cells can be fucosylated so as to enhance ability to home. Fucosylation may be performed on specific molecules present on the cells, or may be performed globally in a non-specific manner. Cells may be fucosylated through culture with an enzyme such as a fucosyltransferase capable of transferring fucose groups such as a fucosyltransferase. In certain aspects, the fucosyltransferase may be an
alpha alpha 1,3-fucosyltransferase IX,alpha 1,3-fucosyltransferase III,alpha 1,3-fucosyltransferase IV,alpha 1,3-fucosyltransferase V,alpha 1,3-fucosyltransferase VI andalpha 1,3-fucosyltransferase VII. Appropriate culture conditions and substrates are also provided within the scope of the embodiments in order to allow proper fucosylation to occur. The conditions may include addition of substrates such as GDP-fucose or other similar compounds that provide a source of fucose. - In certain aspects, cells may be treated with a single or plurality of agents in order to augment expression of proteins involved in migration. Since the proteins involved in migration, when expressed de-novo, are not properly fucosylated, the addition of exogenous fucose groups increases ability of the de-novo expressed proteins to interact with endothelium and properly home. Specific molecules may include histone deacetylase inhibitors or DNA methyltransferase inhibitors.
- Some embodiments relate generally to compositions for and methods of enhancing homing and engraftment of a therapeutically-administered cell in a patient. Also, some embodiments relate to cells that have been modified to enhance homing and engraftment. The embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- The process by which cells exit the systemic circulation and enter distinct biologically niches is a complex coordinated process that involves numerous molecules. The process of cellular exit is a bi-directional communication between the vascular endothelium cells and the circulating stem and progenitor cells. This process has been best characterized in the description of leukocyte exit from systemic circulation. An important family of molecules involved critically and initially in the process of cellular trafficking is the selectins. These molecules are
type 1 transmembrane proteins that contain what is known as C-type lectin domains. Lectins are proteins that bind sugars. Most commonly known lectins include conconavalin-A and phytohemagglutinin. The C-type lectin domains on the selectins reside at the N-terminal of the selectins and interact with a wide array of glycoprotein ligands. Since the lectin domains bind sugar moieties, it is important that proper placement of sugars onto the proteins such that interaction of the selectins occurs. Since placement of sugars (glycosylation) usually occurs as a post-translational event, the mere genetic manipulation of cells is not sufficient usually to alter ability of cells to interact with selectins. The exception to this is, of course, genetic manipulation in the sense of transfecting cells with enzymes that are involved in the addition of sugars. - Provided herein are means of endowing enhanced trafficking/homing capabilities onto cells for use in cell therapy, said means consisting of modification of various glycosylation patterns on cells in order to augment ability to “roll”, “tether”, and “adhere” on the endothelium. The concept of cells rolling, tethering, and adhering on the endothelium is commonly known in the art and means of augmentation of this rolling process have been described strictly in the areas of hematopoietic cells, as well as tumor cells.
- Previous studies with hematopoietic cells have demonstrated that it is possible to alter glycosylation and fucosylation patterns on the surface of cells by treating of cells with enzymes such as fucosyltransferases. In addition to establishing the ability to modify the surface of cells, the functional consequences of this modification have been documented. Specifically, several reports (Xia et al., Blood 2004 104:3091-3096; Hidalgo, et al., J. Clin. Invest. 2002 110:559-569, each of which is hereby incorporated by reference in its entirety) demonstrated that fucosylation of cord blood hematopoietic cells enhances binding of P and E selectin, enhances ex vivo binding to P and E-selectin-coated plates under physiological shear stress conditions and enhances homing and engraftment into bone marrow of NOD-SCID mice. (See also U.S. Pat. No. 7,332,334 and US Pub. No. 2006/0228340 to Xia and McEver, each of which is hereby incorporated by reference in its entirety). Findings in mesenchymal stem cells have also been described by others, including Sackstein et al. (US 2003/0040607 and US 2008/0044383, each of which is incorporated by reference in its entirety). Each reference listed in this paragraph is incorporated herein by reference in its entirety.
- However another report demonstrated that while early (minutes to hours following iv injection) adhesion of cord blood hematopoietic cells is increased after ex vivo fucosylation, no increase in bone marrow homing at 16-24 hrs was observed (Hidalgo and Frenette, Blood 2005 105:567-575, which is incorporated herein by reference in its entirety).
- It has been suggested by Sackstein et al. that mesenchymal stem cells, which do not express E-selectin ligands, can be glycosylated enzymatically in an effort to enhance migration of these cells to the bone marrow (Sackstein et al. Nature Medicine 2008 14:181-187; which is incorporated herein by reference in its entirety).
- Thus, embodiments presented herein are based in part on the novel observation that fucosylation of ligands increases binding to tissue and can be used to enhance migration of various types of cells, enumerated herein, to an area of need. Specifically, some embodiments provided herein relate in part to the surprising finding that augmentation of the tethering and rolling process through various means is useful for enhancing functional capabilities of a wide variety of non-hematopoietic cells and stem cells. Accordingly, the methods and compositions provided herein may be useful for treatment of a wide variety of medical conditions that are amenable to cell therapy.
- Therapeutic Methods
- In accordance with the above, provided herein are methods of enhancing homing and engraftment of a therapeutically-administered cell in a patient. Specifically, provided herein are methods of modification of sugar residues, both natural and non-natural, on the surface of cells used for cell therapy so as to enhance their interaction with members of the selectin family, thereby enhancing trafficking of the cells administered systemically to an area of need.
- Also provided are cells that have been modified to enhance homing and engraftment. The embodiments provided herein are based in part on the surprising finding that by modification of molecules involved in the cell-endothelium interaction, it is possible to enhance the homing and subsequent efficacy of cell therapy.
- Examples of cells include, without being limited thereto, neutrophils, macrophages and T-cells, wherein the stem or progenitor cells are selected from a group consisting of: embryonic stem cells, adult stem cells, expanded stem cells, placental stem cells, bone marrow stem cells, hematopoietic stem cells, mesenchymal stem cells, amniotic fluid stem cells, neuronal stem cells, cardiomyocyte stem cells, endothelial progenitor cells, circulating and mobilized peripheral blood stem cells, muscle stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells. In some aspects, one or more of the cell types mentioned can be specifically excluded from the methods or compositions described herein. As one example, in some aspects mesenchymal or hematopoietic stem cells can be excluded.
- In one embodiment is provided a method of enhancing homing and engraftment of a therapeutically-administered cell in a patient comprising selecting a patient in need of treatment with a cell population; providing cells that have been contacted with an agent that modifies at least one surface molecule on the cells, resulting in a population of modified cells; and providing or administering the population of modified cells to a patient in need thereof. In certain aspects, the cell surface molecule is modified so as to result in an alteration of cell charge.
- Modification Enzymes
- In certain aspects of the above embodiments, the cell surface molecule is modified by treatment with an enzyme and appropriate substrate(s) under conditions sufficient for causing an alteration of cell surface charge. Enyzmes that modify cell surface molecules are known in the art. Such enzymes include a purified glycosyltransferase polypeptide. Glycosyltransferase include for example, fucosyltransferase, galactosyltransferase, sialytransferase and N-acetylglucosaminotransferase. The fucosyltransferase can be, for example, an
alpha alpha 1,3-fucosyltransferase I,alpha 1,3-fucosyltransferase III,alpha 1,3-fucosyltransferase IV,alpha 1,3-fucosyltransferase V,alpha 1,3-fucosyltransferase VI,alpha 1,3-fucosyltransferase VII, andalpha 1,3-fucosyltransferase IX. It should be noted that in some embodiments, one or more of the enzymes listed herein can be specifically excluded. For example, in some aspects, FTVI can be specifically excluded from the methods and compositions described herein. - In certain aspects, the cell surface molecule is modified in the presence of a sugar donor suitable for the specific glycosyltransferase. Sugar donors for glycosyltransferases are known in the art. For example, when the glycoslytransferase is a fucosyltransferase, the donor is GDP-fucose. Whereas, when the glycosyltransferase is a siayltransferase, the donor is eMP-sialic acid. In some instances the sugar can be a nonnatural sugar added by a natural or modified glycosyltransferase.
- The glycosyltransferases are biologically active. By biologically active is meant that the glycosyltransferases are capable of transferring a sugar molecule from a donor to acceptor. For example, the glycosyltransferase is capable of transferring 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 5, 10 or more μmoles of sugar per minute at pH 6.5 at 37° C.
- Physiologically acceptable solution is any solution that does not cause cell damage, e.g. death. For example, the viability of the cell or cell particle is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more after treatment according to the methods presented herein. Suitable physiologically acceptable solutions include for example, Hank's Balanced Salt Solution (HBSS), Dulbecco's Modified Eagle Medium (DMEM), a Good's buffer (see N. E. Good, G. D. Winget, W. Winter, T. N. Conolly, S. Izawa and R. M. M. Singh,
Biochemistry 5, 467 (1966); N. E. Good, S. Izawa, Methods Enzymol. 24, 62 (1972) such as a HEPES buffer, a 2-Morpholinoethanesulfonic acid (MES) buffer, or phosphate buffered saline (PBS). Each reference listed in this paragraph is incorporated herein by reference in its entirety. - Thus, in certain embodiments provided herein, cells can be treated ex vivo with a kit that contains some or all of the agents, such as enzyme, buffer, cofactors and substrate necessary to achieve fucosylation of the cell surface glycoproteins that mediate adhesive interactions between the circulating cells following iv administration and endothelial cells at targeted tissue sites. In another embodiment provided herein, cells such as cord blood can be pretreated with the fucosylation kit prior to freezing or storage.
- In certain aspects, the syn-anti and/or α-β substitution and orientation of the polysaccharide are modulated to provide the desired effect. Cell surface oligosaccharides are highly diversified in their structures and are associated with a variety of cell functions. In an inflammatory response, for example, neutrophils or leukocytes bind to injured tissues where the adhesion process occurs. This process has been found to be mediated by the tetrasaccharide sialyl Lewis X on neutrophiles or leukocytes and the receptor ELAM-1 (endothelial leukocyte adhesion molecule 1), a glycoprotein of the selectin family. Several sialyl lewis analogues and mimetics have been analyzed, in part, to understand affects of syn versus anti sugar conformers. Similar studies have examined fucosyl and galactosyl conformers, diastereomers, epimers and chiral analogues to examine adhesion and inhibitory properties. See Ichikawa Y et al. J. Am. Chem. Soc. 1992, 114, 9283-9298; Nelson, Richard M. et al J. Clin. Invest. 1993, 1157-1166; Chun-Cheng Lin et al, J. Am. Chem. Soc. 1996, 118, 6826-6840; Clarke Julia L. J Am. Chem. Soc. 1996, 118, 6826-6840; Chikara Ohyama, et al, The EMBO Journal Vol. 18 No. 6 pp. 1516-1525, 1999; each of which is incorporated herein by reference in its entirety. Each reference listed in this paragraph is incorporated herein by reference in its entirety.
- The introduction of fucose onto surface glycans of the cells of interest can be accomplished by enzymatic transfer from a donor substrate utilizing an alpha 1-3-fucosyltransferase (FT) by a process well known to someone skilled in the art. For this transfer to occur the cells at varying concentrations can be exposed to an incubation buffer containing a number of ingredients each of which can be optimized for efficient transfer of the fucose. The selection of buffer can come from a number of available buffers with Hanks balanced salt solution (HBSS) serving as the primary example. The substrate, guanosine diphosphate-fucose (GDP-fucose), at 1 mM can be mixed with the FT added at sufficient activity, expressed as Units/mL, to achieve maximal transfer of fucose to the cells of interest. In addition, MnC12 at a final concentration of 0-10 mM can be added, if needed, depending on the cell population to further accelerate the enzymatic transfer reaction. The temperature and time of incubation can also be optimized for maximal transfer of fucose under practical application conditions with minimum toxicity to the cells of interest but is generally conducted at 37° C. for 40 minutes.
- Confirmation of fucosylated epitopes on the cells of interest as means of confirming maximal levels of fucosylation can be verified by Flow Cytometry utilizing agents and procedures well known to someone skilled in the art. For example, sialyl LewisX is a fucosylation epitope found on both P and E-selectins. By incubation of the FT-treated cells with anti-sLeX mAb HECA 452 (IgM) followed by treatment with FITC-conjugated fragment to the IgM, the sLeX epitopes on the cell surface can be visualized using standard Flow Cytometry procedures.
- Combination Treatment with CD26 Peptidase Inhibitors
- In certain aspects of the above embodiment, prior to the administering, the population of modified cells has been further contacted for a period of time insufficient for cell division to occur with a CD26 peptidase inhibitor in an amount effective to inhibit CD26 peptidase activity and effective to increase the migratory response to CXCL12.
- Exemplary methods of treating stem cells with CD26 (dipeptidylpeptidase) inhibitors are described in Christopherson et al. (US Pub No. 2004/0247574, incorporated by reference in its entirety). In certain aspects, the CD26 inhibitor is selected from the group consisting of Diprotin A (Ile-Pro-Ile), Valine-Pyrrolidide, sitagliptin, vildagliptin, saxagliptin, alogliptin or any other class of compounds shown to exhibit potent inhibition of either purified, soluble or cell surface (CD26) dipeptidylpeptiase. PCT Publication WO 2009/152186, which is incorporated herein by reference in its entirety, discloses and describes methods and compositions, any of which can be used with the technology of this application in any combination.
- In certain aspects, the cell population is contacted with said CD26 inhibitor for about 5 minutes to about 12 hours or conditions suitable for sufficient inhibition of cell surface CD26 leading to an enhanced migratory response to chemotactic factors such as stromal cell-derived factor. In certain aspects, the cell population is contacted with said CD26 inhibitor for about 5 minutes to about 12 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 6 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 2 hours. In certain aspects, the cell population is contacted with said CD26 inhibitor for less than 1 hour.
- In certain aspects, the inhibitor is administered in a concentration of less than about 1 nM, about 1, μM, about 5, μM, about 10, μM, about 50, μM, about 100, μM, about 1 mM or about 5 mM. In certain aspects, the inhibitor is administered in a concentration of no less than about 5 mM.
- In certain aspects, at least 1 donor cell is treated. In selected embodiments, at least 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108 donor cells per mL are treated.
- In certain aspects the recipient can be treated with CD26 inhibitor simultaneous with injection of cell surface modified cells. In certain aspects the recipient can be treated with CD26 inhibitor prior to injection of cell surface modified cells. In certain aspects the recipient is pretreated with single or multiple doses of the CD26 inhibitor either simultaneous or prior to cell injection to achieve sustained inhibition of either or both administered cells and recipient CD26 activity leading to enhanced homing of administered cells.
- Therapeutic Cell Populations
- Stem Cells. In certain aspects, the cell population comprises or consists essentially of a population of stem cells. In certain aspects, the stem cells are selected from a group consisting of: embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, cardiomyocyte stem cells, circulating and immobilized peripheral blood stem cells, mesenchymal stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells such as induced pluripotent stem cells or somatic nuclear transfer and side population stem cells or transdifferentiated cells. In certain aspects, the embryonic stem cells are totipotent.
- As used herein, a “mesenchymal cell” means a cell forming a mesenchymal tissue, such as osteoblast, chondrocyte, myoblast, adipocyte, stroma cell, tendon cell, and the like, a mesenchymal stem cell capable of differentiating into these cells, and its premesenchymal stem cell. Mesenchymal cells generated during the embryo development, mesenchymal cells within an animal body, and mesenchymal cells differentiated and generated from pluripotent stem cells in vitro or in vivo are all encompassed in the term “mesenchymal cell.”
- As used herein, a “mesenchymal stem cell” means a mesenchymal cell possessing the ability of differentiating into mesenchymal cells of one or more types and the ability of self-replication. The mesenchymal stem cell differentiated from a pluripotent stem cell in vitro is positive for PDGFRα and negative for FLK1. Mesenchymal stem cells are able to differentiate into osteoblasts, chondrocytes, myoblasts, adipocytes, stroma cells, tendon cells, and the like, as with mesodermal cells.
- As used herein, a “premesenchymal stem cell” means a mesenchymal cell possessing the ability of differentiating into mesenchymal stem cells of one or more types and the ability of self-replication. The premesenchymal stem cell differentiated from a pluripotent stem cell in vitro expresses Sox1, a neuroectodermal marker. The premesenchymal stem cell is able to differentiate into a mesenchymal stem cell which is PDGFRα-positive and FLK1-negative.
- As used herein, a “neural stem cell” refers to a multipotent cell obtained from the central nervous system that can be caused to differentiate into cells that posses one or more biological activities of a neuronal cell type. Neural stem cells differentiate into neurons, astrocytes, and oligodendrocytes after plating onto substrates which stimulate adhesion and differentiation, for example poly-L-ornithine orlaminin. In addition, these multipotent CNS stem cells proliferate and expand in response to epidermal growth factor (“EGF”) and basic fibroblast growth factor (“bFGF”) and differentiate into neurons, astrocytes, oligodendrocytes, and muscle stem cells.
- Committed Progenitor Cells and Differentiated Cells
- In certain aspects, the cell population comprises or consists essentially of a population of committed progenitor cells or differentiated cells or transdifferentiated cells. In certain aspects, the cell population is a mature blood cell population. In certain aspects, the mature blood cell is selected from the group consisting of: neutrophils, macrophages and T-cells. In certain aspects, the T-cells are from a heterogeneous population of T-cells.
- Patients in Need of Treatment with Modified Cell Populations
- In certain aspects, the patient in need of treatment with a cell population suffers from a condition selected from the group consisting of: an acute leukemia, a chronic leukemia, a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a lysosomal storage disease, a congenital immune system disorder, an inherited erythrocyte abnormality, an inherited platelet abnormality, a plasma cell disorder, a tumor and an autoimmune disease. In certain aspects, the patient in need of treatment with a cell population suffers from a condition selected from the group consisting of: peripheral arterial diseases, ischemic limb injury, diabetes, heart disease, liver disease, bone disease, muscular dystrophy, Alzheimer's disease, ALS, multiple schlerosis, Parkinson's disease, spinal cord injury, stroke and infertility. Further examples of the above-described conditions are set forth in Table I below.
-
TABLE I Acute Leukemias Chronic Leukemias Acute Biphenotypic Leukemia Chronic Lymphocytic Leukemia (CLL) Acute Lymphocytic Leukemia (ALL) Chronic Myelogenous Leukemia (CML) Acute Myelogenous Leukemia (AML) Juvenile Chronic Myelogenous Leukemia Acute Undifferentiated Leukemia (JCML) Juvenile Myelomonocytic Leukemia (JMML) Myelodysplastic Syndromes Stem Cell Disorders Amyloidosis Aplastic Anemia (Severe) Chronic Myelomonocytic Leukemia Congenital Cytopenia (CMML) Dyskeratosis Congenita Refractory Anemia (RA) Fanconi Anemia Refractory Anemia with Excess Blasts Paroxysmal Nocturnal Hemoglobinuria (PNH) (RAEB) Refractory Anemia with Excess Blasts in Transformation (RAEB-T) Refractory Anemia with Ringed Sideroblasts (RARS) Myeloproliferative Disorders Lymphoproliferative Disorders Acute Myelofibrosis Hodgkin's Disease Agnogenic Myeloid Metaplasia Non-Hodgkin's Lymphoma (Myelofibrosis) Prolymphocytic Leukemia Essential Thrombocythemia Polycythemia Vera Phagocyte Disorders Histiocytic Disorders Chediak-Higashi Syndrome Familial Erythrophagocytic Chronic Granulomatous Disease Lymphohistiocytosis Neutrophil Actin Deficiency Hemophagocytosis Reticular Dysgenesis Histiocytosis-X Langerhans' Cell Histiocytosis Liposomal Storage Diseases Congenital (Inherited) Immune System Adrenoleukodystrophy Disorders Alpha Mannosidosis Absence of T and B Cells SCID Gaucher's Disease Absence of T Cells, Normal B Cell SCID Hunter's Syndrome (MPS-II) Ataxia-Telangiectasia Hurler's Syndrome (MPS-IH) Bare Lymphocyte Syndrome Krabbe Disease Common Variable Immunodeficiency Maroteaux-Lamy Syndrome (MPS-VI) DiGeorge Syndrome Metachromatic Leukodystrophy Kostmann Syndrome Morquio Syndrome (MPS-IV) Leukocyte Adhesion Deficiency Mucolipidosis II (I-cell Disease) Omenn's Syndrome Mucopolysaccharidoses (MPS) Severe Combined Immunodeficiency (SCID) Niemann-Pick Disease SCID with Adenosine Deaminase Deficiency Sanfilippo Syndrome (MPS-III) Wiskott-Aldrich Syndrome Scheie Syndrome (MPS-IS) X-Linked Lymphoproliferative Disorder Sly Syndrome, Beta-Glucuronidase Deficiency (MPS-VII) Wolman Disease Inherited Erythrocyte Abnormalities Other Inherited Disorders Beta Thalassemia Major Cartilage-Hair Hypoplasia Blackfan-Diamond Anemia Ceroid Lipofuscinosis Pure Red Cell Aplasia Congenital Erythropoietic Porphyria Sickle Cell Disease Glanzmann Thrombasthenia Lesch-Nyhan Syndrome Osteopetrosis Sandhoff Disease Inherited Platelet Abnormalities Plasma Cell Disorders Amegakaryocytosis/Congenital Multiple Myeloma Thrombocytopenia Plasma Cell Leukemia Waldenstrom's Macroglobulinemia Other Malignancies Autoimmune Diseases Brain Tumors Multiple Sclerosis Ewing Sarcoma Rheumatoid Arthritis Neuroblastoma Systemic Lupus Erythematosus Ovarian Cancer Diabetes Mellitus Renal Cell Carcinoma Inflammatory Bowel Diseases Small-Cell Lung Cancer Testicular Cancer Other Applications Bone Marrow Transplants Heart Disease (myocardial infarction), either alone or in combination with enhancing agents such as erythropoietin Liver Disease Muscular Dystrophy Alzheimer's Disease Parkinson's Disease Spinal Cord Injury Stroke, either alone or in combination with enhancing agents such as erythropoietin Peripheral Vascular Disease Head trauma Ex vivo and In vivo expanded stem and progenitor cell populations In vitro fertilization application and enhancement Hematopoietic Rescue Situations (Intense Chemo/Radiation) Stem cells and progenitor cells derived from various tissues sources Application in humans and animals Limb regeneration, alone or in combination with enhancing agents - Cell therapy is also desirable for treatment of diseases in which the immune system is sought to be enhanced. One particular form of cell therapy involves the expansion of T cells that possess specificity for a distinct antigen, for example a tumor antigen. In other types of cell therapy, T cells are generated, and reprogrammed ex vivo for ability to kill a plurality of cells that express a plurality of markers. Examples of such cell therapy include expansion of autologous T cells with IL-2, stimulation with tumor cell lysates, and reintroduction of said cells into the patient.
- On the other hand, cell therapy may be performed in situations where suppression of an immune response is desired. In such situations expansion of cells such as CD4+CD25+ regulatory T cells is desirable since these cells are capable of inhibiting immune responses in an antigen-specific manner. Methods for expansion of these cells are commonly known and include use of cytokines such as TGF-b.
- One issue in bone marrow homing is that the receptors on endothelial cells for the glycosylated ligands of circulating cells are constitutively expressed. These receptors, such as P and E selectins, induce numerous activities after interacting with cells, including causing apoptosis or proliferative arrest (Winkler et al., Blood 2004 103: 1685-1692). Accordingly, the administration of hematopoietic cells and their subsequent homing to the bone marrow is dependent on molecules that are constitutively expressed.
- For the purpose of a broader application of this approach for regenerative medicine in which cells are administered for non-hematopoietic purposes, the trafficking/homing of cells to the targeted location is much more complex and involves ligands that are not constitutively expressed, but expressed as a result of inflammation or tissue damage. For example, administration of stem cells for the purpose of treating myocardial infarction depends on homing of these cells to areas bathed in cytokine locally released which not only induces expression of E selectin and P selectin on the endothelium but also mediates chemoattraction to the site. This tissue localized upregulation of receptors and chemoattractant agents allows for homing of stem cells into areas of injury.
- Routes of Administration
- Administration of the modified cells is performed in agreement with standard practices that are known to one skilled in the art. Several embodiments are possible. For example, routes of administration may include parenteral, e.g., intravenous, intradermal, microvascular bed of bone marrow, subcutaneous, oral (e.g., ingestion or inhalation), trans dermal (topical), transmucosal, and rectal administration. In certain particular aspects, the population of modified cells is administered from a route selected from a group consisting of: intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intravitreally, via direct injection, into bone compartments or into spinal fluid. In some aspects the cells, compositions or other materials can be used with a scaffolding support. In certain aspects, the population of modified cells is administered in or proximal to a site of injury. In certain aspects, the homing and engraftment takes place within the bone marrow of the patient in need thereof. In certain aspects, the cells are administered by multiple routes and/or sites, either simultaneously or sequentially.
- In another embodiment, the methods, compositions, cells and other materials can be useful for enhancing functional capabilities in a wide variety of not only hematological disorders but also non-hematological disorders. Specifically, the methods, compositions, cells and other materials may be useful for the treatment of medical conditions which are amenable to cell therapy. More specifically, the methods, compositions, cells and other materials may be useful for the treatment of acute leukemias, chronic leukemias, myelodysplastic syndromes, stem cell disorders, myeloproliferative disorders, lymphoproliferative disorders, phagocyte disorders, histiocytic disorders, lysosomal storage diseases, congenital immune system disorders, inherited erythrocyte abnormalities, other inherited disorders, inherited platelet abnormalities, plasma cell disorder, various malignancies such as brain tumors or Ewing sarcoma, Autoimmune Diseases, and other applications such as bone marrow transplants, diabetes, heart disease, liver disease, hematopoietic rescue situations following intense chemo/radiation, limb ischemia and limb regeneration (including cartilage regeneration, skin regeneration, blood vessel regeneration, etc), cartilage regeneration, skin regeneration, blood vessel regeneration, etc.
- Furthermore, presented herein is the finding that the general increased adhesion of cells that have been fucosylated ex vivo can be utilized for augmented binding to localized niche areas in absence of chemotactic gradient such as in the context of portal vein injection or pulmonary artery injection.
- For P-selectin binding cells can be incubated with anti-CD34+-PE and with P-selectin isolated from human platelets. P-selectin binding can be detected with FITC-labeled S12, a non-blocking mAb to human P-selectin. For E-selectin binding cells can be incubated with E-selectin/IgM after Fe receptor blocking. E-selectin can then be detected with FITC-labeled goat anti-human IgM polyclonal antibodies. Visualization of binding can be achieved using FACS analysis. Incubation for both P and E-selectin can be carried out at 4° C. for 20 minutes.
- To confirm a functional consequence of fucosylation following treatment with fucosyltransferase the cells can be examined for adhesion to either E-selectin or P-selectin under physiological shear forces using an in vitro flow chamber rolling assay system. P-selectin isolated from human platelets can be immobilized on plates in a parallel-plate flow chamber. A P-selectin site density of about 145 sites/μm2 can be used and measured by binding of 125I-labeled anti-P-selectin mAb 512. For E-selectin soluble human E-selectin can also be immobilized on plates in a parallel-plate flow chamber at a density of 200 sites/μm2, as measured by binding of 125I-labeled anti-human E-selectin mAb ES1. Sham-treated or FTVI-treated cells (in Hanks' balanced salt solution and 0.5% human albumin) can be perfused over P- or E-selectin coated plates at a wall shear stress of 1 dyn/cm2. The accumulated number of rolling cells can be measured with the aid of a videomicroscopy system coupled to an image analysis system. Specificity of interaction of cells with the coated plates can be confirmed with the inclusion of specific inhibitors to the binding and examination of rolling on plates coated only with human serum albumin.
- Examples are provided hereinbelow. However, the presently disclosed and claimed inventive concept(s) is to be understood to not be limited in its application to the specific experimentation, results and laboratory procedures. Rather, the Examples are simply provided as one of various embodiments and are meant to be exemplary, not exhaustive.
- Enzymatic-mediated fucosylation (α 1-3-linked fucose addition to cell-surface glycans) has shown both phenotypic and functional changes in MNC and CD34+ cell populations.
- These in vitro studies are structured to examine the various components integral to the enzymatic-mediated fucosylation using a cell preparation procedure routinely practiced in the clinic. A frozen thawed human cord blood mononuclear cell population is washed by a procedure that involves a 1 to 10 dilution with chilled 10% Dextran-40/5% HSA solution, placing this diluted solution in a pre-cooled (2-6° C.) centrifuge for 5-10 minutes followed by mild centrifugation at approximately 550 g for 20 minutes. The supernatant is discarded while the pellet is resuspended in Hank's balanced salt solution (HBSS) containing 1% HSA at a target cell concentration ranging from 0.5×106 to 1×109 per ml. This cell population suspended in fucosyltransferase VI (FTVI) reaction media constitutes the core preparation used to examine a range of various parameters in order to identify the optimal conditions for maximal activity of FTVI within this cell population. The parameters examined are Mn++(over final concentration ranging from 0.0 to 10 mM), GDP-fucose (over final concentration ranging from 0.3 to 10 mM), time course analysis with varying periods of incubation (ranging from 15 minutes to 60 minutes), FTVI (over a 20 fold range of enzyme concentration), temperature [10° C., 25° C. (considered as room temperature) and 37° C.] and cell concentration (over final concentration ranging from 0.5×106 to 1×109 per ml). Additional activities within these optimization efforts include assessing the stability of the fucosylated product with an examination of HECA-452 binding at 30, 60, 120, 180 and 240 minutes post termination of reaction and assessing the extent of fucosylation of additional cell populations. The cell preparation in reaction mix is incubated for 30 minutes (except for time course study) with occasional gently mixing. The solutions are then diluted with
cold HBSS 1% HSA, filtered through 70 micron cell screen and subjected to chilled centrifugation for 12 minutes. The supernatant is discarded, pellet loosened and resuspended for either injection or analysis by FACS using a procedure that is familiar to someone skilled in the art. For FACS analysis, aliquots of the cells, at approximately 5×105, are centrifuged at 500×g for 13 minutes at 4° C. The supernatant is discarded, pellet loosened for the addition of flow stain cocktail containing the appropriate staints) or control cocktail. The mixture is stored in the dark for 30-40 minutes with occasional mixing. Each tube is diluted with 3 ml of cold flow wash buffer followed by centrifugation at 500×g for 12 minutes at 4° C. The supernatant is discarded, pellet loosened with the addition of approximately 200 μl of cold flow buffer or flow fix buffer. Aliquots of each sample are examined by FACS for percentage of double positives for CD34+ vs HECA-452 which is the primary outcome measure for determining maximal expression of FTVI activity in the cell mix. Also generated as an outcome measure for assessment of enzyme activity is the mean fluorescence intensity - First, maximal fucosylation of cells in vitro is accomplished. To accomplish this, washed mononuclear cells (MNCs) are resuspended in Hank's Balanced Salt Solution (HBSS) at a concentration of 0.5×106-1×109 per ml and then incubated with a fucosylation mix consisting at final concentration of 5 mM GDP-fucose, purified human recombinant al-3 fucosyltransferase VI at a predetermined Units per ml (for maximal fucosylation), and 1-10 mM MnCL2 in HBSS. This mix is incubated for 30 minutes at 37° C. or room temperature in a humidified atmosphere containing 5% CO2. The period of incubation could take longer or shorter depending on the incubation temperature chosen. Following completion of the fucosylation and to achieve inhibition of CD26 (dipeptidylpeptidase, DPPIV) as part of the combination approach, this preparation of fucosylated mononuclear cells (MNCs) is either washed first or directly incubated with a potent DPPIV inhibitor for 5-15 minutes at room temperature at a concentration sufficient to achieve complete or nearly complete inhibition of DPPIV. Following incubation the cell suspension is volume adjusted with HBSS or another clinically compatible solution to obtain the appropriate concentration of cells in preparation for iv injection. As an alternative scenario for a combination approach, the patients are subjected to systemic administration of the DPPIV inhibitor at a dose sufficient to achieve a sustained level in the body for significant inhibition of bone marrow and circulating plasma DPPIV activity. Subsequent to systemic pretreatment, MNCs exposed to conditions for maximal fucosylation are then injected into the patient. The DPPIV inhibitor can be added simultaneous with the injection of the fucosylated cell preparation or shortly before. The patients are prepared for this combined approach by subjecting them to conditions for myeloablation or even partial myeloablation (mini) prior to injection of the fucosylated and inhibitor treated cells. The rate of recovery and extent of chimerism is assessed with an examination of serially collected blood samples in addition to an examination of cells obtained from the bone marrow. A multilineage analysis of the rate of recovery and extent of engraftment and chimerism is accomplished using cell surface markers specific for cell types in addition to an examination of mature hematopoietic cells in the blood stream. These markers and cells are detected using preparation techniques and FACS analysis procedures that are familiar to one skilled in the art.
- The introduction of fucose onto surface glycans of mesenchymal stem cells (MSC) is accomplished by enzymatic transfer from a donor substrate utilizing an alpha 1-3-fucosyltransferase (FT). For this transfer to occur the cells at varying concentrations are exposed to an incubation buffer containing a number of ingredients each of which has been optimized for efficient transfer of the fucose, and performed in Hanks balanced salt solution (HBSS). The substrate, guanosine diphosphate-fucose (GDP-fucose), at 1 mM is mixed with the FT added at sufficient activity, in order to achieve maximal transfer of fucose to MSCs. In addition, MrrCl, at a final concentration of 0-10 mM is added, as needed, to further accelerate the enzymatic transfer reaction. The incubation is performed at 37° C. for 40 minutes with minimum toxicity to the cells.
- Confirmation of fucosylated epitopes on the cells of interest as means of confirming maximal levels of fucosylation is verified by Flow Cytometry in order to detect sialyl LewisX (sLeX), a fucosylation epitope found on both P and E-selectins. The FT-treated cells are incubated with anti-sLeX mAb HECA 452 (IgM), followed by treatment with FITC-conjugated fragment to the IgM. Finally, the sLeX epitopes on the cell surface are visualized using standard Flow Cytometry procedures.
- To measure P-selectin binding, cells are incubated with anti-CD34+-PE and with P-selectin isolated from human platelets. P-selectin binding is detected with FITC-labeled S12, a non-blocking mAb to human P-selectin. To measure E-selectin binding, cells are incubated with E-selectin/IgM after Fe receptor blocking. E-selectin is then detected with FITC-labeled goat anti-human IgM polyclonal antibodies. Visualization of binding is achieved using FACS analysis. Incubation for both P and E-selectin is carried out at 4° C. for 20 minutes.
- To confirm a functional consequence of fucosylation following treatment with FT the cells are examined for adhesion to either E-selectin or P-selectin under physiological shear forces using an in vitro flow chamber rolling assay system. P-selectin isolated from human platelets is immobilized on plates in a parallel-plate flow chamber. A P-selectin site density of about 145 sites/μm2 is used and measured by binding of 125I-labeled anti-P-selectin mAb S12. For E-selectin soluble human E-selectin is also immobilized on plates in a parallel-plate flow chamber at a density of 200 sites/μm2 as measured by binding of 125I-labeled anti-human E-selectin mAb ES1. Sham-treated or FTVI-treated cells (in Hanks' balanced salt solution and 0.5% human albumin) is perfused over P- or E-selectin coated plates at a wall shear stress of 1 dyn/cm2. The accumulated number of rolling cells is measured with the aid of a videomicroscopy system coupled to an image analysis system. Specificity of interaction of cells with the coated plates is then confirmed with the inclusion of specific inhibitors to the binding and examination of rolling on plates coated only with human serum albumin.
- Patients in need of a bone marrow transplant are subjected to either myeloablative or non-myeloablative conditions. Stem cells obtained from one of a number of different sources are incubated ex vivo with fucosyltransferase+GDP-fucose at sufficient concentrations and for a sufficient period of time to result in maximal formation of fucosylated product, such as sialyl Lewis X, on the cell surface. Following treatment, the cell preparation is washed or directly injected into the patient. Effectiveness of this application in the patient is determined with accelerated appearance over time of neutrophils and platelets in the blood stream compared to patients injected with control untreated stem cells.
- A cell population consisting of neural stem cells is treated with conditions so as to endow increased surface ligands for enhanced interaction with endothelium. Cells are modified with the addition of alpha 1-3-linked fucose to cell-surface glycans by ex vivo treatment of cells with the enzyme alpha 1-2 fucosyltransferase VI. Specifically, cells are treated with 1 mM GDP fucose, 20 mU/mL {alpha}1-3 fucosyltransferase VI, and 10 mM MnCl2 in 0.5 mL HBSS containing 1% human serum albumin (HSA) for 30 minutes at 37° C. in a humidified atmosphere containing 5% CO2 under conditions that cause minimum toxicity to CD34+ cells as tested by propidium iodide staining measured by flow cytometry. Other modifications of this treatment procedure may be performed based on the knowledge of one skilled in the art. Said treated neural stem cells are subsequently assessed for fucosylation using flow cytometric methodology. The cells are placed on ice for 5 minutes followed by washing with PBS (1 ml). To detect the presence of new fucosylated units on cell surface the cell preparation is treated with the 1st antibody, anti-CLA 1:200 dilution in blocking buffer (400 μl), and then incubated for one hour at room temp or overnight at 4°. Cells are then washed three times with PBS. The secondary antibody (anti-rat-IgM-PE, 1:200) in blocking buffer (400 μl) is then added. The preparation is incubated for 2 hrs at room temperature then rinsed with PBS. The result of this treatment and analysis is shown in
FIG. 1 . - A cell population consisting of cells with immune modulatory potential is treated with certain conditions so as to endow increased surface ligands for endothelium. Cells are modified with alpha 1-3-linked fucose to cell-surface glycans by treatment of cells with the enzyme alpha 1-2 fucosyltransferase VI. Specifically, cells are diluted to a concentration of 10(7) per ml and treated with 1 mM GDP fucose (EMD Bioscienees, San Diego, Calif.), 20 mU/mL {alpha} 1-3 fucosyltransferase VI (FTVI; EMD Bioscienees), and 10 mM MnCl2 in 0.5 mL HBSS containing 1% human serum albumin (HSA) for 30 minutes at 37° C. in a humidified atmosphere containing 5% CO2 under conditions that cause minimum toxicity to CD34+ cells as tested by propidium iodide staining measured by flow cytometry. Other modifications of this treatment procedure may be performed based on the knowledge of one skilled in the art. Said treated immune cells are subsequently assessed for fucosylation status using either a flow cytometrie methodology (assessment of HECA-453 binding) or functional methodology (assessment of rolling on endothelium). Cells are subsequently administered to a patient for immune modulation.
- Tumor infiltrating lymphocytes were collected as described by Zhou et al The Journal of Immunology, 2005, 175: 7046-7052. Briefly, explants of small (2 mm3) tumor fragments or 1×106 viable cells of tumor tissue digests were used to initiate TIL culture in 2 ml of RPMI 1640-based medium (Invitrogen Life Technologies) containing 10% human serum and 6000 IU/ml IL-2 (Chiron). After 2-4 weeks of culture, several million TIL cells were usually obtained and screened by IFN secretion assay for recognition of tumor cells. Antitumor TIL cultures were further expanded in AIM V medium (Invitrogen Life Technologies) supplemented with irradiated allogeneic feeder cells, anti-CD3 Ab (Ortho Biotech), and 6000 IU/ml IL-2. This expansion protocol typically resulted in 1000-fold expansions of cells by the time of administration 14-15 days after initiation of the expansions. Subsequent to expansion cells were harvested, centrifuged, diluted to a concentration of 10(7) per ml, and treated with 1 mM GDP fucose (EMD Biosciences, San Diego, Calif.), 20 mU/mL alpha 1-3 fucosyltransferase VI (FTVI; EMD Biosciences), and 10 mM MnCl2 in 0.5 mL HBSS containing 1% human serum albumin (HSA) for 30 minutes at 37° C. in a humidified atmosphere containing 5% CO2 under conditions that cause minimum toxicity to cells, as tested by propidium iodide staining measured by flow cytometry. Cells were administered on a weekly basis at a concentration of at least about 1 million cells, but in some situations up to 100 million cells, over a period of 60-120 minutes. After four cycles of therapy, tumor regression was noted.
- In order to compare the effects of ex vivo fucosylation on different T cell types, recombinant FTVI produced in CHO cells was manufactured at Aragen Bioscience (Morgan Hill, Calif., final concentration 1100 ug/mL), and FTVII produced in a mouse lymphocyte line was obtained from Kyowa Hakko Kirin (Japan,
final concentration 150 ug/mL). Frozen human umbilical cord bloods were purchased from the San Diego Blood Bank (San Diego, Calif.). Unless otherwise indicated, cells were treated at 106 cells/ml for 30 minutes at room temperature with 1 mM GDP β-fucose (EMD Biosciences, San Diego, Calif.) in Phosphate Buffered Saline (PBS) containing 1% human serum albumin (HSA, Baxter Healthcare Corp., Westlake Village, Calif.) and in the presence of previously optimized concentrations of FTVI (100 mU/ml) or FTVII (75 μg/ml). The FTVI+GDP-fucose is referred to herein as TZ101 (previously referred to as ASC-101; Targazyme, Inc., Carlsbad, Calif.), while the FTVII+GDP-fucose composition is referred to herein as TZ102 (previously referred to as ASC-102; Targazyme, Inc., Carlsbad, Calif.). Untreated cells were incubated as above, except that no enzyme was added. Fucosylation levels were determined by flow cytometry using HECA-452 antibody (BD Biosciences, San Jose, Calif.), a directly conjugated (FITC), rat IgM antibody that reacts against a fucosylated (sialyl Lewis X (sLeX)-modified) form of P-selectin glycoprotein ligand (PSGL)-1 (CD162), also known as cutaneous lymphocyte antigen (CLA). Other antibodies to CD antigens were also obtained from BD Biosciences. - Regulatory T Cells
- Regulatory T cells (“Tregs”) were enriched from cord blood using magnetic bead-isolation (using MACS® beads, Miltenyi Biotec Inc., San Diego, Calif.) for CD25+ cells and expansion of Tregs with IL-2 and CD3/28 beads, as shown in
FIG. 2 . -
FIG. 3 demonstrates a flow cytometry analysis of Tregs expanded in this manner. As shown in the upper right hand panels (left to right) ofFIG. 3 , 97.2% of cells are within the lymphocyte gate, while 98.4% express Treg markers CD25/CD127. As shown in the lower panels (left to right) ofFIG. 3 , 98.6% of cells are CD25+FoxP3+; 97.9% are CD4+FoxP3+; 98.9% of cells are CD25+CD4+; and 0.52% of cells are CD25+CD8+. - Tregs were fucosylated with TZ101 (1/25 dilution of TZ101 in 1 mM GDP-Fucose,
PBS 1% human serum albumin) for 30 minutes at room temperature, washed, and assayed for cell surface expression of sialyl Lewis X (sLeX) using the HECA 452 anti-CLA antibody. The left side of each dot plot ofFIG. 4 shows the isotype control, while the right side shows the staining with percent CLA positive cells. As shown inFIG. 4 , treatment with TZ101 increased the percentage of fucosylated Tregs from about 9% to about 63%. - As shown in
FIG. 5 , the ability to fucosylate ex vivo expanded Tregs is unexpected in light of previous studies showing that TZ101 fucosylated CD34+ (red curve), CD33+ (blue curve), and CD56+ cells (black curve) at different time points but did not fucosylate CD3 positive T cells in unexpanded cord blood (green curve). - A xenogeneic graft-versus-host (GVHD) model was developed in which NOD/SCID IL-2Rγnull (NSG) mice (Jackson Laboratory, Bar Harbor, Me.) received sub-lethal whole body irradiation (300 cGy from a 137Cs source delivered over one minute by a J. L. Shepherd and Associates Mark I-25 Irradiator, San Fernando, Calif.) one day prior (Day-1) to intravenous infusion of human peripheral blood mononuclear cells (PBMC). On Day-0, mice received PBMC at a dose of 1×107.
- As shown in
FIG. 6 , fucosylated Tregs prevented development of GVHD, while unmanipulated Tregs did not. Sublethally irradiated NSG mice received Treg or FT-Treg at a cell dose of 1×106 on Day-1 followed by tail vein injection of PBMC at cell dose of 1×107 on Day-0. The mice were followed for survival and weight. All the Treg recipients were dead at Day-20; however, the FT-Treg recipients were alive at the last follow up. While the Treg recipients started losing weight as early as Day-12, FT-Treg recipients maintained their weight until their last follow up. - Cytotoxic T Cells
- Surprisingly, in contrast to Tregs, expanded CD8+ T cells were not fucosylated by TZ101 (FTVI+GDP-fucose) but were fucosylated by TZ102 (FTVII+GDP-fucose).
- In order to generate cytotoxic T cells that were capable of killing acute myelogenous leukemia (AML) cells, dendritic cells (DC) were generated from HLA-A*0201 healthy donor monocytes by adherence and matured and subsequently used as antigen presenting cells (APC). Healthy donor PBMCs were adhered on 6-well plates at 37° C. in serum-free medium. Cells remaining in suspension (lymphocytes) from the same donor were removed and pulsed with 40 μg/mL of a peptide (CG1) derived from the myeloid primary granule protease (PGP) cathepsin G (CG) that has been established as a myeloid leukemia target. A separate incubation was conducted with control peptides. The suspension cells were stimulated with IL-7 (10 ng/mL) and IL-2 (10 ng/mL) for 5 days. Adherent cells from the initial step were matured into monocyte-derived DC by addition of GM-CSF (100 ng/mL), IL-4 (50 ng/mL), and TNF-α (25 ng/mL). After 5 days, DC were detached and pulsed with appropriate peptides at 40 μg/mL and subsequently combined with the remainder of autologous lymphocyte population. Co-cultures were then re-stimulated with IL-7 (10 ng/mL) and IL-2 (25 ng/mL) for 7 days to allow for CTL proliferation. On Day-12, cells were harvested and analyzed by dextramer staining and in vitro cytotoxicity assays to confirm CTL expansion and specificity. Using this method, CG1-CTL (experimental effector cells) as well as CTL that target the HLA-A*0201 HIV Gag (SLYNTVATL) control peptide were generated.
- As shown
FIG. 7 , TZ102 (FTVII) was capable of fully fucosylating expanded CTL; however, FTVI did not fucosylate these cells (data not shown). - In order to compare the efficacy of FTVII-treated CTL to unmanipulated CTL, a xenogeneic AML model was developed. Cells from the human U937 leukemia cell line transduced with HLA-A2 and GFP were administered to NSG mice on Day-0. Cytotoxic T cells were expanded against CG1 as described above. Fucosylated or non-fucosylated T cells were administered to NSG mice with U937 leukemia on Day-1, and bone marrow was harvested 14 days later and assessed for the presence of U937 cells (upper left quadrant of
FIG. 8 ). There were significantly fewer leukemia cells in mice receiving fucosylated T cells (arrows inFIG. 8 ). - One of ordinary skill in the art will appreciate that these methods, compositions, and cells are and may be adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The methods, procedures, and devices described herein are presently representative of particular embodiments and are exemplary and are not intended as limitations on the scope of the technology. Changes therein (including, but not limited to, changes in method steps as well as sequence of method steps) and other uses will occur to those of ordinary skill in the art which are encompassed within the spirit of the technology and are defined by the scope of the disclosure. It will be apparent to one of ordinary skill in the art that varying substitutions and modifications can be used or substituted into any of the embodiments described herein may be made without departing from the scope and spirit of the described technology. Examples of such substitutions are non-natural enzymes and sugars. Those of ordinary skill in the art recognize that the aspects and embodiments set forth herein may be practiced separate from each other or in conjunction with each other. Therefore, combinations of separate embodiments are within the scope of the technology as disclosed herein.
Claims (20)
1. A method of enhancing homing and engraftment of one or more T cells, the method comprising the step of:
contacting a T cell population with α1,3-fucosyltransferase VI ex vivo to fucosylate at least one surface molecule on the T cell(s) to enhance selectin mediated binding thereof.
2. The method of claim 1 , wherein the T cell population is further defined as an ex vivo expanded T cell population.
3. The method of claim 1 , wherein the T cell population is further defined as a heterogeneous population of T cells.
4. The method of claim 1 , wherein the T cell population comprises Regulatory T cells.
5. The method of claim 1 , further comprising the steps of:
contacting the T cell population with a fucose carrier; and
combining said fucosylated T cells with a pharmaceutically-acceptable carrier to provide a composition capable of administration via a route selected from a group comprising intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intravitreally, and combinations thereof.
6. The method of claim 5 , wherein the fucose carrier is mixed with alpha 1,3-fucosyltransferase VI prior to contacting said mixture with the T cell population, and wherein said fucose carrier is guanosine diphosphate fucose.
7. A method of enhancing homing and engraftment of one or more T cells, the method comprising the step of:
contacting a T cell population with α1,3-fucosyltransferase VII ex vivo to fucosylate at least one surface molecule on the T cell(s) to enhance selectin mediated binding thereof.
8. The method of claim 7 , wherein the T cell population is further defined as an ex vivo expanded T cell population.
9. The method of claim 7 , wherein the T cell population is further defined as a heterogeneous population of T cells.
10. The method of claim 7 , wherein the T cell population comprises Cytotoxic T cells.
11. The method of claim 7 , further comprising the steps of:
contacting the T cell population with a fucose carrier; and
combining said fucosylated T cells with a pharmaceutically-acceptable carrier to provide a composition capable of administration via a route selected from a group comprising intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intravitreally, and combinations thereof.
12. The method of claim 11 , wherein the fucose carrier is mixed with alpha 1,3-fucosyltransferase VI prior to contacting said mixture with the T cell population, and wherein said fucose carrier is guanosine diphosphate fucose.
13. A method of enhancing homing and engraftment of a T cell population, the method comprising the step of:
administering an ex vivo expanded population of fucosylated T cells to a patient in need thereof, the population of cells being fucosylated by contact with α1,3-fucosyltransferase VI and/or α1,3-fucosyltransferase VII that fucosylated at least one surface molecule on the T cells to enhance selectin mediated binding thereof.
14. The method of claim 13 , wherein the population of fucosylated T cells is further defined as a heterogeneous population of fucosylated T cells.
15. The method of claim 13 , wherein the population of fucosylated T cells comprises Regulatory T cells that have been fucosylated by contact with α1,3-fucosyltransferase VI.
16. The method of claim 13 , wherein the population of fucosylated T cells comprises Cytotoxic T cells that have been fucosylated by contact with α1,3-fucosyltransferase VII.
17. The method of claim 13 , wherein the patient suffers from at least one condition selected from the group comprising a myelodysplastic syndrome, a stem cell disorder, a myeloproliferative disorder, a lymphoproliferative disorder, a phagocyte disorder, a histiocytic disorder, a liposomal storage disease, a congenital immune system disorder, an inherited erythrocyte abnormality, an inherited platelet abnormality, a plasma cell disorder, a tumor, an autoimmune disease, and combinations thereof.
18. The method of claim 13 , wherein the patient in need of treatment with the modified cell population suffers from at least one condition selected from the group comprising peripheral arterial diseases, ischemic limb injury, diabetes, heart disease, liver disease, bone disease, muscular dystrophy, Alzheimer's disease, ALS, multiple sclerosis, Parkinson's disease, spinal cord injury, stroke, head trauma, infertility, and combinations thereof.
19. The method of claim 13 , wherein the population of fucosylated T cells is administered via a route selected from a group comprising intravenously, intraarterially, intramuscularly, subcutaneously, transdermally, intratracheally, intraperitoneally, intravitreally, and combinations thereof.
20. The method of claim 13 , wherein the population of fucosylated T cells is administered to a site of injury or proximal thereto.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/347,500 US20170058261A1 (en) | 2008-06-09 | 2016-11-09 | Augmentation of Cell Therapy Efficacy Including Treatment With Alpha 1,3 Fucosyltransferase |
US16/135,487 US11976298B2 (en) | 2008-06-09 | 2018-09-19 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
US18/629,323 US20240271093A1 (en) | 2008-06-09 | 2024-04-08 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6008408P | 2008-06-09 | 2008-06-09 | |
PCT/US2009/046800 WO2009152187A1 (en) | 2008-06-09 | 2009-06-09 | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
US99723010A | 2010-12-09 | 2010-12-09 | |
US14/182,141 US20140161782A1 (en) | 2008-06-09 | 2014-02-17 | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
US15/347,500 US20170058261A1 (en) | 2008-06-09 | 2016-11-09 | Augmentation of Cell Therapy Efficacy Including Treatment With Alpha 1,3 Fucosyltransferase |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/182,141 Continuation US20140161782A1 (en) | 2008-06-09 | 2014-02-17 | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/135,487 Continuation US11976298B2 (en) | 2008-06-09 | 2018-09-19 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170058261A1 true US20170058261A1 (en) | 2017-03-02 |
Family
ID=50881170
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/182,141 Abandoned US20140161782A1 (en) | 2008-06-09 | 2014-02-17 | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
US15/347,500 Abandoned US20170058261A1 (en) | 2008-06-09 | 2016-11-09 | Augmentation of Cell Therapy Efficacy Including Treatment With Alpha 1,3 Fucosyltransferase |
US16/135,487 Active 2031-10-22 US11976298B2 (en) | 2008-06-09 | 2018-09-19 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
US18/629,323 Pending US20240271093A1 (en) | 2008-06-09 | 2024-04-08 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/182,141 Abandoned US20140161782A1 (en) | 2008-06-09 | 2014-02-17 | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/135,487 Active 2031-10-22 US11976298B2 (en) | 2008-06-09 | 2018-09-19 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
US18/629,323 Pending US20240271093A1 (en) | 2008-06-09 | 2024-04-08 | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase |
Country Status (1)
Country | Link |
---|---|
US (4) | US20140161782A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799538B2 (en) | 2003-04-18 | 2020-10-13 | Oklahoma Medical Research Foundation | Cells treated by in vitro fucosylation and methods of production and use thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140161782A1 (en) | 2008-06-09 | 2014-06-12 | Targazyme, Inc. | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
US10471103B2 (en) * | 2014-12-30 | 2019-11-12 | The Brigham And Women's Hospital, Inc. | Methods to improve cell therapy |
WO2024102467A1 (en) * | 2022-11-11 | 2024-05-16 | Targazyme, Inc. | Compositions and systems for combinatorial therapies containing fucosylated cells and immune checkpoint inhibitors and methods of production and use thereof |
WO2024152043A1 (en) * | 2023-01-13 | 2024-07-18 | The Brigham And Women's Hospital | Compositions and methods for identifying and isolating human hematopoietic stem and progenitor cells |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050196386A1 (en) * | 2003-04-17 | 2005-09-08 | Bruce Blazar | Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331658B1 (en) | 1993-04-20 | 2001-12-18 | Integris Baptist Medical Center, Inc. | Genetically engineered mammals for use as organ donors |
AU2730497A (en) | 1996-04-17 | 1997-11-07 | Case Western Reserve University | Cryopreservation and extensive subculturing of human mesenchymal stem cells |
US20030113303A1 (en) * | 1998-02-05 | 2003-06-19 | Yitzhack Schwartz | Homing of embryonic stem cells to a target zone in tissue using active therapeutics or substances |
US20030119185A1 (en) * | 2000-02-24 | 2003-06-26 | Xcyte Therapies, Inc. | Activation and expansion of cells |
US20060210558A1 (en) | 2000-10-18 | 2006-09-21 | Robert Sackstein | Hematopoietic cell selectin ligand polypeptides and methods of use thereof |
US20050048036A1 (en) | 2001-12-07 | 2005-03-03 | Hedrick Marc H. | Methods of using regenerative cells in the treatment of inherited and acquired disorders of the bone, bone marrow, liver, and other tissues |
NZ534428A (en) | 2002-01-31 | 2006-12-22 | Asahi Techno Glass Corp | A cryopreservation method for primate embryonic stem cells using a cryopreservation medium comprising a cryoprotectant at a concentration of from 12% (w/v) to 50% (w/v) |
US7332334B2 (en) | 2003-04-18 | 2008-02-19 | Oklahoma Medical Research Foundation | Hematopoietic stem cells treated by in vitro fucosylation and methods of use |
US20040247574A1 (en) | 2003-05-27 | 2004-12-09 | Christopherson Kent W. | Methods for enhancing stem cell engraftment during transplantation |
WO2005017115A2 (en) | 2003-08-11 | 2005-02-24 | Mount Sinai School Of Medicine Of New York University | Cord blood-derived hematopoietic progenitor cells |
FI20055398A0 (en) | 2005-07-08 | 2005-07-08 | Suomen Punainen Risti Veripalv | Method for evaluating cell populations |
EP1795599A1 (en) * | 2005-12-09 | 2007-06-13 | Schuler, Gerold, Prof. Dr. | Methods for generating antigen-specific effector T cells |
WO2007087367A2 (en) | 2006-01-25 | 2007-08-02 | Mount Sinai School Of Medicine | Methods and compositions for modulating the mobilization of stem cells |
CA2654425C (en) | 2006-06-02 | 2019-09-17 | Robert Sackstein | Compositions and methods for modifying cell surface glycans |
US20140161782A1 (en) | 2008-06-09 | 2014-06-12 | Targazyme, Inc. | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
WO2009152187A1 (en) | 2008-06-09 | 2009-12-17 | American Stem Cell, Inc. | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase |
HUE038596T2 (en) | 2009-06-02 | 2018-10-29 | Regeneron Pharma | Fucosylation-deficient cells |
US20100311036A1 (en) | 2009-06-09 | 2010-12-09 | University Of South Carolina | Methods for Augmentation of Cell Cryopreservation |
WO2011069056A2 (en) | 2009-12-04 | 2011-06-09 | Momenta Pharmaceuticals, Inc. | Antennary fucosylation in glycoproteins from cho cells |
SG11201610699XA (en) | 2014-07-07 | 2017-01-27 | Targazyme Inc | Manufacture and cryopreservation of fucosylated cells for therapeutic use |
-
2014
- 2014-02-17 US US14/182,141 patent/US20140161782A1/en not_active Abandoned
-
2016
- 2016-11-09 US US15/347,500 patent/US20170058261A1/en not_active Abandoned
-
2018
- 2018-09-19 US US16/135,487 patent/US11976298B2/en active Active
-
2024
- 2024-04-08 US US18/629,323 patent/US20240271093A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050196386A1 (en) * | 2003-04-17 | 2005-09-08 | Bruce Blazar | Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses |
Non-Patent Citations (6)
Title |
---|
Blander et al., J. Immunol., 163:3746-3752 (1999) * |
Eming et al (J. Invest. Dermatol., 127:514-525 (2007) * |
Harty et al., Annu. Rev. Immunol., 18:275-308 (2000) * |
Mogues et al., J. Exp. Med., 193(3):271-280 (2001) * |
Siegmund et al., Blood, 106(9):3097-3104 (2005) * |
Tang et al., J. Exp. Med., 199(11):1455-1465 (2004) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799538B2 (en) | 2003-04-18 | 2020-10-13 | Oklahoma Medical Research Foundation | Cells treated by in vitro fucosylation and methods of production and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US11976298B2 (en) | 2024-05-07 |
US20190017023A1 (en) | 2019-01-17 |
US20240271093A1 (en) | 2024-08-15 |
US20230416681A9 (en) | 2023-12-28 |
US20140161782A1 (en) | 2014-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2300599B1 (en) | Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase | |
US20240271093A1 (en) | Augmentation of cell therapy efficacy including treatment with alpha 1,3 fucosyltransferase | |
US12090173B2 (en) | Methods to improve cell therapy | |
US20190062694A1 (en) | Manufacture and Cryopreservation of Fucosylated Cells for Therapeutic Use | |
TWI698242B (en) | Methods of generating mesenchymal stromal cells using hemangioblasts | |
US9511095B2 (en) | Cells treated by in vitro fucosylation and methods of production and use thereof | |
KR20120112511A (en) | Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts | |
US20030124091A1 (en) | Endothelial cell derived hematopoietic growth factor | |
WO2005097979A2 (en) | Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof | |
US20150353890A1 (en) | Compositions and methods for expansion of embryonic hematopoietic stem cells | |
CA2632288A1 (en) | Methods of improving stem cell homing and engraftment | |
Schlechta et al. | Ex-vivo expanded umbilical cord blood stem cells retain capacity for myocardial regeneration | |
Kerrigan et al. | Stem cell therapy of gliomas | |
IL293075A (en) | Thymus organoids bioengineered form human pluripotent stem cells | |
EP3068875B1 (en) | Post-natal hematopoietic endothelial cells and their isolation and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |