US20170050960A1 - New bicyclic derivatives - Google Patents

New bicyclic derivatives Download PDF

Info

Publication number
US20170050960A1
US20170050960A1 US15/291,933 US201615291933A US2017050960A1 US 20170050960 A1 US20170050960 A1 US 20170050960A1 US 201615291933 A US201615291933 A US 201615291933A US 2017050960 A1 US2017050960 A1 US 2017050960A1
Authority
US
United States
Prior art keywords
substituted
phenyl
carbonyl
pyrrolo
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/291,933
Inventor
Jerome Hert
Daniel Hunziker
Patrizio Mattei
Harald Mauser
Guozhi Tang
Lisha Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Priority to US15/291,933 priority Critical patent/US20170050960A1/en
Publication of US20170050960A1 publication Critical patent/US20170050960A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • ATX Autotaxin
  • LPC lysophosphatidyl choline
  • LPA bioactive signaling molecule lysophosphatidic acid
  • LPA can elicit a wide range of cellular responses; including smooth muscle cell contraction, platelet activation, cell proliferation, chemotaxis and others.
  • LPA mediates its effects via signaling to several G protein coupled receptors (GPCRs); the first members were originally denoted Edg (endothelial cell differentiation gene) receptors or ventricular zone gene-1 (vzg-1) but are now called LPA receptors.
  • GPCRs G protein coupled receptors
  • Edg endothelial cell differentiation gene
  • vzg-1 ventricular zone gene-1
  • the prototypic group now consists of LPA1/Edg-2/VZG-1, LPA2/Edg-4, and LPA3/Edg-7.
  • the ATX-LPA signaling axis is involved in a large range of physiological and pathophysiological functions, including, for example, nervous system function, vascular development, cardiovascular physiology, reproduction, immune system function, chronic inflammation, tumor metastasis and progression, organ fibrosis as well as obesity and/or other metabolic diseases such as diabetes mellitus. Therefore, increased activity of ATX and/or increased levels of LPA, altered LPA receptor expression and altered responses to LPA may contribute to the initiation, progression and/or outcome of a number of different pathophysiological conditions related to the ATX/LPA axis.
  • the present invention relates to organic compounds useful for therapy or prophylaxis in a mammal, and in particular to autotaxin (ATX) inhibitors which are inhibitors of lysophosphatidic acid (LPA) production and thus modulators of LPA levels and associated signaling, for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • ATX autotaxin
  • LPA lysophosphatidic acid
  • the present invention provides novel compounds of formula (I)
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of diseases, disorders or conditions that are associated with the activity of autotaxin and/or the biological activity of lysophosphatidic acid (LPA).
  • LPA lysophosphatidic acid
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters herein inhibit autotaxin activity and therefore inhibit LPA production and modulate LPA levels and associated signaling.
  • Autotaxin inhibitors described herein are useful as agents for the treatment or prevention of diseases or conditions in which ATX activity and/or LPA signaling participates, is involved in the etiology or pathology of the disease, or is otherwise associated with at least one symptom of the disease.
  • the ATX-LPA axis has been implicated for example in angiogenesis, chronic inflammation, autoimmune diseases, fibrotic diseases, cancer and tumor metastasis and progression, ocular conditions, metabolic conditions such as obesity and/or diabetes mellitus, conditions such as cholestatic or other forms of chronic pruritus as well as acute and chronic organ transplant rejection.
  • Objects of the present invention are the compounds of formula (I) and their aforementioned salts and esters and their use as therapeutically active substances, a process for the manufacture of the said compounds, intermediates, pharmaceutical compositions, medicaments containing the said compounds, their pharmaceutically acceptable salts or esters, the use of the said compounds, salts or esters for the treatment or prophylaxis of disorders or conditions that are associated with the activity of ATX and/or the biological activity of lysophosphatidic acid (LPA), particularly in the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and—chronic organ transplant rej ection, and the use of the said compounds, salts or esters for the production of medicaments for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory
  • alkenyl denotes a monovalent linear or branched hydrocarbon group of 2 to 7 carbon atoms with at least one double bond. In particular embodiments, alkenyl has 2 to 4 carbon atoms with at least one double bond. Examples of alkenyl include ethenyl, propenyl, prop-2-enyl, isopropenyl, n-butenyl and iso-butenyl. Particular alkenyl group is ethenyl.
  • alkoxy denotes a group of the formula —O—R′, wherein R′ is an alkyl group.
  • alkoxy group include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy.
  • Particular alkoxy group include methoxy.
  • alkoxyalkoxy denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by another alkoxy group.
  • alkoxyalkoxy group examples include methoxymethoxy, ethoxymethoxy, methoxyethoxy, ethoxyethoxy, methoxypropoxy and ethoxypropoxy.
  • Particular alkoxyalkoxy groups include methoxymethoxy and methoxyethoxy.
  • alkoxyalkoxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an alkoxyalkoxy group.
  • alkoxyalkoxyalkyl group include methoxymethoxymethyl, ethoxymethoxymethyl, methoxyethoxymethyl, ethoxyethoxymethyl, methoxypropoxymethyl, ethoxypropoxymethyl, methoxymethoxyethyl, ethoxymethoxyethyl, methoxyethoxyethyl, ethoxyethoxyethyl, methoxypropoxyethyl and ethoxypropoxyethyl.
  • alkoxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an alkoxy group.
  • alkoxyalkyl groups include methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methoxypropyl, ethoxypropyl and isopropoxymethyl.
  • Particular alkoxyalkyl group include methoxymethyl, methoxyethyl and isopropoxymethyl.
  • alkoxyhaloalkyl denotes a haloalkyl group wherein at least one of the hydrogen atoms of the haloalkyl group has been replaced by an alkoxy group.
  • alkoxyhaloalkyl groups include methoxytrifluoroethyl, ethoxytrifluoroethyl, methoxytrifluoropropyl, ethoxytrifluoropropyl and isopropoxytrifluoroethyl.
  • Particular alkoxyhaloalkyl group include methoxytrifluoroethyl.
  • alkyl denotes a monovalent linear or branched saturated hydrocarbon group of 1 to 12 carbon atoms. In particular embodiments, alkyl has 1 to 7 carbon atoms, and in more particular embodiments 1 to 4 carbon atoms. Examples of alkyl include methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl and sec-butyl, pentyl. Particular alkyl groups include methyl, ethyl, propyl and isopropyl. More particular alkyl groups are methyl and isoropyl.
  • alkylcarbonyl denotes a group of the formula —C(O)—R′, wherein R′ is an alkyl group.
  • alkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is methyl or ethyl.
  • Particular alkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is methyl.
  • alkylsulfanyl denotes a group of the formula —S—R′, wherein R′ is an alkyl group.
  • alkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl.
  • Particular alkylsulfanyl groups include group of the formula —S—R′, wherein R′ is methyl.
  • alkylsulfinyl denotes a group of the formula —S(O)—R′, wherein R′ is an alkyl group.
  • alkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl.
  • Particular alkylsulfinyl groups include group of the formula —S(O)—R′, wherein R′ is methyl.
  • alkylsulfonyl denotes a group of the formula —S(O) 2 —R′, wherein R′ is an alkyl group.
  • alkylsulfonyl groups include groups of the formula —S(O) 2 —R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl.
  • Particular alkylsulfonyl groups include group of the formula —S(O) 2 —R′, wherein R′ is methyl.
  • alkynyl denotes a monovalent linear or branched saturated hydrocarbon group of 2 to 7 carbon atoms comprising one, two or three triple bonds. In particular embodiments alkynyl has from 2 to 4 carbon atoms comprising one or two triple bonds. Examples of alkynyl include ethynyl, propynyl, prop-2-ynyl, isopropynyl and n-butynyl.
  • amino denotes a —NH 2 group.
  • aminoalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an aminogroup.
  • aminoalkyl include aminomethyl, aminoethyl, amino-1-methyl-ethyl, aminopropyl, aminomethylpropyl and aminopropyl. Particular examples are aminomethyl and haminoethyl.
  • aminosulfonyl denotes a —S(O) 2 —NH 2 group.
  • carbonyl denotes a —C(O)— group.
  • cyano denotes a —C ⁇ N group.
  • cycloalkoxy denotes a group of the formula —O—R′, wherein R′ is a cycloalkyl group.
  • examples of cycloalkoxy group include cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy and cyclooctyloxy.
  • Particular cycloalkoxy group is cyclopropoxy.
  • cycloalkoxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a cycloalkoxy group.
  • cycloalkoxyalkyl groups include cyclopropoxymethyl, cyclopropoxyethyl, cyclobutoxymethyl, cyclobutoxyethyl, cyclopentyloxymethyl, cyclopentyloxyethyl, cyclohexyloxymethyl, cyclohexyloxyethyl, cycloheptyloxymethyl, cycloheptyloxyethyl, cyclooctyloxymethyl and cyclooctyloxyethyl.
  • cycloalkyl denotes a monovalent saturated monocyclic or bicyclic hydrocarbon group of 3 to 10 ring carbon atoms.
  • cycloalkyl denotes a monovalent saturated monocyclic hydrocarbon group of 3 to 8 ring carbon atoms.
  • Bicyclic means a ring system consisting of two saturated carbocycles having two carbon atoms in common.
  • monocyclic cycloalkyl are cyclopropyl, cyclobutanyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • bicyclic cycloalkyl are bicyclo[2.2.1]heptanyl or bicyclo[2.2.2]octanyl.
  • Particular monocyclic cycloalkyl groups are cyclopropyl, cyclobutanyl, cyclopentyl and cyclohexyl. More particular monocyclic cycloalkyl group is cyclopropyl.
  • cycloalkylalkoxy denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group is replaced by a cycloalkyl group.
  • examples of cycloalkylalkoxy include cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, cycloheptylmethoxy and cyclooctylmethoxy.
  • cycloalkylalkoxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a cycloalkylalkoxy group.
  • cycloalkylalkoxyalkyl include cyclopropylmethoxymethyl, cyclopropylmethoxyethyl, cyclobutylmethoxymethyl, cyclobutylmethoxyethyl, cyclopentylmethoxyethyl, cyclopentylmethoxyethyl, cyclohexylmethoxymethyl, cyclohexylmethoxyethyl, cycloheptylmethoxymethyl, cycloheptylmethoxyethyl, cyclooctylmethoxymethyl and cyclooctylmethoxyethyl.
  • cycloalkylalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a cycloalkyl group.
  • examples of cycloalkylalkyl include cyclopropylmethyl, cyclopropylethyl, cyclopropylbutyl, cyclobutylpropyl, 2-cyclopropylbutyl, cyclopentylbutyl, cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[4.1.0]heptanylethyl, bicyclo[2.2.2]octanylmethyl, bicyclo[2.2.2]octanylethyl, adamentanylmethyl and adamantanylethyl.
  • cycloalkylalkyl are cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[4.1.0]heptanylethyl, bicyclo[2.2.2]octanylmethyl, bicyclo[2.2.2]octanylethyl, adamentanylmethyl and adamantanylethyl.
  • cycloalkylalkyl are cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[2.2.2]octanylmethyl, adamentanylmethyl and adamantanylethyl.
  • cycloalkylcarbonyl of the formula —C(O)—R′, wherein R′ is a cycloalkyl group.
  • cycloalkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is cyclopropyl.
  • cycloalkylsulfanyl denotes a group of the formula —S—R′, wherein R′ is a cycloalkyl group.
  • examples of cycloalkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is cyclopropyl.
  • cycloalkylsulfinyl denotes a group of the formula —S(O)—R′, wherein R′ is a cycloalkyl group.
  • examples of cycloalkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is cyclopropyl.
  • cycloalkylsulfonyl denotes a group of the formula —S(O) 2 —R′, wherein R′ is a cycloalkyl group.
  • examples of cycloalkylsulfonyl groups include groups of the formula —S(O) 2 —R′, wherein R′ is cyclopropyl.
  • haloalkoxy denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by the same or different halogen atoms.
  • perhaloalkoxy denotes an alkoxy group where all hydrogen atoms of the alkoxy group have been replaced by the same or different halogen atoms.
  • haloalkoxy include fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, trifluoromethylethoxy, trifluorodimethylethoxy and pentafluoroethoxy.
  • Particular haloalkoxy group is trifluoromethoxy.
  • haloalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by the same or different halogen atoms.
  • perhaloalkyl denotes an alkyl group where all hydrogen atoms of the alkyl group have been replaced by the same or different halogen atoms. Examples of haloalkyl include fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, trifluoromethylethyl and pentafluoroethyl. Particular haloalkyl group is trifluoromethyl.
  • haloalkylsulfanyl denotes a group of the formula —S—R′, wherein R′ is a haloalkyl group.
  • haloalkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is trifluoromethyl.
  • haloalkylsulfinyl denotes a group of the formula —S(O)—R′, wherein R′ is a haloalkyl group.
  • haloalkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is trifluoromethyl.
  • haloalkylsulfonyl denotes a group of the formula —S(O) 2 —R′, wherein R′ is a haloalkyl group.
  • haloalkylsulfonyl groups include groups of the formula —S(O) 2 —R′, wherein R′ is trifluoromethyl.
  • halogen and “halo” are used interchangeably herein and denote fluoro, chloro, bromo, or iodo. Particular halogens are chloro, fluoro and bromo. More particular halogens are chloro and fluoro.
  • hydroxy denotes an —OH group.
  • hydroxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a hydroxy group.
  • examples of hydroxyalkyl include hydroxymethyl, hydroxyethyl, hydroxy-1-methyl-ethyl, hydroxypropyl, hydroxymethylpropyl and dihydroxypropyl. Particular examples are hydroxymethyl and hydroxyethyl.
  • hydroxyhaloalkyl denotes a haloalkyl group wherein at least one of the hydrogen atoms of the haloalkyl group has been replaced by an hydroxy group.
  • exemplary hydroxyhaloalkyl groups include hydroxytrifluoroethyl and hydroxytrifluoropropyl.
  • Particular hydroxyhaloalkyl groups include hydroxytrifluoroethyl.
  • indanyloxy denotes a group of the formula —O—R′, wherein R′ is an indanyl.
  • indanyloxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a indanyloxy group.
  • exemplary indanyloxyalkyl groups include indanyloxymethyl, indanyloxyethyl and indanyloxypropyl.
  • Particular indanyloxyalkyl group is indanyloxymethyl.
  • phenoxy denotes a group of the formula —O—R′, wherein R′ is a phenyl.
  • phenoxyalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a phenoxy group.
  • exemplary phenoxyalkyl groups include phenoxymethyl, phenoxyethyl and phenoxypropyl.
  • Particular phenoxyalkyl group is phenoxymethyl.
  • phenylalkenyl denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a phenyl.
  • Particular phenylalkenyl group is phenylethenyl.
  • phenylalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a phenyl.
  • Particular phenylalkyl groups are benzyl, phenethyl and phenylpropyl. More particular phenylalkyl groups are benzyl and phenethyl. Further particular phenylalkyl group is benzyl.
  • phenylalkynyl denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a phenyl. Particular phenylalkynyl group is phenylethynyl.
  • phenylcyloalkyl denotes a cycloalkyl group wherein at least one of the hydrogen atoms of the cycloalkyl group has been replaced a phenyl.
  • Particular phenylcycloalkyl group is phenylcyclopropyl.
  • pyridinylalkenyl denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a pyridinyl.
  • Particular pyridinylalkenyl group is pyridinylethenyl.
  • pyridinylalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a pyridinyl.
  • Particular pyridinylalkyl groups are pyridinylmethyl, pyridinylethyl and pyridinylpropyl. More particular pyridinylalkyl group is pyridinylethyl.
  • pyridinylalkynyl denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a pyridinyl. Particular pyridinylalkynyl group is pyridinylethynyl.
  • thiophenylalkenyl denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a thiophenyl. Particular thiophenylalkenyl group is thiophenylethenyl.
  • thiophenylalkyl denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a thiophenyl.
  • Particular thiophenylalkyl groups are thiophenylmethyl, thiophenylethyl and thiophenylpropyl. More particular thiophenylalkyl group is thiophenylmethyl.
  • thiophenylalkynyl denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a thiophenyl. Particular thiophenylalkynyl group is thiophenylethynyl.
  • salts refers to those salts which retain the biological effectiveness and properties of the free bases or free acids, which are not biologically or otherwise undesirable.
  • the salts are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, in particular hydrochloric acid, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, N-acetylcystein and the like.
  • salts may be prepared by addition of an inorganic base or an organic base to the free acid.
  • Salts derived from an inorganic base include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium salts and the like.
  • Salts derived from organic bases include, but are not limited to salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, lysine, arginine, N-ethylpiperidine, piperidine, polyimine resins and the like.
  • Particular pharmaceutically acceptable salts of compounds of formula (I) are the hydrochloride salts, methanesulfonic acid salts and citric acid salts.
  • “Pharmaceutically acceptable esters” means that compounds of general formula (I) may be derivatised at functional groups to provide derivatives which are capable of conversion back to the parent compounds in vivo. Examples of such compounds include physiologically acceptable and metabolically labile ester derivatives, such as methoxymethyl esters, methylthiomethyl esters and pivaloyloxymethyl esters. Additionally, any physiologically acceptable equivalents of the compounds of general formula (I), similar to the metabolically labile esters, which are capable of producing the parent compounds of general formula (I) in vivo, are within the scope of this invention.
  • protecting group denotes a group which selectively blocks a reactive site in a multifunctional compound such that a chemical reaction can be carried out selectively at another unprotected reactive site in the meaning conventionally associated with it in synthetic chemistry.
  • Protecting groups can be removed at the appropriate point.
  • Exemplary protecting groups are amino-protecting groups, carboxy-protecting groups or hydroxy-protecting groups.
  • protecting groups are the tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), fluorenylmethoxycarbonyl (Fmoc) and benzyl (Bn) groups. Further particular protecting groups are the tert-butoxycarbonyl (Boc) and the fluorenylmethoxycarbonyl (Fmoc) groups. More particular protecting group is the tert-butoxycarbonyl (Boc) group.
  • uM means microMolar and is equivalent to the symbol M.
  • the abbreviation uL means microliter and is equivalent to the symbol ⁇ L.
  • the abbreviation ug means microgram and is equivalent to the symbol ⁇ g.
  • the compounds of formula (I) can contain several asymmetric centers and can be present in the form of optically pure enantiomers, mixtures of enantiomers such as, for example, racemates, optically pure diastereoisomers, mixtures of diastereoisomers, diastereoisomeric racemates or mixtures of diastereoisomeric racemates.
  • the asymmetric carbon atom can be of the “R” or “S” configuration.
  • an embodiment of the present invention are compounds according to formula (I) as described herein and pharmaceutically acceptable salts or esters thereof, in particular compounds according to formula (I) as described herein and pharmaceutically acceptable salts thereof, more particularly compounds according to formula (I) as described herein.
  • a further embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 1 is substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, naphtyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl, or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted
  • R 1 is substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, and substituted 1H-indol-2-yl are substituted with R 8 , R 9 and R 10 .
  • a particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 1 is substituted phenylalkyl or substituted phenylalkenyl, wherein substituted phenylalkyl and substituted phenylalkenyl are substituted with R 8 , R 9 and R 10 .
  • the present invention also relates to compounds according to formula (I) as described herein, wherein Y is —OC(O)—, —C(O)—, —S(O) 2 — or
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —OC(O)— or —C(O)—.
  • Another further embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —OC(O)— and of formula (In).
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —C(O)—.
  • a more particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein A is —N—.
  • an embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —O—, —NR 6 —, —C(O)—, —S(O) 2 —, —C(O)—NR 6 — or —CR 3 R 4 —.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —C(O)—, —C(O)—NR 6 — or —CR 3 R 4 —.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —C(O)—.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 2 is selected from the ring systems B, C, D, E, G, H, M, O, P, R, S, T, U, V, X, Z, AA, AB, AC, AD, AE, AF, AG, AH and AI.
  • R 2 is selected from the ring systems B, C, D, E, G, H, M, O, P, R, S, T, U, V, X, Z, AA, AB, AC, AD and AE.
  • R 2 is selected from the ring systems B, D, H, M, O, R and AJ.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 2 is selected from the ring systems B, D, H, O and R.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 2 is selected from the ring systems B and D.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 2 is the ring system D.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 3 and R 4 are H.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 5 is H.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 6 is H or alkyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 , R 9 and R 10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cyclo
  • R 8 , R 9 and R 10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 , R 9 and R 10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 , R 9 and R 10 are independently selected from H, alkyl, haloalkyl, haloalkoxy, halogen and alkylsulfonyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 is H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, or aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 is H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl or aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 is haloalkyl, haloalkoxy, halogen or alkylsulfonyl.
  • a particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 8 is haloalkoxy or halogen.
  • the present invention also relates to compounds according to formula (I) as described herein, wherein R 9 is H, alkyl, haloalkyl, cycloalkyl, cycloalkoxy, alkoxy, haloalkoxy, alkoxyalkoxy, cyano or halogen.
  • the present invention also relates to compounds according to formula (I) as described herein, wherein R 9 is H, alkyl, haloalkyl, alkoxy or halogen.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 9 is H, alkyl or halogen.
  • the present invention also relates to compounds according to formula (I) as described herein, wherein R 8 and R 9 are halogen.
  • R 9 is H, alkyl, haloalkyl, cycloalkyl, cycloalkoxy, alkoxy, haloalkoxy, alkoxyalkoxy, cyano or halogen.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein R 10 is H.
  • a particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein m is 1.
  • a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein n is 1.
  • a more particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein m and n are 1.
  • the present invention also relates to compounds according to formula (I) as described herein, wherein m, n, p and q are 1.
  • a furthermore particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein
  • the preparation of compounds of formula (I) of the present invention may be carried out in sequential or convergent synthetic routes. Syntheses of the invention are shown in the following general schemes. The skills required for carrying out the reactions and purifications of the resulting products are known to those persons skilled in the art. In case a mixture of enantiomers or diastereoisomers is produced during a reaction, these enantiomers or diastereoisomers can be separated by methods described herein or known to the man skilled in the art such as e.g. (chiral) chromatography or crystallization. The substituents and indices used in the following description of the processes have the significance given herein.
  • amine 1 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula (3A), or with a succinimidyl carbonate derivative of formula (3B), leading to a compound of formula (I) wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence or not of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof
  • a base e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Chloroformate esters 2 are commercially available or can be synthesised from the corresponding alcohol of formula R 1 —OH, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene), as described in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene
  • Imidazole-1-carboxylate esters 3A are synthesised from the corresponding alcohols of formula R 1 —OH, by reaction with 1,1′-carbonyldiimidazole. The reaction is performed at room temperature, in a solvent such as dichloromethane, tetrahydrofuran or acetonitrile. The imidazole-1-carboxylate esters 3A are typically not isolated but directly reacted with amines 1 as described above.
  • Succinimidyl carbonate derivatives 3B are synthesised from the corresponding alcohols of formula R 1 —OH, by reaction with N,N′-disuccinimidyl carbonate. The reaction is performed at room temperature, in a solvent such as dichloromethane, tetrahydrofuran, or acetonitrile, optionally in the presence of a base, e. g., triethylamine.
  • the succinimidyl carbonate derivatives 3B are typically not isolated but directly reacted with amines 1 as described above.
  • Alcohols of formula R 1 —OH are commercially available or can be produced by methods described herein or known in the art.
  • amine 1 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 1 —N(R 7 )—C(O)—Cl (4), or, in the case where R 7 is H, with an isocyanate of formula R 1 —NCO (5), leading to compounds of formula (I) wherein Y is —NR 7 C(O)—.
  • N-(Chlorocarbonyl)amines (4) are synthesised from the corresponding amines of formula R 1 —N(R 7 )H by reaction with phosgene or a phosgene equivalent, as described in the literature.
  • Isocyanates 5 are commercially available or can be prepared from the corresponding amines of formula R 1 —NH 2 , by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole), as described in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole
  • amine 1 is reacted with a suitable carboxylic acid of formula R 1 —COOH (6) leading to a compound of formula (I), wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethan
  • Amine 1 can also be reacted with suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (7) to lead to compounds of formula (I) wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (7) to lead to compounds of formula (I) wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • Carboxylic acids (6) and acyl halides (7) are commercially available or can be prepared as described herein or in the literature.
  • amine 1 is reacted with a suitable sulfonyl chloride of formula R 1 —SO 2 Cl (8), leading to compounds of formula (I) wherein Y is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Sulfonyl chlorides (8) are commercially available or can be synthesised as described herein or in the literature.
  • amine 1 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to a compound of formula (I), wherein Y is
  • reaction is performed in the presence of a base, e. g., potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane at temperatures between 20° C. and 150° C.
  • a base e. g., potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • reaction is performed in the presence of a coupling agent, e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate and a base, e. g., diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C. as described in the literature.
  • a coupling agent e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate
  • a base e. g., diisopropylethylamine or 4-methylmorpholine
  • Oxadiazolones 10 are commercially available or can be produced as described in the literature.
  • Chloro-oxadiazoles 9 are commercially available or can be produced from the corresponding oxadiazolones, by reaction with a suitable halogenating reagent, e. g. phosphorus oxychloride and/or phosphorus pentachloride, at temperatures between 60° C. and 120° C.
  • a suitable halogenating reagent e. g. phosphorus oxychloride and/or phosphorus pentachloride
  • reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • a base e. g. potassium carbonate, triethylamine or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane
  • Thiadiazolethiones 12 are commercially available or can be produced as described in the literature.
  • Halo-thiadiazoles 11 are commercially available or can be produced as described in the literature.
  • Amines of general formula 1 are synthesised from suitably protected precursors 13.
  • Suitable protective groups are tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • the deprotection of intermediates 13 can be performed using methods and reagents known in the art.
  • the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C. in solvents such as methanol or ethanol.
  • a suitable catalyst such as palladium on activated charcoal
  • the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane at temperatures between 0° C. and 30° C.
  • a suitable acid e. g, hydrochloric acid or trifluoroacetic acid
  • a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane at temperatures between 0° C. and 30° C.
  • Carbamates 13, wherein A is N are represented by general structure 13A.
  • PG is a suitable protective group, e. g., tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • Carbamates 13A can be produced from amine precursors of general formula 14 by reaction with appropriate reagents, using methods known in the art.
  • alkylating agents of general formula X—CR 3 R 4 —R 2 (15) where X is a leaving group such as Cl, Br, I, or OSO 2 CH 3 , leading to 13A, wherein W is —CR 3 R 4 —.
  • This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g. triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • amine 14 is reacted with aldehydes or ketones of general formula R 4 —C(O)—R 2 (16) in a reductive amination reaction, leading to 13A.
  • This reaction is performed in the presence of a suitable reducing agent, e. g., sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • amine 14 is reacted with a suitable carboxylic acid of formula R 2 —COOH (17), leading to compounds of formula 13A, wherein W is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-di cyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, 0-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane
  • amine 14 is reacted with a suitable sulfonyl chloride of formula R 2 —SO 2 Cl (18), leading to compounds of formula 13A, wherein W is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine 14 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 2 —N(R 6 )—C(O)—Cl (19) leading to compounds of formula 13A, wherein W is —C(O)—NR 6 —, or with an isocyanate of formula R 2 —NCO (20), leading to compounds of formula 13A, wherein W is —C(O)—NR 6 — and R 6 is H.
  • amine 14 is reacted with phosgene or phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine) in a solvent such as dichloromethane or tetrahydrofuran, to provide the corresponding N-(chlorocarbonyl)amine of formula 21, which is then reacted with amine of formula HN(R 6 )R 2 (22), in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 13A, wherein W is —C(O)—NR 6 —.
  • a base e. pyridine, triethylamine
  • a solvent such as dichloromethane or tetrahydrofuran
  • amine 14 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 21, which is then reacted with amines of formula H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF, in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 13A, wherein W is —C(O)— and R 2 is O, P, Q, R, T, U, V, X, AA or
  • N-(Chlorocarbonyl)amines 19 are synthesised from the corresponding amines 22 by reaction with phosgene or a phosgene equivalent (diphosgene, triphosgene) as described in the literature.
  • Isocyanates 20 are commercially available or can be prepared from the corresponding amines of formula R 2 —NH 2 , by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole) as described in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole
  • Amines 14, alkylating agents 15, aldehydes/ketones 16, carboxylic acids 17, sulfonyl chlorides 18, and amines 22 are commercially available or can be synthesised as described in the literature.
  • Carbamates 13 wherein A is CR 5 and R 5 is H are represented by general formula 13B, wherein PG is a suitable protective group, e. g tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • PG is a suitable protective group, e. g tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • Compound 13B wherein W is —NR 6 —, is produced from ketone 23 by reaction with an amine of formula HN(R 6 )R 2 (22) in the presence of a suitable reducing agent, e. g. sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane, or mixtures thereof, at temperatures between 0° C. and 50° C.
  • a suitable reducing agent e. g. sodium borohydride or sodium triacetoxyborohydride
  • Ketones 23 and amines 22 are commercially available or can be prepared as described in the literature.
  • Compound 13B wherein W is —O— or —S—, is produced from alcohol 24 using methods and reagents known in the art.
  • alcohol 24 is reacted at room temperature with phenol HO—R 2 or thiophenol HS—R 2 in the presence of triphenylphosphine and an dialkylazodicarboxylate, e. g. diisopropylazodicarboxylate or diethylazodicarboxylate, in a solvent such as toluene, dichloromethane, or tetrahydrofuran, leading to 13B, wherein W is —O— or —S—.
  • dialkylazodicarboxylate e.g. diisopropylazodicarboxylate or diethylazodicarboxylate
  • step 1 compounds of formula 13B can also be produced from alcohol 24 in a three-step sequence. Therefore, 24 is reacted in step 1 at room temperature with 2,4-dihydroxybenzoic acid alkyl ester in the presence of triphenylphosphine and an dialkylazodicarboxylate, e. g. diisopropylazodicarboxylate or diethylazodicarboxylate, in a solvent such as toluene, dichloromethane or tetrahydrofuran, converting the hydroxy group into a 3-hydroxy-4-(alkoxycarbonyl)-phenyl ether substituent.
  • dialkylazodicarboxylate e. g. diisopropylazodicarboxylate or diethylazodicarboxylate
  • step 2 This is hydrolysed in step 2 to the corresponding 3-hydroxy-4-carboxyphenyl group, using a base such as sodium hydroxide in water and in the presence of co-solvents such as tetrahydrofuran and/or methanol or ethanol.
  • step 3 the 3-hydroxy-4-carboxyphenyl ether intermediate can be subjected to a Curtius rearrangement as described in the literature, e. g. by using diphenylphorphoryl azide, in a solvent such as toluene, in the presence of a base, e. g., triethylamine, at temperatures between 60° C. and 110° C., leading to the corresponding 2-oxo-2,3-dihydro-benzooxazol-6-yl ether 13B, wherein W is —O— and R 2 is B.
  • a base e. g., triethylamine
  • Compound 13B wherein W is —SO 2 —, is produced from compound 13B, wherein W is —S— by oxidation with a suitable reagent, e. g., hydrogen peroxide or 3-chloroperbenzoic acid, in a solvent such as formic acid, acetic acid, or dichloromethane, at temperatures between 0° C. and 50° C.
  • a suitable reagent e. g., hydrogen peroxide or 3-chloroperbenzoic acid
  • a solvent such as formic acid, acetic acid, or dichloromethane
  • Alcohols 24 are produced from ketones 23 using a suitable reducing agent, e. g., sodium borohydride, in a solvent such as methanol, at temperatures between 0° C. and 50° C.
  • a suitable reducing agent e. g., sodium borohydride
  • a solvent such as methanol
  • Carbamates 13 wherein A is CR 5 , R 5 is H, and W is —C(O)—N(R 6 )— are represented by general formula 13C, wherein R 12 is N(R 6 )R 2 , O, P, Q, R, T, U, V, X, AA or AF.
  • Amide 13C is produced from carboxylic acid 25 by coupling reaction with an amine of formula HN(R 6 )R 2 (22), H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between ⁇ 40° C. and 80° C. in the presence
  • Carboxylic acids 25 are commercially available or can be produced as described in the literature.
  • Compounds of formula (I), wherein A is N can be produced from amine precursors of general formula 26 by reaction with appropriate reagents, using methods known in the art.
  • an amine of formula 26 is reacted with alkylating agents of general formula X—CR 3 R 4 —R 2 (15) where X is a leaving group such as Cl, Br, I, or OSO 2 CH 3 , leading to compounds of formula (I), wherein A is N and W is —CR 3 R 4 —.
  • This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g., triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • an amine of formula 26 is reacted with aldehydes or ketones of general formula R 4 —C(O)—R 2 (16) in a reductive amination reaction, leading to compounds of formula (I) wherein A is N, W is —CR 3 R 4 —, R 4 is hydrogen, alkyl or cycloalkyl, and R 3 is H.
  • This reaction is performed in the presence of a suitable reducing agent, e. g. sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • amine 26 is reacted with a suitable carboxylic acid of formula R 2 —COOH (17), leading to compounds of formula (I) wherein A is N and W is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-di cyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, 0-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dich
  • amine 26 is reacted with a suitable sulfonyl chloride of formula R 2 —SO 2 Cl (18), leading to (I) wherein A is N and W is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine of formula 26 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 2 —N(R 6 )—C(O)—Cl (19) leading to compounds of formula (I), wherein A is N and W is C(O)—NR 6 , or with isocyanate R 2 —NCO (20), leading to compounds of formula (I), wherein A is N, W is —C(O)—NR 6 — and R 6 is H.
  • amine 26 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 27, which is then reacted with an amine of formula H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula (I), wherein A is N, W is —C(O)— and R 2 is O, P, Q, R, T, U, V, X,
  • Amines 26 can be synthesised from their tert-butyl carbamate derivatives of formula 28 by carbamate deprotection.
  • the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • tert-Butyl carbamates 28 can be synthesised from amine precursors of formula 29 and appropriate reagents, using methods well known in the art.
  • an amine of formula 29 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula (3A) or with a succinimidyl carbonate derivative of formula (3B), leading to compounds of formula 28, wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence or not of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile
  • an amine of formula 29 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 1 —N(R 7 )—C(O)—Cl (4) leading to compounds of formula 28, wherein Y is —NR 7 C(O)—, or with an isocyanate of formula R 1 —NCO (5) leading to compounds of formula 28, wherein Y is —NR 7 C(O)— and R 7 is H.
  • amine 29 is reacted with a suitable carboxylic acid of formula R 1 —COOH (6) leading to compounds of formula 28, wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, t
  • Amine 29 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R 1 —COCl (7) to provide compounds of formula 28, wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (7) to provide compounds of formula 28, wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • amine 29 is reacted with a suitable sulfonyl chloride, of formula R 1 —SO 2 Cl (8), leading to compounds of formula 28, wherein Y is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine 29 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to compounds of formula 28, wherein Y is
  • reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • a base e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane
  • the reaction is performed in the presence of a coupling agent, e. g., benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, and a base, e. g. diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature).
  • a coupling agent e. g., benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate
  • a base e. g. diisopropylethylamine or 4-methylmorpholine
  • amine 29 is reacted with a suitable halo-thiadiazole reagent of general formula 11 (X is Cl or Br), or with thiadiazolethione reagent 12, leading to compounds of formula 28, wherein Y is
  • reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • a base e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane
  • amine 29 is acylated with a haloalkanoyl halide, e. g., bromoacetyl chloride, in the presence of a base, e. g. triethylamine, in a solvent such as dichloromethane or tetrahydrofuran, at temperatures between ⁇ 78° C. and +20° C., leading to the corresponding haloalkanamide intermediate, which in the presence of a base, e. g.
  • a haloalkanoyl halide e. g., bromoacetyl chloride
  • a base e. g. triethylamine
  • a solvent such as dichloromethane or tetrahydrofuran
  • potassium carbonate or caesium carbonate in a solvent such as N,N-dimethylformamide undergoes a nucleophilic substitution reaction with a substituted phenol, leading to compounds of formula 28, wherein Y is —C(O)— and R 1 is substituted phenoxyalkyl.
  • Amines of formula 29 are commercially available or can be produced as described in the literature.
  • Compounds of formula (I), wherein A is CR 5 and W is —C(O)—N(R 6 )— can be produced from carboxylic acid precursors of general formula 30 by reaction with appropriate amine reagents of general formula HN(R 6 )R 2 , H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF using methods known in the art.
  • this reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between ⁇ 40° C. and 80° C. in
  • Carboxylic acids 30 can be produced from the corresponding ester precursors 31, wherein R a is lower alkyl, e. g. methyl or ethyl, using methods and reagents known in the art. For instance, the reaction is performed in the presence of a base, e. g., potassium hydroxide, sodium hydroxide, or lithium hydroxide, in solvents such as water, methanol, ethanol, tetrahydrofuran, or mixtures thereof, at temperatures between 20° C. and 100° C.
  • a base e. g., potassium hydroxide, sodium hydroxide, or lithium hydroxide
  • Compounds of formula 31 can be synthesised from amine precursors of formula 32 and appropriate reagents, using methods well known in the art.
  • an amine of formula 32 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula 3, leading to compounds of formula 31, wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a base e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture
  • an amine of formula 32 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 1 —N(R 7 )—C(O)—Cl (4) leading to compounds of formula 31, wherein Y is —NR 7 C(O)—, or with an isocyanate of formula R 1 —NCO (5) leading to leading to compounds of formula 31, wherein Y is —NR 7 C(O)— and R 7 is H.
  • amine 32 is reacted with a suitable carboxylic acid of formula R 1 —COOH (6) leading to compounds of formula 31, wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, t
  • Amine 32 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R 1 —COCl (7) to lead to compounds of formula 31, wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (7) to lead to compounds of formula 31, wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • amine 32 is reacted with a suitable sulfonyl chloride of formula R 1 —SO 2 Cl (8), leading to compounds of formula 31, wherein Y is —S(O 2 )—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a base e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine 32 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to compounds of formula 31, wherein Y is
  • 31 is produced from amine 32 and chloro-oxadiazole 9
  • the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • a base e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane
  • the reaction is performed in the presence of a coupling agent, e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, and a base, e. g. diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature.
  • a coupling agent e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate
  • a base e. g. diisopropylethylamine or 4-methylmorpholine
  • amine 32 is reacted with a suitable halo-thiadiazole reagent of general formula 11 (X is Cl or Br), or with thiadiazolethione reagent 12, leading to compounds of formula 31, wherein Y is
  • 31 is produced from amine 32 and halo-thiadiazole 11
  • the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • a base e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene
  • solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane
  • Amines of general formula 32 are synthesised from suitably protected precursors 33.
  • Suitable protective groups are tert-butoxycarbonyl or benzyloxycarbonyl.
  • the deprotection of intermediates 33 can be performed using methods and reagents known in the art.
  • the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C., in solvents such as methanol or ethanol.
  • a suitable catalyst such as palladium on activated charcoal
  • the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • a suitable acid e. g, hydrochloric acid or trifluoroacetic acid
  • a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane
  • Substituents R 5 may be introduced starting from ester precursor 34, using suitable reagents and methods known in the art. For instance, 34 is reacted with alkylating agents of general formula R 5 —X wherein R 5 is alkyl or cycloalkyl and X is a leaving group such as Cl, Br, I, or OSO 2 CH 3 , leading to 33, wherein R 5 is alkyl or cycloalkyl. This reaction is performed in the presence of a suitable base, e.
  • sodium hydride lithium diisopropylamide, lithium bis(trimethylsilyl)amide, or lithium pyrrolidide, in a solvent such as tetrahydrofuran or toluene, at temperatures between ⁇ 78° C. and +50° C.
  • Esters 34 wherein R a is methyl or ethyl, are produced from carboxylic acids 25, using methods and reagents known in the art. For instance, 25 alkylated with methyl iodide or ethyl bromide, in the presence of a base, e. g., potassium carbonate, in a solvent such as N,N-dimethylformamide, at ⁇ 20° C. and +30° C., leading to the methyl or ethyl ester 34, respectively.
  • a base e. g., potassium carbonate
  • an embodiment of the present invention is a process to prepare a compound of formula (I) as defined above comprising the reaction of a compound of formula (II) in the presence of a compound of formula (III);
  • R 1 , R 2 , A, W, m, n, p and q are as defined above, Y is —OC(O)—.
  • a coupling agent such as O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate
  • a solvent such as N,N-dimethylformamide
  • a base such as 4-methylmorpholine and at a temperature comprised between ⁇ 78° C. and reflux, particularly between ⁇ 10° C. and room temperature.
  • an object of the present invention is a compound according to formula (I) as described herein for use as a therapeutically active substance.
  • an object of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a compound according to formula (I) as described herein and a therapeutically inert carrier.
  • An object of the invention is the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • Renal conditions include, but are not limited to, acute kidney injury and chronic renal disease with and without proteinuria including end-stage renal disease (ESRD).
  • ESRD end-stage renal disease
  • this includes decreased creatinine clearance and decreased glomerular filtration rate, micro-albuminuria, albuminuria and proteinuria, glomerulosclerosis with expansion of reticulated mesangial matrix with or without significant hypercellularity (particularly diabetic nephropathy and amyloidosis), focal thrombosis of glomerular capillaries (particularly thrombotic microangiopathies), global fibrinoid necrosis, ischemic lesions, malignant nephrosclerosis (such as ischemic retraction, reduced renal blood flow and renal arteriopathy), swelling and proliferation of intracapillary (endothelial and mesangial) and/or extracapillary cells (crescents) like in glomerular nephritis entities, focal segmental glomerular sclerosis, IgA
  • Liver conditions include, but are not limited to, liver cirrhosis, hepatic congestion, cholestatic liver disease including pruritus, nonalcoholic steatohepatitis and acute and chronic liver transplant rejection.
  • Inflammatory conditions include, but are not limited to, arthritis, osteoarthritis, multiple sclerosis, systemic lupus erythematodes, inflammatory bowel disease, abnormal evacuation disorder and the like as well as inflammatory airways diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) or chronic asthma bronchiale.
  • IPF idiopathic pulmonary fibrosis
  • COPD chronic obstructive pulmonary disease
  • chronic asthma bronchiale chronic asthma bronchiale.
  • Further conditions of the respiratory system include, but are not limited to, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, systemic diseases and vasculitides, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, Langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, silicosis, asbestos induced pulmonary fibrosis or acute respiratory distress syndrome (ARDS).
  • iatrogenic drug-induced fibrosis etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, systemic diseases and vasculitides, granulomatous diseases (s
  • Conditions of the nervous system include, but are not limited to, neuropathic pain, schizophrenia, neuro-inflammation (e.g. astrogliosis), peripheral and/or autonomic (diabetic) neuropathies and the like.
  • Vascular conditions include, but are not limited to, atherosclerosis, thrombotic vascular disease as well as thrombotic microangiopathies, proliferative arteriopathy (such as swollen myointimal cells surrounded by mucinous extracellular matrix and nodular thickening), atherosclerosis, decreased vascular compliance (such as stiffness, reduced ventricular compliance and reduced vascular compliance), endothelial dysfunction and the like.
  • Cardiovascular conditions include, but are not limited to, acute coronary syndrome, coronary heart disease, myocardial infarction, arterial and pulmonary hypertension, cardiac arrhythmia such as atrial fibrillation, stroke and other vascular damage.
  • Fibrotic diseases include, but are not limited to myocardial and vascular fibrosis, renal fibrosis, liver fibrosis, pulmonary fibrosis, skin fibrosis, scleroderma and encapsulating peritonitis.
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of organ or skin fibrosis.
  • the fibrotic disease is renal tubulo-interstitial fibrosis or glomerulosclerosis.
  • the fibrotic disease is non-alcoholic liver steatosis, liver fibrosis or liver cirrhosis.
  • the fibrotic disease is idiopathic pulmonary fibrosis.
  • Cancer and cancer metastasis include, but are not limited to, breast cancer, ovarian cancer, lung cancer, prostate cancer, mesothelioma, glioma, hepatic carcinoma, gastrointestinal cancers and progression and metastatic aggressiveness thereof.
  • Ocular conditions include, but are not limited to, proliferative and non-proliferative (diabetic) retinopathy, dry and wet age-related macular degeneration (AMD), macular edema, central arterial/venous occlusion, traumatic injury, glaucoma and the like.
  • proliferative and non-proliferative (diabetic) retinopathy dry and wet age-related macular degeneration (AMD), macular edema, central arterial/venous occlusion, traumatic injury, glaucoma and the like.
  • AMD age-related macular degeneration
  • Metabolic conditions include, but are not limited to, obesity and diabetes.
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of cholestatic or non-cholestatic chronic pruritus.
  • the present invention also relates to the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • the present invention also relates to the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • a particular embodiment of the present invention is a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • a particular embodiment of the present invention is a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • the present invention also relates to the use of a compound according to formula (I) as described herein for the preparation of a medicament for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • the present invention also relates to the use of a compound according to formula (I) as described herein for the preparation of a medicament for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • an object of the invention is a method for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rejection, which method comprises administering an effective amount of a compound according to formula (I) as described herein.
  • an object of the invention is a method for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases, which method comprises administering an effective amount of a compound according to formula (I) as described herein.
  • the renal condition is selected from the group consisting of acute kidney injury, chronic kidney disease, diabetic nephropathy, acute kidney transplant rejection and chronic allograft nephropathy.
  • the renal condition is acute kidney injury.
  • the renal condition is chronic kidney disease.
  • the renal condition is diabetic nephropathy.
  • the renal condition is acute kidney transplant rejection.
  • the renal condition is chronic allograft nephropathy.
  • the liver condition is acute and chronic liver transplant rejection
  • the inflammatory condition is arthritis.
  • the condition of the nervous system is neuropathic pain.
  • the fibrotic disease is encapsulating peritonitis.
  • the fibrotic disease is idiopathic pulmonary fibrosis.
  • the fibrotic disease is non-alcoholic liver steatosis, liver fibrosis or liver cirrhosis.
  • cDNA was prepared from commercial human hematopoietic cells total RNA and used as template in overlapping PCR to generate a full length human ENPP2 ORF with or without a 3′-6 ⁇ His tag. These full length inserts were cloned into the pcDNA3.1V5-His TOPO (Invitrogen) vector. The DNA sequences of several single clones were verified. The DNA from a correct full length clone was used to transfect Hek293 cells for verification of protein expression. The sequence of the encoded ENPP2 conforms to Swissprot entry Q13822, with or without the additional C-terminal 6 ⁇ His tag.
  • Recombinant protein was produced by large-scale transient transfection in 20 L controlled stirred tank bioreactors (Sartorius). During cell growth and transfection, temperature, stirrer speed, pH and dissolved oxygen concentration were maintained at 37° C., 120 rpm, 7.1 and 30% DO, respectively.
  • FreeStyle 293-F cells (Invitrogen) were cultivated in suspension in FreeStyle 293 medium (Invitrogen) and transfected at ca. 1-1.5 ⁇ 10E6 cells/mL with above plasmid DNAs using X-tremeGENE Ro-1539 (commercial product, Roche Diagnostics) as complexing agent.
  • the cleared supernatant was then applied to a HisTrap column (GE Healthcare) previously equilibrated in 50 mM Na2HPO 4 pH 7.0, 0.5 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 .
  • the column was washed stepwise with the same buffer containing 20 mM, 40 mM and 50 mM imidazole, respectively.
  • the protein was subsequently eluted using a linear gradient to 0.5 M imidazole in 15 column volumes.
  • ATX containing fractions were pooled and concentrated using an Amicon cell equipped with a 30 kDa PES filter membrane.
  • the protein was further purified by size exclusion chromatography on Superdex S-200 prep grade (XK 26/100) (GE Healthcare) in 20 mM BICINE pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 . Final yield of protein after purification was 5-10 mg ATX per liter of culture supernatant. The protein was stored at ⁇ 80° C.
  • ATX inhibition was measured by a fluorescence quenching assay using a specifically labeled substrate analogue (MR121 substrate).
  • MR121 substrate a specifically labeled substrate analogue
  • BOC and TBS protected 6-amino-hexanoic acid (R)-3-( ⁇ 2-[3-(2- ⁇ 2-[2-(2-amino-ethoxy)-ethoxy]-ethoxy ⁇ -ethoxy)-propionylamino]-ethoxy ⁇ -hydroxy-phosphoryloxy)-2-hydroxy-propyl ester (Ferguson et al., Org Lett 2006, 8 (10), 2023) was labeled with MR121 fluorophore (CAS 185308-24-1, 1-(3-carboxypropyl)-11-ethyl-1,2,3,4,8,9,10,11-octahydro-dipyrido[3,2-b:2′,3′-i]phenoxazin-13-ium) on the free amine of the ethanolamine
  • Assay buffer 50 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM CaCl 2 , 1 mM MgCl 2 , 0.01% Triton-X-100, pH 8.0;
  • ATX solution ATX (human His-tagged) stock solution (1.08 mg/mL in 20 mM bicine, pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 ), diluted to 1.4-2.5 ⁇ final concentration in assay buffer;
  • MR121 substrate solution MR121 substrate stock solution (800 ⁇ M MR121 substrate in DMSO), diluted to 2-5 ⁇ final concentration in assay buffer.
  • Test compounds (10 mM stock in DMSO, 8 ⁇ L) were obtained in 384 well sample plates (Corning Costar #3655) and diluted with 8 ⁇ L DMSO. Row-wise serial dilutions were made by transferring 8 ⁇ L cpd solution to the next row up to row O. The compound and control solutions were mixed five times and 2 ⁇ L were transferred to 384 well assay plates (Corning Costar #3702). Then, 15 ⁇ L of 41.7 nM ATX solution was added (30 nM final concentration), mixed five times and then incubated for 15 minutes at 30° C. 10 ⁇ L of MR121 substrate solution was added (1 M final concentration), mixed 30 times and then incubated for 15 minutes at 30° C.
  • Example IC50 ( ⁇ M) 1 0.008 1.01 0.035 1.02 0.077 1.03 0.025 1.04 0.127 1.05 0.09 1.06 0.255 1.07 1.034 1.08 0.503 1.09 0.009 1.10 0.078 1.11 0.004 1.12 9.26 1.13 0.226 1.14 0.81 1.15 0.001 1.16 0.382 1.17 0.651 1.18 0.01 1.19 0.012 1.20 0.083 1.21 0.005 1.22 0.009 1.23 0.058 1.24 0.013 1.25 0.114 1.26 0.009 1.27 0.008 1.28 0.006 1.29 0.008 1.30 0.02 1.31 0.021 1.32 0.04 1.33 0.021 1.34 0.013 1.35 0.01 1.36 7.455 1.37 0.025 1.38 0.01 1.39 0.007 1.40 0.007 1.41 0.002 1.42 0.007 1.43 0.014 1.44 0.003 1.45 0.007 1.46 0.002 1.47 0.002 1.48 0.0075 1.49 0.218 1.50 0.017 1.51
  • the compounds of formula (I) and their pharmaceutically acceptable salts can be used as medicaments (e.g. in the form of pharmaceutical preparations).
  • the pharmaceutical preparations can be administered internally, such as orally (e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatin capsules, solutions, emulsions or suspensions), nasally (e.g. in the form of nasal sprays) or rectally (e.g. in the form of suppositories).
  • the administration can also be effected parenterally, such as intramuscularly or intravenously (e.g. in the form of injection solutions).
  • the compounds of formula (I) and their pharmaceutically acceptable salts can be processed with pharmaceutically inert, inorganic or organic adjuvants for the production of tablets, coated tablets, dragees and hard gelatin capsules.
  • Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts etc. can be used, for example, as such adjuvants for tablets, dragees and hard gelatin capsules.
  • Suitable adjuvants for soft gelatin capsules are, for example, vegetable oils, waxes, fats, semi-solid substances and liquid polyols, etc.
  • Suitable adjuvants for the production of solutions and syrups are, for example, water, polyols, saccharose, invert sugar, glucose, etc.
  • Suitable adjuvants for injection solutions are, for example, water, alcohols, polyols, glycerol, vegetable oils, etc.
  • Suitable adjuvants for suppositories are, for example, natural or hardened oils, waxes, fats, semi-solid or liquid polyols, etc.
  • the pharmaceutical preparations can contain preservatives, solubilizers, viscosity-increasing substances, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • the dosage can vary in wide limits and will, of course, be fitted to the individual requirements in each particular case.
  • the pure enantiomers can be obtained by methods described herein or by methods known to those skilled in the art, such as e.g. chiral chromatography or crystallization.
  • Racemic cis-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate (example 1.02; 616 mg, 1.30 mmol) was separated by preparative HPLC using a Reprosil Chiral-NR column as the stationary phase and heptane/ethanol 3:2 as the mobile phase.
  • Step 1 (S)-Di-tert-butyl 6-((3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)-decahydropyrrolo[3,4-d]azepine-2-carbonyl)-6,7-dihydro-1H-imidazo[4,5-c]pyridine-1,5(4H)-dicarboxylate
  • Step 2 (E)-3-[4-(Trifluoro-methoxy)-phenyl]-1-[(3aS,8aR)-2-((S)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-prop-2-en-1-one hydrochloride
  • Step 1 (3aR,6aS)-2-tert-Butyl 5-(3,5-dichlorobenzyl)tetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate
  • Step 2 (3aR,6aS)-3,5-Dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride
  • Step 1 cis-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • Step 2 (1H-Benzotriazol-5-yl)-cis-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone; hydrochloride
  • Step 1 (3aR,6aS)-tert-Butyl 5-(3-(3,5-dichlorophenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 3-(3,5-Dichlorophenyl)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)propan-1-one hydrochloride
  • Step 1 (3aR,5s,6aS)-tert-butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydro-cyclopenta[c]pyrrole-2(1H)-carboxylate
  • Step 2 (3aR,5s,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)octahydrocyclopenta[c]pyrrole-5-carboxamide 2,2,2-trifluoroacetate
  • Trifluoroacetic acid (340 mg, 2.98 mmol) was added at room temperature to a solution of (3aR,5s,6aS)-tert-butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (100 mg, 298 ⁇ mol) in dichloromethane, then after 4 h the reaction mixture was evaporated to produce the title compound, which was used directly in the next step. Light yellow oil, MS: 236.5 (M+H) + .
  • Step 1 (3aR,8aS)-tert-Butyl 6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydro-pyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • Step 2 (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)-phenyl)prop-2-en-1-one hydrochloride
  • Step 1 trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • Step 2 ( ⁇ )-trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate and (+)-trans-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • Step 3 (1H-Benzotriazol-5-yl)-trans-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride enantiomer A
  • Step 1 trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 (+)-(3aR,6aR)-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate and ( ⁇ )-(3aS,6aS)-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 3 (3aR,5r,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Step 1 (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-(4-nitrobenzoyloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Diethyl azodicarboxylate solution (40% in toluene; 168 ⁇ L, 424 ⁇ mol) was added at room temperature to a solution of (3aR,5r,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (intermediate 10; 140 mg, 424 ⁇ mol), 4-nitrobenzoic acid (85.0 mg, 509 ⁇ mol), and triphenylphosphine (111 mg, 424 ⁇ mol) in toluene (10 mL), then after 16 h another portion of triphenylphosphine (33.4 mg, 127 ⁇ mol) and diethyl azodicarboxylate solution (40% in toluene; 50 ⁇ L, 127 ⁇ mol) was added.
  • Step 2 (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Step 1 (3aR,5r, 6aS)-3,5-Dichlorobenzyl 5-(3-hydroxy-4-(methoxycarbonyl)phenoxy)-hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Diethyl azodicarboxylate solution (40% in toluene, 157 ⁇ L, 398 ⁇ mol) was added at room temperature to a solution of (3aR,5s,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (101 mg, 306 ⁇ mol), methyl 2,4-dihydroxybenzoate (68.9 mg, 398 ⁇ mol), and triphenylphosphine (104 mg, 398 ⁇ mol) in toluene (2 mL).
  • Step 2 4-((3aR,5r,6aS)-2-((3,5-Dichlorobenzyloxy)carbonyl)octahydrocyclopenta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid
  • Step 1 cis-tert-Butyl 6-oxohexahydropvrano[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 cis-tert-Butyl 3-(2-hydroxyethyl)-4-(hydroxymethyl)pyrrolidine-1-carboxylate
  • Step 3 cis-tert-Butyl 3-(2-(methylsulfonyloxy)ethyl)-4-((methylsulfonyloxy)methyl)pyrrolidine-1-carboxylate
  • Step 4 cis-tert-Butyl 5-benzylhexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • Step 5 cis-tert-Butyl hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • Step 1 (3R,4R)-tert-Butyl 3,4-bis((methyl sulfonyloxy)methyl)pyrrolidine-1-carboxylate
  • Lithium borohydride solution (2 M in tetrahydrofuran, 1.15 mL, 2.31 mmol) was added dropwise at 0° C. to a solution of methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate (CAS-RN 1188323-28-5; 180 mg, 769 ⁇ mol) in tetrahydrofuran (6 mL), then after 15 min the ice bath was removed and the reaction mixture was heated at reflux for 21 h. Then another portion of lithium borohydride solution (2 M in tetrahydrofuran, 0.77 mL, 1.54 mmol) was added and the reaction mixture was heated at reflux for another 5 h.
  • Step 1 (3aR,6aS)-tert-Butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 (3aR,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxamide 2,2,2-trifluoroacetate
  • Step 1 (3aR,6aS)-tert-Butyl 5-(3-chlorophenethylsulfonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 (3aR,6aS)-2-(3-Chlorophenethylsulfonyl)octahydropyrrolo[3,4-c]pyrrole
  • Step 1 (3aS,6aS)-tert-Butyl 5-(4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3, 4-c]pyrrole-2(1H)-carboxylate
  • Step 2 (6,7-Dihydro-1H-[1,2,3]triazolo[4,5-c]pyridin-5(4H)-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride
  • Step 1 from (3aR,8aS)-tert-butyl 6-((E)-3-(3-(trifluoromethoxy)phenyl)acryloyl)-octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • Step 2 (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one
  • Trifluoroacetic acid (1.1 mL, 15 mmol) was added over 5 min to a solution of (3aR,8aS)-tert-butyl 6-((E)-3-(3-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate (768 mg, 1.49 mmol) in dichloromethane (12 mL) at room temperature, then after 5 h the reaction mixture was poured onto ice water, basified to pH 10 with 2 M aq. sodium hydroxide solution, and extracted with chloroform. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane/methanol 9:1) produced the title compound (526 mg, 95%). Yellow gum, MS: 355.5 (M+H) + .
  • Step 1 (3aR,7aR)-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate
  • Step 1 cis-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate
  • Step 1 (1 SR,3 SR,4RS)-Methyl 4-bromo-3-(phenoxycarbonyloxy)cyclohexanecarboxylate
  • Step 2 (1SR,3 SR,4SR)-Methyl 4-azido-3-(phenoxycarbonyloxy)cyclohexanecarboxylate
  • Step 3 (3aSR,6SR,7aSR)-Methyl 2-oxooctahydrobenzo[d]oxazole-6-carboxylate
  • Step 4 (3aSR,6SR,7aSR)-2-Oxooctahydrobenzo[d]oxazole-6-carboxylic acid
  • Racemic 4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CAS-RN 33062-47-4; 1.10 g, 6.58 mmol) was separated by preparative HPLC using a Chiralpak AD column as the stationary phase and heptane/ethanol 3:2 as the mobile phase. This produced the faster eluting (+)-(R)-enantiomer (452 mg, 41%), followed by the slower eluting ( ⁇ )-(S)-enantiomer (381 mg, 35%).
  • Step 1 (3aR,6aS)-tert-Butyl 5-(2-bromoacetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 (3aR,6aS)-tert-Butyl 5-(2-(4-chloro-2-methylphenoxy)acetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 3 2-(4-Chloro-2-methylphenoxy)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethanone hydrochloride
  • Step 1 (3aR,8aS)-2-tert-Butyl 6-(2-fluoro-4-(trifluoromethoxy)benzyl) hexahydropyrrolo[3,4-d]azepine-2,6(1H,7H)-dicarboxylate
  • Step 2 (3aR,8aS)-2-Fluoro-4-(trifluoromethoxy)benzyl octahydropyrrolo[3,4-d]azepine-6(7H)-carboxylate
  • Step 1 (3aR,8aS)-tert-butyl 6-(2-(5-chloro-2-(trifluoromethyl)phenoxy)acetyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • Step 2 2-(5-Chloro-2-(trifluoromethyl)phenoxy)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)ethanone
  • Step 1 4-Cyano-2-isopropylphenyl trifluoromethanesulfonate
  • Triethylamine (1.22 g, 12.1 mmol) was added dropwise to formic acid (1.36 g, 29.6 mmol) at 0° C. This was added to 4-formyl-3-isopropylbenzonitrile (190 mg, 1.1 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (158 mg, 1.1 mmol). The solution was stirred at room temperature for 3 h, then poured upon ice water, acidified with 4 M aq. hydrochloric acid solution, and extracted with ethyl acetate.
  • a compound of formula (I) can be used in a manner known per se as the active ingredient for the production of tablets of the following composition:
  • a compound of formula (I) can be used in a manner known per se as the active ingredient for the production of capsules of the following composition:

Abstract

The invention provides novel compounds having the general formula (I)
Figure US20170050960A1-20170223-C00001
wherein R1, Y, A, W, R2, m, n, p and q are as described herein, compositions including the compounds and methods of using the compounds.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 14/719,063 filed on May 21, 2015, which is a continuation of International Application No. PCT/EP2013/069679 filed on Sep. 23, 2013, which is entitled to the priority of EP Application No. 12185941.7 filed on Sep. 25, 2012, the disclosures of which are incorporated herein.
  • BACKGROUND OF THE INVENTION
  • Autotaxin (ATX) is a secreted enzyme also called ectonucleotide pyrophosphatase/phosphodiesterase 2 or lysophospholipase D that is important for converting lysophosphatidyl choline (LPC) to the bioactive signaling molecule lysophosphatidic acid (LPA). It has been shown that plasma LPA levels are well correlated with ATX activity and hence ATX is believed to be an important source of extracellular LPA. Early experiments with a prototype ATX inhibitor have shown that such a compound is able to inhibit the LPA synthesizing activity in mouse plasma. Work conducted in the 1970s and early 1980s has demonstrated that LPA can elicit a wide range of cellular responses; including smooth muscle cell contraction, platelet activation, cell proliferation, chemotaxis and others. LPA mediates its effects via signaling to several G protein coupled receptors (GPCRs); the first members were originally denoted Edg (endothelial cell differentiation gene) receptors or ventricular zone gene-1 (vzg-1) but are now called LPA receptors. The prototypic group now consists of LPA1/Edg-2/VZG-1, LPA2/Edg-4, and LPA3/Edg-7. Recently, three additional LPA receptors LPA4/p2y9/GPR23, LPA5/GPR92 and LPA6/p2Y5 have been described that are more closely related to nucleotide-selective purinergic receptors than to the prototypic LPA1-3 receptors. The ATX-LPA signaling axis is involved in a large range of physiological and pathophysiological functions, including, for example, nervous system function, vascular development, cardiovascular physiology, reproduction, immune system function, chronic inflammation, tumor metastasis and progression, organ fibrosis as well as obesity and/or other metabolic diseases such as diabetes mellitus. Therefore, increased activity of ATX and/or increased levels of LPA, altered LPA receptor expression and altered responses to LPA may contribute to the initiation, progression and/or outcome of a number of different pathophysiological conditions related to the ATX/LPA axis.
  • SUMMARY OF THE INVENTION
  • The present invention relates to organic compounds useful for therapy or prophylaxis in a mammal, and in particular to autotaxin (ATX) inhibitors which are inhibitors of lysophosphatidic acid (LPA) production and thus modulators of LPA levels and associated signaling, for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • The present invention provides novel compounds of formula (I)
  • Figure US20170050960A1-20170223-C00002
      • wherein
      • R1 is alkyl, haloalkyl, substituted cycloalkyl, substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted phenylalkynyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, naphtyl, substituted naphthyl, quinolyl, substituted quinolinyl, isoquinolyl, substituted isoquinolinyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl or substituted benzofuran-2-yl wherein substituted cycloalkyl, substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenylalkynyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl and substituted benzofuran-2-yl are substituted with R8, R9 and R10;
      • Y is —OC(O)—, —NR7C(O)—, —C(O)—, —S(O)2—,
  • Figure US20170050960A1-20170223-C00003
      • A is —N— or CR5—;
      • W is —O—, —S—, —NR6—, —C(O)—, —S(O)2—, —C(O)—NR6— or —CR3R4—;
      • R3 and R4 are independently selected from H, halogen, alkyl and cycloalkyl;
      • R5, R6 and R7 are independently selected from H, alkyl and cycloalkyl;
      • R8, R9 and R10 are independently selected from H, alkyl, hydroxyalkyl, haloalkyl, hydroxyhaloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkoxy, cycloalkoxy, cycloalkoxyalkyl, cycloalkylalkoxyalkyl, alkoxy, alkoxyalkyl, haloalkoxy, alkoxyhaloalkyl, alkoxyalkoxy, alkoxyalkoxyalkyl, phenyl, substituted phenyl, pyridinyl, substituted pyridinyl, pyrrolyl, substituted pyrrolyl, pyrrolydinyl, substituted pyrrolydinyl, tetrahydrofuranyl, substituted tetrahydrofuranyl, halogen, hydroxy, cyano, alkylsulfanyl, haloalkylsulfanyl, cycloalkylsulfanyl, alkylsulfinyl, haloalkylsulfinyl, cycloalkylsulfinyl, alkylcarbonyl, haloalkylcarbonyl, cycloalkylcarbonyl, alkylsulfonyl, haloalkylsulfonyl, cycloalkylsulfonyl, substituted aminosulfonyl, substituted amino and substituted aminoalkyl, wherein substituted aminosulfonyl, substituted amino and substituted aminoalkyl are substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl, and wherein substituted phenyl, substituted pyrrolyl, substituted pyrrolydinyl, substituted tetrahydrofuranyl, and substituted pyridinyl are substituted with one to three substituents independently selected from alkyl, halogen, haloalkyl, alkoxy and haloalkoxy;
      • m, n, p and q are independently selected from 1 or 2;
  • Figure US20170050960A1-20170223-C00004
    Figure US20170050960A1-20170223-C00005
    Figure US20170050960A1-20170223-C00006
    Figure US20170050960A1-20170223-C00007
      • R11 is H, alkyl, haloalkyl or cycloalkyl;
      • R12 is alkyl, halogen, haloalkyl and alkoxy;
      • R2 is selected from the ring systems B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, X, Z, AA, AB, AC, AD, AE, AF, AG, AH, AI and AJ;
      • and pharmaceutically acceptable salts.
  • In accordance with the invention, the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of diseases, disorders or conditions that are associated with the activity of autotaxin and/or the biological activity of lysophosphatidic acid (LPA).
  • The compounds of formula (I) or their pharmaceutically acceptable salts and esters herein inhibit autotaxin activity and therefore inhibit LPA production and modulate LPA levels and associated signaling. Autotaxin inhibitors described herein are useful as agents for the treatment or prevention of diseases or conditions in which ATX activity and/or LPA signaling participates, is involved in the etiology or pathology of the disease, or is otherwise associated with at least one symptom of the disease. The ATX-LPA axis has been implicated for example in angiogenesis, chronic inflammation, autoimmune diseases, fibrotic diseases, cancer and tumor metastasis and progression, ocular conditions, metabolic conditions such as obesity and/or diabetes mellitus, conditions such as cholestatic or other forms of chronic pruritus as well as acute and chronic organ transplant rejection.
  • Objects of the present invention are the compounds of formula (I) and their aforementioned salts and esters and their use as therapeutically active substances, a process for the manufacture of the said compounds, intermediates, pharmaceutical compositions, medicaments containing the said compounds, their pharmaceutically acceptable salts or esters, the use of the said compounds, salts or esters for the treatment or prophylaxis of disorders or conditions that are associated with the activity of ATX and/or the biological activity of lysophosphatidic acid (LPA), particularly in the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and—chronic organ transplant rej ection, and the use of the said compounds, salts or esters for the production of medicaments for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The term “alkenyl” denotes a monovalent linear or branched hydrocarbon group of 2 to 7 carbon atoms with at least one double bond. In particular embodiments, alkenyl has 2 to 4 carbon atoms with at least one double bond. Examples of alkenyl include ethenyl, propenyl, prop-2-enyl, isopropenyl, n-butenyl and iso-butenyl. Particular alkenyl group is ethenyl.
  • The term “alkoxy” denotes a group of the formula —O—R′, wherein R′ is an alkyl group. Examples of alkoxy group include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy. Particular alkoxy group include methoxy.
  • The term “alkoxyalkoxy” denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by another alkoxy group. Examples of alkoxyalkoxy group include methoxymethoxy, ethoxymethoxy, methoxyethoxy, ethoxyethoxy, methoxypropoxy and ethoxypropoxy. Particular alkoxyalkoxy groups include methoxymethoxy and methoxyethoxy.
  • The term “alkoxyalkoxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an alkoxyalkoxy group. Examples of alkoxyalkoxyalkyl group include methoxymethoxymethyl, ethoxymethoxymethyl, methoxyethoxymethyl, ethoxyethoxymethyl, methoxypropoxymethyl, ethoxypropoxymethyl, methoxymethoxyethyl, ethoxymethoxyethyl, methoxyethoxyethyl, ethoxyethoxyethyl, methoxypropoxyethyl and ethoxypropoxyethyl.
  • The term “alkoxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an alkoxy group. Exemplary alkoxyalkyl groups include methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methoxypropyl, ethoxypropyl and isopropoxymethyl. Particular alkoxyalkyl group include methoxymethyl, methoxyethyl and isopropoxymethyl.
  • The term “alkoxyhaloalkyl” denotes a haloalkyl group wherein at least one of the hydrogen atoms of the haloalkyl group has been replaced by an alkoxy group. Exemplary alkoxyhaloalkyl groups include methoxytrifluoroethyl, ethoxytrifluoroethyl, methoxytrifluoropropyl, ethoxytrifluoropropyl and isopropoxytrifluoroethyl. Particular alkoxyhaloalkyl group include methoxytrifluoroethyl.
  • The term “alkyl” denotes a monovalent linear or branched saturated hydrocarbon group of 1 to 12 carbon atoms. In particular embodiments, alkyl has 1 to 7 carbon atoms, and in more particular embodiments 1 to 4 carbon atoms. Examples of alkyl include methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl and sec-butyl, pentyl. Particular alkyl groups include methyl, ethyl, propyl and isopropyl. More particular alkyl groups are methyl and isoropyl.
  • The term “alkylcarbonyl” denotes a group of the formula —C(O)—R′, wherein R′ is an alkyl group. Examples of alkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is methyl or ethyl. Particular alkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is methyl.
  • The term “alkylsulfanyl” denotes a group of the formula —S—R′, wherein R′ is an alkyl group. Examples of alkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl. Particular alkylsulfanyl groups include group of the formula —S—R′, wherein R′ is methyl.
  • The term “alkylsulfinyl” denotes a group of the formula —S(O)—R′, wherein R′ is an alkyl group. Examples of alkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl. Particular alkylsulfinyl groups include group of the formula —S(O)—R′, wherein R′ is methyl.
  • The term “alkylsulfonyl” denotes a group of the formula —S(O)2—R′, wherein R′ is an alkyl group. Examples of alkylsulfonyl groups include groups of the formula —S(O)2—R′, wherein R′ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl. Particular alkylsulfonyl groups include group of the formula —S(O)2—R′, wherein R′ is methyl.
  • The term “alkynyl” denotes a monovalent linear or branched saturated hydrocarbon group of 2 to 7 carbon atoms comprising one, two or three triple bonds. In particular embodiments alkynyl has from 2 to 4 carbon atoms comprising one or two triple bonds. Examples of alkynyl include ethynyl, propynyl, prop-2-ynyl, isopropynyl and n-butynyl.
  • The term “amino” denotes a —NH2 group.
  • The term “aminoalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by an aminogroup. Examples of aminoalkyl include aminomethyl, aminoethyl, amino-1-methyl-ethyl, aminopropyl, aminomethylpropyl and aminopropyl. Particular examples are aminomethyl and haminoethyl.
  • The term “aminosulfonyl” denotes a —S(O)2—NH2 group.
  • The term “carbonyl” denotes a —C(O)— group.
  • The term “cyano” denotes a —C≡N group.
  • The term “cycloalkoxy” denotes a group of the formula —O—R′, wherein R′ is a cycloalkyl group. Examples of cycloalkoxy group include cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy and cyclooctyloxy. Particular cycloalkoxy group is cyclopropoxy.
  • The term “cycloalkoxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a cycloalkoxy group. Examples of cycloalkoxyalkyl groups include cyclopropoxymethyl, cyclopropoxyethyl, cyclobutoxymethyl, cyclobutoxyethyl, cyclopentyloxymethyl, cyclopentyloxyethyl, cyclohexyloxymethyl, cyclohexyloxyethyl, cycloheptyloxymethyl, cycloheptyloxyethyl, cyclooctyloxymethyl and cyclooctyloxyethyl.
  • The term “cycloalkyl” denotes a monovalent saturated monocyclic or bicyclic hydrocarbon group of 3 to 10 ring carbon atoms. In particular embodiments, cycloalkyl denotes a monovalent saturated monocyclic hydrocarbon group of 3 to 8 ring carbon atoms. Bicyclic means a ring system consisting of two saturated carbocycles having two carbon atoms in common. Examples for monocyclic cycloalkyl are cyclopropyl, cyclobutanyl, cyclopentyl, cyclohexyl or cycloheptyl. Examples for bicyclic cycloalkyl are bicyclo[2.2.1]heptanyl or bicyclo[2.2.2]octanyl. Particular monocyclic cycloalkyl groups are cyclopropyl, cyclobutanyl, cyclopentyl and cyclohexyl. More particular monocyclic cycloalkyl group is cyclopropyl.
  • The term “cycloalkylalkoxy” denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group is replaced by a cycloalkyl group. Examples of cycloalkylalkoxy include cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, cycloheptylmethoxy and cyclooctylmethoxy.
  • The term “cycloalkylalkoxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a cycloalkylalkoxy group. Examples of cycloalkylalkoxyalkyl include cyclopropylmethoxymethyl, cyclopropylmethoxyethyl, cyclobutylmethoxymethyl, cyclobutylmethoxyethyl, cyclopentylmethoxyethyl, cyclopentylmethoxyethyl, cyclohexylmethoxymethyl, cyclohexylmethoxyethyl, cycloheptylmethoxymethyl, cycloheptylmethoxyethyl, cyclooctylmethoxymethyl and cyclooctylmethoxyethyl.
  • The term “cycloalkylalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a cycloalkyl group. Examples of cycloalkylalkyl include cyclopropylmethyl, cyclopropylethyl, cyclopropylbutyl, cyclobutylpropyl, 2-cyclopropylbutyl, cyclopentylbutyl, cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[4.1.0]heptanylethyl, bicyclo[2.2.2]octanylmethyl, bicyclo[2.2.2]octanylethyl, adamentanylmethyl and adamantanylethyl. Particular examples of cycloalkylalkyl are cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[4.1.0]heptanylethyl, bicyclo[2.2.2]octanylmethyl, bicyclo[2.2.2]octanylethyl, adamentanylmethyl and adamantanylethyl. Further particular examples cycloalkylalkyl are cyclohexylmethyl, cyclohexylethyl, bicyclo[4.1.0]heptanylmethyl, bicyclo[2.2.2]octanylmethyl, adamentanylmethyl and adamantanylethyl.
  • The term “cycloalkylcarbonyl” of the formula —C(O)—R′, wherein R′ is a cycloalkyl group. Examples of cycloalkylcarbonyl groups include groups of the formula —C(O)—R′, wherein R′ is cyclopropyl.
  • The term “cycloalkylsulfanyl” denotes a group of the formula —S—R′, wherein R′ is a cycloalkyl group. Examples of cycloalkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is cyclopropyl.
  • The term “cycloalkylsulfinyl” denotes a group of the formula —S(O)—R′, wherein R′ is a cycloalkyl group. Examples of cycloalkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is cyclopropyl.
  • The term “cycloalkylsulfonyl” denotes a group of the formula —S(O)2—R′, wherein R′ is a cycloalkyl group. Examples of cycloalkylsulfonyl groups include groups of the formula —S(O)2—R′, wherein R′ is cyclopropyl.
  • The term “haloalkoxy” denotes an alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by the same or different halogen atoms. The term “perhaloalkoxy” denotes an alkoxy group where all hydrogen atoms of the alkoxy group have been replaced by the same or different halogen atoms. Examples of haloalkoxy include fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, trifluoromethylethoxy, trifluorodimethylethoxy and pentafluoroethoxy. Particular haloalkoxy group is trifluoromethoxy.
  • The term “haloalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by the same or different halogen atoms. The term “perhaloalkyl” denotes an alkyl group where all hydrogen atoms of the alkyl group have been replaced by the same or different halogen atoms. Examples of haloalkyl include fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, trifluoromethylethyl and pentafluoroethyl. Particular haloalkyl group is trifluoromethyl.
  • The term “haloalkylsulfanyl” denotes a group of the formula —S—R′, wherein R′ is a haloalkyl group. Examples of haloalkylsulfanyl groups include groups of the formula —S—R′, wherein R′ is trifluoromethyl.
  • The term “haloalkylsulfinyl” denotes a group of the formula —S(O)—R′, wherein R′ is a haloalkyl group. Examples of haloalkylsulfinyl groups include groups of the formula —S(O)—R′, wherein R′ is trifluoromethyl.
  • The term “haloalkylsulfonyl” denotes a group of the formula —S(O)2—R′, wherein R′ is a haloalkyl group. Examples of haloalkylsulfonyl groups include groups of the formula —S(O)2—R′, wherein R′ is trifluoromethyl.
  • The term “halogen” and “halo” are used interchangeably herein and denote fluoro, chloro, bromo, or iodo. Particular halogens are chloro, fluoro and bromo. More particular halogens are chloro and fluoro.
  • The term “hydroxy” denotes an —OH group.
  • The term “hydroxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a hydroxy group. Examples of hydroxyalkyl include hydroxymethyl, hydroxyethyl, hydroxy-1-methyl-ethyl, hydroxypropyl, hydroxymethylpropyl and dihydroxypropyl. Particular examples are hydroxymethyl and hydroxyethyl.
  • The term “hydroxyhaloalkyl” denotes a haloalkyl group wherein at least one of the hydrogen atoms of the haloalkyl group has been replaced by an hydroxy group. Exemplary hydroxyhaloalkyl groups include hydroxytrifluoroethyl and hydroxytrifluoropropyl. Particular hydroxyhaloalkyl groups include hydroxytrifluoroethyl.
  • The term “indanyloxy” denotes a group of the formula —O—R′, wherein R′ is an indanyl.
  • The term “indanyloxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a indanyloxy group. Exemplary indanyloxyalkyl groups include indanyloxymethyl, indanyloxyethyl and indanyloxypropyl. Particular indanyloxyalkyl group is indanyloxymethyl.
  • The term “phenoxy” denotes a group of the formula —O—R′, wherein R′ is a phenyl.
  • The term “phenoxyalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced by a phenoxy group. Exemplary phenoxyalkyl groups include phenoxymethyl, phenoxyethyl and phenoxypropyl. Particular phenoxyalkyl group is phenoxymethyl.
  • The term “phenylalkenyl” denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a phenyl. Particular phenylalkenyl group is phenylethenyl.
  • The term “phenylalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a phenyl. Particular phenylalkyl groups are benzyl, phenethyl and phenylpropyl. More particular phenylalkyl groups are benzyl and phenethyl. Further particular phenylalkyl group is benzyl.
  • The term “phenylalkynyl” denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a phenyl. Particular phenylalkynyl group is phenylethynyl.
  • The term “phenylcyloalkyl” denotes a cycloalkyl group wherein at least one of the hydrogen atoms of the cycloalkyl group has been replaced a phenyl. Particular phenylcycloalkyl group is phenylcyclopropyl.
  • The term “pyridinylalkenyl” denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a pyridinyl. Particular pyridinylalkenyl group is pyridinylethenyl.
  • The term “pyridinylalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a pyridinyl. Particular pyridinylalkyl groups are pyridinylmethyl, pyridinylethyl and pyridinylpropyl. More particular pyridinylalkyl group is pyridinylethyl.
  • The term “pyridinylalkynyl” denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a pyridinyl. Particular pyridinylalkynyl group is pyridinylethynyl. The term “thiophenylalkenyl” denotes an alkenyl group wherein at least one of the hydrogen atoms of the alkenyl group has been replaced a thiophenyl. Particular thiophenylalkenyl group is thiophenylethenyl.
  • The term “thiophenylalkyl” denotes an alkyl group wherein at least one of the hydrogen atoms of the alkyl group has been replaced a thiophenyl. Particular thiophenylalkyl groups are thiophenylmethyl, thiophenylethyl and thiophenylpropyl. More particular thiophenylalkyl group is thiophenylmethyl.
  • The term “thiophenylalkynyl” denotes an alkynyl group wherein at least one of the hydrogen atoms of the alkynyl group has been replaced a thiophenyl. Particular thiophenylalkynyl group is thiophenylethynyl.
  • The term “pharmaceutically acceptable salts” refers to those salts which retain the biological effectiveness and properties of the free bases or free acids, which are not biologically or otherwise undesirable. The salts are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, in particular hydrochloric acid, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, N-acetylcystein and the like. In addition, these salts may be prepared by addition of an inorganic base or an organic base to the free acid. Salts derived from an inorganic base include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium salts and the like. Salts derived from organic bases include, but are not limited to salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, lysine, arginine, N-ethylpiperidine, piperidine, polyimine resins and the like. Particular pharmaceutically acceptable salts of compounds of formula (I) are the hydrochloride salts, methanesulfonic acid salts and citric acid salts.
  • “Pharmaceutically acceptable esters” means that compounds of general formula (I) may be derivatised at functional groups to provide derivatives which are capable of conversion back to the parent compounds in vivo. Examples of such compounds include physiologically acceptable and metabolically labile ester derivatives, such as methoxymethyl esters, methylthiomethyl esters and pivaloyloxymethyl esters. Additionally, any physiologically acceptable equivalents of the compounds of general formula (I), similar to the metabolically labile esters, which are capable of producing the parent compounds of general formula (I) in vivo, are within the scope of this invention.
  • The term “protecting group” (PG) denotes a group which selectively blocks a reactive site in a multifunctional compound such that a chemical reaction can be carried out selectively at another unprotected reactive site in the meaning conventionally associated with it in synthetic chemistry. Protecting groups can be removed at the appropriate point. Exemplary protecting groups are amino-protecting groups, carboxy-protecting groups or hydroxy-protecting groups.
  • Particular protecting groups are the tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), fluorenylmethoxycarbonyl (Fmoc) and benzyl (Bn) groups. Further particular protecting groups are the tert-butoxycarbonyl (Boc) and the fluorenylmethoxycarbonyl (Fmoc) groups. More particular protecting group is the tert-butoxycarbonyl (Boc) group.
  • The abbreviation uM means microMolar and is equivalent to the symbol M.
  • The abbreviation uL means microliter and is equivalent to the symbol μL.
  • The abbreviation ug means microgram and is equivalent to the symbol μg.
  • The compounds of formula (I) can contain several asymmetric centers and can be present in the form of optically pure enantiomers, mixtures of enantiomers such as, for example, racemates, optically pure diastereoisomers, mixtures of diastereoisomers, diastereoisomeric racemates or mixtures of diastereoisomeric racemates.
  • According to the Cahn-Ingold-Prelog convention the asymmetric carbon atom can be of the “R” or “S” configuration.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein and pharmaceutically acceptable salts or esters thereof, in particular compounds according to formula (I) as described herein and pharmaceutically acceptable salts thereof, more particularly compounds according to formula (I) as described herein.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein
      • R1 is alkyl, haloalkyl, substituted cycloalkyl, substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted phenylalkynyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl or substituted benzofuran-2-yl wherein substituted cycloalkyl, substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenylalkynyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl and substituted benzofuran-2-yl are substituted with R8, R9 and R10;
      • Y is —OC(O)—, —NR7C(O)—, —C(O)—, —S(O)2—,
  • Figure US20170050960A1-20170223-C00008
      • A is —N— or CR5—;
      • W is —O—, —S—, —NR6—, —C(O)—, —S(O)2—, —C(O)—NR6— or —CR3R4—;
      • R3 and R4 are independently selected from H, halogen, alkyl and cycloalkyl;
      • R5, R6 and R7 are independently selected from H, alkyl and cycloalkyl;
      • R8, R9 and R10 are independently selected from H, alkyl, hydroxyalkyl, haloalkyl, hydroxyhaloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkoxy, cycloalkoxy, cycloalkoxyalkyl, cycloalkylalkoxyalkyl, alkoxy, alkoxyalkyl, haloalkoxy, alkoxyhaloalkyl, alkoxyalkoxy, alkoxyalkoxyalkyl, phenyl, substituted phenyl, pyridinyl, substituted pyridinyl, halogen, hydroxy, cyano, alkylsulfanyl, haloalkylsulfanyl, cycloalkylsulfanyl, alkylsulfinyl, haloalkylsulfinyl, cycloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, cycloalkylsulfonyl, substituted aminosulfonyl, substituted amino and substituted aminoalkyl, wherein substituted aminosulfonyl, substituted amino and substituted aminoalkyl are substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl, and wherein substituted phenyl and substituted pyridinyl are optionally substituted with one to three substituents independently selected from alkyl, halogen, haloalkyl, alkoxy and haloalkoxy;
      • m, n, p and q are independently selected from 1 or 2;
  • Figure US20170050960A1-20170223-C00009
    Figure US20170050960A1-20170223-C00010
    Figure US20170050960A1-20170223-C00011
    Figure US20170050960A1-20170223-C00012
      • R11 is H, alkyl, haloalkyl or cycloalkyl;
      • R2 is selected from the ring systems B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, X, Z, AA, AB, AC, AD and AE;
      • and pharmaceutically acceptable salts.
  • A further embodiment of the present invention are compounds according to formula (I) as described herein, wherein R1 is substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, naphtyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl, or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl and substituted 1H-indol-2-yl are substituted with R8, R9 and R10.
  • Another further embodiment of the present invention are compounds according to formula (I) as described herein, wherein R1 is substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, and substituted 1H-indol-2-yl are substituted with R8, R9 and R10.
  • A particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R1 is substituted phenylalkyl or substituted phenylalkenyl, wherein substituted phenylalkyl and substituted phenylalkenyl are substituted with R8, R9 and R10.
  • In a further embodiment of the present invention are compounds according to formula (I) as described herein, wherein R1 is phenylalkyl substituted with R8, R9 and R10.
  • The present invention also relates to compounds according to formula (I) as described herein, wherein Y is —OC(O)—, —C(O)—, —S(O)2— or
  • Figure US20170050960A1-20170223-C00013
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —OC(O)— or —C(O)—.
  • Another further embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —OC(O)— and of formula (In).
  • Figure US20170050960A1-20170223-C00014
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein Y is —C(O)—.
  • A more particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein A is —N—.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —O—, —NR6—, —C(O)—, —S(O)2—, —C(O)—NR6— or —CR3R4—.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —C(O)—, —C(O)—NR6— or —CR3R4—.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein W is —C(O)—.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is selected from the ring systems B, C, D, E, G, H, M, O, P, R, S, T, U, V, X, Z, AA, AB, AC, AD, AE, AF, AG, AH and AI.
  • Another further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is selected from the ring systems B, C, D, E, G, H, M, O, P, R, S, T, U, V, X, Z, AA, AB, AC, AD and AE.
  • Also a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is selected from the ring systems B, D, H, M, O, R and AJ.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is selected from the ring systems B, D, H, O and R.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is selected from the ring systems B and D.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R2 is the ring system D.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R3 and R4 are H.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R5 is H.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R6 is H or alkyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl.
  • Also a further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, haloalkoxy, halogen and alkylsulfonyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8 is H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, or aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8 is H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl or aminosulfonyl substituted on the nitrogen atom with two alkyl.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8 is haloalkyl, haloalkoxy, halogen or alkylsulfonyl.
  • A particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8 is haloalkoxy or halogen.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein, wherein R8 is halogen.
  • The present invention also relates to compounds according to formula (I) as described herein, wherein R9 is H, alkyl, haloalkyl, cycloalkyl, cycloalkoxy, alkoxy, haloalkoxy, alkoxyalkoxy, cyano or halogen.
  • The present invention also relates to compounds according to formula (I) as described herein, wherein R9 is H, alkyl, haloalkyl, alkoxy or halogen.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein R9 is H, alkyl or halogen.
  • The present invention also relates to compounds according to formula (I) as described herein, wherein R8 and R9 are halogen.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein, wherein R9 is H, alkyl, haloalkyl, cycloalkyl, cycloalkoxy, alkoxy, haloalkoxy, alkoxyalkoxy, cyano or halogen.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein, wherein R10 is H or alkyl.
  • Another embodiment of the present invention are compounds according to formula (I) as described herein, wherein R10 is H.
  • Also an embodiment of the present invention are compounds according to formula (I) as described herein, wherein R11 is haloalkyl.
  • A particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein m is 1.
  • A further particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein n is 1.
  • A more particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein m and n are 1.
  • Also a particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein p and q are 1.
  • The present invention also relates to compounds according to formula (I) as described herein, wherein m, n, p and q are 1.
  • A furthermore particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein
      • R1 is substituted phenylalkyl or substituted phenylalkenyl, wherein substituted phenylalkyl and substituted phenylalkenyl are substituted with R8, R9 and R10;
      • Y is —OC(O)— or —C(O)—;
      • A is —N—;
      • W is —C(O)—;
      • R8 is haloalkyl, haloalkoxy, halogen or alkylsulfonyl;
      • R9 is H, alkyl or halogen;
      • R10 is H or alkyl;
      • m and n are 1;
      • p and q are independently selected from 1 or 2;
      • R2 is selected from the ring systems B, D, H, M, O, R and AJ;
      • R12 is halogen
      • and pharmaceutically acceptable salts.
  • Also a furthermore particular embodiment of the present invention are compounds according to formula (I) as described herein, wherein
      • R1 is substituted phenylalkyl or substituted phenylalkenyl, wherein substituted phenylalkyl and substituted phenylalkenyl are substituted with R8, R9 and R10;
      • Y is —OC(O)— or —C(O)—;
      • A is —N—;
      • W is —C(O)—;
      • R8 is haloalkyl, haloalkoxy, halogen or alkylsulfonyl;
      • R9 is H, alkyl or halogen;
      • R10 is H or alkyl;
      • m and n are 1;
      • p and q are independently selected from 1 or 2;
      • R2 is selected from the ring systems B and D;
      • and pharmaceutically acceptable salts.
  • Particular examples of compounds of formula (I) as described herein are selected from
    • (E)-1-[(3aS,8aR)-2-(4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • 1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(3,5-dichlorophenyl)propan-1-one;
    • 6-((3aR,6aS)-5-(3-(3,5-dichlorophenyl)propanoyl)octahydropyrrolo[3,4-c]pyrrole-2-carbonyl)benzo[d]oxazol-2(3H)-one;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(9H-pyrido[3,4-b]indole-3-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(1H-indole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(9H-carbazole-3-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(1H-indazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(1H-benzo[d]imidazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • cis-3, 5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • (3aR,8aS)-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepine-6(7H)-carboxylate;
    • (1H-benzotriazol-5-yl)-{(3aS,6aR)-5-[2-(3-chloro-phenyl)-ethanesulfonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-methanone;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-chlorophenyl)-2,2-dimethylpropan-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (3aSR,6SR,7aSR)-6-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-hexahydro-benzooxazol-2-one;
    • (E)-1-[(3aS,8aR)-2-(benzo[c][1,2,5]oxadiazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2-methyl-4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one;
    • (E)-1-[(3aS,8aR)-2-((S)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one
    • (E)-1-[(3aS,8aR)-2-((R)-4, 5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one (E)-1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(2-isopropyl-phenyl)-prop-2-ene-1-one;
    • trans-3,5-dichlorobenzyl 2-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • 6-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-3H-benzooxazol-2-one;
    • (3aR,5s,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
    • (3aR,5r,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
    • (3aS,6aS)-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-2-carboxylic acid 3-methanesulfonyl-5-trifluoromethyl-benzyl ester;
    • (3aR,6aR)-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 3-methanesulfonyl-5-trifluoromethyl-benzyl ester;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-methanesulfonyl-5-trifluoromethyl-benzyl ester;
    • cis-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate;
    • (3aS,7aR)-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • trans-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate;
    • (3aR,8aS)-3,5-dichlorobenzyl 6-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 1-(3-chloro-phenyl)-cyclopropyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid bicyclo[4.1.0]hept-7-ylmethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid adamantan-2-ylmethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 1-fluoro-cyclohexylmethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 2-adamantan-2-yl-ethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 2-adamantan-1-yl-ethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid adamantan-1-ylmethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid cyclohexylmethyl ester;
    • cis-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-(2,2,2-trifluoro-1-methoxy-ethyl)-benzyl ester;
    • cis-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-(2,2,2-trifluoro-1-hydroxy-ethyl)-benzyl ester;
    • (3aR,6aS)-2-cyclohexylethyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-fluoro-5-trifluoromethoxy-benzyl ester;
    • (3aR,6aS)-3-chloro-5-cyanobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-trifluoromethoxy-benzyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-fluoro-5-trifluoromethyl-benzyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxyli acid 3-chloro-5-trifluoromethoxy-benzyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxyli acid 4-fluoro-3-trifluoromethoxy-benzyl ester;
    • (3aR,6aS)-3-cyano-5-fluorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3-chloro-5-methoxybenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid (1S,4R)-3-methyl-bicyclo[2.2.1]hept-2-ylmethyl ester;
    • (3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid (1R,4S)-1-bicyclo[2.2.1]hept-2-ylmethyl ester;
    • (3aR,5 S,6aS)-5-[(3H-[1,2,3]triazol-4-ylmethyl)-carbamoyl]-hexahydro-cyclopenta[c]pyrrole-2-carboxylic acid 3,5-dichloro-benzyl ester;
    • (3aS,6aS)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aR)-5-[(1H-[1,2,3]triazol-4-ylmethyl)-carbamoyl]-hexahydro-pyrrolo[3,4-c]pyrrole
    • 2-carboxylic acid 3,5-dichloro-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aR,5r,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylamino)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-((1H-benzo[d]imidazol-5-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • 1-((3aR,6aS)-5-((1H-benzo[d][1,2,3]triazol-5-yl)methyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(3,5-dichlorophenyl)propan-1-one;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-((1H-indazol-5-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-((2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • 6-(((3aR,6aS)-5-(3-(3,5-dichlorophenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methyl)benzo[d]oxazol-2(3H)-one;
    • 4-{(E)-3-[(3aS,8aR)-2-(1H-benzotriazol-5-ylmethyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-oxo-propenyl}-benzonitrile;
    • (E)-1-[(3aS,8aR)-2-(1H-benzotriazol-5-ylmethyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylsulfonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (3aR,6aS)-3,5-dichlorobenzyl 5-(4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
    • (E)-1-[(3aS,8aR)-2-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aS,8aR)-2-(1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • cis-5-((3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)decahydropyrrolo[3,4-d]azepine-2-carbonyl)hexahydrooxazolo[5,4-c]pyridin-2(1H)-one;
    • 6-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-5,6,7,8-tetrahydro-1H-[1,6]naphthyridin-2-one;
    • (3aR,7aR)-5-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one;
    • (E)-1-[(3aS,8aR)-2-(7,8-Dihydro-5H-[1,6]naphthyridine-6-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-3-(4-trifluoromethoxy-phenyl)-1-[(3aS,8aR)-2-(2-trifluoromethyl-5,6-dihydro-8H-[1,2,4]triazolo[1,5-a]pyrazine-7-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-prop-2-ene-1-one;
    • (3aS,8aR)-6-[(E)-3-(3-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid (1H-[1,2,3]triazol-4-ylmethyl)-amide;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • (3aS,6aR)-5-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid (1H-[1,2,3]triazol-4-ylmethyl)-amide;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • (3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid (4H-[1,2,4]triazol-3-ylmethyl)-amide;
    • (E)-1-[(3aS,8aR)-2-(6,7-dihydro-4H-[1,2,3]triazolo[1,5-a]pyrazine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aS,8aR)-2-(1,4,6,7-tetrahydro-imidazo[4,5-c]pyridine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • (3aS,8aR)-6-[3-(3-chloro-phenyl)-2,2-dimethyl-propionyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid (3H-[1,2,3]triazol-4-ylmethyl)-amide;
    • (3aR,8aS)—N-(2-(1H-1,2,3-triazol-5-yl)ethyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • (3aR,7aS)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 3,5-dichloro-benzyl ester;
    • (3aS,7aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 3,5-dichloro-benzyl ester;
    • (+)-trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • (−)-trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • (−)-trans-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate;
    • (+)-trans-3,5-dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate;
    • (E)-1-[trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(3,5-dichloro-phenyl)-prop-2-en-1-one;
    • (1H-benzotriazol-5-yl)-{trans-2-[5-(4-chloro-phenyl)-[1,3,4]oxadiazol-2-yl]-octahydro-pyrrolo[3,4-c]pyridin-5-yl}-methanone;
    • (E)-1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (1H-benzotriazol-5-yl)-[(3aR,6aS)-5-(5-chloro-1H-indole-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • (E)-1-[(3aR,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-fluoro-5-trifluoromethyl-phenyl)-prop-2-ene-1-one;
    • 1-[(3aR,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-fluoro-5-trifluoromethyl-phenyl)-propan-1-one;
    • (1H-benzotriazol-5-yl)-[(3aR,6aS)-5-(6-chloro-1H-indole-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethyl sulfonyl)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-chlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-p-tolylprop-2-en-1-one;
    • 4-((E)-3-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-oxoprop-1-enyl)-N,N-dimethylbenzenesulfonamide;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-methoxyphenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-6-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 4-((E)-3-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-oxoprop-1-enyl)benzonitrile;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)propan-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-fluorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-phenylprop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(pyridin-2-yl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(pyridin-3-yl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-chlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-6-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-2(1H)-yl)-3-(4-chlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-6-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-2(1H)-yl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(difluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 4-((E)-3-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-oxoprop-1-enyl)benzonitrile;
    • (E)-1-((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (−)-(E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (+)-(E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3,5-dichlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(pyridin-4-yl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2,4-difluorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2,4-dichlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3,4-dichlorophenyl)prop-2-en-1-one;
    • (E)-1-[(3aS,7aS)-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(4-difluoromethoxy-phenyl)-prop-2-ene-1-one;
    • 4-{(E)-3-[(3aS,7aS)-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-oxo-propenyl}-benzonitrile;
    • 4-((E)-3-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-oxoprop-1-enyl)-3-fluorobenzonitrile;
    • 4-((E)-3-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-oxoprop-1-enyl)-3-fluorobenzonitrile;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(difluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-[cis-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • 3-((E)-3-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-oxoprop-1-enyl)benzonitrile;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2-fluoro-4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(2-fluoro-4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-chloro-2-fluorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(3,5-dichlorophenyl)prop-2-en-1-one;
    • (E)-1-((3aR,6aS)-5-(4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • (E)-1-[(3aS,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-chloro-5-methanesulfonyl-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3,5-dimethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-chloro-5-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-chloro-5-methoxy-phenyl)-prop-2-ene-1-one;
    • 3-{(E)-3-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-oxo-propenyl}-5-chloro-benzonitrile;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-methoxy-5-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-ene-1-one;
    • 1-[(3aR,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • (3aR,7aR)-5-{(3aR,6aR)-5-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one;
    • (3aR,7aR)-5-{(3aR,6aR)-5-[3-(4-trifluoromethoxy-phenyl)-propionyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-phenyl-prop-2-ene-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-phenyl-propan-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethyl-phenyl)-prop-2-ene-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbony)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethyl-phenyl)-propan-1-one;
    • (3aR,6aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-5-(3-(4-(trifluoromethoxy)phenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxamide;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acryloyl)-N-methyloctahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(6-trifluoromethyl-pyridin-3-yl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-trifluoromethoxy-phenoxy)-ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-isopropyl-5-methyl-phenoxy)-ethanone;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-biphenyl-4-yl-propan-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-fluoro-2-(trifluoromethyl)phenyl)prop-2-en-1-one;
    • 1-[(3aS,6aR)-5-(1H-Benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-isopropyl-5-methyl-phenoxy)-ethanone;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(methyl sulfonyl)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethylthio)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-(3-(trifluoromethoxy)phenoxy)ethanone;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • (E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(3-trifluoromethoxy-phenyl)-prop-2-en-1-one;
    • (E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one;
    • (E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(3-chloro-5-trifluoromethoxy-phenyl)-prop-2-en-1-one;
    • (E)-1-[trans-5-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-2-yl]-3-(3,5-dichloro-phenyl)-prop-2-en-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(6-phenyl-pyridin-3-yl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(5-trifluoromethyl-pyridin-2-yl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-4-yl-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-3-yl-phenyl)-prop-2-ene-1-one;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-2-yl-phenyl)-prop-2-ene-1-one;
    • 1-[(3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-3-methyl-phenoxy)-ethanone;
    • 1-[(3aS,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-methyl-phenoxy)-ethanone;
    • (E)-1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(5-phenyl-pyridin-2-yl)-prop-2-ene-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethyl sulfinyl)phenyl)prop-2-en-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)propan-1-one;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-6-(3-(4-(trifluoromethoxy)phenyl)propanoyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • (3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-(3-(3-fluoro-4-(trifluoromethoxy)phenyl)propanoyl)-N-methyloctahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-difluoromethoxy-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(2-fluoro-4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-fluoro-2-(trifluoromethyl)phenyl)propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2-methyl-4-(trifluoromethoxy)phenyl)propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-methoxyphenyl)propan-1-one;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]azepin-6-yl]-3-(2-isopropyl-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(5-trifluoromethyl-pyridin-2-yl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(5-phenyl-pyridin-2-yl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-4-yl-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-3-yl-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrolo[3,4-c]pyrrol-2-yl]-3-(4-pyridin-2-yl-phenyl)-propan-1-one;
    • (3aS,8aR)-6-[3-(4-trifluoromethoxy-phenyl)-propionyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid [2-(3H-[1,2,3]triazol-4-yl)-ethyl]-amide;
    • (E)-3-[4-(trifluoro-methoxy)-phenyl]-1-[(3aS,8aR)-2-((S)-4, 5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-prop-2-ene-1-one hydrochloride;
    • and pharmaceutically acceptable salts thereof.
  • Also particular examples of compounds of formula (I) as described herein are selected from
    • trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • 1-[trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-2-(4-trifluoromethoxy-phenoxy)-ethanone;
    • (E)-1-[trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(4-trifluoromethoxy-phenyl)-propenone;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-chloro-5-(trifluoromethyl)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-methoxy-2-(trifluoromethyl)phenyl)prop-2-en-1-one;
    • (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2-cyclopropylphenyl)prop-2-en-1-one;
    • trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 4-fluoro-2-trifluoromethyl-benzyl ester;
    • trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 2-cyclopropyl-4-trifluoromethyl-benzyl ester;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-2-(2-trifluoromethoxy-phenoxy)-ethanone;
    • trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 2-methoxy-4-trifluoromethoxy-benzyl ester;
    • 4-{2-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-2-oxo-ethoxy}-3-trifluoromethyl-benzonitrile;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-2-(4-chloro-2-isopropyl-5-methyl-phenoxy)-ethanone;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-2-[4-methyl-2-(1-methyl-pyrrolidin-3-yl)-phenoxy]-ethanone;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-2-(2-chloro-4-fluoro-phenoxy)-ethanone;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-2-(2-chloro-4-(trifluoromethyl)phenoxy)ethanone;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-2-(6-isopropyl-3,3-dimethyl-2,3-dihydro-1H-inden-5-yloxy)ethanone;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 2-fluoro-4-trifluoromethoxy-benzyl ester;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-2-(5-chloro-2-(trifluoromethyl)phenoxy)ethanone;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,5,7,8,8a-octahydropyrrolo[3,4-d]azepin-6-yl]-2-(2-tert-butyl-4-methoxyphenoxy)ethanone;
    • 4-[2-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,5,7,8,8a-octahydropyrrolo[3,4-d]azepin-6-yl]-2-oxoethoxy]-3-propan-2-ylbenzonitrile;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,5,7,8,8a-octahydropyrrolo[3,4-d]azepin-6-yl]-3-[3-fluoro-4-(2,2,2-trifluoroethoxy)phenyl]propan-1-one;
    • 1-[(3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,5,7,8,8a-octahydropyrrolo[3,4-d]azepin-6-yl]-3-[2-fluoro-4-(2,2,2-trifluoroethoxy)phenyl]propan-1-one;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 3-fluoro-4-(2,2,2-trifluoro-ethoxy)-benzyl ester;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 2-fluoro-4-(2,2,2-trifluoro-ethoxy)-benzyl ester;
    • (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepine-6-carboxylic acid 4-(2,2,2-trifluoro-ethoxy)-benzyl ester;
    • (3aS,6aS)-5-(3H-[1,2,3]triazolo[4,5-b]pyridine-6-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • 1-[(3aR,6aR)-5-(1H-triazolo[4,5-b]pyridine-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-3-[4-(trifluoromethoxy)phenyl]propan-1-one;
    • (3aS,6aS)-5-(3H-[1,2,3]triazolo[4,5-c]pyridine-6-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(4-fluoro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(7-fluoro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(6-fluoro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(4-chloro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(6-trifluoromethyl-H-benztriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(4-methyl-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(6-methyl-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • 1-[(3aR,6aR)-5-(4-fluoro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • (4-ethoxyquinolin-2-yl)((3aS,6aS)-5-((R)-4, 5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone;
    • (4-ethoxyquinolin-2-yl)((3aS,6aS)-5-(4-fluoro-1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone;
    • 6-[(3aR,6aR)-2-[3-[4-(trifluoromethoxy)phenyl]propanoyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrole-5-carbonyl]-3H-1,3-benzoxazol-2-one;
    • (3aS,6aS)-5-(2-oxo-2,3-dihydro-benzooxazole-6-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-(1,1,2,2-tetrafluoro-ethoxy)-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-difluoromethoxy-3-fluoro-benzyl ester;
    • (3aS,6aS)-5-(1H-[1,2,3]triazolo[4,5-b]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-fluoro-4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-difluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-[1,2,3]triazolo[4,5-b]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-fluoro-4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-(2,2,2-trifluoro-ethoxy)-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 5-trifluoromethoxy-pyridin-2-ylmethyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-isopropyl-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-isopropyl-5-methyl-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 2-fluoro-4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 2-fluoro-4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-ethoxy-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-fluoro-4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-isopropyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-isopropyl-5-methyl-benzyl ester;
    • (3aS,6aS)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 2-fluoro-4-trifluoromethyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethyl-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-Tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-Tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethyl-benzyl ester;
    • (3aS,6aS)-5-((R)-4,5,6,7-Tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-methanesulfonyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-ethoxy-5-fluoro-benzyl ester;
    • (3aS,6aS)-5-(4-methoxy-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-cyclobutoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-isopropoxy-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-cyano-2-(2,2,2-trifluoro-ethoxy)-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-chloro-2-ethoxy-5-fluoro-benzyl ester;
    • (E)-1-[trans-2-(1H-benzotriazol-5-ylmethyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(4-trifluoromethoxy-phenyl)-propenone;
    • (3aS,6aS)-5-(4-sulfamoyl-piperidine-1-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(6-phenyl-pyridin-3-yl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-isopropyl-phenoxy)-ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-trifluoromethyl-phenoxy)-ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(biphenyl-2-yloxy)-ethanone;
    • (E)-1-[(3aS,6aS)-5-((R)-4, 5,6,7-Tetrahydro-1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propenone;
    • 1-((3aR,6aR)-5-((R)-4, 5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-chloro-4-trifluoromethoxy-phenoxy)-ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-pyrrol-1-yl-phenoxy)-ethanone;
    • 4-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-3-methoxy-benzonitrile;
    • 4-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-benzonitrile;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-phenoxy-ethanone;
    • 2-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-5-trifluoromethoxy-benzonitrile;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-2-(2-isopropyl-5-methylphenoxy)ethanone;
    • (1H-benzotriazol-5-yl)-[(3aS,6aS)-5-(6-trifluoromethoxy-1H-indole-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • (1H-benzotriazol-5-yl)-[(3aS,6aS)-5-(5-trifluoromethoxy-1H-indole-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • 1-[trans-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-[trans-2-(1H-benzotriazol-5-ylmethyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-chloro-5-(trifluoromethyl)phenyl)propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-methoxy-2-(trifluoromethyl)phenyl)propan-1-one;
    • 1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(2-cyclopropylphenyl)propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-3-[3-methoxy-5-(trifluoromethoxy)phenyl]propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-isopropyl-5-methyl-phenoxy)-ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-bromo-4-trifluoromethoxy-phenoxy)-ethanone;
    • (1H-benzotriazol-5-yl)-[(3aR,6aR)-5-(4′-chloro-biphenyl-4-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • 4-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-3-isopropyl-benzonitrile;
    • 2-(2-Acetyl-phenoxy)-1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-ethanone;
    • 4-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-5-isopropyl-2-methyl-benzonitrile;
    • (1H-benzotriazol-5-yl)-[(3aR,6aR)-5-(naphthalene-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • (1H-benzotriazol-5-yl)-[(3aS,6aS)-5-(4-methoxy-naphthalene-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • 4-{2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-oxo-ethoxy}-3-ethoxy-benzonitrile;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-fluoro-4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-isopropyl-phenoxy)-ethanone;
    • [(3aS,6aS)-5-(4′-Chloro-biphenyl-4-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(R)-4,5,6,7-tetrahydro-1H-benzotriazol-5-yl-methanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • (1H-benzotriazol-5-yl)-[(3aS,6aS)-5-(4′-chloro-biphenyl-4-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-[2-(tetrahydro-furan-2-yl)-phenoxy]-ethanone;
    • (1H-benzotriazol-5-yl)-[(3aR,6aR)-5-(4-methoxy-naphthalene-2-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-methanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-tert-butyl-phenoxy)-ethanone;
    • [(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-[trans-4-(4-chloro-phenyl)-cyclohexyl]-methanone;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(3-fluoro-4-trifluoromethyl-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(2-fluoro-4-trifluoromethyl-phenyl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-(2-pyridin-3-ylphenoxy)ethanone;
    • 4-[3-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-3-oxopropyl]-2-methyl-5-propan-2-ylbenzonitrile;
    • 4-[3-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-3-oxopropyl]-3-propan-2-ylbenzonitrile;
    • [(3aR,6aR)-5-[1-(4-chlorophenyl)piperidine-4-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-(1H-benzotriazol-5-yl)methanone;
    • [(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-(4-propan-2-yloxynaphthalen-2-yl)methanone;
    • [(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-(4-propan-2-yloxyquinolin-2-yl)methanone;
    • 1-[(3aR,6aR)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-3-[2-fluoro-4-(trifluoromethoxy)phenyl]propan-1-one;
    • 4-[2-[(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-oxoethoxy]-2-methyl-5-propan-2-ylbenzonitrile;
    • [(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-[1-(2,2,2-trifluoroethoxy)isoquinolin-3-yl]methanone;
    • 1-[(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-(4-bromo-2-tert-butylphenoxy)ethanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-(4-bromo-2-tert-butylphenoxy)ethanone;
    • 4-[2-[(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-oxoethoxy]-3-tert-butylbenzonitrile;
    • 4-[2-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-oxoethoxy]-3-tert-butylbenzonitrile;
    • [(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-[1-methyl-5-(trifluoromethoxy)indol-2-yl]methanone;
    • 1-[(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-[4-(trifluoromethoxy)phenoxy]ethanone;
    • [(3aS,6aS)-5-[(5R)-4,5,6,7-tetrahydro-1H-benzotriazole-5-carbonyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-(1-ethoxyisoquinolin-3-yl)methanone;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-2-yl]-2-(2-tert-butyl-4-methoxyphenoxy)ethanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(4-ethoxyquinolin-2-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(4-(2,2,2-trifluoroethoxy)quinolin-2-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(6-cyclobutoxy-5-(trifluoromethyl)pyridin-3-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(5-bromo-6-(2-methoxyethoxy)pyridin-3-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(5-bromo-6-(cyclopropylmethoxy)pyridin-3-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(5-cyclopropyl-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methanone;
    • ((3aS,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)(6-(2,2,2-trifluoroethoxy)-5-(trifluoromethyl)pyridin-3-yl)methanone;
    • (1H-benzotriazol-5-yl)-{(3aS,6aS)-5-[4-(4-chloro-phenyl)-piperidine-1-carbonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-methanone;
    • (1H-benzotriazol-5-yl)-{(3aS,6aS)-5-[4-(4-chloro-phenyl)-piperazine-1-carbonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-methanone;
    • and pharmaceutically acceptable salts thereof.
  • Further particular examples of compounds of formula (I) as described herein are selected from
    • trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate;
    • trans-3,5-dichlorobenzyl 2-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethyl-phenyl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-isopropyl-5-methyl-phenoxy)-ethanone;
    • and pharmaceutically acceptable salts thereof.
  • Also further particular examples of compounds of formula (I) as described herein are selected from
    • trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • trans-3,5-dichlorobenzyl 2-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
    • (3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
    • (E)-1-((3aR,6aR)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one;
    • 1-((3aR,6aS)-5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
    • 1-[(3aR,6aR)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethyl-phenyl)-propan-1-one;
    • 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(4-chloro-2-isopropyl-5-methyl-phenoxy)-ethanone;
    • and pharmaceutically acceptable salts thereof.
  • Processes for the manufacture of compounds of formula (I) as described herein are an object of the invention.
  • The preparation of compounds of formula (I) of the present invention may be carried out in sequential or convergent synthetic routes. Syntheses of the invention are shown in the following general schemes. The skills required for carrying out the reactions and purifications of the resulting products are known to those persons skilled in the art. In case a mixture of enantiomers or diastereoisomers is produced during a reaction, these enantiomers or diastereoisomers can be separated by methods described herein or known to the man skilled in the art such as e.g. (chiral) chromatography or crystallization. The substituents and indices used in the following description of the processes have the significance given herein.
  • Compounds of general formula (I) can be synthesised from amine precursor 1 and appropriate reagents, using methods well known in the art.
  • Figure US20170050960A1-20170223-C00015
  • For instance, amine 1 is reacted with a suitable chloroformate ester of formula R1—O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula (3A), or with a succinimidyl carbonate derivative of formula (3B), leading to a compound of formula (I) wherein Y is —OC(O)—.
  • Figure US20170050960A1-20170223-C00016
  • The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence or not of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Chloroformate esters 2 are commercially available or can be synthesised from the corresponding alcohol of formula R1—OH, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene), as described in the literature.
  • Imidazole-1-carboxylate esters 3A are synthesised from the corresponding alcohols of formula R1—OH, by reaction with 1,1′-carbonyldiimidazole. The reaction is performed at room temperature, in a solvent such as dichloromethane, tetrahydrofuran or acetonitrile. The imidazole-1-carboxylate esters 3A are typically not isolated but directly reacted with amines 1 as described above.
  • Succinimidyl carbonate derivatives 3B are synthesised from the corresponding alcohols of formula R1—OH, by reaction with N,N′-disuccinimidyl carbonate. The reaction is performed at room temperature, in a solvent such as dichloromethane, tetrahydrofuran, or acetonitrile, optionally in the presence of a base, e. g., triethylamine. The succinimidyl carbonate derivatives 3B are typically not isolated but directly reacted with amines 1 as described above.
  • Alcohols of formula R1—OH are commercially available or can be produced by methods described herein or known in the art.
  • Alternatively, amine 1 is reacted with a suitable N-(chlorocarbonyl)amine of formula R1—N(R7)—C(O)—Cl (4), or, in the case where R7 is H, with an isocyanate of formula R1—NCO (5), leading to compounds of formula (I) wherein Y is —NR7C(O)—.
  • N-(Chlorocarbonyl)amines (4) are synthesised from the corresponding amines of formula R1—N(R7)H by reaction with phosgene or a phosgene equivalent, as described in the literature.
  • Isocyanates 5 are commercially available or can be prepared from the corresponding amines of formula R1—NH2, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole), as described in the literature.
  • Alternatively, amine 1 is reacted with a suitable carboxylic acid of formula R1—COOH (6) leading to a compound of formula (I), wherein Y is —C(O)—. The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Amine 1 can also be reacted with suitable acylating reagents such as acyl chlorides of formula R1—COCl (7) to lead to compounds of formula (I) wherein Y is —C(O)—. The reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • Carboxylic acids (6) and acyl halides (7) are commercially available or can be prepared as described herein or in the literature.
  • Alternatively, amine 1 is reacted with a suitable sulfonyl chloride of formula R1—SO2Cl (8), leading to compounds of formula (I) wherein Y is —S(O2)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Sulfonyl chlorides (8) are commercially available or can be synthesised as described herein or in the literature.
  • Alternatively, amine 1 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to a compound of formula (I), wherein Y is
  • Figure US20170050960A1-20170223-C00017
  • In the case where compounds of formula (I) are produced from amine 1 and chloro-oxadiazole 9, the reaction is performed in the presence of a base, e. g., potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane at temperatures between 20° C. and 150° C.
  • In the case where compounds of formula (I) are produced from amine 1 and oxadiazolone 10, the reaction is performed in the presence of a coupling agent, e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate and a base, e. g., diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C. as described in the literature.
  • Oxadiazolones 10 are commercially available or can be produced as described in the literature.
  • Chloro-oxadiazoles 9 are commercially available or can be produced from the corresponding oxadiazolones, by reaction with a suitable halogenating reagent, e. g. phosphorus oxychloride and/or phosphorus pentachloride, at temperatures between 60° C. and 120° C.
  • Alternatively, amine 1 is reacted with a suitable halo-thiadiazole reagent of general formula 11 (X=Cl or Br), or with thiadiazolethione reagent 12, leading to compounds of (I)
  • Figure US20170050960A1-20170223-C00018
  • In the case where compounds of formula (I) are produced from amine 1 and halo-thiadiazole 11, the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • In the case where compounds of formula (I) are produced from amine 1 and thiadiazolethione 12, the reaction is performed in a solvent such as ethanol or N,N-dimethylformamide at temperatures between 20° C. and 100° C. as described in the literature.
  • Thiadiazolethiones 12 are commercially available or can be produced as described in the literature.
  • Halo-thiadiazoles 11 are commercially available or can be produced as described in the literature.
  • Amines of general formula 1 are synthesised from suitably protected precursors 13.
  • Figure US20170050960A1-20170223-C00019
  • Suitable protective groups (PG) are tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl. The deprotection of intermediates 13 can be performed using methods and reagents known in the art.
  • For instance, in the case where PG is optionally substituted benzyloxycarbonyl, the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C. in solvents such as methanol or ethanol.
  • Alternatively, in the case where PG is tert-butoxycarbonyl, the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane at temperatures between 0° C. and 30° C.
  • Carbamates 13, wherein A is N are represented by general structure 13A.
  • Figure US20170050960A1-20170223-C00020
  • PG is a suitable protective group, e. g., tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • Carbamates 13A can be produced from amine precursors of general formula 14 by reaction with appropriate reagents, using methods known in the art.
  • Figure US20170050960A1-20170223-C00021
  • For instance, 14 is reacted with alkylating agents of general formula X—CR3R4—R2 (15) where X is a leaving group such as Cl, Br, I, or OSO2CH3, leading to 13A, wherein W is —CR3R4—. This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g. triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • Alternatively, for compounds of formula 13A, wherein W is —CR3R4—, R4 is hydrogen, alkyl or cycloalkyl, and R3 is H, amine 14 is reacted with aldehydes or ketones of general formula R4—C(O)—R2 (16) in a reductive amination reaction, leading to 13A. This reaction is performed in the presence of a suitable reducing agent, e. g., sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • Alternatively, amine 14 is reacted with a suitable carboxylic acid of formula R2—COOH (17), leading to compounds of formula 13A, wherein W is —C(O)—. The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-di cyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, 0-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Alternatively, amine 14 is reacted with a suitable sulfonyl chloride of formula R2—SO2Cl (18), leading to compounds of formula 13A, wherein W is —S(O2)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, amine 14 is reacted with a suitable N-(chlorocarbonyl)amine of formula R2—N(R6)—C(O)—Cl (19) leading to compounds of formula 13A, wherein W is —C(O)—NR6—, or with an isocyanate of formula R2—NCO (20), leading to compounds of formula 13A, wherein W is —C(O)—NR6— and R6 is H.
  • Alternatively, amine 14 is reacted with phosgene or phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine) in a solvent such as dichloromethane or tetrahydrofuran, to provide the corresponding N-(chlorocarbonyl)amine of formula 21, which is then reacted with amine of formula HN(R6)R2 (22), in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 13A, wherein W is —C(O)—NR6—.
  • Figure US20170050960A1-20170223-C00022
  • Alternatively, amine 14 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 21, which is then reacted with amines of formula H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF, in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 13A, wherein W is —C(O)— and R2 is O, P, Q, R, T, U, V, X, AA or AF.
  • N-(Chlorocarbonyl)amines 19 are synthesised from the corresponding amines 22 by reaction with phosgene or a phosgene equivalent (diphosgene, triphosgene) as described in the literature.
  • Isocyanates 20 are commercially available or can be prepared from the corresponding amines of formula R2—NH2, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole) as described in the literature.
  • Amines 14, alkylating agents 15, aldehydes/ketones 16, carboxylic acids 17, sulfonyl chlorides 18, and amines 22 are commercially available or can be synthesised as described in the literature.
  • Carbamates 13 wherein A is CR5 and R5 is H are represented by general formula 13B, wherein PG is a suitable protective group, e. g tert-butoxycarbonyl, benzyloxycarbonyl and substituted benzyloxycarbonyl such as 3,5-dichloro benzyloxycarbonyl.
  • Figure US20170050960A1-20170223-C00023
  • Compound 13B, wherein W is —NR6—, is produced from ketone 23 by reaction with an amine of formula HN(R6)R2 (22) in the presence of a suitable reducing agent, e. g. sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane, or mixtures thereof, at temperatures between 0° C. and 50° C.
  • Figure US20170050960A1-20170223-C00024
  • Ketones 23 and amines 22 are commercially available or can be prepared as described in the literature.
  • Compound 13B, wherein W is —O— or —S—, is produced from alcohol 24 using methods and reagents known in the art.
  • Figure US20170050960A1-20170223-C00025
  • For instance, alcohol 24 is reacted at room temperature with phenol HO—R2 or thiophenol HS—R2 in the presence of triphenylphosphine and an dialkylazodicarboxylate, e. g. diisopropylazodicarboxylate or diethylazodicarboxylate, in a solvent such as toluene, dichloromethane, or tetrahydrofuran, leading to 13B, wherein W is —O— or —S—.
  • In the case wherein W is —O— or and R2 is B, compounds of formula 13B can also be produced from alcohol 24 in a three-step sequence. Therefore, 24 is reacted in step 1 at room temperature with 2,4-dihydroxybenzoic acid alkyl ester in the presence of triphenylphosphine and an dialkylazodicarboxylate, e. g. diisopropylazodicarboxylate or diethylazodicarboxylate, in a solvent such as toluene, dichloromethane or tetrahydrofuran, converting the hydroxy group into a 3-hydroxy-4-(alkoxycarbonyl)-phenyl ether substituent. This is hydrolysed in step 2 to the corresponding 3-hydroxy-4-carboxyphenyl group, using a base such as sodium hydroxide in water and in the presence of co-solvents such as tetrahydrofuran and/or methanol or ethanol. In step 3, the 3-hydroxy-4-carboxyphenyl ether intermediate can be subjected to a Curtius rearrangement as described in the literature, e. g. by using diphenylphorphoryl azide, in a solvent such as toluene, in the presence of a base, e. g., triethylamine, at temperatures between 60° C. and 110° C., leading to the corresponding 2-oxo-2,3-dihydro-benzooxazol-6-yl ether 13B, wherein W is —O— and R2 is B.
  • Alternatively, conversion of alcohol 24 to the corresponding methanesulfonate using methanesulfonyl chloride in the presence of a base, e. g. triethylamine, in a solvent such as dichloromethane or tetrahydrofuran, at temperatures between −20° C. and +30° C., and treatment of the methanesulfonate intermediate with phenol HO—R2 or thiophenol HS—R2 in the presence of a base, e. g., potassium carbonate, in a solvent such as N,N-dimethylformamide or acetonitrile, at temperatures between 20° C. and 100° C., leads to 13B, wherein W is —O— or —S—.
  • Compound 13B, wherein W is —SO2—, is produced from compound 13B, wherein W is —S— by oxidation with a suitable reagent, e. g., hydrogen peroxide or 3-chloroperbenzoic acid, in a solvent such as formic acid, acetic acid, or dichloromethane, at temperatures between 0° C. and 50° C.
  • Alcohols 24 are produced from ketones 23 using a suitable reducing agent, e. g., sodium borohydride, in a solvent such as methanol, at temperatures between 0° C. and 50° C.
  • Carbamates 13 wherein A is CR5, R5 is H, and W is —C(O)—N(R6)— are represented by general formula 13C, wherein R12 is N(R6)R2, O, P, Q, R, T, U, V, X, AA or AF.
  • Figure US20170050960A1-20170223-C00026
  • Amide 13C is produced from carboxylic acid 25 by coupling reaction with an amine of formula HN(R6)R2 (22), H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF.
  • Figure US20170050960A1-20170223-C00027
  • The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Carboxylic acids 25 are commercially available or can be produced as described in the literature.
  • Compounds of formula (I), wherein A is N can be produced from amine precursors of general formula 26 by reaction with appropriate reagents, using methods known in the art.
  • Figure US20170050960A1-20170223-C00028
  • For instance, an amine of formula 26 is reacted with alkylating agents of general formula X—CR3R4—R2 (15) where X is a leaving group such as Cl, Br, I, or OSO2CH3, leading to compounds of formula (I), wherein A is N and W is —CR3R4—. This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g., triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • Alternatively, an amine of formula 26 is reacted with aldehydes or ketones of general formula R4—C(O)—R2 (16) in a reductive amination reaction, leading to compounds of formula (I) wherein A is N, W is —CR3R4—, R4 is hydrogen, alkyl or cycloalkyl, and R3 is H. This reaction is performed in the presence of a suitable reducing agent, e. g. sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • Alternatively, amine 26 is reacted with a suitable carboxylic acid of formula R2—COOH (17), leading to compounds of formula (I) wherein A is N and W is —C(O)—. The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-di cyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, 0-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Alternatively, amine 26 is reacted with a suitable sulfonyl chloride of formula R2—SO2Cl (18), leading to (I) wherein A is N and W is —S(O2)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, amine of formula 26 is reacted with a suitable N-(chlorocarbonyl)amine of formula R2—N(R6)—C(O)—Cl (19) leading to compounds of formula (I), wherein A is N and W is C(O)—NR6, or with isocyanate R2—NCO (20), leading to compounds of formula (I), wherein A is N, W is —C(O)—NR6— and R6 is H.
  • Alternatively, amine 26 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 27, which is then reacted with an amine of formula H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula (I), wherein A is N, W is —C(O)— and R2 is O, P, Q, R, T, U, V, X, AA or AF.
  • Figure US20170050960A1-20170223-C00029
  • Amines 26 can be synthesised from their tert-butyl carbamate derivatives of formula 28 by carbamate deprotection. The deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • Figure US20170050960A1-20170223-C00030
  • tert-Butyl carbamates 28 can be synthesised from amine precursors of formula 29 and appropriate reagents, using methods well known in the art.
  • Figure US20170050960A1-20170223-C00031
  • For instance, an amine of formula 29 is reacted with a suitable chloroformate ester of formula R1—O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula (3A) or with a succinimidyl carbonate derivative of formula (3B), leading to compounds of formula 28, wherein Y is —OC(O)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence or not of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, an amine of formula 29 is reacted with a suitable N-(chlorocarbonyl)amine of formula R1—N(R7)—C(O)—Cl (4) leading to compounds of formula 28, wherein Y is —NR7C(O)—, or with an isocyanate of formula R1—NCO (5) leading to compounds of formula 28, wherein Y is —NR7C(O)— and R7 is H.
  • Alternatively, amine 29 is reacted with a suitable carboxylic acid of formula R1—COOH (6) leading to compounds of formula 28, wherein Y is —C(O)—. The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Amine 29 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R1—COCl (7) to provide compounds of formula 28, wherein Y is —C(O)—. The reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • Alternatively, amine 29 is reacted with a suitable sulfonyl chloride, of formula R1—SO2Cl (8), leading to compounds of formula 28, wherein Y is —S(O2)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, amine 29 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to compounds of formula 28, wherein Y is
  • Figure US20170050960A1-20170223-C00032
  • In the case where 28 is produced from amine 29 and chloro-oxadiazole 9, the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • In the case where 28 is produced from amine 29 and oxadiazolone 10, the reaction is performed in the presence of a coupling agent, e. g., benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, and a base, e. g. diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature).
  • Alternatively, amine 29 is reacted with a suitable halo-thiadiazole reagent of general formula 11 (X is Cl or Br), or with thiadiazolethione reagent 12, leading to compounds of formula 28, wherein Y is
  • Figure US20170050960A1-20170223-C00033
  • In the case where 28 is produced from amine 29 and halo-thiadiazole 11, the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • In the case where 28 is produced from amine 29 and thiadiazolethione 12, the reaction is performed in a solvent such as ethanol or N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature.
  • Alternatively, amine 29 is acylated with a haloalkanoyl halide, e. g., bromoacetyl chloride, in the presence of a base, e. g. triethylamine, in a solvent such as dichloromethane or tetrahydrofuran, at temperatures between −78° C. and +20° C., leading to the corresponding haloalkanamide intermediate, which in the presence of a base, e. g. potassium carbonate or caesium carbonate, in a solvent such as N,N-dimethylformamide undergoes a nucleophilic substitution reaction with a substituted phenol, leading to compounds of formula 28, wherein Y is —C(O)— and R1 is substituted phenoxyalkyl.
  • Amines of formula 29 are commercially available or can be produced as described in the literature.
  • Compounds of formula (I), wherein A is CR5 and W is —C(O)—N(R6)— can be produced from carboxylic acid precursors of general formula 30 by reaction with appropriate amine reagents of general formula HN(R6)R2, H—O, H—P, H-Q, H—R, H-T, H—U, H—V, H—X, H-AA or H-AF using methods known in the art.
  • Figure US20170050960A1-20170223-C00034
  • For instance, this reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Carboxylic acids 30 can be produced from the corresponding ester precursors 31, wherein Ra is lower alkyl, e. g. methyl or ethyl, using methods and reagents known in the art. For instance, the reaction is performed in the presence of a base, e. g., potassium hydroxide, sodium hydroxide, or lithium hydroxide, in solvents such as water, methanol, ethanol, tetrahydrofuran, or mixtures thereof, at temperatures between 20° C. and 100° C.
  • Figure US20170050960A1-20170223-C00035
  • Compounds of formula 31 can be synthesised from amine precursors of formula 32 and appropriate reagents, using methods well known in the art.
  • Figure US20170050960A1-20170223-C00036
  • For instance, an amine of formula 32 is reacted with a suitable chloroformate ester of formula R1—O—C(O)—Cl (2), or with an imidazole-1-carboxylate ester of formula 3, leading to compounds of formula 31, wherein Y is —OC(O)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, an amine of formula 32 is reacted with a suitable N-(chlorocarbonyl)amine of formula R1—N(R7)—C(O)—Cl (4) leading to compounds of formula 31, wherein Y is —NR7C(O)—, or with an isocyanate of formula R1—NCO (5) leading to leading to compounds of formula 31, wherein Y is —NR7C(O)— and R7 is H.
  • Alternatively, amine 32 is reacted with a suitable carboxylic acid of formula R1—COOH (6) leading to compounds of formula 31, wherein Y is —C(O)—. The reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between −40° C. and 80° C. in the presence or absence of a base such as triethylamine, diisopropylethylamine, 4-methylmorpholine and/or 4-(dimethylamino)pyridine.
  • Amine 32 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R1—COCl (7) to lead to compounds of formula 31, wherein Y is —C(O)—. The reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • Alternatively, amine 32 is reacted with a suitable sulfonyl chloride of formula R1—SO2Cl (8), leading to compounds of formula 31, wherein Y is —S(O2)—. The reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Alternatively, amine 32 is reacted with a suitable chloro-oxadiazole reagent of general formula 9, or with oxadiazolone reagent 10, leading to compounds of formula 31, wherein Y is
  • Figure US20170050960A1-20170223-C00037
  • In the case where 31 is produced from amine 32 and chloro-oxadiazole 9, the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide, or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • In the case where 31 is produced from amine 32 and oxadiazolone 10, the reaction is performed in the presence of a coupling agent, e. g. benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, and a base, e. g. diisopropylethylamine or 4-methylmorpholine, in a solvent such as N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature.
  • Alternatively, amine 32 is reacted with a suitable halo-thiadiazole reagent of general formula 11 (X is Cl or Br), or with thiadiazolethione reagent 12, leading to compounds of formula 31, wherein Y is
  • Figure US20170050960A1-20170223-C00038
  • In the case where 31 is produced from amine 32 and halo-thiadiazole 11, the reaction is performed in the presence of a base, e. g. potassium carbonate, triethylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as toluene, ethanol, N,N-dimethylformamide or 1,4-dioxane, at temperatures between 20° C. and 150° C.
  • In the case where 31 is produced from amine 32 and thiadiazolethione 12, the reaction is performed in a solvent such as ethanol or N,N-dimethylformamide, at temperatures between 20° C. and 100° C., as described in the literature.
  • Amines of general formula 32 are synthesised from suitably protected precursors 33.
  • Figure US20170050960A1-20170223-C00039
  • Suitable protective groups (PG) are tert-butoxycarbonyl or benzyloxycarbonyl. The deprotection of intermediates 33 can be performed using methods and reagents known in the art.
  • For instance, in the case where PG is benzyloxycarbonyl, the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C., in solvents such as methanol or ethanol.
  • Alternatively, in the case where PG is tert-butoxycarbonyl, the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • Figure US20170050960A1-20170223-C00040
  • Substituents R5 may be introduced starting from ester precursor 34, using suitable reagents and methods known in the art. For instance, 34 is reacted with alkylating agents of general formula R5—X wherein R5 is alkyl or cycloalkyl and X is a leaving group such as Cl, Br, I, or OSO2CH3, leading to 33, wherein R5 is alkyl or cycloalkyl. This reaction is performed in the presence of a suitable base, e. g., sodium hydride, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, or lithium pyrrolidide, in a solvent such as tetrahydrofuran or toluene, at temperatures between −78° C. and +50° C.
  • Esters 34, wherein Ra is methyl or ethyl, are produced from carboxylic acids 25, using methods and reagents known in the art. For instance, 25 alkylated with methyl iodide or ethyl bromide, in the presence of a base, e. g., potassium carbonate, in a solvent such as N,N-dimethylformamide, at −20° C. and +30° C., leading to the methyl or ethyl ester 34, respectively.
  • Also an embodiment of the present invention is a process to prepare a compound of formula (I) as defined above comprising the reaction of a compound of formula (II) in the presence of a compound of formula (III);
  • Figure US20170050960A1-20170223-C00041
  • wherein R1, R2, A, W, m, n, p and q are as defined above, Y is —OC(O)—.
  • In particular, in the presence of a coupling agent such as O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, in a solvent such as N,N-dimethylformamide, in the presence of a base such as 4-methylmorpholine and at a temperature comprised between −78° C. and reflux, particularly between −10° C. and room temperature.
  • Also an object of the present invention is a compound according to formula (I) as described herein for use as a therapeutically active substance.
  • Likewise an object of the present invention is a pharmaceutical composition comprising a compound according to formula (I) as described herein and a therapeutically inert carrier.
  • An object of the invention is the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • Renal conditions include, but are not limited to, acute kidney injury and chronic renal disease with and without proteinuria including end-stage renal disease (ESRD). In more detail, this includes decreased creatinine clearance and decreased glomerular filtration rate, micro-albuminuria, albuminuria and proteinuria, glomerulosclerosis with expansion of reticulated mesangial matrix with or without significant hypercellularity (particularly diabetic nephropathy and amyloidosis), focal thrombosis of glomerular capillaries (particularly thrombotic microangiopathies), global fibrinoid necrosis, ischemic lesions, malignant nephrosclerosis (such as ischemic retraction, reduced renal blood flow and renal arteriopathy), swelling and proliferation of intracapillary (endothelial and mesangial) and/or extracapillary cells (crescents) like in glomerular nephritis entities, focal segmental glomerular sclerosis, IgA nephropathy, vasculitides/systemic diseases as well as acute and chronic kidney transplant rej ection.
  • Liver conditions include, but are not limited to, liver cirrhosis, hepatic congestion, cholestatic liver disease including pruritus, nonalcoholic steatohepatitis and acute and chronic liver transplant rejection.
  • Inflammatory conditions include, but are not limited to, arthritis, osteoarthritis, multiple sclerosis, systemic lupus erythematodes, inflammatory bowel disease, abnormal evacuation disorder and the like as well as inflammatory airways diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) or chronic asthma bronchiale.
  • Further conditions of the respiratory system include, but are not limited to, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, systemic diseases and vasculitides, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, Langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, silicosis, asbestos induced pulmonary fibrosis or acute respiratory distress syndrome (ARDS).
  • Conditions of the nervous system include, but are not limited to, neuropathic pain, schizophrenia, neuro-inflammation (e.g. astrogliosis), peripheral and/or autonomic (diabetic) neuropathies and the like.
  • Vascular conditions include, but are not limited to, atherosclerosis, thrombotic vascular disease as well as thrombotic microangiopathies, proliferative arteriopathy (such as swollen myointimal cells surrounded by mucinous extracellular matrix and nodular thickening), atherosclerosis, decreased vascular compliance (such as stiffness, reduced ventricular compliance and reduced vascular compliance), endothelial dysfunction and the like.
  • Cardiovascular conditions include, but are not limited to, acute coronary syndrome, coronary heart disease, myocardial infarction, arterial and pulmonary hypertension, cardiac arrhythmia such as atrial fibrillation, stroke and other vascular damage.
  • Fibrotic diseases include, but are not limited to myocardial and vascular fibrosis, renal fibrosis, liver fibrosis, pulmonary fibrosis, skin fibrosis, scleroderma and encapsulating peritonitis.
  • In a particular embodiment, the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of organ or skin fibrosis.
  • In another embodiment, the fibrotic disease is renal tubulo-interstitial fibrosis or glomerulosclerosis.
  • In another embodiment, the fibrotic disease is non-alcoholic liver steatosis, liver fibrosis or liver cirrhosis.
  • In another embodiment, the fibrotic disease is idiopathic pulmonary fibrosis.
  • Cancer and cancer metastasis include, but are not limited to, breast cancer, ovarian cancer, lung cancer, prostate cancer, mesothelioma, glioma, hepatic carcinoma, gastrointestinal cancers and progression and metastatic aggressiveness thereof.
  • Ocular conditions include, but are not limited to, proliferative and non-proliferative (diabetic) retinopathy, dry and wet age-related macular degeneration (AMD), macular edema, central arterial/venous occlusion, traumatic injury, glaucoma and the like.
  • Metabolic conditions include, but are not limited to, obesity and diabetes.
  • In another embodiment, the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of cholestatic or non-cholestatic chronic pruritus.
  • The present invention also relates to the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • The present invention also relates to the use of a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • A particular embodiment of the present invention is a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • A particular embodiment of the present invention is a compound according to formula (I) as described herein for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • The present invention also relates to the use of a compound according to formula (I) as described herein for the preparation of a medicament for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rej ection.
  • The present invention also relates to the use of a compound according to formula (I) as described herein for the preparation of a medicament for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases.
  • Also an object of the invention is a method for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, fibrotic diseases and acute and chronic organ transplant rejection, which method comprises administering an effective amount of a compound according to formula (I) as described herein.
  • Also an object of the invention is a method for the treatment or prophylaxis of renal conditions, liver conditions and fibrotic diseases, which method comprises administering an effective amount of a compound according to formula (I) as described herein.
  • In a particular embodiment, the renal condition is selected from the group consisting of acute kidney injury, chronic kidney disease, diabetic nephropathy, acute kidney transplant rejection and chronic allograft nephropathy.
  • In another particular embodiment, the renal condition is acute kidney injury.
  • In another particular embodiment, the renal condition is chronic kidney disease.
  • In a further particular embodiment, the renal condition is diabetic nephropathy.
  • In another particular embodiment, the renal condition is acute kidney transplant rejection.
  • In another particular embodiment, the renal condition is chronic allograft nephropathy.
  • In a particular embodiment, the liver condition is acute and chronic liver transplant rejection
  • In a particular embodiment, the inflammatory condition is arthritis.
  • In a particular embodiment, the condition of the nervous system is neuropathic pain.
  • In another embodiment, the fibrotic disease is encapsulating peritonitis.
  • In another embodiment, the fibrotic disease is idiopathic pulmonary fibrosis.
  • In another embodiment, the fibrotic disease is non-alcoholic liver steatosis, liver fibrosis or liver cirrhosis.
  • Also an embodiment of the present invention are compounds of formula (I) as described herein, when manufactured according to any one of the described processes.
  • Assay Procedures Production of Human Full Length ATX, with and without his Tag
  • Autotaxin (ATX-ENPP2) Cloning:
  • cDNA was prepared from commercial human hematopoietic cells total RNA and used as template in overlapping PCR to generate a full length human ENPP2 ORF with or without a 3′-6×His tag. These full length inserts were cloned into the pcDNA3.1V5-His TOPO (Invitrogen) vector. The DNA sequences of several single clones were verified. The DNA from a correct full length clone was used to transfect Hek293 cells for verification of protein expression. The sequence of the encoded ENPP2 conforms to Swissprot entry Q13822, with or without the additional C-terminal 6×His tag.
  • ATX Fermentation:
  • Recombinant protein was produced by large-scale transient transfection in 20 L controlled stirred tank bioreactors (Sartorius). During cell growth and transfection, temperature, stirrer speed, pH and dissolved oxygen concentration were maintained at 37° C., 120 rpm, 7.1 and 30% DO, respectively. FreeStyle 293-F cells (Invitrogen) were cultivated in suspension in FreeStyle 293 medium (Invitrogen) and transfected at ca. 1-1.5×10E6 cells/mL with above plasmid DNAs using X-tremeGENE Ro-1539 (commercial product, Roche Diagnostics) as complexing agent. Cells were fed a concentrated nutrient solution (J Immunol Methods 194 (1996), 19, 1-199 (page 193)) and induced by sodium butyrate (2 mM) at 72 h post-transfection and harvested at 96 h post-transfection. Expression was analyzed by Western Blot, enzymatic assay and/or analytical IMAC chromatography. After cooling the cell suspension to 4° C. in a flow-through heat exchanger, cell separation and sterile filtration of supernatant was performed by filtration through Zeta Plus 60M02 E16 (Cuno) and Sartopore 2 XLG (Sartorius) filter units. The supernatant was stored at 4° C. prior to purification.
  • ATX Purification:
  • 20 liter of culture supernatant were conditioned for ultrafiltration by adding Brij 35 to a final concentration of 0.02% and by adjusting the pH to 7.0 using 1 M HCl. Then the supernatant was first microfiltred through a 0.2 μm Ultran-Pilot Open Channel PES filter (Whatman) and afterwards concentrated to 1 liter through an Ultran-Pilot Screen Channel PES filter with 30 kDa MWCO (Whatman). Prior to IMAC chromatography, NiSO4 was added to a final concentration of 1 mM. The cleared supernatant was then applied to a HisTrap column (GE Healthcare) previously equilibrated in 50 mM Na2HPO4 pH 7.0, 0.5 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN3. The column was washed stepwise with the same buffer containing 20 mM, 40 mM and 50 mM imidazole, respectively. The protein was subsequently eluted using a linear gradient to 0.5 M imidazole in 15 column volumes. ATX containing fractions were pooled and concentrated using an Amicon cell equipped with a 30 kDa PES filter membrane. The protein was further purified by size exclusion chromatography on Superdex S-200 prep grade (XK 26/100) (GE Healthcare) in 20 mM BICINE pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN3. Final yield of protein after purification was 5-10 mg ATX per liter of culture supernatant. The protein was stored at −80° C.
  • Human ATX Enzyme Inhibition Assay
  • ATX inhibition was measured by a fluorescence quenching assay using a specifically labeled substrate analogue (MR121 substrate). To obtain this MR121 substrate, BOC and TBS protected 6-amino-hexanoic acid (R)-3-({2-[3-(2-{2-[2-(2-amino-ethoxy)-ethoxy]-ethoxy}-ethoxy)-propionylamino]-ethoxy}-hydroxy-phosphoryloxy)-2-hydroxy-propyl ester (Ferguson et al., Org Lett 2006, 8 (10), 2023) was labeled with MR121 fluorophore (CAS 185308-24-1, 1-(3-carboxypropyl)-11-ethyl-1,2,3,4,8,9,10,11-octahydro-dipyrido[3,2-b:2′,3′-i]phenoxazin-13-ium) on the free amine of the ethanolamine side and then, after deprotection, subsequently with tryptophan on the side of the aminohexanoic acid.
  • Assay working solutions were made as follows:
  • Assay buffer (50 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 0.01% Triton-X-100, pH 8.0;
  • ATX solution: ATX (human His-tagged) stock solution (1.08 mg/mL in 20 mM bicine, pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN3), diluted to 1.4-2.5× final concentration in assay buffer;
  • MR121 substrate solution: MR121 substrate stock solution (800 μM MR121 substrate in DMSO), diluted to 2-5× final concentration in assay buffer.
  • Test compounds (10 mM stock in DMSO, 8 μL) were obtained in 384 well sample plates (Corning Costar #3655) and diluted with 8 μL DMSO. Row-wise serial dilutions were made by transferring 8 μL cpd solution to the next row up to row O. The compound and control solutions were mixed five times and 2 μL were transferred to 384 well assay plates (Corning Costar #3702). Then, 15 μL of 41.7 nM ATX solution was added (30 nM final concentration), mixed five times and then incubated for 15 minutes at 30° C. 10 μL of MR121 substrate solution was added (1 M final concentration), mixed 30 times and then incubated for 15 minutes at 30° C. Fluorescence was then measured every 2 minutes for 1 hour (Perkin Elmer plate: vision multimode reader); light intensity: 2.5%; exp. time: 1.4 sec, Filter: Fluo_630/690 nm) and IC50 values were calculated from these readouts.
  • Example IC50 (μM)
     1 0.008
     1.01 0.035
     1.02 0.077
     1.03 0.025
     1.04 0.127
     1.05 0.09
     1.06 0.255
     1.07 1.034
     1.08 0.503
     1.09 0.009
     1.10 0.078
     1.11 0.004
     1.12 9.26
     1.13 0.226
     1.14 0.81
     1.15 0.001
     1.16 0.382
     1.17 0.651
     1.18 0.01
     1.19 0.012
     1.20 0.083
     1.21 0.005
     1.22 0.009
     1.23 0.058
     1.24 0.013
     1.25 0.114
     1.26 0.009
     1.27 0.008
     1.28 0.006
     1.29 0.008
     1.30 0.02
     1.31 0.021
     1.32 0.04
     1.33 0.021
     1.34 0.013
     1.35 0.01
     1.36 7.455
     1.37 0.025
     1.38 0.01
     1.39 0.007
     1.40 0.007
     1.41 0.002
     1.42 0.007
     1.43 0.014
     1.44 0.003
     1.45 0.007
     1.46 0.002
     1.47 0.002
     1.48 0.0075
     1.49 0.218
     1.50 0.017
     1.51 0.041
     1.52 0.016
     1.53 0.052
     1.54 0.022
     1.55 0.014
     1.56 0.2
     1.57 0.025
     1.58 0.057
     1.59 0.006
     1.60 0.012
     1.61 0.021
     2 0.01
     2.01 0.005
     2.02 0.006
     2.03 0.005
     2.04 0.008
     3 0.036
     3.01 1.093
     4 0.008
     4.01 0.041
     4.02 0.011
     4.03 0.011
     4.04 0.046
     4.05 0.011
     4.06 0.012
     4.07 0.016
     4.08 0.047
     4.09 0.049
     4.10 0.004
     4.11 0.007
     4.12 1.476
     4.13 2.907
     4.14 4.194
     4.15 17.63
     4.16 0.398
     4.17 0.799
     4.18 5.617
     4.19 1.583
     4.20 0.722
     4.21 3.48
     4.22 1.381
     4.23 0.017
     4.24 0.056
     4.25 0.122
     4.26 0.051
     4.27 0.004
     4.28 0.123
     4.29 0.643
     4.30 0.05
     4.31 1.817
     4.32 3.854
     4.33 0.036
     4.34 0.019
     4.35 0.98
     4.36 0.009
     4.37 0.132
     4.38 0.024
     4.39 0.006
     4.40 0.016
     4.41 0.009
     4.42 0.024
     4.43 0.004
     4.44 0.006
     4.45 0.007
     4.46 0.005
     4.47 0.004
     4.48 0.003
     4.49 0.003
     4.50 0.006
     4.51 0.002
     4.52 0.01
     4.53 0.005
     4.54 0.014
     4.55 0.005
     4.56 0.009
     4.57 0.011
     4.58 0.0052
     4.59 0.009
     4.60 0.005
     4.61 0.239
     4.62 0.012
     4.63 0.037
     4.64 0.019
     4.65 0.014
     4.66 0.04
     4.67 0.008
     5 0.248
     6 10.42
     6.01 0.077
     6.02 2.809
     6.03 0.531
     6.04 0.282
     6.05 0.179
     6.06 0.008
     6.07 0.207
     7 0.022
     8 0.108
     8.01 0.002
     8.02 0.186
     8.03 0.911
     8.04 0.192
     8.05 0.149
     8.06 0.192
     8.07 1.845
     9 0.709
     9.01 0.038
     9.02 1.6
     9.03 0.042
     9.04 0.713
     9.05 0.406
     9.06 0.247
     9.07 0.074
     9.08 3.402
     9.09 0.162
     9.10 0.007
    10A 0.036
    10B 0.118
    11A 0.022
    11B 0.009
    12A 0.011
    12B 0.005
    13 0.057
    14 0.926
    15 0.026
    15.01 1.615
    15.02 0.096
    15.03 0.362
    15.04 2.019
    15.05 0.015
    15.06 0.012
    15.07 0.021
    15.08 0.977
    15.09 0.042
    15.10 0.034
    15.11 0.013
    15.12 0.006
    15.13 0.114
    15.14 0.062
    15.15 0.156
    15.16 5.786
    15.17 3.953
    15.18 0.02
    15.19 0.009
    15.20 0.049
    15.21 0.005
    15.22 0.053
    15.23 0.032
    15.24 0.01
    15.25 0.044
    15.26 0.008
    15.27 0.002
    15.28 4.42
    15.29 0.034
    15.30 0.014
    15.31 0.038
    15.32 0.019
    15.33 0.328
    15.34 0.003
    15.35 0.031
    15.36 0.003
    15.37 0.093
    15.38 0.05
    15.39 0.005
    15.40 0.005
    15.41 0.017
    15.42 0.006
    15.43 0.13
    15.44 0.006
    15.45 0.039
    15.46 0.018
    15.47 0.096
    15.48 0.006
    15.49 0.016
    15.50 0.006
    15.51 0.006
    15.52 0.003
    15.53 0.007
    15.54 0.28
    15.55 0.478
    15.56 0.655
    15.57 0.494
    15.58 0.005
    15.59 0.011
    15.60 1.037
    15.61 0.054
    15.62 0.068
    15.63 0.012
    15.64 0.005
    15.65 0.003
    15.66 0.013
    15.67 0.014
    15.68 0.171
    15.69 0.008
    15.70 0.007
    15.71 1.365
    15.72 0.015
    15.73 0.116
    15.74 0.012
    15.75 0.005
    15.76 0.013
    15.77 0.008
    15.78 0.009
    15.79 0.135
    15.80 0.06
    15.81 0.019
    15.82 1.995
    15.83 6.859
    15.84 0.012
    15.85 0.029
    15.86 0.019
    15.87 0.103
    15.88 0.027
    15.89 0.007
    15.90 0.007
    15.91 0.012
    15.92 0.249
    15.93 0.921
    15.94 1.018
    15.95 1.896
    15.96 0.074
    15.97 0.009
    15.98 0.013
    15.99 0.012
    16 0.015
    17 0.004
    17.01 0.085
    17.02 0.101
    17.03 0.016
    17.04 0.008
    17.05 0.006
    17.06 0.01
    17.07 0.043
    17.08 0.016
    17.09 0.058
    17.10 0.021
    17.11 0.028
    17.12 0.032
    17.13 0.031
    17.14 0.464
    17.15 0.047
    17.16 0.309
    17.17 0.004
    17.18 0.014
    17.19 0.012
    17.20 0.002
    18 6.735
    19 0.007
    19.01 0.012
    19.02 0.007
    19.03 0.008
    19.04 1.708
    19.05 0.005
    19.06 0.25
    19.07 0.024
    19.08 0.036
    19.09 0.01
    19.10 0.006
    19.11 0.008
    19.12 0.01
    19.13 0.01
    19.14 0.273
    19.15 0.02
    19.16 0.031
    19.17 0.01
    19.18 0.011
    19.19 0.005
    19.20 0.459
    19.21 0.003
    19.22 0.002
    19.23 0.025
    19.24 0.007
    19.25 0.015
    19.26 0.005
    19.27 0.006
    19.28 0.002
    19.29 0.001
    19.30 0.005
    19.31 0.002
    19.32 0.002
    19.33 0.006
    19.34 0.003
    19.35 0.002
    19.36 0.005
    19.37 0.015
    19.38 0.005
    19.39 0.007
    19.40 0.1
    19.41 0.685
    19.42 0.01
    19.43 0.014
    20 0.029
    20.01 0.305
  • Compounds of formula (I) and their pharmaceutically acceptable salts or esters thereof as described herein have IC50 values between 0.00001 μM and 1000 μM, particular compounds have IC50 values between 0.0005 μM and 500 μM, further particular compounds have IC50 values between 0.0005 μM and 50 μM, more particular compounds have IC50 values between 0.0005 μM and 5 μM. These results have been obtained by using the enzymatic assay described above.
  • The compounds of formula (I) and their pharmaceutically acceptable salts can be used as medicaments (e.g. in the form of pharmaceutical preparations). The pharmaceutical preparations can be administered internally, such as orally (e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatin capsules, solutions, emulsions or suspensions), nasally (e.g. in the form of nasal sprays) or rectally (e.g. in the form of suppositories). However, the administration can also be effected parenterally, such as intramuscularly or intravenously (e.g. in the form of injection solutions).
  • The compounds of formula (I) and their pharmaceutically acceptable salts can be processed with pharmaceutically inert, inorganic or organic adjuvants for the production of tablets, coated tablets, dragees and hard gelatin capsules. Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts etc. can be used, for example, as such adjuvants for tablets, dragees and hard gelatin capsules.
  • Suitable adjuvants for soft gelatin capsules, are, for example, vegetable oils, waxes, fats, semi-solid substances and liquid polyols, etc.
  • Suitable adjuvants for the production of solutions and syrups are, for example, water, polyols, saccharose, invert sugar, glucose, etc.
  • Suitable adjuvants for injection solutions are, for example, water, alcohols, polyols, glycerol, vegetable oils, etc.
  • Suitable adjuvants for suppositories are, for example, natural or hardened oils, waxes, fats, semi-solid or liquid polyols, etc.
  • Moreover, the pharmaceutical preparations can contain preservatives, solubilizers, viscosity-increasing substances, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • The dosage can vary in wide limits and will, of course, be fitted to the individual requirements in each particular case. In general, in the case of oral administration a daily dosage of about 0.1 mg to 20 mg per kg body weight, preferably about 0.5 mg to 4 mg per kg body weight (e.g. about 300 mg per person), divided into preferably 1-3 individual doses, which can consist, for example, of the same amounts, should be appropriate. It will, however, be clear that the upper limit given herein can be exceeded when this is shown to be indicated.
  • The invention is illustrated hereinafter by Examples, which have no limiting character.
  • In case the preparative examples are obtained as a mixture of enantiomers, the pure enantiomers can be obtained by methods described herein or by methods known to those skilled in the art, such as e.g. chiral chromatography or crystallization.
  • EXAMPLES
  • All examples and intermediates were prepared under nitrogen atmosphere if not specified otherwise.
  • ABBREVIATIONS
  • aq.=aqueous; CAS-RN=Chemical Abstracts Service Registry Number; e.r.=enantiomeric ratio; HPLC=high performance liquid chromatography; MS=mass spectrum; sat.=saturated
  • Example 1 (E)-1-[(3aS,8aR)-2-(4,5,6,7-Tetrahydro-1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one
  • Figure US20170050960A1-20170223-C00042
  • To a solution of (E)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one hydrochloride (intermediate 5; 40 mg, 102 μmol) in N,N-dimethylformamide (2 mL) were added N-methylmorpholine (51.8 mg, 512 μmol), 4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CAS-RN 33062-47-4; 17.1 mg, 102 μmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (42.8 mg, 113 μmol) at room temperature, then after 16 h the reaction mixture was partitioned between ethyl acetate and sat. aq. ammonium chloride solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (41 mg, 80%). Colourless gum, MS: 504.7 (M+H)+.
  • The following examples were prepared according to example 1, replacing (E)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one hydrochloride and 4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid by the appropriate amine and carboxylic acid reagents, respectively.
  • Carboxylic MS,
    No. Systematic Name Amine acid m/e
    1.01
    Figure US20170050960A1-20170223-C00043
    3-(3,5- dichlorophenyl)-1- ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)propan-1-one hydrochloride (intermediate 3) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 458.3 (M + H)+
    1.02
    Figure US20170050960A1-20170223-C00044
    3-(3,5- dichlorophenyl)-1- ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)propan-1-one hydrochloride (intermediate 3) 2-oxo-2,3- dihydro- benzo[d]- oxazole-6- carboxylic acid 474.1 (M + H)+
    1.03
    Figure US20170050960A1-20170223-C00045
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 460.3 (M + H)+
    1.04
    Figure US20170050960A1-20170223-C00046
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 9H- pyrido[3,4- b]indole-3- carboxylic acid (CAS-RN 74214-63-4) 509.2 (M + H)+
    1.05
    Figure US20170050960A1-20170223-C00047
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 1H-indole-5- carboxylic acid 458.3 (M + H)+
    1.06
    Figure US20170050960A1-20170223-C00048
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 9H- carbazole- 3-carboxylic acid (CAS- RN 51035-17-7) 508.3 (M + H)+
    1.07
    Figure US20170050960A1-20170223-C00049
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 1H-indazole- 5- carboxylic acid 459.2 (M + H)+
    1.08
    Figure US20170050960A1-20170223-C00050
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 1H-benzo[d]- imidazole-5- carboxylic acid 459.3 (M + H)+
    1.09
    Figure US20170050960A1-20170223-C00051
    trans-3,5- dichlorobenzyl hexahydro-1H- pyrrolo[3,4-c]pyridine- 5(6H)-carboxylate hydrochloride (intermediate 1.1) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 474.4 (M + H)+
    1.10
    Figure US20170050960A1-20170223-C00052
    cis-3,5-dichlorobenzyl hexahydro-1H- pyrrolo[3,4-c]pyridine- 5(6H)-carboxylate hydrochloride (intermediate 1.2) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 474.4 (M + H)+
    1.11
    Figure US20170050960A1-20170223-C00053
    (3aR,8aS)-3,5- dichlorobenzyl octahydropyrrolo[3,4- d]azepine-6(7H)- carboxylate hydrochloride (intermediate 1.3) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 488.4 (M + H)+
    1.12
    Figure US20170050960A1-20170223-C00054
    (3aR,6aS)-2-(3- chlorophenethyl- sulfonyl)octahydro- pyrrolo[3,4-c]pyrrole (intermediate 21) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 460.5 (M + H)+
    1.13
    Figure US20170050960A1-20170223-C00055
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 4,5,6,7- tetrahydro- 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid (CAS-RN 33062-47-4) 464.5 (M + H)+
    1.14
    Figure US20170050960A1-20170223-C00056
    3-(3-chlorophenyl)- 2,2-dimethyl-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)propan-1-one (intermediate 26.02) 1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid 480.6 (M + H)+
    1.15
    Figure US20170050960A1-20170223-C00057
    (E)-3-(3-fluoro-4- (trifluoromethoxy)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.03) 1H-benzo[d]- imidazole-5- carboxylic acid 518.6 (M + H)+
    1.16
    Figure US20170050960A1-20170223-C00058
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- (4-(trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5) (3aSR,6SR, 7aSR)-2- oxo- octahydro- benzo[d]ox- azole-6- carboxylic acid (intermediate 29) 522.7 (M + H)+
    1.17
    Figure US20170050960A1-20170223-C00059
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- (4-(trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5) benzo[c]- [1,2,5]oxa- diazole-5- carboxylic acid 501.5 (M + H)
    1.18
    Figure US20170050960A1-20170223-C00060
    (E)-3-(2-methyl-4- (trifluoromethoxy)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.05) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 514.7 (M + H)+
    1.19
    Figure US20170050960A1-20170223-C00061
    (E)-3-(3-fluoro-4- methoxyphenyl)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.06) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 464.4 (M + H)+
    1.20
    Figure US20170050960A1-20170223-C00062
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- (4-(trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5) (−)-(S)- 4,5,6,7- tetrahydro- 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 504.6 (M + H)+
    1.21
    Figure US20170050960A1-20170223-C00063
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- (4-(trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5) (+)-(R)- 4,5,6,7- tetrahydro- 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 504.6 (M + H)+
    1.22
    Figure US20170050960A1-20170223-C00064
    (E)-3-(2- isopropylphenyl)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.07) (+)-(R)- 4,5,6,7- tetrahydro- 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 458.3 (M + H)+
    1.23
    Figure US20170050960A1-20170223-C00065
    trans-octahydro- pyrrolo[3,4-c]pyridine- 5-carboxylic acid 3- chloro-5- methanesulfonyl- benzyl ester hydrochloride (intermediate 1.5) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 518.6 (M + H)+
    1.24
    Figure US20170050960A1-20170223-C00066
    trans-octahydro- pyrrolo[3,4-c]pyridine- 5-carboxylic acid 4- trifluoromethoxy- benzyl ester hydrochloride (intermediate 1.4) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 490.6 (M + H)+
    1.25
    Figure US20170050960A1-20170223-C00067
    1-(trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl)-2-(4-(trifluoro- methoxy)phenoxy)- ethanone hydrochloride (intermediate 5.4) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 490.6 (M + H)+
    1.26
    Figure US20170050960A1-20170223-C00068
    (E)-1-(trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl)-3-(4-(trifluoro- methoxy)phenyl)prop- 2-en-1-one hydrochloride (intermediate 5.3) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 486.7 (M + H)+
    1.27
    Figure US20170050960A1-20170223-C00069
    (E)-3-(3-chloro-5- (trifluoromethyl)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.10) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 518.6 (M + H)+
    1.28
    Figure US20170050960A1-20170223-C00070
    (E)-3-(4-methoxy-2- (trifluoromethyl)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.09) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 514.7 (M + H)+
    1.29
    Figure US20170050960A1-20170223-C00071
    (E)-3-(2- cyclopropylphenyl)-1- (trans- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.08) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 456.7 (M + H)+
    1.30
    Figure US20170050960A1-20170223-C00072
    trans-(4-fluoro-2- (trifluoromethyl)- benzyl)hexahydro-1H- pyrrolo[3,4-c]pyridine- 5(6H)-carboxylate (intermediate 32.3) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 492.6 (M + H)+
    1.31
    Figure US20170050960A1-20170223-C00073
    trans-(2-cyclopropyl-4- (trifluoromethyl)- benzyl)hexahydro-1H- pyrrolo[3,4-c]pyridine- 5(6H)-carboxylate (intermediate 32.2) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 514.6 (M + H)+
    1.32
    Figure US20170050960A1-20170223-C00074
    1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-2- (2-(trifluoromethoxy)- phenoxy)ethanone (intermediate 36.07) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 504.2 (M + H)+
    1.33
    Figure US20170050960A1-20170223-C00075
    trans-(2-methoxy-4- (trifluoromethoxy)- benzyl)hexahydro-1H- pyrrolo[3,4-c]pyridine- 5(6H)-carboxylate (intermediate 32.1) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 520.6 (M + H)+
    1.34
    Figure US20170050960A1-20170223-C00076
    4-(2-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-2- oxoethoxy)-3- (trifluoromethyl)- benzonitrile (intermediate 36.05) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 511.1 (M − H)
    1.35
    Figure US20170050960A1-20170223-C00077
    2-(4-chloro-2- isopropyl-5- methylphenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.06) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 510.2 (M + H)+
    1.36
    Figure US20170050960A1-20170223-C00078
    2-(4-methyl-2-(1- methylpyrrolidin-3- yl)phenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.04) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 517.3 (M + H)+
    1.37
    Figure US20170050960A1-20170223-C00079
    2-(2-chloro-4- fluorophenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.03) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 470.1 (M − H)
    1.38
    Figure US20170050960A1-20170223-C00080
    2-(2-chloro-4- (trifluoromethyl)- phenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.10) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 522.6 (M + H)+
    1.39
    Figure US20170050960A1-20170223-C00081
    2-(6-isopropyl-3,3- dimethyl-2,3-dihydro- 1H-inden-5-yloxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.01) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 530.7 (M + H)+
    1.40
    Figure US20170050960A1-20170223-C00082
    2-(2-fluoro-4- (trifluoromethoxy)- phenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 520.6 (M − H)
    1.41
    Figure US20170050960A1-20170223-C00083
    2-(5-chloro-2- (trifluoromethyl)- phenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 522.5 (M + H)+
    1.42
    Figure US20170050960A1-20170223-C00084
    2-(2-tert-butyl-4- methoxyphenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.08) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 506.6 (M + H)+
    1.43
    Figure US20170050960A1-20170223-C00085
    3-isopropyl-4-(2- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-2- oxoethoxy)benzonitrile (intermediate 36.09) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 487.6 (M + H)+
    1.44
    Figure US20170050960A1-20170223-C00086
    3-(3-fluoro-4-(2,2,2- trifluoroethoxy)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)propan-1-one (intermediate 35.2) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 532.2 (M + H)+
    1.45
    Figure US20170050960A1-20170223-C00087
    3-(2-fluoro-4-(2,2,2- trifluoroethoxy)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)propan-1-one (intermediate 26.12) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 534.2 (M + H)+
    1.46
    Figure US20170050960A1-20170223-C00088
    (3aR,8aS)-3-fluoro-4- (2,2,2-trifluoroethoxy)- benzyl octahydropyrrolo[3,4- d]azepine-6(7H)- carboxylate (intermediate 32.4) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 536.2 (M + H)+
    1.47
    Figure US20170050960A1-20170223-C00089
    (3aR,8aS)-2-fluoro-4- (2,2,2-trifluoroethoxy)- benzyl octahydro- pyrrolo[3,4-d]azepine- 6(7H)-carboxylate hydrochloride (intermediate 1.7) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 536.6 (M + H)+
    1.48
    Figure US20170050960A1-20170223-C00090
    (3aR,8aS)-4-(2,2,2- trifluoroethoxy)benzyl octahydropyrrolo[3,4- d]azepine-6(7H)- carboxylate hydrochloride (intermediate 1.6) 1H-benzo[d]- [1,2,3] triazole- 5-carboxylic acid 518.6 (M + H)+
    1.49
    Figure US20170050960A1-20170223-C00091
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 3H-1,2,3- triazolo[4,5- b]pyridine-6- carboxylic acid (CAS-RN 1260385- 82-7) 475.5 (M − H)
    1.50
    Figure US20170050960A1-20170223-C00092
    1-((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)-3- (4-(trifluoromethoxy)- phenyl)propan-1-one dihydrochloride (intermediate 5.5) 1H-[1,2,3]tri- azolo[4,5- b]pyridine-5- carboxylic acid (CAS-RN 1216149- 55-1) 475.4 (M + H)+
    1.51
    Figure US20170050960A1-20170223-C00093
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 3H-[1,2,3]tri- azolo[4,5- c]pyridine-6- carboxylic acid (intermediate 45) 477.4 (M + H)+
    1.52
    Figure US20170050960A1-20170223-C00094
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 4-fluoro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.2) 494.4 (M + H)+
    1.53
    Figure US20170050960A1-20170223-C00095
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 7-fluoro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.1) 494.6 (M + H)+
    1.54
    Figure US20170050960A1-20170223-C00096
    (3aS,6aS)-4- (trifluoromethoxy)- benzyl hexahydro- pyrrolo[3,4-c]pyrrole- 2(1H)-carboxylate hydrochloride (intermediate 1.8) 6-fluoro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43) 494.5 (M + H)+
    1.55
    Figure US20170050960A1-20170223-C00097
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 4-chloro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.5) 510.4 (M + H)+
    1.56
    Figure US20170050960A1-20170223-C00098
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 6-(trifluoro- methyl)-1H- benzo [d][1,2,3] triazole-5- carboxylic acid (intermediate 43.4) 542.4 (M − H)
    1.57
    Figure US20170050960A1-20170223-C00099
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 4-methyl-1H- benzo[d] [1,2,3] triazole-5- carboxylic acid (intermediate 43.3) 488.2 (M − H)
    1.58
    Figure US20170050960A1-20170223-C00100
    (3aS,6aS)-4-(trifluoro- methoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 6-methyl-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.6) 488.2 (M − H)
    1.59
    Figure US20170050960A1-20170223-C00101
    1-((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)-3- (4-(trifluoromethoxy)- phenyl)propan-1-one dihydrochloride (intermediate 5.5) 4-fluoro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.2) 492.2 (M + H)+
    1.60
    Figure US20170050960A1-20170223-C00102
    (4-ethoxyquinolin-2- yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 5.6) (R)-4,5,6,7- tetrahydro- 1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 30A) 461.3 (M + H)+
    1.61
    Figure US20170050960A1-20170223-C00103
    (4-ethoxyquinolin-2- yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 5.6) 4-fluoro-1H- benzo[d]- [1,2,3] triazole- 5-carboxylic acid (intermediate 43.2) 475.3 (M + H)+
  • Example 2 trans-3,5-Dichlorobenzyl 2-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate
  • Figure US20170050960A1-20170223-C00104
  • To a solution of trans-3,5-dichlorobenzyl hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate hydrochloride (intermediate 1.1; 50 mg, 137 μmol) in N,N-dimethylformamide (1 mL) were added 4-methylmorpholine (69.1 mg, 684 μmol), 4-amino-3-hydroxybenzoic acid (20.9 mg, 137 μmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (62.4 mg, 164 μmol) at room temperature, then after 18 h 1,1′-carbonyldiimidazole (50.3 mg, 301 μmol) was added. After 1 h, the reaction mixture was partitioned between ethyl acetate and 1 M aq. hydrochloric acid solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo. Chromatography (silica gel, gradient dichloromethane dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (35 mg, 52%). Light yellow gum, MS: 490.5 (M+H)+.
  • The following examples were prepared according to example 2, replacing trans-3,5-dichlorobenzyl hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate hydrochloride by the appropriate starting material.
  • MS,
    Ex. Systematic Name Starting material m/e
    2.01
    Figure US20170050960A1-20170223-C00105
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 476.2 (M + H)+
    2.02
    Figure US20170050960A1-20170223-C00106
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3-(4- (trifluoromethoxy)- phenyl)prop-2-en-1-one hydrochloride (intermediate 5) 514.6 (M − H)
    2.03
    Figure US20170050960A1-20170223-C00107
    1-((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)-3-(4- (trifluoromethoxy)- phenyl)propan-1-one dihydrochloride (intermediate 5.5) 490.4 (M + H)+
    2.04
    Figure US20170050960A1-20170223-C00108
    (3aS,6aS)-4- (trifluoromethoxy)benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 492.6 (M + H)+
  • Example 3 (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00109
  • A mixture of 4-((3aR,5s,6aS)-2-((3,5-dichlorobenzyloxy)carbonyl)octahydrocyclo-penta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid (intermediate 12.1; 63 mg, 135 μmol), triethylamine (13.7 mg, 135 μmol) and diphenylphosphoryl azide (37.2 mg, 135 μmol) in toluene (2 mL) was heated at 110° C. for 20 h. After evaporation of the solvent, the residue was purified by chromatography (silica gel; heptane-ethyl acetate gradient) to produce the title compound (19 mg, 30%). White solid, MS: 463.2 (M+H)+.
  • Example 3.01 (3aR,5r,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00110
  • The title compound was produced in analogy to example 3 from 4-((3aR,5r,6aS)-2-((3,5-dichlorobenzyloxy)carbonyl)octahydrocyclopenta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid (intermediate 12). White solid, MS: 463.2 (M+H)+.
  • Example 4 (3aS,6aS)-3,5-Dichlorobenzyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-pyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00111
  • To a solution of (3,5-dichlorophenyl)methanol (21.4 mg, 121 μmol) in acetonitrile (5 mL) was added N,N′-carbonyldiimidazole (20.6 mg, 127 μmol) at room temperature, then after 3 h triethylamine (61.3 mg, 606 μmol) and (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone dihydrochloride (intermediate 2.4; 40 mg, 121 μmol) were added and the reaction mixture was heated at reflux. After 16 h the reaction mixture was partitioned between ethyl acetate and sat. aq. ammonium chloride, the organic layer was washed with sat. aq. sodium hydrogen carbonate solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (38 mg, 68%). Light yellow foam, MS: 460.4 (M+H)+.
  • The following compounds were produced in analogy to example 4, replacing (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone dihydrochloride and (3,5-dichlorophenyl)methanol by the appropriate amine and alcohol precursors, respectively.
  • No. Systematic Name Amine Alcohol MS, m/e
    4.01
    Figure US20170050960A1-20170223-C00112
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride (intermediate 2.1) (3-(methyl- sulfonyl)-5- (trifluorometh- yl)phenyl)- methanol (CAS-RN 1003843-94-94) 552.5 (M + H)+
    4.02
    Figure US20170050960A1-20170223-C00113
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) (3,5-dichloro- phenyl)- methanol 460.5 (M + H)+
    4.03
    Figure US20170050960A1-20170223-C00114
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 504.4 (M + H)+
    4.04
    Figure US20170050960A1-20170223-C00115
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 504.4 (M + H)+
    4.05
    Figure US20170050960A1-20170223-C00116
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (3-(methyl- sulfonyl)-5- (trifluoro- methyl)- phenyl)- methanol (CAS-RN 1003843-94-4) 566.2 (M + H)+
    4.06
    Figure US20170050960A1-20170223-C00117
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 532.3 (M + H)+
    4.07
    Figure US20170050960A1-20170223-C00118
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-(methyl- sulfonyl)-5- (trifluoro- methyl)- phenyl)- methanol (CAS-RN 1003843-94-4) 538.4 (M + H)+
    4.08
    Figure US20170050960A1-20170223-C00119
    (1H- benzo[d][1,2,3]triazol- 5-yl)(cis-tetrahydro- 1H-pyrrolo[3,4- c]pyridin- 5(6H,7H,7aH)- yl)methanone hydrochloride (intermediate 2) (3,5-dichloro- phenyl)- methanol 474.5 (M + H)+
    4.09
    Figure US20170050960A1-20170223-C00120
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone hydrochloride (intermediate 2.1) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 518.4 (M + H)+
    4.10
    Figure US20170050960A1-20170223-C00121
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans-tetrahydro- 1H-pyrrolo[3,4- c]pyridin- 5(6H,7H,7aH)- yl)methanone hydrochloride (intermediate 2.1) (3,5-dichloro- phenyl)- methanol 474.4 (M + H)+
    4.11
    Figure US20170050960A1-20170223-C00122
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azpin-6(7H)- yl)methanone hydrochloride (intermediate 2.3) (3,5-dichloro- phenyl)- methanol 486.4 (M − H)
    4.12
    Figure US20170050960A1-20170223-C00123
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 1-(3-chloro- phenyl)- cyclopropanol (CAS-RN 43187-67-3) 452.5 (M + H)+
    4.13
    Figure US20170050960A1-20170223-C00124
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) bicyclo[4.1.0]- heptan-7- ylmethanol 410.5 (M + H)+
    4.14
    Figure US20170050960A1-20170223-C00125
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2-adamantane- methanol (CAS-RN 22635-61-6) 450.5 (M + H)+
    4.15
    Figure US20170050960A1-20170223-C00126
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (1-fluorocyclo- hexayl)- methanol (CAS-RN 117169-30-9) 414.4 (M − H)
    4.16
    Figure US20170050960A1-20170223-C00127
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2-(2- adamantyl)- ethanol (CAS- NR 39555-28- 7) 464.5 (M + H)+
    4.17
    Figure US20170050960A1-20170223-C00128
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 1-adamantane- ethanol 464.5 (M + H)+
    4.18
    Figure US20170050960A1-20170223-C00129
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 1-adamantane- methanol 450.5 (M + H)+
    4.19
    Figure US20170050960A1-20170223-C00130
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) cyclohexyl- methanol 398.5 (M + H)+
    4.20
    Figure US20170050960A1-20170223-C00131
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-(2,2,2- trifluoro-1- methoxy- ethyl)phenyl)- methanol (intermediate 19) 504.5 (M + H)+
    4.21
    Figure US20170050960A1-20170223-C00132
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2,2,2-trifluoro- 1-(3-(hydroxy methyl)- phenyl)ethanol (intermediate 18) 490.5 (M + H)+
    4.22
    Figure US20170050960A1-20170223-C00133
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2-cyclohexyl- ethanol 412.5 (M + H)+
    4.23
    Figure US20170050960A1-20170223-C00134
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-fluoro-5- (trifluoro- methoxy)- phenyl)- methanol 494.4 (M + H)+
    4.24
    Figure US20170050960A1-20170223-C00135
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 3-chloro-5- (hydroxy- methyl)- benzonitrile (CAS-RN 1021871-35-1) 451.4 (M + H)+
    4.25
    Figure US20170050960A1-20170223-C00136
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-(trifluoro- methoxy)- phenyl)- methanol 476.4 (M + H)+
    4.26
    Figure US20170050960A1-20170223-C00137
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-fluoro-5- (trifluoro- methyl)- phenyl)- methanol 478.5 (M + H)+
    4.27
    Figure US20170050960A1-20170223-C00138
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-chloro-5- (trifluoro- methoxy)- phenyl)- methanol 510.4 (M + H)+
    4.28
    Figure US20170050960A1-20170223-C00139
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (4-fluoro-3- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 86256-18-0) 494.5 (M + H)+
    4.29
    Figure US20170050960A1-20170223-C00140
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 3-fluoro-5- (hydroxy- methyl)- benzonitrile (CAS-RN 1021871-34-0) 435.4 (M + H)+
    4.30
    Figure US20170050960A1-20170223-C00141
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (3-chloro-5- methoxy- phenyl)- methanol (CAS-RN 82477-68-7) 456.5 (M + H)+
    4.31
    Figure US20170050960A1-20170223-C00142
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2-norbornane- methanol (CAS-RN 6968-75-8) 423.2 (M + H)+
    4.32
    Figure US20170050960A1-20170223-C00143
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (1R,4S)- bicyclo[2.2.1]- heptan-2- ylmethanol 410.2 (M + H)+
    4.33
    Figure US20170050960A1-20170223-C00144
    (3aR,5s,6aS)-N-((1H- 1,2,3-triazol-4- yl)methyl)octahydro- cyclopenta[c]pyrrole- 5-carboxamide 2,2,2- trifluoroacetate (intermediate 4) (3,5-dichloro- phenyl)- methanol 438.4 (M + H)+
    4.34
    Figure US20170050960A1-20170223-C00145
    (6,7-dihydro-1H- [1,2,3]triazolo[4,5- c]pyridin-5(4H)- yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 25) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 509.5 (M + H)+
    4.35
    Figure US20170050960A1-20170223-C00146
    (3aR,6aS)-N-((1H- 1,2,3-triazol-4- yl)methyl)hexahydro- pyrrolo[3,4-c]pyrrole- 2(1H)-carboxamide 2,2,2-trifluoroacetate (intermediate 20) (3,5-dichloro- phenyl)- methanol 440.3 (M + H)+
    4.36
    Figure US20170050960A1-20170223-C00147
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(trifluoro- methoxy)- phenyl)- methanol 476.5 (M + H)+
    4.37
    Figure US20170050960A1-20170223-C00148
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(hydroxy- methyl)- benzonitrile 415.5 (M − H)
    4.38
    Figure US20170050960A1-20170223-C00149
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(1,1,2,2- tetrafluoro- ethoxy)- phenyl)- methanol (CAS-RN 773868-39-6) 508.4 (M + H)+
    4.39
    Figure US20170050960A1-20170223-C00150
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(difluoro- methoxy)-3- fluorophenyl)- methanol (CAS-RN 1242252-59-0) 476.4 (M + H)+
    4.40
    Figure US20170050960A1-20170223-C00151
    (1H-[1,2,3]tri- azolo[4,5-b]pyridin-5- yl)((3aR,6aR)-hexa- hydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.6) (3-fluoro-4- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 886498-99-3) 495.3 (M + H)+
    4.41
    Figure US20170050960A1-20170223-C00152
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(difluoro- methoxy)- phenyl)- methanol (CAS-RN 170924-50-2) 458.6 (M + H)+
    4.42
    Figure US20170050960A1-20170223-C00153
    (1H-[1,2,3]tri- azolo[4,5-b]pyridin-5- yl)((3aR,6aR)-hexa- hydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.6) (4-(trifluoro- methoxy)- phenyl)- methanol 477.6 (M + H)+
    4.43
    Figure US20170050960A1-20170223-C00154
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (3-fluoro-4- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 886498-99-3) 494.4 (M + H)+
    4.44
    Figure US20170050960A1-20170223-C00155
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(2,2,2- trifluoro- ethoxy)- phenyl)- methanol (CAS-RN 1020949-12-5) 490.4 (M + H)+
    4.45
    Figure US20170050960A1-20170223-C00156
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (5-(trifluoro- methoxy)- pyridin-2- yl)methanol (CAS-RN 31181-85-8) 477.4 (M + H)+
    4.46
    Figure US20170050960A1-20170223-C00157
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 4-(hydroxy- methyl)-3- isopropyl- benzonitrile (intermediate 41) 463.5 (M + H)+
    4.47
    Figure US20170050960A1-20170223-C00158
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 4-(hydroxy- methyl)-5- isopropyl-2- methyl- benzonitrile (intermediate 41.1) 477.5 (M + H)+
    4.48
    Figure US20170050960A1-20170223-C00159
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (2-fluoro-4- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 1240257-07-1) 498.4 (M + H)+
    4.49
    Figure US20170050960A1-20170223-C00160
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (2-fluoro-4- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 1240257-07-1) 494.6 (M + H)+
    4.50
    Figure US20170050960A1-20170223-C00161
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-ethoxy-4- (hydroxy- methyl)- benzonitrile (intermediate 41.2) 459.6 (M + H)+
    4.51
    Figure US20170050960A1-20170223-C00162
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (3-fluoro-4- (trifluoro- methoxy)- phenyl)- methanol (CAS-RN 886498-99-3) 496.4 (M − H)
    4.52
    Figure US20170050960A1-20170223-C00163
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(hydroxy- methyl)-3- isopropyl- benzonitrile (intermediate 41) 459.5 (M + H)+
    4.53
    Figure US20170050960A1-20170223-C00164
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(hydroxy- methyl)-5- isopropyl-2- methylbenzo- nitrile (intermediate 41.1) 473.5 (M + H)+
    4.54
    Figure US20170050960A1-20170223-C00165
    (6,7-dihydro-1H- [1,2,3]triazolo[4,5- c]pyridin-5(4H)- yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 25) (4-(trifluoro- methoxy)- phenyl)- methanol 481.6 (M + H)+
    4.55
    Figure US20170050960A1-20170223-C00166
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) (4-(trifluoro- methoxy)- phenyl)- methanol 476.4 (M + H)+
    4.56
    Figure US20170050960A1-20170223-C00167
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (2-fluoro-4- (trifluoro- methyl)- phenyl)- methanol 478.4 (M + H)+
    4.57
    Figure US20170050960A1-20170223-C00168
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-(trifluoro- methyl)- phenyl)- methanol 460.5 (M + H)+
    4.58
    Figure US20170050960A1-20170223-C00169
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (4-(trifluoro- methoxy)- phenyl)- methanol 480.5 (M + H)+
    4.59
    Figure US20170050960A1-20170223-C00170
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (4-(trifluoro- methyl)- phenyl)- methanol 464.5 (M + H)+
    4.60
    Figure US20170050960A1-20170223-C00171
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (3-chloro-5- (methyl- sulfonyl)- phenyl)- methanol (intermediate 17) 508.4 (M + H)+
    4.61
    Figure US20170050960A1-20170223-C00172
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4- (hydroxymeth- yl)-3- (methylsulfonyl) benzonitrile (intermediate 48) 493.2 (M − H)
    4.62
    Figure US20170050960A1-20170223-C00173
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 5-ethoxy-2- fluoro-4- (hydroxy- methyl)- benzonitrile (intermediate 49) 477.3 (M − H)
    4.63
    Figure US20170050960A1-20170223-C00174
    (3aS,6aS)-4- (trifluoromethoxy)- benzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) 4-methoxy- 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid (intermediate 45.1) 504.3 (M − H)
    4.64
    Figure US20170050960A1-20170223-C00175
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-cyclobutoxy- 4-(hydroxy- methyl)- benzonitrile (intermediate 46) 487.3 (M + H)+
    4.65
    Figure US20170050960A1-20170223-C00176
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(hydroxy- methyl)-3- isopropoxy)- benzonitrile (intermediate 46.1) 475.3 (M + H)+
    4.66
    Figure US20170050960A1-20170223-C00177
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(hydroxy- methyl)-3- (2,2,2- trifluoro- ethoxy)- benzonitrile (intermediate 47.1) 515.3 (M + H)+
    4.67
    Figure US20170050960A1-20170223-C00178
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (4-chloro-2- ethoxy-5- fluorophenyl) methanol (intermediate 47) 488.2 (M + H)+
  • Example 5 (3aR,5r,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylamino)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00179
  • Sodium triacetoxyborohydride (121 mg, 556 μmol) was added at room temperature to a solution of (3aR,6aS)-3,5-dichlorobenzyl 5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (intermediate 13; 128 mg, 371 μmol), 6-aminobenzo[d]oxazol-2(3H)-one (CAS-RN 22876-17-1; 57.3 mg, 371 μmol) and acetic acid (134 mg, 2.22 mmol) in 1,2-dichloroethane (2.5 mL), then after 16 h another portion of sodium triacetoxyborohydride (39.3 mg, 185 μmol) was added. After another 6 h the reaction mixture was partitioned between ethyl acetate and sat. aq. sodium hydrogen carbonate solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25), followed by HPLC chromatography (Reprosil Chiral-NR, heptane/ethanol 3:2) produced the title compound (70 mg, 41%). White solid, MS: 462.2 (M+H)+.
  • Example 6 (3aR,6aS)-3,5-Dichlorobenzyl 5-((1H-benzo[d]imidazol-5-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00180
  • To a white suspension of (3aR,6aS)-3,5-dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride (intermediate 1; 35 mg, 99.5 μmol) and 1H-benzo[d]imidazole-5-carbaldehyde (15.0 mg, 99.5 μmol) in tetrahydrofuran (2 mL) were added sodium triacetoxyborohydride (31.6 mg, 149 μmol) and acetic acid (9.0 mg, 150 μmol), then after 3 h the reaction mixture was partitioned between ethyl acetate and sat. aq. sodium hydrogen carbonate solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (42 mg, 95%). White foam, MS: 445.3 (M+H)+.
  • The following compounds were produced in analogy to example 6, replacing (3aR,6aS)-3,5-dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride and 1H-benzo[d]imidazole-5-carbaldehyde by the appropriate amine and aldehyde reagents, respectively.
  • No. Systematic Name Amine Aldehyde MS, m/e
    6.01
    Figure US20170050960A1-20170223-C00181
    3-(3,5-dichloro- phenyl)-1-((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)propan-1-one hydrochloride (intermediate 3) 1H-benzo[d]- [1,2,3]triazole- 5- carbaldehyde (CAS-RN 70938-42-0) 444.5 (M + H)+
    6.02
    Figure US20170050960A1-20170223-C00182
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (interemediate 1) 1H-indazole-5- carbaldehyde 445.2 (M + H)+
    6.03
    Figure US20170050960A1-20170223-C00183
    (3aR,6aS)-3,5- dichlorobenzyl hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1) 2-oxo-2,3- dihydro- benzo[d] oxazole-6- carbaldehyde (CAS-RN 54903-15-0) 462.2 (M + H)+
    6.04
    Figure US20170050960A1-20170223-C00184
    3-(3,5-dichloro- phenyl)-1-((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)propan-1-one hydrochloride (intermediate 3) 2-oxo-2,3- dihydro- benzo[d] oxazole-6- carbaldehyde (CAS-RN 54903-15-0) 460.3 (M + H)+
    6.05
    Figure US20170050960A1-20170223-C00185
    4-((E)-3-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- oxoprop-1- enyl)benzonitrile hydrochloride (intermediate 5.1) 1H-benzo[d]- [1,2,3]triazole- 5- carbaldehyde (CAS-RN 70938-42-0) 427.6 (M + H)+
    6.06
    Figure US20170050960A1-20170223-C00186
    (E)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)-yl)-3- (4-(trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5) 1H-benzo[d]- [1,2,3]triazole- 5- carbaldehyde (CAS-RN 70938-42-0) 485.5 (M + H)+
    6.07
    Figure US20170050960A1-20170223-C00187
    (E)-1-(trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl)-3-(4- (trifluoromethoxy)- phenyl)prop-2-en-1- one hydrochloride (intermediate 5.3) 1H-benzo[d]- [1,2,3]triazole- 5- carbaldehyde (CAS-RN 70938-42-0) 472.7 (M + H)+
  • Example 7 (3aR,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylsulfonyl)hexa-hydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00188
  • To a suspension of (3aR,6aS)-3,5-dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride (intermediate 1; 40 mg, 114 μmol) and pyridine (45.0 mg, 569 μmol) in acetone (2 mL) was added 2-oxo-2,3-dihydrobenzo[d]oxazole-6-sulfonyl chloride (25.2 mg, 108 μmol) at room temperature, then after 40 h the reaction mixture was partitioned between sat. aq. sodium hydrogencarbonate solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. The residue was dissolved in ethyl acetate, then after 40 min the suspension formed was treated with ethyl acetate/heptane 1:1 and the precipitate was collected by filtration to afford the title compound (24 mg, 41%). White solid, MS: 512.2 (M+H)+.
  • Example 8 (3aR,6aS)-3,5-Dichlorobenzyl 5-(4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Figure US20170050960A1-20170223-C00189
  • To a suspension of 4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine (CAS-RN 706757-05-3; 52.5 mg, 423 μmol) in dichloromethane (8 mL) was added a solution of (3aR,6aS)-3,5-dichlorobenzyl 5-(chlorocarbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (intermediate 9; 168 mg, 423 μmol) in dichloromethane (2 mL) dropwise at room temperature, then after 1 h, N,N-dimethylformamide (1 mL) was added. After 96 h, the reaction mixture was washed with sat. aq. ammonium chloride solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (136 mg, 69%). Colourless oil, MS: 465.5 (M+H)+.
  • The following examples were produced in analogy to example 8, replacing (3aR,6aS)-3,5-dichlorobenzyl 5-(chlorocarbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate by (3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carbonyl chloride (intermediate 9.1) and 4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine by the appropriate amine precursor.
  • Ex. Systematic Name Amine MS, m/e
    8.01
    Figure US20170050960A1-20170223-C00190
    4,5,6,7-tetrahydro-1H- [1,2,3]triazolo[4,5- c]pyridine (CAS-RN 706757-05-3) 505.7 (M + H)+
    8.02
    Figure US20170050960A1-20170223-C00191
    4,5,6,7-tetrahydro- 1H-pyrazolo[4,3- c]pyridine dihydrochloride (CAS-RN 157327- 44-1) 504.7 (M + H)+
    8.03
    Figure US20170050960A1-20170223-C00192
    cis-hexahydro- oxazolo[5,4- c]pyridin-2(1H)-one hydrochloride (intermediate 28) 523.5 (M + H)+
    8.04
    Figure US20170050960A1-20170223-C00193
    5,6,7,8-tetrahydro- 1,6-naphthyridin- 2(1H)-one hydrochloride (CAS-RN 1211505- 91-7) 531.6 (M + H)+
    8.05
    Figure US20170050960A1-20170223-C00194
    (3aR,7aR)- hexahydro- oxazolo[5,4- c]pyridin-2(1H)-one hydrochloride (intermediate 27) 523.6 (M + H)+
    8.06
    Figure US20170050960A1-20170223-C00195
    5,6,7,8-tetrahydro- 1,6-naphthyridine dihydrochloride (CAS-RN 348623- 30-3) 515.5 (M + H)+
    8.07
    Figure US20170050960A1-20170223-C00196
    2-(trifluoromethyl)- 5,6,7,8-tetrahydro- [1,2,4]triazolo[1,5- a]pyrazine (CAS-RN 681249-57-0) 573.7 (M + H)+
  • Example 9 (3aR,8aS)—N-((1H-1,2,3-Triazol-5-yl)methyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)-acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide
  • Figure US20170050960A1-20170223-C00197
  • A solution of bis(trichloromethyl)-carbonate (73.7 mg, 248 μmol) in ethyl acetate (10 mL) was added dropwise at 0° C. over a period of 5 minutes to a solution of (E)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one (intermediate 5; 176 mg, 497 μmol) in tetrahydrofuran (5 mL). The ice bath was removed, then after 30 min the reaction mixture was heated at reflux for 2 h. After concentration under vacuum, the residue was dissolved in tetrahydrofuran (7 mL), then after addition of (1H-1,2,3-triazol-4-yl)methanamine hydrochloride (66.8 mg, 497 μmol) and triethylamine (251 mg, 2.48 mmol) the reaction mixture was stirred at room temperature for 17 hours and then partitioned between sat. aq. sodium hydrogen carbonate solution and ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane/ethyl acetate 4:1, then dichloromethane/methanol 95:5) afforded the title compound (68 mg, 28%). White solid, MS: 479.5 (M+H)+.
  • The following examples were produced in analogy to example 8, replacing (E)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one by the appropriate starting material and (1H-1,2,3-triazol-4-yl)methanamine hydrochloride by the appropriate amine reagent.
  • Amine MS,
    Ex. Systematic Name Starting material reagent m/e
    9.01
    Figure US20170050960A1-20170223-C00198
    (E)-1-((3aR,8aS)- octahydro- pyrrolo[3,4- d]azepin-6(7H)- yl)-3-(4- (trifluoromethoxy)- phenyl)prop-2- en-1-one (intermediate 5) (1H-1,2,3- triazol-4-yl)- methanamine hydrochloride 479.5 (M + H)+
    9.02
    Figure US20170050960A1-20170223-C00199
    (E)-1-((3aR,6aS)- hexahydropyrrolo [3,4-c]pyrrol- 2(1H)-yl)-3- (4-(trifluoro- methoxy)- phenyl)prop- 2-en-1- one (intermediate 26.01) (1H-1,2,3- triazol-4-yl)- methanamine hydrochloride 451.5 (M + H)+
    9.03
    Figure US20170050960A1-20170223-C00200
    (E)-3-(3-fluoro-4- (trifluoromethoxy) phenyl)-1- ((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)- yl)prop-2-en- 1-one (intermediate 26.03) (1H-1,2,3- triazol-4-yl)- methanamine hydrochloride 497.6 (M + H)+
    9.04
    Figure US20170050960A1-20170223-C00201
    (E)-1-((3aR,8aS)- octahydropyrrolo [3,4-d] azepin-6(7H)- yl)-3-(4- (trifluoro- methoxy)- phenyl)prop-2- en-1-one hydrochloride (intermediate 5) 1H-1,2,4- triazole-5- methanamine dihydro- chloride (CAS-RN 859791- 21-2) 479.2 (M + H)+
    9.05
    Figure US20170050960A1-20170223-C00202
    (E)-1-((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)-yl)-3- (4-(trifluoro- methoxy)- phenyl)prop- 2-en-1-one hydrochloride (intermediate 5) 4,5,6,7- tetrahydro- [1,2,3] triazolo[1,5- a]pyrazine hydrochloride (CAS-RN 123308-28-1) 549.2 (M + HCOO)
    9.06
    Figure US20170050960A1-20170223-C00203
    (E)-1-((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)-yl)-3- (4-(trifluoro- methoxy)- phenyl)prop-2- en-1-one hydrochloride (intermediate 5) 4,5,6,7- tetrahydro-3H- imidazo[4,5- c]pyridine (CAS-RN 6882-74-2) 504.2 (M + H)+
    9.07
    Figure US20170050960A1-20170223-C00204
    (E)-1-((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)-yl)-3- (4-(trifluoro- methoxy)- phenyl)prop- 2-en-1-one (intermediate 5) N-methyl-1H- 1,2,3-triazole- 5- methanamine (CAS-RN 1248059- 33-7) 493.7 (M + H)+
    9.08
    Figure US20170050960A1-20170223-C00205
    3-(3- chlorophenyl)- 2,2-dimethyl-1- ((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)- yl)propan-1-one (intermediate 26.03) (1H-1,2,3- triazol-4-yl)- methanamine hydrochloride 459.5 (M + H)+
    9.09
    Figure US20170050960A1-20170223-C00206
    (E)-1-((3aR,8aS)- octahydropyrrolo [3,4-d]azepin- 6(7H)-yl)-3- (4-(trifluoro- methoxy)- phenyl)prop- 2-en-1-one (intermediate 5) 2-(1H-1,2,3- triazol-5-yl)- ethanamine (CAS-RN 52845-67-7) 493.6 (M + H)+
    9.10
    Figure US20170050960A1-20170223-C00207
    (3aS,6aS)-4- (trifluoromethoxy)- benzyl hexahydro- pyrrolo[3,4-c] pyrrole-2(1H)- carboxylate hydrochloride (intermediate 1.8) piperidine-4- sulfonamide hydrochloride (CAS-RN 1251923- 46-2) 521.6 (M + H)+
  • Examples 10A and 10B (3aR,7aS)-2-(1H-Benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 3,5-dichloro-benzyl ester and (3aS,7aR)-2-(1H-benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridine-5-carboxylic acid 3,5-dichloro-benzyl ester
  • Figure US20170050960A1-20170223-C00208
  • Racemic cis-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate (example 1.02; 616 mg, 1.30 mmol) was separated by preparative HPLC using a Reprosil Chiral-NR column as the stationary phase and heptane/ethanol 3:2 as the mobile phase. This produced the faster eluting enantiomer (example 10A; 227 mg, 37%; orange foam, MS: 474.5 (M+H)+), and the slower eluting enantiomer (example 10B; 211 mg, 34%; orange foam, MS: 474.5 (M+H)+).
  • The following examples were prepared in analogy to examples 10A and 10B by HPLC separation of their racemates:
  • Optical
    rotation
    No. Starting material sign MS, m/e
    11A trans-3,5-dichlorobenzyl 2-(1H- (+) 474.4 (M + H)+
    benzo[d][1,2,3]triazole-5-carbonyl)-
    11B hexahydro-1H-pyrrolo[3,4-c]pyridine- (−) 474.4 (M + H)+
    5(6H)-carboxylate (example 1.08)
    12A trans-3,5-dichlorobenzyl 5-(1H- (+) 474.5 (M + H)+
    benzo[d][1,2,3]triazole-5-carbonyl)-
    12B hexahydro-1H-pyrrolo[3,4-c]pyridine- (−) 474.5 (M + H)+
    2(3H)-carboxylate (example 4.10)
  • Example 13 (E)-1-[trans-2-(1H-Benzotriazole-5-carbonyl)-octahydro-pyrrolo[3,4-c]pyridin-5-yl]-3-(3,5-dichloro-phenyl)-prop-2-en-1-one
  • Figure US20170050960A1-20170223-C00209
  • A solution of trans-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate (example 1.08; 105 mg, 221 μmol) in ethanol (2 mL) was stirred for 72 h under a hydrogen atmosphere (1 bar) in the presence of palladium (10% on carbon, 100 mg, 94 μmol), then insoluble material was removed by filtration through diatomaceous earth. The filtrate was evaporated, taken up in hydrochloric acid solution (5-6 M in 2-propanol, 1 mL), then after 1 h concentrated in vacuo and the residue was triturated in ethyl acetate to produce an off-white solid (32 mg). This material was dissolved in N,N-dimethylformamide (1 mL), then 4-methylmorpholine (44.8 mg, 443 μmol), 3,5-dichlorocinnamic acid (19.2 mg, 88.5 μmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (50.5 mg, 133 μmol) were added at room temperature, then after 18 h the reaction mixture was partitioned between sat. aq. ammonium chloride solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel, gradient dichlormethane to dichlormethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (9 mg, 9%). Colourless gum, MS: 470.5 (M+H)+.
  • Example 14 (1H-Benzotriazol-5-yl)-{trans-2-[5-(4-chloro-phenyl)-[1,3,4]oxadiazol-2-yl]-octahydro-pyrrolo[3,4-c]pyridin-5-yl}-methanone
  • Figure US20170050960A1-20170223-C00210
  • To a solution of 5-(4-chlorophenyl)-1,3,4-oxadiazol-2(3H)-one (CAS-RN 1711-61-1; 30 mg, 153 μmol) and N,N-diisopropylethylamine (98.6 mg, 763 μmol) in N,N-dimethylformamide (3.00 mL) was added (1H-benzotriazol-5-yl)-trans-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride (intermediate 2.1; 51.7 mg, 168 μmol) at room temperature, then after 10 min benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (75.8 mg, 168 μmol) was added. After 16 h the reaction mixture was partitioned between water and ethyl acetate. The organic layer was washed with sat. aq. ammonium chloride solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (42 mg, 61%). White solid, MS: 450.4 (M+H)+.
  • Example 15 (E)-1-((3aR,6aS)-5-(1H-Benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one
  • Figure US20170050960A1-20170223-C00211
  • To a solution of (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride (intermediate 2.2; 30 mg, 102 μmol), 4-methylmorpholine (51.6 mg, 511 μmol) and (E)-3-(4-(trifluoromethoxy)phenyl)acrylic acid (23.7 mg, 102 μmol) in N,N-dimethylformamide (1.5 mL) was added O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (38.8 mg, 102 μmol) at 0° C., then the reaction mixture was allowed to reach room temperature over a period of 16 h. After partitioning between ethyl acetate and sat. aq. sodium hydrogen carbonate solution the organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (38 mg, 79%). White foam, MS: 472.4 (M+H)+.
  • The following compounds were produced in analogy to example 15, replacing (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride and (E)-3-(4-(trifluoromethoxy)phenyl)acrylic acid by the appropriate amine and carboxylic acid, respectively.
  • Carboxylic MS,
    Ex. Systematic Name Amine acid m/e
    15.01
    Figure US20170050960A1-20170223-C00212
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 5-chloro-1H- indole-2- carboxylic acid 435.5 (M + H)+
    15.02
    Figure US20170050960A1-20170223-C00213
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) (E)-3-(3- fluoro-5- (trifluoro- methyl)- phenyl)acrylic acid 472.5 (M − H)
    15.03
    Figure US20170050960A1-20170223-C00214
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 3-(3-fluoro-5- (trifluoro- methyl)- phenyl)- propanoic acid 474.5 (M − H)
    15.04
    Figure US20170050960A1-20170223-C00215
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 6-chloro-1H- indole-2- carboxylic acid 435.5 (M + H)+
    15.05
    Figure US20170050960A1-20170223-C00216
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- (trifluoro- methyl- sulfonyl)- phenyl)acrylic acid (CAS-RN 910654-44-3) 548.4 (M + H)+
    15.06
    Figure US20170050960A1-20170223-C00217
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- chlorophenyl)- acrylic acid 450.4 (M + H)+
    15.07
    Figure US20170050960A1-20170223-C00218
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-p- tolylacrylic acid 430.5 (M + H)+
    15.08
    Figure US20170050960A1-20170223-C00219
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4-(N,N- dimethyl- sulfamoyl)- phenyl)acrylic acid 523.4 (M + H)+
    15.09
    Figure US20170050960A1-20170223-C00220
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- methoxy- phenyl)acrylic acid 446.6 (M + H)+
    15.10
    Figure US20170050960A1-20170223-C00221
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)methanone hydrochloride (intermediate 2.3) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 500.4 (M + H)+
    15.11
    Figure US20170050960A1-20170223-C00222
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- cyanophenyl)- acrylic acid 441.5 (M + H)+
    15.12
    Figure US20170050960A1-20170223-C00223
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 472.5 (M + H)+
    15.13
    Figure US20170050960A1-20170223-C00224
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 474.4 (M + H)+
    15.14
    Figure US20170050960A1-20170223-C00225
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- fluorophenyl)- acrylic acid 434.4 (M + H)+
    15.15
    Figure US20170050960A1-20170223-C00226
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) cinnamic acid 416.5 (M + H)+
    15.16
    Figure US20170050960A1-20170223-C00227
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(pyridin- 2-yl)acrylic acid 417.5 (M + H)+
    15.17
    Figure US20170050960A1-20170223-C00228
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(pyridin- 3-yl)acrylic acid 417.5 (M + H)+
    15.18
    Figure US20170050960A1-20170223-C00229
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(3- chlorophenyl)- acrylic acid 448.4 (M − H)
    15.19
    Figure US20170050960A1-20170223-C00230
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)methanone hydrochloride (intermediate 2.3) (E)-3-(4- chlorophenyl)- acrylic acid 450.4 (M + H)+
    15.20
    Figure US20170050960A1-20170223-C00231
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)methanone hydrochloride (intermediate 2.3) (E)-3-(3- (trifluoro- methoxy)- phenyl)acrylic acid 500.4 (M + H)+
    15.21
    Figure US20170050960A1-20170223-C00232
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) 3-(4-(difluoro- methoxy)- phenyl)acrylic acid 482.4 (M − H)
    15.22
    Figure US20170050960A1-20170223-C00233
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 470.6 (M + H)+
    15.23
    Figure US20170050960A1-20170223-C00234
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- cyanophenyl)- acrylic acid 413.6 (M + H)+
    15.24
    Figure US20170050960A1-20170223-C00235
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 472.5 (M + H)+
    15.25
    Figure US20170050960A1-20170223-C00236
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans-tetrahdyro- 1H-pyrrolo[3,4- c]pyridin- 5(6H,7H,7aH)- yl)methanone hydrochloride, enantiomer A (intermediate 7A) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 486.4 (M + H)+
    15.26
    Figure US20170050960A1-20170223-C00237
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,7aS)- tetrahydro-1H- pyrrolo[3,4-c]pyridin- 5(6H,7H,7aH)- yl)methanone hydrochloride, enantiomer B (intermediate 7B) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 486.4 (M + H)+
    15.27
    Figure US20170050960A1-20170223-C00238
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(3,5- dichloro- phenyl)acrylic acid 484.5 (M + H)+
    15.28
    Figure US20170050960A1-20170223-C00239
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(pyridin- 4-yl)acrylic acid 417.5 (M + H)+
    15.29
    Figure US20170050960A1-20170223-C00240
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(2,4- difluoro- phenyl)acrylic acid 452.6 (M + H)+
    15.30
    Figure US20170050960A1-20170223-C00241
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(2,4- dichloro- phenyl)acrylic acid 484.5 (M + H)+
    15.31
    Figure US20170050960A1-20170223-C00242
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(3,4- dichloro- phenyl)acrylic acid 484.3 (M + H)+
    15.32
    Figure US20170050960A1-20170223-C00243
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride, enantiomer B (intermediate 7B) (E)-3-(4- (difluoro- methoxy)- phenyl)acrylic acid 468.4 (M + H)+
    15.33
    Figure US20170050960A1-20170223-C00244
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride, enantiomer B (intermediate 7B) (E)-3-(4- cyanophenyl)- acrylic acid 427.6 (M + H)+
    15.34
    Figure US20170050960A1-20170223-C00245
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- cyano-2- fluorophenyl)- acrylic acid (CAS-RN 669002-88-4) 459.6 (M + H)+
    15.35
    Figure US20170050960A1-20170223-C00246
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- cyano-2- fluorophenyl)- acrylic acid (CAS-RN 669002-88-4) 431.5 (M + H)+
    15.36
    Figure US20170050960A1-20170223-C00247
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- (difluoro- methoxy)- phenyl)acrylic acid 454.6 (M + H)+
    15.37
    Figure US20170050960A1-20170223-C00248
    (1H-benzotriazol-5-yl)- cis-octahydro- pyrrolo[3,4-c]pyridin- 2-yl-methanone (intermediate 6) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 486.3 (M + H)+
    15.38
    Figure US20170050960A1-20170223-C00249
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(3- cyanophenyl)- acrylic acid 441.6 (M + H)+
    15.39
    Figure US20170050960A1-20170223-C00250
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(2- fluoro-4- (trifluoro- methoxy)- phenyl)acrylic acid (CAS-RN 1240261-81-7) 518.5 (M + H)+
    15.40
    Figure US20170050960A1-20170223-C00251
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(2- fluoro-4- (trifluoro- methoxy)- phenyl)acrylic acid (CAS-RN 1240261-81-7) 490.2 (M + H)+
    15.41
    Figure US20170050960A1-20170223-C00252
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- chloro-2- fluorophenyl)- acrylic acid 440.1 (M + H)+
    15.42
    Figure US20170050960A1-20170223-C00253
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3,5- dichloro- phenyl)acrylic acid 456.1 (M + H)+
    15.43
    Figure US20170050960A1-20170223-C00254
    ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)(4,5,6,7-tetrahydro- 1H-benzo[d][1,2,3] triazol-5-yl)methanone (intermediate 6.3) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 476.4 (M + H)+
    15.44
    Figure US20170050960A1-20170223-C00255
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 474.6 (M + H)+
    15.45
    Figure US20170050960A1-20170223-C00256
    (6,7-dihydro-1H- [1,2,3]triazolo[4,5- c]pyridin-5(4H)- yl)((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone (intermediate 6.2) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 477.5 (M + H)+
    15.46
    Figure US20170050960A1-20170223-C00257
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3- chloro-5- (methyl- sulfonyl)- phenyl)acrylic acid (intermediate 23) 500.5 (M + H)+
    15.47
    Figure US20170050960A1-20170223-C00258
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3,5- dimethoxy- phenyl)acrylic acid 448.5 (M + H)+
    15.48
    Figure US20170050960A1-20170223-C00259
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3- chloro-5- (trifluoro- methoxy)- phenyl)acrylic acid 506.4 (M + H)+
    15.49
    Figure US20170050960A1-20170223-C00260
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3- chloro-5- methoxy- phenyl)acrylic acid (intermediate 23.1) 452.5 (M + H)+
    15.50
    Figure US20170050960A1-20170223-C00261
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3- chloro-5- cyanophenyl)- acrylic acid (intermediate 24.1) 447.5 (M + H)+
    15.51
    Figure US20170050960A1-20170223-C00262
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(3- methoxy-5- (trifluoro- methoxy)- phenyl)acrylic acid (intermediate 24) 502.5 (M + H)+
    15.52
    Figure US20170050960A1-20170223-C00263
    (6,7-dihydro-1H- [1,2,3]triazolo[4,5-c] pyridin-5(4H)- yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 25) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 477.6 (M + H)+
    15.53
    Figure US20170050960A1-20170223-C00264
    (6,7-dihydro-1H- [1,2,3]triazolo[4,5- c]pyridin-5(4H)- yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 25) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 479.6 (M + H)+
    15.54
    Figure US20170050960A1-20170223-C00265
    (3aR,7aR)-5- ((3aR,6aR)- octahydropyrrolo[3,4- c]pyrrole-2- carbonyl)hexahydro- oxazolo[5,4-c]pyridin- 2(1H)-one hydrochloride (intermediate 25.1) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 495.6 (M + H)+
    15.55
    Figure US20170050960A1-20170223-C00266
    (3aR,7aR)-5- ((3aR,6aR)- octahydropyrrolo[3,4- c]pyrrole-2- carbonyl)hexahydro- oxazolo[5,4-c]pyridin- 2(1H)-one hydrochloride (intermediate 25.1) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 497.7 (M + H)+
    15.56
    Figure US20170050960A1-20170223-C00267
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) cinnamic acid 388.6 (M + H)+
    15.57
    Figure US20170050960A1-20170223-C00268
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-phenyl- propanoic acid 390.6 (M + H)+
    15.58
    Figure US20170050960A1-20170223-C00269
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (trifluoro- methyl)- phenyl)acrylic acid 456.7 (M + H)+
    15.59
    Figure US20170050960A1-20170223-C00270
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(4-(trifluoro- methyl)- phenyl)- propanoic acid 458.7 (M + H)+
    15.60
    Figure US20170050960A1-20170223-C00271
    (3aR,6aS)-N-((1H- 1,2,3-triazol-5- yl)methyl)-N- methylhexahydro- pyrrolo[3,4-c]pyrrole- 2(1H)-carboxamide 2,2,2-trifluoroacetate (intermediate 20.1) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 467.6 (M + H)+
    15.61
    Figure US20170050960A1-20170223-C00272
    (E)-3-(3-fluoro-4- (trifluoromethoxy)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.03) N-methyl-1- (1H-1,2,3- triazol-4-yl) methanamine (CAS-RN 1248059-33-7) 511.6 (M + H)+
    15.62
    Figure US20170050960A1-20170223-C00273
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(6-(trifluoro- methyl)- pyridin-3- yl)propanoic acid (CAS-RN 539855-70-4) 459.5 (M + H)+
    15.63
    Figure US20170050960A1-20170223-C00274
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-(trifluoro- methoxy)- phenoxy)acetic acid 476.5 (M + H)+
    15.64
    Figure US20170050960A1-20170223-C00275
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrolo-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-chloro-2- isopropyl-5- methyl- phenoxy)acetic acid (CAS-RN 5411-11-0) 482.6 (M + H)+
    15.65
    Figure US20170050960A1-20170223-C00276
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(biphenyl-4- yl)propanoic acid 466.6 (M + H)+
    15.66
    Figure US20170050960A1-20170223-C00277
    (E)-3-(4-fluoro-2- (trifluoromethyl)- phenyl)-1-((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)prop-2-en-1-one (intermediate 26.04) 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid 502.6 (M + H)+
    15.67
    Figure US20170050960A1-20170223-C00278
    2-(4-chloro-2- isopropyl-5- methylphenoxy)-1- ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)ethanone hydrochloride (intermediate 5.2) 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid 482.7 (M + H)+
    15.68
    Figure US20170050960A1-20170223-C00279
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- (methyl- sulfonyl)- phenyl)acrylic acid 494.4 (M + H)+
    15.69
    Figure US20170050960A1-20170223-C00280
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- (trifluoro- methylthio)- phenyl)acrylic acid 516.4 (M + H)+
    15.70
    Figure US20170050960A1-20170223-C00281
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 500.4 (M + H)+
    15.71
    Figure US20170050960A1-20170223-C00282
    (1H- benzo[d][1,2,3]triazol- 5-yl)(trans- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone hydrochloride (intermediate 2.2) 2-(3-trifluoro- methoxy)- phenoxy)acetic acid (CAS-RN 836-33-9) 476.5 (M + H)+
    15.72
    Figure US20170050960A1-20170223-C00283
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-2(1H)- yl)methanone (intermediate 6.1) (E)-3-(3- (trifluoro- methoxy)- phenyl)acrylic acid 500.4 (M + H)+
    15.73
    Figure US20170050960A1-20170223-C00284
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride (intermediate 2.1) (E)-3-(3- (trifluoro- methoxy)- phenyl)acrylic acid 486.4 (M + H)+
    15.74
    Figure US20170050960A1-20170223-C00285
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride (intermediate 2.1) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 486.5 (M + H)+
    15.75
    Figure US20170050960A1-20170223-C00286
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride (intermediate 2.1) (E)-3-(3- chloro-5- (trifluoro- methoxy)- phenyl)acrylic acid 520.4 (M + H)+
    15.76
    Figure US20170050960A1-20170223-C00287
    (1H-benzotriazol-5-yl)- trans-octahydro- pyrrolo[3,4-c]pyridin- 5-yl-methanone; hydrochloride (intermediate 2.1) (E)-3-(3,5- dichloro- phenyl)acrylic acid 470.4 (M + H)+
    15.77
    Figure US20170050960A1-20170223-C00288
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.04) (E)-3-(6- phenylpyridin- 3-yl)acrylic acid (intermediate 23.05) 465.5 (M + H)+
    15.78
    Figure US20170050960A1-20170223-C00289
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.04) (E)-3-(5- (trifluoro- methyl)- pyridin-2- yl)acrylic acid (CAS-RN 910654-24-9) 457.5 (M + H)+
    15.79
    Figure US20170050960A1-20170223-C00290
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (pyridin-4- yl)phenyl)- acrylic acid (intermediate 23.07) 465.6 (M + H)+
    15.80
    Figure US20170050960A1-20170223-C00291
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (pyridin-3- yl)phenyl)- acrylic acid (intermediate 23.08) 465.6 (M + H)+
    15.81
    Figure US20170050960A1-20170223-C00292
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(4- (pyridin-2- yl)phenyl)- acrylic acid (intermediate 23.09) 465.5 (M + H)+
    15.82
    Figure US20170050960A1-20170223-C00293
    2-(4-chloro-3- methoxyphenoxy)-1- ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)ethanone hydrochloride (intermediate 31.1) 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid 440.7 (M + H)+
    15.83
    Figure US20170050960A1-20170223-C00294
    2-(4-chloro-2- methylphenoxy)-1- ((3aR,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)ethanone hydrochloride (intermediate 31) 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid 440.7 (M + H)+
    15.84
    Figure US20170050960A1-20170223-C00295
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) (E)-3-(5- phenylpyridin- 2-yl)acrylic acid (intermediate 23.06) 465.5 (M + H)+
    15.85
    Figure US20170050960A1-20170223-C00296
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(6- phenylpyridin- 3-yl)propanoic acid (intermediate 35.1) 467.6 (M + H)+
    15.86
    Figure US20170050960A1-20170223-C00297
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-isopropyl- phenoxy)acetic acid 434.6 (M + H)+
    15.87
    Figure US20170050960A1-20170223-C00298
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-(trifluoro- methyl)- phenoxy)acetic acid 460.5 (M + H)+
    15.88
    Figure US20170050960A1-20170223-C00299
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(biphenyl-2- yloxy)acetic acid 468.5 (M + H)+
    15.89
    Figure US20170050960A1-20170223-C00300
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) (E)-3-(4- (trifluoro- methoxy)- phenyl)acrylic acid 476.6 (M + H)+
    15.90
    Figure US20170050960A1-20170223-C00301
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 478.5 (M + H)+
    15.91
    Figure US20170050960A1-20170223-C00302
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-chloro-4- (trifluoro- methoxy)- phenoxy)acetic acid (intermediate 33.3) 510.6 (M + H)+
    15.92
    Figure US20170050960A1-20170223-C00303
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-(1H- pyrrol-1- yl)phenoxy)- acetic acid (intermediate 33.2) 457.6 (M + H)+
    15.93
    Figure US20170050960A1-20170223-C00304
    (1H-benzo[d]- [1,2,3]triazol-5- yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-cyano-2- methoxy- phenoxy)acetic acid (CAS-RN 115109-49-4) 447.5 (M + H)+
    15.94
    Figure US20170050960A1-20170223-C00305
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-cyano- phenoxy)acetic acid 417.5 (M + H)+
    15.95
    Figure US20170050960A1-20170223-C00306
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2- phenoxyacetic acid 392.6 (M + H)+
    15.96
    Figure US20170050960A1-20170223-C00307
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-cyano-4- (trifluoro- methoxy)- phenoxy)acetic acid (intermediate 34.2) 501.5 (M + H)+
    15.97
    Figure US20170050960A1-20170223-C00308
    2-(2-isopropyl-5- methylphenoxy)-1- ((3aR,8aS)- octahydropyrrolo[3,4- d]azepin-6(7H)- yl)ethanone (intermediate 36.02) 1H-benzo[d]- [1,2,3]triazole- 5-carboxylic acid 476.7 (M + H)+
    15.98
    Figure US20170050960A1-20170223-C00309
    (1H- benzo[d][12,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 6-(trifluoro- methoxy)-1H- indole-2- carboxylic acid 485.4 (M + H)+
    15.99
    Figure US20170050960A1-20170223-C00310
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 5-(trifluoro- methoxy)-1H- indole-2- carboxylic acid 485.4 (M + H)+
  • Example 16 (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethylsulfinyl)phenyl)prop-2-en-1-one
  • Figure US20170050960A1-20170223-C00311
  • To solution of (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethylthio)phenyl)prop-2-en-1-one (example 15.69; 25 mg, 48.5 μmol) in acetic acid (1 mL) was added 35% aq. hydrogen peroxide solution (9.43 mg, 97.0 μmol). The reaction mixture was heated at 95° C., then after 3 h another portion of 35% aq. hydrogen peroxide solution (18.9 mg, 194 μmol) was added. After another 15 h the reaction mixture was partitioned between ethyl acetate and sat. aq. sodium hydrogencarbonate solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (11 mg, 43%). White foam, MS: 532.4 (M+H)+.
  • Example 17 1-((3aR,8aS)-2-(1H-Benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)propan-1-one
  • Figure US20170050960A1-20170223-C00312
  • A solution of (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)prop-2-en-1-one (example 1.15; 63 mg, 122 μmol) in methanol (4 mL) was stirred at room temperature under a hydrogen atmosphere (1 bar) in the presence of palladium (10% on activated charcoal, 39 mg, 0.37 mmol), then after 18 h insoluble material was removed by filtration through diatomaceous earth. The filtrate was evaporated and purified by chromatography (silica gel; heptane-ethyl acetate gradient) to produce the title compound (48 mg, 74%). White foam, MS: 520.7 (M+H)+.
  • The following examples were produced in analogy to example 17, replacing of (E)-1-((3aR,8aS)-2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)prop-2-en-1-one by the appropriate starting material.
  • Ex. Systematic Name Starting material MS
    17.01
    Figure US20170050960A1-20170223-C00313
    (3aR,8aS)-N-((1H-1,2,3- triazol-5-yl)methyl)-N- methyl-6-((E)-3-(4- (trifluoromethoxy)phenyl)- acryloyl)octahydro- pyrrolo[3,4-d]azepine- 2(1H)-carboxamide (example 9.07) 495.6 (M + H)+
    17.02
    Figure US20170050960A1-20170223-C00314
    (3aR,8aS)-N-((1H-1,2,3- triazol-5-yl)methyl)-6-((E)- 3-(3-fluoro-4- (trifluoromethoxy)phenyl)- acryloyl)-N- methyloctahydro- pyrrolo[3,4-d]azepine- 2(1H)-carboxamide (example 15.61) 513.6 (M + H)+
    17.03
    Figure US20170050960A1-20170223-C00315
    (E)-1-((3aR,6aR)-5-(1H- benzo[d][1,2,3]triazole-5- carbonyl)hexahydro- pyrrolo[3,4-c]pyrrol- 2(1H)-yl)-3-(4- (difluoromethoxy)phenyl)- prop-2-en-1-one (example 15.36) 456.5 (M + H)+
    17.04
    Figure US20170050960A1-20170223-C00316
    (E)-1-((3aR,6aR)-5-(1H- benzo[d][1,2,3]triazole-5- carbonyl)hexahydro- pyrrolo[3,4-c]pyrrol- 2(1H)-yl)-3-(2-fluoro-4- (trifluoromethoxy)phenyl)- prop-2-en-1-one (example 15.40) 492.7 (M + H)+
    17.05
    Figure US20170050960A1-20170223-C00317
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydro- pyrrolo[3,4-d]azepin- 6(7H)-yl)-3-(4-fluoro-2- (trifluoromethyl)phenyl)- prop-2-en-1-one (example 15.66) 504.6 (M + H)+
    17.06
    Figure US20170050960A1-20170223-C00318
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydro- pyrrolo[3,4-d]azepin- 6(7H)-yl)-3-(2-methyl-4- (trifluoromethoxy)phenyl)- prop-2-en-1-one (example 1.18) 516.7 (M + H)+
    17.07
    Figure US20170050960A1-20170223-C00319
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydro- pyrrolo[3,4-d]azepin- 6(7H)-yl)-3-(3-fluoro-4- methoxyphenyl)prop-2-en- 1-one (example 1.19) 466.7 (M + H)+
    17.08
    Figure US20170050960A1-20170223-C00320
    (E)-1-[(3aS,8aR)-2-(1H- benzotriazole-5-carbonyl)- octahydro-pyrrolo[3,4- d]azepin-6-yl]-3-(2- isopropyl-phenyl)-prop-2- en-1-one (example 1.22) 460.7 (M + H)+
    17.09
    Figure US20170050960A1-20170223-C00321
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(5- trifluoromethyl-pyridin-2- yl)-prop-2-en-1-one (example 15.78) 459.5 (M + H)+
    17.10
    Figure US20170050960A1-20170223-C00322
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(5-phenyl- pyridin-2-yl)-prop-2-en-1- one (example 15.84) 467.6 (M + H)+
    17.11
    Figure US20170050960A1-20170223-C00323
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(4-pyridin- 4-yl-phenyl)-prop-2-en-1- one (example 15.79) 467.5 (M + H)+
    17.12
    Figure US20170050960A1-20170223-C00324
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(4-pyridin- 3-yl-phenyl)-prop-2-en-1- one (example 15.80) 467.6 (M + H)+
    17.13
    Figure US20170050960A1-20170223-C00325
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(4-pyridin- 2-yl-phenyl)-prop-2-en-1- one (example 15.81) 467.5 (M + H)+
    17.14
    Figure US20170050960A1-20170223-C00326
    (3aR,8aS)-N-(2-(1H-1,2,3- triazol-5-yl)ethyl)-6-((E)- 3-(4-(trifluoromethoxy)- phenyl)acryloyl)octa- hydropyrrolo[3,4- d]azepine-2(1H)- carboxamide (example 9.09) 495.2 (M + H)+
    17.15
    Figure US20170050960A1-20170223-C00327
    (E)-1-[trans-2-(1H- benzotriazole-5-carbonyl)- octahydro-pyrrolo[3,4- c]pyridin-5-yl]-3-(4- trifluoromethoxy-phenyl)- propenone (example 1.26) 488.7 (M + H)+
    17.16
    Figure US20170050960A1-20170223-C00328
    (E)-1-[trans-2-(1H- benzotriazol-5-ylmethyl)- octahydro-pyrrolo[3,4- c]pyridin-5-yl]-3-(4- trifluoromethoxy-phenyl)- propenone (example 6.07) 474.4 (M + H)+
    17.17
    Figure US20170050960A1-20170223-C00329
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydropyrrolo [3,4-d]azepin-6(7H)-yl)-3- (3-chloro-5-(trifluoro- methyl)phenyl)prop-2-en- 1-one (example 1.27) 520.6 (M + H)+
    17.18
    Figure US20170050960A1-20170223-C00330
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydropyrrolo [3,4-d]azepin-6(7H)-yl)-3- (4-methoxy-2-(trifluoro- methyl)phenyl)prop-2-en- 1-one (example 1.28) 516.7 (M + H)+
    17.19
    Figure US20170050960A1-20170223-C00331
    (E)-1-((3aR,8aS)-2-(1H- benzo[d][1,2,3]triazole-5- carbonyl)octahydro- pyrrolo[3,4-d]azepin- 6(7H)-yl)-3-(2- cyclopropylphenyl)prop-2- en-1-one (example 1.29) 458.7 (M + H)+
    17.20
    Figure US20170050960A1-20170223-C00332
    (E)-1-[(3aR,6aR)-5-(1H- benzotriazole-5-carbonyl)- hexahydro-pyrrolo[3,4- c]pyrrol-2-yl]-3-(3- methoxy-5-trifluoro- methoxy-phenyl)-prop-2- ene-1-one (example 15.51) 504.4 (M + H)+
  • Example 18 (E)-3-[4-(Trifluoro-methoxy)-phenyl]-1-[(3aS,8aR)-2-((S)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-prop-2-en-1-one hydrochloride
  • Figure US20170050960A1-20170223-C00333
  • Step 1: (S)-Di-tert-butyl 6-((3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)-decahydropyrrolo[3,4-d]azepine-2-carbonyl)-6,7-dihydro-1H-imidazo[4,5-c]pyridine-1,5(4H)-dicarboxylate
  • The title compound was produced in analogy to example 15 from (E)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one hydrochloride (intermediate 5) and (S)-1,5-bis(tert-butoxycarbonyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (CAS-RN 175289-42-6). White foam, MS: 704.3 (M+H)+.
  • Step 2: (E)-3-[4-(Trifluoro-methoxy)-phenyl]-1-[(3aS,8aR)-2-((S)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-prop-2-en-1-one hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (S)-di-tert-butyl 6-((3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)decahydropyrrolo[3,4-d]azepine-2-carbonyl)-6,7-dihydro-1H-imidazo[4,5-c]pyridine-1,5(4H)-dicarboxylate. White solid, MS: 504.2 (M+H)+.
  • Example 19 1-[(3aS,6aS)-5-(1H-benzotriazole-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-2-(2-isopropyl-5-methyl-phenoxy)-ethanone
  • To a suspension of (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride (intermediate 2.04; 25 mg, 85.1 μmol, Eq: 1.00), N-methylmorpholine (43.0 mg, 426 μmol) and 2-(2-isopropyl-5-methylphenoxy)acetic acid (17.7 mg, 85.1 μmol) in N,N-dimethylformamide (4 mL) was added O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (32.4 mg, 85.1 μmol) at 0° C., then the reaction mixture was allowed to reach room temperature over a period of 16 h. After partitioning between ethyl acetate and sat. aq. sodium hydrogen carbonate solution the organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (37 mg, 97%). White foam, MS: 448.6 (M+H)+.
  • The following compounds were produced in analogy to example 19, replacing (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride and 2-(2-isopropyl-5-methylphenoxy)acetic acid by the appropriate amine and carboxylic acid, respectively.
  • Ex. Systematic Name Amine Carboxylic acid MS, m/e
    19.01
    Figure US20170050960A1-20170223-C00334
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-bromo-4- (trifluoro- methoxy)- phenoxy)acetic acid (intermediate 33.1) 554.3 (M + H)+
    19.02
    Figure US20170050960A1-20170223-C00335
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4′-chlorobi- phenyl-4- carboxylic acid 472.5 (M + H)+
    19.03
    Figure US20170050960A1-20170223-C00336
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-cyano-2- isopropyl- phenoxy)acetic acid (intermediate 34.1) 459.6 (M + H)+
    19.04
    Figure US20170050960A1-20170223-C00337
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-acetyl- phenoxy)acetic acid (CAS-RN 1878-62-2) 434.6 (M + H)+
    19.05
    Figure US20170050960A1-20170223-C00338
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-cyano-2- isopropyl-5- methyl- phenoxy)acetic acid (intermediate 34) 473.7 (M + H)+
    19.06
    Figure US20170050960A1-20170223-C00339
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-naphthoic acid 410.6 (M − H)
    19.07
    Figure US20170050960A1-20170223-C00340
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-methoxy-2- naphthoic acid (CAS-RN 5773-93-3) 442.6 (M + H)+
    19.08
    Figure US20170050960A1-20170223-C00341
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-cyano-2- ethoxy- phenoxy)acetic acid (CAS-RN 835888-68-1) 461.7 (M + H)+
    19.09
    Figure US20170050960A1-20170223-C00342
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(3-fluoro-4- (trifluoro- methoxy)- phenyl)- propanoic acid (intermediate 35) 492.4 (M + H)+
    19.10
    Figure US20170050960A1-20170223-C00343
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-chloro-2- isopropyl- phenoxy)acetic acid (CAS-RN 109042-01-5) 468.5 (M + H)+
    19.11
    Figure US20170050960A1-20170223-C00344
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 4′-chlorobi- phenyl-4- carboxylic acid 476.5 (M + H)+
    19.12
    Figure US20170050960A1-20170223-C00345
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) 3-(4-(trifluoro- methoxy)- phenyl)- propanoic acid 474.4 (M + H)+
    19.13
    Figure US20170050960A1-20170223-C00346
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) 4′-chloro- biphenyl-4- carboxylic acid 472.6 (M + H)+
    19.14
    Figure US20170050960A1-20170223-C00347
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2- (tetrahydro- furan-2-yl)- phenoxy)acetic acid (intermediate 33) 462.5 (M + H)+
    19.15
    Figure US20170050960A1-20170223-C00348
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aS,6aS)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 8) 4-methoxy-2- naphthoic acid (CAS-RN 5773-93-3) 442.6 (M + H)+
    19.16
    Figure US20170050960A1-20170223-C00349
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-tert-butyl- phenoxy)acetic acid (CAS-RN 19271-90-0) 448.5 (M + H)+
    19.17
    Figure US20170050960A1-20170223-C00350
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR) hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) trans-4-(4- chlorophenyl)- cyclohexane- carboxylic acid 478.2 (M + H)+
    19.18
    Figure US20170050960A1-20170223-C00351
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(3-fluoro-4- (trifluoro- methyl)- phenyl)- propanoic acid 474.5 (M − H)
    19.19
    Figure US20170050960A1-20170223-C00352
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(2-fluoro-4- (trifluoro- methyl)- phenyl)- propanoic acid 474.5 (M − H)
    19.20
    Figure US20170050960A1-20170223-C00353
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-(pyridin- 3-yl)phenoxy)- acetic acid (intermediate 34.3) 467.6 (M − H)
    19.21
    Figure US20170050960A1-20170223-C00354
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(4-cyano-2- isopropyl-5- methyl- phenyl)- propanoic acid (intermediate 42.1) 471.7 (M + H)+
    19.22
    Figure US20170050960A1-20170223-C00355
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(4-cyano-2- isopropyl- phenyl)- propanoic acid (intermediate 42) 457.7 (M + H)+
    19.23
    Figure US20170050960A1-20170223-C00356
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 1-(4- chlorophenyl)- piperidine-4- carboxylic acid (CAS-RN 845645-46-7) 479.6 (M + H)+
    19.24
    Figure US20170050960A1-20170223-C00357
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 4-isopropoxy- 2-naphthoic acid (CAS-RN 1368865-02-4) 474.5 (M + H)+
    19.25
    Figure US20170050960A1-20170223-C00358
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 4-isopropoxy- quinoline-2- carboxylic acid (CAS-RN 1406553-19-2) 475.5 (M + H)+
    19.26
    Figure US20170050960A1-20170223-C00359
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 3-(2-fluoro-4- (trifluoro- methoxy)- phenyl)- propanoic acid (intermediate 35.4) 496.4 (M + H)+
    19.27
    Figure US20170050960A1-20170223-C00360
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 2-(4-cyano-2- isopropyl-5- methyl- phenoxy)acetic acid (intermediate 34) 477.5 (M + H)+
    19.28
    Figure US20170050960A1-20170223-C00361
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 1-(2,2,2- trifluoro- ethoxy)- isoquinoline-3- carboxylic acid (CAS-RN 1096982-79-4) 515.4 (M + H)+
    19.29
    Figure US20170050960A1-20170223-C00362
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 2-(4-bromo-2- tert-butyl- phenoxy)acetic acid (CAS-RN 425372-86-7) 530.4 (M + H)+
    19.30
    Figure US20170050960A1-20170223-C00363
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(4-bromo-2- tert-butyl- phenoxy)acetic acid (CAS-RN 425372-86-7) 526.6 (M + H)+
    19.31
    Figure US20170050960A1-20170223-C00364
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 2-(2-tert-butyl- 4-cyano- phenoxy)acetic acid (intermediate 40) 477.7 (M + H)+
    19.32
    Figure US20170050960A1-20170223-C00365
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-tert-butyl- 4-cyano- phenoxy)acetic acid (intermediate 40) 471.7 (M − H)
    19.33
    Figure US20170050960A1-20170223-C00366
    ((3aR,6aR) hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 1-methyl-5- (trifluoro- methoxy)-1H- indole-2- carboxylic acid (CAS-RN 1257122-42-1) 501.5 (M − H)
    19.34
    Figure US20170050960A1-20170223-C00367
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 2-(4-(trifluoro- methoxy)- phenoxy)acetic acid 478.5 (M − H)
    19.35
    Figure US20170050960A1-20170223-C00368
    ((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)-yl)((R)- 4,5,6,7-tetrahydro-1H- benzo[d][1,2,3]triazol- 5-yl)methanone hydrochloride (intermediate 2.5) 1-ethoxy- isoquinoline-3- carboxylic acid (CAS-RN 1094758-39-0) 461.5 (M + H)+
    19.36
    Figure US20170050960A1-20170223-C00369
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 2-(2-tert-butyl- 4-methoxy- phenoxy)acetic acid 476.5 (M + H)+
    19.37
    Figure US20170050960A1-20170223-C00370
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-ethoxy- quinoline-2- carboxylic acid (CAS-RN 40609-78-7) 457.6 (M + H)+
    19.38
    Figure US20170050960A1-20170223-C00371
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 4-(2,2,2- trifluoro- ethoxy)- quinoline-2- carboxylic acid (CAS-RN 1281584-65-3) 511.6 (M + H)+
    19.39
    Figure US20170050960A1-20170223-C00372
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 6-cyclobutoxy- 5-(trifluoro- methyl)- nicotinic acid 501.2 (M + H)+
    19.40
    Figure US20170050960A1-20170223-C00373
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 5-bromo-6-(2- methoxy- ethoxy)- nicotinic acid (CAS-RN 912454-34-3) 515.2 (M + H)+
    19.41
    Figure US20170050960A1-20170223-C00374
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 5-bromo-6- (cyclopropyl- methoxy)- nicotinic acid (CAS-RN 912454-38-7) 511.1 (M + H)+
    19.42
    Figure US20170050960A1-20170223-C00375
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 5-cyclopropyl- 6-(2,2,2- trifluoro- ethoxy)- nicotinic acid (CAS-RN 1427064-90-1) 501.5 (M + H)+
    19.43
    Figure US20170050960A1-20170223-C00376
    (1H- benzo[d][1,2,3]triazol- 5-yl)((3aR,6aR)- hexahydropyrrolo[3,4- c]pyrrol-2(1H)- yl)methanone dihydrochloride (intermediate 2.4) 6-(2,2,2- trifluoro- ethoxy)-5- (trifluoro- methyl)- nicotinic acid 529.5 (M + H)+
  • Example 20 (1H-Benzotriazol-5-yl)-{(3aS,6aS)-5-[4-(4-chloro-phenyl)-piperidine-1-carbonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-methanone
  • Figure US20170050960A1-20170223-C00377
  • To a white suspension of (1H-benzo[d][1,2,3]triazol-5-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride (intermediate 2.4; 40 mg, 136 μmol) and triethylamine (68.9 mg, 681 μmol) in dichloromethane (4 mL) was added a solution of 4-(4-chlorophenyl)piperidine-1-carbonyl chloride (intermediate 9.3; 44.9 mg, 163 μmol) in dichloromethane (2 mL) at room temperature, then after 19 the reaction mixture was partitioned between sat. aq. sodium hydrogencarbonate solution and dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (50 mg, 77%). White foam, MS: 479.6 (M+H)+.
  • The following example was produced in analogy to example 20, replacing 4-(4-chlorophenyl)piperidine-1-carbonyl chloride by the appropriate reagent.
  • Ex. Systematic Name Reagent MS
    20.01
    Figure US20170050960A1-20170223-C00378
    4-(4- chlorophenyl)piperazine-1- carbonyl chloride (CAS- RN 64985-84-8) 480.4 (M + H)+
  • Intermediates Intermediate 1 (3aR,6aS)-3,5-Dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride Step 1: (3aR,6aS)-2-tert-Butyl 5-(3,5-dichlorobenzyl)tetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate
  • To a light brown solution of (3,5-dichlorophenyl)methanol (425 mg, 2.35 mmol) in dichloromethane (7 mL) was added N,N′-carbonyldiimidazole (401 mg, 2.47 mmol). The solution was stirred at room temperature for 3 h, then (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (CAS-RN 250275-15-1; 526 mg, 2.35 mmol) was added, then after 15 h the reaction mixture was partitioned between 1 M aq. hydrochloric acid solution and dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated to afford the title compound (972 mg, 99%). Light brown viscous oil, MS: 359.2 (M+H-isobutene)+.
  • Step 2: (3aR,6aS)-3,5-Dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride
  • To a solution of (3aR,6aS)-2-tert-butyl 5-(3,5-dichlorobenzyl)tetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate (962 mg, 2.32 mmol) in 2-propanol (4 mL) was added hydrochloric acid (5-6 M in 2-propanol) (11.6 mL, 57.9 mmol), then after 3 h the reaction mixture was evaporated. The residue was taken up in ethyl acetate and a few drops of ethanol, then the precipitate was collected by filtration to produce the title compound (738 mg, 91%). White solid, MS: 315.3 (M+H)+.
  • The following intermediates were prepared according to intermediate 1, replacing (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate and (3,5-dichlorophenyl)methanol by the appropriate amine and alcohol, respectively.
  • No. Systematic Name Amine Alcohol MS, m/e
    1.1 (3aS,7aS)-3,5- trans-tert-butyl (3,5-dichloro- 329.4
    dichlorobenzyl hexahydro- hexahydro-1H- phenyl)methanol (M + H)+
    1H-pyrrolo[3,4-c]pyridine- pyrrolo[3,4-
    5(6H)-carboxylate c]pyridine-2(3H)-
    hydrochloride carboxylate (CAS-
    RN 1251014-37-5)
    1.2 cis-3,5-dichlorobenzyl cis-tert-butyl (3,5-dichloro- 329.4
    hexahydro-1H- hexahydro-1H- phenyl)methanol (M + H)+
    pyrrolo[3,4-c]pyridine- pyrrolo[3,4-
    5(6H)-carboxylate c]pyridine-2(3H)-
    hydrochloride carboxylate
    (intermediate 14)
    1.3 (3aR,8aS)-3,5- cis-octahydro- (3,5-dichloro- 343.4
    dichlorobenzyl pyrrolo[3,4- phenyl)methanol (M + H)+
    octahydropyrrolo[3,4- d]azepine-2-
    d]azepine-6(7H)- carboxylic acid tert-
    carboxylate hydrochloride butyl ester (CAS-RN
    1251013-07-6)
    1.4 trans-octahydro- trans-tert-butyl (4-(trifluoro- 345.6
    pyrrolo[3,4-c]pyridine-5- hexahydro-1H- methoxy)phenyl)- (M + H)+
    carboxylic acid 4- pyrrolo[3,4- methanol
    trifluoromethoxy-benzyl c]pyridine-2(3H)-
    ester hydrochloride carboxylate (CAS-
    RN 1251014-37-5)
    1.5 trans-octahydro- trans-tert-butyl (3-chloro-5- 373.6
    pyrrolo[3,4-c]pyridine-5- hexahydro-1H- (methylsulfonyl)- (M + H)+
    carboxylic acid 3-chloro- pyrrolo[3,4- phenyl)methanol
    5-methanesulfonyl-benzyl c]pyridine-2(3H)- (intermediate 17)
    ester hydrochloride carboxylate (CAS-
    RN 1251014-37-5)
    1.6 (3aR,8aS)-4-(2,2,2- cis-octahydro- (4-(2,2,2- n. a.
    trifluoroethoxy)benzyl pyrrolo[3,4- trifluoroethoxy)-
    octahydropyrrolo[3,4- d]azepine-2- phenyl)methanol
    d]azepine-6(7H)- carboxylic acid tert- (CAS-RN
    carboxylate hydrochloride butyl ester (CAS-RN 1020949-12-5)
    1251013-07-6)
    1.7 (3aR,8aS)-2-fluoro-4- cis-octahydro- (2-fluoro-4-(2,2,2- n.a.
    (2,2,2- pyrrolo[3,4- trifluoroethoxy)-
    trifluoroethoxy)benzyl d]azepine-2- phenyl)methanol
    octahydropyrrolo[3,4- carboxylic acid tert- (intermediate 38)
    d]azepine-6(7H)- butyl ester (CAS-RN
    carboxylate hydrochloride 1251013-07-6)
    1.8 (3aS,6aS)-4- (3aR,6aR)-tert-butyl (4- 331.5
    (trifluoromethoxy)benzyl hexahydropyrrolo[3, (trifluoromethoxy)- (M + H)+
    hexahydropyrrolo[3,4- 4-c]pyrrole-2(1H)- phenyl)methanol
    c]pyrrole-2(1H)- carboxylate
    carboxylate hydrochloride (intermediate 15.1)
  • Intermediate 2 (1H-Benzotriazol-5-yl)-cis-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride Step 1: cis-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • To a solution of cis-tert-butyl hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate (intermediate 14; 50 mg, 210 μmol) in N,N-dimethylformamide (1 mL) were added 4-methylmorpholine (84.9 mg, 840 μmol), 1H-benzo[d][1,2,3]triazole-5-carboxylic acid (36.0 mg, 220 μmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (120 mg, 315 μmol) at room temperature, then after 16 h the reaction mixture was partitioned between ethyl acetate and sat. aq. ammonium chloride solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (52 mg, 67%). Light yellow gum, MS: 370.5 (M−H).
  • Step 2: (1H-Benzotriazol-5-yl)-cis-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone; hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aS,7aS)-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate. White solid, MS: 272.5 (M+H)+.
  • The following intermediates were prepared according to intermediate 2, replacing (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate and 1H-benzo[d][1,2,3]triazole-5-carboxylic acid by the appropriate amine and carboxylic acid, respectively.
  • No. Systematic Name Amine Carboxylic acid MS, m/e
    2.1 (1H-benzotriazol-5-yl)- trans-tert-butyl (1H-benzo[d]- 272.5
    trans-octahydro- hexahydro-1H- [1,2,3]triazol-5- (M + H)+
    pyrrolo[3,4-c]pyridin-5-yl- pyrrolo[3,4- carboxylic acid
    methanone; hydrochloride c]pyridine-2(3H)-
    carboxylate (CAS-
    RN 1251014-37-5)
    2.2 1H-benzo[d]- (3aR,6aS)-tert-butyl 1H-benzo[d]- 258.5
    [1,2,3]triazol-5-yl)-(trans- hexahydropyrrolo[3, [1,2,3]triazole-5- (M + H)+
    hexahydropyrrolo[3,4- 4-c]pyrrole-2(1H)- carboxylic acid
    c]pyrrol-2(1H)- carboxylate (CAS-
    yl)methanone RN 250275-15-1)
    hydrochloride
    2.3 (1H-benzo[d]- cis-octahydro- 1H-benzo[d]- 286.5
    [1,2,3]triazol-5-yl)- pyrrolo[3,4- [1,2,3]triazole-5- (M + H)+
    ((3aR,8aS)-octahydro- d]azepine-2- carboxylic acid
    pyrrolo[3,4-d]azepin- carboxylic acid tert-
    6(7H)-yl)methanone butyl ester (CAS-RN
    hydrochloride 1251013-07-6)
    2.4 (1H-benzo[d]- (3aS,6aS)-tert-butyl 1H-benzo[d]- 258.5
    [1,2,3]triazol-5- hexahydropyrrolo[3, [1,2,3]triazole-5- (M + H)+
    yl)((3aR,6aR)-hexahydro- 4-c]pyrrole-2(1H)- carboxylic acid
    pyrrolo[3,4-c]pyrrol- carboxylate
    2(1H)-yl)methanone (intermediate 15)
    dihydrochloride
    2.5 ((3aR,6aR)-hexahydro- (3aS,6aS)-tert-butyl (+)-(R)-4,5,6,7- 262.6
    pyrrolo[3,4-c]pyrrol- hexahydropyrrolo[3, tetrahydro-1H- (M + H)+
    2(1H)-yl)((R)-4,5,6,7- 4-c]pyrrole-2(1H)- benzo[d]-
    tetrahydro-1H-benzo[d]- carboxylate [1,2,3]triazole-5-
    [1,2,3]triazol-5-yl)- (intermediate 15) carboxylic acid
    methanone hydrochloride (intermediate 30A)
    2.6 (1H-[1,2,3]triazolo[4,5- (3aS,6aS)-tert-butyl 1H-[1,2,3]tri- 257.5
    b]pyridin-5-yl)((3aR,6aR)- hexahydropyrrolo[3, azolo[4,5- (M − H)
    hexahydropyrrolo[3,4- 4-c]pyrrole-2(1H)- b]pyridine-5-
    c]pyrrol-2(1H)- carboxylate carboxylic acid
    yl)methanone (intermediate 15) (CAS-RN 1216149-
    hydrochloride 55-1)
  • Intermediate 3 3-(3,5-Dichlorophenyl)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)propan-1-one hydrochloride Step 1: (3aR,6aS)-tert-Butyl 5-(3-(3,5-dichlorophenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a solution of 3-(3,5-dichlorophenyl)propanoic acid (103 mg, 470 μmol), (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (CAS-RN 250275-15-1; 100 mg, 471 μmol) and 4-methylmorpholine (238 mg, 2.35 mmol) in N,N-dimethylformamide (1 mL) was added O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (268 mg, 705 mol) at room temperature, then after 16 h the reaction mixture was partitioned between ethyl acetate and sat. aq. sodium hydrogencarbonate solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) afforded the title compound (161 mg, 83%). Colourless oil, MS: 357.1 (M-isobutene+H)+.
  • Step 2: 3-(3,5-Dichlorophenyl)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)propan-1-one hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aR,6aS)-tert-butyl 5-(3-(3,5-dichlorophenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate. White solid, MS: 313.1 (M+H)+.
  • Intermediate 4 (3aR,5s,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)octahydrocyclopenta[c]pyrrole-5-carboxamide 2,2,2-trifluoroacetate Step 1: (3aR,5s,6aS)-tert-butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydro-cyclopenta[c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aR,5s,6aS)-2-(tert-butoxycarbonyl)octahydrocyclopenta[c]pyrrole-5-carboxylic acid (WuXi AppTec (Wuhan) Co., Ltd.; catalogue No. WX110047; 100 mg, 392 mol) and (1H-1,2,3-triazol-4-yl)methanamine hydrochloride (52.7 mg, 392 μmol) in dichloromethane (2 mL) were added at 0° C. diisopropylethylamine (127 mg, 979 μmol) and benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (182 mg, 411 mol), then after 15 h at room temperature the reaction mixture was evaporated and the residue partitioned between ethyl acetate and water. The organic layer was dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel, ethyl acetate-methanol gradient) produced the title compound (100 mg, 75%). White foam, MS: 334.5 (M−H).
  • Step 2: (3aR,5s,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)octahydrocyclopenta[c]pyrrole-5-carboxamide 2,2,2-trifluoroacetate
  • Trifluoroacetic acid (340 mg, 2.98 mmol) was added at room temperature to a solution of (3aR,5s,6aS)-tert-butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (100 mg, 298 μmol) in dichloromethane, then after 4 h the reaction mixture was evaporated to produce the title compound, which was used directly in the next step. Light yellow oil, MS: 236.5 (M+H)+.
  • Intermediate 5 (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)-phenyl)prop-2-en-1-one hydrochloride Step 1: (3aR,8aS)-tert-Butyl 6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydro-pyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • To a solution of (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate hydrochloride (CAS-RN 1251013-07-6; 1.50 g, 5.42 mmol), 4-methylmorpholine (2.19 g, 21.7 mmol) and (E)-3-(4-(trifluoromethoxy)phenyl)acrylic acid (1.26 g, 5.42 mmol) in N,N-dimethylformamide (30 mL) was added O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (2.06 g, 5.42 mmol) at 0° C. After 60 min the ice bath was removed, then after 16 h the reaction mixture was partitioned between ethyl acetate and sat. aq. sodium hydrogencarbonate solution. The organic layer was washed with sat. aq. ammonium chloride solution, water, and brine, dried over magnesium sulfate, filtered, and evaporated. The residue was triturated in heptane/ethyl acetate 9:1 to produce the title compound (2.20 g, 89%). White solid, MS: 399.5 (M+H-isobutene)+.
  • Step 2: (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(4-(trifluoromethoxy)-phenyl)prop-2-en-1-one hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aR,8aS)-tert-butyl 6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate. White solid, MS: 355.5 (M+H)+.
  • The following intermediates were produced according to intermediate 5, replacing (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate hydrochloride and (E)-3-(4-(trifluoromethoxy)phenyl)acrylic acid by the appropriate amine and carboxylic acid precursors, respectively.
  • No. Systematic Name Amine Carboxylic acid MS
    5.1 4-((E)-3-((3aR,8aS)- (3aR,8aS)-tert-butyl (E)-3-(4- 296.5
    octahydropyrrolo[3,4- octahydropyrrolo[3,4- cyanophenyl)- (M + H)+
    d]azepin-6(7H)-yl)-3- d]azepine-2(1H)- acrylic acid
    oxoprop-1- carboxylate
    enyl)benzonitrile hydrochloride (CAS-
    hydrochloride RN 1251013-07-6)
    5.2 2-(4-chloro-2-isopropyl-5- (3aR,6aS)-tert-butyl 2-[4-chloro-5- 337.6
    methylphenoxy)-1- hexahydropyrrolo[3,4- methyl-2-(1- (M + H)+
    ((3aR,6aS)-hexahydro- c]pyrrole-2(1H)- methylethyl)-
    pyrrolo[3,4-c]pyrrol- carboxylate (CAS-RN phenoxy]-acetic
    2(1H)-yl)ethanone 250275-15-1) acid (CAS-RN
    hydrochloride 5411-11-0)
    5.3 (E)-1-(trans-octahydro- trans-tert-butyl (E)-3-(4- 341.6
    pyrrolo[3,4-c]pyridin-5- hexahydro-1H- (trifluoro- (M + H)+
    yl)-3-(4- pyrrolo[3,4-c]pyridine- methoxy)-
    (trifluoromethoxy)- 2(3H)-carboxylate phenyl)acrylic
    phenyl)prop-2-en-1-one (CAS-RN 1251014-37- acid
    hydrochloride 5)
    5.4 1-(trans-octahydro- trans-tert-butyl 2-(4-(trifluoro- 345.6
    pyrrolo[3,4-c]pyridin-5- hexahydro-1H- methoxy)- (M + H)+
    yl)-2-(4- pyrrolo[3,4-c]pyridine- phenoxy)acetic
    (trifluoromethoxy)- 2(3H)-carboxylate acid
    phenoxy)ethanone (CAS-RN 1251014-37-
    hydrochloride 5)
    5.5 1-((3aS,6aS)- (3aR,6aR)-tert-butyl 3-(4-(trifluoro- 329.5
    hexahydropyrrolo[3,4- hexahydropyrrolo[3,4- methoxy)- (M + H)+
    c]pyrrol-2(1H)-yl)-3-(4- c]pyrrole-2(1H)- phenyl)propanoic
    (trifluoromethoxy)- carboxylate acid
    phenyl)propan-1-one (intermediate 15.1)
    dihydrochloride
    5.6 (4-ethoxyquinolin-2- (3aR,6aR)-tert-butyl 4-ethoxy- 329.5
    yl)((3aS,6aS)- hexahydropyrrolo[3,4- quinoline-2- (M + H)+
    hexahydropyrrolo[3,4- c]pyrrole-2(1H)- carboxylic acid
    c]pyrrol-2(1H)- carboxylate (CAS-RN 40609-
    yl)methanone (intermediate 15.1) 78-7)
    hydrochloride
  • Intermediate 6 cis-3,5-Dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate
  • A solution of cis-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate (example 1.02; 100 mg, 211 μmol) in methanol (3 mL) was stirred for 20 h at 100° C. under a hydrogen atmosphere (10 bar) in the presence of palladium (10% on carbon, 10 mg), then insoluble material was removed by filtration through diatomaceous earth and the filtrate was evaporated to produce the title compound (62 mg), which was used directly in the next step. Light yellow foam, MS: 272.5 (M+H)+.
  • The following intermediates were prepared according to intermediate 6, replacing cis-3,5-dichlorobenzyl 2-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxylate by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    6.1 (1H-benzo[d][1,2,3]triazol-5- (3aR,8aS)-3,5-dichlorobenzyl 2- 286.5
    yl)((3aR,8aS)- (1H-benzo[d][1,2,3]triazole-5- (M + H)+
    octahydropyrrolo[3,4-d]azepin- carbonyl)octahydropyrrolo[3,4-
    2(1H)-yl)methanone d]azepine-6(7H)-carboxylate
    (example 1.04)
    6.2 (6,7-dihydro-1H- (3aR,6aS)-3,5-dichlorobenzyl 5- 263.5
    [1,2,3]triazolo[4,5-c]pyridin-5(4H)- (4,5,6,7-tetrahydro-1H- (M + H)+
    yl)((3aR,6aS)- [1,2,3]triazolo[4,5-c]pyridine-5-
    hexahydropyrrolo[3,4-c]pyrrol- carbonyl)hexahydropyrrolo[3,4-
    2(1H)-yl)methanone c]pyrrole-2(1H)-carboxylate
    (example 8)
    6.3 ((3aR,6aS)-hexahydropyrrolo[3,4- (3aR,6aS)-3,5-dichlorobenzyl 5- 262.4
    c]pyrrol-2(1H)-yl)(4,5,6,7- (4,5,6,7-tetrahydro-1H- (M + H)+
    tetrahydro-1H- benzo[d][1,2,3]triazole-5-
    benzo[d][1,2,3]triazol-5- carbonyl)hexahydropyrrolo[3,4-
    yl)methanone c]pyrrole-2(1H)-carboxylate
    (example 1.01)
  • Intermediate 7A (1H-Benzotriazol-5-yl)-trans-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride, enantiomer A Step 1: trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • The title compound was produced in analogy to intermediate 2, step 1 from trans-tert-butyl hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate (CAS-RN 1251014-37-5) and 1H-benzo[d][1,2,3]triazole-5-carboxylic acid. Light yellow foam, MS: 370.4 (M−H).
  • Step 2: (−)-trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate and (+)-trans-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • HPLC separation of racemic trans-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate (668 mg, 1.80 mmol) using a Reprosil Chiral-NR column as the stationary phase and heptane/ethanol 3:2 as the eluent produced the faster eluting (−)-enantiomer (251 mg, 37%; colourless gum, MS: 370.6 (M−H)), followed by the slower eluting (+)-enantiomer (212 mg, 32%; colourless gum, MS: 370.6 (M−H)).
  • Step 3: (1H-Benzotriazol-5-yl)-trans-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride enantiomer A
  • The title compound was produced in analogy to intermediate 1, step 2 from (−)-trans-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate. White solid, MS: 272.5 (M+H)+.
  • Intermediate 7B (1H-Benzotriazol-5-yl)-trans-octahydro-pyrrolo[3,4-c]pyridin-5-yl-methanone hydrochloride, enantiomer B
  • The following intermediate was prepared according to intermediate 7A, step 3 from (+)-trans-tert-butyl-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate (intermediate 7A, step 2). White solid, MS: 272.5 (M+H)+.
  • Intermediate 8 (1H-Benzo[d][1,2,3]triazol-5-yl)((3aS,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone dihydrochloride Step 1: trans-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • The title compound was produced in analogy to intermediate 2, step 1 from trans-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (intermediate 16) and 1H-benzo[d][1,2,3]triazole-5-carboxylic acid. Light yellow foam, MS: 358.5 (M+H)+.
  • Step 2: (+)-(3aR,6aR)-tert-Butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate and (−)-(3aS,6aS)-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • HPLC separation of racemic trans-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (790 mg, 2.21 mmol) using a Chiralpak AD column as the stationary phase and heptane/ethanol 7:3 as the eluent produced the faster eluting (+)-(R,R)-enantiomer (350 mg, 44%; light yellow foam, MS: 358.5 (M+H)+; e. r. 100:0), followed by the slower eluting (−)-(S,S)-enantiomer (388 mg, 49%; light yellow foam, MS: 358.5 (M+H)+; e. r. 4:96).
  • Step 3: (1H-Benzo[d][1,2,3]triazol-5-yl)((3aS,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone dihydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aR,6aR)-tert-butyl 5-(1H-benzo[d][1,2,3]triazole-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate. White solid, MS: 258.5 (M+H)+.
  • Intermediate 9 (3aR,6aS)-3,5-Dichlorobenzyl 5-(chlorocarbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a colourless solution of (3aR,6aS)-3,5-dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride (intermediate 1; 152 mg, 432 μmol) and pyridine (106 mg, 1.34 mmol) in dichloromethane (2 mL) was added dropwise a solution of triphosgene (57.7 mg, 195 μmol) in dichloromethane (2 mL) at 0° C., then after 30 min the ice bath was removed. After 16 h the reaction mixture was partitioned between 1 M aq. hydrochloric acid solution and dichloromethane. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and evaporated to afford the title compound (172 mg), which was used directly in the next step. Colourless oil, MS: 401.3 (M+Na)+.
  • The following intermediates were prepared according to intermediate 9, replacing (3aR,6aS)-3,5-dichlorobenzyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate hydrochloride by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    9.1 (3aR,8aS)-6-((E)-3-(4- (E)-1-((3aR,8aS)- 416
    (trifluoromethoxy)phenyl)acryloyl) octahydropyrrolo[3,4-d]azepin- (M)+
    octahydropyrrolo[3,4-d]azepine- 6(7H)-yl)-3-(4-
    2(1H)-carbonyl chloride (trifluoromethoxy)phenyl)prop-2-
    en-1-one hydrochloride
    (intermediate 5)
    9.2 (3aR,6aR)-tert-butyl 5- (3aS,6aS)-tert-butyl 274
    (chlorocarbonyl)hexahydropyrrolo hexahydropyrrolo[3,4-c]pyrrole- (M)+
    [3,4-c]pyrrole-2(1H)-carboxylate 2(1H)-carboxylate (intermediate
    15)
    9.3 4-(4-chlorophenyl)piperidine-1- 4-(4-chlorophenyl)piperidine 257.0
    carbonyl chloride hydrochloride (M)+
  • Intermediate 10 (3aR,5r,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate Step 1: (3aR,5r,6aS)-tert-Butyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aR,6aS)-tert-butyl 5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (CAS-RN 146231-54-1; 4.3 g, 19.1 mmol) in methanol (100 mL) was added sodium borohydride (1.44 g, 38.2 mmol) at 0° C., then after 1 h the reaction mixture was treated with ice water and the methanol was removed under reduced pressure. The reaction mixture was partitioned between ethyl acetate and brine. The organic layer was dried over magnesium sulfate, filtered and evaporated to produce the title compound (4.38 g, 100%). Off-white solid, MS: 228.3 (M+H)+.
  • Step 2: (3aR,5r,6aS)-Octahydrocyclopenta[c]pyrrol-5-ol hydrochloride
  • (3aR,5r,6aS)-tert-butyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (4.37 g, 19.0 mmol) was combined with hydrochloric acid solution (5-6 M in 2-propanol) (49 mL, 245 mmol), then after 2 h the reaction mixture was evaporated and the residue was triturated in ethyl acetate to afford the title compound as an off-white solid (2.84 g, 91%).
  • Step 3: (3aR,5r,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • To a solution of (3,5-dichlorophenyl)methanol (541 mg, 3.06 mmol) in dichloromethane (10 mL) was added 1,1′-carbonyldiimidazole (520 mg, 3.21 mmol) at room temperature. Then after 3 h (3aR,5r,6aS)-octahydrocyclopenta[c]pyrrol-5-ol hydrochloride (500 mg, 3.06 mmol) and triethylamine (309 mg, 3.06 mmol) were added, then after 18 h the reaction mixture was partitioned between dichloromethane and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (847 mg, 84%). Colourless oil, MS: 330.1 (M+H)+.
  • Intermediate 11 (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate Step 1: (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-(4-nitrobenzoyloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Diethyl azodicarboxylate solution (40% in toluene; 168 μL, 424 μmol) was added at room temperature to a solution of (3aR,5r,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (intermediate 10; 140 mg, 424 μmol), 4-nitrobenzoic acid (85.0 mg, 509 μmol), and triphenylphosphine (111 mg, 424 μmol) in toluene (10 mL), then after 16 h another portion of triphenylphosphine (33.4 mg, 127 μmol) and diethyl azodicarboxylate solution (40% in toluene; 50 μL, 127 μmol) was added. The reaction mixture was stirred for another 5 h at room temperature, evaporated and the residue was purified by chromatography (silica gel; heptane-ethyl acetate gradient) to produce the title compound (167 mg, 82%). Colourless oil, MS 479.0 (M+H)+.
  • Step 2: (3aR,5s,6aS)-3,5-Dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • A mixture of (3aR,5s,6aS)-3,5-dichlorobenzyl 5-(4-nitrobenzoyloxy)hexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (163 mg, 340 μmol) and 2 M aq. sodium hydroxide solution (1 mL, 2 mmol) in tetrahydrofuran (2 mL) was stirred at room temperature for 6 h. After evaporation of volatile material the residue was partitioned between 1 M aq. hydrochloric acid solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo to give the title compound (109 mg, 97%). Colourless oil, MS: 330.1 (M+H)+.
  • Intermediate 12 4-((3aR,5r,6aS)-2-((3,5-Dichlorobenzyloxy)carbonyl)octahydrocyclopenta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid Step 1: (3aR,5r, 6aS)-3,5-Dichlorobenzyl 5-(3-hydroxy-4-(methoxycarbonyl)phenoxy)-hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • Diethyl azodicarboxylate solution (40% in toluene, 157 μL, 398 μmol) was added at room temperature to a solution of (3aR,5s,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (101 mg, 306 μmol), methyl 2,4-dihydroxybenzoate (68.9 mg, 398 μmol), and triphenylphosphine (104 mg, 398 μmol) in toluene (2 mL). Then after 18 h the reaction mixture was concentrated and the residue purified by chromatography (silica gel; heptane-ethyl acetate gradient) to produce the title compound (144 mg, 98%). Colourless gum, MS: 480.1 (M+H+).
  • Step 2: 4-((3aR,5r,6aS)-2-((3,5-Dichlorobenzyloxy)carbonyl)octahydrocyclopenta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid
  • The title compound was produced in analogy to intermediate 11, step 2 from (3aR,5r,6aS)-3,5-dichlorobenzyl 5-(3-hydroxy-4-(methoxycarbonyl)phenoxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate. Colourless gum, MS: 466.2 (M+H)+.
  • Intermediate 12.1 4-((3aR,5s,6aS)-2-((3,5-Dichlorobenzyloxy)carbonyl)octahydrocyclopenta[c]pyrrol-5-yloxy)-2-hydroxybenzoic acid
  • The title compound was produced in analogy to intermediate 12 from (3aR,5r,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (intermediate 10). Colourless gum, MS: 466.2 (M+H)+.
  • Intermediate 13 (3aR,6aS)-3,5-Dichlorobenzyl 5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
  • To a stirred solution of (3aR,5r,6aS)-3,5-dichlorobenzyl 5-hydroxyhexahydrocyclo-penta[c]pyrrole-2(1H)-carboxylate (intermediate 10; 144 mg, 436 μmol) in dichloromethane (3 mL) was added 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one solution (15% in dichloromethane; 1.48 g, 523 μmol) at 0° C. Then after 2.5 h solid sodium bicarbonate (256 mg, 3.05 mmol) was added and the reaction mixture was stirred for another 5 min and was then filtered through diatomaceous earth. The filtrate was evaporated and purified by chromatography (silica gel; heptane-ethyl acetate gradient) to produce the title compound (132 mg, 88%). Colourless oil, MS′: 328.2 (M+H)+.
  • Intermediate 14 cis-tert-Butyl hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate Step 1: cis-tert-Butyl 6-oxohexahydropvrano[3,4-c]pyrrole-2(1H)-carboxylate
  • (3aR,6aS)-tert-Butyl 5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (CAS-RN 146231-54-1; 5.00 g, 17.8 mmol) was dissolved in dry dichloromethane (250 mL) and then disodium hydrogen phosphate (63.0 g, 444 mmol) and 3-chloroperbenzoic acid (10.9 g, 44.4 mmol) were added. The suspension was stirred at room temperature for 72 h, then 2 M aq. sodium sulfite solution (200 mL) was added. After stirring for another 30 min, the organic layer was washed with sat. aq. sodium hydrogencarbonate solution, dried over magnesium sulfate, filtered, and evaporated to produce a mixture (4.66 g) containing the title compound (MS: 264.5 (M+Na)+) as the main product, along with some unreacted starting material.
  • Step 2: cis-tert-Butyl 3-(2-hydroxyethyl)-4-(hydroxymethyl)pyrrolidine-1-carboxylate
  • cis-tert-Butyl 6-oxohexahydropyrano[3,4-c]pyrrole-2(1H)-carboxylate (crude mixture from step 1; 4.46 g) was dissolved in ethanol (300 mL), then freshly powdered anhydrous calcium chloride (3.69 g, 33.3 mmol) was added at once, then sodium borohydride (2.52 g, 66.5 mmol) was added portionwise at room temperature. After 1 h, the reaction was poured onto ice water (800 mL) and ethyl acetate (800 mL). The two phases were saturated with solid sodium chloride and stirred for 15 min, then the organic layer was separated, washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (2.57 g, ca. 60% yield over 2 steps). Colourless oil, MS: 268.5 (M+Na)+.
  • Step 3: cis-tert-Butyl 3-(2-(methylsulfonyloxy)ethyl)-4-((methylsulfonyloxy)methyl)pyrrolidine-1-carboxylate
  • A solution of methanesulfonyl chloride (3.60 g, 31.4 mmol) in dichloromethane (5 mL) was added at 0° C. to a solution of cis-tert-butyl 3-(2-hydroxyethyl)-4-(hydroxymethyl)pyrrolidine-1-carboxylate (2.57 g, 10.5 mmol) and N,N-diisopropylethylamine (8.12 g, 62.9 mmol) in dichloromethane (70 mL), then after 1 h the mixture was partitioned between ethyl acetate and sat. aq. ammonium chloride solution. The organic layer was washed with sat. aq. sodium hydrogencarbonate solution, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel, heptane-ethyl acetate gradient afforded the title compound (3.47 g, 83%). Light yellow oil, MS: 424.5 (M+Na)+.
  • Step 4: cis-tert-Butyl 5-benzylhexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • To a solution of cis-tert-butyl 3-(2-(methylsulfonyloxy)ethyl)-4-((methylsulfonyloxy)-methyl)pyrrolidine-1-carboxylate (3.05 g, 7.60 mmol) inacetonitrile (100 mL) were added phenylmethanamine (2.44 g, 22.8 mmol) and potassium carbonate (5.25 g, 38.0 mmol). The reaction mixture was heated at 95° C. for 22 h and was then partitioned between ethyl acetate and water. The organic layer was washed with sat. aq. ammonium chloride solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel, gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25) produced the title compound (1.63 g, 64%). Light yellow oil, MS: 317.6 (M+H)+.
  • Step 5: cis-tert-Butyl hexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate
  • To a solution of cis-tert-butyl 5-benzylhexahydro-1H-pyrrolo[3,4-c]pyridine-2(3H)-carboxylate (1.63 g, 4.89 mmol) in methanol (33 mL) was added palladium (10% on carbon; 260 mg, 245 mol), and the reaction mixture was stirred under a hydrogen atmosphere (1 bar) at room temperature for 24 h, then insoluble material was removed by filtration through diatomaceous earth. The filtrate was concentrated and the residue was chromatographed (silica gel, gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25) to produce the title compound (895 mg, 81%). Light yellow oil, MS: 227.5 (M+H)+.
  • Intermediate 15 (3aS,6aS)-tert-Butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate Step 1: (3R,4R)-tert-Butyl 3,4-bis((methyl sulfonyloxy)methyl)pyrrolidine-1-carboxylate
  • The title compound was produced in analogy to intermediate 14, step 3 from (3R,4R)-3,4-bis-hydroxymethyl-pyrrolidine-1-carboxylic acid tert-butyl ester (CAS-RN 895245-32-6). Light yellow oil, MS: 332.4 (M-isobutene+H)+.
  • Step 2: (3aS,6aS)-tert-Butyl 5-benzylhexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • The title compound was produced in analogy to intermediate 14, step 4 from (3R,4R)-tert-butyl 3,4-bis((methylsulfonyloxy)methyl)pyrrolidine-1-carboxylate. Light yellow solid, MS: 303.5 (M+H)+.
  • Step 3: (3aS,6aS)-tert-Butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aS,6aS)-tert-butyl 5-benzylhexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2.22 g, 7.34 mmol) in methanol (20 mL) was added palladium (10% on carbon, 220 mg, 7.34 mmol), and the reaction mixture was stirred under a hydrogen atmosphere (1 bar) at room temperature for 24 h, then insoluble material was removed by filtration through diatomaceous earth. The filtrate was concentrated to produce the title compound (1.60 g, 100%). White waxy solid, MS: 213.5 (M+H)+.
  • Intermediate 15.1 (3aR,6aR)-tert-Butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • The title compound was produced in analogy to intermediate 15, replacing (3R,4R)-3,4-bis-hydroxymethyl-pyrrolidine-1-carboxylic acid tert-butyl ester by (3S,4S)-3,4-bis-hydroxymethyl-pyrrolidine-1-carboxylic acid tert-butyl ester (CAS-RN 895245-30-4). White waxy solid, MS: 213.3 (M+H)+.
  • Intermediate 16 trans-tert-Butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • The title compound was produced in analogy to intermediate 15 from trans-3,4-bis(hydroxymethyl)pyrrolidine-1-carboxylic acid tert-butyl ester (CAS-RN 895245-31-5). White waxy solid, MS: 213.5 (M+H)+.
  • Intermediate 17 (3-Chloro-5-(methylsulfonyl)phenyl)methanol
  • To a solution of 3-chloro-5-(methylsulfonyl)benzoic acid (CAS-RN 151104-63-1; 500 mg, 2.13 mmol) in tetrahydrofuran (5 mL) was added slowly borane-tetrahydrofuran complex solution (1 M solution in tetrahydrofuran, 5.33 mL, 5.33 mmol) at 0° C., then after 3 h the ice-bath was removed and the reaction mixture was stirred at room temperature overnight. The mixture was then carefully treated with methanol (3 mL) and evaporated. The residue was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient afforded the title compound (428 mg, 91%). White solid, MS: 221.3 (M+H)+.
  • The following intermediate was produced according to intermediate 17, replacing 3-chloro-5-(methylsulfonyl)benzoic acid with the appropriate carboxylic acid
  • No. Systematic Name Starting material MS, m/e
    17.1 (2-cyclopropyl-4- 2-cyclopropyl-4-trifluoromethyl- 216.0
    (trifluoromethyl)phenyl)methanol benzoic acid (CAS-RN 1236303- (M)+
    04-0)
  • Intermediate 18 2,2,2-Trifluoro-1-(3-(hydroxymethyl)phenyl)ethanol
  • Lithium borohydride solution (2 M in tetrahydrofuran, 1.15 mL, 2.31 mmol) was added dropwise at 0° C. to a solution of methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate (CAS-RN 1188323-28-5; 180 mg, 769 μmol) in tetrahydrofuran (6 mL), then after 15 min the ice bath was removed and the reaction mixture was heated at reflux for 21 h. Then another portion of lithium borohydride solution (2 M in tetrahydrofuran, 0.77 mL, 1.54 mmol) was added and the reaction mixture was heated at reflux for another 5 h. After cooling, the reaction mixture was partitioned between 1 M aq. hydrochloric acid solution and ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient afforded the title compound (86 mg, 53%). White solid, MS: 206.0 (M+).
  • Intermediate 19 (3-(2,2,2-Trifluoro-1-methoxyethyl)phenyl)methanol Step 1: Methyl 3-(2,2,2-trifluoro-1-methoxyethyl)benzoate
  • Sodium hydride dispersion (60% in mineral oil, 93.2 mg, 2.33 mmol) was added at −5° C. to a solution of methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate (303 mg, 1.29 mmol) in tetrahydrofuran (8 mL), then after 30 min iodomethane (643 mg, 4.53 mmol) was added dropwise over a period of 5 min. After 1 h, the ice bath was removed and the reaction mixture was stirred for another 90 min. The reaction mixture was then partitioned between ethyl acetate and water, the organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated to produce the title compound (purity ca. 90%; 263 mg, 74%). Light yellow liquid, MS: 248.0 (M+).
  • Step 2: (3-(2,2,2-Trifluoro-1-methoxyethyl)phenyl)methanol
  • The title compound was produced in analogy to intermediate 18 from methyl 3-(2,2,2-trifluoro-1-methoxyethyl)benzoate. Colourless liquid, MS: 220.0 (M+).
  • Intermediate 20 (3aR,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxamide 2,2,2-trifluoroacetate Step 1: (3aR,6aS)-tert-Butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • A solution of triphosgene (140 mg, 471 μmol) in ethyl acetate (12 mL) was added at 0° C. to a solution of (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (CAS-RN 250275-15-1; 200 mg, 942 μmol) in tetrahydrofuran (5 mL). The ice bath was removed, then after 30 min the reaction mixture was heated at reflux for 2 h and was then concentrated in vacuo. The residue was taken up in tetrahydrofuran (20 mL), then after the addition of triethylamine (286 mg, 2.83 mmol) and (1H-1,2,3-triazol-4-yl)methanamine hydrochloride (127 mg, 942 μmol) the reaction mixture was stirred at room temperature for 15 h. After partitioning between water and ethyl acetate, the organic layer was dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane-methanol gradient) produced the title compound (110 mg, 34%). White foam, MS: 337.5 (M+H)+.
  • Step 2: (3aR,6aS)—N-((1H-1,2,3-Triazol-4-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxamide 2,2,2-trifluoroacetate
  • The title compound was produced in analogy to intermediate 4, step 2 from (3aR,6aS)-tert-butyl 5-((1H-1,2,3-triazol-4-yl)methylcarbamoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate. Light yellow oil, MS: 237.5 (M+H)+.
  • The following intermediate was produced according to intermediate 20, replacing (1H-1,2,3-triazol-4-yl)methanamine hydrochloride by the appropriate amine.
  • No. Systematic Name Starting material MS, m/e
    20.1 (3aR,6aS)-N-((1H-1,2,3-triazol-5- N-methyl-1H-1,2,3-triazole-5- 251.5
    yl)methyl)-N- methanamine (CAS-RN 1248059- (M + H)+
    methylhexahydropyrrolo[3,4- 33-7)
    c]pyrrole-2(1H)-carboxamide
    2,2,2-trifluoroacetate
  • Intermediate 21 (3aR,6aS)-2-(3-Chlorophenethylsulfonyl)octahydropyrrolo[3,4-c]pyrrole Step 1: (3aR,6aS)-tert-Butyl 5-(3-chlorophenethylsulfonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (CAS-RN 250275-15-1; 300 mg, 1.34 mmol) in N,N-dimethylformamide (5 mL) was added 2-(3-chlorophenyl)ethanesulfonyl chloride (321 mg, 1.34 mmol) triethylamine (291 mg, 2.87 mmol), and 4-(dimethylamino)pyridine, then after 16 h the reaction mixture was concentrated in vacuo. The residue was partitioned between sat. aq. sodium hydrogencarbonate solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to produce the title compound (520 mg, 93%), which was directly used in the next step.
  • Step 2: (3aR,6aS)-2-(3-Chlorophenethylsulfonyl)octahydropyrrolo[3,4-c]pyrrole
  • To a solution of (3aR,6aS)-tert-butyl 5-(3-chlorophenethylsulfonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (520 mg, 1.25 mmol) in methanol (10 mL) was added hydrogen chloride solution (4 M in 1,4-dioxane, 6.3 mL), then after 1 h a few drops of 37% aq. hydrochloric acid solution were added, then after another 2 h the reaction mixture was concentrated to ⅓ of the volume. This was basified to pH 7 with 2 M aq. sodium hydroxide solution and was extracted with ethyl acetate. The organic layer was washed with brine and was dried over magnesium sulfate to produce the title compound (320 mg, 81%). Colourless oil, MS: 315.4 (M+H)+.
  • Intermediate 22 3-Chloro-5-(methylsulfonyl)benzaldehyde
  • To a clear colourless solution of (3-chloro-5-(methylsulfonyl)phenyl)methanol (intermediate 17; 505 mg, 2.29 mmol) in dichloromethane (10 mL) was added 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one solution (15% in dichlomethane; 5.7 mL, 2.75 mmol) at 0° C., then after 1 h the reaction mixture was allowed to reach room temperature over 1 h. After partitioning between dichloromethane and 1 M aq. sodium thiosulfate solution, the organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane) afforded the title compound (376 mg, 75%). White solid, MS: 218 (M+).
  • The following intermediate was produced according to intermediate 20, replacing (1H-1,2,3-triazol-4-yl)methanamine hydrochloride by the appropriate amine.
  • No. Systematic Name Starting material MS, m/e
    22.1 4-formyl-3-isopropylbenzonitrile 4-(hydroxymethyl)-3- 173
    isopropylbenzonitrile (intermediate (M)+
    41)
    22.2 4-formyl-5-isopropyl-2- 4-(hydroxymethyl)-5-isopropyl-2- 187
    methylbenzonitrile methylbenzonitrile (intermediate (M)+
    41.1)
  • Intermediate 23 (E)-3-(3-chloro-5-(methylsulfonyl)phenyl)acrylic acid
  • To a clear yellow solution of 3-chloro-5-(methylsulfonyl)benzaldehyde (intermediate 22; 370 mg, 1.69 mmol) and malonic acid (352 mg, 3.38 mmol) in pyridine (3 mL) was added piperidine (28.8 mg, 338 μmol) and the reaction mixture was heated at reflux for 2 h. After cooling, the reaction mixture was treated with 4 M aq. hydrochloric acid solution. The precipitate was collected by filtration, washed with water, and dried to afford the title compound (352 mg, 78%). White solid, MS: 259.5 (M−H).
  • The following intermediates were prepared according to intermediate 23, replacing 3-chloro-5-(methylsulfonyl)benzaldehyde by the appropriate aldehyde.
  • No. Systematic Name Aldehyde MS, m/e
    23.01 (E)-3-(3-chloro-5- 3-chloro-5-methoxybenzaldehyde 211.1
    methoxyphenyl)acrylic acid (CAS-RN 164650-68-4) (M + H)+
    23.02 (E)-3-(2-fluoro-4- 2-fluoro-4- 249.1
    (trifluoromethoxy)phenyl)acrylic (trifluoromethoxy)benzaldehyde (M − H)
    acid (CAS-RN 1227628-83-2)
    23.03 (E)-3-(3-fluoro-4- 3-fluoro-4- 249.5
    (trifluoromethoxy)phenyl)acrylic (trifluoromethoxy)benzaldehyde (M − H)
    acid (CAS-RN 473917-15-6)
    23.04 (E)-3-(4-fluoro-2- 4-fluoro-2- 224.3
    (trifluoromethyl)phenyl)acrylic (trifluoromethyl)benzaldehyde (M − H)
    acid
    23.05 (E)-3-(6-phenylpyridin-3-yl)acrylic 6-phenylnicotinaldehyde 224.3
    acid (M − H)
    23.06 (E)-3-(5-phenylpyridin-2-yl)acrylic 5-phenylpicolinaldehyde 224.3
    acid (M − H)
    23.07 (E)-3-(4-(pyridin-4- 4-(pyridin-4-yl)benzaldehyde 224.3
    yl)phenyl)acrylic acid (M − H)
    23.08 (E)-3-(4-(pyridin-3- 4-(pyridin-3-yl)benzaldehyde 224.3
    yl)phenyl)acrylic acid (M − H)
    23.09 (E)-3-(4-(pyridin-2- 4-(pyridin-2-yl)benzaldehyde 224.3
    yl)phenyl)acrylic acid (M − H)
    23.10 (E)-3-(2-cyclopropylphenyl)acrylic 2-cyclopropylbenzaldehyde 187.4
    acid (M − H)
    23.11 (E)-3-(2-fluoro-4-(2,2,2- 2-fluoro-4-(2,2,2- 263.0
    trifluoroethoxy)phenyl)acrylic acid trifluoroethoxy)benzaldehyde (M − H)
  • Intermediate 24 (E)-3-(3-Methoxy-5-(trifluoromethoxy)phenyl)acrylic acid Step 1 (E)-tert-Butyl 3-(3-methoxy-5-(trifluoromethoxy)phenyl)acrylate
  • To a colourless solution of 1-bromo-3-methoxy-5-(trifluoromethoxy)benzene (CAS-RN 1330750-28-1; 1.00 g, 3.62 mmol) in N,N-dimethylformamide (10 mL) was added triethylamine (1.1 g, 10.8 mmol), tert-butyl acrylate (567 mg, 4.34 mmol), palladium(II) acetate (16.2 mg, 72.3 mol) and tri-o-tolylphosphine (88 mg, 289 μmol). The light yellow reaction mixture was evacuated and backfilled with argon, three times. The reaction mixture was heated at 120° C., then after 16 h partitioned between ethyl acetate and sat. aq. sodium hydrogencarbonate solution. The organic layer was washed with water, sat. aq. ammonium chloride solution, and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) afforded the title compound (984 mg, 85%). Colourless oil, MS: 318 (M+).
  • Step 2: (E)-3-(3-Methoxy-5-(trifluoromethoxy)phenyl)acrylic acid
  • To a solution of (E)-tert-butyl 3-(3-methoxy-5-(trifluoromethoxy)phenyl)acrylate (966 mg, 3.03 mmol) in dichloromethane (9 mL) was added trifluoroacetic acid (3.5 mL), then after 2 h the reaction mixture was concentrated in vacuo. The residue was triturated in heptane to afford the title compound (752 mg, 95%). White solid, MS: 261.2 (M−H).
  • The following intermediate was prepared according to intermediate 24, replacing 1-bromo-3-methoxy-5-(trifluoromethoxy)benzene by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    24.1 (E)-3-(3-chloro-5- 3-chloro-5-iodobenzonitrile (CAS- 206.1
    methoxyphenyl)acrylic acid RN 289039-30-1) (M − H)
  • Intermediate 25 (6,7-Dihydro-1H-[1,2,3]triazolo[4,5-c]pyridin-5(4H)-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride Step 1: (3aS,6aS)-tert-Butyl 5-(4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3, 4-c]pyrrole-2(1H)-carboxylate
  • To a colourless solution of 4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine (CAS-RN 706757-05-3; 102 mg, 819 μmol) and N,N-diisopropylethylamine (222 mg, 1.72 mmol) in N,N-dimethylformamide (4 mL) was added a solution of (3aR,6aR)-tert-butyl 5-(chlorocarbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (intermediate 9.2; 225 mg, 819 μmol) in dichloromethane (8 mL), then after 70 h the reaction mixture was partitioned between dichloromethane and sat. aq. ammonium chloride solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) produced the title compound (225 mg, 76%). White foam, MS: 363.6 (M+H)+.
  • Step 2: (6,7-Dihydro-1H-[1,2,3]triazolo[4,5-c]pyridin-5(4H)-yl)((3aR,6aR)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methanone hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aS,6aS)-tert-butyl 5-(4, 5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate. White solid, MS: 263.5 (M+H)+.
  • The following intermediate was produced according to intermediate 25, replacing 4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine by the appropriate amine:
  • No. Systematic Name Amine MS, m/e
    25.1 (3aR,7aR)-5-((3aR,6aR)- (3aR,7aR)-hexahydrooxazolo[5,4- 281.1
    octahydropyrrolo[3,4-c]pyrrole-2- c]pyridin-2(1H)-one hydrochloride (M + H)+
    carbonyl)hexahydrooxazolo[5,4- (intermediate 27)
    c]pyridin-2(1H)-one hydrochloride
  • Intermediate 26 (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-(trifluoromethoxy)-phenyl)prop-2-en-1-one Step 1: from (3aR,8aS)-tert-butyl 6-((E)-3-(3-(trifluoromethoxy)phenyl)acryloyl)-octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • To a solution of (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate (CAS-RN 1251013-07-6; 353 mg, 1.47 mmol) and (E)-3-(3-(trifluoromethoxy)phenyl)acrylic acid (341 mg, 1.47 mmol) in N,N-dimethylformamide (10 mL) were added N-ethyldiisopropylamine (570 mg, 4.41 mmol) dropwise over a period of 2 minutes at room temperature under an argon atmosphere. The mixture was cooled down to 0° C. and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (563 mg, 1.47 mmol) was added, then after 1 h the ice bath was removed. The reaction mixture was stirred for 16 h at room temperature, then partitioned between ethyl acetate and sat. aq. sodium hydrogencarbonate solution. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (768 mg, 87%). White foam, MS: 399.5 (M+H-isobutene)+.
  • Step 2: (E)-1-((3aR,8aS)-Octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one
  • Trifluoroacetic acid (1.1 mL, 15 mmol) was added over 5 min to a solution of (3aR,8aS)-tert-butyl 6-((E)-3-(3-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate (768 mg, 1.49 mmol) in dichloromethane (12 mL) at room temperature, then after 5 h the reaction mixture was poured onto ice water, basified to pH 10 with 2 M aq. sodium hydroxide solution, and extracted with chloroform. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane/methanol 9:1) produced the title compound (526 mg, 95%). Yellow gum, MS: 355.5 (M+H)+.
  • The following intermediate was prepared according to intermediate 26, replacing (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate by the appropriate amine and (E)-3-(3-(trifluoromethoxy)phenyl)acrylic acid by the appropriate carboxylic acid.
  • No. Systematic Name Amine Carboxylic acid MS, m/e
    26.01 (E)-1-((3aR,6aS)- (3aR,6aS)-tert-butyl (E)-3-(4-(trifluoro- 327.5
    hexahydropyrrolo[3,4- hexahydropyrrolo[3,4- methoxy)- (M + H)+
    c]pyrrol-2(1H)-yl)-3-(4- c]pyrrole-2(1H)- phenyl)acrylic acid
    (trifluoromethoxy)phenyl) carboxylate (CAS-RN
    prop-2-en-1-one 250275-15-1)
    26.02 3-(3-chlorophenyl)-2,2- cis-octahydro- 3-(3- 335.6
    dimethyl-1-((3aR,8aS)- pyrrolo[3,4-d]azepine-2- chlorophenyl)-2,2- (M + H)+
    octahydropyrrolo[3,4- carboxylic acid tert-butyl dimethylpropanoic
    d]azepin-6(7H)-yl)propan- ester hydrochloride (CAS- acid (CAS-RN
    1-one RN 1251013-07-6) 1225505-29-2)
    26.03 (E)-3-(3-fluoro-4- cis-octahydro- (E)-3-(3-fluoro-4- 373.6
    (trifluoromethoxy)phenyl)- pyrrolo[3,4-d]azepine-2- (trifluoro- (M + H)+
    1-((3aR,8aS)- carboxylic acid tert-butyl methoxy)-
    octahydropyrrolo[3,4- ester hydrochloride (CAS- phenyl)acrylic acid
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6) (intermediate 23.3)
    en-1-one
    26.04 (E)-3-(4-fluoro-2- cis-octahydro- (E)-3-(4-fluoro-2- 357.6
    (trifluoromethyl)phenyl)-1- pyrrolo[3,4-d]azepine-2- (trifluoromethyl)- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl phenyl)acrylic acid
    octahydropyrrolo[3,4- ester hydrochloride (CAS- (intermediate 23.4)
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6)
    en-1-one
    26.05 (E)-3-(2-methyl-4- cis-octahydro- (E)-3-(2-methyl-4- 369.6
    (trifluoromethoxy)phenyl)- pyrrolo[3,4-d]azepine-2- (trifluoro- (M + H)+
    1-((3aR,8aS)- carboxylic acid tert-butyl methoxy)phenyl)-
    octahydropyrrolo[3,4- ester hydrochloride (CAS- acrylic acid (CAS-
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6) RN 1262012-31-6)
    en-1-one
    26.06 (E)-3-(3-fluoro-4- cis-octahydro- (E)-3-(3-fluoro-4- 319.6
    methoxyphenyl)-1- pyrrolo[3,4-d]azepine-2- methoxyphenyl)- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl acrylic acid (CAS-
    octahydropyrrolo[3,4- ester hydrochloride (CAS- RN 147906-08-9)
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6)
    en-1-one
    26.07 (E)-3-(2-isopropyl-phenyl)- cis-octahydro- (E)-3-(2-isopropyl- 313.2
    1-(3aS,8aR)-octahydro- pyrrolo[3,4-d]azepine-2- phenyl)-acrylic (M + H)+
    pyrrolo[3,4-d]azepin-6-yl- carboxylic acid tert-butyl acid (CAS-RN
    prop-2-en-1-one ester hydrochloride (CAS- 1379383-70-6)
    RN 1251013-07-6)
    26.08 (E)-3-(2- cis-octahydro- (E)-3-(2- 311.6
    cyclopropylphenyl)-1- pyrrolo[3,4-d]azepine-2- cyclopropyl- (M + H)+
    (trans- carboxylic acid tert-butyl phenyl)acrylic acid
    octahydropyrrolo[3,4- ester hydrochloride (CAS- (intermediate
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6) 23.10)
    en-1-one
    26.09 (E)-3-(4-methoxy-2- cis-octahydro- (E)-3-(4-methoxy- 369.6
    (trifluoromethyl)phenyl)-1- pyrrolo[3,4-d]azepine-2- 2-(trifluoro- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl methyl)phenyl)-
    octahydropyrrolo[3,4- ester hydrochloride (CAS- acrylic acid (CAS-
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6) RN
    en-1-one 773131-66-1)
    26.10 (E)-3-(3-chloro-5- cis-octahydro- (E)-3-(3-chloro-5- 373.6
    (trifluoromethyl)phenyl)-1- pyrrolo[3,4-d]azepine-2- (trifluoromethyl)- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl phenyl)acrylic acid
    octahydropyrrolo[3,4- ester hydrochloride (CAS- (CAS-RN 886761-
    d]azepin-6(7H)-yl)prop-2- RN 1251013-07-6) 69-9)
    en-1-one
    26.11 3-(3-fluoro-4-(2,2,2- cis-octahydro- 3-(3-fluoro-4- 389.2
    trifluoroethoxy)phenyl)-1- pyrrolo[3,4-d]azepine-2- (2,2,2-trifluoro- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl ethoxy)phenyl)-
    octahydropyrrolo[3,4- ester hydrochloride (CAS- propanoic acid
    d]azepin-6(7H)-yl)propan- RN 1251013-07-6)
    1-one
    26.12 3-(2-fluoro-4-(2,2,2- cis-octahydro- 3-(2-fluoro-4- 389.2
    trifluoroethoxy)phenyl)-1- pyrrolo[3,4-d]azepine-2- (2,2,2-trifluoro- (M + H)+
    ((3aR,8aS)- carboxylic acid tert-butyl ethoxy)-
    octahydropyrrolo[3,4- ester (CAS-RN 1251013- phenyl)propanoic
    d]azepin-6(7H)-yl)propan- 07-6) acid (intermediate
    1-one 35.3)
  • Intermediate 27 (3aR,7aR)-Hexahydrooxazolo[5,4-c]pyridin-2(1H)-one hydrochloride Step 1: (3aR,7aR)-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate
  • To a solution of (3R,4R)-tert-butyl 4-amino-3-hydroxypiperidine-1-carboxylate (CAS-RN 1007596-95-3; 500 mg, 2.31 mmol) in N,N-dimethylformamide (5.00 mL) was added imidazole (157 mg, 2.31 mmol) and 1,1′-carbonyldiimidazole (375 mg, 2.31 mmol) at room temperature, then after 18 h the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated. The residue was chromatographed (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25) to produce the title compound (401 mg, 72%) as a white solid.
  • Step 2: (3aR,7aR)-Hexahydrooxazolo[5,4-c]pyridin-2(1H)-one hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aR,7aR)-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate. White solid, MS: 143.2 (M+H)+.
  • Intermediate 28 cis-Hexahydrooxazolo[5,4-c]pyridin-2(1H)-one hydrochloride Step 1: cis-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate
  • To a light yellow solution of 1-(tert-butoxycarbonyl)-3-hydroxypiperidine-4-carboxylic acid (CAS-RN 1260876-51-4; 196 mg, 799 μmol) in toluene (2 mL) was added triethylamine (97 mg, 0.96 mmol) and diphenylphosphoryl azide (269 mg, 959 μmol). The reaction mixture was heated at reflux for 18 h and was then partitioned between ethyl acetate and sat. aq. sodium hydrogen carbonate solution. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and evaporated. Chromatography (silica gel; ethyl acetate-methanol gradient) produced the title compound (66 mg, 34%). White solid, MS: 241.4 (M−H).
  • Step 2: cis-Hexahydrooxazolo[5,4-c]pyridin-2(1H)-one hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from cis-tert-butyl 2-oxohexahydrooxazolo[5,4-c]pyridine-5(6H)-carboxylate. White solid, MS: 142.1 (M+).
  • Intermediate 29 (3aSR,6SR,7aSR)-2-Oxooctahydrobenzo[d]oxazole-6-carboxylic acid Step 1: (1 SR,3 SR,4RS)-Methyl 4-bromo-3-(phenoxycarbonyloxy)cyclohexanecarboxylate
  • To a solution of (1 SR,3 SR,4RS)-methyl 4-bromo-3-hydroxycyclohexanecarboxylate (CAS 38361-11-4; 500 mg, 2.11 mmol) and pyridine (175 mg, 2.21 mmol) in dichloromethane (8 mL) was added a solution of phenyl carbonochloridate (347 mg, 2.21 mmol) in dichloromethane (1 mL) at −5° C., then after 1 h the reaction mixture was partitioned between dichloromethane and water. The organic layer was washed with sat. aq. ammonium chloride solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (545 mg, 72%). Colourless oil, MS: 357.4 (M+H)+.
  • Step 2: (1SR,3 SR,4SR)-Methyl 4-azido-3-(phenoxycarbonyloxy)cyclohexanecarboxylate
  • To a solution of (1SR,3SR,4RS)-methyl 4-bromo-3-(phenoxycarbonyloxy)cyclohexane-carboxylate (533 mg, 1.49 mmol) and 15-crown-5 (23.0 mg, 104 μmol) in N,N-dimethylformamide (4 mL) was added sodium azide (437 mg, 6.71 mmol). The reaction mixture was heated at 75° C. for 72 h and was then partitioned between water and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane) produced the title compound (60 mg, 13%). Colourless oil, MS: 337.2 (M+NH4)+.
  • Step 3: (3aSR,6SR,7aSR)-Methyl 2-oxooctahydrobenzo[d]oxazole-6-carboxylate
  • To a colourless solution of (1R,3R,4R)-methyl 4-azido-3-(phenoxycarbonyloxy)cyclohexanecarboxylate (56 mg, 175 μmol) in tetrahydrofuran (2 mL) and water (50 μL) was added triphenylphosphine (138 mg, 526 μmol). The solution was heated to 50° C. for 3 h and was then partitioned between ethyl acetate and brine. The organic layer was dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25 produced the title compound (49 mg), which contained triphenylphosphine oxide as an inseparable impurity.
  • Step 4: (3aSR,6SR,7aSR)-2-Oxooctahydrobenzo[d]oxazole-6-carboxylic acid
  • The title compound was produced in analogy to intermediate 11, step 2 from (3aSR,6SR,7aSR)-methyl 2-oxooctahydrobenzo[d]oxazole-6-carboxylate. White solid, MS: 184.3 (M−H).
  • Intermediate 30A and 30B (+)-(R)-4,5,6,7-Tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid and (−)-(S)-4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid
  • Racemic 4,5,6,7-tetrahydro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CAS-RN 33062-47-4; 1.10 g, 6.58 mmol) was separated by preparative HPLC using a Chiralpak AD column as the stationary phase and heptane/ethanol 3:2 as the mobile phase. This produced the faster eluting (+)-(R)-enantiomer (452 mg, 41%), followed by the slower eluting (−)-(S)-enantiomer (381 mg, 35%).
  • Intermediate 31 2-(4-Chloro-2-methylphenoxy)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethanone hydrochloride Step 1: (3aR,6aS)-tert-Butyl 5-(2-bromoacetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aR,6aS)-tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (CAS-RN 250275-15-1; 400 mg, 1.88 mmol) and triethylamine (191 mg, 1.88 mmol) was added 2-bromoacetyl chloride (297 mg, 1.88 mmol) at −40° C., then after 2 h the reaction mixture was washed with water at 0° C. The organic layer was dried over magnesium sulfate, filtered, and evaporated to produce the title compound (628 mg, 100%), which was directly used in the next step.
  • Step 2: (3aR,6aS)-tert-Butyl 5-(2-(4-chloro-2-methylphenoxy)acetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • To a solution of (3aR,6aS)-tert-butyl 5-(2-bromoacetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (100.6 mg, 302 μmol) and 4-chloro-2-methylphenol (64.6 mg, 453 μmol) in N,N-dimethylformamide (5 mL) was added caesium carbonate (197 mg, 604 μmol) at room temperature, then after 16 h the reaction mixture was partitioned between water and ethyl acetate.
  • The organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (57 mg, 48%). Colourless oil, MS: 339.5 (M+H-isobutene).
  • Step 3: 2-(4-Chloro-2-methylphenoxy)-1-((3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethanone hydrochloride
  • The title compound was produced in analogy to intermediate 1, step 2 from (3aR,6aS)-tert-butyl 5-(2-(4-chloro-2-methylphenoxy)acetyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate.
  • Light brown solid, MS: 295.5 (M+H)+. The following intermediate was produced in analogy to intermediate 31, replacing 4-chloro-2-methylphenol in step 2 by the appropriate phenol.
  • No. Systematic Name Phenol MS, m/e
    31.1 2-(4-chloro-3-methylphenoxy)- 4-chloro-3-methylphenol 295.5
    1-((3aR,6aS)-hexahydropyrrolo (M + H)+
    [3,4-c]pyrrol-2(1H)-yl)
    ethanone hydrochloride
  • Intermediate 32 (3aR,8aS)-2-Fluoro-4-(trifluoromethoxy)benzyl octahydropyrrolo[3,4-d]azepine-6(7H)-carboxylate Step 1: (3aR,8aS)-2-tert-Butyl 6-(2-fluoro-4-(trifluoromethoxy)benzyl) hexahydropyrrolo[3,4-d]azepine-2,6(1H,7H)-dicarboxylate
  • The title compound was produced in analogy to intermediate 1, step 1 from cis-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid tert-butyl ester hydrochloride (CAS-RN 1251013-07-6) and (2-fluoro-4-(trifluoromethoxy)phenyl)methanol (CAS-RN 1240257-07-1).
  • Step 2: (3aR,8aS)-2-Fluoro-4-(trifluoromethoxy)benzyl octahydropyrrolo[3,4-d]azepine-6(7H)-carboxylate
  • The title compound was produced in analogy to intermediate 4, step 2 from (3aR,8aS)-2-tert-butyl 6-(2-fluoro-4-(trifluoromethoxy)benzyl) hexahydropyrrolo[3,4-d]azepine-2,6(1H,7H)-dicarboxylate. Light brown gum, MS: 377.6 (M+H)+.
  • The following intermediates were produced according to intermediate 32, replacing cis-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid tert-butyl ester hydrochloride and (2-fluoro-4-(trifluoromethoxy)phenyl)methanol by the appropriate amine and alcohol, respectively.
  • No. Systematic Name Amine Alcohol MS, m/e
    32.1 trans-(2-methoxy-4- trans-tert-butyl (2-methoxy-4- 375.6
    (trifluoromethoxy)benzyl) hexahydro-1H- (trifluoro- (M + H)+
    hexahydro-1H-pyrrolo pyrrolo[3,4-c]pyridine- methoxy)phenyl)-
    [3,4-c]pyridine-5(6H)- 2(3H)-carboxylate methanol (CAS-
    carboxylate (CAS-RN 1251014-37-5) RN 886500-30-7)
    32.2 trans-(2-cyclopropyl-4- trans-tert-butyl (2-cyclopropyl-4- 369.3
    (trifluoromethyl)benzyl) hexahydro-1H- (trifluoromethyl)- (M + H)+
    hexahydro-1H-pyrrolo pyrrolo[3,4-c]pyridine- phenyl)methanol
    [3,4-c]pyridine-5(6H)- 2(3H)-carboxylate (intermediate 17.1)
    carboxylate (CAS-RN 1251014-37-5)
    32.3 trans-(4-fluoro-2- trans-tert-butyl (4-fluoro-2- 347.6
    (trifluoromethyl)benzyl) hexahydro-1H- (trifluoromethyl)- (M + H)+
    hexahydro-1H-pyrrolo pyrrolo[3,4-c]pyridine- phenyl)methanol
    [3,4-c]pyridine-5(6H)- 2(3H)-carboxylate
    carboxylate (CAS-RN 1251014-37-5)
    32.4 (3aR,8aS)-3-fluoro-4- cis-octahydro- [3-fluoro-4-(2,2,2- 390.2
    (2,2,2-trifluoroethoxy) pyrrolo[3,4-d]azepine-2- trifluoroethoxy)- (M+)
    benzyl octahydropyrrolo carboxylic acid tert-butyl phenyl]methanol
    [3,4-d]azepine-6(7H)- ester (CAS-RN (CAS-RN
    carboxylate 1251013-07-6) 1039931-47-9
  • Intermediate 33 2-(2-(Tetrahydrofuran-2-yl)phenoxy)acetic acid Step 1: Ethyl 2-(2-(tetrahydrofuran-2-yl)phenoxy)acetate
  • To a solution of 2-(tetrahydrofuran-2-yl)phenol (CAS-RN 40324-49-0; 510 mg, 3.11 mmol) in acetone (4 mL) were added potassium carbonate (859 mg, 6.21 mmol) and ethyl 2-bromoacetate (545 mg, 3.26 mmol) at room temperature, then after 3 h the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to produce the title compound (754 mg, 97%). Light yellow oil, MS: 251.5 (M+H)+.
  • Step 2: 2-(2-(Tetrahydrofuran-2-yl)phenoxy)acetic acid
  • To a solution of ethyl 2-(2-(tetrahydrofuran-2-yl)phenoxy)acetate (754 mg, 3.01 mmol) in methanol (2.5 mL) and tetrahydrofuran (12 mL) was added 1 M aq. lithium hydroxide solution (5.12 mL, 5.12 mmol), then after 90 min the reaction mixture was acidified with 2 M aq. hydrochloric acid solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to produce the title compound (650 mg, 97%). White solid, MS: 221.2 (M−H).
  • The following intermediates were produced according to intermediate 33, replacing 2-(tetrahydrofuran-2-yl)phenol by the appropriate phenol.
  • No. Systematic Name Phenol MS, m/e
    33.1 2-(2-bromo-4- 2-bromo-4-(trifluoromethoxy)- 313.3
    (trifluoromethoxy)- phenol (CAS-RN 200956-13-4) (M − H)
    phenoxy)acetic acid
    33.2 2-(2-(1H-pyrrol-1-yl) 2-(1H-pyrrol-1-yl)phenol 216.5
    phenoxy)acetic acid (CAS-RN 32277-91-1) (M − H)
    33.3 2-(2-chloro-4- 2-chloro-4-(trifluoro-methoxy) 269.5
    (trifluoromethoxy) phenol (CAS-RN 70783-75-4) (M − H)
    phenoxy)acetic acid
  • Intermediate 34 2-(4-Cyano-2-isopropyl-5-methylphenoxy)acetic acid Step 1: tert-Butyl 2-(4-cyano-2-isopropyl-5-methylphenoxy)acetate
  • To a solution of 4-hydroxy-5-isopropyl-2-methylbenzonitrile (CAS-RN 858026-56-9; 156 mg, 890 μmol) in acetone (4 mL) were added potassium carbonate (246 mg, 1.78 mmol) and tert-butyl 2-bromoacetate (188 mg, 935 μmol) at room temperature, then after 3 h the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to produce the title compound (253 mg 98%). White solid, MS: 290.5 (M+H)+.
  • Step 2: 2-(4-Cyano-2-isopropyl-5-methylphenoxy)acetic acid
  • To a colourless solution of tert-butyl 2-(4-cyano-2-isopropyl-5-methylphenoxy)acetate (248 mg, 857 μmol) in dichloromethane (3 mL) was added trifluoroacetic acid (1.95 g, 17.1 mmol), then after 3 h the reaction mixture was concentrated and the residue triturated in heptane. The crude product was purified by chromatography (silica gel; dichloromethane-methanol gradient) to afford the title compound (179 mg, 90%). White solid, MS: 232.5 (M−H). The following intermediates were produced according to intermediate 34, replacing 4-hydroxy-5-isopropyl-2-methylbenzonitrile by the appropriate phenol.
  • No. Systematic Name Phenol MS, m/e
    34.1 2-(4-cyano-2- 3-isopropyl-4-hydroxy-benzonitrile 218.3
    isopropylphenoxy) (CAS-RN 46057-54-9) (M − H)
    acetic acid
    34.2 2-(2-cyano-4- 2-hydroxy-5-(trifluoromethoxy)- 260.5
    (trifluoromethoxy) benzonitrile (M − H)
    phenoxy)acetic acid
    34.3 2-(2-(pyridin-3-yl) 2-(3-pyridinyl)-phenol 230.2
    phenoxy)acetic acid (CAS-RN 54168-07-9) (M + H)+
  • Intermediate 35 3-(3-Fluoro-4-(trifluoromethoxy)phenyl)propanoic acid
  • A solution of (E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acrylic acid (intermediate 23.3; 500 mg, 2.00 mmol) in methanol (7 mL) was stirred under a hydrogen atmosphere (1 bar) in the presence of palladium (10% on activated charcoal; 50 mg), then after 20 h insoluble material was removed by filtration through diatomaceous earth. The filtrate was concentrated to produce the title compound (485 mg, 96%). White solid, MS: 251.2 (M−H).
  • The following intermediates were produced according to intermediate 35, replacing (E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acrylic acid by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    35.1 3-(6-phenylpyridin-3-yl) (E)-3-(6-phenylpyridin-3-yl) 226.3
    propanoic acid acrylic acid (M − H)
    (intermediate 23.05)
    35.2 3-(3-fluoro-4-(2,2,2- (E)-3-(3-fluoro-4-(2,2,2- 265.1
    trifluoroethoxy)phenyl) trifluoroethoxy)phenyl)acrylic (M − H)
    propanoic acid acid (CAS-RN 1087780-94-6)
    35.3 3-(2-fluoro-4-(2,2,2- (E)-3-(2-fluoro-4-(2,2,2- 265.1
    trifluoroethoxy)phenyl) trifluoroethoxy)phenyl)acrylic (M − H)
    propanoic acid acid (intermediate 23.11)
    35.4 3-(2-fluoro-4- (E)-3-(2-fluoro-4- 251.2
    (trifluoromethoxy)- (trifluoromethoxy)phenyl) (M − H)
    phenyl) acrylic acid
    propanoic acid (intermediate 23.02)
  • Intermediate 36 2-(5-Chloro-2-(trifluoromethyl)phenoxy)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)ethanone Step 1: (3aR,8aS)-tert-butyl 6-(2-(5-chloro-2-(trifluoromethyl)phenoxy)acetyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • Caesium carbonate (132 mg, 404 μmol) was added to a solution of 5-chloro-2-(trifluoromethyl)phenol (47.7 mg, 242 μmol) and (3aR,8aS)-tert-butyl 6-(2-bromoacetyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate (intermediate 37; 73 mg, 202 mol) in N,N-dimethylformamide (5 mL) at room temperature, then after 18 h the reaction mixture was partitioned between ice water and ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) produced the title compound (82 mg, 83%). White foam, MS: 421.5 (M+H-isobutene)+.
  • Step 2: 2-(5-Chloro-2-(trifluoromethyl)phenoxy)-1-((3aR,8aS)-octahydropyrrolo[3,4-d]azepin-6(7H)-yl)ethanone
  • The title compound was produced in analogy to intermediate 26, step 2 from (3aR,8aS)-tert-butyl 6-(2-(5-chloro-2-(trifluoromethyl)phenoxy)acetyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate. Light yellow foam, MS: 377.5 (M+H)+.
  • The following intermediates were produced according to intermediate 36, replacing 5-chloro-2-(trifluoromethyl)phenol by the appropriate phenol.
  • No. Systematic Name Phenol MS, m/e
    36.01 2-(6-isopropyl-3,3-dimethyl-2,3-dihydro-1H- 6-isopropyl-3,3-dimethyl- 385.7
    inden-5-yloxy)-1-((3aR,8aS)- 2,3-dihydro-1H-inden-5-ol (M + H)+
    octahydropyrrolo[3,4-d]azepin-6(7H)-yl)
    ethanone
    36.02 2-(2-isopropyl-5-methylphenoxy)-1- 2-isopropyl-5-methylphenol 331.6
    ((3aR,8aS)-octahydropyrrolo[3,4-d]azepin- (M + H)+
    6(7H)-yl)ethanone
    36.03 2-(2-chloro-4-fluorophenoxy)-1-((3aR,8aS)- 2-chloro-4-fluorophenol 327.1
    octahydropyrrolo[3,4-d]azepin-6(7H)-yl) (M + H)+
    ethanone
    36.04 2-(4-methyl-2-(1-methylpyrrolidin-3- 4-methyl-2-(1- 372.3
    yl)phenoxy)-1-((3aR,8aS)-octahydropyrrolo methylpyrrolidin-3-yl)phenol (M + H)+
    [3,4-d]azepin-6(7H)-yl)ethanone
    36.05 4-(2-((3aR,8aS)-octahydropyrrolo[3,4-d] 4-hydroxy-3- 368.1
    azepin-6(7H)-yl)-2-oxoethoxy)-3- (trifluoromethyl)benzonitrile (M + H)+
    (trifluoromethyl)benzonitrile
    36.06 2-(4-chloro-2-isopropyl-5-methylphenoxy)-1- 4-chloro-2-isopropyl-5- 365.2
    ((3aR,8aS)-octahydropyrrolo[3,4-d]azepin- methylphenol (M + H)+
    6(7H)-yl)ethanone
    36.07 1-(3aS,8aR)-octahydro-pyrrolo[3,4-d]azepin- 2-(trifluoromethoxy)phenol 359.6
    6-yl-2-(2-trifluoromethoxy-phenoxy)- (M + H)+
    ethanone
    36.08 2-(2-tert-butyl-4-methoxyphenoxy)-1- 2-tert-butyl-4- 361.6
    ((3aR,8aS)-octahydropyrrolo[3,4-d]azepin- methoxyphenol (M + H)+
    6(7H)-yl)ethanone
    36.09 3-isopropyl-4-(2-((3aR,8aS)- 4-hydroxy-3- 342.6
    octahydropyrrolo[3,4-d]azepin-6(7H)-yl)-2- isopropylbenzonitrile (M + H)+
    oxoethoxy)benzonitrile (CAS-RN
    CAS-RN 46057-54-9)
    36.10 2-(2-chloro-4-(trifluoromethyl)phenoxy)-1- 2-chloro-4- n.a.
    ((3aR,8aS)-octahydropyrrolo[3,4-d]azepin- (trifluoromethyl)phenol
    6(7H)-yl)ethanone
  • Intermediate 37 (3aR,8aS)-tert-Butyl 6-(2-bromoacetyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate
  • To a suspension of (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate hydrochloride (CAS-RN 1251013-07-6; 600 mg, 2.17 mmol) and triethylamine (439 mg, 4.34 mmol) in dichloromethane (40 mL) was added 2-bromoacetyl chloride (341 mg, 2.17 mmol) dropwise at −40° C., then the reaction mixture was allowed to reach room temperature over 2 h and partitioned between water and dichloromethane. The organic layer was dried over sodium sulfate, filtered, and evaporated to produce the title compound (600 mg, 69%; brown oil), which was directly used in the next step.
  • Intermediate 38 [2-Fluoro-4-(2,2,2-trifluoroethoxy)phenyl]methanol
  • Sodium borohydride was added portionwise at 0° C. to a solution of 2-fluoro-4-(2,2,2-trifluoroethoxy)benzaldehyde (intermediate 39; 500 mg, 2.25 mmol) in methanol (3 mL), then the reaction mixture was allowed to reach room temperature over 3 h. After addition of water (5 mL) and evaporation of methanol, the reaction mixture was partitioned between ethyl acetate and water. The organic layer was dried over sodium sulfate, filtered, and evaporated to produce the title compound (450 mg, 87%). Colourless oil, MS: 224 (M+).
  • Intermediate 39 2-Fluoro-4-(2,2,2-trifluoroethoxy)benzaldehyde
  • To a solution of 2-fluoro-4-hydroxybenzaldehyde (1.00 g, 7.14 mmol) in N,N-dimethylformamide (6 mL) were added potassium carbonate (1.48 g, 10.7 mmol) and 2,2,2-trifluoroethyl trifluoromethanesulfonate (1.99 g, 8.56 mmol) at room temperature. The reaction mixture was heated at 50° C. for 2 h, then partitioned between ethyl acetate and water. The organic layer was dried over sodium sulfate, filtered, and evaporated to produce the title compound (1.30 g, 80%). White solid, MS: 222 (M+).
  • Intermediate 40 2-(2-tert-Butyl-4-cyanophenoxy)acetic acid
  • A mixture of 2-(4-bromo-2-tert-butylphenoxy)acetic acid (CAS-RN 425372-86-7; 453 mg, 1.58 mmol), 1,1′-bis(diphenylphosphino)ferrocene (26.2 mg, 47.3 μmol), tris(dibenzylideneacetone)dipalladium(0) (14.4 mg, 15.8 μmol), zinc cyanide (102 mg, 868 μmol), zinc powder (4.13 mg, 63.1 μmol) and zinc acetate (11.6 mg, 63.1 μmol), N,N-dimethylformamide (4.5 mL) and water (45 μl) was heated at 180° C. for 15 min under microwave irradiation, then evaporated under vacuum. The residue was taken up in ethyl acetate, then insoluble material was removed by filtration through diatomaceous earth. The filtrate was evaporated and the residue purified by chromatography (silica gel; ethyl acetate-methanol gradient, then dichloromethane-methanol gradient) to produce the title compound (64 mg, 22%). Dark brown solid. MS: 232.5 (M−H).
  • Intermediate 41 4-(Hydroxymethyl)-3-isopropylbenzonitrile Step 1: 4-Cyano-2-isopropylphenyl trifluoromethanesulfonate
  • To a solution of pyridine (895 mg, 11.3 mmol) in dichloromethane (70 mL) was added trifluoromethanesulfonic anhydride (2.93 g, 10.4 mmol) at 0° C., then after 10 min a solution of 4-hydroxy-3-isopropylbenzonitrile (CAS-RN 46057-54-9; 1.52 g, 9.43 mmol) in dichloromethane (40 mL) was added dropwise to the white suspension that had formed. The ice bath was removed, then after 75 min the reaction mixture was partitioned between dichloromethane and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-dichloromethane gradient) produced the title compound (2.63 g, 95%). Yellow liquid, MS: 292.1 (M−H).
  • Step 2: Methyl 4-cyano-2-isopropylbenzoate
  • A solution of 4-cyano-2-isopropylphenyl trifluoromethanesulfonate (2.62 g, 8.93 mmol), triethylamine (2.26 g, 22.3 mmol), and bis(diphenylphosphino)ferrocene-palladium(II) dichloride dichloromethane complex (365 mg, 447 μmol) was stirred for 20 h under a carbon monoxide atmosphere (50 bar) at 110° C. After cooling the reaction mixture was evaporated and the residue was purified by chromatography (silica gel; dichloromethane/heptane 1:1) to produce the title compound (1.40 g, 77%). Light yellow oil, MS: 218.5 (M+H)+.
  • Step 3: 4-(Hydroxymethyl)-3-isopropylbenzonitrile
  • Lithium borohydride solution (2 M in tetrahydrofuran, 9.06 mL, 18.1 mmol) was added at room temperature to a solution of methyl 4-cyano-2-isopropylbenzoate (1.227 g, 6.04 mmol) in tetrahydrofuran (15 mL). The reaction mixture was heated at reflux for 1 h, then partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25) afforded the title compound (802 mg, 76%). Light yellow oil, MS: 176.2 (M+H)+.
  • The following intermediates were produced according to intermediate 41, replacing 4-hydroxy-3-isopropylbenzonitrile by the appropriate phenol.
  • No. Systematic Name Phenol MS, m/e
    41.1 4-(hydroxymethyl)-5- 4-hydroxy-5-isopropyl-2- 190.3
    isopropyl-2- methyl-benzonitrile (M + H)+
    methylbenzonitrile (CAS-RN 858026-56-9)
    41.2 3-ethoxy-4- 3-ethoxy-4-hydroxy- 177
    (hydroxymethyl) benzonitrile (M)+
    benzonitrile (CAS-RN 60758-79-4)
  • Intermediate 42 3-(4-Cyano-2-isopropylphenyl)propanoic acid
  • Triethylamine (1.22 g, 12.1 mmol) was added dropwise to formic acid (1.36 g, 29.6 mmol) at 0° C. This was added to 4-formyl-3-isopropylbenzonitrile (190 mg, 1.1 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (158 mg, 1.1 mmol). The solution was stirred at room temperature for 3 h, then poured upon ice water, acidified with 4 M aq. hydrochloric acid solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to afford crude 4-[(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)methyl]-3-isopropyl-benzonitrile (334 mg) as a light yellow foam, MS: 302.4 (M+H)+. This was dissolved in acetonitrile/water 100:1 (2 mL) and heated at 100° C. for 30 min under microwave irradiation, then concentrated in vacuo. The residue was partitioned between 2 M hydrochloric acid solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to afford the title compound (240 mg), which was used directly in the next step. Yellow oil, MS: 216.3 (M+H)+.
  • The following intermediate was produced according to intermediate 42, replacing 4-formyl-3-isopropylbenzonitrile by the appropriate aldehyde.
  • No. Systematic Name Phenol MS, m/e
    42.1 3-(4-cyano-2-isopropyl-5- 4-formyl-5-isopropyl-2- 230.2
    methylphenyl) methyl-benzonitrile (M − H)
    propanoic acid (intermediate 22.2)
  • Intermediate 43 6-Fluoro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid Step 1: Methyl 6-fluoro-1H-benzo[d][1,2,3]triazole-5-carboxylate
  • A solution of 5-bromo-6-fluoro-1H-benzo[d][1,2,3]triazole (CAS-RN 1242336-69-1; 492 mg, 2.28 mmol), triethylamine (576 mg, 5.69 mmol), and 1,1′-bis(diphenylphosphino)ferrocene-palladium(II) dichloride dichloromethane complex (74.4 mg, 91.1 μmol), in methanol (6 mL) was stirred at 110° C. under a carbon monoxide atmosphere (70 bar) for 18 h. After cooling insoluble material was separated by filtration through diatomaceous earth. The filtrate was evaporated and purified by chromatography (silica gel; dichloromethane-methanol gradient) to produce the title compound (281 mg, 63%). Light red solid, MS: 194.2 (M−H).
  • Step 2: 6-Fluoro-1H-benzo[d][1,2,3]triazole-5-carboxylic acid
  • To a solution of methyl 6-fluoro-1H-benzo[d][1,2,3]triazole-5-carboxylate (276 mg, 1.41 mmol) in tetrahydrofuran (3 mL) and methanol (1.5 mL) was added 1 M aq. lithium hydroxide solution 1 M in water (4.24 mL, 4.24 mmol). After 5 h most of the organic solvents were removed by concentration under reduced pressure, then the aqueous solution was acidified with 1 M aq. hydrochloric acid solution. The precipitate was collected by filtration and dried to afford the title compound (266 mg, 100%). Off-white solid, MS: 180.2 (M−H).
  • The following intermediates were produced according to intermediate 43, replacing 5-bromo-6-fluoro-1H-benzo[d][1,2,3]triazole by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    43.1 7-fluoro-1H-benzo[d][1,2,3] 5-bromo-7-fluoro-1H- 180.2
    triazole-5-carboxylic acid benzo[d][1,2,3]triazole (M − H)
    (intermediate 44)
    43.2 4-fluoro-1H-benzo[d][1,2,3] 5-bromo-4-fluoro-1H- 180.2
    triazole-5-carboxylic acid benzo[d][1,2,3]triazole (M − H)
    (intermediate 44.1)
    43.3 4-methyl-1H-benzo[d][1,2,3] 5-bromo-4-methyl-1H- 176.2
    triazole-5-carboxylic acid benzo[d][1,2,3]triazole (M − H)
    (CAS-RN 1372795-26-0)
    43.4 6-(trifluoromethyl)-1H- 5-bromo-6-(trifluoromethyl)- 230.1
    benzo[d][1,2,3]triazole-5- 1H-benzo[d][1,2,3]triazole (M − H)
    carboxylic acid (CAS-RN 157590-65-3)
    43.5 4-chloro-1H-benzo[d][1,2,3] 5-bromo-4-chloro-1H- 196.2
    triazole-5-carboxylic acid benzo[d][1,2,3]triazole (M − H)
    (CAS-RN 1388044-33-4)
    43.6 6-methyl-1H-benzo[d][1,2,3] 5-bromo-6-methyl-1H- 176.4
    triazole-5-carboxylic acid benzo[d][1,2,3]triazole (M − H)
    (CAS-RN 1388070-91-4)
  • Example 44 5-bromo-7-fluoro-1H-benzo[d][1,2,3]triazole
  • A solution of sodium nitrite (185 mg, 2.68 mmol) in water (0.5 mL) was added dropwise at room temperature to a solution of 5-bromo-3-fluorobenzene-1,2-diamine (500 mg, 2.44 mmol) in water (5 mL) and acetic acid (1.8 mL). The reaction mixture was stirred at room temperature for 1 h, then heated at 85° C. for another hour, then partitioned between water and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated to produce the title compound (498 mg, 94%). Light brown solid, MS: 214.1 (M−H).
  • The following intermediate was produced according to intermediate 44, replacing 5-bromo-6-fluoro-1H-benzo[d][1,2,3]triazole by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    44.1 5-bromo-4-fluoro-1H- 4-bromo-3-fluorobenzene- 214.1
    benzo[d][1,2,3]triazole 1,2-diamine (M − H)
  • Intermediate 45 3H-[1,2,3]triazolo[4,5-c]pyridine-6-carboxylic acid Step 1: Methyl 3H-[1,2,3]triazolo[4,5-c]pyridine-6-carboxylate
  • A solution of sodium nitrite (413 mg, 5.99 mmol) in water (1.5 mL) was added dropwise at 0° C. to a solution of methyl 4,5-diaminopicolinate (CAS-RN 850689-13-3; 910 mg, 5.44 mmol) in water (10 mL) and acetic acid (2 mL) at 0° C., then after 1 h acetic acid (2 mL) was added to the suspension formed. The reaction mixture was stirred for 1 h at 85° C. and filtered hot. The precipitate was triturated in methanol to produce the title compound (758 mg, 78%). Red solid, MS: 177.2 (M−H).
  • Step 2: 3H-[1,2,3]Triazolo[4,5-c]pyridine-6-carboxylic acid
  • The title compound was produced in analogy to intermediate 43, step 2 from ethyl 3H-[1,2,3]triazolo[4,5-c]pyridine-6-carboxylate. Light brown solid, MS: 163.1 (M−H).
  • The following intermediate was produced according to intermediate 45, replacing methyl 4,5-diaminopicolinate by the appropriate starting material.
  • No. Systematic Name Starting material MS, m/e
    45.1 4-methoxy-1H-benzo methyl 3,4-diamino-2- 192.3
    [d][1,2,3]triazole-5- methoxy-benzoate (M − H)
    carboxylic acid (CAS-RN 538372-37-1)
  • Intermediate 46 3-Cyclobutoxy-4-(hydroxymethyl)benzonitrile Step 1: 4-Cyano-2-cyclobutoxybenzoic acid
  • To a suspension of sodium hydride (60% dispersion in mineral oil, 545 mg, 13.6 mmol) in N,N-dimethylformamide (20 mL) was added cyclobutanol (1.05 g, 13.9 mmol) dropwise below 30° C. The clear solution obtained was stirred for 2 h, then a solution of 4-cyano-2-fluorobenzoic acid (1.00 g, 6.06 mmol) in N,N-dimethylformamide (15 mL) was added dropwise below 35° C. The light yellow suspension was stirred for 66 h at room temperature, then partitioned between water and heptane. The aqueous layer was separated and acidified to pH 2.5 with 3 M aq. hydrochloric acid solution to pH 2.5. The precipitate was collected by filtration, washed with water and dried to afford the title compound (1.03 g, 79%). White foam, MS: 216.2 (M−H).
  • Step 2: 3-Cyclobutoxy-4-(hydroxymethyl)benzonitrile
  • Borane dimethyl sulfide complex (429 mg, 5.64 mmol) was added at 0° C. to a solution of 4-cyano-2-cyclobutoxybenzoic acid (613 mg, 2.82 mmol) in tetrahydrofuran (8 mL). After 30 min the ice bath was removed, then after 3 h the reaction was stopped by careful addition of water. The reaction mixture was extracted with ethyl acetate, the organic layer was washed with sat. aq. ammonium chloride solution and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; dichloromethane) afforded the title compound (452 mg, 79%). White solid, MS: 203 (M+).
  • The following intermediate was produced according to intermediate 46, replacing cyclobutanol by the appropriate alcohol.
  • No. Systematic Name Alcohol MS, m/e
    46.1 4-(hydroxymethyl)-3- 2-propanol 191 (M+)
    isopropoxybenzonitrile
  • Intermediate 47 (4-Chloro-2-ethoxy-5-fluorophenyl)methanol Step 1: Ethyl 4-chloro-2-ethoxy-5-fluorobenzoate
  • To a solution of methyl 4-chloro-2,5-difluorobenzoate (CAS-RN 1214361-01-9; 848 mg, 4.11 mmol) in N,N-dimethylformamide (8 mL) was added a freshly prepared sodium ethoxide solution (94.4 mg/4.11 mmol sodium in 2 mL ethanol) at 0° C. The reaction mixture was allowed to reach room temperature over 30 min, then partitioned between ethyl acetate and 1 M hydrochloric acid solution. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel; heptane-ethyl acetate gradient) afforded the title compound (484 mg, 48%) and methyl 4-chloro-2-ethoxy-5-fluorobenzoate (192 mg, 20%). White solid, MS: 247.2 (M+H)+.
  • Step 2: (4-Chloro-2-ethoxy-5-fluorophenyl)methanol
  • The title compound was produced in analogy to intermediate 41, step 3 from ethyl 4-chloro-2-ethoxy-5-fluorobenzoate. White solid, MS: 204 (M+).
  • The following intermediate was produced according to intermediate 47, replacing methyl 4-chloro-2,5-difluorobenzoate tert-butyl ester hydrochloride and ethanol by the appropriate ester and alcohol, respectively.
  • MS,
    No. Systematic Name Ester Alcohol m/e
    47.1 4-(hydroxymethyl)-3- methyl 4- 2,2,2- 231
    (2,2,2-trifluoroethoxy) cyano-2- trifluoroethanol (M+)
    benzonitrile fluorobenzoate
  • Intermediate 48 4-(Hydroxymethyl)-3-(methylsulfonyl)benzonitrile Step 1: 4-Cyano-2-(methylthio)benzoate
  • To a solution of methyl 4-cyano-2-fluorobenzoate (500 mg, 2.79 mmol) in N,N-dimethylformamide (5 mL) was added sodium thiomethoxide (293 mg, 4.19 mmol, Eq: 1.5) at 0° C. After 2 h the reaction mixture was partitioned between sat. aq sodium hydrogen carbonate solution and ethyl acetate 3 times. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and evaporated to afford the title compound (434 mg, 75%). White solid, MS: 207 (M+).
  • Step 2: 4-Cyano-2-(methyl sulfonyl)benzoate
  • To a of methyl 4-cyano-2-(methylthio)benzoate (420 mg, 2.03 mmol) in dichloromethane (10 mL) was added a suspension of 3-chloroperoxybenzoic acid (1.82 g, 8.11 mmol) in dichloromethane (15 mL) portionwise at 0° C. The reaction mixture was stirred at 0° C. for 45 min and at room temperature for 45 min, then partitioned between dichloromethane and 1 M sodium sulfite solution. The organic layer was washed with sat. aq. sodium hydrogen carbonate solution and brine, dried over magnesium sulfate, filtered, and evaporated. The residue was triturated in heptane/ethyl acetate 7:3 to afford the title compound (453 g, 93%). White solid, MS: 239 (M+).
  • Step 3: 4-(Hydroxymethyl)-3-(methylsulfonyl)benzonitrile
  • A solution of calcium chloride (390 mg, 3.51 mmol) in ethanol (10 mL) was added at room temperature to a solution of methyl 4-cyano-2-(methylsulfonyl)benzoate (420 mg, 1.76 mmol) in tetrahydrofuran (10 mL). Then sodium borohydride (266 mg, 7.02 mmol) was added portionwise over 20 min. After 2 h the reaction mixture was partitioned between sat aq. ammonium chloride solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and evaporated. Chromatography (silica gel, dichloromethane/ethanol 19:1) afforded the title compound (123 mg, 33%). White solid, MS: 211 (M+).
  • Intermediate 49 5-Ethoxy-2-fluoro-4-(hydroxymethyl)benzonitrile Step 1: Ethyl 4-bromo-2-ethoxy-5-fluorobenzoate
  • The title compound was produced in analogy to intermediate 47, step 1 from methyl 4-bromo-2,5-difluorobenzoate (CAS-RN 1193162-21-8). White solid, MS: 290 (M+).
  • Step 2: Ethyl 4-cyano-2-ethoxy-5-fluorobenzoate
  • A mixture of ethyl 4-bromo-2-ethoxy-5-fluorobenzoate (50 mg, 172 μmol), zinc cyanide (11.1 mg, 94.5 μmol), zinc powder (0.4 mg, 7 μmol, Eq: 0.04), zinc acetate (1.3 mg, 7 μmol, Eq: 0.04) 1,1′-bis(diphenylphosphino)ferrocene (2.9 mg, 5.2 μmol), and tris(dibenzylideneacetone)dipalladium(0) (1.6 mg, 1.8 μmol) in N,N-dimethylformamide (500 μl) and water (5 μl) was heated at 120° C. for 15 min under microwave irradiation, then insoluble material was removed by filtration through diatomaceous earth and the filtrate was evaporated. The residue was purified by chromatography (silica gel; heptane-dichloromethane gradient) to produce the title compound (41 mg, quant.). White solid. MS: 237 (M+).
  • Step 3: 5-Ethoxy-2-fluoro-4-(hydroxymethyl)benzonitrile
  • The title compound was produced in analogy to intermediate 41, step 3 from ethyl 4-cyano-2-ethoxy-5-fluorobenzoate. White solid. MS: 195 (M+).
  • Example A
  • A compound of formula (I) can be used in a manner known per se as the active ingredient for the production of tablets of the following composition:
  • Per tablet
    Active ingredient 200 mg
    Microcrystalline cellulose 155 mg
    Corn starch  25 mg
    Talc  25 mg
    Hydroxypropyl methylcellulose  20 mg
    425 mg
  • Example B
  • A compound of formula (I) can be used in a manner known per se as the active ingredient for the production of capsules of the following composition:
  • Per capsule
    Active ingredient 100.0 mg
    Corn starch  20.0 mg
    Lactose  95.0 mg
    Talc  4.5 mg
    Magnesium stearate  0.5 mg
    220.0 mg

Claims (44)

1. A Compound of formula (I)
Figure US20170050960A1-20170223-C00379
wherein
R1 is alkyl, haloalkyl, substituted cycloalkyl, substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted phenylalkynyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, naphtyl, substituted naphthyl, quinolyl, substituted quinolinyl, isoquinolyl, substituted isoquinolinyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl or substituted benzofuran-2-yl wherein substituted cycloalkyl, substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenylalkynyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl and substituted benzofuran-2-yl are substituted with R8, R9 and R10;
R2 is:
Figure US20170050960A1-20170223-C00380
Y is —OC(O)—, —NR7C(O)—, —C(O)—, —S(O)2—,
Figure US20170050960A1-20170223-C00381
A is —N— or CR5—;
W is —O—, —S—, —NR6—, —C(O)—, —S(O)2—, —C(O)—NR6— or —CR3R4—;
R3 and R4 are independently selected from H, halogen, alkyl and cycloalkyl;
R5, R6 and R7 are independently selected from H, alkyl and cycloalkyl;
R8, R9 and R10 are independently selected from H, alkyl, hydroxyalkyl, haloalkyl, hydroxyhaloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkoxy, cycloalkoxy, cycloalkoxyalkyl, cycloalkylalkoxyalkyl, alkoxy, alkoxyalkyl, haloalkoxy, alkoxyhaloalkyl, alkoxyalkoxy, alkoxyalkoxyalkyl, phenyl, substituted phenyl, pyridinyl, substituted pyridinyl, pyrrolyl, substituted pyrrolyl, pyrrolydinyl, substituted pyrrolydinyl, tetrahydrofuranyl, substituted tetrahydrofuranyl, halogen, hydroxy, cyano, alkylsulfanyl, haloalkylsulfanyl, cycloalkylsulfanyl, alkylsulfinyl, haloalkylsulfinyl, cycloalkylsulfinyl, alkylcarbonyl, haloalkylcarbonyl, cycloalkylcarbonyl, alkylsulfonyl, haloalkylsulfonyl, cycloalkylsulfonyl, substituted aminosulfonyl, substituted amino and substituted aminoalkyl, wherein substituted aminosulfonyl, substituted amino and substituted aminoalkyl are substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl, and wherein substituted phenyl, substituted pyrrolyl, substituted pyrrolydinyl, substituted tetrahydrofuranyl, and substituted pyridinyl are substituted with one to three substituents independently selected from alkyl, halogen, haloalkyl, alkoxy and haloalkoxy;
m, n, p and q are independently selected from 1 or 2;
R11 is H, alkyl, haloalkyl or cycloalkyl;
R12 is alkyl, halogen, haloalkyl and alkoxy;
R2 is selected from the ring systems B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, X, Z, AA, AB, AC, AD, AE, AF, AG, AH, AI and AJ;
and pharmaceutically acceptable salts thereof.
2. The compound of claim 1, wherein:
R1 is alkyl, haloalkyl, substituted cycloalkyl, substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted phenylalkynyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl or substituted benzofuran-2-yl wherein substituted cycloalkyl, substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenylalkynyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted pyridinylalkynyl, substituted thiophenyl, substituted thiophenylalkyl, substituted thiophenylalkenyl, substituted thiophenylalkynyl, substituted 2,3-dihydro-1H-isoindol-2-yl, substituted 1H-indol-2-yl and substituted benzofuran-2-yl are substituted with R8, R9 and R10.
3. The compound of claim 1, wherein:
R1 is substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, naphtyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl, or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted piperazinyl, substituted piperidinyl, substituted indanyloxyalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, substituted naphthyl, substituted quinolinyl, substituted isoquinolinyl and substituted 1H-indol-2-yl are substituted with R8, R9 and R10.
4. The compound of claim 1, wherein:
R1 is substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl or substituted 1H-indol-2-yl, wherein substituted cycloalkylalkyl, substituted phenyl, substituted phenylalkyl, substituted phenoxyalkyl, substituted phenylcycloalkyl, substituted phenylalkenyl, substituted pyridinylalkyl, substituted pyridinylalkenyl, and substituted 1H-indol-2-yl are substituted with R8, R9 and R10.
4. The compound of claim 1, wherein:
R1 is substituted phenylalkyl or substituted phenylalkenyl, wherein substituted phenylalkyl and substituted phenylalkenyl are substituted with R8, R9 and R10.
5. The compound of claim 1, wherein R1 is phenylalkyl substituted with R8, R9 and R10.
6. The compound of claim 1, wherein Y is —OC(O)—, —C(O)—, —S(O)2— or
Figure US20170050960A1-20170223-C00382
7. The compound of claim 1, wherein Y is —OC(O)— or —C(O)—.
8. The compound of claim 1, wherein Y is —OC(O)—.
9. The compound of claim 1, wherein Y is —C(O)—.
10. The compound of claim 1, wherein A is —N—.
11. The compound of claim 1, wherein W is —O—, —NR6—, —C(O)—, —S(O)2—, —C(O)—NR6— or —CR3R4—.
12. The compound of claim 1, wherein W is —C(O)—, —C(O)—NR6— or —CR3R4—.
13. The compound of claim 1, wherein W is —C(O)—.
14. The compound of claim 1, wherein R2 is
Figure US20170050960A1-20170223-C00383
15. The compound of claim 1, wherein R2 is
Figure US20170050960A1-20170223-C00384
15. The compound of claim 1, wherein R2 is
Figure US20170050960A1-20170223-C00385
17. The compound of claim 1, wherein R2 is
Figure US20170050960A1-20170223-C00386
18. The compound of claim 1, wherein R3 and R4 are H.
19. The compound of claim 1, wherein R5 is H.
20. The compound of claim 1, wherein R6 is H or alkyl.
21. The compound of claim 1, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl.
22. The compound of claim 1, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with one to two substituents independently selected from H, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl and cycloalkylcarbonyl.
23. The compound of claim 1, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and aminosulfonyl substituted on the nitrogen atom with two alkyl.
24. The compound of claim 1, wherein R8, R9 and R10 are independently selected from H, alkyl, haloalkyl, haloalkoxy, halogen and alkylsulfonyl.
25. The compound of claim 1, wherein R8 is H, alkyl, haloalkyl, hydroxyhaloalkyl, alkoxy, haloalkoxy, alkoxyhaloalkyl, phenyl, pyridinyl, halogen, cyano, haloalkylsulfanyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, pyrrolyl substituted with one alkyl, pyrrolydinyl, tetrahydrofuranyl, alkylcarbonyl, or aminosulfonyl substituted on the nitrogen atom with two alkyl.
26. The compound of claim 1, wherein R8 is haloalkyl, haloalkoxy, halogen or alkylsulfonyl.
27. The compound of claim 1, wherein R8 is haloalkoxy or halogen.
28. The compound of claim 1, wherein R8 is halogen.
29. The compound of claim 1, wherein R9 is H, alkyl, haloalkyl, cycloalkyl, cycloalkoxy, alkoxy, haloalkoxy, alkoxyalkoxy, cyano or halogen.
30. The compound of claim 1, wherein R9 is H, alkyl, haloalkyl, alkoxy or halogen.
31. The compound of claim 1, wherein R9 is H, alkyl or halogen.
32. The compound of claim 1, wherein R8 and R9 are halogen.
33. The compound of claim 1, wherein R10 is H, alkyl, alkoxy or halogen.
24. The compound of claim 1, wherein R10 is H or alkyl.
25. The compound of claim 1, wherein R10 is H.
26. The compound of claim 1, wherein R11 is haloalkyl.
37. The compound of claim 1, wherein m is 1.
38. The compound of claim 1, wherein n is 1.
39. The compound of claim 1, wherein m and n are 1.
40. The compound of claim 1, wherein p and q are 1.
41. The compound of claim 1, wherein m, n, p and q are 1.
42. The compound of claim 1, selected from:
6-((3aR,6aS)-5-(3-(3,5-dichlorophenyl)propanoyl)octahydropyrrolo[3,4-c]pyrrole-2-carbonyl)benzo[d]oxazol-2(3H)-one;
(3aSR,6 SR,7aSR)-6-{(3aR,8aS)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-hexahydro-benzooxazol-2-one;
trans-3,5-Dichlorobenzyl 2-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydro-1H-pyrrolo[3,4-c]pyridine-5 (6H)-carboxylate;
(3aR,6aS)-3,5-dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazole-6-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
6-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-3H-benzooxazol-2-one;
6-[(3aR,6aR)-2-[3-[4-(trifluoromethoxy)phenyl]propanoyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrole-5-carbonyl]-3H-1,3-benzoxazol-2-one;
(3aS,6aS)-5-(2-oxo-2,3-dihydro-benzooxazole-6-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 4-trifluoromethoxy-benzyl ester;
(3aR,5s,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
(3aR,5r,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yloxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
(3aR,5r,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylamino)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate;
(3aR,6aS)-3,5-dichlorobenzyl 5-((2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)methyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
6-(((3aR,6aS)-5-(3-(3,5-dichlorophenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methyl)benzo[d]oxazol-2(3H)-one;
(3aR,6aS)-3,5-Dichlorobenzyl 5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-ylsulfonyl)hexa-hydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
(3aR,5s,6aS)-5-[(3H-[1,2,3]triazol-4-ylmethyl)-carbamoyl]-hexahydro-cyclopenta[c]pyrrole-2-carboxylic acid 3,5-dichloro-benzyl ester;
(3aS,6aR)-5-[(1H-[1,2,3]triazol-4-ylmethyl)-carbamoyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3,5-dichloro-benzyl ester;
(3aR,8aS)—N-((1H-1,2,3-Triazol-5-yl)methyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)-acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)-octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aS,6aR)-5-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid (1H-[1,2,3]triazol-4-ylmethyl)-amide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid (4H-[1,2,4]triazol-3-ylmethyl)-amide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aS,8aR)-6-[3-(3-chloro-phenyl)-2,2-dimethyl-propionyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid (3H-[1,2,3]triazol-4-ylmethyl)-amide;
(3aR,8aS)—N-(2-(1H-1,2,3-triazol-5-yl)ethyl)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)-octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aR,6aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-5-(3-(4-(trifluoromethoxy)phenyl)propanoyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxamide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-((E)-3-(3-fluoro-4-(trifluoromethoxy)phenyl)acryloyl)-N-methyloctahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-N-methyl-6-(3-(4-(trifluoromethoxy)phenyl)-propanoyl)octahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aR,8aS)—N-((1H-1,2,3-triazol-5-yl)methyl)-6-(3-(3-fluoro-4-(trifluoromethoxy)phenyl)-propanoyl)-N-methyloctahydropyrrolo[3,4-d]azepine-2(1H)-carboxamide;
(3aS,8aR)-6-[3-(4-trifluoromethoxy-phenyl)-propionyl]-octahydro-pyrrolo[3,4-d]azepine-2-carboxylic acid [2-(3H-[1,2,3]triazol-4-yl)-ethyl]-amide;
(3aS,6aS)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrole-2-carboxylic acid 3-chloro-5-methanesulfonyl-benzyl ester;
(3aR,6aS)-3,5-Dichlorobenzyl 5-(4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate;
(E)-1-[(3aS,8aR)-2-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one;
(E)-1-[(3aS,8aR)-2-(1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carbonyl)-octahydro-pyrrolo[3,4-d]azepin-6-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one;
(E)-1-[(3aS,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one;
(E)-1-[(3aR,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-prop-2-en-1-one;
1-[(3aR,6aR)-5-(1,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-c]pyridine-5-carbonyl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-3-(4-trifluoromethoxy-phenyl)-propan-1-one;
cis-5-((3aR,8aS)-6-((E)-3-(4-(trifluoromethoxy)phenyl)acryloyl)decahydropyrrolo[3,4-d]azepine-2-carbonyl)hexahydrooxazolo[5,4-c]pyridin-2(1H)-one;
(3aR,7aR)-5-{(3aS,8aR)-6-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-octahydro-pyrrolo[3,4-d]azepine-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one;
(3aR,7aR)-5-{(3aR,6aR)-5-[(E)-3-(4-trifluoromethoxy-phenyl)-acryloyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one; and
(3aR,7aR)-5-{(3aR,6aR)-5-[3-(4-trifluoromethoxy-phenyl)-propionyl]-hexahydro-pyrrolo[3,4-c]pyrrole-2-carbonyl}-hexahydro-oxazolo[5,4-c]pyridin-2-one;
43. A pharmaceutical composition comprising a compound of claim 1 and a therapeutically inert carrier.
US15/291,933 2012-09-25 2016-10-12 New bicyclic derivatives Abandoned US20170050960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/291,933 US20170050960A1 (en) 2012-09-25 2016-10-12 New bicyclic derivatives

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP12185941 2012-09-25
EP12185941.7 2012-09-25
PCT/EP2013/069679 WO2014048865A1 (en) 2012-09-25 2013-09-23 New bicyclic derivatives
US14/719,063 US20150353559A1 (en) 2012-09-25 2015-05-21 New bicyclic derivatives
US15/291,933 US20170050960A1 (en) 2012-09-25 2016-10-12 New bicyclic derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/719,063 Division US20150353559A1 (en) 2012-09-25 2015-05-21 New bicyclic derivatives

Publications (1)

Publication Number Publication Date
US20170050960A1 true US20170050960A1 (en) 2017-02-23

Family

ID=47073290

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/719,063 Abandoned US20150353559A1 (en) 2012-09-25 2015-05-21 New bicyclic derivatives
US15/291,933 Abandoned US20170050960A1 (en) 2012-09-25 2016-10-12 New bicyclic derivatives
US15/583,679 Active US10669268B2 (en) 2012-09-25 2017-05-01 Bicyclic derivatives
US16/818,409 Abandoned US20200339570A1 (en) 2012-09-25 2020-03-13 Bicyclic derivatives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/719,063 Abandoned US20150353559A1 (en) 2012-09-25 2015-05-21 New bicyclic derivatives

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/583,679 Active US10669268B2 (en) 2012-09-25 2017-05-01 Bicyclic derivatives
US16/818,409 Abandoned US20200339570A1 (en) 2012-09-25 2020-03-13 Bicyclic derivatives

Country Status (33)

Country Link
US (4) US20150353559A1 (en)
EP (2) EP3590940B1 (en)
JP (1) JP6285444B2 (en)
KR (1) KR102179599B1 (en)
CN (1) CN104684915B (en)
AR (1) AR092645A1 (en)
AU (1) AU2013322838B2 (en)
BR (1) BR112015004111A2 (en)
CA (1) CA2878442A1 (en)
CL (1) CL2015000706A1 (en)
CR (1) CR20150120A (en)
DK (1) DK2900669T3 (en)
EA (1) EA036630B1 (en)
ES (1) ES2753163T3 (en)
HK (1) HK1206722A1 (en)
HR (1) HRP20191937T1 (en)
HU (1) HUE045797T2 (en)
IL (1) IL237126A (en)
IN (1) IN2015DN00960A (en)
LT (1) LT2900669T (en)
MA (1) MA37940B1 (en)
MX (1) MX368615B (en)
PE (1) PE20150758A1 (en)
PH (1) PH12015500263B1 (en)
PL (1) PL2900669T3 (en)
PT (1) PT2900669T (en)
RS (1) RS59512B1 (en)
SG (1) SG11201500572YA (en)
SI (1) SI2900669T1 (en)
TW (1) TWI609018B (en)
UA (1) UA116547C2 (en)
WO (1) WO2014048865A1 (en)
ZA (1) ZA201500345B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802944B2 (en) 2014-03-26 2017-10-31 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10138230B2 (en) 2015-02-04 2018-11-27 Cancer Research Technology Limited Autotaxin inhibitors
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10654846B2 (en) 2015-02-06 2020-05-19 Cancer Research Technology Limited Autotaxin inhibitory compounds
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
US10676446B2 (en) 2015-04-10 2020-06-09 Hoffmann-La Roche Inc. Bicyclic quinazolinone derivatives
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015007936A (en) 2012-12-19 2016-03-11 Novartis Ag Autotaxin inhibitors.
US9409895B2 (en) 2012-12-19 2016-08-09 Novartis Ag Autotaxin inhibitors
US9828379B2 (en) 2013-07-03 2017-11-28 Abide Therapeutics, Inc. Pyrrolo-pyrrole carbamate and related organic compounds, pharmaceutical compositions, and medical uses thereof
EP3461827B1 (en) 2013-09-26 2022-02-23 Cadent Therapeutics, Inc. Selective octahydro-cyclopenta[c]pyrrole negative modulators of nr2b
HUE055213T2 (en) 2013-11-22 2021-11-29 Sabre Therapeutics Llc Autotaxin inhibitor compounds
US9051320B1 (en) 2014-08-18 2015-06-09 Pharmakea, Inc. Methods for the treatment of metabolic disorders by a selective small molecule autotaxin inhibitor
JO3579B1 (en) * 2014-09-26 2020-07-05 Luc Therapeutics Inc N-alkylaryl-5-oxyaryl- octahydro-cyclopenta[c]pyrrole negative allosteric modulators of nr2b
AU2016268250B2 (en) 2015-05-27 2020-08-27 Sabre Therapeutics Llc Autotaxin inhibitors and uses thereof
AU2016270373A1 (en) 2015-06-05 2018-01-04 Vertex Pharmaceuticals Incorporated Triazoles for the treatment of demyelinating diseases
CN106986789B (en) * 2016-01-20 2019-07-16 中国人民解放军军事医学科学院生物医学分析中心 Hydroquinone compound and preparation method thereof and the application in antitumor or immunological regulation
US10781211B2 (en) 2016-05-12 2020-09-22 Lundbeck La Jolla Research Center, Inc. Spirocycle compounds and methods of making and using same
JOP20190107A1 (en) 2016-11-16 2019-05-09 Lundbeck La Jolla Research Center Inc Magl inhibitors
WO2018106643A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Heterocyclic azoles for the treatment of demyelinating diseases
WO2018106646A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Aminotriazoles for the treatment of demyelinating diseases
WO2018106641A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Pyrazoles for the treatment of demyelinating diseases
CA3047196A1 (en) 2016-12-19 2018-06-28 Bayer Pharma Aktiengesellschaft [(phenylsulfonyl)octahydro-epiminoisoindol-yl](1h-1,2,3-triazol-5-yl)methanones
LT3448859T (en) 2017-03-20 2019-10-25 Forma Therapeutics Inc Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
JOP20200022A1 (en) 2017-08-29 2020-02-02 Lundbeck La Jolla Research Center Inc Spirocycle compounds and methods of making and using same
US11142526B2 (en) 2017-08-29 2021-10-12 H. Lundbeck A/S Spirocycle compounds and methods of making and using same
JP7301390B2 (en) 2017-10-19 2023-07-03 ジェイエス・イノファーム・(シャンハイ)・リミテッド Heterocyclic compounds, compositions containing heterocyclic compounds, and methods of use thereof
TWI780281B (en) * 2017-12-14 2022-10-11 丹麥商Nmd藥品公司 Compounds for the treatment of neuromuscular disorders
US11001588B2 (en) 2018-09-19 2021-05-11 Forma Therapeutics, Inc. Activating pyruvate kinase R and mutants thereof
BR112021005188A2 (en) 2018-09-19 2021-06-08 Forma Therapeutics, Inc. treating sickle cell anemia with a pyruvate kinase r activating compound
CN111620866A (en) * 2019-02-27 2020-09-04 南京药石科技股份有限公司 Cis-7, 7-difluoro-hexahydro-1H pyrrolo [3,4-c ] pyridine derivative and preparation method thereof
CN113549063B (en) * 2020-04-23 2024-04-05 南京药石科技股份有限公司 Preparation method of optical isomerism octahydro-2H-pyrrolo [3,4-c ] pyridine-2-tert-butyl carboxylate
TW202211918A (en) * 2020-06-30 2022-04-01 印度商卡地拉保健有限公司 Novel inhibitors of autotaxin
TW202229255A (en) 2020-11-13 2022-08-01 丹麥商H 朗德貝克公司 A magl inhibitor
CN113214111A (en) * 2021-04-30 2021-08-06 上海立科化学科技有限公司 Preparation method of 3- (2-cyanophenyl) propionic acid and 4-cyano-1-indanone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472961A (en) * 1994-03-03 1995-12-05 Merck Patent Gesellschaft Mit Beschrankter Haftung Acetamides

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1252898B (en) 1965-06-12 1967-10-26 Bayer Ag Process for the preparation of copolymers of trioxane
US5240928A (en) 1989-07-03 1993-08-31 Merck & Co., Inc. Substituted quinazolinones as angiotensin II antagonists
DE3930262A1 (en) 1989-09-11 1991-03-21 Thomae Gmbh Dr K CONDENSED DIAZEPINONE, METHOD FOR THE PRODUCTION THEREOF AND MEDICAMENT CONTAINING THESE COMPOUNDS
CA2037630C (en) 1990-03-07 2001-07-03 Akira Morimoto Nitrogen-containing heterocylic compounds, their production and use
US5470975A (en) 1990-10-16 1995-11-28 E.R. Squibb & Sons, Inc. Dihydropyrimidine derivatives
US5290780A (en) 1991-01-30 1994-03-01 American Cyanamid Co. Angiotensin II receptor blocking 2,3,6 substituted quinazolinones
US5238942A (en) 1991-05-10 1993-08-24 Merck & Co., Inc. Substituted quinazolinones bearing acidic functional groups as angiotensin ii antagonists
US5202322A (en) 1991-09-25 1993-04-13 Merck & Co., Inc. Quinazolinone and pyridopyrimidine a-II antagonists
US5532243A (en) 1992-02-14 1996-07-02 The Dupont Merck Pharmaceutical Company Antipsychotic nitrogen-containing bicyclic compounds
US5358951A (en) 1993-04-23 1994-10-25 American Cyanamid Company Angiotensin II receptor blocking 2, 3, 6 substituted quinazolinones
US20010016657A1 (en) * 1997-03-18 2001-08-23 Smithkline Beecham P.L.C. Substituted isoquinoline derivatives and their use as anticonvulsants
WO1999040070A1 (en) 1998-02-04 1999-08-12 Banyu Pharmaceutical Co., Ltd. N-acyl cyclic amine derivatives
JP2001039950A (en) 1999-07-30 2001-02-13 Banyu Pharmaceut Co Ltd N-acyl cyclic amine derivative
AU1244001A (en) 1999-10-27 2001-05-08 Cor Therapeutics, Inc. Pyridyl-containing spirocyclic compounds as inhibitors of fibrinogen-dependent platelet aggregation
US7034024B1 (en) * 1999-11-09 2006-04-25 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Product inhibiting transduction of G heterotrimeric protein signals combined with another anti-cancer agent for therapeutic use in cancer treatment
MXPA03008109A (en) 2001-03-07 2003-12-12 Pfizer Prod Inc Modulators of chemokine receptor activity.
US7667053B2 (en) 2002-04-12 2010-02-23 Merck & Co., Inc. Bicyclic amides
GB0303852D0 (en) 2003-02-19 2003-03-26 Pfizer Ltd Triazole compounds useful in therapy
WO2005023762A1 (en) 2003-09-04 2005-03-17 Abbott Laboratories Pyrrolidine-2-carbonitrile derivatives and their use as inhibitors of dipeptidyl peptidase-iv (dpp-iv)
SE0302811D0 (en) 2003-10-23 2003-10-23 Astrazeneca Ab Novel compounds
GB0324790D0 (en) 2003-10-24 2003-11-26 Astrazeneca Ab Amide derivatives
US7226951B2 (en) 2003-12-17 2007-06-05 Allergan, Inc. Compounds having selective cytochrome P450RAI-1 or selective cytochrome P450RAI-2 inhibitory activity and methods of obtaining the same
EP1720545B1 (en) 2004-03-03 2014-10-29 ChemoCentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7435831B2 (en) * 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
MXPA06014404A (en) * 2004-06-09 2007-02-19 Hoffmann La Roche Heterocyclic antiviral compounds.
RU2401833C2 (en) 2004-08-10 2010-10-20 Янссен Фармацевтика Н.В. 1,2,4-triazine-6-one derivatives, inhibiting hiv
US7410949B2 (en) 2005-01-18 2008-08-12 Hoffmann-La Roche Inc. Neuropeptide-2 receptor (Y-2R) agonists and uses thereof
CN101166736B (en) 2005-04-28 2013-02-06 惠氏公司 Polymorph form II of tanaproget
US7737279B2 (en) * 2005-05-10 2010-06-15 Bristol-Myers Squibb Company 1,6-dihydro-1,3,5,6-tetraaza-as-indacene based tricyclic compounds and pharmaceutical compositions comprising same
TW200800999A (en) 2005-09-06 2008-01-01 Astrazeneca Ab Novel compounds
JP5251127B2 (en) 2005-10-28 2013-07-31 小野薬品工業株式会社 COMPOUND CONTAINING BASIC GROUP AND USE THEREOF
AU2006315599C1 (en) * 2005-11-14 2014-03-13 Purdue Research Foundation N-Substituted indenoisoquinolines and syntheses thereof
EP1961744B1 (en) 2005-11-18 2013-04-17 Ono Pharmaceutical Co., Ltd. Basic group-containing compound and use thereof
WO2007103719A2 (en) 2006-03-03 2007-09-13 Incyte Corporation MODULATORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE 1, PHARMACEUTICAL COMPOSITIONS THEREOF, AND METHODS OF USING THE SAME
JP2008031064A (en) 2006-07-27 2008-02-14 Astellas Pharma Inc Diacylpiperazine derivative
JP5256202B2 (en) 2006-09-11 2013-08-07 エム・エス・ディー・オス・ベー・フェー Quinazolinone and isoquinolinone acetamide derivatives
US7638526B2 (en) 2006-09-15 2009-12-29 Schering Corporation Azetidine derivatives useful in treating pain, diabetes and disorders of lipid metabolism
US8735411B2 (en) 2006-10-02 2014-05-27 Abbvie Inc. Macrocyclic benzofused pyrimidine derivatives
EP2097388B1 (en) 2006-11-15 2011-09-07 High Point Pharmaceuticals, LLC Novel 2-(2-hydroxyphenyl)benzimidazoles useful for treating obesity and diabetes
TW200831085A (en) 2006-12-13 2008-08-01 Merck & Co Inc Non-nucleoside reverse transcriptase inhibitors
EP1975165A1 (en) 2007-03-27 2008-10-01 Boehringer Ingelheim Pharma GmbH & Co. KG Substituted pyrrolidinamides, their production and utilisation as medicine
CA2682637A1 (en) 2007-03-29 2008-10-09 F. Hoffmann-La Roche Ag Non-nucleoside reverse transcriptase inhibitors
CL2008001002A1 (en) 2007-04-11 2008-10-17 Actelion Pharmaceuticals Ltd COMPOUNDS DERIVED FROM OXAZOLIDINONA; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUNDS; AND ITS USE TO PREPARE A MEDICINAL PRODUCT TO TREAT A BACTERIAL INFECTION.
CN101663306A (en) 2007-04-27 2010-03-03 塞诺菲-安万特股份有限公司 2 -heteroaryl- pyrrolo [3, 4-c] pyrrole derivatives and their use as scd inhibitors
DE102007047737A1 (en) * 2007-10-05 2009-04-30 Merck Patent Gmbh Piperidine and piperazine derivatives
CA3105972A1 (en) 2007-10-19 2009-04-30 Novartis Ag Compositions and methods for treatment of diabetic retinopathy
AR069126A1 (en) * 2007-10-31 2009-12-30 Janssen Pharmaceutica Nv BRIDGE DIAMINES OR FUSIONATED SUBSTITUTES WITH ARILO AS MODULATORS OF LEUCOTRENE A4 HYDROLASS
JP2009161449A (en) 2007-12-28 2009-07-23 Lion Corp Agent for promoting activity of ppar (peroxisome proliferator activated receptor), food and drink good for cosmetic appearance, skin external preparation, and medicine
JPWO2009154132A1 (en) 2008-06-19 2011-12-01 Msd株式会社 Spirodiamine-diarylketoxime derivatives
EP2328898B1 (en) 2008-09-09 2014-12-24 Sanofi 2-heteroaryl-pyrrolo[3,4-c]pyrrole derivatives and their use as scd inhibitors
TW201020247A (en) 2008-11-06 2010-06-01 Gruenenthal Gmbh Substituierte disulfonamide
US8188090B2 (en) 2008-11-17 2012-05-29 Hoffman-La Roche Inc. Naphthylacetic acids
DE102008059578A1 (en) 2008-11-28 2010-06-10 Merck Patent Gmbh Benzo-naphthyridine compounds
CA2745041C (en) 2008-12-01 2017-08-22 Kai Schiemann 2, 5-diamino-substituted pyrido [4, 3-d] pyrimidines as autotaxin inhibitors against cancer
TW201035102A (en) 2009-03-04 2010-10-01 Gruenethal Gmbh Sulfonylated tetrahydroazolopyrazines and their use as medicinal products
TW201038572A (en) 2009-03-25 2010-11-01 Gruenenthal Gmbh Substituted spiro-amide compounds
CA2757368C (en) 2009-04-02 2019-03-12 Merck Patent Gmbh Piperidine and piperazine derivatives as autotaxin inhibitors
CA2757413C (en) 2009-04-02 2017-01-10 Merck Patent Gmbh Heterocyclic compounds as autotaxin inhibitors
JP5779172B2 (en) 2009-04-02 2015-09-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Autotaxin inhibitor
FR2945534B1 (en) 2009-05-12 2012-11-16 Sanofi Aventis CYCLOPENTAL [c] PYRROLE-2-CARBOXYLATE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
JP2012527474A (en) 2009-05-22 2012-11-08 エクセリクシス, インク. Benzoxazepine-based PI3K / MT0R inhibitors for proliferative diseases
WO2010141817A1 (en) 2009-06-05 2010-12-09 Janssen Pharmaceutica Nv Heteroaryl-substituted spirocyclic diamine urea modulators of fatty acid amide hydrolase
DE102009033392A1 (en) 2009-07-16 2011-01-20 Merck Patent Gmbh Heterocyclic compounds as autotaxine inhibitors II
IN2012DN00754A (en) 2009-08-04 2015-06-19 Amira Pharmaceuticals Inc
UA107360C2 (en) 2009-08-05 2014-12-25 Biogen Idec Inc Bicyclic aryl sphingosine 1-phosphate analogs
AR079022A1 (en) 2009-11-02 2011-12-21 Sanofi Aventis DERIVATIVES OF CYCLIC CARBOXYL ACID SUBSTITUTED WITH ACILAMINE, ITS USE AS PHARMACEUTICAL PRODUCTS, PHARMACEUTICAL COMPOSITION AND PREPARATION METHOD
ES2534516T3 (en) * 2010-01-07 2015-04-23 E.I. Du Pont De Nemours And Company Fungicidal heterocyclic compounds
US8815869B2 (en) 2010-03-18 2014-08-26 Abbvie Inc. Lactam acetamides as calcium channel blockers
PT2547679E (en) 2010-03-19 2016-01-27 Pfizer 2,3 dihydro-1h-inden-1-yl-2,7-diazaspiro[3.6]nonane derivatives and their use as antagonists or inverse agonists of the ghrelin receptor
CN102822171B (en) 2010-03-26 2015-09-02 默克专利有限公司 As the benzo naphthyridines amine of autotaxin inhibitors
GB201008005D0 (en) 2010-05-13 2010-06-30 Sentinel Oncology Ltd Pharmaceutical compounds
WO2011151461A2 (en) 2010-06-04 2011-12-08 B.S.R.C. "Alexander Fleming" Autotaxin pathway modulation and uses thereof
AR082590A1 (en) 2010-08-12 2012-12-19 Hoffmann La Roche INHIBITORS OF THE TIROSINA-QUINASA DE BRUTON
ES2646834T3 (en) * 2010-08-20 2017-12-18 Amira Pharmaceuticals, Inc. Autotaxin inhibitors and uses thereof
WO2012028243A1 (en) * 2010-09-02 2012-03-08 Merck Patent Gmbh Pyrazolopyridinone derivatives as lpa receptor antagonists
CA2818903C (en) 2010-12-14 2021-03-23 Electrophoretics Limited 5-(1,3-benzoxazol-2-yl)-4-(pyridin-4-yl)pyrimidin-2-amine and its use as a casein kinase 1delta inhibitor
WO2012166415A1 (en) 2011-05-27 2012-12-06 Amira Pharmaceuticals, Inc. Heterocyclic autotaxin inhibitors and uses thereof
WO2013033059A1 (en) 2011-08-29 2013-03-07 Bristol-Myers Squibb Company Spiro bicyclic diamine derivatives as hiv attachment inhibitors
WO2013054185A1 (en) 2011-10-13 2013-04-18 Pfizer, Inc. Pyrimidine and pyridine derivatives useful in therapy
WO2013065712A1 (en) 2011-10-31 2013-05-10 東レ株式会社 Diazaspirourea derivative and pharmaceutical use thereof
US8809552B2 (en) 2011-11-01 2014-08-19 Hoffmann-La Roche Inc. Azetidine compounds, compositions and methods of use
WO2013079223A1 (en) 2011-12-02 2013-06-06 Phenex Pharmaceuticals Ag Pyrrolo carboxamides as modulators of orphan nuclear receptor rar-related orphan receptor-gamma (rorϒ, nr1f3) activity and for the treatment of chronic inflammatory and autoimmune diseases
TWI638802B (en) 2012-05-24 2018-10-21 芬蘭商奧利安公司 Catechol o-methyltransferase activity inhibiting compounds
LT3495367T (en) 2012-06-13 2021-02-25 Incyte Holdings Corporation Substituted tricyclic compounds as fgfr inhibitors
PL2861566T3 (en) * 2012-06-13 2017-06-30 F.Hoffmann-La Roche Ag New diazaspirocycloalkane and azaspirocycloalkane
AU2013295584B2 (en) 2012-07-27 2018-03-15 Biogen Ma Inc. ATX modulating agents
AU2013295594B2 (en) 2012-07-27 2018-03-29 Biogen Ma Inc. Compounds that are S1P modulating agents and/or ATX modulating agents
MX357035B (en) 2012-09-25 2018-06-25 Bayer Pharma AG Combination of regorafenib and acetylsalicylic acid for treating cancer.
HUE045797T2 (en) 2012-09-25 2020-01-28 Hoffmann La Roche Hexahydropyrrolo[3,4-c]pyrrole derivatives and related compounds as autotaxin (atx) inhibitors and as inhibitors of the lysophosphatidic acid (lpa) production for treating e.g. renal diseases
AR092742A1 (en) 2012-10-02 2015-04-29 Intermune Inc ANTIFIBROTIC PYRIDINONES
EP2912019B1 (en) 2012-10-25 2021-03-24 Tetra Discovery Partners LLC Heteroaryl inhibitors of pde4
WO2014133112A1 (en) 2013-03-01 2014-09-04 国立大学法人東京大学 8-substituted imidazopyrimidinone derivative having autotaxin inhibitory activity
EP2970099A4 (en) 2013-03-12 2016-12-21 Acucela Inc Substituted 3-phenylpropylamine derivatives for the treatment of ophthalmic diseases and disorders
MX363913B (en) 2013-03-12 2019-04-08 Abbvie Inc Tetracyclic bromodomain inhibitors.
TWI593692B (en) 2013-03-12 2017-08-01 美國禮來大藥廠 Tetrahydropyrrolothiazine compounds
AR095079A1 (en) 2013-03-12 2015-09-16 Hoffmann La Roche DERIVATIVES OF OCTAHIDRO-PIRROLO [3,4-C] -PIRROL AND PIRIDINA-FENILO
TW201446768A (en) 2013-03-15 2014-12-16 Biogen Idec Inc S1P and/or ATX modulating agents
SG11201600241RA (en) 2013-07-18 2016-02-26 Novartis Ag Autotaxin inhibitors comprising a heteroaromatic ring-benzyl-amide-cycle core
RS57306B1 (en) 2013-10-17 2018-08-31 Vertex Pharma Dna-pk inhibitors
HUE055213T2 (en) 2013-11-22 2021-11-29 Sabre Therapeutics Llc Autotaxin inhibitor compounds
AR098475A1 (en) 2013-11-26 2016-06-01 Bayer Cropscience Ag PESTICIDE COMPOUNDS AND USES
KR20160087900A (en) 2013-11-26 2016-07-22 에프. 호프만-라 로슈 아게 New octahydro-cyclobuta [1,2-c ; 3,4-c']dipyrrol-2-yl
CN106103446B (en) 2014-03-26 2019-07-30 豪夫迈·罗氏有限公司 Bicyclic compound as autocrine motility factor (ATX) and lysophosphatidic acid (LPA) production inhibitor
JO3512B1 (en) 2014-03-26 2020-07-05 Astex Therapeutics Ltd Quinoxaline derivatives useful as fgfr kinase modulators
EA032357B1 (en) 2014-03-26 2019-05-31 Ф. Хоффманн-Ля Рош Аг Condensed [1,4]diazepine compounds as autotaxin (atx) and lysophosphatidic acid (lpa) production inhibitors
KR20160137619A (en) 2014-03-26 2016-11-30 바스프 에스이 Substituted [1,2,4]triazole and imidazole compounds as fungicides
KR20160133004A (en) 2014-04-04 2016-11-21 엑스-알엑스, 인크. Substituted spirocyclic inhibitors of autotaxin
CA2963140A1 (en) 2014-10-14 2016-04-21 Vitae Pharmaceuticals, Inc. Dihydropyrrolopyridine inhibitors of ror-gamma
PT3256463T (en) 2015-02-15 2019-12-05 Hoffmann La Roche 1-(het)arylsulfonyl-(pyrrolidine or piperidine)-2-carboxamide derivatives and their use as trpa1 antagonists
MA41898A (en) 2015-04-10 2018-02-13 Hoffmann La Roche BICYCLIC QUINAZOLINONE DERIVATIVES
CN104927727B (en) 2015-07-06 2017-01-11 香山红叶建设有限公司 Structural sealant for glass curtain walls and preparation method for structural sealant
PL415078A1 (en) 2015-09-04 2017-03-13 Oncoarendi Therapeutics Spółka Z Ograniczoną Odpowiedzialnością Substituted amino triazoles, suitable as acidic mammalian chitinase inhibitors
AU2016316717B2 (en) 2015-09-04 2021-02-18 F. Hoffmann-La Roche Ag Phenoxymethyl derivatives
RU2018114289A (en) 2015-09-24 2019-10-24 Ф. Хоффманн-Ля Рош Аг BICYCLIC COMPOUNDS AS AUTOTAXIN (ATX) INHIBITORS
CA2991612A1 (en) 2015-09-24 2017-03-30 F. Hoffmann-La Roche Ag New bicyclic compounds as dual atx/ca inhibitors
CR20180072A (en) 2015-09-24 2018-02-26 Hoffmann La Roche NEW BICYCLE COMPOUNDS AS ATX INHIBITORS
EP3353328A4 (en) 2015-09-24 2019-06-12 Ionis Pharmaceuticals, Inc. Modulators of kras expression
AU2016328365B2 (en) 2015-09-24 2020-04-23 F. Hoffmann-La Roche Ag New bicyclic compounds as dual ATX/CA inhibitors
US10913752B2 (en) 2015-11-25 2021-02-09 Dana-Farber Cancer Institute, Inc. Bivalent bromodomain inhibitors and uses thereof
WO2017094750A1 (en) 2015-12-01 2017-06-08 日本農薬株式会社 3h-pyrrolopyridine compound or n-oxide thereof, or salts thereof, agricultural and horticultural insecticide containing compound, and use thereof
WO2017139978A1 (en) 2016-02-19 2017-08-24 吴伟东 Method and system for updating mobile phone app
JP7090099B2 (en) 2017-03-16 2022-06-23 エフ.ホフマン-ラ ロシュ アーゲー A novel bicyclic compound as an ATX inhibitor
SG11201908560SA (en) 2017-03-16 2019-10-30 Hoffmann La Roche Heterocyclic compounds useful as dual atx/ca inhibitors
LT3448859T (en) 2017-03-20 2019-10-25 Forma Therapeutics Inc Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472961A (en) * 1994-03-03 1995-12-05 Merck Patent Gesellschaft Mit Beschrankter Haftung Acetamides

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US9802944B2 (en) 2014-03-26 2017-10-31 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10654857B2 (en) 2014-03-26 2020-05-19 Hoffman-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US11098048B2 (en) 2014-03-26 2021-08-24 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10428061B2 (en) 2015-02-04 2019-10-01 Cancer Research Technology Limited Autotaxin inhibitors
US10138230B2 (en) 2015-02-04 2018-11-27 Cancer Research Technology Limited Autotaxin inhibitors
US10654846B2 (en) 2015-02-06 2020-05-19 Cancer Research Technology Limited Autotaxin inhibitory compounds
US11453666B2 (en) 2015-02-06 2022-09-27 Cancer Research Technology Limited Autotaxin inhibitory compounds
US10676446B2 (en) 2015-04-10 2020-06-09 Hoffmann-La Roche Inc. Bicyclic quinazolinone derivatives
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US11352330B2 (en) 2015-09-04 2022-06-07 Hoffmann-La Roche Inc. Phenoxymethyl derivatives
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10889588B2 (en) 2015-09-24 2021-01-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11673888B2 (en) 2017-03-16 2023-06-13 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors

Also Published As

Publication number Publication date
PE20150758A1 (en) 2015-05-15
AR092645A1 (en) 2015-04-29
TWI609018B (en) 2017-12-21
SG11201500572YA (en) 2015-02-27
SI2900669T1 (en) 2019-12-31
MA37940B1 (en) 2018-09-28
IL237126A (en) 2016-12-29
DK2900669T3 (en) 2019-11-04
CN104684915B (en) 2017-10-31
CN104684915A (en) 2015-06-03
EA201590534A1 (en) 2015-07-30
MX2015002090A (en) 2015-05-11
MA37940A2 (en) 2016-06-30
ZA201500345B (en) 2015-12-23
HUE045797T2 (en) 2020-01-28
IN2015DN00960A (en) 2015-06-12
HK1206722A1 (en) 2016-01-15
CA2878442A1 (en) 2014-04-03
US20200339570A1 (en) 2020-10-29
US20150353559A1 (en) 2015-12-10
ES2753163T3 (en) 2020-04-07
EP2900669A1 (en) 2015-08-05
US10669268B2 (en) 2020-06-02
HRP20191937T1 (en) 2020-01-10
EA036630B1 (en) 2020-12-02
MX368615B (en) 2019-10-09
AU2013322838B2 (en) 2018-02-01
TW201422618A (en) 2014-06-16
JP6285444B2 (en) 2018-02-28
JP2015531360A (en) 2015-11-02
CR20150120A (en) 2015-04-14
UA116547C2 (en) 2018-04-10
BR112015004111A2 (en) 2017-07-04
US20180118741A1 (en) 2018-05-03
CL2015000706A1 (en) 2015-08-07
AU2013322838A1 (en) 2015-01-29
EP3590940A1 (en) 2020-01-08
EP3590940B1 (en) 2021-06-09
KR20150060713A (en) 2015-06-03
WO2014048865A1 (en) 2014-04-03
PL2900669T3 (en) 2020-01-31
KR102179599B1 (en) 2020-11-19
PH12015500263A1 (en) 2015-03-30
PT2900669T (en) 2019-10-29
EP2900669B1 (en) 2019-09-04
RS59512B1 (en) 2019-12-31
PH12015500263B1 (en) 2015-03-30
LT2900669T (en) 2019-11-11

Similar Documents

Publication Publication Date Title
US10669268B2 (en) Bicyclic derivatives
US10913745B2 (en) Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US10633384B2 (en) Diazaspirocycloalkane and azaspirocycloalkane
US10669285B2 (en) Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10849881B2 (en) Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US20180312515A1 (en) New bicyclic compounds as atx inhibitors
NZ711002B2 (en) New octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE