US20170043081A1 - Medical injection systems and methods related to user activated control devices - Google Patents
Medical injection systems and methods related to user activated control devices Download PDFInfo
- Publication number
- US20170043081A1 US20170043081A1 US15/337,529 US201615337529A US2017043081A1 US 20170043081 A1 US20170043081 A1 US 20170043081A1 US 201615337529 A US201615337529 A US 201615337529A US 2017043081 A1 US2017043081 A1 US 2017043081A1
- Authority
- US
- United States
- Prior art keywords
- internal volume
- closed internal
- pressure
- external force
- elastic portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/007—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M5/16854—Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/15—Detection of leaks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3507—Communication with implanted devices, e.g. external control
- A61M2205/353—Communication with implanted devices, e.g. external control using mechanical means, e.g. subcutaneous pushbuttons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3569—Range sublocal, e.g. between console and disposable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/583—Means for facilitating use, e.g. by people with impaired vision by visual feedback
Definitions
- the present disclosure pertains to medical injection systems and more particularly to user activated control devices thereof.
- FIG. 1 is a perspective view of an exemplary medical injection system 100 (the ACIST CV i ® system) adapted to deliver fluids, such as a contrast agent and saline, into a patient's vascular system for medical imaging procedures.
- FIG. 1 illustrates a first fluid reservoir 132 supplying, via a fill tubing line 27 -F, a syringe-type positive displacement pump of a pressurizing unit 130 , which is coupled to an injector 140 of system 100 ; an injection tubing line 27 -I is shown coupled to unit 130 for injection of the fluid, for example, a radiopaque contrast agent, into a patient's vascular system via an inserted catheter (not shown), for example, that is coupled to a patient tubing line 122 at a connector 120 thereof.
- the fluid for example, a radiopaque contrast agent
- FIG. 1 further illustrates a second fluid reservoir 138 from which saline is drawn by a peristaltic pump 106 through yet another tubing line 128 that feeds into tubing line 122 , for injection of the saline into the patient.
- a manifold valve 124 and associated sensor 114 control the flow of fluids into tubing line 122 , from pressurizing unit 130 and from tubing line 128 .
- FIG. 1 further illustrates a pneumatic user activated control device 200 , which is coupled via connectors 251 , 253 to an injection control module contained within a control panel 152 of system 100 .
- Control device 200 includes a first compressible bladder 210 , which is coupled to, and in fluid communication with a first tubing line 201 , and a second compressible bladder 230 , which is coupled to, and in fluid communication with a second tubing line 203 .
- Each tubing line 201 , 203 is coupled to a corresponding pressure sensor of the injection control module, so that, in response to an external force applied by a user/operator to the corresponding bladder 210 , 230 , an injection control signal can be generated for the positive displacement pump of pressurizing unit 130 and peristaltic pump 106 , respectively, according to the sensed pressure of the corresponding line 201 , 203 .
- Control device 200 is preferably calibrated so that an amount of force, above a predetermined threshold, that the operator applies to bladder 210 is proportional to a volume and rate of contrast injected via pressurizing unit 130 . Such a control device is described in commonly assigned U.S. Pat. No. 5,916,165.
- the efficient injection of contrast agent into a patient over the course of an imaging procedure relies on responsive user activated control devices, such as device 200 .
- Medical injection systems of the present invention include a pump, an injection control module, and a user activated control device coupled to the injection control module, wherein the control module includes a pressure sensor in fluid communication with an internal volume of the control device, to sense an internal pressure thereof, so that the control module may generate an injection control signal, which is based upon the sensed internal pressure of the control device; the sensed internal pressure increases from a baseline pressure in response to application of an external force to the control device.
- the pressure sensor continues to sense the internal pressure of the control device following release of the applied external force, and, if the sensed internal pressure drops below the baseline pressure, the control module generates a notification.
- a user/operator of the system can monitor the sensed internal pressure of the control device, after releasing an applied external force to the control device, to detect if the sensed internal pressure drops below the baseline pressure; and, if the internal pressure does drops below the baseline pressure, the operator may then inspect the control device for leaks and repair, reconnect or replace the control device, or simply reconnect or replace the control device without inspecting.
- the baseline pressure is approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric.
- FIG. 1 is a perspective view of an exemplary medical injection systems, with an enlarged detailed view of a user activated control device thereof, according to some embodiments;
- FIG. 2 is a plan view of a portion of the control device, according to some embodiments.
- FIG. 3 is a functional block diagram for an injection control module, according to some embodiments.
- FIGS. 4A-C present exemplary plots of pressure versus time, which may be generated according to some methods and embodiments of the present invention.
- FIG. 5 is a flow chart outlining some methods of the present invention.
- FIG. 2 shows a portion of user activated control device 200 of system 100 ( FIG. 1 ), which is employed for controlling contrast injections via the positive displacement pump of pressurizing unit 130 .
- FIG. 2 illustrates bladder 210 coupled to tubing line 201 , which is terminated by connector 251 , for example, a Luer type, that couples the compressible volume of bladder 210 in fluid communication with a pressure sensor 315 of an injection control module 300 , for example, as represented by the functional block diagram of FIG. 3 .
- control module 300 may be contained in control panel 152 of system 100 . Alternately, with further reference to FIG.
- control module 300 may be housed with injector 140 and mating fittings for connectors 251 , 253 mounted thereon, rather than on control panel 152 .
- the aforementioned U.S. Pat. No. 5,916,165 which is hereby incorporated by reference, describes suitable constructions, materials, and dimensions for devices like device 200 , that employ bladders coupled to tubing lines, like bladder 210 and tubing line 201 .
- FIG. 3 illustrates injection control module 300 configured on a controller interface board and a processor board, which are coupled to one another via an internal cable, according to some embodiments.
- the controller interface is shown receiving input from a connected user activated control device, which may be a hand-held device, for example, device 200 ( FIGS. 1 and 2 ), or of any other suitable configuration allowing a user to apply an external force in a controlled fashion.
- a connected user activated control device which may be a hand-held device, for example, device 200 ( FIGS. 1 and 2 ), or of any other suitable configuration allowing a user to apply an external force in a controlled fashion.
- the controller interface is also shown including two pressure sensors 315 , one coupled to each tubing line 201 , 203 , so as to be in fluid communication with the internal volume of the corresponding bladder 210 , 230 , to monitor the internal pressures thereof and generate pressure signals for each, which are transmitted through a corresponding conditioning circuit (attenuator/filter/buffer) 320 , and then to a microprocessor 350 as ADC input signals 201 -ADC, 203 -ADC.
- Microprocessor 350 generates, from input signals 201 -ADC and 203 -ADC, injection control signals, for example, direct motor control signals or communication to a motor controller for each of the positive displacement pump of pressurizing unit 130 and peristaltic pump 106 ( FIG. 1 ).
- FIG. 3 further illustrates module 300 including a 12V regulator 330 supplying power to a 5V precision reference 335 for powering pressure sensors 315 within their required voltage specification limits.
- a setup/calibration procedure for control device 200 correlates each ADC input signal 201 -ADC, for example, resulting from an external force, above a predetermined threshold, applied to bladder 210 , to a corresponding injection control signal, each of which dictates a volume flow rate for injection of contrast agent, for example, delivered by the positive displacement pump of pressurizing unit 130 .
- Some setup/calibration methods of the present invention are described below in conjunction with FIG. 5 ; but first, with reference to FIG. 4A , an exemplary plot of sensed internal pressure (psi) vs. time, which results from the application of three different external forces to bladder 210 , is shown.
- first pressure 401 corresponds to a control signal that directs the pump of pressurizing unit 130 to deliver a contrast injection at a first volume flow rate
- second pressure 402 corresponds to a control signal that directs the pump of pressurizing unit 130 to deliver a contrast injection at a second volume flow rate, which is lower than the first
- third pressure 403 corresponds to a control signal that directs the pump of pressurizing unit 130 to deliver a contrast injection at a third volume flow rate, which is lower than the second.
- a baseline pressure 40 which may be approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric, in between each external application of force.
- a baseline pressure 40 may be approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric, in between each external application of force.
- Each of the different volume flow rates for contrast agent injection may be desired throughout the course of an imaging procedure, depending on the situation.
- user activated control device 200 has potential to leak, for example, at a junction J- 1 between tubing line 201 and bladder 210 , at a junction J- 5 between tubing line 201 and fitting 251 , or at the connection between fitting 251 and a mating fitting of a housing that contains injection control module 300 , for example, control panel 152 or injector 140 ( FIG. 1 ).
- a leak at one or both of junctions J- 1 , J- 5 may result from forces applied to tubing line 201 , which cause partial separation of line 201 from bladder 210 and/or from fitting 251 ; and, a more probable leak, between fitting 251 and the mating fitting, may be caused by damage to one or both of the fittings, for example, by over-tightening when coupling fitting 251 to the mating fitting, and/or by incomplete coupling of the fittings together, for example, by misaligning the fittings during coupling.
- bladder 210 can facilitate leak detection, according to some embodiments and methods of the present invention, since a vacuum is momentarily created within device 200 , after the external force is released and bladder 210 draws in air through a leak path when rebounding toward its initial, uncompressed internal volume.
- FIG. 4B is an exemplary plot of sensed internal pressure (psi) versus time, in response to three external forces applied to bladder 210 , when one or more fairly significant leaks are present in control device 200 , for example as previously described.
- FIG. 4B illustrates an almost instantaneous significant drop in internal pressure from a maximum M (i.e. greater than approximately 10%), for each applied external force, and then a drop in internal pressure below the baseline pressure, upon release of the applied external force, due to a brief vacuum created within device 200 .
- M i.e. greater than approximately 10%
- a user would likely detect such a large leak in device 200 , either tactilely by the applied force to bladder 210 , or visually or audibly by the response of pressurizing unit 130 to halt/abort an initiated injection, or visually by fluoroscopic monitoring of the resulting aborted contrast injection.
- a smaller leak in device 200 which may gradually become larger, for example, as illustrated by the plot of FIG. 4C , may not be so readily detected by a user/operator.
- FIG. 4C is an exemplary plot of sensed internal pressure (psi) versus time, which results from the application of three external forces applied to bladder 210 , when a relatively small leak exists in user activated control device 200 .
- FIG. 4C illustrates a first sensed maximum internal pressure M 1 A, in response to a first user applied external force, decaying by a relatively small amount, to a pressure M 1 B, over a first period of time P 1 , and then, when all external force is released, dropping to a pressure 41 that is slightly below the baseline pressure, which is zero differential pressure, with respect to atmospheric, in this instance.
- second and third sensed maximum internal pressures M 2 A, M 3 A each drop a bit more significantly over respective periods P 2 , P 3 , to respective pressures M 2 B, M 3 B.
- the drops in the sensed maximum internal pressures, from M 1 A to M 1 B, from M 2 A to M 2 B, and from M 3 A to M 3 B, may each be due to the user/operator slowly releasing applied external force over respective periods P 1 , P 2 , P 3 , or may be due to a leak in system 200 that causes internal pressures to decay when a constant external force is applied over each period P 1 , P 2 , P 3 .
- each drop of internal pressure below the baseline pressure for example, to pressures 41 , 42 , 43 , when the user/operator releases the external force each time, provides a more definitive indication of a leak.
- pressure sensor 315 of control module 300 senses the internal pressure of control device 200 from the initial connection thereof, when pressure is at a baseline pressure, for example, approximately atmospheric pressure, or zero differential pressure with respect to atmospheric, and throughout calibration/setup and system operation to not only monitor rises in internal pressure from the baseline, in response to external applied forces, but also to monitor falling internal pressures, after the user/operator releases applied external forces, to detect if the internal pressure drops below the baseline pressure. Any detected drop of internal pressure below the baseline pressure can indicate a leak in control device 200 .
- a baseline pressure for example, approximately atmospheric pressure, or zero differential pressure with respect to atmospheric
- pressure sensor has a range of at least +/ ⁇ 15 psi, and a sensitivity of approximately 0.01 psi, to detect such a drop in the internal pressure of the connected control device.
- An example of a suitable pressure sensor is the Honeywell SSCyxxNo15PDAA5 Differential Pressure Sensor, wherein ‘yxx’ designates a variety of available package and port configurations.
- microprocessor 350 of control module 300 may process input signals 201 -ADC to generate and display plots similar to those shown in FIGS. 4A-C , for example, on a monitor 410 of control panel 152 ( FIG. 1 ), as one means for providing notification of a leak in control device 200 to a user/operator of system 100 .
- microprocessor 350 may generate simpler visual notification, for example, in the form of a light signal or message on monitor 410 , and/or an audible notification signal, when input signal 201 -ADC corresponds to a sensed internal pressure of device 200 that has dropped below the baseline pressure.
- the user/operator may simply replace control device 200 , or may first inspect control device 200 for leaks. With reference back to FIG. 2 , if one of joints J- 1 , J- 5 is found to be leaking, the user can repair or replace control device 200 . Alternately, if the coupling/connection between fitting 251 and the mating fitting of the housing that contains control module 300 is found to be leaking, the user may reconnect fitting 251 to form a leak tight connection.
- FIG. 5 is a flow chart outlining some methods of the present invention, for example, useful in the setup/calibration of a user activated control device for a medical injection system, such as control device 200 in system 100 .
- an initial, baseline pressure within the control device may be approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric; alternately, a slightly elevated baseline pressure may be created within the control device.
- a user/operator applies external force to compress the internal volume of the control device, per step 503 , and holds the external force while the internal pressure of the device is sensed/monitored; and, per decision point 507 , if there is no significant drop in the internal pressure (i.e.
- an injection control signal is established (or generated during system operation following setup/calibration) to correspond to the sensed internal pressure, per step 510 . Otherwise, if a significant drop in the internal pressure is detected during the holding period, at decision point 507 , there is likely a significant leak in the control device such that the control device needs to be replaced, repaired or reconnected, per step 509 , after which the setup/calibration may be restarted at step 503 .
- the user/operator releases the external force on the control device, while continuing to monitor the internal pressure of the device, per step 512 , for example, via the above described pressure sensor 315 of injection control module 300 , whose signals may be processed, as described above, to generate a notification of some sort, if necessary; and, per decision point 514 , if the internal pressure drops below the baseline pressure, the user/operator inspects the control device for leaks, per step 516 , then reconnects, repairs or replaces the control device, per step 509 , and then restarts the setup/calibration at step 503 . Alternately, the user may just reconnect or replace the control device, skipping step 516 , according to some methods. Otherwise, if the internal pressure of the control device does not drop below the initial baseline pressure, at decision point 514 , the setup/calibration is either complete, or may continue at step 503 .
- the first applied external force, per step 503 , following connection of the control device at step 501 is a maximum force for the particular user/operator, and, as the external force is increased from an initial force to the maximum force, internal pressure is continuously monitored to establish a series of injection control signals corresponding to each external applied force in a range from a predetermined threshold force to the maximum.
- the user/operator may apply, in a serial manner, individual forces of different magnitudes, per repeated steps 503 , to calibrate injection control signals. It should be noted that methods of the present invention are not limited to setup/calibration of user activated control devices, but, as described above, are also implemented during system operation following setup/calibration.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
A control module for a medical injection system generates an injection control signal based on sensed internal pressure of a user activated control device, for example, in response to an applied external force that causes the sensed internal pressure to increase from a baseline pressure, and continues to sense the internal pressure of the device, following release of the applied external force, so that, if the sensed internal pressure drops below the baseline pressure, the control module may generate a notification. Thus, an operator of the system may monitor internal pressure of the control device for a drop below the baseline pressure, and then, if such a drop is detected, inspect the control device for leaks and reconnect, replace or repair the control device, or simply reconnect or replace the control device.
Description
- The present disclosure pertains to medical injection systems and more particularly to user activated control devices thereof.
-
FIG. 1 is a perspective view of an exemplary medical injection system 100 (the ACIST CVi® system) adapted to deliver fluids, such as a contrast agent and saline, into a patient's vascular system for medical imaging procedures.FIG. 1 illustrates afirst fluid reservoir 132 supplying, via a fill tubing line 27-F, a syringe-type positive displacement pump of a pressurizingunit 130, which is coupled to aninjector 140 ofsystem 100; an injection tubing line 27-I is shown coupled tounit 130 for injection of the fluid, for example, a radiopaque contrast agent, into a patient's vascular system via an inserted catheter (not shown), for example, that is coupled to apatient tubing line 122 at aconnector 120 thereof.FIG. 1 further illustrates asecond fluid reservoir 138 from which saline is drawn by a peristaltic pump 106 through yet anothertubing line 128 that feeds intotubing line 122, for injection of the saline into the patient. A manifold valve 124 and associatedsensor 114 control the flow of fluids intotubing line 122, from pressurizingunit 130 and fromtubing line 128. -
FIG. 1 further illustrates a pneumatic user activatedcontrol device 200, which is coupled viaconnectors control panel 152 ofsystem 100.Control device 200 includes a firstcompressible bladder 210, which is coupled to, and in fluid communication with afirst tubing line 201, and a secondcompressible bladder 230, which is coupled to, and in fluid communication with asecond tubing line 203. Eachtubing line corresponding bladder unit 130 and peristaltic pump 106, respectively, according to the sensed pressure of thecorresponding line Control device 200 is preferably calibrated so that an amount of force, above a predetermined threshold, that the operator applies tobladder 210 is proportional to a volume and rate of contrast injected via pressurizingunit 130. Such a control device is described in commonly assigned U.S. Pat. No. 5,916,165. The efficient injection of contrast agent into a patient over the course of an imaging procedure relies on responsive user activated control devices, such asdevice 200. - Medical injection systems of the present invention include a pump, an injection control module, and a user activated control device coupled to the injection control module, wherein the control module includes a pressure sensor in fluid communication with an internal volume of the control device, to sense an internal pressure thereof, so that the control module may generate an injection control signal, which is based upon the sensed internal pressure of the control device; the sensed internal pressure increases from a baseline pressure in response to application of an external force to the control device. According to some embodiments and methods of the present invention, the pressure sensor continues to sense the internal pressure of the control device following release of the applied external force, and, if the sensed internal pressure drops below the baseline pressure, the control module generates a notification. Thus, according to some methods, a user/operator of the system, during setup/calibration and/or system operation, can monitor the sensed internal pressure of the control device, after releasing an applied external force to the control device, to detect if the sensed internal pressure drops below the baseline pressure; and, if the internal pressure does drops below the baseline pressure, the operator may then inspect the control device for leaks and repair, reconnect or replace the control device, or simply reconnect or replace the control device without inspecting. According to some methods and embodiments, the baseline pressure is approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric.
- The following drawings are illustrative of particular methods and embodiments of the present disclosure and, therefore, do not limit the scope of the invention. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Methods and embodiments will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements, and:
-
FIG. 1 is a perspective view of an exemplary medical injection systems, with an enlarged detailed view of a user activated control device thereof, according to some embodiments; -
FIG. 2 is a plan view of a portion of the control device, according to some embodiments; -
FIG. 3 is a functional block diagram for an injection control module, according to some embodiments; -
FIGS. 4A-C present exemplary plots of pressure versus time, which may be generated according to some methods and embodiments of the present invention; and -
FIG. 5 is a flow chart outlining some methods of the present invention. - The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides practical illustrations for implementing exemplary methods and embodiments. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that can be utilized.
-
FIG. 2 shows a portion of user activatedcontrol device 200 of system 100 (FIG. 1 ), which is employed for controlling contrast injections via the positive displacement pump of pressurizingunit 130.FIG. 2 illustratesbladder 210 coupled totubing line 201, which is terminated byconnector 251, for example, a Luer type, that couples the compressible volume ofbladder 210 in fluid communication with apressure sensor 315 of aninjection control module 300, for example, as represented by the functional block diagram ofFIG. 3 . With reference back toFIG. 1 ,control module 300 may be contained incontrol panel 152 ofsystem 100. Alternately, with further reference toFIG. 1 ,control module 300 may be housed withinjector 140 and mating fittings forconnectors control panel 152. The aforementioned U.S. Pat. No. 5,916,165, which is hereby incorporated by reference, describes suitable constructions, materials, and dimensions for devices likedevice 200, that employ bladders coupled to tubing lines, likebladder 210 andtubing line 201. -
FIG. 3 illustratesinjection control module 300 configured on a controller interface board and a processor board, which are coupled to one another via an internal cable, according to some embodiments. The controller interface is shown receiving input from a connected user activated control device, which may be a hand-held device, for example, device 200 (FIGS. 1 and 2 ), or of any other suitable configuration allowing a user to apply an external force in a controlled fashion. The controller interface is also shown including twopressure sensors 315, one coupled to eachtubing line corresponding bladder microprocessor 350 as ADC input signals 201-ADC, 203-ADC.Microprocessor 350 generates, from input signals 201-ADC and 203-ADC, injection control signals, for example, direct motor control signals or communication to a motor controller for each of the positive displacement pump of pressurizingunit 130 and peristaltic pump 106 (FIG. 1 ).FIG. 3 further illustratesmodule 300 including a12V regulator 330 supplying power to a5V precision reference 335 forpowering pressure sensors 315 within their required voltage specification limits. - A setup/calibration procedure for
control device 200 correlates each ADC input signal 201-ADC, for example, resulting from an external force, above a predetermined threshold, applied tobladder 210, to a corresponding injection control signal, each of which dictates a volume flow rate for injection of contrast agent, for example, delivered by the positive displacement pump of pressurizingunit 130. Some setup/calibration methods of the present invention are described below in conjunction withFIG. 5 ; but first, with reference toFIG. 4A , an exemplary plot of sensed internal pressure (psi) vs. time, which results from the application of three different external forces tobladder 210, is shown.FIG. 4A illustrates three different maximuminternal pressures first pressure 401 corresponds to a control signal that directs the pump of pressurizingunit 130 to deliver a contrast injection at a first volume flow rate,second pressure 402 corresponds to a control signal that directs the pump of pressurizingunit 130 to deliver a contrast injection at a second volume flow rate, which is lower than the first, andthird pressure 403 corresponds to a control signal that directs the pump of pressurizingunit 130 to deliver a contrast injection at a third volume flow rate, which is lower than the second.FIG. 4A further illustrates the internal pressure returning to abaseline pressure 40, which may be approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric, in between each external application of force. Each of the different volume flow rates for contrast agent injection may be desired throughout the course of an imaging procedure, depending on the situation. - With reference back to
FIG. 2 , it may be appreciated that, in some instances, user activatedcontrol device 200 has potential to leak, for example, at a junction J-1 betweentubing line 201 andbladder 210, at a junction J-5 betweentubing line 201 and fitting 251, or at the connection betweenfitting 251 and a mating fitting of a housing that containsinjection control module 300, for example,control panel 152 or injector 140 (FIG. 1 ). A leak at one or both of junctions J-1, J-5 may result from forces applied totubing line 201, which cause partial separation ofline 201 frombladder 210 and/or from fitting 251; and, a more probable leak, between fitting 251 and the mating fitting, may be caused by damage to one or both of the fittings, for example, by over-tightening when coupling fitting 251 to the mating fitting, and/or by incomplete coupling of the fittings together, for example, by misaligning the fittings during coupling. An elastic nature ofbladder 210 can facilitate leak detection, according to some embodiments and methods of the present invention, since a vacuum is momentarily created withindevice 200, after the external force is released andbladder 210 draws in air through a leak path when rebounding toward its initial, uncompressed internal volume. -
FIG. 4B is an exemplary plot of sensed internal pressure (psi) versus time, in response to three external forces applied tobladder 210, when one or more fairly significant leaks are present incontrol device 200, for example as previously described.FIG. 4B illustrates an almost instantaneous significant drop in internal pressure from a maximum M (i.e. greater than approximately 10%), for each applied external force, and then a drop in internal pressure below the baseline pressure, upon release of the applied external force, due to a brief vacuum created withindevice 200. A user would likely detect such a large leak indevice 200, either tactilely by the applied force tobladder 210, or visually or audibly by the response of pressurizingunit 130 to halt/abort an initiated injection, or visually by fluoroscopic monitoring of the resulting aborted contrast injection. However, a smaller leak indevice 200, which may gradually become larger, for example, as illustrated by the plot ofFIG. 4C , may not be so readily detected by a user/operator. -
FIG. 4C is an exemplary plot of sensed internal pressure (psi) versus time, which results from the application of three external forces applied tobladder 210, when a relatively small leak exists in user activatedcontrol device 200.FIG. 4C illustrates a first sensed maximum internal pressure M1A, in response to a first user applied external force, decaying by a relatively small amount, to a pressure M1B, over a first period of time P1, and then, when all external force is released, dropping to apressure 41 that is slightly below the baseline pressure, which is zero differential pressure, with respect to atmospheric, in this instance. Subsequently, when the user/operator applies second and third external forces, second and third sensed maximum internal pressures M2A, M3A, each drop a bit more significantly over respective periods P2, P3, to respective pressures M2B, M3B. The drops in the sensed maximum internal pressures, from M1A to M1B, from M2A to M2B, and from M3A to M3B, may each be due to the user/operator slowly releasing applied external force over respective periods P1, P2, P3, or may be due to a leak insystem 200 that causes internal pressures to decay when a constant external force is applied over each period P1, P2, P3. But, with further reference toFIG. 4C , it may be appreciated that, each drop of internal pressure below the baseline pressure, for example, topressures - Thus, according to embodiments and methods of the present invention,
pressure sensor 315 of control module 300 (FIG. 3 ) senses the internal pressure ofcontrol device 200 from the initial connection thereof, when pressure is at a baseline pressure, for example, approximately atmospheric pressure, or zero differential pressure with respect to atmospheric, and throughout calibration/setup and system operation to not only monitor rises in internal pressure from the baseline, in response to external applied forces, but also to monitor falling internal pressures, after the user/operator releases applied external forces, to detect if the internal pressure drops below the baseline pressure. Any detected drop of internal pressure below the baseline pressure can indicate a leak incontrol device 200. According to an exemplary embodiment, pressure sensor has a range of at least +/−15 psi, and a sensitivity of approximately 0.01 psi, to detect such a drop in the internal pressure of the connected control device. An example of a suitable pressure sensor is the Honeywell SSCyxxNo15PDAA5 Differential Pressure Sensor, wherein ‘yxx’ designates a variety of available package and port configurations. - With reference back to
FIG. 3 , according to some embodiments,microprocessor 350 ofcontrol module 300 may process input signals 201-ADC to generate and display plots similar to those shown inFIGS. 4A-C , for example, on amonitor 410 of control panel 152 (FIG. 1 ), as one means for providing notification of a leak incontrol device 200 to a user/operator ofsystem 100. Alternately,microprocessor 350 may generate simpler visual notification, for example, in the form of a light signal or message onmonitor 410, and/or an audible notification signal, when input signal 201-ADC corresponds to a sensed internal pressure ofdevice 200 that has dropped below the baseline pressure. In response to notification, the user/operator may simply replacecontrol device 200, or may first inspectcontrol device 200 for leaks. With reference back toFIG. 2 , if one of joints J-1, J-5 is found to be leaking, the user can repair or replacecontrol device 200. Alternately, if the coupling/connection between fitting 251 and the mating fitting of the housing that containscontrol module 300 is found to be leaking, the user may reconnect fitting 251 to form a leak tight connection. -
FIG. 5 is a flow chart outlining some methods of the present invention, for example, useful in the setup/calibration of a user activated control device for a medical injection system, such ascontrol device 200 insystem 100. When the control device is connected to the system, perstep 501, an initial, baseline pressure within the control device may be approximately atmospheric pressure, or, preferably, zero differential pressure with respect to atmospheric; alternately, a slightly elevated baseline pressure may be created within the control device. Once connected, a user/operator applies external force to compress the internal volume of the control device, perstep 503, and holds the external force while the internal pressure of the device is sensed/monitored; and, perdecision point 507, if there is no significant drop in the internal pressure (i.e. greater than approximately 10%) during the holding period, an injection control signal is established (or generated during system operation following setup/calibration) to correspond to the sensed internal pressure, perstep 510. Otherwise, if a significant drop in the internal pressure is detected during the holding period, atdecision point 507, there is likely a significant leak in the control device such that the control device needs to be replaced, repaired or reconnected, perstep 509, after which the setup/calibration may be restarted atstep 503. Followingstep 510, the user/operator releases the external force on the control device, while continuing to monitor the internal pressure of the device, perstep 512, for example, via the above describedpressure sensor 315 ofinjection control module 300, whose signals may be processed, as described above, to generate a notification of some sort, if necessary; and, perdecision point 514, if the internal pressure drops below the baseline pressure, the user/operator inspects the control device for leaks, perstep 516, then reconnects, repairs or replaces the control device, perstep 509, and then restarts the setup/calibration atstep 503. Alternately, the user may just reconnect or replace the control device, skippingstep 516, according to some methods. Otherwise, if the internal pressure of the control device does not drop below the initial baseline pressure, atdecision point 514, the setup/calibration is either complete, or may continue atstep 503. - According to some methods, the first applied external force, per
step 503, following connection of the control device atstep 501, is a maximum force for the particular user/operator, and, as the external force is increased from an initial force to the maximum force, internal pressure is continuously monitored to establish a series of injection control signals corresponding to each external applied force in a range from a predetermined threshold force to the maximum. Alternately the user/operator may apply, in a serial manner, individual forces of different magnitudes, per repeatedsteps 503, to calibrate injection control signals. It should be noted that methods of the present invention are not limited to setup/calibration of user activated control devices, but, as described above, are also implemented during system operation following setup/calibration. - In the foregoing detailed description, the invention has been described with reference to specific embodiments. However, it may be appreciated that various modifications and changes can be made without departing from the scope of the invention as set forth in the appended claims.
Claims (21)
1-22. (canceled)
23. An injection control device for an injection system comprising:
a closed internal volume having a baseline pressure;
an elastic portion defining at least one side of the closed internal volume, the closed internal volume being compressible by application of an external force to the elastic portion such that, when the closed internal volume is compressed, the internal pressure of the closed internal volume increases above the baseline pressure; and wherein
the closed internal volume is in fluid communication with an interfacing portion of the injection system that is used to monitor the internal pressure of the closed internal volume after the external force is released from the elastic portion to detect the presence of a leak in the closed internal volume.
24. The injection control device of claim 23 , wherein a leak in the closed internal volume is detected in the event that, after the external force is released from the elastic portion, the internal pressure of the closed internal volume drops below the baseline pressure.
25. The injection control device of claim 23 , wherein the pressure of the closed internal volume is monitored while the external force is applied to the elastic portion, and wherein a leak in the closed internal volume is detected in the event that, while the external force is applied to the elastic portion, the internal pressure in the closed internal volume decreases by a predetermined amount.
26. The injection control device of claim 23 , wherein the closed internal volume comprises a first closed internal volume, and further comprising:
a second closed internal volume separate from the first closed internal volume; and
a second elastic portion defining at least one side of the second closed internal volume; and wherein
the second closed internal volume is in fluid communication with a second interfacing portion of the injection system.
27. The injection control device of claim 26 , further comprising:
a first connector in fluid communication with the first closed internal volume via a first tubing line and configured to provide an interface between the first closed internal volume and the interfacing portion of the injection system; and
a second connector in fluid communication with the second closed internal volume via a second tubing line and configured to provide an interface between the second closed internal volume and the second interfacing portion of the injection system.
28. An injection system comprising:
an injection control device comprising:
a closed internal volume having a baseline pressure; and
an elastic portion defining at least one side of the closed internal volume, the closed internal volume being compressible by application of an external force to the elastic portion such that, when the closed internal volume is compressed, the internal pressure of the closed internal volume increases above the baseline pressure;
a pressure sensor in fluid communication with the closed internal volume; and
a controller in communication with the pressure sensor configured to monitor the internal pressure of the closed internal volume and alert a user of a detected leak in the closed internal volume of the injection control device; wherein
the internal pressure of the closed internal volume is monitored after the external force is released from the elastic portion, and a leak is detected in the closed internal volume in the event that, after the external force is released from the elastic portion, the internal pressure drops below the baseline pressure.
29. The injection system of claim 28 , further comprising:
a display in communication with the controller; and wherein
alerting the user of a detected leak in the closed internal volume comprises presenting a visual notification to the user via the display.
30. The injection system of claim 29 , wherein alerting the user of a detected leak in the closed internal volume comprises displaying a graphical plot of the internal pressure of the closed internal volume over time on the display.
31. The injection system of claim 29 , wherein alerting the user of a detected leak in the closed internal volume comprises generating a light signal or message on the display.
32. The injection system of claim 28 , wherein alerting the user of a detected leak in the closed internal volume comprises generating an audible alert.
33. The injection system of claim 28 , wherein the internal pressure is monitored while the external force is applied to the elastic portion.
34. The injection system of claim 33 , wherein, if the internal pressure does not significantly drop while the external force is applied to the elastic portion, the controller establishes an injection control signal to perform an injection operation.
35. The injection system of claim 33 , wherein the injection operation comprises delivering a contrast injection into a patient at a flow rate, the flow rate being dependent on the external force applied to the elastic portion.
36. A method for controlling a medical injection system comprising:
experiencing an external force applied to an elastic portion of a closed internal volume causing the internal pressure of the closed internal volume to increase from a baseline pressure;
monitoring the internal pressure of the closed internal volume as the external force is released from the elastic portion; and
if the monitored internal pressure of the closed internal volume drops below the baseline pressure, outputting a signal indicating the presence of a leak in the closed internal volume.
37. The method of claim 36 , further comprising:
monitoring the internal pressure of the closed internal volume while the external force is applied to the elastic portion; and
if the pressure drops significantly while the external force is applied to the elastic portion, outputting a signal indicating the presence of a leak in the closed internal volume.
38. The method of claim 37 , further comprising:
if the pressure does not drop significantly while the external force is applied to the elastic portion, establishing an injection control signal and performing an injection operation.
39. The method of claim 38 , wherein the injection operation comprises delivering a contrast injection into a patient at a flow rate, the flow rate being dependent on the external force applied to the elastic portion.
40. The method of claim 37 , further comprising establishing a series of injection control signals, each injection control signal corresponding to one of a series of applied external forces to the elastic portion.
41. The method of claim 36 , wherein outputting a signal indicating the presence of a leak in the closed internal volume comprises presenting an audible and/or a visible alert.
42. The method of claim 41 , wherein outputting the signal indicating the presence of a leak in the closed internal volume comprises displaying a graphical plot of the internal pressure of the closed internal volume over time on a display.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/337,529 US20170043081A1 (en) | 2012-11-30 | 2016-10-28 | Medical injection systems and methods related to user activated control devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/689,966 US9480788B2 (en) | 2012-11-30 | 2012-11-30 | Medical injection systems and methods related to user activated control devices |
US15/337,529 US20170043081A1 (en) | 2012-11-30 | 2016-10-28 | Medical injection systems and methods related to user activated control devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/689,966 Continuation US9480788B2 (en) | 2012-11-30 | 2012-11-30 | Medical injection systems and methods related to user activated control devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170043081A1 true US20170043081A1 (en) | 2017-02-16 |
Family
ID=50001242
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/689,966 Active 2033-10-20 US9480788B2 (en) | 2012-11-30 | 2012-11-30 | Medical injection systems and methods related to user activated control devices |
US15/337,529 Abandoned US20170043081A1 (en) | 2012-11-30 | 2016-10-28 | Medical injection systems and methods related to user activated control devices |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/689,966 Active 2033-10-20 US9480788B2 (en) | 2012-11-30 | 2012-11-30 | Medical injection systems and methods related to user activated control devices |
Country Status (6)
Country | Link |
---|---|
US (2) | US9480788B2 (en) |
EP (1) | EP2925388B1 (en) |
JP (1) | JP6510418B2 (en) |
CN (1) | CN104822403B (en) |
HK (1) | HK1215207A1 (en) |
WO (1) | WO2014085364A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11786652B2 (en) | 2017-08-31 | 2023-10-17 | Bayer Healthcare Llc | System and method for drive member position and fluid injector system mechanical calibration |
EP3675931B1 (en) | 2017-08-31 | 2021-08-11 | Bayer Healthcare LLC | Injector pressure calibration system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114664A (en) * | 1991-05-06 | 1992-05-19 | General Electric Company | Method for in situ evaluation of capacitive type pressure transducers in a nuclear power plant |
US5336053A (en) * | 1993-01-29 | 1994-08-09 | Abbott Laboratories | Method of testing for leakage in a solution pumping system |
US5916165A (en) * | 1997-11-06 | 1999-06-29 | Invasatec, Inc. | Pneumatic controller and method |
EP2158930A1 (en) * | 2008-08-27 | 2010-03-03 | F.Hoffmann-La Roche Ag | Flow control valves for leakage detection, free-flow prevention and occlusion detection |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2645224A (en) * | 1950-03-18 | 1953-07-14 | Ward L Beebe | Hypodermic syringe |
US5515851A (en) | 1993-07-30 | 1996-05-14 | Goldstein; James A. | Angiographic fluid control system |
JPH11351999A (en) * | 1998-06-12 | 1999-12-24 | Cosmo Keiki:Kk | Method and apparatus for inspecting leakage |
US6485471B1 (en) * | 2000-03-03 | 2002-11-26 | Roche Diagnostics Corporation | Bellowed fluid delivery apparatus |
EP1843141B1 (en) | 2001-03-02 | 2010-06-23 | Waters Technologies Corporation | Methods and apparatus for determining the presence or absence of a fluid leak |
US6780170B2 (en) | 2002-05-15 | 2004-08-24 | Liebel-Flarsheim Company | Hydraulic remote for a medical fluid injector |
US6852099B2 (en) * | 2002-06-04 | 2005-02-08 | Baxter International Inc. | Device for controllably applying liquids to body surfaces |
US6935163B2 (en) * | 2003-11-20 | 2005-08-30 | Stewart Ergonomics, Inc. | Method for testing parts for leaks |
JP2006098226A (en) * | 2004-09-29 | 2006-04-13 | Fuji Photo Film Co Ltd | Anomaly detection method for syringe pump, liquid suction/discharge apparatus, and biochemical analyzer |
US8608699B2 (en) * | 2009-03-31 | 2013-12-17 | Tandem Diabetes Care, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
US8343098B2 (en) * | 2009-06-29 | 2013-01-01 | Acist Medical Systems, Inc. | Method and system for removing air from a flow path of a fluid injection device |
-
2012
- 2012-11-30 US US13/689,966 patent/US9480788B2/en active Active
-
2013
- 2013-11-26 WO PCT/US2013/071799 patent/WO2014085364A1/en active Application Filing
- 2013-11-26 JP JP2015545163A patent/JP6510418B2/en active Active
- 2013-11-26 CN CN201380062347.2A patent/CN104822403B/en active Active
- 2013-11-26 EP EP13824225.0A patent/EP2925388B1/en active Active
-
2016
- 2016-03-21 HK HK16103274.3A patent/HK1215207A1/en unknown
- 2016-10-28 US US15/337,529 patent/US20170043081A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114664A (en) * | 1991-05-06 | 1992-05-19 | General Electric Company | Method for in situ evaluation of capacitive type pressure transducers in a nuclear power plant |
US5336053A (en) * | 1993-01-29 | 1994-08-09 | Abbott Laboratories | Method of testing for leakage in a solution pumping system |
US5916165A (en) * | 1997-11-06 | 1999-06-29 | Invasatec, Inc. | Pneumatic controller and method |
EP2158930A1 (en) * | 2008-08-27 | 2010-03-03 | F.Hoffmann-La Roche Ag | Flow control valves for leakage detection, free-flow prevention and occlusion detection |
Also Published As
Publication number | Publication date |
---|---|
HK1215207A1 (en) | 2016-08-19 |
JP2015536210A (en) | 2015-12-21 |
CN104822403A (en) | 2015-08-05 |
US20140155742A1 (en) | 2014-06-05 |
EP2925388A1 (en) | 2015-10-07 |
EP2925388B1 (en) | 2018-01-10 |
US9480788B2 (en) | 2016-11-01 |
WO2014085364A1 (en) | 2014-06-05 |
JP6510418B2 (en) | 2019-05-08 |
CN104822403B (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200246541A1 (en) | System for Delivering a Fluid to a Patient and for Detecting an Infusion Anomaly | |
US9119917B2 (en) | Systems and methods to address air, leaks and occlusions in an insulin pump system | |
US8535280B2 (en) | Pressure based refill status monitor for implantable pumps | |
JP2014147787A (en) | System and method for distinguishing leaks from disengaged canister condition in reduced pressure treatment system | |
US9808571B2 (en) | High pressure sensor for use with a fluid delivery system | |
EP2946796B1 (en) | Air leak detection device and electric-powered aspirator provided therewith | |
US20130204210A1 (en) | Systems and methods for delivering fluid to a wound therapy dressing | |
CA2487723A1 (en) | Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia | |
US20170043081A1 (en) | Medical injection systems and methods related to user activated control devices | |
EP3389743B1 (en) | Infusion pump with elongation sensor | |
US10920805B2 (en) | System and method for detecting a connector failure in an agricultural apparatus | |
US10840652B2 (en) | Connected component authentication | |
US9220834B2 (en) | Pressure sensing in medical injection systems | |
JP2015536210A5 (en) | ||
US11596317B2 (en) | Fluid pressure sensor protection | |
WO2006124936A3 (en) | Infusion monitoring device, system and method | |
CN116139361A (en) | Infusion device and missing needle detection method | |
JP2005278766A (en) | Method of supervising infusion condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACIST MEDICAL SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAGNER, REED BRIAN;REEL/FRAME:040773/0153 Effective date: 20121218 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |